Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pycalibration
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Model registry
Analyze
Contributor analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
calibration
pycalibration
Commits
5f3dcdaf
Commit
5f3dcdaf
authored
4 months ago
by
Philipp Schmidt
Browse files
Options
Downloads
Patches
Plain Diff
Add placeholders for parallel gain arguments to correct_lpd_frames in LPDMini
parent
d6de823a
No related branches found
No related tags found
1 merge request
!1113
[LPDMini][CORRECT] Add placeholders for parallel gain arguments to correct_lpd_frames in LPDMini
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
notebooks/LPDMini/LPD_Mini_Correct.ipynb
+2
-1
2 additions, 1 deletion
notebooks/LPDMini/LPD_Mini_Correct.ipynb
with
2 additions
and
1 deletion
notebooks/LPDMini/LPD_Mini_Correct.ipynb
+
2
−
1
View file @
5f3dcdaf
...
...
@@ -473,7 +473,8 @@
" start = perf_counter()\n",
" correct_lpd_frames(in_sliced, in_cell,\n",
" out_data, out_gain, out_mask,\n",
" offset_const, gain_const, mask_const,\n",
" offset_const, None, gain_const, mask_const,\n",
" None, 0.0, 0.0,\n",
" num_threads=num_threads_per_worker)\n",
" correct_time = perf_counter() - start\n",
" \n",
...
...
%% Cell type:markdown id: tags:
# LPD Mini Offline Correction #
Author: European XFEL Data Analysis Group
%% Cell type:code id: tags:
```
python
# Input parameters
in_folder
=
"
/gpfs/exfel/exp/FXE/202321/p004576/raw/
"
# the folder to read data from, required
out_folder
=
"
/gpfs/exfel/data/scratch/kluyvert/correct-lpdmini-p4576-r48
"
# the folder to output to, required
metadata_folder
=
''
# Directory containing calibration_metadata.yml when run by xfel-calibrate.
sequences
=
[
-
1
]
# Sequences to correct, use [-1] for all
karabo_da
=
[
''
]
# Data aggregators names to correct, e.g. 'LPDMINI00/8', use [''] for all
run
=
48
# run to process, required
# Source parameters
karabo_id
=
'
FXE_DET_LPD_MINI
'
# Karabo domain for detector.
input_source
=
'
{karabo_id}/DET/0CH0:xtdf
'
# Input fast data source.
output_source
=
'
{karabo_id}/CORR/0CH0:output
'
# Output fast data source, empty to use same as input.
control_source
=
'
{karabo_id}/FPGA/FEM
'
# Control source
# CalCat parameters
creation_time
=
""
# The timestamp to use with Calibration DB. Required Format: "YYYY-MM-DD hh:mm:ss" e.g. 2019-07-04 11:02:41
cal_db_interface
=
''
# Not needed, compatibility with current webservice.
cal_db_timeout
=
0
# Not needed, compatbility with current webservice.
cal_db_root
=
'
/gpfs/exfel/d/cal/caldb_store
'
# Operating conditions
bias_voltage_0
=
-
1
# bias voltage for minis 1, 3, 5, 7; Setting -1 will read the value from files
bias_voltage_1
=
-
1
# bias voltage for minis 2, 4, 6, 8; Setting -1 will read the value from files
capacitor
=
'
5pF
'
# Capacitor setting: 5pF or 50pF
photon_energy
=
9.3
# Photon energy in keV.
use_cell_order
=
'
auto
'
# Whether to use memory cell order as a detector condition (auto = used only when memory cells wrap around)
# Correction parameters
offset_corr
=
True
# Offset correction.
rel_gain
=
True
# Gain correction based on RelativeGain constant.
ff_map
=
True
# Gain correction based on FFMap constant.
gain_amp_map
=
True
# Gain correction based on GainAmpMap constant.
# Output options
overwrite
=
True
# set to True if existing data should be overwritten
chunks_data
=
1
# HDF chunk size for pixel data in number of frames.
chunks_ids
=
32
# HDF chunk size for cellId and pulseId datasets.
# Parallelization options
sequences_per_node
=
1
# Sequence files to process per node
max_nodes
=
8
# Maximum number of SLURM jobs to split correction work into
num_workers
=
8
# Worker processes per node, 8 is safe on 768G nodes but won't work on 512G.
num_threads_per_worker
=
32
# Number of threads per worker.
def
balance_sequences
(
in_folder
,
run
,
sequences
,
sequences_per_node
,
karabo_da
,
max_nodes
):
from
xfel_calibrate.calibrate
import
balance_sequences
as
bs
return
bs
(
in_folder
,
run
,
sequences
,
sequences_per_node
,
karabo_da
,
max_nodes
=
max_nodes
)
```
%% Cell type:code id: tags:
```
python
from
pathlib
import
Path
from
time
import
perf_counter
import
re
import
warnings
from
IPython.display
import
Markdown
import
numpy
as
np
import
h5py
import
matplotlib
matplotlib
.
use
(
'
agg
'
)
import
matplotlib.pyplot
as
plt
%
matplotlib
inline
from
calibration_client.modules
import
CalibrationConstantVersion
import
extra_data
as
xd
import
extra_geom
as
xg
import
pasha
as
psh
from
cal_tools.calcat_interface
import
CalCatApi
from
cal_tools.lpdalgs
import
correct_lpd_frames
from
cal_tools.lpdlib
import
get_mem_cell_pattern
,
make_cell_order_condition
from
cal_tools.tools
import
CalibrationMetadata
,
calcat_creation_time
from
cal_tools.files
import
DataFile
from
cal_tools.restful_config
import
calibration_client
```
%% Cell type:markdown id: tags:
# Prepare environment
%% Cell type:code id: tags:
```
python
file_re
=
re
.
compile
(
r
'
^RAW-R(\d{4})-(\w+\d+)-S(\d{5})$
'
)
# This should probably move to cal_tools
run_folder
=
Path
(
in_folder
)
/
f
'
r
{
run
:
04
d
}
'
out_folder
=
Path
(
out_folder
)
out_folder
.
mkdir
(
exist_ok
=
True
)
output_source
=
output_source
or
input_source
input_source
=
input_source
.
format
(
karabo_id
=
karabo_id
)
output_source
=
output_source
.
format
(
karabo_id
=
karabo_id
)
control_source
=
control_source
.
format
(
karabo_id
=
karabo_id
)
cal_db_root
=
Path
(
cal_db_root
)
creation_time
=
calcat_creation_time
(
in_folder
,
run
,
creation_time
)
print
(
f
'
Using
{
creation_time
.
isoformat
()
}
as creation time
'
)
# Pick all sequences or those selected.
if
not
sequences
or
sequences
==
[
-
1
]:
do_sequence
=
lambda
seq
:
True
else
:
do_sequence
=
[
int
(
x
)
for
x
in
sequences
].
__contains__
# List of detector sources.
det_inp_sources
=
[
input_source
.
format
(
karabo_id
=
karabo_id
)]
mem_cells
=
512
```
%% Cell type:code id: tags:
```
python
if
-
1
in
{
bias_voltage_0
,
bias_voltage_1
}:
run_data
=
xd
.
RunDirectory
(
Path
(
in_folder
,
f
"
r
{
run
:
04
d
}
"
))
if
bias_voltage_0
==
-
1
:
bias_voltage_0
=
run_data
[
control_source
,
'
sensorBiasVoltage0
'
].
as_single_value
(
atol
=
5.
)
if
bias_voltage_1
==
-
1
:
bias_voltage_1
=
run_data
[
control_source
,
'
sensorBiasVoltage1
'
].
as_single_value
(
atol
=
5.
)
print
(
f
"
Using bias voltages
{
bias_voltage_0
}
V &
{
bias_voltage_1
}
V
"
)
```
%% Cell type:markdown id: tags:
# Select data to process
%% Cell type:code id: tags:
```
python
calcat_client
=
calibration_client
()
calcat
=
CalCatApi
(
client
=
calcat_client
)
# Look up PDUs
detector_id
=
calcat
.
detector
(
karabo_id
)[
'
id
'
]
pdus_by_da
=
calcat
.
physical_detector_units
(
detector_id
,
pdu_snapshot_at
=
creation_time
)
modnos_from_db
=
set
()
if
not
karabo_da
or
karabo_da
==
[
''
]:
karabo_da
=
sorted
(
pdus_by_da
.
keys
())
else
:
karabo_da
=
sorted
(
set
(
karabo_da
)
&
pdus_by_da
.
keys
())
print
(
"
Modules to correct:
"
,
karabo_da
)
```
%% Cell type:code id: tags:
```
python
data_to_process
=
[]
data_agg_names
=
{
kda
.
split
(
'
/
'
)[
0
]
for
kda
in
karabo_da
}
for
inp_path
in
run_folder
.
glob
(
'
RAW-*.h5
'
):
match
=
file_re
.
match
(
inp_path
.
stem
)
if
match
[
2
]
not
in
data_agg_names
or
not
do_sequence
(
int
(
match
[
3
])):
continue
outp_path
=
out_folder
/
'
CORR-R{run:04d}-{aggregator}-S{seq:05d}.h5
'
.
format
(
run
=
int
(
match
[
1
]),
aggregator
=
match
[
2
],
seq
=
int
(
match
[
3
]))
data_to_process
.
append
((
inp_path
,
outp_path
))
print
(
'
Files to process:
'
)
for
inp_path
,
_
in
sorted
(
data_to_process
):
print
(
inp_path
.
name
)
```
%% Cell type:markdown id: tags:
# Obtain and prepare calibration constants
%% Cell type:code id: tags:
```
python
const_data
=
{}
retrieved_consts
=
{}
# To be recorded in YAML file
const_load_mp
=
psh
.
ProcessContext
(
num_workers
=
24
)
module_const_shape
=
(
mem_cells
,
32
,
256
,
3
)
# cells, slow_scan, fast_scan, gain
# Retrieve constants from CALCAT.
dark_calibrations
=
{
14
:
'
BadPixelsDark
'
# np.uint32
}
if
offset_corr
:
dark_calibrations
[
1
]
=
'
Offset
'
# np.float32
base_condition
=
[
# Bias voltage added below as it differs by module
dict
(
parameter_name
=
'
Feedback capacitor
'
,
value
=
capacitor
),
dict
(
parameter_name
=
'
Memory cells
'
,
value
=
mem_cells
),
dict
(
parameter_name
=
'
Pixels X
'
,
value
=
256
),
dict
(
parameter_name
=
'
Pixels Y
'
,
value
=
32
),
]
dark_condition
=
base_condition
.
copy
()
if
use_cell_order
!=
'
never
'
:
# Read the order of memory cells used
raw_data
=
xd
.
DataCollection
.
from_paths
([
e
[
0
]
for
e
in
data_to_process
])
cell_ids_pattern_s
=
make_cell_order_condition
(
use_cell_order
,
get_mem_cell_pattern
(
raw_data
,
det_inp_sources
)
)
if
cell_ids_pattern_s
is
not
None
:
print
(
"
Memory cells order:
"
,
cell_ids_pattern_s
)
dark_condition
.
append
(
dict
(
parameter_name
=
'
Memory cell order
'
,
value
=
cell_ids_pattern_s
),
)
illuminated_calibrations
=
{}
if
rel_gain
:
illuminated_calibrations
[
44
]
=
'
RelativeGain
'
# np.float32
if
ff_map
:
illuminated_calibrations
[
43
]
=
'
FFMap
'
# np.float32
illuminated_calibrations
[
20
]
=
'
BadPixelsFF
'
# np.uint32
if
gain_amp_map
:
illuminated_calibrations
[
42
]
=
'
GainAmpMap
'
# np.float32
illuminated_condition
=
base_condition
+
[
dict
(
parameter_name
=
'
Source Energy
'
,
value
=
photon_energy
),
]
```
%% Cell type:code id: tags:
```
python
print
(
'
Querying calibration database
'
,
end
=
''
,
flush
=
True
)
start
=
perf_counter
()
for
calibrations
,
condition
in
[
(
dark_calibrations
,
dark_condition
),
(
illuminated_calibrations
,
illuminated_condition
)
]:
if
not
calibrations
:
continue
for
karabo_da_m
in
karabo_da
:
mod_num
=
int
(
karabo_da_m
.
split
(
'
/
'
)[
-
1
])
# mod_num is from 1 to 8, so b_v_0 applies to odd numbers
bias_voltage
=
bias_voltage_0
if
mod_num
%
2
==
1
else
bias_voltage_1
condition_w_voltage
=
[
dict
(
parameter_name
=
'
Sensor Bias Voltage
'
,
value
=
bias_voltage
)]
+
condition
resp
=
CalibrationConstantVersion
.
get_closest_by_time_by_detector_conditions
(
calcat_client
,
karabo_id
,
list
(
calibrations
.
keys
()),
{
'
parameters_conditions_attributes
'
:
condition_w_voltage
},
karabo_da
=
karabo_da_m
,
event_at
=
creation_time
.
isoformat
()
)
if
not
resp
[
'
success
'
]:
raise
RuntimeError
(
resp
)
for
ccv
in
resp
[
'
data
'
]:
cc
=
ccv
[
'
calibration_constant
'
]
calibration_name
=
calibrations
[
cc
[
'
calibration_id
'
]]
mod_const_metadata
=
retrieved_consts
.
setdefault
(
karabo_da_m
,
{
'
physical-name
'
:
ccv
[
'
physical_detector_unit
'
][
'
physical_name
'
]
})
mod_const_metadata
.
setdefault
(
'
constants
'
,
{})[
calibration_name
]
=
{
"
path
"
:
str
(
cal_db_root
/
ccv
[
'
path_to_file
'
]
/
ccv
[
'
file_name
'
]),
"
dataset
"
:
ccv
[
'
data_set_name
'
],
"
creation-time
"
:
ccv
[
"
begin_validity_at
"
],
"
ccv-id
"
:
ccv
[
"
id
"
],
}
dtype
=
np
.
uint32
if
calibration_name
.
startswith
(
'
BadPixels
'
)
else
np
.
float32
const_data
[(
mod_num
,
calibration_name
)]
=
dict
(
path
=
Path
(
ccv
[
'
path_to_file
'
])
/
ccv
[
'
file_name
'
],
dataset
=
ccv
[
'
data_set_name
'
],
data
=
const_load_mp
.
alloc
(
shape
=
module_const_shape
,
dtype
=
dtype
)
)
print
(
'
.
'
,
end
=
''
,
flush
=
True
)
total_time
=
perf_counter
()
-
start
print
(
f
'
{
total_time
:
.
1
f
}
s
'
)
```
%% Cell type:code id: tags:
```
python
lines
=
[]
for
karabo_da_m
,
mod_const_metadata
in
retrieved_consts
.
items
():
lines
.
append
(
f
"
-
{
karabo_da_m
}
(
{
mod_const_metadata
[
'
physical-name
'
]
}
)
"
)
for
const_name
,
d
in
mod_const_metadata
[
'
constants
'
].
items
():
url
=
f
"
https://in.xfel.eu/calibration/calibration_constant_versions/
{
d
[
'
ccv-id
'
]
}
"
lines
.
append
(
f
"
-
{
const_name
}
: [
{
d
[
'
creation-time
'
]
}
](
{
url
}
)
"
)
Markdown
(
'
\n
'
.
join
(
lines
))
```
%% Cell type:code id: tags:
```
python
CalibrationMetadata
(
metadata_folder
or
out_folder
).
add_fragment
({
"
retrieved-constants
"
:
retrieved_consts
})
```
%% Cell type:code id: tags:
```
python
def
load_constant_dataset
(
wid
,
index
,
const_descr
):
ccv_entry
=
const_data
[
const_descr
]
with
h5py
.
File
(
cal_db_root
/
ccv_entry
[
'
path
'
],
'
r
'
)
as
fp
:
fp
[
ccv_entry
[
'
dataset
'
]
+
'
/data
'
].
read_direct
(
ccv_entry
[
'
data
'
])
print
(
'
.
'
,
end
=
''
,
flush
=
True
)
print
(
'
Loading calibration data
'
,
end
=
''
,
flush
=
True
)
start
=
perf_counter
()
const_load_mp
.
map
(
load_constant_dataset
,
list
(
const_data
.
keys
()))
total_time
=
perf_counter
()
-
start
print
(
f
'
{
total_time
:
.
1
f
}
s
'
)
```
%% Cell type:code id: tags:
```
python
module_nums
=
sorted
({
n
for
n
,
_
in
const_data
})
nmods
=
len
(
module_nums
)
const_type_names
=
{
t
for
_
,
t
in
const_data
}
const_shape
=
(
mem_cells
,
32
*
len
(
module_nums
),
256
,
3
)
# cells, slow_scan, fast_scan, gain
const_slices
=
[
slice
(
i
*
32
,
(
i
+
1
)
*
32
)
for
i
in
range
(
len
(
module_nums
))]
raw_data_slices
=
[
slice
((
n
-
1
)
*
32
,
n
*
32
)
for
n
in
module_nums
]
def
_assemble_constant
(
arr
,
calibration_name
):
for
mod_num
,
sl
in
zip
(
module_nums
,
const_slices
):
arr
[:,
sl
]
=
const_data
[
mod_num
,
calibration_name
][
'
data
'
]
offset_const
=
np
.
zeros
(
const_shape
,
dtype
=
np
.
float32
)
if
offset_corr
:
_assemble_constant
(
offset_const
,
'
Offset
'
)
mask_const
=
np
.
zeros
(
const_shape
,
dtype
=
np
.
uint32
)
_assemble_constant
(
mask_const
,
'
BadPixelsDark
'
)
gain_const
=
np
.
ones
(
const_shape
,
dtype
=
np
.
float32
)
if
rel_gain
:
_assemble_constant
(
gain_const
,
'
RelativeGain
'
)
if
ff_map
:
ff_map_gain
=
np
.
ones
(
const_shape
,
dtype
=
np
.
float32
)
_assemble_constant
(
ff_map_gain
,
'
FFMap
'
)
gain_const
*=
ff_map_gain
if
'
BadPixelsFF
'
in
const_type_names
:
badpix_ff
=
np
.
zeros
(
const_shape
,
dtype
=
np
.
uint32
)
_assemble_constant
(
badpix_ff
,
'
BadPixelsFF
'
)
mask_const
|=
badpix_ff
if
gain_amp_map
:
gain_amp_map
=
np
.
zeros
(
const_shape
,
dtype
=
np
.
float32
)
_assemble_constant
(
gain_amp_map
,
'
GainAmpMap
'
)
gain_const
*=
gain_amp_map
```
%% Cell type:code id: tags:
```
python
def
correct_file
(
wid
,
index
,
work
):
inp_path
,
outp_path
=
work
start
=
perf_counter
()
dc
=
xd
.
H5File
(
inp_path
,
inc_suspect_trains
=
False
).
select
(
'
*
'
,
'
image.*
'
,
require_all
=
True
)
inp_source
=
dc
[
input_source
]
open_time
=
perf_counter
()
-
start
# Load raw data for this file.
# Reshaping gets rid of the extra 1-len dimensions without
# mangling the frame axis for an actual frame count of 1.
start
=
perf_counter
()
in_raw
=
inp_source
[
'
image.data
'
].
ndarray
()
if
in_raw
.
ndim
>
3
:
in_raw
=
in_raw
[:,
0
]
in_cell
=
inp_source
[
'
image.cellId
'
].
ndarray
().
reshape
(
-
1
)
in_pulse
=
inp_source
[
'
image.pulseId
'
].
ndarray
().
reshape
(
-
1
)
read_time
=
perf_counter
()
-
start
# Slice modules from input data
data_shape
=
(
in_raw
.
shape
[
0
],
nmods
*
32
,
256
)
in_sliced
=
np
.
zeros
(
data_shape
,
dtype
=
in_raw
.
dtype
)
for
i
,
sl
in
enumerate
(
raw_data_slices
):
in_sliced
[:,
i
*
32
:(
i
+
1
)
*
32
]
=
in_raw
[...,
sl
,
:]
output_shape
=
(
data_shape
[
0
],
nmods
,
32
,
256
)
# Allocate output arrays.
out_data
=
np
.
zeros
(
in_sliced
.
shape
,
dtype
=
np
.
float32
)
out_gain
=
np
.
zeros
(
in_sliced
.
shape
,
dtype
=
np
.
uint8
)
out_mask
=
np
.
zeros
(
in_sliced
.
shape
,
dtype
=
np
.
uint32
)
start
=
perf_counter
()
correct_lpd_frames
(
in_sliced
,
in_cell
,
out_data
,
out_gain
,
out_mask
,
offset_const
,
gain_const
,
mask_const
,
offset_const
,
None
,
gain_const
,
mask_const
,
None
,
0.0
,
0.0
,
num_threads
=
num_threads_per_worker
)
correct_time
=
perf_counter
()
-
start
image_counts
=
inp_source
[
'
image.data
'
].
data_counts
(
labelled
=
False
)
start
=
perf_counter
()
if
(
not
outp_path
.
exists
()
or
overwrite
)
and
image_counts
.
sum
()
>
0
:
with
DataFile
(
outp_path
,
'
w
'
)
as
outp_file
:
outp_file
.
create_index
(
dc
.
train_ids
,
from_file
=
dc
.
files
[
0
])
outp_file
.
create_metadata
(
like
=
dc
,
instrument_channels
=
(
f
'
{
output_source
}
/image
'
,))
outp_source
=
outp_file
.
create_instrument_source
(
output_source
)
outp_source
.
create_index
(
image
=
image_counts
)
outp_source
.
create_key
(
'
image.cellId
'
,
data
=
in_cell
,
chunks
=
(
min
(
chunks_ids
,
in_cell
.
shape
[
0
]),))
outp_source
.
create_key
(
'
image.pulseId
'
,
data
=
in_pulse
,
chunks
=
(
min
(
chunks_ids
,
in_pulse
.
shape
[
0
]),))
outp_source
.
create_key
(
'
image.data
'
,
data
=
out_data
.
reshape
(
output_shape
),
chunks
=
(
min
(
chunks_data
,
out_data
.
shape
[
0
]),
1
,
32
,
256
))
outp_source
.
create_compressed_key
(
'
image.gain
'
,
data
=
out_gain
.
reshape
(
output_shape
))
outp_source
.
create_compressed_key
(
'
image.mask
'
,
data
=
out_mask
.
reshape
(
output_shape
))
write_time
=
perf_counter
()
-
start
total_time
=
open_time
+
read_time
+
correct_time
+
write_time
frame_rate
=
in_raw
.
shape
[
0
]
/
total_time
m
=
file_re
.
match
(
inp_path
.
stem
)
seq
=
int
(
m
[
3
])
if
m
else
-
1
print
(
'
{}
\t
{}
\t
{:.3f}
\t
{:.3f}
\t
{:.3f}
\t
{:.3f}
\t
{:.3f}
\t
{}
\t
{:.1f}
'
.
format
(
wid
,
seq
,
open_time
,
read_time
,
correct_time
,
write_time
,
total_time
,
in_raw
.
shape
[
0
],
frame_rate
))
in_raw
=
None
in_cell
=
None
in_pulse
=
None
out_data
=
None
out_gain
=
None
out_mask
=
None
print
(
'
worker
\t
seq
\t
open
\t
read
\t
correct
\t
write
\t
total
\t
frames
\t
rate
'
)
start
=
perf_counter
()
psh
.
ProcessContext
(
num_workers
=
num_workers
).
map
(
correct_file
,
data_to_process
)
total_time
=
perf_counter
()
-
start
print
(
f
'
Total time:
{
total_time
:
.
1
f
}
s
'
)
```
%% Cell type:markdown id: tags:
# Data preview for first train
%% Cell type:code id: tags:
```
python
# This geometry is arbitrary, we just want to show all the modules
geom
=
xg
.
LPD_MiniGeometry
.
from_module_positions
(
[(
0
,
i
*
40
)
for
i
in
range
(
nmods
)]
)
output_paths
=
[
outp_path
for
_
,
outp_path
in
data_to_process
if
outp_path
.
exists
()]
dc
=
xd
.
H5File
(
sorted
(
output_paths
)[
0
]).
select_trains
(
np
.
s_
[
0
])
det
=
dc
[
output_source
.
format
(
karabo_id
=
karabo_id
)]
data
=
det
[
'
image.data
'
].
ndarray
()
```
%% Cell type:markdown id: tags:
### Intensity histogram across all cells
%% Cell type:code id: tags:
```
python
left_edge_ratio
=
0.01
right_edge_ratio
=
0.99
fig
,
ax
=
plt
.
subplots
(
num
=
1
,
clear
=
True
,
figsize
=
(
15
,
6
))
values
,
bins
,
_
=
ax
.
hist
(
np
.
ravel
(
data
),
bins
=
2000
,
range
=
(
-
1500
,
2000
))
def
find_nearest_index
(
array
,
value
):
return
(
np
.
abs
(
array
-
value
)).
argmin
()
cum_values
=
np
.
cumsum
(
values
)
vmin
=
bins
[
find_nearest_index
(
cum_values
,
cum_values
[
-
1
]
*
left_edge_ratio
)]
vmax
=
bins
[
find_nearest_index
(
cum_values
,
cum_values
[
-
1
]
*
right_edge_ratio
)]
max_value
=
values
.
max
()
ax
.
vlines
([
vmin
,
vmax
],
0
,
max_value
,
color
=
'
red
'
,
linewidth
=
5
,
alpha
=
0.2
)
ax
.
text
(
vmin
,
max_value
,
f
'
{
left_edge_ratio
*
100
:
.
0
f
}
%
'
,
color
=
'
red
'
,
ha
=
'
center
'
,
va
=
'
bottom
'
,
size
=
'
large
'
)
ax
.
text
(
vmax
,
max_value
,
f
'
{
right_edge_ratio
*
100
:
.
0
f
}
%
'
,
color
=
'
red
'
,
ha
=
'
center
'
,
va
=
'
bottom
'
,
size
=
'
large
'
)
ax
.
text
(
vmax
+
(
vmax
-
vmin
)
*
0.01
,
max_value
/
2
,
'
Colormap interval
'
,
color
=
'
red
'
,
rotation
=
90
,
ha
=
'
left
'
,
va
=
'
center
'
,
size
=
'
x-large
'
)
ax
.
set_xlim
(
vmin
-
(
vmax
-
vmin
)
*
0.1
,
vmax
+
(
vmax
-
vmin
)
*
0.1
)
ax
.
set_ylim
(
0
,
max_value
*
1.1
)
pass
```
%% Cell type:markdown id: tags:
### First memory cell
%% Cell type:code id: tags:
```
python
fig
,
ax
=
plt
.
subplots
(
num
=
2
,
figsize
=
(
15
,
15
),
clear
=
True
,
nrows
=
1
,
ncols
=
1
)
geom
.
plot_data_fast
(
data
[
0
],
ax
=
ax
,
vmin
=
vmin
,
vmax
=
vmax
)
pass
```
%% Cell type:markdown id: tags:
### Train average
%% Cell type:code id: tags:
```
python
fig
,
ax
=
plt
.
subplots
(
num
=
3
,
figsize
=
(
15
,
15
),
clear
=
True
,
nrows
=
1
,
ncols
=
1
)
geom
.
plot_data_fast
(
data
.
mean
(
axis
=
0
),
ax
=
ax
,
vmin
=
vmin
,
vmax
=
vmax
)
pass
```
%% Cell type:markdown id: tags:
### Lowest gain stage per pixel
%% Cell type:code id: tags:
```
python
highest_gain_stage
=
det
[
'
image.gain
'
].
ndarray
().
max
(
axis
=
0
)
fig
,
ax
=
plt
.
subplots
(
num
=
4
,
figsize
=
(
15
,
15
),
clear
=
True
,
nrows
=
1
,
ncols
=
1
)
p
=
geom
.
plot_data_fast
(
highest_gain_stage
,
ax
=
ax
,
vmin
=
0
,
vmax
=
2
);
cb
=
ax
.
images
[
0
].
colorbar
cb
.
set_ticks
([
0
,
1
,
2
])
cb
.
set_ticklabels
([
'
High gain
'
,
'
Medium gain
'
,
'
Low gain
'
])
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment