Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
ToolBox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SCS
ToolBox
Merge requests
!118
Dask assisted DSSC data binning
Code
Review changes
Check out branch
Download
Patches
Plain diff
Merged
Dask assisted DSSC data binning
dask-assisted-binning
into
master
Overview
0
Commits
3
Pipelines
0
Changes
5
Merged
Loïc Le Guyader
requested to merge
dask-assisted-binning
into
master
3 years ago
Overview
0
Commits
3
Pipelines
0
Changes
5
Expand
This allows more flexible DSSC data binning by using dask group_by function.
binning with BAM time delay correction. Closes
#24 (closed)
provide documentation for DSSC binning via papermill parametrized notebook launched via sbatch
remove the need to format processed DSSC module
load the exfel anaconda environment and process the notebook with the xfel kernel. Closes
#17 (closed)
Edited
3 years ago
by
Loïc Le Guyader
0
0
Merge request reports
Compare
master
version 2
981e9509
3 years ago
version 1
721926a1
3 years ago
master (base)
and
latest version
latest version
59c8523e
3 commits,
3 years ago
version 2
981e9509
2 commits,
3 years ago
version 1
721926a1
1 commit,
3 years ago
5 files
+
263
−
4
Side-by-side
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
5
Search (e.g. *.vue) (Ctrl+P)
doc/Dask DSSC module binning.ipynb
0 → 100644
+
174
−
0
Options
%% Cell type:code id: tags:
```
python
import
numpy
as
np
%
matplotlib
notebook
import
matplotlib.pyplot
as
plt
plt
.
rcParams
[
'
figure.constrained_layout.use
'
]
=
True
import
dask
print
(
f
'
dask:
{
dask
.
__version__
}
'
)
import
dask.array
as
da
import
xarray
as
xr
%% Output
dask: 2.11.0
%% Cell type:code id: tags:
```
python
from
psutil
import
virtual_memory
import
gc
# gc.collect() # run garbage collection to free possible memory
mem
=
virtual_memory
()
print
(
f
'
Physical memory:
{
mem
.
total
/
1024
/
1024
/
1024
:
.
0
f
}
Gb
'
)
# total physical memory available
%% Output
Physical memory: 504 Gb
%% Cell type:code id: tags:
```
python
import
logging
logging
.
basicConfig
(
filename
=
'
example.log
'
,
level
=
logging
.
DEBUG
)
%% Cell type:code id: tags:
```
python
%
load_ext
autoreload
%
autoreload
2
import
toolbox_scs
as
tb
print
(
tb
.
__file__
)
from
toolbox_scs.routines.boz
import
load_dssc_module
from
extra_data
import
open_run
%% Output
/home/lleguy/notebooks/ToolBox/src/toolbox_scs/__init__.py
%% Cell type:markdown id: tags:
# Parameters
%% Cell type:code id: tags:parameters
```
python
proposalNB
=
2719
dark_runNB
=
180
runNB
=
179
module_group
=
0
pulse_pattern
=
[
'
pumped
'
,
'
intradark
'
,
'
unpumped
'
,
'
intradark
'
]
*
6
+
[
'
pumped
'
,
'
intradark
'
]
xaxis
=
'
delay
'
# 'nrj'
bin_width
=
0.1
# [ps]
path
=
f
'
/gpfs/exfel/exp/SCS/202002/p002719/scratch/tests/r
{
runNB
}
/
'
%% Cell type:code id: tags:
```
python
proposalNB
=
int
(
proposalNB
)
dark_runNB
=
int
(
dark_runNB
)
runNB
=
int
(
runNB
)
module_group
=
int
(
module_group
)
bin_width
=
float
(
bin_width
)
moduleNB
=
list
(
range
(
module_group
*
4
,
(
module_group
+
1
)
*
4
))
%% Cell type:markdown id: tags:
# Processing function
%% Cell type:code id: tags:
```
python
def
process
(
module
):
# Load dark
arr_dark
,
tid_dark
=
load_dssc_module
(
proposalNB
,
dark_runNB
,
module
,
drop_intra_darks
=
False
)
arr_dark
=
arr_dark
.
rechunk
((
100
,
-
1
,
-
1
,
-
1
))
dark_img
=
arr_dark
.
mean
(
axis
=
0
).
compute
()
# Load module data
arr
,
tid
=
load_dssc_module
(
proposalNB
,
runNB
,
module
,
drop_intra_darks
=
False
)
arr
=
arr
.
rechunk
((
100
,
-
1
,
-
1
,
-
1
))
# dark and intra dark correction
arr
=
arr
-
dark_img
arr
=
arr
[:,
::
2
,
:,
:]
-
arr
[:,
1
::
2
,
:,
:]
# Load slow data against which to bin
if
xaxis
==
'
delay
'
:
run
,
v
=
tb
.
load
(
proposalNB
,
runNB
,
[
'
PP800_DelayLine
'
,
'
BAM1932M
'
,
'
SCS_XGM
'
])
else
:
run
,
v
=
tb
.
load
(
proposalNB
,
runNB
,
[
xaxis
,
'
SCS_XGM
'
])
# select part of the run
# v = v.isel({'trainId':slice(0,3000)})
# combine slow and DSSC module data
xr_data
=
xr
.
DataArray
(
arr
,
coords
=
{
'
trainId
'
:
tid
,
'
sa3_pId
'
:
v
[
'
sa3_pId
'
].
values
},
dims
=
[
'
trainId
'
,
'
sa3_pId
'
,
'
y
'
,
'
x
'
])
xr_data
=
xr_data
.
expand_dims
(
module
=
[
module
],
axis
=
2
)
r
=
xr
.
merge
([
xr_data
.
to_dataset
(
name
=
'
DSSC
'
),
v
],
join
=
'
inner
'
)
# calculate bins
if
xaxis
==
'
delay
'
:
r
[
'
delay
'
]
=
tb
.
misc
.
positionToDelay
(
r
[
'
PP800_DelayLine
'
])
bam
=
r
[
'
BAM1932M
'
]
-
r
[
'
BAM1932M
'
].
mean
()
r
[
'
bin_delay
'
]
=
((
r
[
'
delay
'
]
-
bam
)
/
bin_width
).
round
()
*
bin_width
else
:
r
[
'
bin_
'
+
xaxis
]
=
(
r
[
xaxis
]
/
bin_width
).
round
()
*
bin_width
# add the pulse pattern coordinates
Nrepeats
=
int
(
len
(
v
[
'
sa3_pId
'
].
values
)
/
len
(
pulse_pattern
))
pp
=
pulse_pattern
*
Nrepeats
pp
=
np
.
array
(
pp
)
r
=
r
.
assign_coords
(
pp
=
(
"
sa3_pId
"
,
pp
))
# select pattern and bin data
bin_data
=
None
for
p
in
np
.
unique
(
pp
):
# slice using non-index coordinates
# https://github.com/pydata/xarray/issues/2028
sub_r
=
r
.
sel
(
sa3_pId
=
(
r
.
pp
==
p
))
res
=
sub_r
.
groupby
(
'
bin_
'
+
xaxis
).
mean
()
if
bin_data
is
None
:
bin_data
=
res
bin_data
[
'
DSSC
'
]
=
res
[
'
DSSC
'
].
expand_dims
(
pp
=
[
p
])
bin_data
[
'
SCS_SA3
'
]
=
res
[
'
SCS_SA3
'
].
expand_dims
(
pp
=
[
p
])
else
:
bin_data
=
xr
.
merge
([
bin_data
,
res
[
'
DSSC
'
].
expand_dims
(
pp
=
[
p
]),
res
[
'
SCS_SA3
'
].
expand_dims
(
pp
=
[
p
])])
# save the result
fname
=
path
+
f
'
run
{
runNB
}
-darkrun
{
dark_runNB
}
-module
{
module
}
.h5
'
print
(
fname
)
bin_data
.
to_netcdf
(
fname
,
format
=
'
NETCDF4
'
,
engine
=
'
h5netcdf
'
)
%% Cell type:markdown id: tags:
# Processing
%% Cell type:code id: tags:
```
python
for
m
in
moduleNB
:
process
(
m
)
Loading