Skip to content
Snippets Groups Projects
Commit 386e51bd authored by Karim Ahmed's avatar Karim Ahmed
Browse files

fix: remove unneeded h5py import

parent b77f0438
No related branches found
No related tags found
1 merge request!1029feat[Epix100][Correct]: New corrected data source and a link to old data source
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
# ePix100 Data Correction # ePix100 Data Correction
Author: European XFEL Detector Group, Version: 2.0 Author: European XFEL Detector Group, Version: 2.0
The following notebook provides data correction of images acquired with the ePix100 detector. The following notebook provides data correction of images acquired with the ePix100 detector.
The sequence of correction applied are: The sequence of correction applied are:
Offset --> Common Mode Noise --> Relative Gain --> Charge Sharing --> Absolute Gain. Offset --> Common Mode Noise --> Relative Gain --> Charge Sharing --> Absolute Gain.
Offset, common mode and gain corrected data is saved to /data/image/pixels in the CORR files. Offset, common mode and gain corrected data is saved to /data/image/pixels in the CORR files.
If pattern classification is applied (charge sharing correction), this data will be saved to /data/image/pixels_classified, while the corresponding patterns will be saved to /data/image/patterns in the CORR files. If pattern classification is applied (charge sharing correction), this data will be saved to /data/image/pixels_classified, while the corresponding patterns will be saved to /data/image/patterns in the CORR files.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
in_folder = "/gpfs/exfel/exp/HED/202102/p002739/raw" # input folder, required in_folder = "/gpfs/exfel/exp/HED/202102/p002739/raw" # input folder, required
out_folder = "" # output folder, required out_folder = "" # output folder, required
metadata_folder = "" # Directory containing calibration_metadata.yml when run by xfel-calibrate metadata_folder = "" # Directory containing calibration_metadata.yml when run by xfel-calibrate
sequences = [-1] # sequences to correct, set to -1 for all, range allowed sequences = [-1] # sequences to correct, set to -1 for all, range allowed
sequences_per_node = 1 # number of sequence files per cluster node if run as slurm job, set to 0 to not run SLURM parallel sequences_per_node = 1 # number of sequence files per cluster node if run as slurm job, set to 0 to not run SLURM parallel
run = 38 # which run to read data from, required run = 38 # which run to read data from, required
# Parameters for accessing the raw data. # Parameters for accessing the raw data.
karabo_id = "HED_IA1_EPX100-1" # karabo karabo_id karabo_id = "HED_IA1_EPX100-1" # karabo karabo_id
karabo_da = "EPIX01" # data aggregators karabo_da = "EPIX01" # data aggregators
db_module = "" # module id in the database db_module = "" # module id in the database
receiver_template = "RECEIVER" # detector receiver template for accessing raw data files receiver_template = "RECEIVER" # detector receiver template for accessing raw data files
path_template = 'RAW-R{:04d}-{}-S{{:05d}}.h5' # the template to use to access data path_template = 'RAW-R{:04d}-{}-S{{:05d}}.h5' # the template to use to access data
input_source_template = '{karabo_id}/DET/{receiver}:daqOutput' # input(raw) detector data source in h5files input_source_template = '{karabo_id}/DET/{receiver}:daqOutput' # input(raw) detector data source in h5files
output_source_template = '{karabo_id}/CORR/{receiver}:daqOutput' # output(corrected) detector data source in h5files output_source_template = '{karabo_id}/CORR/{receiver}:daqOutput' # output(corrected) detector data source in h5files
# Parameters affecting writing corrected data. # Parameters affecting writing corrected data.
chunk_size_idim = 1 # H5 chunking size of output data chunk_size_idim = 1 # H5 chunking size of output data
limit_trains = 0 # Process only first N images, 0 - process all. limit_trains = 0 # Process only first N images, 0 - process all.
# Parameters for the calibration database. # Parameters for the calibration database.
cal_db_interface = "tcp://max-exfl-cal001:8015#8025" # calibration DB interface to use cal_db_interface = "tcp://max-exfl-cal001:8015#8025" # calibration DB interface to use
cal_db_timeout = 300000 # timeout on caldb requests cal_db_timeout = 300000 # timeout on caldb requests
creation_time = "" # The timestamp to use with Calibration DBe. Required Format: "YYYY-MM-DD hh:mm:ss" e.g. 2019-07-04 11:02:41 creation_time = "" # The timestamp to use with Calibration DBe. Required Format: "YYYY-MM-DD hh:mm:ss" e.g. 2019-07-04 11:02:41
# Conditions for retrieving calibration constants. # Conditions for retrieving calibration constants.
bias_voltage = 200 # bias voltage bias_voltage = 200 # bias voltage
in_vacuum = False # detector operated in vacuum in_vacuum = False # detector operated in vacuum
integration_time = -1 # Detector integration time, Default value -1 to use the value from the slow data. integration_time = -1 # Detector integration time, Default value -1 to use the value from the slow data.
fix_temperature = -1 # fixed temperature value in Kelvin, Default value -1 to use the value from files. fix_temperature = -1 # fixed temperature value in Kelvin, Default value -1 to use the value from files.
gain_photon_energy = 8.048 # Photon energy used for gain calibration gain_photon_energy = 8.048 # Photon energy used for gain calibration
photon_energy = 0. # Photon energy to calibrate in number of photons, 0 for calibration in keV photon_energy = 0. # Photon energy to calibrate in number of photons, 0 for calibration in keV
# Flags to select type of applied corrections. # Flags to select type of applied corrections.
pattern_classification = True # do clustering. pattern_classification = True # do clustering.
relative_gain = True # Apply relative gain correction. relative_gain = True # Apply relative gain correction.
absolute_gain = True # Apply absolute gain correction (implies relative gain). absolute_gain = True # Apply absolute gain correction (implies relative gain).
common_mode = True # Apply common mode correction. common_mode = True # Apply common mode correction.
# Parameters affecting applied correction. # Parameters affecting applied correction.
cm_min_frac = 0.25 # No CM correction is performed if after masking the ratio of good pixels falls below this cm_min_frac = 0.25 # No CM correction is performed if after masking the ratio of good pixels falls below this
cm_noise_sigma = 5. # CM correction noise standard deviation cm_noise_sigma = 5. # CM correction noise standard deviation
split_evt_primary_threshold = 7. # primary threshold for split event correction split_evt_primary_threshold = 7. # primary threshold for split event correction
split_evt_secondary_threshold = 5. # secondary threshold for split event correction split_evt_secondary_threshold = 5. # secondary threshold for split event correction
split_evt_mip_threshold = 1000. # minimum ionizing particle threshold split_evt_mip_threshold = 1000. # minimum ionizing particle threshold
def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da): def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da):
from xfel_calibrate.calibrate import balance_sequences as bs from xfel_calibrate.calibrate import balance_sequences as bs
return bs(in_folder, run, sequences, sequences_per_node, karabo_da) return bs(in_folder, run, sequences, sequences_per_node, karabo_da)
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
import tabulate import tabulate
import warnings import warnings
from logging import warning from logging import warning
from sys import exit from sys import exit
import h5py
import pasha as psh import pasha as psh
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from IPython.display import Latex, Markdown, display from IPython.display import Latex, Markdown, display
from extra_data import RunDirectory, H5File from extra_data import RunDirectory, H5File
from extra_geom import Epix100Geometry from extra_geom import Epix100Geometry
from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.axes_grid1 import make_axes_locatable
from pathlib import Path from pathlib import Path
import cal_tools.restful_config as rest_cfg import cal_tools.restful_config as rest_cfg
from XFELDetAna import xfelpycaltools as xcal from XFELDetAna import xfelpycaltools as xcal
from cal_tools.calcat_interface import EPIX100_CalibrationData, CalCatError from cal_tools.calcat_interface import EPIX100_CalibrationData, CalCatError
from cal_tools.epix100 import epix100lib from cal_tools.epix100 import epix100lib
from cal_tools.files import DataFile from cal_tools.files import DataFile
from cal_tools.tools import ( from cal_tools.tools import (
calcat_creation_time, calcat_creation_time,
write_constants_fragment, write_constants_fragment,
) )
from cal_tools.step_timing import StepTimer from cal_tools.step_timing import StepTimer
warnings.filterwarnings('ignore') warnings.filterwarnings('ignore')
prettyPlotting = True prettyPlotting = True
%matplotlib inline %matplotlib inline
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
x = 708 # rows of the ePix100 x = 708 # rows of the ePix100
y = 768 # columns of the ePix100 y = 768 # columns of the ePix100
if absolute_gain: if absolute_gain:
relative_gain = True relative_gain = True
plot_unit = 'ADU' plot_unit = 'ADU'
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
prop_str = in_folder[in_folder.find('/p')+1:in_folder.find('/p')+8] prop_str = in_folder[in_folder.find('/p')+1:in_folder.find('/p')+8]
in_folder = Path(in_folder) in_folder = Path(in_folder)
out_folder = Path(out_folder) out_folder = Path(out_folder)
out_folder.mkdir(parents=True, exist_ok=True) out_folder.mkdir(parents=True, exist_ok=True)
run_folder = in_folder / f"r{run:04d}" run_folder = in_folder / f"r{run:04d}"
output_source_template = output_source_template or input_source_template output_source_template = output_source_template or input_source_template
input_src = input_source_template.format( input_src = input_source_template.format(
karabo_id=karabo_id, receiver=receiver_template) karabo_id=karabo_id, receiver=receiver_template)
output_src = output_source_template.format( output_src = output_source_template.format(
karabo_id=karabo_id, receiver=receiver_template) karabo_id=karabo_id, receiver=receiver_template)
print(f"Correcting run: {run_folder}") print(f"Correcting run: {run_folder}")
print(f"Data corrected files are stored at: {out_folder}") print(f"Data corrected files are stored at: {out_folder}")
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
creation_time = calcat_creation_time(in_folder, run, creation_time) creation_time = calcat_creation_time(in_folder, run, creation_time)
print(f"Using {creation_time.isoformat()} as creation time") print(f"Using {creation_time.isoformat()} as creation time")
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
run_dc = RunDirectory(run_folder, _use_voview=False) run_dc = RunDirectory(run_folder, _use_voview=False)
seq_files = [Path(f.filename) for f in run_dc.select(f"*{karabo_id}*").files] seq_files = [Path(f.filename) for f in run_dc.select(f"*{karabo_id}*").files]
# If a set of sequences requested to correct, # If a set of sequences requested to correct,
# adapt seq_files list. # adapt seq_files list.
if sequences != [-1]: if sequences != [-1]:
seq_files = [f for f in seq_files if any(f.match(f"*-S{s:05d}.h5") for s in sequences)] seq_files = [f for f in seq_files if any(f.match(f"*-S{s:05d}.h5") for s in sequences)]
if not len(seq_files): if not len(seq_files):
raise IndexError("No sequence files available for the selected sequences.") raise IndexError("No sequence files available for the selected sequences.")
print(f"Processing a total of {len(seq_files)} sequence files") print(f"Processing a total of {len(seq_files)} sequence files")
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
step_timer = StepTimer() step_timer = StepTimer()
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
step_timer.start() step_timer.start()
sensorSize = [x, y] sensorSize = [x, y]
# Sensor area will be analysed according to blocksize # Sensor area will be analysed according to blocksize
blockSize = [sensorSize[0]//2, sensorSize[1]//2] blockSize = [sensorSize[0]//2, sensorSize[1]//2]
xcal.defaultBlockSize = blockSize xcal.defaultBlockSize = blockSize
memoryCells = 1 # ePIX has no memory cells memoryCells = 1 # ePIX has no memory cells
run_parallel = False run_parallel = False
# Read control data. # Read control data.
ctrl_data = epix100lib.epix100Ctrl( ctrl_data = epix100lib.epix100Ctrl(
run_dc=run_dc, run_dc=run_dc,
instrument_src=input_src, instrument_src=input_src,
ctrl_src=f"{karabo_id}/DET/CONTROL", ctrl_src=f"{karabo_id}/DET/CONTROL",
) )
if integration_time < 0: if integration_time < 0:
integration_time = ctrl_data.get_integration_time() integration_time = ctrl_data.get_integration_time()
integration_time_str_add = "" integration_time_str_add = ""
else: else:
integration_time_str_add = "(manual input)" integration_time_str_add = "(manual input)"
if fix_temperature < 0: if fix_temperature < 0:
temperature = ctrl_data.get_temprature() temperature = ctrl_data.get_temprature()
temperature_k = temperature + 273.15 temperature_k = temperature + 273.15
temp_str_add = "" temp_str_add = ""
else: else:
temperature_k = fix_temperature temperature_k = fix_temperature
temperature = fix_temperature - 273.15 temperature = fix_temperature - 273.15
temp_str_add = "(manual input)" temp_str_add = "(manual input)"
print(f"Bias voltage is {bias_voltage} V") print(f"Bias voltage is {bias_voltage} V")
print(f"Detector integration time is set to {integration_time} \u03BCs {integration_time_str_add}") print(f"Detector integration time is set to {integration_time} \u03BCs {integration_time_str_add}")
print(f"Mean temperature: {temperature:0.2f}°C / {temperature_k:0.2f} K {temp_str_add}") print(f"Mean temperature: {temperature:0.2f}°C / {temperature_k:0.2f} K {temp_str_add}")
print(f"Operated in vacuum: {in_vacuum}") print(f"Operated in vacuum: {in_vacuum}")
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
# Table of sequence files to process # Table of sequence files to process
table = [(k, f) for k, f in enumerate(seq_files)] table = [(k, f) for k, f in enumerate(seq_files)]
if len(table): if len(table):
md = display(Latex(tabulate.tabulate( md = display(Latex(tabulate.tabulate(
table, table,
tablefmt='latex', tablefmt='latex',
headers=["#", "file"] headers=["#", "file"]
))) )))
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## Retrieving calibration constants ## Retrieving calibration constants
As a first step, dark maps have to be loaded. As a first step, dark maps have to be loaded.
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
epix_cal = EPIX100_CalibrationData( epix_cal = EPIX100_CalibrationData(
detector_name=karabo_id, detector_name=karabo_id,
sensor_bias_voltage=bias_voltage, sensor_bias_voltage=bias_voltage,
integration_time=integration_time, integration_time=integration_time,
sensor_temperature=temperature_k, sensor_temperature=temperature_k,
in_vacuum=in_vacuum, in_vacuum=in_vacuum,
source_energy=gain_photon_energy, source_energy=gain_photon_energy,
event_at=creation_time, event_at=creation_time,
client=rest_cfg.calibration_client(), client=rest_cfg.calibration_client(),
) )
const_metadata = epix_cal.metadata(calibrations=epix_cal.dark_calibrations) const_metadata = epix_cal.metadata(calibrations=epix_cal.dark_calibrations)
if relative_gain: if relative_gain:
try: try:
metadata = epix_cal.metadata(epix_cal.illuminated_calibrations) metadata = epix_cal.metadata(epix_cal.illuminated_calibrations)
for key, value in metadata.items(): for key, value in metadata.items():
const_metadata.setdefault(key, {}).update(value) const_metadata.setdefault(key, {}).update(value)
except CalCatError as e: except CalCatError as e:
warning(f"CalCatError: {e}") warning(f"CalCatError: {e}")
# Display retrieved calibration constants timestamps # Display retrieved calibration constants timestamps
epix_cal.display_markdown_retrieved_constants(metadata=const_metadata) epix_cal.display_markdown_retrieved_constants(metadata=const_metadata)
# Load the constant data from files # Load the constant data from files
const_data = epix_cal.ndarray_map(metadata=const_metadata)[karabo_da] const_data = epix_cal.ndarray_map(metadata=const_metadata)[karabo_da]
# Validate the constants availability and raise/warn correspondingly. # Validate the constants availability and raise/warn correspondingly.
missing_dark_constants = {"OffsetEPix100", "NoiseEPix100"} - set(const_data) missing_dark_constants = {"OffsetEPix100", "NoiseEPix100"} - set(const_data)
if missing_dark_constants: if missing_dark_constants:
raise ValueError( raise ValueError(
f"Dark constants {missing_dark_constants} are not available to correct {karabo_da}." f"Dark constants {missing_dark_constants} are not available to correct {karabo_da}."
"No correction is performed!") "No correction is performed!")
if relative_gain and "RelativeGainEPix100" not in const_data.keys(): if relative_gain and "RelativeGainEPix100" not in const_data.keys():
warning("RelativeGainEPix100 is not found in the calibration database.") warning("RelativeGainEPix100 is not found in the calibration database.")
relative_gain = False relative_gain = False
absolute_gain = False absolute_gain = False
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
# Record constant details in YAML metadata # Record constant details in YAML metadata
write_constants_fragment( write_constants_fragment(
out_folder=(metadata_folder or out_folder), out_folder=(metadata_folder or out_folder),
det_metadata=const_metadata, det_metadata=const_metadata,
caldb_root=epix_cal.caldb_root, caldb_root=epix_cal.caldb_root,
) )
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
# Initializing some parameters. # Initializing some parameters.
hscale = 1 hscale = 1
stats = True stats = True
bins = np.arange(-50,1000) bins = np.arange(-50,1000)
hist = {'O': 0} # dictionary to store histograms hist = {'O': 0} # dictionary to store histograms
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
if common_mode: if common_mode:
commonModeBlockSize = [x//2, y//8] commonModeBlockSize = [x//2, y//8]
cmCorrectionB = xcal.CommonModeCorrection( cmCorrectionB = xcal.CommonModeCorrection(
shape=sensorSize, shape=sensorSize,
blockSize=commonModeBlockSize, blockSize=commonModeBlockSize,
orientation='block', orientation='block',
nCells=memoryCells, nCells=memoryCells,
noiseMap=const_data['NoiseEPix100'], noiseMap=const_data['NoiseEPix100'],
runParallel=run_parallel, runParallel=run_parallel,
parallel=run_parallel, parallel=run_parallel,
stats=stats, stats=stats,
minFrac=cm_min_frac, minFrac=cm_min_frac,
noiseSigma=cm_noise_sigma, noiseSigma=cm_noise_sigma,
) )
cmCorrectionR = xcal.CommonModeCorrection( cmCorrectionR = xcal.CommonModeCorrection(
shape=sensorSize, shape=sensorSize,
blockSize=commonModeBlockSize, blockSize=commonModeBlockSize,
orientation='row', orientation='row',
nCells=memoryCells, nCells=memoryCells,
noiseMap=const_data['NoiseEPix100'], noiseMap=const_data['NoiseEPix100'],
runParallel=run_parallel, runParallel=run_parallel,
parallel=run_parallel, parallel=run_parallel,
stats=stats, stats=stats,
minFrac=cm_min_frac, minFrac=cm_min_frac,
noiseSigma=cm_noise_sigma, noiseSigma=cm_noise_sigma,
) )
cmCorrectionC = xcal.CommonModeCorrection( cmCorrectionC = xcal.CommonModeCorrection(
shape=sensorSize, shape=sensorSize,
blockSize=commonModeBlockSize, blockSize=commonModeBlockSize,
orientation='col', orientation='col',
nCells=memoryCells, nCells=memoryCells,
noiseMap=const_data['NoiseEPix100'], noiseMap=const_data['NoiseEPix100'],
runParallel=run_parallel, runParallel=run_parallel,
parallel=run_parallel, parallel=run_parallel,
stats=stats, stats=stats,
minFrac=cm_min_frac, minFrac=cm_min_frac,
noiseSigma=cm_noise_sigma, noiseSigma=cm_noise_sigma,
) )
hist['CM'] = 0 hist['CM'] = 0
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
if relative_gain: if relative_gain:
# gain constant is given by the mode of the gain map # gain constant is given by the mode of the gain map
# because all bad pixels are masked using this value # because all bad pixels are masked using this value
_vals,_counts = np.unique(const_data["RelativeGainEPix100"], return_counts=True) _vals,_counts = np.unique(const_data["RelativeGainEPix100"], return_counts=True)
gain_cnst = _vals[np.argmax(_counts)] gain_cnst = _vals[np.argmax(_counts)]
gainCorrection = xcal.RelativeGainCorrection( gainCorrection = xcal.RelativeGainCorrection(
sensorSize, sensorSize,
gain_cnst/const_data["RelativeGainEPix100"][..., None], gain_cnst/const_data["RelativeGainEPix100"][..., None],
nCells=memoryCells, nCells=memoryCells,
parallel=run_parallel, parallel=run_parallel,
blockSize=blockSize, blockSize=blockSize,
gains=None, gains=None,
) )
hist['RG'] = 0 hist['RG'] = 0
if absolute_gain: if absolute_gain:
hscale = gain_cnst hscale = gain_cnst
plot_unit = 'keV' plot_unit = 'keV'
if photon_energy > 0: if photon_energy > 0:
plot_unit = '$\gamma$' plot_unit = '$\gamma$'
hscale /= photon_energy hscale /= photon_energy
hist['AG'] = 0 hist['AG'] = 0
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
if pattern_classification : if pattern_classification :
patternClassifier = xcal.PatternClassifier( patternClassifier = xcal.PatternClassifier(
[x, y], [x, y],
const_data["NoiseEPix100"], const_data["NoiseEPix100"],
split_evt_primary_threshold, split_evt_primary_threshold,
split_evt_secondary_threshold, split_evt_secondary_threshold,
split_evt_mip_threshold, split_evt_mip_threshold,
tagFirstSingles=0, tagFirstSingles=0,
nCells=memoryCells, nCells=memoryCells,
allowElongated=False, allowElongated=False,
blockSize=[x, y], blockSize=[x, y],
parallel=run_parallel, parallel=run_parallel,
) )
hist['CS'] = 0 hist['CS'] = 0
hist['S'] = 0 hist['S'] = 0
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## Applying corrections ## Applying corrections
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
def correct_train(wid, index, tid, d): def correct_train(wid, index, tid, d):
d = d[..., np.newaxis].astype(np.float32) d = d[..., np.newaxis].astype(np.float32)
d = np.compress( d = np.compress(
np.any(d > 0, axis=(0, 1)), d, axis=2) np.any(d > 0, axis=(0, 1)), d, axis=2)
# Offset correction. # Offset correction.
d -= const_data["OffsetEPix100"] d -= const_data["OffsetEPix100"]
hist['O'] += np.histogram(d,bins=bins)[0] hist['O'] += np.histogram(d,bins=bins)[0]
# Common Mode correction. # Common Mode correction.
if common_mode: if common_mode:
# Block CM # Block CM
d = cmCorrectionB.correct(d) d = cmCorrectionB.correct(d)
# Row CM # Row CM
d = cmCorrectionR.correct(d) d = cmCorrectionR.correct(d)
# COL CM # COL CM
d = cmCorrectionC.correct(d) d = cmCorrectionC.correct(d)
hist['CM'] += np.histogram(d,bins=bins)[0] hist['CM'] += np.histogram(d,bins=bins)[0]
# Relative gain correction. # Relative gain correction.
if relative_gain: if relative_gain:
d = gainCorrection.correct(d) d = gainCorrection.correct(d)
hist['RG'] += np.histogram(d,bins=bins)[0] hist['RG'] += np.histogram(d,bins=bins)[0]
"""The gain correction is currently applying """The gain correction is currently applying
an absolute correction (not a relative correction an absolute correction (not a relative correction
as the implied by the name); as the implied by the name);
it changes the scale (the unit of measurement) it changes the scale (the unit of measurement)
of the data from ADU to either keV or n_of_photons. of the data from ADU to either keV or n_of_photons.
But the pattern classification relies on comparing But the pattern classification relies on comparing
data with the NoiseEPix100 map, which is still in ADU. data with the NoiseEPix100 map, which is still in ADU.
The best solution is to do a relative gain The best solution is to do a relative gain
correction first and apply the global absolute correction first and apply the global absolute
gain to the data at the end, after clustering. gain to the data at the end, after clustering.
""" """
if pattern_classification: if pattern_classification:
d_clu, patterns = patternClassifier.classify(d) d_clu, patterns = patternClassifier.classify(d)
d_clu[d_clu < (split_evt_primary_threshold*const_data["NoiseEPix100"])] = 0 d_clu[d_clu < (split_evt_primary_threshold*const_data["NoiseEPix100"])] = 0
data_clu[index, ...] = np.squeeze(d_clu) data_clu[index, ...] = np.squeeze(d_clu)
data_patterns[index, ...] = np.squeeze(patterns) data_patterns[index, ...] = np.squeeze(patterns)
hist['CS'] += np.histogram(d_clu,bins=bins)[0] hist['CS'] += np.histogram(d_clu,bins=bins)[0]
d_sing = d_clu[patterns==100] # pattern 100 corresponds to single photons events d_sing = d_clu[patterns==100] # pattern 100 corresponds to single photons events
if len(d_sing): if len(d_sing):
hist['S'] += np.histogram(d_sing,bins=bins)[0] hist['S'] += np.histogram(d_sing,bins=bins)[0]
# Absolute gain correction # Absolute gain correction
# changes data from ADU to keV (or n. of photons) # changes data from ADU to keV (or n. of photons)
if absolute_gain: if absolute_gain:
d = d * gain_cnst d = d * gain_cnst
if photon_energy > 0: if photon_energy > 0:
d /= photon_energy d /= photon_energy
hist['AG'] += np.histogram(d,bins=bins)[0] hist['AG'] += np.histogram(d,bins=bins)[0]
if pattern_classification: if pattern_classification:
# Modify pattern classification. # Modify pattern classification.
d_clu = d_clu * gain_cnst d_clu = d_clu * gain_cnst
if photon_energy > 0: if photon_energy > 0:
d_clu /= photon_energy d_clu /= photon_energy
data_clu[index, ...] = np.squeeze(d_clu) data_clu[index, ...] = np.squeeze(d_clu)
data[index, ...] = np.squeeze(d) data[index, ...] = np.squeeze(d)
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
# 10 is a number chosen after testing 1 ... 71 parallel threads # 10 is a number chosen after testing 1 ... 71 parallel threads
context = psh.context.ThreadContext(num_workers=10) context = psh.context.ThreadContext(num_workers=10)
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
empty_seq = 0 empty_seq = 0
for f in seq_files: for f in seq_files:
seq_dc = H5File(f) seq_dc = H5File(f)
# Save corrected data in an output file with name # Save corrected data in an output file with name
# of corresponding raw sequence file. # of corresponding raw sequence file.
out_file = out_folder / f.name.replace("RAW", "CORR") out_file = out_folder / f.name.replace("RAW", "CORR")
# Data shape in seq_dc excluding trains with empty images. # Data shape in seq_dc excluding trains with empty images.
ishape = seq_dc[input_src, "data.image.pixels"].shape ishape = seq_dc[input_src, "data.image.pixels"].shape
corr_ntrains = ishape[0] corr_ntrains = ishape[0]
all_train_ids = seq_dc.train_ids all_train_ids = seq_dc.train_ids
# Raise a WARNING if this sequence has no trains to correct. # Raise a WARNING if this sequence has no trains to correct.
# Otherwise, print number of trains with no data. # Otherwise, print number of trains with no data.
if corr_ntrains == 0: if corr_ntrains == 0:
warning(f"No trains to correct for {f.name}: " warning(f"No trains to correct for {f.name}: "
"Skipping the processing of this file.") "Skipping the processing of this file.")
empty_seq += 1 empty_seq += 1
continue continue
elif len(all_train_ids) != corr_ntrains: elif len(all_train_ids) != corr_ntrains:
print(f"{f.name} has {len(all_train_ids) - corr_ntrains} trains with missing data.") print(f"{f.name} has {len(all_train_ids) - corr_ntrains} trains with missing data.")
# This parameter is only used for testing. # This parameter is only used for testing.
if limit_trains > 0: if limit_trains > 0:
print(f"\nCorrected trains are limited to: {limit_trains} trains") print(f"\nCorrected trains are limited to: {limit_trains} trains")
corr_ntrains = min(corr_ntrains, limit_trains) corr_ntrains = min(corr_ntrains, limit_trains)
oshape = (corr_ntrains, *ishape[1:]) oshape = (corr_ntrains, *ishape[1:])
data = context.alloc(shape=oshape, dtype=np.float32) data = context.alloc(shape=oshape, dtype=np.float32)
if pattern_classification: if pattern_classification:
data_clu = context.alloc(shape=oshape, dtype=np.float32) data_clu = context.alloc(shape=oshape, dtype=np.float32)
data_patterns = context.alloc(shape=oshape, dtype=np.int32) data_patterns = context.alloc(shape=oshape, dtype=np.int32)
step_timer.start() # Correct data. step_timer.start() # Correct data.
# Overwrite seq_dc after eliminating empty trains or/and applying limited images. # Overwrite seq_dc after eliminating empty trains or/and applying limited images.
seq_dc = seq_dc.select( seq_dc = seq_dc.select(
input_src, "*", require_all=True).select_trains(np.s_[:corr_ntrains]) input_src, "*", require_all=True).select_trains(np.s_[:corr_ntrains])
pixel_data = seq_dc[input_src, "data.image.pixels"] pixel_data = seq_dc[input_src, "data.image.pixels"]
context.map(correct_train, pixel_data) context.map(correct_train, pixel_data)
step_timer.done_step(f'Correcting {corr_ntrains} trains.') step_timer.done_step(f'Correcting {corr_ntrains} trains.')
step_timer.start() # Write corrected data. step_timer.start() # Write corrected data.
# Create CORR files and add corrected data sections. # Create CORR files and add corrected data sections.
image_counts = seq_dc[input_src, "data.image.pixels"].data_counts(labelled=False) image_counts = seq_dc[input_src, "data.image.pixels"].data_counts(labelled=False)
# Write corrected data. # Write corrected data.
with DataFile(out_file, "w") as ofile: with DataFile(out_file, "w") as ofile:
dataset_chunk = ((chunk_size_idim,) + oshape[1:]) # e.g. (1, pixels_x, pixels_y) dataset_chunk = ((chunk_size_idim,) + oshape[1:]) # e.g. (1, pixels_x, pixels_y)
seq_file = seq_dc.files[0] # FileAccess seq_file = seq_dc.files[0] # FileAccess
# Create INDEX datasets. # Create INDEX datasets.
ofile.create_index(seq_dc.train_ids, from_file=seq_dc.files[0]) ofile.create_index(seq_dc.train_ids, from_file=seq_dc.files[0])
# Create METADATA datasets # Create METADATA datasets
ofile.create_metadata( ofile.create_metadata(
like=seq_dc, like=seq_dc,
sequence=seq_file.sequence, sequence=seq_file.sequence,
instrument_channels=sorted({f'{output_src}/data',f'{input_src}/data'}) instrument_channels=sorted({f'{output_src}/data',f'{input_src}/data'})
) )
# Create Instrument section to later add corrected datasets. # Create Instrument section to later add corrected datasets.
outp_source = ofile.create_instrument_source(output_src) outp_source = ofile.create_instrument_source(output_src)
# Create count/first datasets at INDEX source. # Create count/first datasets at INDEX source.
outp_source.create_index(data=image_counts) outp_source.create_index(data=image_counts)
image_raw_fields = [ # /data/image/ image_raw_fields = [ # /data/image/
"binning", "bitsPerPixel", "dimTypes", "dims", "binning", "bitsPerPixel", "dimTypes", "dims",
"encoding", "flipX", "flipY", "roiOffsets", "rotation", "encoding", "flipX", "flipY", "roiOffsets", "rotation",
] ]
for field in image_raw_fields: for field in image_raw_fields:
field_arr = seq_dc[input_src, f"data.image.{field}"].ndarray() field_arr = seq_dc[input_src, f"data.image.{field}"].ndarray()
outp_source.create_key( outp_source.create_key(
f"data.image.{field}", data=field_arr, f"data.image.{field}", data=field_arr,
chunks=(chunk_size_idim, *field_arr.shape[1:])) chunks=(chunk_size_idim, *field_arr.shape[1:]))
# Add main corrected `data.image.pixels` dataset and store corrected data. # Add main corrected `data.image.pixels` dataset and store corrected data.
outp_source.create_key( outp_source.create_key(
"data.image.pixels", data=data, chunks=dataset_chunk) "data.image.pixels", data=data, chunks=dataset_chunk)
outp_source.create_key( outp_source.create_key(
"data.trainId", data=seq_dc.train_ids, chunks=min(50, len(seq_dc.train_ids))) "data.trainId", data=seq_dc.train_ids, chunks=min(50, len(seq_dc.train_ids)))
if np.isin('data.pulseId', list(seq_dc[input_src].keys())): # some runs are missing 'data.pulseId' if np.isin('data.pulseId', list(seq_dc[input_src].keys())): # some runs are missing 'data.pulseId'
outp_source.create_key( outp_source.create_key(
"data.pulseId", "data.pulseId",
data=list(seq_dc[input_src]['data.pulseId'].ndarray()[:, 0]), data=list(seq_dc[input_src]['data.pulseId'].ndarray()[:, 0]),
chunks=min(50, len(seq_dc.train_ids)), chunks=min(50, len(seq_dc.train_ids)),
) )
if pattern_classification: if pattern_classification:
# Add main corrected `data.image.pixels` dataset and store corrected data. # Add main corrected `data.image.pixels` dataset and store corrected data.
outp_source.create_key( outp_source.create_key(
"data.image.pixels_classified", data=data_clu, chunks=dataset_chunk) "data.image.pixels_classified", data=data_clu, chunks=dataset_chunk)
outp_source.create_key( outp_source.create_key(
"data.image.patterns", data=data_patterns, chunks=dataset_chunk) "data.image.patterns", data=data_patterns, chunks=dataset_chunk)
if output_src != input_src: if output_src != input_src:
ofile.create_legacy_source(input_src, output_src) ofile.create_legacy_source(input_src, output_src)
step_timer.done_step('Storing data.') step_timer.done_step('Storing data.')
if empty_seq == len(seq_files): if empty_seq == len(seq_files):
warning("No valid trains for RAW data to correct.") warning("No valid trains for RAW data to correct.")
exit(0) exit(0)
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## Plot Histograms ## Plot Histograms
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
bins_ADU = bins[:-1]+np.diff(bins)[0]/2 bins_ADU = bins[:-1]+np.diff(bins)[0]/2
bins_keV = bins_ADU*hscale bins_keV = bins_ADU*hscale
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
# Histogram in ADU # Histogram in ADU
plt.figure(figsize=(12,8)) plt.figure(figsize=(12,8))
plt.plot(bins_ADU,hist['O'], label='Offset corr') plt.plot(bins_ADU,hist['O'], label='Offset corr')
if common_mode: if common_mode:
plt.plot(bins_ADU,hist['CM'], label='CM corr') plt.plot(bins_ADU,hist['CM'], label='CM corr')
if relative_gain: if relative_gain:
plt.plot(bins_ADU,hist['RG'], label='Relative Gain corr') plt.plot(bins_ADU,hist['RG'], label='Relative Gain corr')
if pattern_classification: if pattern_classification:
plt.plot(bins_ADU[bins_ADU>10],hist['CS'][bins_ADU>10], label='Charge Sharing corr') plt.plot(bins_ADU[bins_ADU>10],hist['CS'][bins_ADU>10], label='Charge Sharing corr')
if np.any(hist['S']): if np.any(hist['S']):
plt.plot(bins_ADU,hist['S'], label='Singles') plt.plot(bins_ADU,hist['S'], label='Singles')
xtick_step = 50 xtick_step = 50
plt.xlim(bins[0], bins[-1]+1) plt.xlim(bins[0], bins[-1]+1)
plt.xticks(np.arange(bins[0],bins[-1]+2,xtick_step)) plt.xticks(np.arange(bins[0],bins[-1]+2,xtick_step))
plt.xlabel('ADU',fontsize=12) plt.xlabel('ADU',fontsize=12)
plt.yscale('log') plt.yscale('log')
plt.title(f'{karabo_id} | {prop_str}, r{run}', fontsize=14, fontweight='bold') plt.title(f'{karabo_id} | {prop_str}, r{run}', fontsize=14, fontweight='bold')
plt.legend(fontsize=12) plt.legend(fontsize=12)
plt.grid(ls=':') plt.grid(ls=':')
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
# Histogram in keV/number of photons # Histogram in keV/number of photons
if absolute_gain: if absolute_gain:
colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
plt.figure(figsize=(12,8)) plt.figure(figsize=(12,8))
if relative_gain: if relative_gain:
plt.plot(bins_keV,hist['RG'], label='Absolute Gain corr', c=colors[2]) plt.plot(bins_keV,hist['RG'], label='Absolute Gain corr', c=colors[2])
if pattern_classification: if pattern_classification:
plt.plot(bins_keV[bins_keV>.5],hist['CS'][bins_keV>.5], label='Charge Sharing corr', c=colors[3]) plt.plot(bins_keV[bins_keV>.5],hist['CS'][bins_keV>.5], label='Charge Sharing corr', c=colors[3])
if np.any(hist['S']): if np.any(hist['S']):
plt.plot(bins_keV[bins_keV>.5],hist['S'][bins_keV>.5], label='Singles', c=colors[4]) plt.plot(bins_keV[bins_keV>.5],hist['S'][bins_keV>.5], label='Singles', c=colors[4])
if photon_energy==0: # if keV instead of #photons if photon_energy==0: # if keV instead of #photons
xtick_step = 5 xtick_step = 5
plt.xlim(left=-2) plt.xlim(left=-2)
plt.xticks(np.arange(0,plt.gca().get_xlim()[1],xtick_step)) plt.xticks(np.arange(0,plt.gca().get_xlim()[1],xtick_step))
plt.xlabel(plot_unit,fontsize=12) plt.xlabel(plot_unit,fontsize=12)
plt.yscale('log') plt.yscale('log')
plt.title(f'{karabo_id} | {prop_str}, r{run}', fontsize=14, fontweight='bold') plt.title(f'{karabo_id} | {prop_str}, r{run}', fontsize=14, fontweight='bold')
plt.legend(fontsize=12) plt.legend(fontsize=12)
plt.grid(ls=':') plt.grid(ls=':')
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## Mean Image of the corrected data ## Mean Image of the corrected data
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
geom = Epix100Geometry.from_relative_positions(top=[386.5, 364.5, 0.], bottom=[386.5, -12.5, 0.]) geom = Epix100Geometry.from_relative_positions(top=[386.5, 364.5, 0.], bottom=[386.5, -12.5, 0.])
if pattern_classification: if pattern_classification:
plt.subplots(1,2,figsize=(18,18)) if pattern_classification else plt.subplots(1,1,figsize=(9,9)) plt.subplots(1,2,figsize=(18,18)) if pattern_classification else plt.subplots(1,1,figsize=(9,9))
ax = plt.subplot(1,2,1) ax = plt.subplot(1,2,1)
ax.set_title(f'Before CS correction',fontsize=12,fontweight='bold'); ax.set_title(f'Before CS correction',fontsize=12,fontweight='bold');
else: else:
plt.subplots(1,1,figsize=(9,9)) plt.subplots(1,1,figsize=(9,9))
ax = plt.subplot(1,1,1) ax = plt.subplot(1,1,1)
ax.set_title(f'{karabo_id} | {prop_str}, r{run} | Average of {data.shape[0]} trains',fontsize=12,fontweight='bold'); ax.set_title(f'{karabo_id} | {prop_str}, r{run} | Average of {data.shape[0]} trains',fontsize=12,fontweight='bold');
# Average image before charge sharing corrcetion # Average image before charge sharing corrcetion
divider = make_axes_locatable(ax) divider = make_axes_locatable(ax)
cax = divider.append_axes('bottom', size='5%', pad=0.5) cax = divider.append_axes('bottom', size='5%', pad=0.5)
image = data.mean(axis=0) image = data.mean(axis=0)
vmin = max(image.mean()-2*image.std(),0) vmin = max(image.mean()-2*image.std(),0)
vmax = image.mean()+3*image.std() vmax = image.mean()+3*image.std()
geom.plot_data(image, geom.plot_data(image,
ax=ax, ax=ax,
colorbar={'cax': cax, 'label': plot_unit, 'orientation': 'horizontal'}, colorbar={'cax': cax, 'label': plot_unit, 'orientation': 'horizontal'},
origin='upper', origin='upper',
vmin=vmin, vmin=vmin,
vmax=vmax) vmax=vmax)
# Average image after charge sharing corrcetion # Average image after charge sharing corrcetion
if pattern_classification: if pattern_classification:
ax = plt.subplot(1,2,2) ax = plt.subplot(1,2,2)
divider = make_axes_locatable(ax) divider = make_axes_locatable(ax)
cax = divider.append_axes('bottom', size='5%', pad=0.5) cax = divider.append_axes('bottom', size='5%', pad=0.5)
image = data_clu.mean(axis=0) image = data_clu.mean(axis=0)
geom.plot_data(image, geom.plot_data(image,
ax=ax, ax=ax,
colorbar={'cax': cax, 'label': plot_unit, 'orientation': 'horizontal'}, colorbar={'cax': cax, 'label': plot_unit, 'orientation': 'horizontal'},
origin='upper', origin='upper',
vmin=vmin, vmin=vmin,
vmax=vmax) vmax=vmax)
ax.set_title(f'After CS correction',fontsize=12,fontweight='bold'); ax.set_title(f'After CS correction',fontsize=12,fontweight='bold');
plt.suptitle(f'{karabo_id} | {prop_str}, r{run} | Average of {data.shape[0]} trains',fontsize=14,fontweight='bold',y=.72); plt.suptitle(f'{karabo_id} | {prop_str}, r{run} | Average of {data.shape[0]} trains',fontsize=14,fontweight='bold',y=.72);
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## Single Shot of the corrected data ## Single Shot of the corrected data
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
train_idx = -1 train_idx = -1
if pattern_classification: if pattern_classification:
plt.subplots(1,2,figsize=(18,18)) if pattern_classification else plt.subplots(1,1,figsize=(9,9)) plt.subplots(1,2,figsize=(18,18)) if pattern_classification else plt.subplots(1,1,figsize=(9,9))
ax = plt.subplot(1,2,1) ax = plt.subplot(1,2,1)
ax.set_title(f'Before CS correction',fontsize=12,fontweight='bold'); ax.set_title(f'Before CS correction',fontsize=12,fontweight='bold');
else: else:
plt.subplots(1,1,figsize=(9,9)) plt.subplots(1,1,figsize=(9,9))
ax = plt.subplot(1,1,1) ax = plt.subplot(1,1,1)
ax.set_title(f'{karabo_id} | {prop_str}, r{run} | Single frame',fontsize=12,fontweight='bold'); ax.set_title(f'{karabo_id} | {prop_str}, r{run} | Single frame',fontsize=12,fontweight='bold');
# Average image before charge sharing corrcetion # Average image before charge sharing corrcetion
divider = make_axes_locatable(ax) divider = make_axes_locatable(ax)
cax = divider.append_axes('bottom', size='5%', pad=0.5) cax = divider.append_axes('bottom', size='5%', pad=0.5)
image = data[train_idx] image = data[train_idx]
vmin = max(image.mean()-2*image.std(),0) vmin = max(image.mean()-2*image.std(),0)
vmax = image.mean()+3*image.std() vmax = image.mean()+3*image.std()
geom.plot_data(image, geom.plot_data(image,
ax=ax, ax=ax,
colorbar={'cax': cax, 'label': plot_unit, 'orientation': 'horizontal'}, colorbar={'cax': cax, 'label': plot_unit, 'orientation': 'horizontal'},
origin='upper', origin='upper',
vmin=vmin, vmin=vmin,
vmax=vmax) vmax=vmax)
# Average image after charge sharing corrcetion # Average image after charge sharing corrcetion
if pattern_classification: if pattern_classification:
ax = plt.subplot(1,2,2) ax = plt.subplot(1,2,2)
divider = make_axes_locatable(ax) divider = make_axes_locatable(ax)
cax = divider.append_axes('bottom', size='5%', pad=0.5) cax = divider.append_axes('bottom', size='5%', pad=0.5)
image = data_clu[train_idx] image = data_clu[train_idx]
geom.plot_data(image, geom.plot_data(image,
ax=ax, ax=ax,
colorbar={'cax': cax, 'label': plot_unit, 'orientation': 'horizontal'}, colorbar={'cax': cax, 'label': plot_unit, 'orientation': 'horizontal'},
origin='upper', origin='upper',
vmin=vmin, vmin=vmin,
vmax=vmax) vmax=vmax)
ax.set_title(f'After CS correction',fontsize=12,fontweight='bold'); ax.set_title(f'After CS correction',fontsize=12,fontweight='bold');
plt.suptitle(f'{karabo_id} | {prop_str}, r{run} | Single frame',fontsize=14,fontweight='bold',y=.72); plt.suptitle(f'{karabo_id} | {prop_str}, r{run} | Single frame',fontsize=14,fontweight='bold',y=.72);
``` ```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment