Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
ToolBox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SCS
ToolBox
Commits
f5daddba
Commit
f5daddba
authored
2 years ago
by
Laurent Mercadier
Browse files
Options
Downloads
Patches
Plain Diff
developed viking functions
parent
ba978d93
No related branches found
No related tags found
1 merge request
!240
Functions for Viking spectrometer analysis
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/toolbox_scs/detectors/viking.py
+241
-0
241 additions, 0 deletions
src/toolbox_scs/detectors/viking.py
with
241 additions
and
0 deletions
src/toolbox_scs/detectors/viking.py
0 → 100644
+
241
−
0
View file @
f5daddba
import
numpy
as
np
import
xarray
as
xr
import
toolbox_scs
as
tb
import
matplotlib.pyplot
as
plt
__all__
=
[
'
Viking
'
]
# -----------------------------------------------------------------------------
# Viking class
class
Viking
:
# run
PROPOSAL
=
2953
# image range
X_RANGE
=
slice
(
None
,
None
)
Y_RANGE
=
slice
(
None
,
None
)
# dimension for integration
INTEGRATE_DIM
=
'
newt_y
'
USE_DARK
=
False
# polynomial degree for background subtraction
POLY_DEG
=
5
FIELDS
=
[
'
newton
'
]
ENERGY_CALIB
=
[
9.8233e-7
,
0.0240
,
514.4795
]
def
set_params
(
self
,
**
params
):
for
key
,
value
in
params
.
items
():
setattr
(
self
,
key
.
upper
(),
value
)
def
get_params
(
self
,
*
params
):
if
not
params
:
params
=
(
'
proposal
'
,
'
x_range
'
,
'
y_range
'
,
'
integrate_dim
'
,
'
fields
'
,)
return
{
param
:
getattr
(
self
,
param
.
upper
())
for
param
in
params
}
def
from_run
(
self
,
runNB
,
proposal
=
None
,
add_attrs
=
True
,
calibrate
=
True
):
if
proposal
is
None
:
proposal
=
self
.
PROPOSAL
roi
=
{
'
newton
'
:
{
'
newton
'
:
{
'
roi
'
:
(
self
.
Y_RANGE
,
self
.
X_RANGE
),
'
dim
'
:
[
'
newt_y
'
,
'
newt_x
'
]}}}
run
,
data
=
tb
.
load
(
proposal
,
runNB
=
runNB
,
fields
=
self
.
FIELDS
,
rois
=
roi
)
data
[
'
newton
'
]
=
data
[
'
newton
'
].
astype
(
float
)
if
calibrate
:
data
=
data
.
assign_coords
(
newt_x
=
np
.
polyval
(
self
.
ENERGY_CALIB
,
data
[
'
newt_x
'
]))
if
add_attrs
:
params
=
self
.
get_camera_params
(
run
)
for
k
,
v
in
params
.
items
():
data
.
attrs
[
k
]
=
v
return
data
def
load_dark
(
self
,
runNB
=
None
,
proposal
=
None
):
if
runNB
is
None
:
self
.
USE_DARK
=
False
return
if
proposal
is
None
:
proposal
=
self
.
PROPOSAL
data
=
self
.
from_run
(
runNB
,
proposal
,
add_attrs
=
False
)
self
.
dark_image
=
data
[
'
newton
'
].
mean
(
dim
=
'
trainId
'
)
self
.
dark_image
.
attrs
[
'
runNB
'
]
=
runNB
self
.
USE_DARK
=
True
def
integrate
(
self
,
data
):
imgs
=
data
[
'
newton
'
]
if
self
.
USE_DARK
:
imgs
-=
self
.
dark_image
data
[
'
spectrum
'
]
=
imgs
.
sum
(
dim
=
self
.
INTEGRATE_DIM
)
return
data
def
get_camera_gain
(
self
,
run
):
"""
Get the preamp gain of the camera in the Viking spectrometer for
a specified run.
Parameters:
------
run: extra_data DataCollection
information on the run
Output:
------
gain: int
"""
gain
=
run
.
get_run_value
(
'
SCS_EXP_NEWTON/CAM/CAMERA
'
,
'
preampGain.value
'
)
gain_dict
=
{
0
:
1
,
1
:
2
,
2
:
4
}
return
gain_dict
[
gain
]
def
get_electrons_per_counts
(
self
,
run
,
gain
=
None
):
"""
Conversion factor from camera digital counts to photoelectrons
per count. The values can be found in the camera datasheet
but they have been slightly corrected for High Sensitivity
mode after analysis of runs 1204, 1207 and 1208, proposal 2937.
Parameters:
------
run: extra_data DataCollection
information on the run
gain: int
the camera preamp gain
Outputs:
------
ret: float
photoelectrons per count
"""
if
gain
is
None
:
gain
=
self
.
get_camera_gain
(
run
)
hc
=
run
.
get_run_value
(
'
SCS_EXP_NEWTON/CAM/CAMERA
'
,
'
HighCapacity.value
'
)
if
hc
==
0
:
# High Sensitivity
pe_dict
=
{
1
:
4.
,
2
:
2.05
,
4
:
0.97
}
elif
hc
==
1
:
# High Capacity
pe_dict
=
{
1
:
17.9
,
2
:
9.
,
4
:
4.5
}
return
pe_dict
[
gain
]
def
get_camera_params
(
self
,
run
):
dic
=
{
'
vbin:
'
:
'
imageSpecifications.verticalBinning.value
'
,
'
hbin
'
:
'
imageSpecifications.horizontalBinning.value
'
,
'
startX
'
:
'
imageSpecifications.startX.value
'
,
'
endX
'
:
'
imageSpecifications.endX.value
'
,
'
startY
'
:
'
imageSpecifications.startY.value
'
,
'
endY
'
:
'
imageSpecifications.endY.value
'
,
'
temperature
'
:
'
CoolerActual.temperature.value
'
,
'
high_sensitivity
'
:
'
HighCapacity.value
'
,
'
exposure_s
'
:
'
exposureTime.value
'
}
ret
=
{}
for
k
,
v
in
dic
.
items
():
ret
[
k
]
=
run
.
get_run_value
(
'
SCS_EXP_NEWTON/CAM/CAMERA
'
,
v
)
ret
[
'
gain
'
]
=
self
.
get_camera_gain
(
run
)
ret
[
'
photoelectrons_per_count
'
]
=
self
.
get_electrons_per_counts
(
run
,
ret
[
'
gain
'
])
return
ret
def
removePolyBaseline
(
self
,
data
,
signalRange
=
[
515
,
540
]):
"""
Removes a polynomial baseline to a signal, assuming a fixed
position for the signal.
Parameters
----------
x: array-like, shape(M,)
x-axis
spectra: array-like, shape(M,) or (N, M,)
the signals to subtract a baseline from. If 2d, the signals
are assumed to be stacked on the first axis.
deg: int
the polynomial degree for fitting a baseline
signalRange: list of type(x), length 2
the x-interval where to expect the signal. The baseline is fitted to
all regions except the one defined by the interval.
Output
------
spectra_nobl: array-like, shape(M,) or (N, M,)
the baseline subtracted spectra
"""
if
'
spectrum
'
not
in
data
:
return
x
=
data
.
newt_x
spectra
=
data
[
'
spectrum
'
]
mask
=
(
x
<
signalRange
[
0
])
|
(
x
>
signalRange
[
1
])
if
isinstance
(
x
,
xr
.
DataArray
):
x_bl
=
x
.
where
(
mask
,
drop
=
True
)
bl
=
spectra
.
sel
(
newt_x
=
x_bl
)
else
:
x_bl
=
x
[
mask
]
if
len
(
spectra
.
shape
)
==
1
:
bl
=
spectra
[
mask
]
else
:
bl
=
spectra
[:,
mask
]
fit
=
np
.
polyfit
(
x_bl
,
bl
.
T
,
self
.
POLY_DEG
)
if
len
(
spectra
.
shape
)
==
1
:
return
spectra
-
np
.
poly1d
(
fit
)(
x
)
final_bl
=
np
.
empty
(
spectra
.
shape
)
for
t
in
range
(
spectra
.
shape
[
0
]):
final_bl
[
t
]
=
np
.
poly1d
(
fit
[:,
t
])(
x
)
data
[
'
spectrum_nobg
'
]
=
spectra
-
final_bl
return
spectra
-
final_bl
def
xas
(
self
,
data
,
data_ref
,
thickness
=
1
,
plot
=
False
,
plot_errors
=
True
,
xas_ylim
=
(
-
1
,
3
)):
key
=
'
spectrum_nobg
'
if
'
spectrum_nobg
'
in
data
else
'
spectrum
'
if
data
[
'
newt_x
'
].
equals
(
data_ref
[
'
newt_x
'
])
is
False
:
return
spectrum
=
data
[
key
].
mean
(
dim
=
'
trainId
'
)
std
=
data
[
key
].
std
(
dim
=
'
trainId
'
)
std_err
=
std
/
np
.
sqrt
(
data
.
sizes
[
'
trainId
'
])
spectrum_ref
=
data_ref
[
key
].
mean
(
dim
=
'
trainId
'
)
std_ref
=
data_ref
[
key
].
std
(
dim
=
'
trainId
'
)
std_err_ref
=
std_ref
/
np
.
sqrt
(
data_ref
.
sizes
[
'
trainId
'
])
ds
=
xr
.
Dataset
()
ds
[
'
sample
'
]
=
spectrum
ds
[
'
sample_std
'
]
=
std
ds
[
'
sample_std_err
'
]
=
std_err
ds
[
'
ref
'
]
=
spectrum_ref
ds
[
'
ref_std
'
]
=
std
ds
[
'
ref_std_err
'
]
=
std_err
ds
[
'
absorption
'
]
=
spectrum_ref
/
spectrum
ds
[
'
absorption_std
'
]
=
np
.
abs
(
ds
[
'
absorption
'
])
*
np
.
sqrt
(
std_ref
**
2
/
spectrum_ref
**
2
+
std
**
2
/
spectrum
**
2
)
ds
[
'
absorption_stderr
'
]
=
np
.
abs
(
ds
[
'
absorption
'
])
*
np
.
sqrt
(
(
std_err_ref
/
spectrum_ref
)
**
2
+
(
std_err
/
spectrum
)
**
2
)
ds
[
'
absorptionCoef
'
]
=
np
.
log
(
ds
[
'
absorption
'
])
/
thickness
ds
[
'
absorptionCoef_std
'
]
=
ds
[
'
absorption_std
'
]
/
(
thickness
*
np
.
abs
(
ds
[
'
absorption
'
]))
ds
[
'
absorptionCoef_stderr
'
]
=
ds
[
'
absorption_stderr
'
]
/
(
thickness
*
np
.
abs
(
ds
[
'
absorption
'
]))
if
plot
:
plot_viking_xas
(
ds
,
plot_errors
,
xas_ylim
)
return
ds
def
plot_viking_xas
(
xas
,
plot_errors
=
True
,
xas_ylim
=
(
-
1
,
3
)):
fig
,
ax
=
plt
.
subplots
(
3
,
1
,
figsize
=
(
8
,
8
),
sharex
=
True
)
ax
[
0
].
plot
(
xas
.
newt_x
,
xas
[
'
ref
'
])
ax
[
0
].
grid
()
ax
[
1
].
plot
(
xas
.
newt_x
,
xas
[
'
sample
'
])
ax
[
1
].
grid
()
ax
[
2
].
plot
(
xas
.
newt_x
,
xas
[
'
absorptionCoef
'
])
ax
[
2
].
set_ylim
(
*
xas_ylim
)
ax
[
2
].
grid
()
if
plot_errors
:
ax
[
0
].
fill_between
(
xas
.
newt_x
,
xas
[
'
ref
'
]
-
1.96
*
xas
[
'
ref_std_err
'
],
xas
[
'
ref
'
]
+
1.96
*
xas
[
'
ref_std_err
'
],
alpha
=
0.2
)
ax
[
1
].
fill_between
(
xas
.
newt_x
,
xas
[
'
sample
'
]
-
1.96
*
xas
[
'
sample_std_err
'
],
xas
[
'
sample
'
]
+
1.96
*
xas
[
'
sample_std_err
'
],
alpha
=
0.2
)
ax
[
2
].
fill_between
(
xas
.
newt_x
,
xas
[
'
absorptionCoef
'
]
-
1.96
*
xas
[
'
absorptionCoef_stderr
'
],
xas
[
'
absorptionCoef
'
]
+
1.96
*
xas
[
'
absorptionCoef_stderr
'
],
alpha
=
0.2
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment