Skip to content
Snippets Groups Projects
Commit 292d2a8e authored by Steffen Hauf's avatar Steffen Hauf
Browse files

Clean outdated files

parent df11625d
No related branches found
No related tags found
1 merge request!5Clean
Showing
with 0 additions and 9186 deletions
This diff is collapsed.
import sys
# coding: utf-8
# # Characterize Dark Images #
#
# The following code analyzes a set of dark images taken with the AGIPD detector to deduce detector offsets and noise. Data for the detector's three gain stages needs to be present, separated into separate runs.
#
# The notebook explicitely does what pyDetLib provides in its offset calculation method for streaming data.
# In[23]:
# imports and things that do not usually need to be changed
from collections import OrderedDict
import os
import h5py
import numpy as np
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
# get_ipython().magic('matplotlib inline')
# make sure a cluster is running with ipcluster start --n=32, give it a while to start
from ipyparallel import Client
profile = str(sys.argv[-1])
view = Client(profile=profile)[:]
view.use_dill()
from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions
gains = np.arange(3)
offset_runs = OrderedDict()
# no need to change this
QUADRANTS = 4
MODULES_PER_QUAD = 4
DET_FILE_INSET = "AGIPD"
IL_MODE = False # or True for interlaced data
# adapt this to the run being investigated
in_folder = str(sys.argv[1])
offset_runs["high"] = str(sys.argv[2])
offset_runs["med"] = str(sys.argv[3])
offset_runs["low"] = str(sys.argv[4])
out_folder = str(sys.argv[5])
sequences = [int(s) for s in sys.argv[6].split(',')]
max_cells = int(sys.argv[7])
mem_cells = max_cells
cells = np.arange(max_cells)
local_output = bool(sys.argv[8])
db_output = bool(sys.argv[9])
bias_voltage = int(sys.argv[10])
cal_db_interface = str(sys.argv[11])
thresholds_offset_sigma = 3.
thresholds_offset_hard = [4000, 8500]
thresholds_noise_sigma = 5.
thresholds_noise_hard = [4, 20]
if not IL_MODE:
max_cells*=2
# In[2]:
def combine_stack(d, sdim):
""" A function for allowing to preview an assembled AGIPD image
"""
combined = np.zeros((2048,2048, sdim))
combined[...] = np.nan
dy = 0
for i in range(16):
if i < 8:
dx = -512
mx = 1
my = i % 8
combined[my*128+dy:(my+1)*128+dy,
mx*512-dx:(mx+1)*512-dx, :] = d[i][:,::-1,:]
dy += 30
if i == 3:
dy += 30
elif i < 12:
dx = 100
if i == 8:
dy = 4*30 + 30 +50
mx = 1
my = i % 8 +4
combined[my*128+dy:(my+1)*128+dy,
mx*512-dx:(mx+1)*512-dx, :] = d[i][::-1,:,:]
dy += 30
else:
dx = 100
if i == 11:
dy = 50
mx = 1
my = i - 14
combined[my*128+dy:(my+1)*128+dy,
mx*512-dx:(mx+1)*512-dx, :] = d[i][::-1,:,:]
dy += 30
return combined
# The following lines will create a queue of files which will the be executed module-parallel. Distiguishing between different gains.
# In[3]:
# set everything up filewise
from queue import Queue
if not os.path.exists(out_folder):
os.makedirs(out_folder)
def map_modules_from_files(filelist):
module_files = {}
mod_ids = {}
for quadrant in range(0, QUADRANTS):
for module in range(0, MODULES_PER_QUAD):
name = "Q{}M{}".format(quadrant + 1, module + 1)
module_files[name] = Queue()
num = quadrant * 4 + module
mod_ids[name] = num
file_infix = "{}{:02d}".format(DET_FILE_INSET, num)
for file in filelist:
if file_infix in file:
module_files[name].put(file)
return module_files, mod_ids
gain_mapped_files = OrderedDict()
for gain, run in offset_runs.items():
ginfolder = "{}/{}".format(in_folder, run)
dirlist = os.listdir(ginfolder)
file_list = []
for entry in dirlist:
#only h5 file
abs_entry = "{}/{}".format(ginfolder, entry)
if os.path.isfile(abs_entry) and os.path.splitext(abs_entry)[1] == ".h5":
if sequences is None:
file_list.append(abs_entry)
else:
for seq in sequences:
if "{:05d}.h5".format(seq) in abs_entry:
file_list.append(os.path.abspath(abs_entry))
mapped_files, mod_ids = map_modules_from_files(file_list)
gain_mapped_files[gain] = mapped_files
# ## Calculate Offsets, Noise and Thresholds ##
#
# The calculation is performed per-pixel and per-memory-cell. Offsets are simply the median value for a set of dark data taken at a given gain, noise the standard deviation, and gain-bit values the medians of the gain array.
# In[4]:
import copy
from functools import partial
def characterize_module(il_mode, cells, bp_thresh, inp):
import numpy as np
import copy
import h5py
filename, filename_out, channel = inp
thresholds_offset_hard, thresholds_offset_sigma, thresholds_noise_hard, thresholds_noise_sigma = bp_thresh
infile = h5py.File(filename, "r", driver="core")
count = np.squeeze(infile["/INDEX/SPB_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/count".format(channel)])
first = np.squeeze(infile["/INDEX/SPB_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/first".format(channel)])
last_index = int(first[count != 0][-1]+count[count != 0][-1])
first_index = int(first[count != 0][0])
im = np.array(infile["/INSTRUMENT/SPB_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/data".format(channel)][first_index:last_index,...])
infile.close()
if il_mode:
ga = im[1::2, 0, ...]
im = im[0::2, 0, ...].astype(np.float32)
else:
ga = im[:, 1, ...]
im = im[:, 0, ...].astype(np.float32)
im = np.rollaxis(im, 2)
im = np.rollaxis(im, 2, 1)
ga = np.rollaxis(ga, 2)
ga = np.rollaxis(ga, 2, 1)
offset = np.zeros((im.shape[0], im.shape[1], cells//2))
gains = np.zeros((im.shape[0], im.shape[1], cells//2))
noise = np.zeros((im.shape[0], im.shape[1], cells//2))
for cc in range(cells//2):
offset[...,cc] = np.median(im[..., cc::cells//2], axis=2)
noise[...,cc] = np.std(im[..., cc::cells//2], axis=2)
gains[...,cc] = np.median(ga[..., cc::cells//2], axis=2)
# bad pixels
bp = np.zeros(offset.shape, np.uint8)
# offset related bad pixels
offset_mn = np.nanmedian(offset, axis=(0,1))
offset_std = np.nanstd(offset, axis=(0,1))
bp[(offset < offset_mn-thresholds_offset_sigma*offset_std) |
(offset > offset_mn+thresholds_offset_sigma*offset_std)] |= 2**0
bp[(offset < thresholds_offset_hard[0]) | (offset > thresholds_offset_hard[1])] |= 2**0
bp[~np.isfinite(offset)] |= 2**0
# noise related bad pixels
noise_mn = np.nanmedian(noise, axis=(0,1))
noise_std = np.nanstd(noise, axis=(0,1))
bp[(noise < noise_mn-thresholds_noise_sigma*noise_std) |
(noise > noise_mn+thresholds_noise_sigma*noise_std)] |= 2**4
bp[(noise < thresholds_noise_hard[0]) | (noise > thresholds_noise_hard[1])] |= 2**4
bp[~np.isfinite(noise)] |= 2**4
return offset, noise, gains, bp
offset_g = {}
noise_g = {}
gain_g = {}
badpix_g = {}
gg = 0
for gain, mapped_files in gain_mapped_files.items():
inp = []
dones = []
for i in range(16):
qm = "Q{}M{}".format(i//4 +1, i % 4 + 1)
if qm in mapped_files and not mapped_files[qm].empty():
fname_in = mapped_files[qm].get()
dones.append(mapped_files[qm].empty())
else:
continue
fout = os.path.abspath("{}/{}".format(out_folder, (os.path.split(fname_in)[-1]).replace("RAW", "CORR")))
inp.append((fname_in, fout, i))
first = False
p = partial(characterize_module, IL_MODE, max_cells,
(thresholds_offset_hard, thresholds_offset_sigma,
thresholds_noise_hard, thresholds_noise_sigma))
#results = list(map(p, inp))
results = view.map_sync(p, inp)
for i, r in enumerate(results):
offset, noise, gain, bp = r
qm = "Q{}M{}".format(i//4 +1, i % 4 + 1)
if qm not in offset_g:
offset_g[qm] = np.zeros((offset.shape[0], offset.shape[1], offset.shape[2], 3))
noise_g[qm] = np.zeros_like(offset_g[qm])
gain_g[qm] = np.zeros_like(offset_g[qm])
badpix_g[qm] = np.zeros_like(offset_g[qm])
offset_g[qm][...,gg] = offset
noise_g[qm][...,gg] = noise
gain_g[qm][...,gg] = gain
badpix_g[qm][...,gg] = bp
gg +=1
# The thresholds for gain switching are then defined as the mean value between in individual gain bit levels. Note that these thresholds need to be refined with charge induced thresholds, as the two are not the same.
# In[5]:
thresholds_g = {}
for qm in gain_g.keys():
thresholds_g[qm] = np.zeros((gain_g[qm].shape[0], gain_g[qm].shape[1], gain_g[qm].shape[2], 2))
thresholds_g[qm][...,0] = (gain_g[qm][...,1]+gain_g[qm][...,0])/2
thresholds_g[qm][...,1] = (gain_g[qm][...,2]+gain_g[qm][...,1])/2
# The following code is for inspection purposes, it will render the constants for each module and gain and memory cell.
# In[6]:
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import AxesGrid
res = {}
for i in range(16):
qm = "Q{}M{}".format(i//4+1, i%4+1)
res[qm] = {'Offset': offset_g[qm],
'Noise': noise_g[qm],
'Threshold': thresholds_g[qm],
'BadPixels': badpix_g[qm]
}
def show_overview(cell_to_preview, gain_to_preview):
for module, data in res.items():
fig = plt.figure(figsize=(40,40))
grid = AxesGrid(fig, 111,
nrows_ncols=(2, 2),
axes_pad=(0.9, 0.15),
label_mode="1",
share_all=True,
cbar_location="right",
cbar_mode="each",
cbar_size="7%",
cbar_pad="2%",
)
i = 0
for key, item in data.items():
cf = 0
if "Threshold" in key:
cf = -1
if len(item.shape) == 4:
med = np.nanmedian(item[...,cell_to_preview, gain_to_preview + cf])
else:
med = np.nanmedian(item[...,cell_to_preview])
bound = 0.2
while(np.count_nonzero((item[...,cell_to_preview, gain_to_preview + cf] < med-np.abs(bound*med)) |
(item[...,cell_to_preview, gain_to_preview + cf] > med+np.abs(bound*med)))/item[...,cell_to_preview, gain_to_preview + cf].size > 0.01):
bound *=2
if "BadPixels" in key:
im = grid[i].imshow(np.log2(item[...,cell_to_preview, gain_to_preview + cf]), interpolation="nearest",
vmin=0, vmax=8, aspect='auto')
else:
if len(item.shape) == 4:
im = grid[i].imshow(item[...,cell_to_preview, gain_to_preview + cf], interpolation="nearest",
vmin=med-np.abs(bound*med), vmax=np.abs(med+bound*med), aspect='auto')
else:
im = grid[i].imshow(item[...,cell_to_preview], interpolation="nearest",
vmin=med-np.abs(bound*med), vmax=med+np.abs(bound*med), aspect='auto')
cb = grid.cbar_axes[i].colorbar(im)
grid[i].text(20, 50, key, color="w" if key != "BadPixels" else "k", fontsize=50)
i += 1
grid[0].text(5, 20, module, color="r" if key != "BadPixels" else "k", fontsize=20)
fig.savefig("{}/dark_analysis_{}_module_{}.png".format(out_folder,
"_".join(offset_runs.values()),
module))
# In[7]:
show_overview(12, 0)
# In[8]:
show_overview(12, 1)
# In[9]:
show_overview(4, 2)
# In[10]:
channel_mapping = {}
for i in range(16):
qm = "Q{}M{}".format(i//4 +1, i % 4 + 1)
channel_mapping[qm] = i
def create_constant_overview(constant, name, vmin, vmax, entries=3):
for g in range(entries):
fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(111)
for qm in constant.keys():
d = constant[qm][...,g]
print("{} {}, gain {:0.2f}: mean: {:0.2f}, median: {:0.2f}, std: {:0.2f}".format(name, qm, g,
np.mean(d),
np.median(d),
np.std(d)))
ax.step(np.arange(max_cells//2), np.median(d, axis=(0,1)))
fig.savefig("{}/dark_analysis_{}_{}_per_cell_gain{}.png".format(out_folder,
"_".join(offset_runs.values()),
name, g))
# In[11]:
create_constant_overview(offset_g, "Offset", 4000, 8000)
# In[12]:
create_constant_overview(noise_g, "Noise", 0, 100)
# In[13]:
create_constant_overview(thresholds_g, "Threshold", 3000, 8000, 2)
# Finally, we persist the data.
# In[14]:
if local_output:
ofile = "{}/agipd_offset_store_{}.h5".format(out_folder, "_".join(offset_runs.values()))
store_file = h5py.File(ofile, "w")
for qm in offset_g.keys():
store_file["{}/Offset/0/data".format(qm)] = offset_g[qm]
store_file["{}/Noise/0/data".format(qm)] = noise_g[qm]
store_file["{}/Threshold/0/data".format(qm)] = thresholds_g[qm]
store_file["{}/BadPixels/0/data".format(qm)] = badpix_g[qm]
store_file.close()
# In[30]:
from time import sleep
if db_output:
for qm in offset_g.keys():
metadata = ConstantMetaData()
offset = Constants.AGIPD.Offset()
offset.data = offset_g[qm]
metadata.calibration_constant = offset
# set the operating condition
condition = Conditions.Dark.AGIPD(memory_cells=mem_cells, bias_voltage=bias_voltage)
device = getattr(Detectors.AGIPD1M1, qm)
uuid = device.uuid
condition.name = "Default AGIPD Condition - Cells {} - UUID: {}".format(mem_cells, int(uuid))
metadata.detector_condition = condition
# specify the a version for this constant
metadata.calibration_constant_version = Versions.Now(device=device)
metadata.send(cal_db_interface)
metadata = ConstantMetaData()
noise = Constants.AGIPD.Noise()
noise.data = noise_g[qm]
metadata.calibration_constant = noise
# set the operating condition
condition = Conditions.Dark.AGIPD(memory_cells=mem_cells, bias_voltage=bias_voltage)
condition.name = "Default AGIPD Condition - Cells {} - UUID: {}".format(mem_cells, int(uuid))
metadata.detector_condition = condition
# specify the a version for this constant
metadata.calibration_constant_version = Versions.Now(device=device)
metadata.send(cal_db_interface)
metadata = ConstantMetaData()
thresholds = Constants.AGIPD.ThresholdsDark()
thresholds.data = thresholds_g[qm]
metadata.calibration_constant = thresholds
# set the operating condition
condition = Conditions.Dark.AGIPD(memory_cells=mem_cells, bias_voltage=bias_voltage)
condition.name = "Default AGIPD Condition - Cells {} - UUID: {}".format(mem_cells, int(uuid))
metadata.detector_condition = condition
# specify the a version for this constant
metadata.calibration_constant_version = Versions.Now(device=device)
metadata.send(cal_db_interface)
# In[ ]:
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
#!/bin/bash
echo 'Running finalize script'
python3 -c "from slurm_tools import finalize; finalize(['974134', '974135', '974136', '974137', '974138', '974139', '974140', '974141', '974142', '974143', '974144', '974145', '974146', '974147', '974148', '974149'], '/gpfs/exfel/data/user/haufs/scripted_offline_cal/pycalibration/AGIPD/slurm_tmp_e3f3a6c7-8aea-44fd-956f-572ae71b4812', 'AGIPD Calibration', 'AGIPD Flat Fields', 'S. Hauf', '0.1')"
This diff is collapsed.
in_folder = "/gpfs/exfel/exp/SPB/201701/"
proposals = ["p002013"]
detector = "AGIPD"
import warnings
warnings.filterwarnings('ignore')
import copy
import os
import h5py
import numpy as np
import sys
from functools import partial
files = sys.argv[2].split(",")
profile = sys.argv[3]
outpath = sys.argv[4]
modules = sys.argv[5].split(",")
# parallel processing via ipcluster
# make sure a cluster is running with ipcluster start --n=32, give it a while to start
from ipyparallel import Client
client = Client(profile=profile)
view = client[:]
view.use_dill()
mhists = np.zeros((74, 64, 500, 500))
for i, file in enumerate(files):
module = int(modules[i])
print("Processing {} to {} on {} for module {}".format(file, outpath, profile, module))
try:
infile = h5py.File(file, "r")
cells = np.squeeze(infile["/INSTRUMENT/SPB_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/cellId".format(module)][()])
infile.close()
def do_cellhist(file, module, cells, cell):
import numpy as np
import h5py
cidx = cells == cell
infile = h5py.File(file, "r")
icell = infile["/INSTRUMENT/SPB_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/data".format(module)][cidx,0,:,:64]
gcell = infile["/INSTRUMENT/SPB_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/data".format(module)][cidx,1,:,:64]
infile.close()
rowh = []
for row in range(64):
h, _, _ = np.histogram2d(gcell[...,row].flatten(),
icell[...,row].flatten(), bins=(500, 500),
range=((0,12000),(0,12000)))
rowh.append(h)
return rowh
mapped_data = [c for c in np.unique(cells)]
res = view.map_sync(partial(do_cellhist, file, module, cells), mapped_data)
for cell, cellh in enumerate(res):
for row, h in enumerate(cellh):
mhists[cell, row, ...] += h
except Exception as e:
print(e)
pass
np.savez_compressed("{}/mod{}_{}".format(outpath, module, profile), mhists)
\ No newline at end of file
import sys
in_folder = sys.argv[1] #"/gpfs/exfel/exp/SPB/201701/"
proposals = sys.argv[2].split(",") #["p002013"]
out_path = sys.argv[3]
exclude = sys.argv[4]
detector = "AGIPD"
files_per_node = 50
import warnings
warnings.filterwarnings('ignore')
import copy
import os
import os
from subprocess import Popen, PIPE
from time import sleep
import time
from uuid import uuid4
modules = range(3,4)
excludes = []
for ex in exclude.split(","):
if "-" in ex:
start, end = ex.split("-")
excludes += ["r{:04d}".format(r) for r in range(int(start), int(end))]
else:
excludes.append("r{:04d}".format(int(ex)))
print("Excluding: {}".format(", ".join(excludes)))
if proposals == "all":
proposals = os.listdir(in_folder)
files = []
for proposal in proposals:
pfolder = "{}/{}/raw".format(in_folder, proposal)
runs = os.listdir(pfolder)
for run in runs:
if run in excludes:
continue
rfolder = "{}/{}".format(pfolder, run)
for file in os.listdir(rfolder):
for module in modules:
fcheck = "RAW-{}-{}{:02d}".format(run.upper(), detector, module)
if fcheck in file:
files.append((module, "{}/{}".format(rfolder, file)))
print("Working on {} files".format(len(files)))
srun_base = ["sbatch", "-p", "exfel", "-t", "04:00:00"]
srun_base += [os.path.abspath("{}/run_parallel_hist.sh".format(os.getcwd())),
os.path.abspath("{}/parallel_hist.py".format(os.getcwd())),
in_folder
]
for i in range(len(files)//files_per_node):
fls = []
modules = []
for fm in files[i*files_per_node:(i+1)*files_per_node]:
module, file = fm
fls.append(file)
modules.append(str(module))
s_run = copy.copy(srun_base)
s_run += [",".join(fls), "parallel_hist_{}".format(uuid4()), out_path, ",".join(modules), exclude]
Popen(s_run)
\ No newline at end of file
#!/bin/bash
#SBATCH -N 1 # number of nodes
#SBATCH -n 32 # number of cores
#module load python3
#~/.local/bin/ipcluster start --n=32 --daemon --ip="*"
source /gpfs/exfel/data/user/haufs/karabo/activate
ipython profile create ${4} --parallel
/gpfs/exfel/data/user/haufs/karabo/extern/bin/ipcluster start --n=32 --profile=${4} --daemon &
sleep 30
/gpfs/exfel/data/user/haufs/karabo/extern/bin/python "$@"
/gpfs/exfel/data/user/haufs/karabo/extern/bin/ipcluster stop --profile=${4}
rm -rf "/home/haufs/.ipython/profile_${4}"
#echo ${11}
\ No newline at end of file
import argparse
import copy
import glob
import os
from subprocess import Popen, PIPE
from time import sleep
import time
from uuid import uuid4
parser = argparse.ArgumentParser(description="Main entry point "
"for offline calibration")
parser.add_argument("--rawpath", type=str)
parser.add_argument("--output", type=str)
parser.add_argument("--mem-cells", type=str)
parser.add_argument("--runs", type=str)
parser.add_argument("--sequences", type=str)
parser.add_argument("--interlaced", action="store_true", default=False)
parser.add_argument("--modules", type=str, default="all")
parser.add_argument("--nodb", action="store_true", default=False)
parser.add_argument("--bias", type=str, default=500)
parser.add_argument("--dbhost", type=str, default="tcp://max-exfl015:5005")
def notebook_to_python():
nb_name = "Chracterize_AGIPD_Gain_PC.ipynb"
conv = ["jupyter", "nbconvert", "--to", "python",
nb_name, "--output", "conv_tmp"]
Popen(conv).wait()
mapping = {}
arg_cnt = 1
has_profile = False
with open("./conv_tmp.py", "r") as infile:
with open(nb_name.replace("ipynb", "py"), "w") as outfile:
outfile.write("import sys")
for line in infile.readlines():
if "SLURMHINT" in line:
line, hint = line.split("#")
field, assign = line.split("=")
parm = hint.split("SLURMHINT:")[1]
parm, typ = parm.split(",")
parm = parm.strip()
if parm == "profile":
mapping[-1] = parm
line = "{field} = {typ}(sys.argv[{arg_cnt}])\n".format(field=field,
typ=typ.strip(),
arg_cnt=-1)
else:
mapping[arg_cnt] = parm
if typ.strip() != "list":
line = "{field} = {typ}(sys.argv[{arg_cnt}])\n".format(field=field,
typ=typ.strip(),
arg_cnt=arg_cnt)
else:
line = "{field} = [int(s) for s in sys.argv[{arg_cnt}].split(',')]\n".format(field=field, arg_cnt=arg_cnt)
arg_cnt += 1
outfile.write(line)
else:
if "get_ipython()" in line:
line = "# "+line
outfile.write(line)
return mapping
def run():
args = vars(parser.parse_args())
path_temp = "{}/r{{:04d}}".format(args["rawpath"])
out_folder= args["output"]
cells = args["mem_cells"]
il_mode = bool(args["interlaced"])
mods = args["modules"]
runs_in = args["runs"]
sequences = args["sequences"]
modules = range(16) if mods.upper()=="ALL" else [int(m) for m in mods.split(",")]
nodb = bool(args["nodb"])
bias = args["bias"]
dbhost = args["dbhost"]
runs = []
for rcomp in runs_in.split(","):
if "-" in rcomp:
start, end = rcomp.split("-")
runs += list(range(int(start), int(end)))
else:
runs += [int(rcomp)]
out_mapping = notebook_to_python()
for module in modules:
in_mapping = {"maxcells": cells,
"cells": cells,
"path_temp": path_temp,
"il_mode": il_mode,
"modules": module,
"runs": ",".join([str(r) for r in runs]),
"out_folder": out_folder,
"seq": sequences,
"local_output": True if nodb else False,
"db_output": False if nodb else True,
"bias_voltage": bias,
"db_host": dbhost
}
srun_base = ["sbatch", "-p", "exfel", "-t", "24:00:00"]
srun_base += [os.path.abspath("{}/slurm_CI.sh".format(os.getcwd())),
os.path.abspath("{}/Chracterize_AGIPD_Gain_PC.py".format(os.getcwd()))]
for key in sorted(out_mapping.keys()):
if out_mapping[key] in in_mapping:
srun_base.append(str(in_mapping[out_mapping[key]]))
Popen(srun_base).wait()
if __name__ == "__main__":
run()
#!/bin/bash
source /gpfs/exfel/data/user/haufs/karabo/activate
uuid=$(uuidgen)
echo "File is: ${2}"
echo ${uuid} >> $2
export MPLBACKEND=AGG
ipython profile create ${uuid} --parallel
/gpfs/exfel/data/user/haufs/karabo/extern/bin/ipcluster start --n=32 --profile=${uuid} --daemon &
sleep 30
echo "Running script"
jupyter nbconvert --to rst --ExecutePreprocessor.timeout=36000 --ExecutePreprocessor.allow_errors=True --TemplateExporter.exclude_input=True --execute $1
/gpfs/exfel/data/user/haufs/karabo/extern/bin/ipcluster stop --profile=${uuid}
rm -rf "/home/haufs/.ipython/profile_${uuid}"
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment