Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pycalibration
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Model registry
Analyze
Contributor analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
calibration
pycalibration
Commits
74beb5c9
Commit
74beb5c9
authored
1 year ago
by
Karim Ahmed
Browse files
Options
Downloads
Patches
Plain Diff
send constant to database notebook
parent
a5119ebc
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!841
[JUNGFRAU][FF] Feat: new notebook for producing gain constants.
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
notebooks/Jungfrau/gainCal_JF_Fit_sendDB_NBC.ipynb
+276
-0
276 additions, 0 deletions
notebooks/Jungfrau/gainCal_JF_Fit_sendDB_NBC.ipynb
with
276 additions
and
0 deletions
notebooks/Jungfrau/gainCal_JF_Fit_sendDB_NBC.ipynb
0 → 100755
+
276
−
0
View file @
74beb5c9
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Send constants from file to the DB"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"in_folder = '/gpfs/exfel/data/user/mramilli/jungfrau/module_PSI_gainmaps/M109'\n",
"raw_folder = '/gpfs/exfel/exp/SPB/202330/900322/raw'\n",
"gain_map_file = '/gainMaps_M109_Burst_Fix_20230523.h5' # path\n",
"g0_run = 94\n",
"\n",
"# Detector module parameters.\n",
"karabo_id = 'SPB_CFEL_JF1M'\n",
"da_name = 'JNGFR09'\n",
"db_module = \"Jungfrau_M109\" # ID of module in calibration database\n",
"\n",
"# Parameter conditions\n",
"bias_voltage = 180 # detector bias voltage\n",
"integration_time = 10 # the detector acquisition rate, use 0 to try to auto-determine\n",
"gain_setting = 0\n",
"gain_mode = 0\n",
"memory_cells = 0 # number of memory cells used, use 0 to auto-derive\n",
"\n",
"# Condition limits\n",
"bias_voltage_lims = [0, 200]\n",
"integration_time_lims = [0.1, 1000]\n",
"\n",
"gain_map_name = 'gain_map_g0'\n",
"db_output = True\n",
"send_bpix = False\n",
"\n",
"# CALCAT API parameters\n",
"cal_db_interface = \"tcp://max-exfl016:8020\" # the database interface to use\n",
"creation_time = \"\" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC e.g. \"2022-06-28 13:00:00\"\\\n",
"cal_db_timeout = 180000"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# imports, usually no need to change anything here\n",
"import os\n",
"from h5py import File as h5file\n",
"import numpy as np\n",
"import datetime\n",
"\n",
"import dateutil.parser\n",
"from iCalibrationDB import (\n",
" Constants,\n",
" Conditions,\n",
")\n",
"from cal_tools.tools import (\n",
" send_to_db,\n",
" calcat_creation_time\n",
")\n",
"from pathlib import Path\n",
"import matplotlib.pyplot as plt\n",
"from XFELDetAna.plotting.heatmap import heatmapPlot\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"if gain_setting == 1:\n",
" gain_map_name = 'gain_map_hg0'\n",
"\n",
"in_folder = Path(in_folder)\n",
"raw_folder = Path(raw_folder)\n",
"\n",
"in_file = in_folder / gain_map_file"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Read constants from file\n",
"constant_data = {}\n",
"\n",
"# Run's creation time:\n",
"creation_time = calcat_creation_time(in_folder, g0_run, creation_time)\n",
"print(f\"Creation time: {creation_time}\")\n",
"\n",
"gain_map = None\n",
"bad_pixel_ff = None\n",
"\n",
"with h5file(in_file, 'r') as f:\n",
" gain_map = np.array(f[gain_map_name])\n",
" \n",
" if memory_cells == 0:\n",
" memory_cells = int(gain_map.shape[-2])\n",
" print(f'Memory Cells: {memory_cells}')\n",
" if 'bad_pixel_fit' in f.keys():\n",
" bad_pixel_ff = np.array(f['bad_pixel_fit'])\n",
" print(bad_pixel_ff.shape)\n",
" else:\n",
" print('BadPixelsFF not found')\n",
" \n",
" if 'integration_time' in f.attrs.keys():\n",
" integration_time = np.float32(f.attrs['integration_time'])\n",
" print(f'Integration time: {integration_time} us')\n",
" else:\n",
" print('integration_time not found, using default {} us'.format(integration_time))\n",
" \n",
" if 'bias_voltage' in f.attrs.keys():\n",
" bias_voltage = np.float32(f.attrs['bias_voltage'])\n",
" print(f'Bias voltage: {bias_voltage} V')\n",
" else:\n",
" print('bias_voltage not found, using default {} V'.format(bias_voltage))\n",
"\n",
" if 'dir_date_iso' in f.attrs.keys():\n",
" dir_date_iso = str(f.attrs['dir_date_iso'])\n",
" creation_time = dateutil.parser.isoparse(dir_date_iso)\n",
" print(f'Acquisition Time: {creation_time}')\n",
" else:\n",
" print(f'Acquisition date not found!\\nUsing this date: {creation_time}')\n",
"\n",
" if 'karabo_id' in f.attrs.keys():\n",
" if isinstance(f.attrs['karabo_id'], str):\n",
" karabo_id = str(f.attrs['karabo_id'])\n",
" print(f'Karabo ID: {karabo_id}')\n",
" else:\n",
" print(f'karabo id not a string, using {karabo_id}')\n",
" else:\n",
" print(f'karabo id not found, using {karabo_id}')\n",
" \n",
" if 'da_name' in f.attrs.keys():\n",
" if isinstance(f.attrs['da_name'], str):\n",
" da_name = str(f.attrs['da_name'])\n",
" print(f'DA name: {da_name}')\n",
" else:\n",
" print(f'DA name not a string, using {da_name}')\n",
" else:\n",
" print(f'DA name not found, using {da_name}')\n",
"\n",
" if 'gain_mode' in f.attrs.keys():\n",
" gain_mode = np.int(f.attrs['gain_mode'])\n",
" print(f'Gain mode: {gain_mode}')\n",
" else:\n",
" print(f'gain mode not found, using default {gain_mode}')\\\n",
"\n",
" f.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gain = Constants.jungfrau.RelativeGain()\n",
"gain.data = gain_map\n",
"\n",
"condition = Conditions.Dark.jungfrau(\n",
" memory_cells=memory_cells, \n",
" bias_voltage=bias_voltage,\n",
" integration_time=integration_time,\n",
" gain_mode=gain_mode,\n",
" gain_setting=gain_setting)\n",
"\n",
"for parm in condition.parameters:\n",
" if parm.name == \"Integration Time\":\n",
" print('setting integration time limits')\n",
" parm.lower_deviation = integration_time - integration_time_lims[0]\n",
" parm.upper_deviation = integration_time_lims[1] - integration_time\n",
"\n",
"for parm in condition.parameters:\n",
" if parm.name == \"Sensor Bias Voltage\":\n",
" print('setting bias voltage limits')\n",
" parm.lower_deviation = bias_voltage - bias_voltage_lims[0]\n",
" parm.upper_deviation = bias_voltage_lims[1] - bias_voltage"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('Creating time: ', creation_time)\n",
"\n",
"if db_output:\n",
" send_to_db(\n",
" db_module=db_module,\n",
" karabo_id=karabo_id, \n",
" constant=gain, \n",
" condition=condition, \n",
" file_loc=in_file, \n",
" report_path='',\n",
" cal_db_interface=cal_db_interface,\n",
" creation_time=creation_time,\n",
" )\n",
"\n",
"if bad_pixel_ff is not None and send_bpix:\n",
" bpix_ff = Constants.jungfrau.BadPixelsFF()\n",
" # WHY CONDITION DEVIATIONS ARE NOT CONSIDERED FOR THE BADPIXELS\n",
" condition = Conditions.Dark.jungfrau(\n",
" memory_cells=memory_cells, \n",
" bias_voltage=bias_voltage,\n",
" integration_time=integration_time,\n",
" gain_setting=gain_setting,\n",
" )\n",
"\n",
" bpix_ff.data = bad_pixel_ff\n",
" send_to_db(\n",
" db_module=db_module,\n",
" karabo_id=karabo_id,\n",
" constant=bpix_ff, \n",
" condition=condition, \n",
" file_loc=in_file,\n",
" report_path='',\n",
" cal_db_interface=cal_db_interface,\n",
" creation_time=creation_time,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for g in range(0, gain_map.shape[3]):\n",
" f_im = heatmapPlot(\n",
" np.swapaxes(gain_map[..., 0, g], 0, 1), \n",
" y_label=\"Row\",\n",
" x_label=\"Column\",\n",
" lut_label=\"G{:01d}[ADCu/keV]\".format(g),\n",
" aspect=1.,\n",
" vmin=np.min(gain_map[..., 0, g].ravel()),\n",
" vmax=np.max(gain_map[..., 0, g].ravel()),\n",
" )\n",
" plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
%% Cell type:markdown id: tags:
## Send constants from file to the DB
%% Cell type:code id: tags:
```
python
in_folder
=
'
/gpfs/exfel/data/user/mramilli/jungfrau/module_PSI_gainmaps/M109
'
raw_folder
=
'
/gpfs/exfel/exp/SPB/202330/900322/raw
'
gain_map_file
=
'
/gainMaps_M109_Burst_Fix_20230523.h5
'
# path
g0_run
=
94
# Detector module parameters.
karabo_id
=
'
SPB_CFEL_JF1M
'
da_name
=
'
JNGFR09
'
db_module
=
"
Jungfrau_M109
"
# ID of module in calibration database
# Parameter conditions
bias_voltage
=
180
# detector bias voltage
integration_time
=
10
# the detector acquisition rate, use 0 to try to auto-determine
gain_setting
=
0
gain_mode
=
0
memory_cells
=
0
# number of memory cells used, use 0 to auto-derive
# Condition limits
bias_voltage_lims
=
[
0
,
200
]
integration_time_lims
=
[
0.1
,
1000
]
gain_map_name
=
'
gain_map_g0
'
db_output
=
True
send_bpix
=
False
# CALCAT API parameters
cal_db_interface
=
"
tcp://max-exfl016:8020
"
# the database interface to use
creation_time
=
""
# To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC e.g. "2022-06-28 13:00:00"\
cal_db_timeout
=
180000
```
%% Cell type:code id: tags:
```
python
# imports, usually no need to change anything here
import
os
from
h5py
import
File
as
h5file
import
numpy
as
np
import
datetime
import
dateutil.parser
from
iCalibrationDB
import
(
Constants
,
Conditions
,
)
from
cal_tools.tools
import
(
send_to_db
,
calcat_creation_time
)
from
pathlib
import
Path
import
matplotlib.pyplot
as
plt
from
XFELDetAna.plotting.heatmap
import
heatmapPlot
%
matplotlib
inline
```
%% Cell type:code id: tags:
```
python
if
gain_setting
==
1
:
gain_map_name
=
'
gain_map_hg0
'
in_folder
=
Path
(
in_folder
)
raw_folder
=
Path
(
raw_folder
)
in_file
=
in_folder
/
gain_map_file
```
%% Cell type:code id: tags:
```
python
# Read constants from file
constant_data
=
{}
# Run's creation time:
creation_time
=
calcat_creation_time
(
in_folder
,
g0_run
,
creation_time
)
print
(
f
"
Creation time:
{
creation_time
}
"
)
gain_map
=
None
bad_pixel_ff
=
None
with
h5file
(
in_file
,
'
r
'
)
as
f
:
gain_map
=
np
.
array
(
f
[
gain_map_name
])
if
memory_cells
==
0
:
memory_cells
=
int
(
gain_map
.
shape
[
-
2
])
print
(
f
'
Memory Cells:
{
memory_cells
}
'
)
if
'
bad_pixel_fit
'
in
f
.
keys
():
bad_pixel_ff
=
np
.
array
(
f
[
'
bad_pixel_fit
'
])
print
(
bad_pixel_ff
.
shape
)
else
:
print
(
'
BadPixelsFF not found
'
)
if
'
integration_time
'
in
f
.
attrs
.
keys
():
integration_time
=
np
.
float32
(
f
.
attrs
[
'
integration_time
'
])
print
(
f
'
Integration time:
{
integration_time
}
us
'
)
else
:
print
(
'
integration_time not found, using default {} us
'
.
format
(
integration_time
))
if
'
bias_voltage
'
in
f
.
attrs
.
keys
():
bias_voltage
=
np
.
float32
(
f
.
attrs
[
'
bias_voltage
'
])
print
(
f
'
Bias voltage:
{
bias_voltage
}
V
'
)
else
:
print
(
'
bias_voltage not found, using default {} V
'
.
format
(
bias_voltage
))
if
'
dir_date_iso
'
in
f
.
attrs
.
keys
():
dir_date_iso
=
str
(
f
.
attrs
[
'
dir_date_iso
'
])
creation_time
=
dateutil
.
parser
.
isoparse
(
dir_date_iso
)
print
(
f
'
Acquisition Time:
{
creation_time
}
'
)
else
:
print
(
f
'
Acquisition date not found!
\n
Using this date:
{
creation_time
}
'
)
if
'
karabo_id
'
in
f
.
attrs
.
keys
():
if
isinstance
(
f
.
attrs
[
'
karabo_id
'
],
str
):
karabo_id
=
str
(
f
.
attrs
[
'
karabo_id
'
])
print
(
f
'
Karabo ID:
{
karabo_id
}
'
)
else
:
print
(
f
'
karabo id not a string, using
{
karabo_id
}
'
)
else
:
print
(
f
'
karabo id not found, using
{
karabo_id
}
'
)
if
'
da_name
'
in
f
.
attrs
.
keys
():
if
isinstance
(
f
.
attrs
[
'
da_name
'
],
str
):
da_name
=
str
(
f
.
attrs
[
'
da_name
'
])
print
(
f
'
DA name:
{
da_name
}
'
)
else
:
print
(
f
'
DA name not a string, using
{
da_name
}
'
)
else
:
print
(
f
'
DA name not found, using
{
da_name
}
'
)
if
'
gain_mode
'
in
f
.
attrs
.
keys
():
gain_mode
=
np
.
int
(
f
.
attrs
[
'
gain_mode
'
])
print
(
f
'
Gain mode:
{
gain_mode
}
'
)
else
:
print
(
f
'
gain mode not found, using default
{
gain_mode
}
'
)
\
f
.
close
()
```
%% Cell type:code id: tags:
```
python
gain
=
Constants
.
jungfrau
.
RelativeGain
()
gain
.
data
=
gain_map
condition
=
Conditions
.
Dark
.
jungfrau
(
memory_cells
=
memory_cells
,
bias_voltage
=
bias_voltage
,
integration_time
=
integration_time
,
gain_mode
=
gain_mode
,
gain_setting
=
gain_setting
)
for
parm
in
condition
.
parameters
:
if
parm
.
name
==
"
Integration Time
"
:
print
(
'
setting integration time limits
'
)
parm
.
lower_deviation
=
integration_time
-
integration_time_lims
[
0
]
parm
.
upper_deviation
=
integration_time_lims
[
1
]
-
integration_time
for
parm
in
condition
.
parameters
:
if
parm
.
name
==
"
Sensor Bias Voltage
"
:
print
(
'
setting bias voltage limits
'
)
parm
.
lower_deviation
=
bias_voltage
-
bias_voltage_lims
[
0
]
parm
.
upper_deviation
=
bias_voltage_lims
[
1
]
-
bias_voltage
```
%% Cell type:code id: tags:
```
python
print
(
'
Creating time:
'
,
creation_time
)
if
db_output
:
send_to_db
(
db_module
=
db_module
,
karabo_id
=
karabo_id
,
constant
=
gain
,
condition
=
condition
,
file_loc
=
in_file
,
report_path
=
''
,
cal_db_interface
=
cal_db_interface
,
creation_time
=
creation_time
,
)
if
bad_pixel_ff
is
not
None
and
send_bpix
:
bpix_ff
=
Constants
.
jungfrau
.
BadPixelsFF
()
# WHY CONDITION DEVIATIONS ARE NOT CONSIDERED FOR THE BADPIXELS
condition
=
Conditions
.
Dark
.
jungfrau
(
memory_cells
=
memory_cells
,
bias_voltage
=
bias_voltage
,
integration_time
=
integration_time
,
gain_setting
=
gain_setting
,
)
bpix_ff
.
data
=
bad_pixel_ff
send_to_db
(
db_module
=
db_module
,
karabo_id
=
karabo_id
,
constant
=
bpix_ff
,
condition
=
condition
,
file_loc
=
in_file
,
report_path
=
''
,
cal_db_interface
=
cal_db_interface
,
creation_time
=
creation_time
,
)
```
%% Cell type:code id: tags:
```
python
for
g
in
range
(
0
,
gain_map
.
shape
[
3
]):
f_im
=
heatmapPlot
(
np
.
swapaxes
(
gain_map
[...,
0
,
g
],
0
,
1
),
y_label
=
"
Row
"
,
x_label
=
"
Column
"
,
lut_label
=
"
G{:01d}[ADCu/keV]
"
.
format
(
g
),
aspect
=
1.
,
vmin
=
np
.
min
(
gain_map
[...,
0
,
g
].
ravel
()),
vmax
=
np
.
max
(
gain_map
[...,
0
,
g
].
ravel
()),
)
plt
.
show
()
```
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment