Skip to content
Snippets Groups Projects
Commit 5e57e05c authored by Egor Sobolev's avatar Egor Sobolev
Browse files

Remove addon abstraction

parent 624b8c9d
No related branches found
No related tags found
1 merge request!986[AGIPD] Feat: lit-pixel counter
...@@ -28,7 +28,7 @@ from cal_tools.agipdutils import ( ...@@ -28,7 +28,7 @@ from cal_tools.agipdutils import (
melt_snowy_pixels, melt_snowy_pixels,
) )
from cal_tools.enums import AgipdGainMode, BadPixels, SnowResolution from cal_tools.enums import AgipdGainMode, BadPixels, SnowResolution
from cal_tools.litpx_counter import AnalysisAddon, LitPixelCounter from cal_tools.litpx_counter import LitPixelCounter
from logging import warning from logging import warning
...@@ -73,7 +73,7 @@ class AgipdCtrl: ...@@ -73,7 +73,7 @@ class AgipdCtrl:
else: else:
raise ValueError(f"No raw images found for {self.image_src}") raise ValueError(f"No raw images found for {self.image_src}")
return ncell return ncell
def get_num_cells(self) -> int: def get_num_cells(self) -> int:
"""Read number of memory cells from fast data.""" """Read number of memory cells from fast data."""
...@@ -84,7 +84,7 @@ class AgipdCtrl: ...@@ -84,7 +84,7 @@ class AgipdCtrl:
# the function returns wrong value. # the function returns wrong value.
ncell = self._get_num_cells_instr() ncell = self._get_num_cells_instr()
return ncell return ncell
def _get_acq_rate_ctrl(self) -> Optional[float]: def _get_acq_rate_ctrl(self) -> Optional[float]:
"""Get acquisition (repetition) rate from CONTROL source.""" """Get acquisition (repetition) rate from CONTROL source."""
...@@ -588,6 +588,7 @@ class AgipdCorrections: ...@@ -588,6 +588,7 @@ class AgipdCorrections:
# Output parameters # Output parameters
self.compress_fields = ['gain', 'mask'] self.compress_fields = ['gain', 'mask']
self.recast_image_fields = {} self.recast_image_fields = {}
self.write_extra_data = []
# Shared variables for data and constants # Shared variables for data and constants
self.shared_dict = [] self.shared_dict = []
...@@ -777,12 +778,13 @@ class AgipdCorrections: ...@@ -777,12 +778,13 @@ class AgipdCorrections:
instrument_channels.append(f"{agipd_base}/image") instrument_channels.append(f"{agipd_base}/image")
# backward compatibility END # backward compatibility END
addons = [] # resolve names for extra source
for name, elem in data_dict.items(): extra_sources = []
if isinstance(elem, AnalysisAddon): for name in self.write_extra_data:
src_name = elem.source_name(karabo_id, det_channel) processor = data_dict[name]
addons.append((elem, src_name)) src_name = processor.source_name(karabo_id, det_channel)
instrument_channels.append(f"{src_name}/{elem.channel}") extra_sources.append((processor, src_name))
instrument_channels.append(f"{src_name}/{processor.channel}")
with DataFile.from_details(out_folder, agg, runno, seqno) as outfile: with DataFile.from_details(out_folder, agg, runno, seqno) as outfile:
outfile.create_metadata( outfile.create_metadata(
...@@ -823,13 +825,13 @@ class AgipdCorrections: ...@@ -823,13 +825,13 @@ class AgipdCorrections:
field, shape=arr.shape, dtype=arr.dtype, **kw field, shape=arr.shape, dtype=arr.dtype, **kw
) )
# create addon sources # create extra sources
required_addon_data = [] required_data = []
for addon, src_name in addons: for processor, src_name in extra_sources:
src = outfile.create_instrument_source(src_name) src = outfile.create_instrument_source(src_name)
addon.set_num_images(n_img) processor.set_num_images(n_img)
addon.create_schema(src, trains, count) processor.create_schema(src, trains, count)
required_addon_data.append((addon, src)) required_data.append((processor, src))
# Write the corrected data # Write the corrected data
for field in image_fields: for field in image_fields:
...@@ -840,9 +842,9 @@ class AgipdCorrections: ...@@ -840,9 +842,9 @@ class AgipdCorrections:
else: else:
image_grp[field][:] = data_dict[field][:n_img] image_grp[field][:] = data_dict[field][:n_img]
# write addon data # write extra data
for addon, src in required_addon_data: for processor, src in required_data:
addon.write(src) processor.write(src)
def _write_compressed_frames(self, dataset, arr): def _write_compressed_frames(self, dataset, arr):
"""Compress gain/mask frames in multiple threads, and save their data """Compress gain/mask frames in multiple threads, and save their data
...@@ -1493,6 +1495,7 @@ class AgipdCorrections: ...@@ -1493,6 +1495,7 @@ class AgipdCorrections:
:param shape: Shape of expected data (nImg, x, y) :param shape: Shape of expected data (nImg, x, y)
:param n_cores_files: Number of files, handled in parallel :param n_cores_files: Number of files, handled in parallel
""" """
self.write_extra_data = []
self.shared_dict = [] self.shared_dict = []
for i in range(n_cores_files): for i in range(n_cores_files):
self.shared_dict.append({}) self.shared_dict.append({})
...@@ -1521,6 +1524,9 @@ class AgipdCorrections: ...@@ -1521,6 +1524,9 @@ class AgipdCorrections:
self.shared_dict[i]["litpx_counter"] = LitPixelCounter( self.shared_dict[i]["litpx_counter"] = LitPixelCounter(
self.shared_dict[i], threshold=self.litpx_threshold) self.shared_dict[i], threshold=self.litpx_threshold)
if self.corr_bools.get("count_lit_pixels"):
self.write_extra_data.append("litpx_counter")
if self.corr_bools.get("round_photons"): if self.corr_bools.get("round_photons"):
self.shared_hist_preround = sharedmem.empty(len(self.hist_bins_preround) - 1, dtype="i8") self.shared_hist_preround = sharedmem.empty(len(self.hist_bins_preround) - 1, dtype="i8")
self.shared_hist_postround = sharedmem.empty(len(self.hist_bins_postround) - 1, dtype="i8") self.shared_hist_postround = sharedmem.empty(len(self.hist_bins_postround) - 1, dtype="i8")
......
...@@ -2,16 +2,30 @@ import numpy as np ...@@ -2,16 +2,30 @@ import numpy as np
import sharedmem import sharedmem
class AnalysisAddon: class LitPixelCounter:
"""Base class for analysis addons""" """Lit-pixel counter: counts pixels with a signal above a threshold."""
channel = "data" channel = "litpx"
output_fields = [ output_fields = [
"cellId", "pulseId", "trainId"] "cellId", "pulseId", "trainId",
"litPixels", "unmaskedPixels", "totalIntensity"
]
required_data = [ required_data = [
"cellId", "pulseId", "trainId"] "data", "mask", "cellId", "pulseId", "trainId"
]
def __init__(self, data): def __init__(self, data, threshold=0.7):
"""Initialize the instance of lit-pixel analysis addon.
Parameters
----------
data: dict
Dictionary with image data. It must include the fields:
`data`, `mask`, `cellId`, `pulseId`, `trainId`
threshold: float
The pixel intensity value, which if exceeded means
that the pixel is illuminated.
"""
required_data = set(self.required_data) | {"pulseId"} required_data = set(self.required_data) | {"pulseId"}
for name in required_data: for name in required_data:
if name not in data: if name not in data:
...@@ -21,6 +35,19 @@ class AnalysisAddon: ...@@ -21,6 +35,19 @@ class AnalysisAddon:
self.max_images = data["pulseId"].shape[0] self.max_images = data["pulseId"].shape[0]
self.num_images = self.max_images self.num_images = self.max_images
# specific members
self.image = data["data"]
self.mask = data["mask"]
self.threshold = threshold
self.num_unmasked_px = sharedmem.full(self.max_images, 0, int)
self.num_lit_px = sharedmem.full(self.max_images, 0, int)
self.total_intensity = sharedmem.full(self.max_images, 0, int)
self.data["litPixels"] = self.num_lit_px
self.data["unmaskedPixels"] = self.num_unmasked_px
self.data["totalIntensity"] = self.total_intensity
def set_num_images(self, num_images): def set_num_images(self, num_images):
"""Sets the actual number of images in data. """Sets the actual number of images in data.
...@@ -39,7 +66,14 @@ class AnalysisAddon: ...@@ -39,7 +66,14 @@ class AnalysisAddon:
chunk: slice, sequence or array chunk: slice, sequence or array
The indices of images in `data` to process The indices of images in `data` to process
""" """
raise NotImplementedError ix = range(*chunk.indices(self.num_images))
for i in ix:
mask = self.mask[i] == 0
self.total_intensity[i] = np.sum(
self.image[i], initial=0, where=mask)
self.num_lit_px[i] = np.sum(
self.image[i] > self.threshold, initial=0, where=mask)
self.num_unmasked_px[i] = np.sum(mask)
def source_name(self, karabo_id, channel): def source_name(self, karabo_id, channel):
"""Returns the source name. """Returns the source name.
...@@ -56,7 +90,7 @@ class AnalysisAddon: ...@@ -56,7 +90,7 @@ class AnalysisAddon:
source_name: str source_name: str
The source name for EXDF files The source name for EXDF files
""" """
return f"{karabo_id}/DANA/{channel}" return f"{karabo_id}/LITPX/{channel}"
def create_schema(self, source, file_trains=None, count=None): def create_schema(self, source, file_trains=None, count=None):
"""Creates the indices and keys in the source. """Creates the indices and keys in the source.
...@@ -106,55 +140,3 @@ class AnalysisAddon: ...@@ -106,55 +140,3 @@ class AnalysisAddon:
channel = source[self.channel] channel = source[self.channel]
for key in self.output_fields: for key in self.output_fields:
channel[key][:] = self.data[key][:self.num_images] channel[key][:] = self.data[key][:self.num_images]
class LitPixelCounter(AnalysisAddon):
"""Lit-pixel counter analysis addon."""
channel = "litpx"
output_fields = [
"cellId", "pulseId", "trainId",
"litPixels", "unmaskedPixels", "totalIntensity"
]
required_data = [
"data", "mask", "cellId", "pulseId", "trainId"
]
def __init__(self, data, threshold=0.8):
"""Initialize the instance of lit-pixel analysis addon.
Parameters
----------
data: dict
Dictionary with image data. It must include the fields:
`data`, `mask`, `cellId`, `pulseId`, `trainId`
threshold: float
The pixel intensity value, which if exceeded means
that the pixel is illuminated.
"""
super().__init__(data)
self.image = data["data"]
self.mask = data["mask"]
self.threshold = threshold
self.num_unmasked_px = sharedmem.full(self.max_images, 0, int)
self.num_lit_px = sharedmem.full(self.max_images, 0, int)
self.total_intensity = sharedmem.full(self.max_images, 0, int)
self.data["litPixels"] = self.num_lit_px
self.data["unmaskedPixels"] = self.num_unmasked_px
self.data["totalIntensity"] = self.total_intensity
def process(self, chunk):
ix = range(*chunk.indices(self.num_images))
for i in ix:
mask = self.mask[i] == 0
self.total_intensity[i] = np.sum(
self.image[i], initial=0, where=mask)
self.num_lit_px[i] = np.sum(
self.image[i] > self.threshold, initial=0, where=mask)
self.num_unmasked_px[i] = np.sum(mask)
def source_name(self, karabo_id, channel):
return f"{karabo_id}/LITPX/{channel}"
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment