Newer
Older
# -*- coding: utf-8 -*-
""" TZPG simple calculator for SCS.
Interactive widget to calculate beam sizes and position at the sample and
detector planes for the SCS instrument.
Copyright (2019) SCS Team.
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
from matplotlib.colors import hsv_to_rgb
import ipywidgets as widgets
from ipywidgets import HBox, VBox, Layout
from IPython.display import display
# zone plate focal length
F = 250*1e-3 # [m]
# Z position of the zone plate optic from the first interaction point (sample Z stage at 0 mm)
Z0 = 230*1e-3 # [m]
# zone plate nominal focal sorthened by the KBS focusing
d = 3.3 - Z0 # distance between HFM and TZPG
f1 = 7.3 # HFM focus 2 m behind second interaction point
F = F*(d-f1)/(d-f1-F)
# number of membrane to show
SampleN = 7
class TZPGcalc():
def __init__(self):
self.initFig()
self.initWidgets()
self.UpdateFig()
display(self.control)
def initFig(self):
""" Creates a figure for the sample plane and detector plane images with all necessary drawings.
"""
plt.close('TZPGcalc')
fig, (self.ax_sam, self.ax_det) = plt.subplots(1, 2, num='TZPGcalc', figsize=(6,3))
# display scale
self.scale = 1e3 # displayed distances in [mm]
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
self.ax_sam.set_title('Sample plane')
self.ax_det.set_title('Detector plane')
self.ax_sam.set_aspect('equal')
self.ax_det.set_aspect('equal')
self.ax_sam.set_xlim([-2, 2])
self.ax_sam.set_ylim([-2, 2])
self.ax_det.set_xlim([-35, 35])
self.ax_det.set_ylim([-20, 50])
# red and blue shifted color of the beams
c_rr = hsv_to_rgb([0/360, 50/100, 100/100])
c_rb = hsv_to_rgb([40/360, 50/100, 100/100])
c_gr = hsv_to_rgb([95/360, 60/100, 100/100])
c_gb = hsv_to_rgb([145/360, 60/100, 100/100])
self.samBeamsL = {'F0G0': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)),
'F0G1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)),
'F0G-1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)),
'F1G0': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_rr, alpha=0.7, lw=None)),
'F1G1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gr, alpha=0.7, lw=None)),
'F1G-1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gr, alpha=0.7, lw=None))
}
self.detBeamsL = {'F0G0': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)),
'F0G1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)),
'F0G-1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)),
'F1G0': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_rr, alpha=0.7, lw=None)),
'F1G1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gr, alpha=0.7, lw=None)),
'F1G-1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gr, alpha=0.7, lw=None))
}
self.samBeamsH = {'F0G0': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)),
'F0G1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)),
'F0G-1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)),
'F1G0': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_rb, alpha=0.7, lw=None)),
'F1G1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gb, alpha=0.7, lw=None)),
'F1G-1': self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gb, alpha=0.7, lw=None))
}
self.detBeamsH = {'F0G0': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)),
'F0G1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)),
'F0G-1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="black", alpha=0.4, lw=None)),
'F1G0': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_rb, alpha=0.7, lw=None)),
'F1G1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gb, alpha=0.7, lw=None)),
'F1G-1': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor=c_gb, alpha=0.7, lw=None))
}
self.detLines = {'module': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, fill=False, facecolor='k')),
'Vfilter': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="blue", alpha=0.4)),
'Hfilter': self.ax_det.add_patch(Rectangle((0, 0), 1, 1, facecolor="blue", alpha=0.4)),
'diamond': self.ax_det.add_patch(Rectangle((-8, -8), 16, 16, facecolor="blue", alpha=0.4, angle=45))
}
# 5x5 membranes
self.sampleLines = {}
self.etchLines = {}
for k in range(SampleN*SampleN):
self.sampleLines[k] = self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, fill=False, facecolor='k'))
self.etchLines[k] = self.ax_sam.add_patch(Rectangle((0, 0), 1, 1, fill=False, facecolor='k', alpha=0.4, ls='--'))
def RectUpdate(self, rect, xLeft, yBottom, xRight, yTop):
""" Updates the position and size of the given Rectangle.
rect: Rectangle to update
xLeft: x position of the left corner
yBottom: y position of the bottom corner
xRight: x position of the right corner
yTop: y position of the top corner
"""
xw = np.abs(xLeft - xRight)
yw = np.abs(yTop - yBottom)
rect.set_xy((self.scale*xLeft, self.scale*yBottom))
rect.set_height(self.scale*yw)
rect.set_width(self.scale*xw)
def UpdateBeams(self, Beams, Z, conf):
""" Update the position and size of the beams.
Beams: dictionary of f'F{f}G{g}' Rectangles for f = 0 and 1 zone plate order and
g = +1, 0 and -1 grating order
Z: distance Z between the zone plate and the current imaging plane
conf: dictionnary of distance for calculation {'F', 'TZPGwH', 'TZPGwV', 'TZPGo', 'theta_grating'}
"""
F = conf['F']
wH = conf['TZPGwH']
wV = conf['TZPGwV']
o = conf['TZPGo']
offaxis = wV/2 + o
# side view X
Fx = F*np.arctan(conf['theta_grating'])
Xdg0 = np.abs(Z - F)/F*wH/2
Xdg1L = Z/F*(Fx - wH/2) + wH/2
Xdg1 = Z*np.tan(conf['theta_grating'])
Xdg1H = Z/F*(Fx + wH/2) - wH/2
# top view Y
YdfL = (o*(Z - F)/F + offaxis)
Ydf = ((o + wV/2)*(Z - F)/F + offaxis)
YdfH = ((o + wV)*(Z - F)/F + offaxis)
if Z < F: # before zone plate focus, low and high beam edges are swapped
Xdg1L, Xdg1H = (Xdg1H, Xdg1L)
YdfL, YdfH = (YdfH, YdfL)
self.RectUpdate(Beams['F0G0'],
-wH/2, -wV/2, wH/2, wV/2)
self.RectUpdate(Beams['F0G1'],
Xdg1-wH/2, -wV/2, Xdg1+wH/2, wV/2)
self.RectUpdate(Beams['F0G-1'],
-Xdg1-wH/2, -wV/2, -Xdg1+wH/2, wV/2)
self.RectUpdate(Beams['F1G0'],
-Xdg0, YdfL, Xdg0, YdfH)
self.RectUpdate(Beams['F1G1'],
Xdg1L, YdfL, Xdg1H, YdfH)
self.RectUpdate(Beams['F1G-1'],
-Xdg1H, YdfL, -Xdg1L, YdfH)
def DetectorUpdate(self, Xoff, Yoff):
""" Draw DSSC detector module with filter mask.
Xoff: x offset
Yoff: y offset
"""
# x module axis is vertical, y module axis is horizontal
# the module 15 is +0.91 mm vertical from the beam and 4.233 mm horizontal from the beam
offset_h = 4.233e-3 #[m]
offset_v = 0.91e-3 #[m]
moduleHw = 256*0.236e-3 #[m]
moduleVw = 128*0.204e-3 #[m]
filterW = 7e-3 #[m]
filterL = 160e-3 #[m]
diamondW = 16e-3 #[m]
self.RectUpdate(self.detLines['module'],
-moduleHw - offset_h + Xoff, offset_v + Yoff, -offset_h + Xoff, moduleVw + offset_v + Yoff)
self.RectUpdate(self.detLines['Vfilter'],
-filterW/2 + Xoff, -filterL/2 + Yoff, filterW/2 + Xoff, filterL/2 + Yoff)
self.RectUpdate(self.detLines['Hfilter'],
-filterL/2 + Xoff, -filterW/2 + Yoff, filterL/2 + Xoff, filterW/2 + Yoff)
# moving rotated rectangles is a pain in matplotlib
self.detLines['diamond'].set_xy((self.scale*Xoff, self.scale*(Yoff - diamondW/2*np.sqrt(2))))
def SampleUpdate(self, w, p, Xoff, Yoff, thickness=0.525):
""" Draw the sample.
w: membrane width
p: membrane pitch
Xoff: sample x offset
Yoff: sample y offset
thickness: sample thickness used to calculate the etched facets
"""
# Si etching angle
wp = w +2*thickness/np.tan(np.deg2rad(54.74))
j = 0
for k in range(-(SampleN-1)//2, (SampleN-1)//2+1):
for l in range(-(SampleN-1)//2, (SampleN-1)//2+1):
self.RectUpdate(self.sampleLines[j], k*p - w/2 + Xoff, l*p - w/2 - Yoff, k*p + w/2 + Xoff, l*p + w/2 - Yoff)
self.RectUpdate(self.etchLines[j], k*p - wp/2 + Xoff, l*p - wp/2 - Yoff, k*p + wp/2 + Xoff, l*p + wp/2 - Yoff)
j+=1
def UpdateFig(self):
""" Update the figure with the current slider values.
# we calculate the optics for the central wavelength
nrjL, nrjH = self.nrj_slider.value # [eV]
wlL = 1240/nrjL*1e-9
wlH = 1240/nrjH*1e-9
nrjD = self.design_nrj_slider.value # [eV]
wl = 1240/nrjD*1e-9
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
theta_grating = self.grating_slider.value*1e-3 # [rad]
sampleZ = self.samz_slider.value*1e-3 # [m]
detectorZ = self.det_slider.value*1e-3 # [m]
TZPGwH = self.TZPGwH_slider.value*1e-3 #[m]
TZPGwV = self.TZPGwV_slider.value*1e-3 #[m]
TZPGo = self.TZPGoffaxis_slider.value*1e-3 - TZPGwV/2 #[m]
d_nominal = wl/np.sin(theta_grating)
self.d_label.value = f'Grating Pitch:{int(np.round(d_nominal*1e9))} nm'
rn = TZPGwV + TZPGo
dr_nominal = wl * F / (2*rn)
self.dr_label.value = f'Outer Zone Plate width dr:{int(np.round(dr_nominal*1e9))} nm'
# configuration for the low energy and high energy photon
confL = {'F':(2*rn)*dr_nominal/wlL,
'theta_grating':np.arcsin(wlL/d_nominal),
'TZPGwH':TZPGwH, 'TZPGwV':TZPGwV, 'TZPGo':TZPGo}
confH = {'F':(2*rn)*dr_nominal/wlH,
'theta_grating':np.arcsin(wlH/d_nominal),
'TZPGwH':TZPGwH, 'TZPGwV':TZPGwV, 'TZPGo':TZPGo}
# update the beams
self.UpdateBeams(self.samBeamsL, Z0 + sampleZ, confL)
self.UpdateBeams(self.detBeamsL, Z0 + detectorZ, confL)
self.UpdateBeams(self.samBeamsH, Z0 + sampleZ, confH)
self.UpdateBeams(self.detBeamsH, Z0 + detectorZ, confH)
# update the detector
detXoff = self.detX_slider.value*1e-3 #[m]
detYoff = self.detY_slider.value*1e-3 #[m]
self.DetectorUpdate(detXoff, detYoff)
# update the sample
samw = self.samw_slider.value*1e-3 #[m]
samp = self.samp_slider.value*1e-3 #[m]
samXoff = self.samX_slider.value*1e-3 #[m]
samYoff = self.samY_slider.value*1e-3 #[m]
samthickness = self.samthickness_slider.value*1e-6 #[m]
self.SampleUpdate(samw, samp, samXoff, samYoff, samthickness)
def initWidgets(self):
""" Creates the necessary interactive widget controls.
"""
self.button = widgets.Button(
description='Update',
)
@self.button.on_click
def plot_on_click(b):
self.UpdateFig()
# TZPG part
self.nrj_slider = widgets.FloatRangeSlider(
value=[840., 880.],
min=450.,
max=3200.0,
step=1,
readout_format='.2f',
)
self.design_nrj_slider = widgets.FloatSlider(
value=860.,
min=450.,
max=3200.0,
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
step=1,
readout_format='.2f',
)
self.TZPGwH_slider = widgets.FloatSlider(
value=1.0,
min=.1,
max=3.0,
step=0.05,
readout_format='.2f',
)
self.TZPGwV_slider = widgets.FloatSlider(
value=1.0,
min=.1,
max=3.0,
step=0.05,
readout_format='.2f',
)
self.TZPGoffaxis_slider = widgets.FloatSlider(
value=0.75,
min=.0,
max=2.0,
step=0.05,
readout_format='.2f',
)
self.grating_slider = widgets.FloatSlider(
value=3.8,
min=1.,
max=10.0,
step=0.05,
readout_format='.2f',
)
self.dr_label = widgets.Label(value='dr')
self.d_label = widgets.Label(value='dr')
TZPGTab = VBox(children=[HBox([widgets.Label(value='Energy (eV):'), self.nrj_slider]),
HBox([widgets.Label(value='Design Energy (eV):'), self.design_nrj_slider]),
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
HBox([widgets.Label(value=r'Grating $\theta$ (mrad):'), self.grating_slider]),
self.d_label, self.dr_label,
HBox([widgets.Label(value='TZPG horiz. width (mm):'), self.TZPGwH_slider]),
HBox(children=[HBox([widgets.Label(value='TZPG vert. width (mm):'), self.TZPGwV_slider]),
HBox([widgets.Label(value='TZPG off axis (mm):'), self.TZPGoffaxis_slider])
])])
# sample part
self.samz_slider = widgets.FloatSlider(
value=30.,
min=-10.,
max=180.0,
step=1,
readout_format='.2f',
)
self.samw_slider = widgets.FloatSlider(
value=.5,
min=0.01,
max=2.0,
step=.01,
readout_format='.2f',
)
self.samp_slider = widgets.FloatSlider(
value=1.0,
min=0.01,
max=2.0,
step=.01,
readout_format='.2f',
)
self.samX_slider = widgets.FloatSlider(
value=0.,
min=-10,
max=10,
step=0.01,
readout_format='.2f',
)
self.samY_slider = widgets.FloatSlider(
value=0.,
min=-10,
max=10,
step=0.01,
readout_format='.2f',
)
self.samthickness_slider = widgets.FloatSlider(
value=381,
min=1,
max=1000,
step=1,
readout_format='.0f',
)
samTab = VBox(children=[HBox([widgets.Label(value='Sample Z (mm):'), self.samz_slider]),
HBox(children=[HBox([widgets.Label(value='Membrane width (mm):'), self.samw_slider]),
HBox([widgets.Label(value='Membrane pitch (mm):'), self.samp_slider])]),
HBox(children=[HBox([widgets.Label(value='Sample X-Offset (mm):'), self.samX_slider]),
HBox([widgets.Label(value='Sample Y-Offset (mm):'), self.samY_slider])]),
HBox([widgets.Label(value='Substrate thickness (um):'), self.samthickness_slider])
])
#detector tab
self.det_slider = widgets.FloatSlider(
value=2000.,
min=1000,
max=5800,
step=1,
description='',
readout_format='.2f',
)
self.detX_slider = widgets.FloatSlider(
value=20.,
min=-50,
max=50,
step=0.5,
readout_format='.2f',
)
self.detY_slider = widgets.FloatSlider(
value=0.,
min=-50,
max=50,
step=0.5,
readout_format='.2f',
)
detTab = VBox(children=[HBox([widgets.Label(value='Detector Z (m):'), self.det_slider]),
HBox(children=[HBox([widgets.Label(value='Detector X-Offset (mm):'), self.detX_slider]),
HBox([widgets.Label(value='Detector Y-Offset (mm):'), self.detY_slider])])])
tab1 = widgets.Accordion(children=[TZPGTab])
tab1.set_title(0, 'TZPG')
tab1.selected_index = None
tab2 = widgets.Accordion(children=[samTab])
tab2.set_title(0, 'sample')
tab2.selected_index = None
tab3 = widgets.Accordion(children=[detTab])
tab3.set_title(0, 'detector')
tab3.selected_index = None
self.control = VBox(children=[tab1, tab2, tab3, self.button])