Newer
Older
# -*- coding: utf-8 -*-
""" TZPG simple calculator for SCS.
Interactive widget to calculate beam sizes and position at the sample and
detector planes for the SCS instrument.
Copyright (2019-2021) SCS Team.
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.patches import PathPatch, Rectangle, Polygon
from matplotlib.colors import hsv_to_rgb
import ipywidgets as widgets
from ipywidgets import HBox, VBox
from IPython.display import display
from TZPGcalc.GeoBeams import GeoBeams
# number of membrane to show
SampleN = 7
# Database of existing zone plates parameters
TZPG_db = {
'Custom': {
'design_nrj': 860,
'TZPGwH': 1,
'TZPGwV': 1,
'TZPGoffaxis': 0.75,
'grating': 3.8,
},
'O': {
'design_nrj': 530,
'TZPGwH': 0.8,
'TZPGwV': 0.8,
'TZPGoffaxis': 0.55,
'grating': 3.1,
},
'Fe': {
'design_nrj': 715,
'TZPGwH': 0.8,
'TZPGwV': 0.8,
'TZPGoffaxis': 0.55,
'grating': 3.1,
},
'Co': {
'design_nrj': 785,
'TZPGwH': 0.8,
'TZPGwV': 0.8,
'TZPGoffaxis': 0.55,
'grating': 3.1,
},
'Ni': {
'design_nrj': 860,
'TZPGwH': 0.8,
'TZPGwV': 0.8,
'TZPGoffaxis': 0.55,
'grating': 3.1,
},
'Cu': {
'design_nrj': 927,
'TZPGwH': 0.8,
'TZPGwV': 0.8,
'TZPGoffaxis': 0.55,
'grating': 3.1,
},
'Gd': {
'design_nrj': 1210,
'TZPGwH': 0.8,
'TZPGwV': 0.8,
'TZPGoffaxis': 0.55,
'grating': 3.1,
}
}
class TZPGcalc():
def __init__(self):
self.geo_beams = GeoBeams()
self.initWidgets()
# spot sizes of all beams
self.SpotSizes = {}
for d in ['det', 'sam']:
self.SpotSizes[d] = {}
for k in ['L', 'H']:
self.SpotSizes[d][k] = np.zeros((6, 2))
# spot center of all beams
self.SpotCenters = {}
for d in ['det', 'sam']:
self.SpotCenters[d] = {}
for k in ['L', 'H']:
self.SpotCenters[d][k] = np.zeros((6, 2))
self.UpdateFig()
display(self.control)
def init_beam_transport(self):
temp = GeoBeams()
# set default value for beam transport
for v in ['fVFM', 'fHFM', 'EXw', 'IHFw']:
if v in ['fVFM', 'fHFM']:
scale = 1.0
else:
scale = 1e6
self.widgets[v].value = scale*temp.elems[v]
def initFig(self):
"Creates a figure for the sample plane and detector plane images."
plt.close('TZPGcalc')
fig, (self.ax_sam, self.ax_det) = plt.subplots(
1, 2, num='TZPGcalc', figsize=(6, 3))
# display scale
self.scale = 1e3 # displayed distances in [mm]
self.ax_sam.set_title('Sample plane')
self.ax_det.set_title('Detector plane')
self.ax_sam.set_aspect('equal')
self.ax_det.set_aspect('equal')
self.ax_sam.set_xlim([-2, 2])
self.ax_sam.set_ylim([-2, 2])
self.ax_det.set_xlim([-35, 35])
self.ax_det.set_ylim([-20, 50])
# red and blue shifted color of the beams
c_rr = hsv_to_rgb([10/360, 100/100, 70/100])
c_rb = hsv_to_rgb([220/360, 100/100, 70/100])
c_gr = hsv_to_rgb([10/360, 100/100, 100/100])
c_gb = hsv_to_rgb([220/360, 100/100, 100/100])
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
self.samBeamsL = {
'F0G0': self.ax_sam.add_patch(
Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)),
'F0G1': self.ax_sam.add_patch(
Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)),
'F0G-1': self.ax_sam.add_patch(
Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)),
'F1G0': self.ax_sam.add_patch(
Polygon([(0, 0)], facecolor=c_rr, alpha=0.7, lw=None)),
'F1G1': self.ax_sam.add_patch(
Polygon([(0, 0)], facecolor=c_gr, alpha=0.7, lw=None)),
'F1G-1': self.ax_sam.add_patch(
Polygon([(0, 0)], facecolor=c_gr, alpha=0.7, lw=None))
}
self.detBeamsL = {
'F0G0': self.ax_det.add_patch(
Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)),
'F0G1': self.ax_det.add_patch(
Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)),
'F0G-1': self.ax_det.add_patch(
Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)),
'F1G0': self.ax_det.add_patch(
Polygon([(0, 0)], facecolor=c_rr, alpha=0.7, lw=None)),
'F1G1': self.ax_det.add_patch(
Polygon([(0, 0)], facecolor=c_gr, alpha=0.7, lw=None)),
'F1G-1': self.ax_det.add_patch(
Polygon([(0, 0)], facecolor=c_gr, alpha=0.7, lw=None))
}
self.samBeamsH = {
'F0G0': self.ax_sam.add_patch(
Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)),
'F0G1': self.ax_sam.add_patch(
Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)),
'F0G-1': self.ax_sam.add_patch(
Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)),
'F1G0': self.ax_sam.add_patch(
Polygon([(0, 0)], facecolor=c_rb, alpha=0.7, lw=None)),
'F1G1': self.ax_sam.add_patch(
Polygon([(0, 0)], facecolor=c_gb, alpha=0.7, lw=None)),
'F1G-1': self.ax_sam.add_patch(
Polygon([(0, 0)], facecolor=c_gb, alpha=0.7, lw=None))
}
self.detBeamsH = {
'F0G0': self.ax_det.add_patch(
Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)),
'F0G1': self.ax_det.add_patch(
Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)),
'F0G-1': self.ax_det.add_patch(
Polygon([(0, 0)], facecolor="black", alpha=0.4, lw=None)),
'F1G0': self.ax_det.add_patch(
Polygon([(0, 0)], facecolor=c_rb, alpha=0.7, lw=None)),
'F1G1': self.ax_det.add_patch(
Polygon([(0, 0)], facecolor=c_gb, alpha=0.7, lw=None)),
'F1G-1': self.ax_det.add_patch(
Polygon([(0, 0)], facecolor=c_gb, alpha=0.7, lw=None))
}
self.detLines = {
'module': self.ax_det.add_patch(
Rectangle((0, 0), 1, 1, fill=False, facecolor='k')),
'Vfilter': self.ax_det.add_patch(
Rectangle((0, 0), 1, 1, facecolor="green", alpha=0.4)),
'Hfilter': self.ax_det.add_patch(
Rectangle((0, 0), 1, 1, facecolor="green", alpha=0.4)),
'diamond': self.ax_det.add_patch(
Rectangle((-8, -8), 16, 16, facecolor="green", alpha=0.4,
angle=45))
}
self.sampleLines = {}
self.etchLines = {}
for k in range(SampleN*SampleN):
self.sampleLines[k] = self.ax_sam.add_patch(
Rectangle((0, 0), 1, 1, fill=False, facecolor='k'))
self.etchLines[k] = self.ax_sam.add_patch(
Rectangle((0, 0), 1, 1, fill=False, facecolor='k',
alpha=0.4, ls='--'))
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Flat Liquid Jet
self.FLJ_lines = {}
self.FlatLiquidJet()
def FlatLiquidJet(self):
"""Draw a Flat Liquid jet.
"""
sw = self.widgets
HW = 0.5*sw['FLJ_W'].value # [mm]
L = sw['FLJ_L'].value # [mm]
mf = sw['FLJ_mf'].value # [mm]
incidence = np.deg2rad(sw['samIncidence'].value) # [rad]
ox = sw['samX'].value # [mm]
oy = -L/2 + sw['samY'].value # [mm]
# incidence angle squeezes sample
ci = np.cos(incidence)
verts = [
[(0*ci, L + oy), # P0
(HW/2*ci, L + oy), # P1
(HW*ci, 0.5*(1+mf)*L + oy), # P2
(HW*ci, mf*L + oy)], # P3
[(HW*ci, mf*L + oy), # P0
(HW*ci, 0.5*mf*L + oy), # P1
(0, 0 + oy), # P2
(0, 0 + oy)] # P3
]
# second half image of liquid jet
mirror = []
for v in verts:
mirror.append([(-p[0], p[1]) for p in v])
verts += mirror
# apply offsets
fverts = []
for v in verts:
fverts.append([(p[0] + ox, p[1]) for p in v])
codes = [
Path.MOVETO, # P0
Path.CURVE4, # P1
Path.CURVE4, # P2
Path.CURVE4 # P3
]
for k, v in enumerate(fverts):
path = Path(v, codes)
if k in self.FLJ_lines:
self.FLJ_lines[k].remove()
self.FLJ_lines[k] = self.ax_sam.add_patch(
PathPatch(path, alpha=0.4, facecolor='none', lw=2)
)
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
def RectUpdate(self, rect, xLeft, yBottom, xRight, yTop):
"""Updates the position and size of the given Rectangle.
Inputs
------
rect: Rectangle to update
xLeft: x position of the left corner
yBottom: y position of the bottom corner
xRight: x position of the right corner
yTop: y position of the top corner
"""
xw = np.abs(xLeft - xRight)
yw = np.abs(yTop - yBottom)
rect.set_xy((self.scale*xLeft, self.scale*yBottom))
rect.set_height(self.scale*yw)
rect.set_width(self.scale*xw)
def PolyUpdate(self, poly, xLeft, yBottom, xRight, yTop):
"""Updates the corner position of a Polygon.
Inputs
------
poly: regular Polygon to update
xLeft: x position of the left corner
yBottom: y position of the bottom corner
xRight: x position of the right corner
yTop: y position of the top corner
"""
xy = self.scale*np.array([
[xLeft, yBottom],
[xLeft, yTop],
[xRight, yTop],
[xRight, yBottom]])
poly.set_xy(xy)
def UpdateBeams(self, Beams, img, conf):
"""Updates the position and size of the beams.
Inputs
------
Beams: dictionary of f'F{f}G{g}' Polygon for f = 0 and 1 zone
plate order and g = +1, 0 and -1 grating order
img: dictionary of parameters for the imaging plane
conf: dictionary of parameters for optics
"""
# shortcut
sge = self.geo_beams.elems
sge['fBOZ_x'] = conf['F_x']
sge['fBOZ_y'] = conf['F_y']
sge['theta_grating'] = conf['theta_grating']
# imaging plane
n = np.array([np.sin(img['incidence']),
0,
np.cos(img['incidence'])])
p0 = np.array([0, 0, img['z']])
res = {}
for z, (f, g) in enumerate([(0, -1), (0, 0), (0, 1),
(1, -1), (1, 0), (1, 1)]):
beam = f'F{f}G{g}'
res[beam] = (self.geo_beams.plane_image(p0, n, f, g)
- np.array([0, sge['offaxis']])) # 0th order offset
corners = self.scale*res[beam]
Beams[beam].set_xy(corners)
for k in [0, 1]:
vs = corners[:, k]
self.SpotSizes[img['type']][conf['Energy']][z, k] = (
1e3*(np.max(vs) - np.min(vs)))
self.SpotCenters[img['type']][conf['Energy']][z, k] = (
1e3*0.5*(np.max(vs) + np.min(vs)))
# 3 beams configuration
b = self.widgets['3beams'].value
Beams['F0G0'].set_visible(b)
Beams['F1G0'].set_visible(b)
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
def DetectorUpdate(self, Xoff, Yoff):
"""Draws DSSC detector module with filter mask.
Inputs
------
Xoff: x offset
Yoff: y offset
"""
# x module axis is vertical, y module axis is horizontal
# the module 15 is +0.91 mm vertical from the beam and
# 4.233 mm horizontal from the beam
offset_h = 4.233e-3 # [m]
offset_v = 0.91e-3 # [m]
moduleHw = 256*0.236e-3 # [m]
moduleVw = 128*0.204e-3 # [m]
filterW = 7e-3 # [m]
filterL = 160e-3 # [m]
diamondW = 16e-3 # [m]
self.RectUpdate(self.detLines['module'],
-moduleHw - offset_h + Xoff, offset_v + Yoff,
-offset_h + Xoff, moduleVw + offset_v + Yoff)
self.RectUpdate(self.detLines['Vfilter'],
-filterW/2 + Xoff, -filterL/2 + Yoff,
filterW/2 + Xoff, filterL/2 + Yoff)
self.RectUpdate(self.detLines['Hfilter'],
-filterL/2 + Xoff, -filterW/2 + Yoff,
filterL/2 + Xoff, filterW/2 + Yoff)
# moving rotated rectangles is a pain in matplotlib
self.detLines['diamond'].set_xy((
self.scale*Xoff, self.scale*(Yoff - diamondW/2*np.sqrt(2))))
def SampleUpdate(self):
if self.widgets['SampleType'].value == 'Membranes Array':
b = True
elif self.widgets['SampleType'].value == 'Flat Liquid Jet':
b = False
else:
raise ValueError('Sample type must be either "Membranes Array" or'
'"Flat Liquid Jet"')
for k in range(SampleN*SampleN):
self.sampleLines[k].set_visible(b)
self.etchLines[k].set_visible(b)
for k in range(4):
self.FLJ_lines[k].set_visible(not(b))
if b:
self.MembraneSampleUpdate()
else:
self.FlatLiquidJet()
def MembraneSampleUpdate(self):
"""Draws the sample.
Inputs
------
w: membrane width
p: membrane pitch
Xoff: sample x offset
Yoff: sample y offset
thickness: sample thickness used to calculate the etched facets
incidence: incidence angle in rad
etch_angle: etching angle from surface in rad
"""
sw = self.widgets
w = sw['samw'].value*1e-3 # [m]
p = sw['samp'].value*1e-3 # [m]
Xoff = sw['samX'].value*1e-3 # [m]
Yoff = sw['samY'].value*1e-3 # [m]
thickness = sw['samthickness'].value*1e-6 # [m]
etch_angle = np.deg2rad(sw['samEtchAngle'].value) # [rad]
incidence = np.deg2rad(sw['samIncidence'].value) # [rad]
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# Si etching angle
wp = w + 2*thickness/np.tan(etch_angle)
# incidence angle squeezes sample and etch lines
# and induces an apparent shift off the etch lines
ci = np.cos(incidence)
thsi = thickness*np.sin(incidence)
j = 0
for r in range(-(SampleN-1)//2, (SampleN-1)//2+1):
for c in range(-(SampleN-1)//2, (SampleN-1)//2+1):
self.RectUpdate(
self.sampleLines[j],
ci*(r*p - w/2 + Xoff), c*p - w/2 - Yoff,
ci*(r*p + w/2 + Xoff), c*p + w/2 - Yoff)
self.RectUpdate(
self.etchLines[j],
ci*(r*p - wp/2 + Xoff)+thsi, c*p - wp/2 - Yoff,
ci*(r*p + wp/2 + Xoff)+thsi, c*p + wp/2 - Yoff)
j += 1
def UpdateFig(self):
"""Updates the figure with the current slider values.
"""
# shortcuts
sw = self.widgets
sge = self.geo_beams.elems
# we calculate the optics for the central wavelength
nrjL = sw['nrjL'].value # [eV]
nrjH = sw['nrjH'].value # [eV]
wlL = 1240/nrjL*1e-9
wlH = 1240/nrjH*1e-9
wlD = 1240/nrjD*1e-9
F_x = sw['F_x'].value # [m] Nominal horiz. BOZ focal length
F_y = sw['F_y'].value # [m] Nominal vert. BOZ focal length
theta_grating = sw['grating'].value*1e-3 # [rad]
sampleZ = sw['SAMZ'].value*1e-3 # [m]
samIncidence = np.deg2rad(sw['samIncidence'].value) # [rad]
detectorZ = sw['detZ'].value*1e-3 # [m]
sge['WH'] = sw['TZPGwH'].value*1e-3 # [m]
sge['WV'] = sw['TZPGwV'].value*1e-3 # [m]
sge['offaxis'] = -sw['TZPGoffaxis'].value*1e-3 # [m]
sge['EXw'] = sw['EXw'].value*1e-6 # [m]
sge['IHFw'] = sw['IHFw'].value*1e-6 # [m]
sge['fVFM'] = sw['fVFM'].value # [m]
sge['fHFM'] = sw['fHFM'].value # [m]
d_nominal = wlD/np.sin(theta_grating)
sw['d_label'].value = (
f'Grating Pitch:{int(np.round(d_nominal*1e9))} nm')
# zone plate radius at the point further away from the optical axis
rn = np.sqrt((sge['WH']/2.0)**2 +
(sge['WV']/2.0 + np.abs(sge['offaxis']))**2)
dr_nominal_x = wlD * F_x / (2*rn)
dr_nominal_y = wlD * F_y / (2*rn)
sw['dr_label_x'].value = (
f'Outer Zone Plate width dr for Horiz. '
f'focus:{int(np.round(dr_nominal_x*1e9))} nm')
sw['dr_label_y'].value = (
f'for Vert. focus:{int(np.round(dr_nominal_y*1e9))} nm')
# Optics properties (focal length and grating angle) for the
# low energy and high energy photon
F_L_x = 2*rn*dr_nominal_x/wlL
F_L_y = 2*rn*dr_nominal_y/wlL
G_L = np.arcsin(wlL/d_nominal)
confL = {'Energy': 'L',
'theta_grating': G_L}
F_H_x = 2*rn*dr_nominal_x/wlH
F_H_y = 2*rn*dr_nominal_y/wlH
G_H = np.arcsin(wlH/d_nominal)
confH = {'Energy': 'H',
'theta_grating': G_H}
# Configuration for imaging plane
sam = {'type': 'sam', 'z': sampleZ, 'incidence': samIncidence}
det = {'type': 'det', 'z': detectorZ, 'incidence': 0}
# update the beams
self.UpdateBeams(self.samBeamsL, sam, confL)
self.UpdateBeams(self.detBeamsL, det, confL)
self.UpdateBeams(self.samBeamsH, sam, confH)
self.UpdateBeams(self.detBeamsH, det, confH)
# update Spot Size Tables
for v in ['L', 'H']:
df = pd.DataFrame(self.SpotSizes['sam'][v],
index=['F0G-1', 'F0G0', 'F0G1',
'F1G-1', 'F1G0', 'F1G1'],
columns=['H (um)', 'V (um)'])
self.widgets[f'SpotSize{v}'].value = df.to_html(
float_format='{:.2f}'.format)
df = pd.DataFrame(self.SpotCenters['sam'][v],
index=['F0G-1', 'F0G0', 'F0G1',
'F1G-1', 'F1G0', 'F1G1'],
columns=['H (um)', 'V (um)'])
self.widgets[f'SpotCenter{v}'].value = df.to_html(
float_format='{:.2f}'.format)
# update the detector
detXoff = self.widgets['detX'].value*1e-3 # [m]
detYoff = self.widgets['detY'].value*1e-3 # [m]
self.DetectorUpdate(detXoff, detYoff)
# update the sample
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
def initWidgets(self):
""" Creates the necessary interactive widget controls.
"""
style = {'description_width': 'initial'}
layout = {} # max_width': '300px'}
self.Update = widgets.Button(
description='Update',
)
@self.Update.on_click
def plot_on_click(b):
self.UpdateFig()
self.widgets = {}
# Spot sizes
self.widgets['SpotSizeL'] = widgets.HTML()
self.widgets['SpotSizeH'] = widgets.HTML()
SpotSize = HBox([VBox([widgets.Label(value='Low energy'),
self.widgets['SpotSizeL']]),
VBox([
widgets.Label(value='High energy'),
self.widgets['SpotSizeH']])
])
# Spot centers
self.widgets['SpotCenterL'] = widgets.HTML()
self.widgets['SpotCenterH'] = widgets.HTML()
SpotCenter = HBox([VBox([widgets.Label(value='Low energy'),
self.widgets['SpotCenterL']]),
VBox([
widgets.Label(value='High energy'),
self.widgets['SpotCenterH']])
])
SpotSizeAndCenter = HBox([
VBox([widgets.Label(value='Spot Size'), SpotSize]),
VBox([widgets.Label(value='Spot center'), SpotCenter])
])
# Source
self.Reset = widgets.Button(
description='Reset',
)
@self.Reset.on_click
def reset_on_click(b):
self.init_beam_transport()
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
self.widgets['EXw'] = widgets.BoundedIntText(
value=100,
min=0,
max=2000,
step=1,
description='Exit Slit (um):',
style=style,
layout=layout
)
self.widgets['IHFw'] = widgets.BoundedIntText(
value=200,
min=0,
max=2000,
step=1,
description='IHF width (um):',
style=style,
layout=layout
)
self.widgets['fVFM'] = widgets.BoundedFloatText(
value=0,
min=0,
max=10,
step=0.01,
description='VFM focal length (m):',
style=style,
layout=layout
)
self.widgets['fHFM'] = widgets.BoundedFloatText(
value=0,
min=0,
max=10,
step=0.01,
description='HFM focal length (m):',
style=style,
layout=layout
)
SourceTab = VBox([
self.widgets['EXw'],
self.widgets['IHFw'],
self.widgets['fVFM'],
self.widgets['fHFM']])
# TZPG part
self.widgets['Type'] = widgets.Dropdown(
options=list(TZPG_db),
value='Custom',
description='Type:',
style=style,
disabled=False
)
def TZPGtype(change):
v = TZPG_db[change.new]
self.widgets['nrjD'].value = v['design_nrj']
self.widgets['TZPGwH'].value = v['TZPGwH']
self.widgets['TZPGwV'].value = v['TZPGwV']
self.widgets['TZPGoffaxis'].value = v['TZPGoffaxis']
self.widgets['grating'].value = v['grating']
self.widgets['F_x'].value = v['F_x']
self.widgets['F_y'].value = v['F_y']
self.widgets['3beams'].value = v['3beams']
# necessary to recompute grating pitch and outer zone plate width
self.UpdateFig()
self.widgets['Type'].observe(TZPGtype, names='value')
# hidden nominal zone plate focus
value=0.25,
min=0,
max=1,
step=0.01,
description='Focal length (m) Horiz.:',
style=style,
layout=layout
)
self.widgets['F_y'] = widgets.BoundedFloatText(
value=0.25,
min=0,
max=1,
step=0.01,
description='Vert.:',
style=style,
layout=layout
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
)
self.widgets['nrjL'] = widgets.BoundedIntText(
value=840,
min=450,
max=3200,
step=1,
description='Low:',
style=style,
layout=layout
)
self.widgets['nrjH'] = widgets.BoundedIntText(
value=880,
min=450,
max=3200,
step=1,
description='High:',
style=style,
layout=layout
)
self.widgets['nrjD'] = widgets.BoundedIntText(
value=860,
min=450,
max=3200,
step=1,
width=4,
style=style,
layout=layout
)
self.widgets['TZPGwV'] = widgets.BoundedFloatText(
value=1.0,
min=.1,
max=3.0,
step=0.05,
description='Height:',
style=style,
layout=layout
)
self.widgets['TZPGwH'] = widgets.BoundedFloatText(
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
value=1.0,
min=.1,
max=3.0,
step=0.05,
description='Width:',
style=style,
layout=layout
)
self.widgets['TZPGoffaxis'] = widgets.BoundedFloatText(
value=0.75,
min=.0,
max=2.0,
step=0.05,
description='Off axis (mm):',
style=style,
layout=layout
)
self.widgets['grating'] = widgets.BoundedFloatText(
value=3.8,
min=1.,
max=10.0,
step=0.05,
description='Grating angle (mrad):',
style=style,
layout=layout
)
self.widgets['3beams'] = widgets.Checkbox(
value=True,
description='3 beams:',
style=style,
layout=layout
)
self.widgets['dr_label_x'] = widgets.Label(value='dr_x')
self.widgets['dr_label_y'] = widgets.Label(value='dr_y')
self.widgets['d_label'] = widgets.Label(value='dr')
TZPGTab = VBox([
self.widgets['Type'],
HBox([self.widgets['nrjD'],
self.widgets['F_x'],
self.widgets['F_y']
]),
HBox([self.widgets['grating'],
self.widgets['TZPGoffaxis'],
self.widgets['3beams']]),
HBox([self.widgets['dr_label_x'],
self.widgets['dr_label_y']]),
HBox([widgets.Label(value='Optics (mm):'),
self.widgets['TZPGwH'],
self.widgets['TZPGwV']]),
HBox([widgets.Label(value='Energy range (eV):'),
self.widgets['nrjL'], self.widgets['nrjH']])
])
# sample part
self.widgets['SampleType'] = widgets.Dropdown(
options=['Membranes Array', 'Flat Liquid Jet'],
value='Membranes Array',
decription='Sample type:',
style=style,
layout=layout
)
self.widgets['SAMZ'] = widgets.BoundedFloatText(
value=30.,
min=-10.,
max=180.0,
step=.1,
description='Sample Z (mm):',
style=style,
layout=layout
)
self.widgets['samw'] = widgets.BoundedFloatText(
value=.5,
min=0.01,
max=2.0,
step=.01,
style=style,
layout=layout
)
self.widgets['samp'] = widgets.BoundedFloatText(
value=1.0,
min=0.01,
max=2.0,
step=.01,
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
description='pitch (mm):',
style=style,
layout=layout
)
self.widgets['samthickness'] = widgets.BoundedFloatText(
value=381,
min=1,
max=1000,
step=1,
description='Substrate thickness (um):',
style=style,
layout=layout
)
self.widgets['samEtchAngle'] = widgets.BoundedFloatText(
value=54.74,
min=0,
max=90,
step=0.01,
description='etch angle (deg):',
style=style,
layout=layout
)
# Flat Liquid Jet
self.widgets['FLJ_W'] = widgets.BoundedFloatText(
value=1.0,
min=0,
max=5,
step=0.1,
description='Flat Liquid Jet width (mm):',
style=style,
layout=layout
)
self.widgets['FLJ_L'] = widgets.BoundedFloatText(
value=4.6,
min=0,
max=15,
step=0.1,
description='of length (mm):',
style=style,
layout=layout
)
self.widgets['FLJ_mf'] = widgets.BoundedFloatText(
value=0.75,
min=0,
max=1,
step=0.01,
description='at:',
style=style,
layout=layout
)
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
self.widgets['samX'] = widgets.BoundedFloatText(
value=0.,
min=-10,
max=10,
step=0.01,
description='X:',
style=style,
layout=layout
)
self.widgets['samY'] = widgets.BoundedFloatText(
value=0.,
min=-10,
max=10,
step=0.01,
description='Y:',
style=style,
layout=layout
)
self.widgets['samIncidence'] = widgets.BoundedFloatText(
value=0,
min=0,
max=90,
step=1,
description='Sample normal (deg):',
style=style,
layout=layout
)
samTab = VBox([
self.widgets['SAMZ'],
self.widgets['SampleType'],
HBox([widgets.Label(value='Membranes array, '),
self.widgets['samw'],
self.widgets['samp']]),
HBox([self.widgets['samthickness'],
self.widgets['samEtchAngle']]),
HBox([self.widgets['FLJ_W'],
self.widgets['FLJ_mf'],
self.widgets['FLJ_L']]),
HBox([widgets.Label(value='Sample Offset (mm), '),
self.widgets['samX'],
self.widgets['samY']]),
HBox([self.widgets['samIncidence'],
])
# Detector tab
self.widgets['detZ'] = widgets.BoundedFloatText(
value=2000.,
min=1000,
max=5800,
step=1,
description='Z:',
style=style,
layout=layout
)
self.widgets['detX'] = widgets.BoundedFloatText(
min=-50,
max=50,
step=0.5,
description='X:',
style=style,
layout=layout
)
self.widgets['detY'] = widgets.BoundedFloatText(
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
min=-50,
max=50,
step=0.5,
description='Y:',
style=style,
layout=layout
)
detTab = VBox([HBox([widgets.Label(value='Detector (m), '),
self.widgets['detZ'],
self.widgets['detX'],
self.widgets['detY']
])])
# combined tabs
tab0 = widgets.Accordion([SourceTab])
tab0.set_title(0, 'Source and KBS')
tab0.selected_index = 0
tab1 = widgets.Accordion([TZPGTab])
tab1.set_title(0, 'Beam splitting Off axis Zone plate')
tab1.selected_index = 0
tab2 = widgets.Accordion([samTab])
tab2.set_title(0, 'Sample')
tab2.selected_index = 0
tab3 = widgets.Accordion([detTab])
tab3.set_title(0, 'Detector')
tab3.selected_index = 0
tab4 = widgets.Accordion([SpotSizeAndCenter])
tab4.set_title(0, 'Spot sizes and centers')
tab4.selected_index = 0
self.control = VBox([self.Update, tab0, tab1, tab2, tab3, tab4])