Skip to content
Snippets Groups Projects
Commit 6a963304 authored by Karim Ahmed's avatar Karim Ahmed
Browse files

make sure gain constant is converted to float32

parent 8a5086bd
No related branches found
No related tags found
1 merge request!798[GH2][Correct] Gain constant needs to be float32
%% Cell type:markdown id:bed7bd15-21d9-4735-82c1-c27c1a5e3346 tags:
# Gotthard2 Offline Correction #
Author: European XFEL Detector Group, Version: 1.0
Offline Calibration for the Gothard2 Detector
%% Cell type:code id:570322ed-f611-4fd1-b2ec-c12c13d55843 tags:
``` python
in_folder = "/gpfs/exfel/exp/FXE/202221/p003225/raw" # the folder to read data from, required
out_folder = "/gpfs/exfel/data/scratch/ahmedk/test/gotthard2" # the folder to output to, required
metadata_folder = "" # Directory containing calibration_metadata.yml when run by xfel-calibrate
run = 50 # run to process, required
sequences = [-1] # sequences to correct, set to [-1] for all, range allowed
sequences_per_node = 1 # number of sequence files per node if notebook executed through xfel-calibrate, set to 0 to not run SLURM parallel
# Parameters used to access raw data.
karabo_id = "FXE_XAD_G2XES" # karabo prefix of Gotthard-II devices
karabo_da = ["GH201"] # data aggregators
receiver_template = "RECEIVER" # receiver template used to read INSTRUMENT keys.
control_template = "CONTROL" # control template used to read CONTROL keys.
instrument_source_template = "{}/DET/{}:daqOutput" # template for source name (filled with karabo_id & receiver_id). e.g. 'SPB_IRDA_JF4M/DET/JNGFR01:daqOutput'
ctrl_source_template = "{}/DET/{}" # template for control source name (filled with karabo_id_control)
karabo_id_control = "" # Control karabo ID. Set to empty string to use the karabo-id
# Parameters for calibration database.
use_dir_creation_date = True # use the creation data of the input dir for database queries.
cal_db_interface = "tcp://max-exfl016:8016#8025" # the database interface to use.
cal_db_timeout = 180000 # timeout on caldb requests.
overwrite_creation_time = "" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC.00 e.g. "2022-06-28 13:00:00.00"
# Parameters affecting corrected data.
constants_file = "" # Use constants in given constant file path. /gpfs/exfel/data/scratch/ahmedk/dont_remove/gotthard2/constants/calibration_constants_GH2.h5
offset_correction = True # apply offset correction. This can be disabled to only apply LUT or apply LUT and gain correction for non-linear differential results.
gain_correction = True # apply gain correction.
# Parameter conditions.
bias_voltage = -1 # Detector bias voltage, set to -1 to use value in raw file.
exposure_time = -1. # Detector exposure time, set to -1 to use value in raw file.
exposure_period = -1. # Detector exposure period, set to -1 to use value in raw file.
acquisition_rate = -1. # Detector acquisition rate (1.1/4.5), set to -1 to use value in raw file.
single_photon = -1 # Detector single photon mode (High/Low CDS), set to -1 to use value in raw file.
# Parameters for plotting
skip_plots = False # exit after writing corrected files
pulse_idx_preview = 3 # pulse index to preview. The following even/odd pulse index is used for preview. # TODO: update to pulseId preview.
def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da):
from xfel_calibrate.calibrate import balance_sequences as bs
return bs(in_folder, run, sequences, sequences_per_node, karabo_da)
```
%% Cell type:code id:6e9730d8-3908-41d7-abe2-d78e046d5de2 tags:
``` python
import datetime
import warnings
from functools import partial
import h5py
import pasha as psh
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import Markdown, display
from extra_data import RunDirectory, H5File
from pathlib import Path
from cal_tools import h5_copy_except
from cal_tools.gotthard2 import gotthard2algs, gotthard2lib
from cal_tools.step_timing import StepTimer
from cal_tools.tools import (
get_constant_from_db_and_time,
get_dir_creation_date,
get_pdu_from_db,
CalibrationMetadata,
)
from iCalibrationDB import Conditions, Constants
from XFELDetAna.plotting.heatmap import heatmapPlot
warnings.filterwarnings('ignore')
%matplotlib inline
```
%% Cell type:code id:d7c02c48-4429-42ea-a42e-de45366d7fa3 tags:
``` python
in_folder = Path(in_folder)
run_folder = in_folder / f"r{run:04d}"
out_folder = Path(out_folder)
out_folder.mkdir(parents=True, exist_ok=True)
metadata = CalibrationMetadata(metadata_folder or out_folder)
# NOTE: this notebook will not overwrite calibration metadata file
const_yaml = metadata.get("retrieved-constants", {})
if not karabo_id_control:
karabo_id_control = karabo_id
instrument_src = instrument_source_template.format(karabo_id, receiver_template)
ctrl_src = ctrl_source_template.format(karabo_id_control, control_template)
print(f"Process modules: {karabo_da} for run {run}")
creation_time = None
if overwrite_creation_time:
creation_time = datetime.datetime.strptime(
overwrite_creation_time, "%Y-%m-%d %H:%M:%S.%f"
)
elif use_dir_creation_date:
creation_time = get_dir_creation_date(in_folder, run)
print(f"Using {creation_time} as creation time")
```
%% Cell type:code id:b5eb816e-b5f2-44ce-9907-0273d82341b6 tags:
``` python
# Select only sequence files to process for the selected detector.
if sequences == [-1]:
possible_patterns = list(f"*{mod}*.h5" for mod in karabo_da)
else:
possible_patterns = list(
f"*{mod}-S{s:05d}.h5" for mod in karabo_da for s in sequences
)
run_folder = Path(in_folder / f"r{run:04d}")
seq_files = [
f for f in run_folder.glob("*.h5") if any(f.match(p) for p in possible_patterns)
]
seq_files = sorted(seq_files)
if not seq_files:
raise IndexError("No sequence files available for the selected sequences.")
print(f"Processing a total of {len(seq_files)} sequence files")
```
%% Cell type:code id:f9a8d1eb-ce6a-4ed0-abf4-4a6029734672 tags:
``` python
step_timer = StepTimer()
```
%% Cell type:code id:892172d8 tags:
``` python
# Read slow data
run_dc = RunDirectory(run_folder)
g2ctrl = gotthard2lib.Gotthard2Ctrl(run_dc=run_dc, ctrl_src=ctrl_src)
if bias_voltage == -1:
bias_voltage = g2ctrl.get_bias_voltage()
if exposure_time == -1:
exposure_time = g2ctrl.get_exposure_time()
if exposure_period == -1:
exposure_period = g2ctrl.get_exposure_period()
if acquisition_rate == -1:
acquisition_rate = g2ctrl.get_acquisition_rate()
if single_photon == -1:
single_photon = g2ctrl.get_single_photon()
print("Bias Voltage:", bias_voltage)
print("Exposure Time:", exposure_time)
print("Exposure Period:", exposure_period)
print("Acquisition Rate:", acquisition_rate)
print("Single Photon:", single_photon)
```
%% Cell type:markdown id:8c852392-bb19-4c40-b2ce-3b787538a92d tags:
### Retrieving calibration constants
%% Cell type:code id:5717d722 tags:
``` python
# Used for old FXE (p003225) runs before adding Gotthard2 to CALCAT
const_data = dict()
if constants_file:
for mod in karabo_da:
const_data[mod] = dict()
# load constants temporarily using defined local paths.
with h5py.File(constants_file, "r") as cfile:
const_data[mod]["LUT"] = cfile["LUT"][()]
const_data[mod]["Offset"] = cfile["offset_map"][()].astype(np.float32)
const_data[mod]["RelativeGain"] = cfile["gain_map"][()].astype(np.float32)
const_data[mod]["Mask"] = cfile["bpix_ff"][()].astype(np.uint32)
```
%% Cell type:code id:1cdbe818 tags:
``` python
# Conditions iCalibrationDB object.
condition = Conditions.Dark.Gotthard2(
bias_voltage=bias_voltage,
exposure_time=exposure_time,
exposure_period=exposure_period,
single_photon=single_photon,
acquisition_rate=acquisition_rate,
)
# TODO: Maybe this condition and previous cell can be removed later after the initial phase.
if not constants_file:
# Prepare a dictionary of empty constants to loop on
# it's keys and initiate non-retrieved constants.
empty_lut = (np.arange(2 ** 12).astype(np.float64) * 2 ** 10 / 2 ** 12).astype(
np.uint16
)
empty_lut = np.stack(1280 * [np.stack([empty_lut] * 2)], axis=0)
empty_constants = {
"LUT": empty_lut,
"Offset": np.zeros((1280, 2, 3), dtype=np.float32),
"BadPixelsDark": np.zeros((1280, 2, 3), dtype=np.uint32),
"RelativeGain": np.ones((1280, 2, 3), dtype=np.float32),
"BadPixelsFF": np.zeros((1280, 2, 3), dtype=np.uint32),
}
for mod in karabo_da:
const_data[mod] = dict()
# Only used for printing timestamps within the loop.
when = dict()
# Check YAML file for constant metadata of file path and creation-time
if const_yaml:
for cname, mdata in const_yaml[mod]["constants"].items():
const_data[mod][cname] = dict()
when[cname] = mdata["creation-time"]
if when[cname]:
with h5py.File(mdata["file-path"], "r") as cf:
const_data[mod][cname] = np.copy(
cf[f"{mdata['dataset-name']}/data"]
)
else:
const_data[mod][cname] = empty_constants[cname]
else: # Retrieve constants from CALCAT. Missing YAML file or running notebook interactively.
for cname, cempty in empty_constants.items():
const_data[mod][cname] = dict()
const_data[mod][cname], when[cname] = get_constant_from_db_and_time(
karabo_id=karabo_id,
karabo_da=mod,
cal_db_interface=cal_db_interface,
creation_time=creation_time,
timeout=cal_db_timeout,
print_once=False,
condition=condition,
constant=getattr(Constants.Gotthard2, cname)(),
empty_constant=cempty,
)
bpix = const_data[mod]["BadPixelsDark"]
bpix |= const_data[mod]["BadPixelsFF"]
const_data[mod]["Mask"] = bpix
# Print timestamps for the retrieved constants.
print(f"Constants for module {mod}:")
for cname, ctime in when.items():
print(f" {cname} injected at {ctime}")
del when
```
%% Cell type:code id:23fcf7f4-351a-4df7-8829-d8497d94fecc tags:
``` python
context = psh.ProcessContext(num_workers=23)
```
%% Cell type:code id:daecd662-26d2-4cb8-aa70-383a579cf9f9 tags:
``` python
def correct_train(wid, index, d):
g = gain[index]
gotthard2algs.convert_to_10bit(d, const_data[mod]["LUT"], data_corr[index, ...])
gotthard2algs.correct_train(
data_corr[index, ...],
mask[index, ...],
g,
const_data[mod]["Offset"],
const_data[mod]["RelativeGain"],
const_data[mod]["RelativeGain"].astype(np.float32),
const_data[mod]["Mask"],
apply_offset=offset_correction,
apply_gain=gain_correction,
)
```
%% Cell type:code id:f88c1aa6-a735-4b72-adce-b30162f5daea tags:
``` python
for mod in karabo_da:
# This is used in case receiver template consists of
# karabo data aggregator index. e.g. detector at DETLAB
instr_mod_src = instrument_src.format(mod[-2:])
data_path = "INSTRUMENT/" + instr_mod_src + "/data"
for raw_file in seq_files:
step_timer.start()
dc = H5File(raw_file)
out_file = out_folder / raw_file.name.replace("RAW", "CORR")
# Select module INSTRUMENT source and deselect empty trains.
dc = dc.select(instr_mod_src, require_all=True)
data = dc[instr_mod_src, "data.adc"].ndarray()
gain = dc[instr_mod_src, "data.gain"].ndarray()
step_timer.done_step("preparing raw data")
dshape = data.shape
step_timer.start()
# Allocate shared arrays.
data_corr = context.alloc(shape=dshape, dtype=np.float32)
mask = context.alloc(shape=dshape, dtype=np.uint32)
context.map(correct_train, data)
step_timer.done_step("Correcting one sequence file")
step_timer.start()
# Provided PSI gain map has 0 values. Set inf values to nan.
# TODO: This can maybe be removed after creating XFEL gain maps.?
data_corr[np.isinf(data_corr)] = np.nan
# Create CORR files and add corrected data sources.
# Exclude raw data images (data/adc)
with h5py.File(out_file, "w") as ofile:
# Copy RAW non-calibrated sources.
with h5py.File(raw_file, "r") as sfile:
h5_copy_except.h5_copy_except_paths(sfile, ofile, [f"{data_path}/adc"])
# Create datasets with the available corrected data
ddset = ofile.create_dataset(
f"{data_path}/adc",
data=data_corr,
chunks=((1,) + dshape[1:]), # 1 chunk == 1 image
dtype=np.float32,
)
# Create datasets with the available corrected data
ddset = ofile.create_dataset(
f"{data_path}/mask",
data=mask,
chunks=((1,) + dshape[1:]), # 1 chunk == 1 image
dtype=np.uint32,
compression="gzip",
compression_opts=1,
shuffle=True,
)
step_timer.done_step("Storing data")
```
%% Cell type:code id:94b8e4d2-9f8c-4c23-a509-39238dd8435c tags:
``` python
print(f"Total processing time {step_timer.timespan():.01f} s")
step_timer.print_summary()
```
%% Cell type:code id:0ccc7f7e-2a3f-4ac0-b854-7d505410d2fd tags:
``` python
if skip_plots:
print("Skipping plots")
import sys
sys.exit(0)
```
%% Cell type:code id:ff203f77-3811-46f3-bf7d-226d2dcab13f tags:
``` python
mod_dcs = {}
first_seq_raw = seq_files[0]
first_seq_corr = out_folder / first_seq_raw.name.replace("RAW", "CORR")
for mod in karabo_da:
mod_dcs[mod] = {}
with H5File(first_seq_corr) as out_dc:
tid, mod_dcs[mod]["train_corr_data"] = next(
out_dc[instr_mod_src, "data.adc"].trains()
)
with H5File(first_seq_raw) as in_dc:
train_dict = in_dc.train_from_id(tid)[1][instr_mod_src]
mod_dcs[mod]["train_raw_data"] = train_dict["data.adc"]
mod_dcs[mod]["train_raw_gain"] = train_dict["data.gain"]
```
%% Cell type:code id:494b453a tags:
``` python
# Keep as long as it is essential to correct
# RAW data (FXE p003225) before the data mapping was added to CALCAT.
try:
db_modules = get_pdu_from_db(
karabo_id=karabo_id,
karabo_da=karabo_da,
constant=Constants.jungfrau.Offset(),
condition=condition,
cal_db_interface=cal_db_interface,
snapshot_at=creation_time,
)
except RuntimeError:
print(
"No Physical detector units found for this"
" detector mapping at the RAW data creation time."
)
db_modules = [None] * len(karabo_da)
```
%% Cell type:code id:1b379438-eb1d-42b2-ac83-eb8cf88c46db tags:
``` python
display(Markdown("### Mean RAW and CORRECTED across pulses for one train:"))
display(Markdown(f"Train: {tid}"))
step_timer.start()
for mod, pdu in zip(karabo_da, db_modules):
fig, ax = plt.subplots(figsize=(20, 10))
raw_data = mod_dcs[mod]["train_raw_data"]
im = ax.plot(np.mean(raw_data, axis=0))
ax.set_title(f"RAW module {mod} ({pdu})")
ax.set_xlabel("Strip #", size=20)
ax.set_ylabel("12-bit ADC output", size=20)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
pass
fig, ax = plt.subplots(figsize=(20, 10))
corr_data = mod_dcs[mod]["train_corr_data"]
im = ax.plot(np.mean(corr_data, axis=0))
ax.set_title(f"CORRECTED module {mod} ({pdu})")
ax.set_xlabel("Strip #", size=20)
ax.set_ylabel("10-bit KeV. output", size=20)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
pass
step_timer.done_step("Plotting mean data")
```
%% Cell type:code id:58a6a276 tags:
``` python
display(Markdown(f"### RAW and CORRECTED strips across pulses for train {tid}"))
step_timer.start()
for mod, pdu in zip(karabo_da, db_modules):
for plt_data, dname in zip(
["train_raw_data", "train_corr_data"], ["RAW", "CORRECTED"]
):
fig, ax = plt.subplots(figsize=(15, 20))
plt.rcParams.update({"font.size": 20})
heatmapPlot(
mod_dcs[mod][plt_data],
y_label="Pulses",
x_label="Strips",
title=f"{dname} module {mod} ({pdu})",
use_axis=ax,
)
pass
step_timer.done_step("Plotting RAW and CORRECTED data for one train")
```
%% Cell type:code id:cd8f5e08-fcee-4bff-ba63-6452b3d892a2 tags:
``` python
# Validate given "pulse_idx_preview"
if pulse_idx_preview + 1 > data.shape[1]:
print(
f"WARNING: selected pulse_idx_preview {pulse_idx_preview} is not available in data."
" Previewing 1st pulse."
)
pulse_idx_preview = 1
if data.shape[1] == 1:
odd_pulse = 1
even_pulse = None
else:
odd_pulse = pulse_idx_preview if pulse_idx_preview % 2 else pulse_idx_preview + 1
even_pulse = (
pulse_idx_preview if not (pulse_idx_preview % 2) else pulse_idx_preview + 1
)
if pulse_idx_preview + 1 > data.shape[1]:
pulse_idx_preview = 1
if data.shape[1] > 1:
pulse_idx_preview = 2
```
%% Cell type:code id:e5f0d4d8-e32c-4f2c-8469-4ebbfd3f644c tags:
``` python
display(Markdown("### RAW and CORRECTED even/odd pulses for one train:"))
display(Markdown(f"Train: {tid}"))
for mod, pdu in zip(karabo_da, db_modules):
fig, ax = plt.subplots(figsize=(20, 20))
raw_data = mod_dcs[mod]["train_raw_data"]
corr_data = mod_dcs[mod]["train_corr_data"]
ax.plot(raw_data[odd_pulse], label=f"Odd Pulse {odd_pulse}")
if even_pulse:
ax.plot(raw_data[even_pulse], label=f"Even Pulse {even_pulse}")
ax.set_title(f"RAW module {mod} ({pdu})")
ax.set_xlabel("Strip #", size=20)
ax.set_ylabel("12-bit ADC RAW", size=20)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
ax.legend()
pass
fig, ax = plt.subplots(figsize=(20, 20))
ax.plot(corr_data[odd_pulse], label=f"Odd Pulse {odd_pulse}")
if even_pulse:
ax.plot(corr_data[even_pulse], label=f"Even Pulse {even_pulse}")
ax.set_title(f"CORRECTED module {mod} ({pdu})")
ax.set_xlabel("Strip #", size=20)
ax.set_ylabel("10-bit KeV CORRECTED", size=20)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
ax.legend()
pass
step_timer.done_step("Plotting RAW and CORRECTED odd/even pulses.")
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment