Skip to content
Snippets Groups Projects
Commit 32164d00 authored by Mikhail Karnevskiy's avatar Mikhail Karnevskiy
Browse files

include more statisticcs information

parent 656be091
No related branches found
No related tags found
1 merge request!12Study statistics
......@@ -20,7 +20,7 @@ warnings.filterwarnings('ignore')
matplotlib.use("agg")
start_date = "2018-07-25" # date to start investigation interval from
start_date = "2018-06-25" # date to start investigation interval from
end_date = "now" # date to end investigation interval at, can be "now"
interval = 3 # interval for evaluation in days
detector = "LPD1M1" # detector to investigate
......@@ -105,7 +105,7 @@ while dt < end:
if cdata is not None:
carr = np.zeros((5, max_cells, 3))
carr_glob = np.zeros((5, 3))
carr_rad = np.zeros((cdata.shape[0], max_cells, 3))
carr_px = np.zeros((cdata.shape[0], max_cells, 3, 2))
for g in range(3):
td = np.nanmean(cdata[...,g], axis=(0,1))
print (td.shape)
......@@ -138,9 +138,11 @@ while dt < end:
td = np.nanstd(cdata[...,g])
carr_glob[3, g] = td
carr_rad[...,g] = np.nanmedian(cdata[...,g], axis=0)
carr_px[...,g, 0] = np.nanmedian(cdata[...,g], axis=0)
carr_px[...,g, 1] = np.nanmedian(cdata[...,g], axis=1)
ret_constants[const][qm].append((creation_time,(carr, carr_glob, carr_rad)))
ret_constants[const][qm].append((creation_time,
(carr, carr_glob, carr_px)))
dt += step
......@@ -167,41 +169,24 @@ for const, modules in ret_constants.items():
pmm, glob, _ = list(zip(*cd))
pma = np.array(pmm)
ga = np.array(glob)
d = pma[:,typ,:,:]
print (pma.shape, ga.shape, d.shape)
if np.allclose(d, 0):
continue
x = []
y = []
hue = []
# loop over gain
for g in range(3):
dd = (pma[:,typ,:,g]-pma[0,typ,:,g])/pma[0,typ,:,g]
print (pma[0,typ,:,g])
dd[~np.isfinite(dd)] = 0
x.append(np.repeat(np.array(ctimes)[:,None], dd.shape[1], axis=1).flatten())
print (x)
y.append(dd.flatten())
hue.append(np.ones(dd.shape).flatten()*g)
x = np.concatenate(x)
y = np.concatenate(y)
hue = np.concatenate(hue)
print (x.shape)
dd = pma[:,typ,:,:]#-pma[0,typ,:,:])/pma[0,typ,:,:]
y = dd.flatten()
x = np.repeat(np.array(ctimes)[:,None],
dd[0,:,:].size, axis=1).flatten()
hue = np.repeat(np.array(['gain 0', 'gain 1', 'gain 2'])[:,None],
dd[:,:,0].size, axis=1).swapaxes(0,1).flatten()
seaborn.violinplot(x, y, hue, scale="width", dodge=False, saturation=0.7)
#for i in range(max_cells):
#ax.scatter(ctimes, (pma[:,typ,i,g]-pma[0,typ,i,g])/pma[0,typ,i,g], marker='.', color=colors[g], alpha=0.5)
#ax.plot(ctimes, (ga[:,typ,g]-ga[0,typ,g])/ga[0,typ,g], color=colors[g], alpha=0.5)
ax.set_ylim(-0.25, .25)
#ax.set_ylim(-0.25, .25)
if typ != len(types)-1:
ax.axes.get_xaxis().set_visible(False)
else:
def format_date(x, pos=None):
return ctimes[x].strftime('%d-%m')
ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))
ax.set_xlabel("Date")
......@@ -211,5 +196,41 @@ for const, modules in ret_constants.items():
plt.subplots_adjust(wspace=0.2, hspace=0.2)
if out_folder != "":
fig.savefig("{}/{}_time_development.pdf".format(out_folder, const), bbox_inches='tight')
fig.savefig("{}/{}_time_development.pdf".format(out_folder, const),
bbox_inches='tight')
plt.show()
fig = plt.figure(figsize=(15,7))
ax = plt.subplot2grid((1, 1), (0, 0))
# loop over modules
for mod, data in modules.items():
ctimes, cd = list(zip(*data))
_, _, px = list(zip(*cd))
px = np.array(px)
print (px.shape)
y = px[:,:,5,0,:].flatten()
x = np.repeat(np.array(ctimes)[:,None],
px[0,:,5,0,:].size, axis=1).flatten()
hue = np.repeat(np.array(['px','py'])[:,None], px[:,:,5,0,0].size,
axis=1).swapaxes(0,1).flatten()
seaborn.violinplot(x, y, hue, palette="muted", split=True)
def format_date(x, pos=None):
return ctimes[x].strftime('%d-%m')
ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))
ax.set_xlabel("Date")
ax.set_ylabel("Median over pixels")
plt.subplots_adjust(wspace=0.2, hspace=0.2)
if out_folder != "":
fig.savefig("{}/{}_pxtime_development.pdf".format(out_folder, const),
bbox_inches='tight')
plt.show()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment