Skip to content
Snippets Groups Projects
overallmodules_Darks_Summary_NBC.ipynb 20.2 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Karim Ahmed's avatar
Karim Ahmed committed
    "# Summary of AGIPD dark characterization #\n",
    "\n",
    "The following report shows a set of dark images taken with the AGIPD detector to deduce detector offsets, noise, bad-pixel maps and thresholding. All four types of constants are evaluated per-pixel and per-memory cell.\n",
    "\n",
    "\n",
    "**The offset** ($O$) is defined as the median ($M$) of the dark signal ($Ds$) over trains ($t$) for a given pixel ($x,y$) and memory cell ($c$). \n",
    "\n",
    "**The noise** $N$ is the standard deviation $\\sigma$ of the dark signal.\n",
    "\n",
    "$$ O_{x,y,c} = M(Ds)_{t} ,\\,\\,\\,\\,\\,\\, N_{x,y,c} = \\sigma(Ds)_{t}$$\n",
    "\n",
    "**The bad pixel** mask is encoded as a bit mask.\n",
    "\n",
    "**\"OFFSET_OUT_OF_THRESHOLD\":**\n",
    "\n",
    "Offset outside of bounds:\n",
    "\n",
    "$$M(O)_{x,y} - \\sigma(O)_{x,y} * \\mathrm{thresholds\\_offset\\_sigma} < O < M(O)_{x,y} + \\sigma(O)_{x,y} * \\mathrm{thresholds\\_offset\\_sigma} $$\n",
    "\n",
    "or offset outside of hard limits\n",
    "\n",
    "$$ \\mathrm{thresholds\\_offset\\_hard}_\\mathrm{low} < O < \\mathrm{thresholds\\_offset\\_hard}_\\mathrm{high} $$\n",
    "\n",
    "**\"NOISE_OUT_OF_THRESHOLD\":**\n",
    "\n",
    "Noise outside of bounds:\n",
    "\n",
    "$$M(N)_{x,y} - \\sigma(N)_{x,y} * \\mathrm{thresholds\\_noise\\_sigma} < N < M(N)_{x,y} + \\sigma(N)_{x,y} * \\mathrm{thresholds\\_noise\\_sigma} $$\n",
    "\n",
    "or noise outside of hard limits\n",
    "\n",
    "$$\\mathrm{thresholds\\_noise\\_hard}_\\mathrm{low} < N < \\mathrm{thresholds\\_noise\\_hard}_\\mathrm{high} $$\n",
    "\n",
    "**\"OFFSET_NOISE_EVAL_ERROR\":**\n",
    "\n",
    "Offset and Noise both not $nan$ values \n",
    "\n",
    "Values: $\\mathrm{thresholds\\_offset\\_sigma}$, $\\mathrm{thresholds\\_offset\\_hard}$, $\\mathrm{thresholds\\_noise\\_sigma}$, $\\mathrm{thresholds\\_noise\\_hard}$ are given as parameters."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "cluster_profile = \"noDB\" # The ipcluster profile to use\n",
    "out_folder = \"/gpfs/exfel/data/scratch/ahmedk/test/SPB/DARK/AGIPD3/\" # path to output to, required\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "dinstance = \"AGIPD1M1\" # detector instance\n",
    "gain_names = ['High', 'Medium', 'Low'] # a list of gain names to be used in plotting"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from collections import OrderedDict\n",
    "import copy\n",
    "from datetime import datetime\n",
    "import os\n",
    "import warnings\n",
    "warnings.filterwarnings('ignore')\n",
    "\n",
    "import glob\n",
    "import h5py\n",
    "from IPython.display import display, Markdown, Latex\n",
    "import numpy as np\n",
    "import matplotlib\n",
    "matplotlib.use(\"agg\")\n",
    "import matplotlib.patches as patches\n",
    "import matplotlib.pyplot as plt\n",
    "%matplotlib inline\n",
    "import tabulate\n",
    "from cal_tools.ana_tools import get_range\n",
    "from extra_geom import AGIPD_1MGeometry\n",
    "from iCalibrationDB import Detectors\n",
    "from XFELDetAna.plotting.heatmap import heatmapPlot\n",
    "from XFELDetAna.plotting.simpleplot import simplePlot"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# TODO: After changes in the Cal DB interface read files from cal repository\n",
    "\n",
    "# Load constants from local files\n",
    "data = OrderedDict()\n",
    "old_cons = OrderedDict()\n",
    "mod_names = []\n",
    "# Loop over modules\n",
    "for i in range(16):\n",
    "    qm = \"Q{}M{}\".format(i//4 + 1, i % 4 + 1)\n",
    "    # loop over constants\n",
    "    detinst = getattr(Detectors, dinstance)\n",
    "    for const in ['Offset', 'Noise', 'ThresholdsDark', 'BadPixelsDark']:\n",
    "        det = getattr(detinst, qm)\n",
    "        if det is None:\n",
    "            continue\n",
    "        det_name = det.device_name\n",
    "\n",
    "        fpath = '{}/const_{}_{}.h5'.format(out_folder, const, det_name)\n",
    "        oldfpath = '{}/old/const_{}_{}.h5'.format(out_folder, const, det_name)\n",
    "        if not os.path.isfile(fpath):\n",
    "            continue\n",
    "        with h5py.File(fpath, 'r') as f:\n",
    "            if qm not in data:\n",
    "                mod_names.append(qm)\n",
    "                data[qm] = OrderedDict()\n",
    "\n",
    "            data[qm][const] = f[\"data\"][()]\n",
    "\n",
    "        if not os.path.isfile(oldfpath):\n",
    "            continue\n",
    "\n",
    "        with h5py.File(oldfpath, 'r') as oldf:\n",
    "            if qm not in old_cons:\n",
    "                old_cons[qm] = OrderedDict()\n",
    "            old_cons[qm][const] = oldf[\"data\"][()]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "modules = np.argsort(mod_names)\n",
    "cons_shape = {}\n",
    "# extracting constant shape.\n",
    "for qm, constant in data.items():\n",
    "    for cname, cons in constant.items():\n",
    "        shape = data[qm][cname].shape\n",
    "        if cname not in cons_shape:\n",
    "            cons_shape[cname] = shape\n",
    "constants = {}\n",
    "prev_const = {}\n",
    "for cname, sh in cons_shape.items():\n",
    "    constants[cname]= np.zeros((len(mod_names),) + sh[:])\n",
    "    prev_const[cname]= np.zeros((len(mod_names),) + sh[:])\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "\n",
    "for i, mod in enumerate(modules):\n",
    "    for cname, cval in constants.items():\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "        cval[i] = data[mod_names[mod]][cname]\n",
    "        prev_const[cname][i] = old_cons[mod_names[mod]][cname]\n",
    "mod_names = np.array(mod_names)[modules]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "display(Markdown('## Processed modules ##'))\n",
    "\n",
    "fig, ax = plt.subplots(1, figsize=(10, 10))\n",
    "ax.set_axis_off()\n",
    "\n",
    "ax.set_xlim(0, 90)\n",
    "ax.set_ylim(0, 75)\n",
    "asic_pos = 5\n",
    "q_st = 8\n",
    "l_y = 6\n",
    "l_x = 5\n",
    "counter = 0\n",
    "\n",
    "for iq, q_x in enumerate([[43,66],[45,34],[4,32],[2,64]]):\n",
    "    for im in range(4):\n",
    "        color = 'gray'\n",
    "        if 'Q{}M{}'.format(iq+1, im+1) in mod_names:\n",
    "            color = 'green'\n",
    "        if np.nanmean(constants['Noise'][counter, :, :, :, 0]) == 0:\n",
    "            color = 'red'\n",
    "        counter += 1\n",
    "        x = q_x[0]\n",
    "        for i_as in range(8):\n",
    "            ax.add_patch(matplotlib.patches.Rectangle((x,q_x[1]-q_st*im), l_x, l_y, linewidth=2,edgecolor='darkgreen',\n",
    "                                           facecolor=color, fill=True))\n",
    "            x += asic_pos\n",
    "        ax.text(q_x[0]+14.5, q_x[1]-q_st*im+1.5, 'Q{}M{}'.format(\n",
    "            iq+1, im+1),  fontsize=24, color='gold')\n",
    "\n",
    "_ = ax.legend(handles=[patches.Patch(facecolor='red', label='No data'),\n",
    "                       patches.Patch(facecolor='gray', label='Not processed'),\n",
    "                       patches.Patch(facecolor='green', label='Processed')],\n",
    "              loc='outside-top', ncol=3, bbox_to_anchor=(0.1, 0.25, 0.7, 0.8))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Summary figures across Modules ##\n",
    "\n",
    "The following plots give an overview of calibration constants averaged across pixels and memory cells. A bad pixel mask is applied."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "#Initializing AGIPD geometry\n",
    "geom = AGIPD_1MGeometry.from_quad_positions(quad_pos=[\n",
    "        (-525, 625),\n",
    "        (-550, -10),\n",
    "        (520, -160),\n",
    "        (542.5, 475),\n",
    "    ])\n",
    "\n",
    "Mod_data=OrderedDict()\n",
    "for const_name, const in constants.items():\n",
    "    \n",
    "    if const_name == 'BadPixelsDark':\n",
    "        continue\n",
    "    Mod_data[const_name] = OrderedDict()\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "    Mod_data['d-{}'.format(const_name)] = OrderedDict()\n",
    "    Mod_data['dpct-{}'.format(const_name)] = OrderedDict()\n",
    "    display(Markdown('<h3 align=\"center\">### {} ####</h3>'.format(const_name)))    \n",
    "    for gain in range(3):\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "        # Avoid plotting for high gain offset in 3 index \n",
    "        # for Threshold gain dimension.\n",
    "        if const_name == 'ThresholdsDark': \n",
    "            if gain == 2: \n",
    "                continue\n",
    "            gst = 'threshold'\n",
    "        else:\n",
    "            gst = 'gain'\n",
    "        for i in range(16):\n",
    "            qm = \"Q{}M{}\".format(i//4 + 1, i % 4 + 1)\n",
    "\n",
    "            values = np.nanmean(const[i, :, :, :, gain], axis=2)\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "            dval = np.nanmean(prev_const[const_name][i, :, :, :, gain], axis=2)\n",
    "\n",
    "            values[values == 0] = np.nan\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "            dval[dval == 0] = np.nan\n",
    "            dval = values - dval\n",
    "\n",
    "            dval_pct = dval/values * 100\n",
    "\n",
    "            values = np.moveaxis(values, 0, -1).reshape(1, values.shape[1], values.shape[0])\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "            dval = np.moveaxis(dval, 0, -1).reshape(1, dval.shape[1], dval.shape[0])\n",
    "            dval_pct = np.moveaxis(dval_pct, 0, -1).reshape(1, dval_pct.shape[1], dval_pct.shape[0])\n",
    "\n",
    "            try:\n",
    "               \n",
    "                Mod_data[const_name][gain_names[gain]] = np.concatenate((Mod_data[const_name][gain_names[gain]],\n",
    "                                                                         values), axis=0)\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "                Mod_data['d-{}'.format(const_name)][gain_names[gain]] = \\\n",
    "                            np.concatenate((Mod_data['d-{}'.format(const_name)][gain_names[gain]],\n",
    "                                                                         dval), axis=0)\n",
    "                Mod_data['dpct-{}'.format(const_name)][gain_names[gain]] = \\\n",
    "                            np.concatenate((Mod_data['dpct-{}'.format(const_name)][gain_names[gain]],\n",
    "                                                                         dval_pct), axis=0)\n",
    "                Mod_data[const_name][gain_names[gain]] = values\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "                Mod_data['d-{}'.format(const_name)][gain_names[gain]] = dval\n",
    "                Mod_data['dpct-{}'.format(const_name)][gain_names[gain]] = dval_pct\n",
    "\n",
    "        vmin, vmax = get_range(Mod_data[const_name][gain_names[gain]], 2)\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "        dvmin, dvmax = get_range(Mod_data['d-{}'.format(const_name)][gain_names[gain]], 2)\n",
    "        \n",
    "        # Plotting constant overall modules.\n",
    "        display(Markdown('<h3 align=\"center\">{}</h3>'.format(gain_names[gain])))\n",
    "        fig, ax0 = plt.subplots(figsize=(12, 7.5))\n",
    "        geom.plot_data_fast(Mod_data[const_name][gain_names[gain]], vmin=vmin, vmax=vmax,\n",
    "                             ax=ax0,colorbar={\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "                            'shrink': 0.6,\n",
    "                            'pad': 0.1,\n",
    "                            'orientation': 'horizontal'})\n",
    "        colorbar = ax0.images[0].colorbar\n",
    "        colorbar.set_label('ADUs')\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "\n",
    "        ax0.set_title('{} {} {}'.format(const_name, gain_names[gain], gst), fontsize=20)\n",
    "        ax0.set_xlabel('Columns', fontsize=15)\n",
    "        ax0.set_ylabel('Rows', fontsize=15)\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "        \n",
    "        # Plotting the difference with previous constants in ADUs and %\n",
    "        fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 7.5))\n",
    "        geom.plot_data_fast(Mod_data['d-{}'.format(const_name)][gain_names[gain]], \n",
    "                            vmin=dvmin, vmax=dvmax, ax=ax1,colorbar={\n",
    "                            'shrink': 0.6,\n",
    "                            'pad': 0.1,\n",
    "                            'orientation': 'horizontal'})\n",
    "        colorbar = ax1.images[0].colorbar\n",
    "        colorbar.set_label('ADUs')\n",
    "        geom.plot_data_fast(Mod_data['dpct-{}'.format(const_name)][gain_names[gain]], \n",
    "                            vmin=0, vmax=100, ax=ax2,colorbar={\n",
    "                            'shrink': 0.6,\n",
    "                            'pad': 0.1,\n",
    "                            'orientation': 'horizontal'})\n",
    "        colorbar = ax2.images[0].colorbar\n",
    "        colorbar.set_label('%')\n",
    "        ax1.set_title('Difference with previous {} {} {} (ADUs)'.format(const_name, \n",
    "                                                                   gain_names[gain],\n",
    "                                                                   gst), fontsize=10)\n",
    "        ax1.set_xlabel('Columns', fontsize=15)\n",
    "        ax1.set_ylabel('Rows', fontsize=15)\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "        ax2.set_title('Difference with previous {} {} {} (%)'.format(const_name, gain_names[gain],\n",
    "                                                             gst), fontsize=10)\n",
    "        ax2.set_xlabel('Columns', fontsize=15)\n",
    "        ax2.set_ylabel('Rows', fontsize=15)\n",
    "        plt.show()\n",
    "        "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
Karim Ahmed's avatar
Karim Ahmed committed
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "# Loop over capacitor settings, modules, constants\n",
    "for const_name, const in constants.items():\n",
    "\n",
    "    display(Markdown('### Summary across Modules - {}'.format(const_name)))\n",
    "    for gain in range(3):\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "\n",
    "        if const_name == 'ThresholdsDark':\n",
    "            if gain == 2:\n",
    "                continue\n",
    "            gst = 'threshold'\n",
    "        else:\n",
    "            gst = 'gain'\n",
    "            \n",
    "        data = np.copy(const[:, :, :, :, gain])\n",
    "        if const_name != 'BadPixelsDark':\n",
    "            label = '{} value [ADU], good pixels only'.format(const_name)\n",
    "            data[constants['BadPixelsDark'][:, :, :, :, gain] > 0] = np.nan\n",
    "            datamean = np.nanmean(data, axis=(1, 2))\n",
    "\n",
    "            fig = plt.figure(figsize=(15, 6), tight_layout={\n",
    "                             'pad': 0.2, 'w_pad': 1.3, 'h_pad': 1.3})\n",
    "            ax = fig.add_subplot(121)\n",
    "        else:\n",
    "            label = 'Fraction of bad pixels'\n",
    "            data[data > 0] = 1.0\n",
    "            datamean = np.nanmean(data, axis=(1, 2))\n",
    "            datamean[datamean == 1.0] = np.nan\n",
    "\n",
    "            fig = plt.figure(figsize=(15, 6), tight_layout={\n",
    "                             'pad': 0.2, 'w_pad': 1.3, 'h_pad': 1.3})\n",
    "            ax = fig.add_subplot(111)\n",
    "\n",
    "        d = []\n",
    "        for im, mod in enumerate(datamean):\n",
    "            d.append({'x': np.arange(mod.shape[0]),\n",
    "                      'y': mod,\n",
    "                      'drawstyle': 'steps-pre',\n",
    "                      'label': mod_names[im],\n",
    "                      })\n",
    "\n",
    "        _ = simplePlot(d, figsize=(10, 10), xrange=(-12, 510),\n",
    "                            x_label='Memory Cell ID',\n",
    "                            y_label=label,\n",
    "                            use_axis=ax,\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "                            title='{} {}'.format(gain_names[gain], gst),\n",
    "                            title_position=[0.5, 1.18],\n",
    "                            legend='outside-top-ncol6-frame', legend_size='18%',\n",
    "                            legend_pad=0.00)\n",
    "\n",
    "        if const_name != 'BadPixelsDark':\n",
    "            ax = fig.add_subplot(122)\n",
    "            label = '$\\sigma$ {} [ADU], good pixels only'.format(const_name)\n",
    "            d = []\n",
    "            for im, mod in enumerate(np.nanstd(data, axis=(1, 2))):\n",
    "                d.append({'x': np.arange(mod.shape[0]),\n",
    "                          'y': mod,\n",
    "                          'drawstyle': 'steps-pre',\n",
    "                          'label': mod_names[im],\n",
    "                          })\n",
    "\n",
    "            _ = simplePlot(d, figsize=(10, 10), xrange=(-12, 510),\n",
    "                                x_label='Memory Cell ID',\n",
    "                                y_label=label,\n",
    "                                use_axis=ax,\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "                                title='{} {} $\\sigma$'.format(gain_names[gain], gst),\n",
    "                                title_position=[0.5, 1.18],\n",
    "                                legend='outside-top-ncol6-frame', legend_size='18%',\n",
    "                                legend_pad=0.00)\n",
    "\n",
    "        plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Summary tables across Modules ##\n",
    "\n",
    "Tables show values averaged across all pixels and memory cells of a given detector module."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "if u'$' in tabulate.LATEX_ESCAPE_RULES:\n",
    "    del(tabulate.LATEX_ESCAPE_RULES[u'$'])\n",
    "    \n",
    "if u'\\\\' in tabulate.LATEX_ESCAPE_RULES:\n",
    "    del(tabulate.LATEX_ESCAPE_RULES[u'\\\\'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Karim Ahmed's avatar
Karim Ahmed committed
    "head = ['Module', 'High gain', 'Medium gain', 'Low gain']\n",
    "head_th = ['Module', 'High threshold', 'Medium threshold']\n",
    "for const_name, const in constants.items():\n",
    "    table = []\n",
    "\n",
    "    for i_mod, mod in enumerate(mod_names):\n",
    "\n",
    "        t_line = [mod]\n",
    "        for gain in range(3):\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "            \n",
    "            if const_name == 'ThresholdsDark': \n",
    "                if gain == 2:\n",
    "                    continue\n",
    "                header = head_th\n",
    "            else:\n",
    "                header = head\n",
    "\n",
    "            data = np.copy(const[i_mod, :, :, :, gain])\n",
    "            if const_name == 'BadPixelsDark':\n",
    "                data[data > 0] = 1.0\n",
    "                datasum = np.nansum(data)\n",
    "                datamean = np.nanmean(data)\n",
    "                if datamean == 1.0:\n",
    "                    datamean = np.nan\n",
    "                    datasum = np.nan\n",
    "\n",
    "                t_line.append('{:6.0f} ({:6.3f}) '.format(\n",
    "                    datasum, datamean))\n",
    "\n",
    "                label = '## Number (fraction) of bad pixels'\n",
    "            else:\n",
    "\n",
    "                data[constants['BadPixelsDark']\n",
    "                     [i_mod, :, :, :, gain] > 0] = np.nan\n",
    "\n",
    "                t_line.append('{:6.1f} $\\\\pm$ {:6.1f}'.format(\n",
    "                    np.nanmean(data), np.nanstd(data)))\n",
    "\n",
    "                label = '## Average {} [ADU], good pixels only ##'.format(const_name)\n",
    "\n",
    "        table.append(t_line)\n",
    "\n",
    "    display(Markdown(label))\n",
    "    md = display(Latex(tabulate.tabulate(\n",
    "        table, tablefmt='latex', headers=header)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}