Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pycalibration
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Model registry
Analyze
Contributor analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
calibration
pycalibration
Commits
1b96322f
Commit
1b96322f
authored
1 year ago
by
Egor Sobolev
Committed by
Philipp Schmidt
11 months ago
Browse files
Options
Downloads
Patches
Plain Diff
Add correction notebook for Shimadzu HPVX2 camera
parent
8d3fa197
No related branches found
No related tags found
1 merge request
!939
[Generic][Shimadzu] Dynamic flat-field characterization and correction for MHz microscopy
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
notebooks/ShimadzuHPVX2/Correct_ShimadzuHPVX2_NBC.ipynb
+324
-0
324 additions, 0 deletions
notebooks/ShimadzuHPVX2/Correct_ShimadzuHPVX2_NBC.ipynb
with
324 additions
and
0 deletions
notebooks/ShimadzuHPVX2/Correct_ShimadzuHPVX2_NBC.ipynb
0 → 100644
+
324
−
0
View file @
1b96322f
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Shimadzu HPVX2 Offline Correction\n",
"\n",
"Author: Egor Sobolev\n",
"\n",
"Offline dynamic flat-field correction for Shimadzu HPVX2 cameras"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"in_folder = \"/gpfs/exfel/exp/SPB/202121/p002919/raw/\" # input folder, required\n",
"out_folder = '/gpfs/exfel/data/scratch/esobolev/test/shimadzu' # output folder, required\n",
"metadata_folder = \"\" # Directory containing calibration_metadata.yml when run by xfel-calibrate\n",
"run = 30 # which run to read data from, required\n",
"\n",
"# Data files parameters.\n",
"karabo_da = ['HPVX01'] # data aggregators\n",
"karabo_id = \"SPB_EHD_HPVX2_2\" # karabo prefix of Shimadzu HPV-X2 devices\n",
"#receiver_id = \"PNCCD_FMT-0\" # inset for receiver devices\n",
"#path_template = 'RAW-R{:04d}-{}-S{{:05d}}.h5' # the template to use to access data\n",
"instrument_source_template = '{}/CAM/CAMERA:daqOutput' # data source path in h5file. Template filled with karabo_id\n",
"image_key = \"data.image.pixels\" # image data key in Karabo or exdf notation\n",
"\n",
"# Database access parameters.\n",
"use_dir_creation_date = True # use dir creation date as data production reference date\n",
"cal_db_interface = \"tcp://max-exfl-cal001:8021\" # calibration DB interface to use\n",
"cal_db_timeout = 300000 # timeout on caldb requests\n",
"db_output = False # if True, the notebook sends dark constants to the calibration database\n",
"local_output = True # if True, the notebook saves dark constants locally\n",
"creation_time = \"\" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC.00 e.g. 2019-07-04 11:02:41.00\n",
"\n",
"n_components = 20 # number of principal components of flat-field to use in correction\n",
"downsample_factors = [1, 1] # list of downsample factors for each image dimention (y, x)\n",
"\n",
"constants_folder = \"/gpfs/exfel/data/scratch/esobolev/test/shimadzu\"\n",
"db_module = \"SHIMADZU_HPVX2_M001\"\n",
"\n",
"num_proc = 32 # number of processes running correction in parallel\n",
"\n",
"corrected_source_template = '{}/CORR/CAMERA:daqOutput' # data source path in h5file. Template filled with karabo_id"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import h5py\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from extra_data import RunDirectory\n",
"\n",
"%matplotlib inline\n",
"from cal_tools.step_timing import StepTimer\n",
"from cal_tools.files import sequence_trains, DataFile\n",
"\n",
"from dffc.correction import DynamicFlatFieldCorrectionCython as DynamicFlatFieldCorrection\n",
"from dffc.offline import FlatFieldCorrectionFileProcessor\n",
"from dffc.draw import plot_images, plot_camera_image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"instrument = karabo_id.split(\"_\")[0]\n",
"source = instrument_source_template.format(karabo_id)\n",
"\n",
"print(f\"Detector in use is {karabo_id}\")\n",
"print(f\"Instrument {instrument}\")\n",
"\n",
"step_timer = StepTimer()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Calibration constants"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"step_timer.start()\n",
"\n",
"# Offsets\n",
"constant_name = \"Offset\"\n",
"const_file = f\"{constants_folder}/const_{constant_name}_{db_module}.h5\"\n",
"if not os.path.isfile(const_file):\n",
" raise FileNotFoundError(f\"{constant_name} constants are not found for {karabo_id}.\")\n",
"\n",
"with h5py.File(const_file, 'r') as f:\n",
" dark_conditions = dict(\n",
" num_frames=int(f[\"condition/Memory cells/value\"][()]),\n",
" nx=int(f[\"condition/Pixels X/value\"][()]),\n",
" ny=int(f[\"condition/Pixels Y/value\"][()]),\n",
" n_components=int(f[\"condition/FF components/value\"][()]),\n",
" )\n",
" dark = f[\"data\"][:]\n",
" dark_creation_time = f[\"creation_time\"][()].decode()\n",
"\n",
"print(f\"{constant_name}: {dark_creation_time}\")\n",
"\n",
"# Flat-field components\n",
"constant_name = \"ComponentsFF\"\n",
"const_file = f\"{constants_folder}/const_{constant_name}_{db_module}.h5\"\n",
"if not os.path.isfile(const_file):\n",
" raise FileNotFoundError(f\"{constant_name} constants are not found for {karabo_id}.\")\n",
"\n",
"with h5py.File(const_file, 'r') as f:\n",
" flat_conditions = dict(\n",
" num_frames=int(f[\"condition/Memory cells/value\"][()]),\n",
" nx=int(f[\"condition/Pixels X/value\"][()]),\n",
" ny=int(f[\"condition/Pixels Y/value\"][()]),\n",
" n_components=int(f[\"condition/FF components/value\"][()]),\n",
" )\n",
" flat = f[\"data\"][:]\n",
" components = flat[1:]\n",
" flat = flat[0]\n",
" flat_creation_time = f[\"creation_time\"][()].decode()\n",
"\n",
"print(f\"{constant_name}: {dark_creation_time}\")\n",
"\n",
"if not all(flat_conditions[key] == value for key, value in dark_conditions.items()):\n",
" raise ValueError(\"Conditions for offsets and flat-field components are different\")\n",
"\n",
"conditions = type(\"Conditions\", (), flat_conditions)\n",
"\n",
"print(f\"Image size: {conditions.nx} x {conditions.ny} px\")\n",
"print(f\"Number of flat-field components: {conditions.n_components}\")\n",
"\n",
"if conditions.n_components < n_components:\n",
" warnings.warn(\n",
" f\"The correction set to use {n_components} flat-field components, \"\n",
" f\"but constants contains only {conditions.n_components}.\"\n",
" \"The settings adjusted to the number of available components.\"\n",
" )\n",
"else:\n",
" components = components[:n_components]\n",
"\n",
"step_timer.done_step(\"Load calibration constants\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Correction"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"step_timer.start()\n",
"dc = RunDirectory(f\"{in_folder}/r{run:04d}\")\n",
"\n",
"num_trains, num_cells = dc[source][image_key].shape[:2]\n",
"num_images = num_trains * num_cells\n",
"print(\"Number of trains:\", num_trains)\n",
"print(\"Number of images:\", num_images)\n",
"\n",
"dffc = DynamicFlatFieldCorrection.from_constants(\n",
" dark, flat, components, downsample_factors)\n",
"\n",
"proc = FlatFieldCorrectionFileProcessor(dffc, num_proc, source, image_key)\n",
"\n",
"proc.start_workers()\n",
"proc.run(dc)\n",
"proc.join_workers()\n",
"\n",
"train_ids = proc.rdr.trains\n",
"corrected_images = np.stack(proc.rdr.results, 0)\n",
"step_timer.done_step(\"Correct images\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"step_timer.start()\n",
"\n",
"corr_source = corrected_source_template.format(karabo_id)\n",
"channel = image_key.partition('.')[0]\n",
"data_source_id = corr_source + '/' + channel\n",
"\n",
"ts = dc.train_timestamps().astype(np.uint64)\n",
"ts = ts[np.in1d(dc.train_ids, train_ids)]\n",
"\n",
"for seq_id, train_mask in sequence_trains(train_ids):\n",
" seq_train_ids = train_ids[train_mask]\n",
" seq_timestamps = ts[train_mask]\n",
" ntrains = len(seq_train_ids)\n",
" \n",
" f = DataFile.from_details(out_folder, karabo_da[0], run, seq_id)\n",
" src = f.create_instrument_source(corr_source)\n",
" \n",
" f.create_metadata(like=dc, instrument_channels=(data_source_id,))\n",
" f.create_index(seq_train_ids, timestamps=seq_timestamps)\n",
" \n",
" channels = {\n",
" image_key.partition('.')[0]: np.ones(ntrains, int)\n",
" }\n",
" src.create_index(**channels)\n",
" src.create_key(image_key, corrected_images[train_mask])\n",
"\n",
" f.close()\n",
" \n",
"step_timer.done_step(\"Save corrected images\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The first raw image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"step_timer.start()\n",
"\n",
"counts = dc[source][image_key].data_counts()\n",
"i = np.flatnonzero(counts.values)\n",
"\n",
"raw_images = dc[source][image_key].select_trains(np.s_[i]).ndarray()\n",
"plot_camera_image(raw_images[0, 0])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The first corrected image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_camera_image(corrected_images[0, 0])\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The first corrected images in the trains (up to 20)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_images(corrected_images[:20, 0], figsize=(13, 8))\n",
"plt.show()\n",
"step_timer.done_step(\"Draw examples of corrected images\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(f\"Total processing time {step_timer.timespan():.01f} s\")\n",
"step_timer.print_summary()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.11"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
%% Cell type:markdown id: tags:
# Shimadzu HPVX2 Offline Correction
Author: Egor Sobolev
Offline dynamic flat-field correction for Shimadzu HPVX2 cameras
%% Cell type:code id: tags:
```
python
in_folder
=
"
/gpfs/exfel/exp/SPB/202121/p002919/raw/
"
# input folder, required
out_folder
=
'
/gpfs/exfel/data/scratch/esobolev/test/shimadzu
'
# output folder, required
metadata_folder
=
""
# Directory containing calibration_metadata.yml when run by xfel-calibrate
run
=
30
# which run to read data from, required
# Data files parameters.
karabo_da
=
[
'
HPVX01
'
]
# data aggregators
karabo_id
=
"
SPB_EHD_HPVX2_2
"
# karabo prefix of Shimadzu HPV-X2 devices
#receiver_id = "PNCCD_FMT-0" # inset for receiver devices
#path_template = 'RAW-R{:04d}-{}-S{{:05d}}.h5' # the template to use to access data
instrument_source_template
=
'
{}/CAM/CAMERA:daqOutput
'
# data source path in h5file. Template filled with karabo_id
image_key
=
"
data.image.pixels
"
# image data key in Karabo or exdf notation
# Database access parameters.
use_dir_creation_date
=
True
# use dir creation date as data production reference date
cal_db_interface
=
"
tcp://max-exfl-cal001:8021
"
# calibration DB interface to use
cal_db_timeout
=
300000
# timeout on caldb requests
db_output
=
False
# if True, the notebook sends dark constants to the calibration database
local_output
=
True
# if True, the notebook saves dark constants locally
creation_time
=
""
# To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC.00 e.g. 2019-07-04 11:02:41.00
n_components
=
20
# number of principal components of flat-field to use in correction
downsample_factors
=
[
1
,
1
]
# list of downsample factors for each image dimention (y, x)
constants_folder
=
"
/gpfs/exfel/data/scratch/esobolev/test/shimadzu
"
db_module
=
"
SHIMADZU_HPVX2_M001
"
num_proc
=
32
# number of processes running correction in parallel
corrected_source_template
=
'
{}/CORR/CAMERA:daqOutput
'
# data source path in h5file. Template filled with karabo_id
```
%% Cell type:code id: tags:
```
python
import
os
import
h5py
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
extra_data
import
RunDirectory
%
matplotlib
inline
from
cal_tools.step_timing
import
StepTimer
from
cal_tools.files
import
sequence_trains
,
DataFile
from
dffc.correction
import
DynamicFlatFieldCorrectionCython
as
DynamicFlatFieldCorrection
from
dffc.offline
import
FlatFieldCorrectionFileProcessor
from
dffc.draw
import
plot_images
,
plot_camera_image
```
%% Cell type:code id: tags:
```
python
instrument
=
karabo_id
.
split
(
"
_
"
)[
0
]
source
=
instrument_source_template
.
format
(
karabo_id
)
print
(
f
"
Detector in use is
{
karabo_id
}
"
)
print
(
f
"
Instrument
{
instrument
}
"
)
step_timer
=
StepTimer
()
```
%% Cell type:markdown id: tags:
# Calibration constants
%% Cell type:code id: tags:
```
python
step_timer
.
start
()
# Offsets
constant_name
=
"
Offset
"
const_file
=
f
"
{
constants_folder
}
/const_
{
constant_name
}
_
{
db_module
}
.h5
"
if
not
os
.
path
.
isfile
(
const_file
):
raise
FileNotFoundError
(
f
"
{
constant_name
}
constants are not found for
{
karabo_id
}
.
"
)
with
h5py
.
File
(
const_file
,
'
r
'
)
as
f
:
dark_conditions
=
dict
(
num_frames
=
int
(
f
[
"
condition/Memory cells/value
"
][()]),
nx
=
int
(
f
[
"
condition/Pixels X/value
"
][()]),
ny
=
int
(
f
[
"
condition/Pixels Y/value
"
][()]),
n_components
=
int
(
f
[
"
condition/FF components/value
"
][()]),
)
dark
=
f
[
"
data
"
][:]
dark_creation_time
=
f
[
"
creation_time
"
][()].
decode
()
print
(
f
"
{
constant_name
}
:
{
dark_creation_time
}
"
)
# Flat-field components
constant_name
=
"
ComponentsFF
"
const_file
=
f
"
{
constants_folder
}
/const_
{
constant_name
}
_
{
db_module
}
.h5
"
if
not
os
.
path
.
isfile
(
const_file
):
raise
FileNotFoundError
(
f
"
{
constant_name
}
constants are not found for
{
karabo_id
}
.
"
)
with
h5py
.
File
(
const_file
,
'
r
'
)
as
f
:
flat_conditions
=
dict
(
num_frames
=
int
(
f
[
"
condition/Memory cells/value
"
][()]),
nx
=
int
(
f
[
"
condition/Pixels X/value
"
][()]),
ny
=
int
(
f
[
"
condition/Pixels Y/value
"
][()]),
n_components
=
int
(
f
[
"
condition/FF components/value
"
][()]),
)
flat
=
f
[
"
data
"
][:]
components
=
flat
[
1
:]
flat
=
flat
[
0
]
flat_creation_time
=
f
[
"
creation_time
"
][()].
decode
()
print
(
f
"
{
constant_name
}
:
{
dark_creation_time
}
"
)
if
not
all
(
flat_conditions
[
key
]
==
value
for
key
,
value
in
dark_conditions
.
items
()):
raise
ValueError
(
"
Conditions for offsets and flat-field components are different
"
)
conditions
=
type
(
"
Conditions
"
,
(),
flat_conditions
)
print
(
f
"
Image size:
{
conditions
.
nx
}
x
{
conditions
.
ny
}
px
"
)
print
(
f
"
Number of flat-field components:
{
conditions
.
n_components
}
"
)
if
conditions
.
n_components
<
n_components
:
warnings
.
warn
(
f
"
The correction set to use
{
n_components
}
flat-field components,
"
f
"
but constants contains only
{
conditions
.
n_components
}
.
"
"
The settings adjusted to the number of available components.
"
)
else
:
components
=
components
[:
n_components
]
step_timer
.
done_step
(
"
Load calibration constants
"
)
```
%% Cell type:markdown id: tags:
# Correction
%% Cell type:code id: tags:
```
python
step_timer
.
start
()
dc
=
RunDirectory
(
f
"
{
in_folder
}
/r
{
run
:
04
d
}
"
)
num_trains
,
num_cells
=
dc
[
source
][
image_key
].
shape
[:
2
]
num_images
=
num_trains
*
num_cells
print
(
"
Number of trains:
"
,
num_trains
)
print
(
"
Number of images:
"
,
num_images
)
dffc
=
DynamicFlatFieldCorrection
.
from_constants
(
dark
,
flat
,
components
,
downsample_factors
)
proc
=
FlatFieldCorrectionFileProcessor
(
dffc
,
num_proc
,
source
,
image_key
)
proc
.
start_workers
()
proc
.
run
(
dc
)
proc
.
join_workers
()
train_ids
=
proc
.
rdr
.
trains
corrected_images
=
np
.
stack
(
proc
.
rdr
.
results
,
0
)
step_timer
.
done_step
(
"
Correct images
"
)
```
%% Cell type:code id: tags:
```
python
step_timer
.
start
()
corr_source
=
corrected_source_template
.
format
(
karabo_id
)
channel
=
image_key
.
partition
(
'
.
'
)[
0
]
data_source_id
=
corr_source
+
'
/
'
+
channel
ts
=
dc
.
train_timestamps
().
astype
(
np
.
uint64
)
ts
=
ts
[
np
.
in1d
(
dc
.
train_ids
,
train_ids
)]
for
seq_id
,
train_mask
in
sequence_trains
(
train_ids
):
seq_train_ids
=
train_ids
[
train_mask
]
seq_timestamps
=
ts
[
train_mask
]
ntrains
=
len
(
seq_train_ids
)
f
=
DataFile
.
from_details
(
out_folder
,
karabo_da
[
0
],
run
,
seq_id
)
src
=
f
.
create_instrument_source
(
corr_source
)
f
.
create_metadata
(
like
=
dc
,
instrument_channels
=
(
data_source_id
,))
f
.
create_index
(
seq_train_ids
,
timestamps
=
seq_timestamps
)
channels
=
{
image_key
.
partition
(
'
.
'
)[
0
]:
np
.
ones
(
ntrains
,
int
)
}
src
.
create_index
(
**
channels
)
src
.
create_key
(
image_key
,
corrected_images
[
train_mask
])
f
.
close
()
step_timer
.
done_step
(
"
Save corrected images
"
)
```
%% Cell type:markdown id: tags:
## The first raw image
%% Cell type:code id: tags:
```
python
step_timer
.
start
()
counts
=
dc
[
source
][
image_key
].
data_counts
()
i
=
np
.
flatnonzero
(
counts
.
values
)
raw_images
=
dc
[
source
][
image_key
].
select_trains
(
np
.
s_
[
i
]).
ndarray
()
plot_camera_image
(
raw_images
[
0
,
0
])
plt
.
show
()
```
%% Cell type:markdown id: tags:
## The first corrected image
%% Cell type:code id: tags:
```
python
plot_camera_image
(
corrected_images
[
0
,
0
])
plt
.
show
()
```
%% Cell type:markdown id: tags:
## The first corrected images in the trains (up to 20)
%% Cell type:code id: tags:
```
python
plot_images
(
corrected_images
[:
20
,
0
],
figsize
=
(
13
,
8
))
plt
.
show
()
step_timer
.
done_step
(
"
Draw examples of corrected images
"
)
```
%% Cell type:code id: tags:
```
python
print
(
f
"
Total processing time
{
step_timer
.
timespan
()
:
.
01
f
}
s
"
)
step_timer
.
print_summary
()
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment