Skip to content
Snippets Groups Projects

Fix for the BOZ analysis

Merged Loïc Le Guyader requested to merge boz-fix into master
@@ -342,11 +342,11 @@ def find_rois(data_mean, threshold):
pY = data_mean.sum(axis=1)
# along X
lowX = int(np.argmax(pX[:128] > threshold)) # 1st occurrence returned
highX = int(np.argmax(pX[128:] < threshold) + 128) # 1st occ. returned
midX = (lowX + highX)//2
leftX = int(np.argmin(pX[(lowX+20):midX]) + lowX + 20)
rightX = int(np.argmin(pX[midX:highX-20]) + midX)
lowX = int(np.argmax(pX[:64] > threshold)) # 1st occurrence returned
highX = int(np.argmax(pX[192:] <= threshold) + 192) # 1st occ. returned
leftX = int(np.argmin(pX[64:128]) + 64)
rightX = int(np.argmin(pX[128:192]) + 128)
# along Y
lowY = int(np.argmax(pY[:64] > threshold)) # 1st occurrence returned
@@ -795,26 +795,24 @@ def inspect_plane_fitting(avg, rois, vmin=None, vmax=None):
fig, axs = plt.subplots(2, 3, sharex=True, figsize=(6, 6))
img_rois = {}
centers = {}
for k, r in enumerate(['n', '0', 'p']):
roi = rois[r]
centers[r] = np.array([(roi['yl'] + roi['yh'])//2,
(roi['xl'] + roi['xh'])//2])
d = '0'
roi = rois[d]
for k, r in enumerate(['n', '0', 'p']):
img_rois[r] = avg[rois[r]['yl']:rois[r]['yh'],
rois[r]['xl']:rois[r]['xh']]
img_rois[r] = np.roll(avg, tuple(centers[r] - centers[d]))[
roi['yl']:roi['yh'], roi['xl']:roi['xh']]
im = axs[0, k].imshow(img_rois[r],
vmin=vmin,
vmax=vmax)
for k, r in enumerate(['n', '0', 'p']):
if img_rois[r].shape[1] != img_rois['0'].shape[1]:
if k == 0:
n1 = img_rois[r].shape[1]
n = img_rois['0'].shape[1]
v = img_rois[r][:, (n1-n):]/img_rois['0']
else:
n1 = img_rois[r].shape[1]
n = img_rois['0'].shape[1]
v = img_rois[r][:, :-(n1-n)]/img_rois['0']
else:
v = img_rois[r]/img_rois['0']
v = img_rois[r]/img_rois['0']
im2 = axs[1, k].imshow(v, vmin=0.2, vmax=1.1, cmap='RdBu_r')
cbar = fig.colorbar(im, ax=axs[0, :], orientation="horizontal")
@@ -1073,16 +1071,17 @@ def nl_crit(p, domain, alpha, arr_dark, arr, tid, rois, mask, flat_field,
# drop saturated shots
d = data.where(data['sat_sat'] == False, drop=True)
# calculated error from transmission of 1.0
v = d['n'].values.flatten()/d['0'].values.flatten()
err1 = 1e8*np.nanmean((v - 1.0)**2)
v_1 = snr(d['n'].values.flatten(), d['0'].values.flatten(),
methods=['weighted'])
err_1 = 1e8*v_1['weighted']['s']**2
err2 = np.sum((Fmodel-np.arange(2**9))**2)
v_2 = snr(d['p'].values.flatten(), d['0'].values.flatten(),
methods=['weighted'])
err_2 = 1e8*v_2['weighted']['s']**2
# print(f'{err}: {p}')
# logging.info(f'{err}: {p}')
err_a = np.sum((Fmodel-np.arange(2**9))**2)
return (1.0 - alpha)*err1 + alpha*err2
return (1.0 - alpha)*0.5*(err_1 + err_2) + alpha*err_a
def nl_fit(params, domain):
@@ -1175,44 +1174,68 @@ def inspect_nl_fit(res_fit):
return f
def snr(sig, ref, verbose=False):
""" Compute mean, std and SNR with and without weight from transmitted signal sig
and I0 signal ref
def snr(sig, ref, methods=None, verbose=False):
""" Compute mean, std and SNR from transmitted signal sig and I0 signal ref.
Inputs
------
sig: 1D signal samples
ref: 1D reference samples
methods: None by default or list of strings to select which methods to use.
Possible values are 'direct', 'weighted', 'diff'. In case of None, all
methods will be calculated.
verbose: booleand, if True prints calculated values
Returns
-------
dictionnary of [methods][value] where value is 'mu' for mean and 's' for
standard deviation.
"""
if methods is None:
methods = ['direct', 'weighted', 'diff']
w = ref
x = sig/ref
mask = np.isfinite(x) & np.isfinite(sig) & np.isfinite(ref)
w = w[mask]
sig = sig[mask]
ref = ref[mask]
x = x[mask]
# direct mean and std
mu = np.mean(x)
s = np.std(x)
if verbose:
print(f'mu: {mu}, s: {s}, snr: {mu/s}')
res = {}
res['direct'] = {'mu': mu, 's':s}
# direct mean and std
if 'direct' in methods:
mu = np.mean(x)
s = np.std(x)
if verbose:
print(f'mu: {mu}, s: {s}, snr: {mu/s}')
res['direct'] = {'mu': mu, 's':s}
# weighted mean and std
wmu = np.sum(sig)/np.sum(ref)
v1 = np.sum(w)
v2 = np.sum(w**2)
ws = np.sqrt(np.sum(w*(x - wmu)**2)/(v1 - v2/v1))
if 'weighted' in methods:
wmu = np.sum(sig)/np.sum(ref)
v1 = np.sum(w)
v2 = np.sum(w**2)
ws = np.sqrt(np.sum(w*(x - wmu)**2)/(v1 - v2/v1))
if verbose:
print(f'weighted mu: {wmu}, s: {ws}, snr: {wmu/ws}')
if verbose:
print(f'weighted mu: {wmu}, s: {ws}, snr: {wmu/ws}')
res['weighted'] = {'mu': wmu, 's':ws}
res['weighted'] = {'mu': wmu, 's':ws}
# noise from diff
dmu = np.mean(x)
ds = np.std(np.diff(x))/np.sqrt(2)
if verbose:
print(f'diff mu: {dmu}, s: {ds}, snr: {dmu/ds}')
res['diff'] = {'mu': dmu, 's':ds}
if 'diff' in methods:
dmu = np.mean(x)
ds = np.std(np.diff(x))/np.sqrt(2)
if verbose:
print(f'diff mu: {dmu}, s: {ds}, snr: {dmu/ds}')
res['diff'] = {'mu': dmu, 's':ds}
return res
@@ -1256,7 +1279,7 @@ def inspect_correction(params, gain=None):
scale = 1e-6
f, axs = plt.subplots(3, 3, figsize=(6, 6), sharex=True, sharey=True)
f, axs = plt.subplots(3, 3, figsize=(8, 6), sharex=True)
# nbins = np.linspace(0.01, 1.0, 100)
@@ -1278,16 +1301,11 @@ def inspect_correction(params, gain=None):
snr_v = snr(good_d[n].values.flatten(),
good_d[r].values.flatten(), verbose=True)
if k == 0:
m = np.nanmean(good_d[n].values.flatten()
/good_d[r].values.flatten())
else:
m = 1
m = snr_v['direct']['mu']
h, xedges, yedges, img = axs[l, k].hist2d(
g*scale*good_d[r].values.flatten(),
good_d[n].values.flatten()/good_d[r].values.flatten()/m,
[photon_scale, np.linspace(0.95, 1.05, 150)],
good_d[n].values.flatten()/good_d[r].values.flatten(),
[photon_scale, np.linspace(0.95, 1.05, 150)*m],
cmap='Blues',
vmax=200,
norm=LogNorm(),
@@ -1295,13 +1313,14 @@ def inspect_correction(params, gain=None):
)
h, xedges, yedges, img2 = axs[l, k].hist2d(
g*scale*sat_d[r].values.flatten(),
sat_d[n].values.flatten()/sat_d[r].values.flatten()/m,
[photon_scale, np.linspace(0.95, 1.05, 150)],
sat_d[n].values.flatten()/sat_d[r].values.flatten(),
[photon_scale, np.linspace(0.95, 1.05, 150)*m],
cmap='Reds',
vmax=200,
norm=LogNorm(),
# alpha=0.5 # make the plot looks ugly with lots of white lines
)
v = snr_v['direct']['mu']/snr_v['direct']['s']
axs[l, k].text(0.4, 0.15, f'SNR: {v:.0f}',
transform = axs[l, k].transAxes)
@@ -1312,9 +1331,11 @@ def inspect_correction(params, gain=None):
# axs[l, k].plot(3*nbins, 1+np.sqrt(2/(1e6*nbins)), c='C1', ls='--')
# axs[l, k].plot(3*nbins, 1-np.sqrt(2/(1e6*nbins)), c='C1', ls='--')
axs[l, k].set_ylim([0.95*m, 1.05*m])
for k in range(3):
for l in range(3):
axs[l, k].set_ylim([0.95, 1.05])
#for l in range(3):
# axs[l, k].set_ylim([0.95, 1.05])
if gain:
axs[2, k].set_xlabel('#ph (10$^6$)')
else:
Loading