Skip to content
Snippets Groups Projects
AGIPD_Correct_and_Verify.ipynb 61.4 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# AGIPD Offline Correction #\n",
    "\n",
    "Author: European XFEL Detector Group, Version: 2.0\n",
    "\n",
    "Offline Calibration for the AGIPD Detector"
   ]
  },
  {
   "cell_type": "code",
Steffen Hauf's avatar
Steffen Hauf committed
   "execution_count": null,
David Hammer's avatar
David Hammer committed
   "metadata": {},
   "outputs": [],
   "source": [
    "in_folder = \"/gpfs/exfel/exp/MID/202201/p002834/raw\" # the folder to read data from, required\n",
    "out_folder = \"/gpfs/exfel/data/scratch/esobolev/pycal_litfrm/p002834/r0225\"  # the folder to output to, required\n",
    "metadata_folder = \"\"  # Directory containing calibration_metadata.yml when run by xfel-calibrate\n",
    "sequences = [-1] # sequences to correct, set to -1 for all, range allowed\n",
    "overwrite = False  # IGNORED, NEEDED FOR COMPATIBILITY.\n",
    "modules = [-1] # modules to correct, set to -1 for all, range allowed\n",
    "train_ids = [-1] # train IDs to correct, set to -1 for all, range allowed\n",
    "run = 225 # runs to process, required\n",
    "karabo_id = \"MID_DET_AGIPD1M-1\" # karabo karabo_id\n",
    "karabo_da = ['-1']  # a list of data aggregators names, Default [-1] for selecting all data aggregators\n",
    "receiver_template = \"{}CH0\" # inset for receiver devices\n",
    "path_template = 'RAW-R{:04d}-{}-S{:05d}.h5' # the template to use to access data\n",
    "instrument_source_template = '{}/DET/{}:xtdf'  # path in the HDF5 file to images\n",
    "index_source_template = 'INDEX/{}/DET/{}:xtdf/'  # path in the HDF5 file to images\n",
    "ctrl_source_template = '{}/MDL/FPGA_COMP'  # path to control information\n",
    "karabo_id_control = \"MID_EXP_AGIPD1M1\" # karabo-id for control device\n",
    "slopes_ff_from_files = \"\" # Path to locally stored SlopesFF and BadPixelsFF constants, loaded in precorrection notebook\n",
    "creation_time = \"\"  # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC e.g. \"2022-06-28 13:00:00\"\n",
    "cal_db_interface = \"tcp://max-exfl-cal001:8015#8045\" # the database interface to use\n",
    "cal_db_timeout = 30000 # in milliseconds\n",
    "creation_date_offset = \"00:00:00\" # add an offset to creation date, e.g. to get different constants\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "cal_db_root = \"\"  # The calibration database root path to access constant files. e.g. accessing constants from the test database /gpfs/exfel/d/cal_tst/caldb_store.\n",
    "mem_cells = -1  # Number of memory cells used, set to 0 to automatically infer\n",
    "bias_voltage = -1  # bias voltage, set to 0 to use stored value in slow data.\n",
    "acq_rate = -1. # the detector acquisition rate, use 0 to try to auto-determine\n",
    "gain_setting = -1  # the gain setting, use -1 to use value stored in slow data.\n",
    "gain_mode = -1  # gain mode (0: adaptive, 1-3 fixed high/med/low, -1: read from CONTROL data)\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "max_pulses = [0, 352, 1] # range list [st, end, step] of memory cell indices to be processed within a train. 3 allowed maximum list input elements.\n",
    "mem_cells_db = -1  # set to a value different than 0 to use this value for DB queries\n",
    "integration_time = -1 # integration time, negative values for auto-detection.\n",
    "\n",
    "# Correction parameters\n",
Steffen Hauf's avatar
Steffen Hauf committed
    "blc_noise_threshold = 5000 # above this mean signal intensity now baseline correction via noise is attempted\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "cm_dark_fraction = 0.66 # threshold for fraction of  empty pixels to consider module enough dark to perform CM correction\n",
    "cm_dark_range = [-50.,30] # range for signal value ADU for pixel to be consider as a dark pixel\n",
    "cm_n_itr = 4 # number of iterations for common mode correction\n",
    "hg_hard_threshold = 1000 # threshold to force medium gain offset subtracted pixel to high gain\n",
    "mg_hard_threshold = 1000 # threshold to force medium gain offset subtracted pixel from low to medium gain\n",
    "noisy_adc_threshold = 0.25 # threshold to mask complete adc\n",
    "ff_gain = 7.2 # conversion gain for absolute FlatField constants, while applying xray_gain\n",
    "photon_energy = -1.0 # photon energy in keV, non-positive value for XGM autodetection\n",
    "rounding_threshold = 0.5 # the fraction to round to down, 0.5 for standard rounding rule\n",
    "cs_mg_adjust = 7e3  # Value to adjust medium gain when correcting with current source. This is used when `adjust_mg_baseline` is True.\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "\n",
    "# Correction Booleans\n",
Mikhail Karnevskiy's avatar
Mikhail Karnevskiy committed
    "only_offset = False # Apply only Offset correction. if False, Offset is applied by Default. if True, Offset is only applied.\n",
    "# TODO: Remove this boolean parameter an replace rel_gain_mode with it.\n",
    "rel_gain = False \n",
    "rel_gain_mode = \"off\"  # Select relative gain correction. Choices [`PC`, `CS`, `off`]. (`PC`: Pulse Capacitor, `CS`: Current Source, `off`: Disable relative gain correction). Default: off.\n",
Mikhail Karnevskiy's avatar
Mikhail Karnevskiy committed
    "xray_gain = False # do relative gain correction based on xray data\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "blc_noise = False # if set, baseline correction via noise peak location is attempted\n",
Mikhail Karnevskiy's avatar
Mikhail Karnevskiy committed
    "blc_stripes = False # if set, baseline corrected via stripes\n",
David Hammer's avatar
David Hammer committed
    "blc_hmatch = False # if set, base line correction via histogram matching is attempted\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "match_asics = False # if set, inner ASIC borders are matched to the same signal level\n",
    "adjust_mg_baseline = False # adjust medium gain baseline to match highest high gain value\n",
    "zero_nans = False # set NaN values in corrected data to 0\n",
    "zero_orange = False # set to 0 very negative and very large values in corrected data\n",
Mikhail Karnevskiy's avatar
Mikhail Karnevskiy committed
    "blc_set_min = False # Shift to 0 negative medium gain pixels after offset corr\n",
    "corr_asic_diag = False # if set, diagonal drop offs on ASICs are corrected\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "force_hg_if_below = False # set high gain if mg offset subtracted value is below hg_hard_threshold\n",
    "force_mg_if_below = False # set medium gain if mg offset subtracted value is below mg_hard_threshold\n",
    "mask_noisy_adc = False # Mask entire ADC if they are noise above a relative threshold\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "common_mode = False # Common mode correction\n",
    "melt_snow = False # Identify (and optionally interpolate) 'snowy' pixels\n",
    "mask_zero_std = False # Mask pixels with zero standard deviation across train\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "low_medium_gap = False # 5 sigma separation in thresholding between low and medium gain\n",
    "round_photons = False  # Round to absolute number of photons, only use with gain corrections\n",
    "\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "# Additional processing\n",
    "count_lit_pixels = False # Count the number of pixels registering photons\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "spi_hitfinding = False  # Find hits using lit-pixel counter\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "\n",
    "# Optional auxiliary devices\n",
    "use_ppu_device = ''  # Device ID for a pulse picker device to only process picked trains, empty string to disable\n",
    "ppu_train_offset = 0  # When using the pulse picker, offset between the PPU's sequence start and actually picked train\n",
    "require_ppu_trigger = False  # Optional protection against running without PPU or without triggering trains.\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "use_litframe_finder = 'off' # Process only illuminated frames: 'off' - disable, 'device' - use online device data, 'offline' - use offline algorithm, 'auto' - choose online/offline source automatically (default)\n",
    "litframe_device_id = '' # Device ID for a lit frame finder device, empty string to auto detection\n",
    "energy_threshold = -1000 # The low limit for the energy (uJ) exposed by frames subject to processing. If -1000, selection by pulse energy is disabled\n",
    "use_super_selection = 'cm' # Make a common selection for entire run: 'off' - disable, 'final' - enable for final selection, 'cm' - enable only for common mode correction\n",
    "use_xgm_device = ''  # DoocsXGM device ID to obtain actual photon energy, operating condition else.\n",
    "recast_image_data = ''  # Cast data to a different dtype before saving\n",
    "compress_fields = ['gain', 'mask']  # Datasets in image group to compress.\n",
    "\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "# SPI hit-finder parameters\n",
    "spi_hf_modules = [3, 4, 8, 15]  # Use specified modules for SPI hitfinding\n",
    "spi_hf_mode = \"adaptive\"  # The method to compute threshold for hitscores in SPI hitfinding: `fixed` or `adaptive`\n",
    "spi_hf_snr = 4.0  # Siginal-to-noise ration for adaptive threshold in SPI hitfinding\n",
    "spi_hf_min_scores = 100  # The minimal size of events to compute adaptive threshold in SPI hitfinding\n",
    "spi_hf_fixed_threshold = 0  # The fixed threshold value\n",
    "spi_hf_hitrate_window_size = 200  # The window size for runnig average of hitrate in trains\n",
    "spi_hf_miss_fraction = 1  # The fraction of misses to select along with hits\n",
    "spi_hf_miss_fraction_base = \"hit\"  # The base to compute the number of misses to select: the number of hits (`hit`) or misses (`miss`)\n",
    "\n",
    "# Plotting parameters\n",
    "skip_plots = False # exit after writing corrected files and metadata\n",
    "cell_id_preview = 1 # cell Id used for preview in single-shot plots\n",
    "cmap = \"viridis\"  # matplolib.colormap for almost all heatmap. Other options ['plasma', 'inferno', 'magma', 'cividis', 'jet', ...]\n",
    "# Parallelization parameters\n",
    "chunk_size = 1000  # Size of chunk for image-wise correction\n",
    "n_cores_correct = 16 # Number of chunks to be processed in parallel\n",
    "n_cores_files = 4 # Number of files to be processed in parallel\n",
    "sequences_per_node = 2 # number of sequence files per cluster node if run as SLURM job, set to 0 to not run SLURM parallel\n",
    "max_nodes = 8 # Maximum number of SLURM jobs to split correction work into\n",
    "max_tasks_per_worker = 1  # the number of tasks a correction pool worker process can complete before it will exit and be replaced with a fresh worker process. Leave as -1 to keep worker alive as long as pool.\n",
    "def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da, max_nodes):\n",
Mikhail Karnevskiy's avatar
Mikhail Karnevskiy committed
    "    from xfel_calibrate.calibrate import balance_sequences as bs\n",
    "    return bs(in_folder, run, sequences, sequences_per_node, karabo_da, max_nodes=max_nodes)"
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import itertools\n",
    "import math\n",
    "import multiprocessing\n",
    "import os\n",
    "import sys\n",
    "import warnings\n",
    "from datetime import timedelta\n",
    "from logging import warning\n",
    "from pathlib import Path\n",
    "\n",
    "import tabulate\n",
    "from dateutil import parser\n",
David Hammer's avatar
David Hammer committed
    "from IPython.display import Latex, Markdown, display\n",
    "warnings.filterwarnings('ignore')\n",
    "import matplotlib\n",
    "import matplotlib.pyplot as plt\n",
    "import yaml\n",
    "from extra_data import by_id, RunDirectory, stack_detector_data\n",
    "from extra_geom import AGIPD_1MGeometry, AGIPD_500K2GGeometry\n",
    "from matplotlib.colors import LogNorm\n",
    "\n",
    "matplotlib.use(\"agg\")\n",
    "%matplotlib inline\n",
    "import numpy as np\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "import seaborn as sns\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "sns.set()\n",
    "sns.set_context(\"paper\", font_scale=1.4)\n",
    "sns.set_style(\"ticks\")\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "import cal_tools.restful_config as rest_cfg\n",
    "from cal_tools import agipdalgs as calgs\n",
    "from cal_tools.agipdlib import (\n",
    "    AgipdCorrections,\n",
    "    AgipdCtrl,\n",
    "    CellRange,\n",
    "    LitFrameSelection,\n",
    "from cal_tools.ana_tools import get_range\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "from cal_tools.calcat_interface import (\n",
    "    AGIPD_CalibrationData,\n",
    "    CalCatError,\n",
    ")\n",
    "from cal_tools.enums import AgipdGainMode, BadPixels\n",
    "from cal_tools.plotting import agipd_single_module_geometry\n",
    "from cal_tools.step_timing import StepTimer\n",
    "from cal_tools.tools import (\n",
    "    calcat_creation_time,\n",
    "    map_modules_from_folder,\n",
    "    module_index_to_qm,\n",
    "    write_constants_fragment,\n",
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "in_folder = Path(in_folder)\n",
    "out_folder = Path(out_folder)\n",
    "run_folder = in_folder / f'r{run:04d}'\n",
    "\n",
    "step_timer = StepTimer()"
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Evaluated parameters ##"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Fill dictionaries comprising bools and arguments for correction and data analysis\n",
    "\n",
    "# Here the hierarchy and dependability for correction booleans are defined\n",
    "corr_bools = {}\n",
    "\n",
    "cs_corr = False\n",
    "pc_corr = False\n",
    "if rel_gain_mode.lower() == \"off\":\n",
    "    # TODO: Remove this part after replacing rel_gain with rel_gain_mode\n",
    "        pc_corr = True\n",
    "\n",
    "elif rel_gain_mode.lower() == \"cs\":\n",
    "    cs_corr = True\n",
    "\n",
    "elif rel_gain_mode.lower() == \"pc\":\n",
    "    pc_corr = True\n",
    "\n",
    "    raise ValueError(\n",
    "        \"Selected `rel_gain_mode` is unexpected. \"\n",
    "        \"Please select between CS or PC.\")\n",
    "# offset is at the bottom of AGIPD correction pyramid.\n",
    "corr_bools[\"only_offset\"] = only_offset\n",
    "\n",
    "# Dont apply any corrections if only_offset is requested\n",
    "if not only_offset:\n",
    "    corr_bools[\"cs_corr\"] = cs_corr\n",
    "    corr_bools[\"pc_corr\"] = pc_corr\n",
    "    corr_bools[\"adjust_mg_baseline\"] = adjust_mg_baseline\n",
Mikhail Karnevskiy's avatar
Mikhail Karnevskiy committed
    "    corr_bools[\"xray_corr\"] = xray_gain\n",
    "    corr_bools[\"blc_noise\"] = blc_noise\n",
Mikhail Karnevskiy's avatar
Mikhail Karnevskiy committed
    "    corr_bools[\"blc_stripes\"] = blc_stripes\n",
    "    corr_bools[\"blc_hmatch\"] = blc_hmatch\n",
    "    corr_bools[\"blc_set_min\"] = blc_set_min\n",
    "    corr_bools[\"match_asics\"] = match_asics\n",
    "    corr_bools[\"corr_asic_diag\"] = corr_asic_diag\n",
    "    corr_bools[\"zero_nans\"] = zero_nans\n",
    "    corr_bools[\"zero_orange\"] = zero_orange\n",
    "    corr_bools[\"mask_noisy_adc\"] = mask_noisy_adc\n",
    "    corr_bools[\"force_hg_if_below\"] = force_hg_if_below\n",
    "    corr_bools[\"force_mg_if_below\"] = force_mg_if_below\n",
    "    corr_bools[\"common_mode\"] = common_mode\n",
    "    corr_bools[\"melt_snow\"] = melt_snow\n",
    "    corr_bools[\"mask_zero_std\"] = mask_zero_std\n",
    "    corr_bools[\"low_medium_gap\"] = low_medium_gap\n",
    "    corr_bools[\"round_photons\"] = round_photons\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "    corr_bools[\"count_lit_pixels\"] = count_lit_pixels\n",
    "\n",
    "# Many corrections don't apply to fixed gain mode; will explicitly disable later if detected\n",
    "disable_for_fixed_gain = [\n",
    "    \"adjust_mg_baseline\",\n",
    "    \"blc_set_min\",\n",
    "    \"force_hg_if_below\",\n",
    "    \"force_mg_if_below\",\n",
    "    \"low_medium_gap\",\n",
    "    \"pc_corr\",\n",
    "    \"cs_corr\",\n",
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "if sequences == [-1]:\n",
    "    sequences = None\n",
    "\n",
    "dc = RunDirectory(run_folder)\n",
    "ctrl_src = ctrl_source_template.format(karabo_id_control)\n",
    "instrument_src = instrument_source_template.format(karabo_id, receiver_template)\n",
    "index_src = index_source_template.format(karabo_id, receiver_template)"
  {
   "cell_type": "code",
Steffen Hauf's avatar
Steffen Hauf committed
   "execution_count": null,
   "metadata": {},
Steffen Hauf's avatar
Steffen Hauf committed
   "outputs": [],
   "source": [
    "# Create output folder\n",
    "out_folder.mkdir(parents=True, exist_ok=True)\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "\n",
    "# Evaluate detector instance for mapping\n",
    "instrument = karabo_id.split(\"_\")[0]\n",
    "if \"AGIPD1M\" in karabo_id:\n",
    "elif \"AGIPD500K\" in karabo_id:\n",
    "else:\n",
    "    nmods = 1\n",
    "# Evaluate requested modules\n",
    "if karabo_da[0] == '-1':\n",
    "    if modules[0] == -1:\n",
    "        modules = list(range(nmods))\n",
    "    mod_indices = modules if nmods > 1 else [0]\n",
    "    karabo_da = [\"AGIPD{:02d}\".format(i) for i in modules]\n",
    "else:  # TODO: fix this with the new CALCAT metadata for module indices.\n",
    "    modules = [int(x[-2:]) for x in karabo_da]\n",
    "    mod_indices = modules if nmods > 1 else [0]\n",
David Hammer's avatar
David Hammer committed
    "\n",
    "print(\"Process modules:\", ', '.join(module_index_to_qm(x) for x in mod_indices))\n",
    "print(f\"Detector in use is {karabo_id}\")\n",
    "print(f\"Instrument {instrument}\")"
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "train_available = False\n",
    "\n",
    "for m in modules:\n",
    "    try:\n",
    "        # Attempt to select the module. If no trains are available, ValueError might be raised\n",
    "        if len(dc[instrument_src.format(m), 'image.data'].drop_empty_trains().train_ids) > 0:\n",
    "            train_available = True\n",
    "            break  # Found a module with available trains.\n",
    "    except ValueError as e:\n",
    "        warning(f\"Missing module {m} from data: {e}\")\n",
    "\n",
    "if not train_available:\n",
    "    # Execute this block if no modules with trains were found.\n",
    "    latex_warning(\"No trains available to correct for selected modules.\")\n",
    "    sys.exit(0)"
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
    "if use_ppu_device and use_ppu_device in dc.control_sources:\n",
    "    # Obtain trains to process if using a pulse picker device and it's present.\n",
    "    seq_start = dc[use_ppu_device, 'trainTrigger.sequenceStart.value'].ndarray()\n",
    "\n",
    "    # The trains picked are the unique values of trainTrigger.sequenceStart\n",
    "    # minus the first (previous trigger before this run).\n",
    "    start_train_ids = np.unique(seq_start)[1:] + ppu_train_offset\n",
    "\n",
    "    train_ids = []\n",
    "    for train_id in start_train_ids:\n",
    "        n_trains = dc[\n",
    "            use_ppu_device, 'trainTrigger.numberOfTrains'\n",
    "        ].select_trains(by_id[[train_id]]).ndarray()[0]\n",
    "        train_ids.extend(list(range(train_id, train_id + n_trains)))\n",
    "    if train_ids:\n",
    "        print(f'PPU device {use_ppu_device} triggered for {len(train_ids)} train(s)')\n",
    "    elif require_ppu_trigger:\n",
    "        raise RuntimeError(f'PPU device {use_ppu_device} not triggered but required, aborting!')\n",
    "    else:\n",
    "        print(f'PPU device {use_ppu_device} not triggered, processing all valid trains')\n",
    "        train_ids = None\n",
    "        \n",
    "elif use_ppu_device:\n",
    "    # PPU configured but not present.\n",
    "    \n",
    "    if require_ppu_trigger:\n",
    "        raise RuntimeError(f'PPU device {use_ppu_device} required but not found, aborting!')\n",
    "    else:\n",
    "        print(f'PPU device {use_ppu_device} configured but not found, processing all valid trains')\n",
    "        train_ids = None\n",
    "    # Specific trains passed by parameter, convert to ndarray.\n",
    "    train_ids = np.array(train_ids)\n",
    "    \n",
    "    print(f'Processing up to {len(train_ids)} manually selected train(s)')\n",
    "    # No PPU configured.\n",
    "    print(f'Processing all valid trains')\n",
    "    train_ids = None"
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# set everything up filewise\n",
    "mapped_files, _, total_sequences, _, _ =  map_modules_from_folder(\n",
    "    str(in_folder), run, path_template, karabo_da, sequences\n",
    ")\n",
    "file_list = []\n",
    "\n",
    "# ToDo: Split table over pages\n",
    "print(f\"Processing a total of {total_sequences} sequence files in chunks of {n_cores_files}\")\n",
    "table = []\n",
    "ti = 0\n",
    "for k, files in mapped_files.items():\n",
    "    i = 0\n",
    "    for f in list(files.queue):\n",
    "        file_list.append(f)\n",
    "        if i == 0:\n",
    "            table.append((ti, k, i, f))\n",
    "        else:\n",
    "            table.append((ti, \"\", i,  f))\n",
    "        i += 1\n",
    "        ti += 1\n",
    "md = display(Latex(tabulate.tabulate(table, tablefmt='latex',\n",
    "                                     headers=[\"#\", \"module\", \"# module\", \"file\"])))\n",
    "file_list = sorted(file_list, key=lambda name: name[-10:])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "first_mod_channel = sorted(modules)[0]\n",
    "    s for s in list(dc.all_sources) if f\"{first_mod_channel}CH\" in s][0]\n",
    "\n",
    "agipd_cond = AgipdCtrl(\n",
    "    run_dc=dc,\n",
    "    image_src=instrument_src_first_mod,\n",
    "    ctrl_src=ctrl_src,\n",
    "    raise_error=False,  # to be able to process very old data without gain_setting value\n",
    ")"
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Run's creation time:\n",
    "creation_time = calcat_creation_time(in_folder, run, creation_time)\n",
    "offset = parser.parse(creation_date_offset)\n",
    "delta = timedelta(hours=offset.hour, minutes=offset.minute, seconds=offset.second)\n",
    "creation_time += delta\n",
    "print(f\"Creation time: {creation_time}\")\n",
    "\n",
    "if acq_rate == -1.:\n",
    "    acq_rate = agipd_cond.get_acq_rate()\n",
    "if mem_cells == -1:\n",
    "    mem_cells = agipd_cond.get_num_cells()\n",
    "# TODO: look for alternative for passing creation_time\n",
    "if gain_setting == -1:\n",
    "    gain_setting = agipd_cond.get_gain_setting(creation_time)\n",
    "if bias_voltage == -1:\n",
    "    for m in modules:\n",
    "        bias_voltage = agipd_cond.get_bias_voltage(karabo_id_control, module=m)\n",
    "        # Accept non-zero value for a bias voltage from any module.\n",
    "        if bias_voltage != 0.:\n",
    "            break\n",
    "if integration_time == -1:\n",
    "    integration_time = agipd_cond.get_integration_time()\n",
    "if gain_mode == -1:\n",
    "    gain_mode = agipd_cond.get_gain_mode()\n",
    "    gain_mode = AgipdGainMode(gain_mode)"
Mikhail Karnevskiy's avatar
Mikhail Karnevskiy committed
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "mem_cells_db = mem_cells if mem_cells_db == -1 else mem_cells_db\n",
    "print(f\"Maximum memory cells to calibrate: {mem_cells}\")"
   ]
  },
  {
   "cell_type": "code",
Steffen Hauf's avatar
Steffen Hauf committed
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(f\"Using {creation_time} as creation time\")\n",
    "print(\"Operating conditions are:\")\n",
    "print(f\"• Bias voltage: {bias_voltage}\")\n",
    "print(f\"• Memory cells: {mem_cells_db}\")\n",
    "print(f\"• Acquisition rate: {acq_rate}\")\n",
    "print(f\"• Gain setting: {gain_setting}\")\n",
    "print(f\"• Gain mode: {gain_mode.name}\")\n",
    "print(f\"• Integration time: {integration_time}\")\n",
    "print(f\"• Photon Energy: 9.2\")"
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "if gain_mode:\n",
    "    for to_disable in disable_for_fixed_gain:\n",
    "        if corr_bools.get(to_disable, False):\n",
    "            warning(f\"{to_disable} correction was requested, but does not apply to fixed gain mode\")\n",
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "if use_litframe_finder != 'off':\n",
    "    from extra_redu import make_litframe_finder, LitFrameFinderError\n",
    "    if use_litframe_finder not in ['auto', 'offline', 'online']:\n",
    "        raise ValueError(\"Unexpected value in 'use_litframe_finder'.\")\n",
    "    inst = karabo_id_control[:3]\n",
    "    litfrm = make_litframe_finder(inst, dc, litframe_device_id)\n",
    "    try:\n",
    "        get_data = {'auto': litfrm.read_or_process, 'offline': litfrm.process, 'online': litfrm.read}\n",
    "        r = get_data[use_litframe_finder]()\n",
    "        cell_sel = LitFrameSelection(r, train_ids, max_pulses, energy_threshold, use_super_selection)\n",
    "        print(f\"{cell_sel.msg()}\\n\")\n",
    "        cell_sel.print_report()\n",
    "        if np.count_nonzero(r.nLitFrame.value) == 0:  # No lit frames.\n",
    "            latex_warning(\n",
    "                \"No lit frames identified using AGIPD LitFrameFinder.\"\n",
    "                \" Offline correction will not be performed.\")\n",
    "            sys.exit(0)\n",
    "    except LitFrameFinderError as err:\n",
    "        warning(f\"Cannot use AgipdLitFrameFinder due to:\\n{err}\")\n",
    "        cell_sel = CellRange(max_pulses, max_cells=mem_cells)\n",
    "else:\n",
    "    # Use range selection\n",
    "    cell_sel = CellRange(max_pulses, max_cells=mem_cells)\n",
    "    print(cell_sel.msg())"
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Egor Sobolev's avatar
Egor Sobolev committed
    "photon_energy_warn = None\n",
    "if photon_energy <= 0.0:\n",
    "    if use_xgm_device:\n",
    "        # Try to obtain photon energy from XGM device.\n",
    "        wavelength_data = dc[use_xgm_device, 'pulseEnergy.wavelengthUsed']\n",
    "\n",
    "        try:\n",
    "            from scipy.constants import h, c, e\n",
    "\n",
    "            # Read wavelength as a single value and convert to hv.\n",
    "            photon_energy = (h * c / e) / (wavelength_data.as_single_value(rtol=1e-2) * 1e-6)\n",
    "            print(f'Obtained photon energy {photon_energy:.3f} keV from {use_xgm_device}')\n",
    "        except ValueError:\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "            photon_energy_warn = 'XGM source available but photon energy varies greater than 1%'\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "        photon_energy_warn = 'Neither explicit photon energy nor XGM device configured'\n",
    "\n",
    "rounding_threshold_warn = None\n",
    "if rounding_threshold <= .0 or 1. <= rounding_threshold:\n",
    "    rounding_threshold_warn = 'Round threshold is out of (0, 1) range. Use standard 0.5 value.'\n",
    "    rounding_threshold = 0.5\n",
    "\n",
    "if round_photons:\n",
    "    if photon_energy_warn:\n",
    "        warning(photon_energy_warn + ', photon rounding disabled!')\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "    else:\n",
    "        print(f'Photon energy for rounding: {photon_energy:.3f} keV')\n",
    "        if rounding_threshold_warn:\n",
    "            warning(rounding_threshold_warn)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "if count_lit_pixels:\n",
    "    if round_photons:\n",
    "        data_units = 'photon'\n",
    "        litpx_threshold = 1.\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "    else:\n",
    "        data_units = 'keV'\n",
    "        if photon_energy_warn:\n",
    "            warning(photon_energy_warn + '. Use 12 keV for lit-pixel counter threshold')\n",
    "            litpx_threshold = 12.\n",
    "        else:\n",
    "            litpx_threshold = photon_energy\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "\n",
    "        if rounding_threshold_warn:\n",
    "            warning(rounding_threshold_warn)\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "\n",
    "    if not xray_gain:\n",
    "        # convert photon energy to ADU (for AGIPD approx. 1 keV = 7 ADU)\n",
    "        # it looks that rounding to photons can be applied to data in ADU as well\n",
    "        litpx_threshold *= 7.\n",
    "        data_units = 'ADU'\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "\n",
    "    litpx_threshold *= rounding_threshold\n",
    "    print(f\"Count lit-pixels with signal above {litpx_threshold:.3g} {data_units}\")\n",
    "else:\n",
    "    # dummy value, that is not expected to be used\n",
    "    litpx_threshold = 42"
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "agipd_corr = AgipdCorrections(\n",
    "    mem_cells,\n",
    "    h5_data_path=instrument_src,\n",
    "    h5_index_path=index_src,\n",
    "    corr_bools=corr_bools,\n",
    "    comp_threads=os.cpu_count() // n_cores_files,\n",
    "\n",
    "agipd_corr.baseline_corr_noise_threshold = -blc_noise_threshold\n",
    "agipd_corr.hg_hard_threshold = hg_hard_threshold\n",
    "agipd_corr.mg_hard_threshold = mg_hard_threshold\n",
    "\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "agipd_corr.cm_dark_min = cm_dark_range[0]\n",
    "agipd_corr.cm_dark_max = cm_dark_range[1]\n",
    "agipd_corr.cm_dark_fraction = cm_dark_fraction\n",
    "agipd_corr.cm_n_itr = cm_n_itr\n",
    "agipd_corr.noisy_adc_threshold = noisy_adc_threshold\n",
    "agipd_corr.ff_gain = ff_gain\n",
    "agipd_corr.rounding_threshold = rounding_threshold\n",
    "agipd_corr.cs_mg_adjust = cs_mg_adjust\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "agipd_corr.litpx_threshold = litpx_threshold\n",
    "agipd_corr.compress_fields = compress_fields\n",
    "if recast_image_data:\n",
    "    agipd_corr.recast_image_fields['data'] = np.dtype(recast_image_data)"
Karim Ahmed's avatar
Karim Ahmed committed
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_constants_and_update_metadata(cal_data, main_metadata, constants):\n",
    "    try:\n",
    "        metadata = cal_data.metadata(constants)\n",
    "        for key, value in metadata.items():\n",
    "            main_metadata.setdefault(key, {}).update(value)\n",
    "    except CalCatError as e:  # TODO: replace when API errors are improved.\n",
    "        warning(f\"CalCatError: {e}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Karim Ahmed's avatar
Karim Ahmed committed
    "step_timer.start()\n",
    "# Instantiate agipd_cal with the read operating conditions.\n",
    "agipd_cal = AGIPD_CalibrationData(\n",
    "    detector_name=karabo_id,\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "    modules=karabo_da,\n",
    "    sensor_bias_voltage=bias_voltage,\n",
    "    memory_cells=mem_cells,\n",
    "    acquisition_rate=acq_rate,\n",
    "    integration_time=integration_time,\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "    source_energy=9.2,\n",
    "    gain_mode=gain_mode,\n",
    "    gain_setting=gain_setting,\n",
    "    event_at=creation_time,\n",
    "    client=rest_cfg.calibration_client(),\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "    caldb_root=Path(cal_db_root) if cal_db_root else None,\n",
    ")\n",
    "\n",
    "# Prepare lists of expected calibrations\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "dark_constants = [\"Offset\", \"Noise\", \"BadPixelsDark\"]\n",
    "if not gain_mode:  # Adaptive gain\n",
    "    dark_constants.append(\"ThresholdsDark\")\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "\n",
    "agipd_metadata = agipd_cal.metadata(dark_constants)\n",
    "\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "agipd_cal.gain_mode = None  # gain_mode is not used for gain constants\n",
    "pc_constants, ff_constants, cs_constants = [], [], []\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "if agipd_corr.corr_bools.get('xray_corr'):\n",
    "    ff_constants = list(agipd_cal.illuminated_calibrations)\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "    get_constants_and_update_metadata(\n",
    "        agipd_cal, agipd_metadata, ff_constants)\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "if any(agipd_corr.relgain_bools):\n",
    "        # Integration time is not used with CS\n",
    "        agipd_cal.integration_time = None\n",
    "        cs_constants = [\"SlopesCS\", \"BadPixelsCS\"]\n",
    "        get_constants_and_update_metadata(\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "            agipd_cal, agipd_metadata, cs_constants)\n",
    "        \n",
    "\n",
    "    else:  # rel_gain_mode == \"pc\" or \"off\"\n",
    "        pc_constants = [\"SlopesPC\", \"BadPixelsPC\"]\n",
    "        get_constants_and_update_metadata(\n",
    "            agipd_cal, agipd_metadata, pc_constants)\n",
    "\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "step_timer.done_step(\"Constants were retrieved in\")\n",
    "\n",
    "relgain_alias = \"CS\" if cs_corr else \"PC\"\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "print(\"Preparing constants (\"\n",
    "      f\"FF: {agipd_corr.corr_bools.get('xray_corr', False)}, \"\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "      f\"{relgain_alias}: {any(agipd_corr.relgain_bools)}, \"\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "      f\"BLC: {any(agipd_corr.blc_bools)})\")\n",
    "# Display retrieved calibration constants timestamps\n",
    "agipd_cal.display_markdown_retrieved_constants(metadata=agipd_metadata)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Validate constants availability and exclude modules with no offsets.\n",
    "for da, calibrations in agipd_metadata.items():\n",
    "    mod = modules[karabo_da.index(da)]\n",
    "    # Constants to error out for when missing.\n",
    "    error_missing_constants = {\"Offset\"}\n",
    "    if not gain_mode:\n",
    "        error_missing_constants |= {\"ThresholdsDark\"}\n",
    "\n",
    "    error_missing_constants -= set(calibrations)\n",
    "    if error_missing_constants:\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "        warning(f\"Offset constant is not available to correct {da}.\")\n",
    "        # Remove module from files to process.\n",
    "        del mapped_files[module_index_to_qm(mod)]\n",
    "        karabo_da.remove(da)\n",
    "        modules.remove(mod)\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "\n",
    "    warn_missing_constants = set(dark_constants + pc_constants + ff_constants + cs_constants)\n",
    "    warn_missing_constants -= error_missing_constants\n",
    "    warn_missing_constants -= set(calibrations)\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "    if warn_missing_constants:\n",
    "        warning(f\"Constants {warn_missing_constants} were not retrieved for {da}.\")\n",
    "\n",
    "if not mapped_files:  # Offsets are missing for all modules.\n",
    "    raise Exception(\"Could not find offset constants for any modules, will not correct data.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Record constant details in YAML metadata\n",
    "write_constants_fragment(\n",
    "    out_folder=(metadata_folder or out_folder),\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "    det_metadata=agipd_metadata,\n",
    "    caldb_root=agipd_cal.caldb_root)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Karim Ahmed's avatar
Karim Ahmed committed
    "# Load calibration constants to RAM\n",
    "agipd_corr.allocate_constants(modules, (3, mem_cells_db, 512, 128))\n",
    "\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "def load_constants(da, module):\n",
    "    \"\"\"\n",
    "    Initialize constants data from previously retrieved metadata.\n",
    "\n",
    "    Args:\n",
    "        da (str): Data Aggregator (Karabo DA)\n",
    "        module (int): Module index\n",
    "\n",
    "    Returns:\n",
    "        (int, dict, str): Module index, {constant name: creation time}, Karabo DA\n",
    "    \"\"\"\n",
    "    const_data = dict()\n",
    "    variant = dict()\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "    for cname, mdata in agipd_metadata[da].items():\n",
    "        dataset = mdata[\"dataset\"]\n",
    "        with h5py.File(agipd_cal.caldb_root / mdata[\"path\"], \"r\") as cf:  # noqa\n",
    "            const_data[cname] = np.copy(cf[f\"{dataset}/data\"])\n",
    "            variant[cname] = cf[dataset].attrs[\"variant\"] if cf[dataset].attrs.keys() else 0  # noqa\n",
    "    agipd_corr.init_constants(const_data, module, variant)\n",
    "\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "\n",
    "with multiprocessing.Pool(processes=len(modules)) as pool:\n",
    "    pool.starmap(load_constants, zip(karabo_da, modules))\n",
    "step_timer.done_step(f'Constants were loaded in ')"
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Store timestamps for Offset, SlopesPC/SlopesCS, and SlopesFF\n",
    "# in YAML file for time-summary table.\n",
    "timestamps = {}\n",
    "\n",
    "for mod, mod_mdata in agipd_metadata.items():\n",
    "    modno = int(mod[-2:])\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "    module_timestamps = {}\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "    # Store few time stamps if exists\n",
    "    # Add NA to keep array structure\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "    for key in ['Offset', f'Slopes{relgain_alias}', 'SlopesFF']:\n",
    "        if key in mod_mdata:\n",
    "            module_timestamps[key] = mod_mdata[key][\"begin_validity_at\"]\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "        else:\n",
    "            module_timestamps[key] = \"NA\"\n",
    "\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "    timestamps[module_index_to_qm(modno)] = module_timestamps\n",
    "\n",
    "seq = sequences[0] if sequences else 0\n",
Karim Ahmed's avatar
Karim Ahmed committed
    "\n",
    "with open(f\"{out_folder}/retrieved_constants_s{seq}.yml\",\"w\") as fd:\n",
    "    yaml.safe_dump({\"time-summary\": {f\"S{seq}\": timestamps}}, fd)"
Karim Ahmed's avatar
Karim Ahmed committed
   "cell_type": "markdown",
Karim Ahmed's avatar
Karim Ahmed committed
    "## Data processing ##"
  {
   "cell_type": "code",
Steffen Hauf's avatar
Steffen Hauf committed
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# allocate memory for images and hists\n",
    "n_images_max = mem_cells * 256\n",
    "data_shape = (n_images_max, 512, 128)\n",
    "agipd_corr.allocate_images(data_shape, n_cores_files)"
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def batches(l, batch_size):\n",
    "    \"\"\"Group a list into batches of (up to) batch_size elements\"\"\"\n",
    "    start = 0\n",
    "    while start < len(l):\n",
    "        yield l[start:start + batch_size]\n",
    "        start += batch_size"
   ]
  },
  {
   "cell_type": "code",
Steffen Hauf's avatar
Steffen Hauf committed
   "execution_count": null,
   "metadata": {},
Steffen Hauf's avatar
Steffen Hauf committed
   "outputs": [],
   "source": [
    "def imagewise_chunks(img_counts):\n",
    "    \"\"\"Break up the loaded data into chunks of up to chunk_size\n",
David Hammer's avatar
David Hammer committed
    "\n",
    "    Yields (file data slot, start index, stop index)\n",
    "    \"\"\"\n",
    "    for i_proc, n_img in enumerate(img_counts):\n",
    "        n_chunks = math.ceil(n_img / chunk_size)\n",
    "        for i in range(n_chunks):\n",
    "            yield i_proc, i * n_img // n_chunks, (i+1) * n_img // n_chunks"
   ]
  },
  {
   "cell_type": "code",
Steffen Hauf's avatar
Steffen Hauf committed
   "execution_count": null,
David Hammer's avatar
David Hammer committed
   "metadata": {},
Steffen Hauf's avatar
Steffen Hauf committed
   "outputs": [],
   "source": [
    "all_imgs_counts = []\n",
    "if max_tasks_per_worker == -1:\n",
    "    max_tasks_per_worker = None\n",
    "with multiprocessing.Pool(maxtasksperchild=max_tasks_per_worker) as pool:\n",
    "    step_timer.done_step('Started pool')\n",
    "    \n",
    "    for file_batch in batches(file_list, n_cores_files):\n",
    "        # TODO: Move some printed output to logging or similar\n",
David Hammer's avatar
David Hammer committed
    "        print(f\"Processing next {len(file_batch)} files\")\n",
    "        step_timer.start()\n",
    "        img_counts = pool.starmap(\n",
    "            agipd_corr.read_file,\n",
    "            zip(range(len(file_batch)), file_batch, [not common_mode]*len(file_batch))\n",
    "        )\n",
    "        step_timer.done_step(f'Loading data from files')\n",
    "\n",
    "        all_imgs_counts += img_counts\n",
    "            # Skip any further processing and output if there are no images to\n",
    "            # correct in this file.\n",
    "            continue\n",
    "\n",
    "        if mask_zero_std:\n",
    "            # Evaluate zero-data-std mask\n",
    "            pool.starmap(\n",
    "                agipd_corr.mask_zero_std, itertools.product(\n",
    "                    range(len(file_batch)),\n",
    "                    np.array_split(np.arange(agipd_corr.max_cells), n_cores_correct)\n",
    "                )\n",
    "            )\n",
    "\n",
    "        # Perform offset image-wise correction\n",
    "        pool.starmap(agipd_corr.offset_correction, imagewise_chunks(img_counts))\n",
    "        step_timer.done_step(\"Offset correction\")\n",
    "        if blc_noise or blc_stripes or blc_hmatch:\n",
    "            # Perform image-wise correction\n",
    "            pool.starmap(agipd_corr.baseline_correction, imagewise_chunks(img_counts))\n",
    "            step_timer.done_step(\"Base-line shift correction\")\n",
David Hammer's avatar
David Hammer committed
    "\n",
    "        if common_mode:\n",
    "            # In common mode corrected is enabled.\n",
    "            # Cell selection is only activated after common mode correction.\n",
    "            # Perform cross-file correction parallel over asics\n",
    "            image_files_idx = [i_proc for i_proc, n_img in enumerate(img_counts) if n_img > 0]\n",
    "            pool.starmap(agipd_corr.cm_correction, itertools.product(\n",
    "                image_files_idx, range(16)  # 16 ASICs per module\n",
    "            ))\n",
    "            step_timer.done_step(\"Common-mode correction\")\n",
    "            img_counts = pool.map(agipd_corr.apply_selected_pulses, image_files_idx)\n",
    "            step_timer.done_step(\"Applying selected cells after common mode correction\")\n",
    "        # Perform image-wise correction\"\n",
    "        pool.starmap(agipd_corr.gain_correction, imagewise_chunks(img_counts))\n",
    "        step_timer.done_step(\"Gain corrections\")\n",
Egor Sobolev's avatar
Egor Sobolev committed
    "        \n",
    "        # Peform additional processing\n",
    "        if count_lit_pixels:\n",
    "            pool.starmap(agipd_corr.litpixel_counter, imagewise_chunks(img_counts))\n",
    "            step_timer.done_step(\"Lit-pixel counting\")\n",