Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pycalibration
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Model registry
Analyze
Contributor analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
calibration
pycalibration
Commits
75853bb7
Commit
75853bb7
authored
1 year ago
by
Karim Ahmed
Browse files
Options
Downloads
Patches
Plain Diff
remove unused variables
parent
6950fc59
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!779
[LPD][CORRECT] Using CALCAT interface
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
notebooks/LPD/LPD_Correct_Fast.ipynb
+0
-4
0 additions, 4 deletions
notebooks/LPD/LPD_Correct_Fast.ipynb
with
0 additions
and
4 deletions
notebooks/LPD/LPD_Correct_Fast.ipynb
+
0
−
4
View file @
75853bb7
...
...
@@ -135,10 +135,6 @@
"\n",
"cal_db_root = Path(cal_db_root)\n",
"\n",
"metadata = CalibrationMetadata(metadata_folder or out_folder)\n",
"# Constant paths & timestamps are saved under retrieved-constants in calibration_metadata.yml\n",
"retrieved_constants = metadata.setdefault(\"retrieved-constants\", {})\n",
"\n",
"creation_time = calcat_creation_time(in_folder, run, creation_time)\n",
"print(f'Using {creation_time.isoformat()} as creation time')\n",
"\n",
...
...
%% Cell type:markdown id: tags:
# LPD Offline Correction #
Author: European XFEL Data Analysis Group
%% Cell type:code id: tags:
```
python
# Input parameters
in_folder
=
"
/gpfs/exfel/exp/FXE/202201/p003073/raw/
"
# the folder to read data from, required
out_folder
=
"
/gpfs/exfel/data/scratch/schmidtp/random/LPD_test
"
# the folder to output to, required
metadata_folder
=
''
# Directory containing calibration_metadata.yml when run by xfel-calibrate.
sequences
=
[
-
1
]
# Sequences to correct, use [-1] for all
modules
=
[
-
1
]
# Modules indices to correct, use [-1] for all, only used when karabo_da is empty
karabo_da
=
[
''
]
# Data aggregators names to correct, use [''] for all
run
=
10
# run to process, required
# Source parameters
karabo_id
=
'
FXE_DET_LPD1M-1
'
# Karabo domain for detector.
input_source
=
'
{karabo_id}/DET/{module_index}CH0:xtdf
'
# Input fast data source.
output_source
=
''
# Output fast data source, empty to use same as input.
xgm_source
=
'
SA1_XTD2_XGM/DOOCS/MAIN
'
xgm_pulse_count_key
=
'
pulseEnergy.numberOfSa1BunchesActual
'
# CalCat parameters
creation_time
=
""
# The timestamp to use with Calibration DB. Required Format: "YYYY-MM-DD hh:mm:ss" e.g. 2019-07-04 11:02:41
cal_db_interface
=
''
# Not needed, compatibility with current webservice.
cal_db_timeout
=
0
# Not needed, compatbility with current webservice.
cal_db_root
=
'
/gpfs/exfel/d/cal/caldb_store
'
# Operating conditions
mem_cells
=
512
# Memory cells, LPD constants are always taken with 512 cells.
bias_voltage
=
250.0
# Detector bias voltage.
capacitor
=
'
5pF
'
# Capacitor setting: 5pF or 50pF
photon_energy
=
9.2
# Photon energy in keV.
category
=
0
# Whom to blame.
use_cell_order
=
'
auto
'
# Whether to use memory cell order as a detector condition; auto/always/never
# Correction parameters
offset_corr
=
True
# Offset correction.
rel_gain
=
True
# Gain correction based on RelativeGain constant.
ff_map
=
True
# Gain correction based on FFMap constant.
gain_amp_map
=
True
# Gain correction based on GainAmpMap constant.
# Output options
ignore_no_frames_no_pulses
=
False
# Whether to run without SA1 pulses AND frames.
overwrite
=
True
# set to True if existing data should be overwritten
chunks_data
=
1
# HDF chunk size for pixel data in number of frames.
chunks_ids
=
32
# HDF chunk size for cellId and pulseId datasets.
create_virtual_cxi_in
=
''
# Folder to create virtual CXI files in (for each sequence).
# Parallelization options
sequences_per_node
=
1
# Sequence files to process per node
max_nodes
=
8
# Maximum number of SLURM jobs to split correction work into
num_workers
=
8
# Worker processes per node, 8 is safe on 768G nodes but won't work on 512G.
num_threads_per_worker
=
32
# Number of threads per worker.
def
balance_sequences
(
in_folder
,
run
,
sequences
,
sequences_per_node
,
karabo_da
,
max_nodes
):
from
xfel_calibrate.calibrate
import
balance_sequences
as
bs
return
bs
(
in_folder
,
run
,
sequences
,
sequences_per_node
,
karabo_da
,
max_nodes
=
max_nodes
)
```
%% Cell type:code id: tags:
```
python
from
logging
import
warning
from
pathlib
import
Path
from
time
import
perf_counter
import
gc
import
re
import
numpy
as
np
import
h5py
import
matplotlib
matplotlib
.
use
(
'
agg
'
)
import
matplotlib.pyplot
as
plt
%
matplotlib
inline
import
extra_data
as
xd
import
extra_geom
as
xg
import
pasha
as
psh
from
extra_data.components
import
LPD1M
import
cal_tools.restful_config
as
rest_cfg
from
cal_tools.calcat_interface
import
LPD_CalibrationData
from
cal_tools.lpdalgs
import
correct_lpd_frames
from
cal_tools.lpdlib
import
get_mem_cell_pattern
,
make_cell_order_condition
from
cal_tools.tools
import
CalibrationMetadata
,
calcat_creation_time
from
cal_tools.files
import
DataFile
```
%% Cell type:markdown id: tags:
# Prepare environment
%% Cell type:code id: tags:
```
python
file_re
=
re
.
compile
(
r
'
^RAW-R(\d{4})-(\w+\d+)-S(\d{5})$
'
)
# This should probably move to cal_tools
run_folder
=
Path
(
in_folder
)
/
f
'
r
{
run
:
04
d
}
'
out_folder
=
Path
(
out_folder
)
out_folder
.
mkdir
(
exist_ok
=
True
)
output_source
=
output_source
or
input_source
cal_db_root
=
Path
(
cal_db_root
)
metadata
=
CalibrationMetadata
(
metadata_folder
or
out_folder
)
# Constant paths & timestamps are saved under retrieved-constants in calibration_metadata.yml
retrieved_constants
=
metadata
.
setdefault
(
"
retrieved-constants
"
,
{})
creation_time
=
calcat_creation_time
(
in_folder
,
run
,
creation_time
)
print
(
f
'
Using
{
creation_time
.
isoformat
()
}
as creation time
'
)
# Pick all modules/aggregators or those selected.
if
karabo_da
==
[
''
]:
if
modules
==
[
-
1
]:
modules
=
list
(
range
(
16
))
karabo_da
=
[
f
'
LPD
{
i
:
02
d
}
'
for
i
in
modules
]
else
:
modules
=
[
int
(
x
[
-
2
:])
for
x
in
karabo_da
]
# Pick all sequences or those selected.
if
not
sequences
or
sequences
==
[
-
1
]:
do_sequence
=
lambda
seq
:
True
else
:
do_sequence
=
[
int
(
x
)
for
x
in
sequences
].
__contains__
# List of detector sources.
det_inp_sources
=
[
input_source
.
format
(
karabo_id
=
karabo_id
,
module_index
=
int
(
da
[
-
2
:]))
for
da
in
karabo_da
]
if
use_cell_order
not
in
{
'
auto
'
,
'
always
'
,
'
never
'
}:
raise
ValueError
(
"
use_cell_order must be auto/always/never
"
)
```
%% Cell type:markdown id: tags:
# Select data to process
%% Cell type:code id: tags:
```
python
data_to_process
=
[]
for
inp_path
in
run_folder
.
glob
(
'
RAW-*.h5
'
):
match
=
file_re
.
match
(
inp_path
.
stem
)
if
match
[
2
]
not
in
karabo_da
or
not
do_sequence
(
int
(
match
[
3
])):
continue
outp_path
=
out_folder
/
'
CORR-R{run:04d}-{aggregator}-S{seq:05d}.h5
'
.
format
(
run
=
int
(
match
[
1
]),
aggregator
=
match
[
2
],
seq
=
int
(
match
[
3
]))
data_to_process
.
append
((
match
[
2
],
inp_path
,
outp_path
))
print
(
'
Files to process:
'
)
for
data_descr
in
sorted
(
data_to_process
,
key
=
lambda
x
:
f
'
{
x
[
0
]
}{
x
[
1
]
}
'
):
print
(
f
'
{
data_descr
[
0
]
}
\t
{
data_descr
[
1
]
}
'
)
# Collect the train ID contained in the input LPD files.
inp_lpd_dc
=
xd
.
DataCollection
.
from_paths
([
x
[
1
]
for
x
in
data_to_process
])
frame_count
=
sum
([
int
(
inp_lpd_dc
[
source
,
'
image.data
'
].
data_counts
(
labelled
=
False
).
sum
())
for
source
in
inp_lpd_dc
.
all_sources
],
0
)
if
frame_count
==
0
:
inp_dc
=
xd
.
RunDirectory
(
run_folder
)
\
.
select_trains
(
xd
.
by_id
[
inp_lpd_dc
.
train_ids
])
try
:
pulse_count
=
int
(
inp_dc
[
xgm_source
,
xgm_pulse_count_key
].
ndarray
().
sum
())
except
xd
.
SourceNameError
:
warning
(
f
'
Missing XGM source `
{
xgm_source
}
`
'
)
pulse_count
=
None
except
xd
.
PropertyNameError
:
warning
(
f
'
Missing XGM pulse count key `
{
xgm_pulse_count_key
}
`
'
)
pulse_count
=
None
if
pulse_count
==
0
and
not
ignore_no_frames_no_pulses
:
warning
(
f
'
Affected files contain neither LPD frames nor SA1 pulses
'
f
'
according to
{
xgm_source
}
, processing is skipped. If this
'
f
'
incorrect, please contact da-support@xfel.eu
'
)
from
sys
import
exit
exit
(
0
)
elif
pulse_count
is
None
:
raise
ValueError
(
'
Affected files contain no LPD frames and SA1 pulses
'
'
could not be inferred from XGM data
'
)
else
:
raise
ValueError
(
'
Affected files contain no LPD frames but SA1 pulses
'
)
else
:
print
(
f
'
Total number of LPD pulses across all modules:
{
frame_count
}
'
)
```
%% Cell type:markdown id: tags:
# Obtain and prepare calibration constants
%% Cell type:code id: tags:
```
python
metadata
=
CalibrationMetadata
(
metadata_folder
or
out_folder
)
# Constant paths & timestamps are saved under retrieved-constants in calibration_metadata.yml
const_yaml
=
metadata
.
setdefault
(
"
retrieved-constants
"
,
{})
```
%% Cell type:code id: tags:
```
python
const_data
=
dict
()
# {"ModuleName": {"ConstantName": ndarray}}
start
=
perf_counter
()
if
const_yaml
:
const_load_mp
=
psh
.
ProcessContext
(
num_workers
=
24
)
for
mod
,
constants
in
const_yaml
.
items
():
const_data
[
mod
]
=
{}
# An empty dictionary stays for a module with no constants.
for
cname
,
cmdata
in
constants
[
"
constants
"
].
items
():
const_data
[
mod
][
cname
]
=
const_load_mp
.
alloc
(
# TODO: MAKE SURE WE ERROR OUT FOR MISSING OFFSET
shape
=
(
256
,
256
,
mem_cells
,
3
),
# All LPD constants have the same shape.
dtype
=
np
.
uint32
if
cname
.
startswith
(
'
BadPixels
'
)
else
np
.
float32
)
def
load_constant_dataset
(
wid
,
index
,
mod
):
for
cname
,
mdata
in
const_yaml
[
mod
][
"
constants
"
].
items
():
with
h5py
.
File
(
mdata
[
"
path
"
],
"
r
"
)
as
cf
:
cf
[
f
"
{
mdata
[
'
dataset
'
]
}
/data
"
].
read_direct
(
const_data
[
mod
][
cname
])
const_load_mp
.
map
(
load_constant_dataset
,
karabo_da
)
else
:
cell_ids_pattern_s
=
None
if
use_cell_order
!=
'
never
'
:
# Read the order of memory cells used
raw_data
=
xd
.
DataCollection
.
from_paths
([
e
[
1
]
for
e
in
data_to_process
])
cell_ids_pattern_s
=
make_cell_order_condition
(
use_cell_order
,
get_mem_cell_pattern
(
raw_data
,
det_inp_sources
)
)
print
(
"
Memory cells order:
"
,
cell_ids_pattern_s
)
lpd_cal
=
LPD_CalibrationData
(
detector_name
=
karabo_id
,
modules
=
karabo_da
,
sensor_bias_voltage
=
bias_voltage
,
memory_cells
=
mem_cells
,
feedback_capacitor
=
capacitor
,
source_energy
=
photon_energy
,
memory_cell_order
=
cell_ids_pattern_s
,
category
=
category
,
event_at
=
creation_time
,
client
=
rest_cfg
.
calibration_client
(),
)
const_data
=
lpd_cal
.
ndarray_map
(
[
"
Offset
"
,
"
BadPixelsDark
"
,
"
BadPixelsFF
"
,
"
GainAmpMap
"
,
"
FFMap
"
,
"
RelativeGain
"
,
]
)
```
%% Cell type:code id: tags:
```
python
# Validate the constants availability and raise/warn accordingly.
for
mod
,
calibrations
in
const_data
.
items
():
missing_offset
=
{
"
Offset
"
}
-
set
(
calibrations
)
warn_missing_constants
=
{
"
BadPixelsDark
"
,
"
BadPixelsFF
"
,
"
GainAmpMap
"
,
"
FFMap
"
,
"
RelativeGain
"
}
-
set
(
calibrations
)
if
missing_offset
:
warning
(
f
"
Offset constant is not available to correct
{
mod
}
"
)
# noqa
karabo_da
.
remove
(
mod
)
if
warn_missing_constants
:
warning
(
f
"
Gain constants
{
missing_gain_constants
}
were not retrieved for
{
mod
}
"
)
if
(
calibrations
.
get
(
"
BadPixelsDark
"
)
and
calibrations
[
"
BadPixelsDark
"
].
dtype
!=
np
.
uint32
):
# Old LPD constants are stored as float32.
calibrations
[
"
BadPixelsDark
"
]
=
calibrations
[
"
BadPixelsDark
"
].
astype
(
np
.
uint32
,
copy
=
False
)
if
not
karabo_da
:
# Offsets are missing for all modules.
raise
Exception
(
"
Could not find offset constants for all modules, will not correct data.
"
)
# Remove skipped correction modules from data_to_process
data_to_process
=
[(
mod
,
in_f
,
out_f
)
for
mod
,
in_f
,
out_f
in
data_to_process
if
mod
in
[
karabo_da
]]
total_time
=
perf_counter
()
-
start
print
(
f
'
{
total_time
:
.
1
f
}
s
'
)
```
%% Cell type:code id: tags:
```
python
# These are intended in order cell, X, Y, gain
ccv_offsets
=
{}
ccv_gains
=
{}
ccv_masks
=
{}
ccv_shape
=
(
mem_cells
,
256
,
256
,
3
)
constant_order
=
{
'
Offset
'
:
(
2
,
1
,
0
,
3
),
'
BadPixelsDark
'
:
(
2
,
1
,
0
,
3
),
'
RelativeGain
'
:
(
2
,
0
,
1
,
3
),
'
FFMap
'
:
(
2
,
0
,
1
,
3
),
'
BadPixelsFF
'
:
(
2
,
0
,
1
,
3
),
'
GainAmpMap
'
:
(
2
,
0
,
1
,
3
),
}
def
prepare_constants
(
wid
,
index
,
aggregator
):
consts
=
const_data
.
get
(
aggregator
,
{})
def
_prepare_data
(
calibration_name
,
dtype
):
return
consts
[
calibration_name
]
\
.
transpose
(
constant_order
[
calibration_name
])
\
.
astype
(
dtype
,
copy
=
True
)
# Make sure array is contiguous.
if
offset_corr
and
'
Offset
'
in
consts
:
ccv_offsets
[
aggregator
]
=
_prepare_data
(
'
Offset
'
,
np
.
float32
)
else
:
ccv_offsets
[
aggregator
]
=
np
.
zeros
(
ccv_shape
,
dtype
=
np
.
float32
)
ccv_gains
[
aggregator
]
=
np
.
ones
(
ccv_shape
,
dtype
=
np
.
float32
)
if
'
BadPixelsDark
'
in
consts
:
ccv_masks
[
aggregator
]
=
_prepare_data
(
'
BadPixelsDark
'
,
np
.
uint32
)
else
:
ccv_masks
[
aggregator
]
=
np
.
zeros
(
ccv_shape
,
dtype
=
np
.
uint32
)
if
rel_gain
and
'
RelativeGain
'
in
consts
:
ccv_gains
[
aggregator
]
*=
_prepare_data
(
'
RelativeGain
'
,
np
.
float32
)
if
ff_map
and
'
FFMap
'
in
consts
:
ccv_gains
[
aggregator
]
*=
_prepare_data
(
'
FFMap
'
,
np
.
float32
)
if
'
BadPixelsFF
'
in
consts
:
np
.
bitwise_or
(
ccv_masks
[
aggregator
],
_prepare_data
(
'
BadPixelsFF
'
,
np
.
uint32
),
out
=
ccv_masks
[
aggregator
])
if
gain_amp_map
and
'
GainAmpMap
'
in
consts
:
ccv_gains
[
aggregator
]
*=
_prepare_data
(
'
GainAmpMap
'
,
np
.
float32
)
print
(
'
.
'
,
end
=
''
,
flush
=
True
)
print
(
'
Preparing constants
'
,
end
=
''
,
flush
=
True
)
start
=
perf_counter
()
psh
.
ThreadContext
(
num_workers
=
len
(
karabo_da
)).
map
(
prepare_constants
,
karabo_da
)
total_time
=
perf_counter
()
-
start
print
(
f
'
{
total_time
:
.
1
f
}
s
'
)
const_data
.
clear
()
# Clear raw constants data now to save memory.
gc
.
collect
();
```
%% Cell type:code id: tags:
```
python
def
correct_file
(
wid
,
index
,
work
):
aggregator
,
inp_path
,
outp_path
=
work
module_index
=
int
(
aggregator
[
-
2
:])
start
=
perf_counter
()
dc
=
xd
.
H5File
(
inp_path
,
inc_suspect_trains
=
False
).
select
(
'
*
'
,
'
image.*
'
,
require_all
=
True
)
inp_source
=
dc
[
input_source
.
format
(
karabo_id
=
karabo_id
,
module_index
=
module_index
)]
open_time
=
perf_counter
()
-
start
# Load raw data for this file.
# Reshaping gets rid of the extra 1-len dimensions without
# mangling the frame axis for an actual frame count of 1.
start
=
perf_counter
()
in_raw
=
inp_source
[
'
image.data
'
].
ndarray
().
reshape
(
-
1
,
256
,
256
)
in_cell
=
inp_source
[
'
image.cellId
'
].
ndarray
().
reshape
(
-
1
)
in_pulse
=
inp_source
[
'
image.pulseId
'
].
ndarray
().
reshape
(
-
1
)
read_time
=
perf_counter
()
-
start
# Allocate output arrays.
out_data
=
np
.
zeros
((
in_raw
.
shape
[
0
],
256
,
256
),
dtype
=
np
.
float32
)
out_gain
=
np
.
zeros
((
in_raw
.
shape
[
0
],
256
,
256
),
dtype
=
np
.
uint8
)
out_mask
=
np
.
zeros
((
in_raw
.
shape
[
0
],
256
,
256
),
dtype
=
np
.
uint32
)
start
=
perf_counter
()
correct_lpd_frames
(
in_raw
,
in_cell
,
out_data
,
out_gain
,
out_mask
,
ccv_offsets
[
aggregator
],
ccv_gains
[
aggregator
],
ccv_masks
[
aggregator
],
num_threads
=
num_threads_per_worker
)
correct_time
=
perf_counter
()
-
start
image_counts
=
inp_source
[
'
image.data
'
].
data_counts
(
labelled
=
False
)
start
=
perf_counter
()
if
(
not
outp_path
.
exists
()
or
overwrite
)
and
image_counts
.
sum
()
>
0
:
outp_source_name
=
output_source
.
format
(
karabo_id
=
karabo_id
,
module_index
=
module_index
)
with
DataFile
(
outp_path
,
'
w
'
)
as
outp_file
:
outp_file
.
create_index
(
dc
.
train_ids
,
from_file
=
dc
.
files
[
0
])
outp_file
.
create_metadata
(
like
=
dc
,
instrument_channels
=
(
f
'
{
outp_source_name
}
/image
'
,))
outp_source
=
outp_file
.
create_instrument_source
(
outp_source_name
)
outp_source
.
create_index
(
image
=
image_counts
)
outp_source
.
create_key
(
'
image.cellId
'
,
data
=
in_cell
,
chunks
=
(
min
(
chunks_ids
,
in_cell
.
shape
[
0
]),))
outp_source
.
create_key
(
'
image.pulseId
'
,
data
=
in_pulse
,
chunks
=
(
min
(
chunks_ids
,
in_pulse
.
shape
[
0
]),))
outp_source
.
create_key
(
'
image.data
'
,
data
=
out_data
,
chunks
=
(
min
(
chunks_data
,
out_data
.
shape
[
0
]),
256
,
256
))
outp_source
.
create_compressed_key
(
'
image.gain
'
,
data
=
out_gain
)
outp_source
.
create_compressed_key
(
'
image.mask
'
,
data
=
out_mask
)
write_time
=
perf_counter
()
-
start
total_time
=
open_time
+
read_time
+
correct_time
+
write_time
frame_rate
=
in_raw
.
shape
[
0
]
/
total_time
print
(
'
{}
\t
{}
\t
{:.3f}
\t
{:.3f}
\t
{:.3f}
\t
{:.3f}
\t
{:.3f}
\t
{}
\t
{:.1f}
'
.
format
(
wid
,
aggregator
,
open_time
,
read_time
,
correct_time
,
write_time
,
total_time
,
in_raw
.
shape
[
0
],
frame_rate
))
in_raw
=
None
in_cell
=
None
in_pulse
=
None
out_data
=
None
out_gain
=
None
out_mask
=
None
gc
.
collect
()
print
(
'
worker
\t
DA
\t
open
\t
read
\t
correct
\t
write
\t
total
\t
frames
\t
rate
'
)
start
=
perf_counter
()
psh
.
ProcessContext
(
num_workers
=
num_workers
).
map
(
correct_file
,
data_to_process
)
total_time
=
perf_counter
()
-
start
print
(
f
'
Total time:
{
total_time
:
.
1
f
}
s
'
)
```
%% Cell type:markdown id: tags:
# Data preview for first train
%% Cell type:code id: tags:
```
python
geom
=
xg
.
LPD_1MGeometry
.
from_quad_positions
(
[(
11.4
,
299
),
(
-
11.5
,
8
),
(
254.5
,
-
16
),
(
278.5
,
275
)])
output_paths
=
[
outp_path
for
_
,
_
,
outp_path
in
data_to_process
if
outp_path
.
exists
()]
if
not
output_paths
:
warning
(
'
Data preview is skipped as there are no existing output paths
'
)
from
sys
import
exit
exit
(
0
)
dc
=
xd
.
DataCollection
.
from_paths
(
output_paths
).
select_trains
(
np
.
s_
[
0
])
det
=
LPD1M
(
dc
,
detector_name
=
karabo_id
)
data
=
det
.
get_array
(
'
image.data
'
)
```
%% Cell type:markdown id: tags:
### Intensity histogram across all cells
%% Cell type:code id: tags:
```
python
left_edge_ratio
=
0.01
right_edge_ratio
=
0.99
fig
,
ax
=
plt
.
subplots
(
num
=
1
,
clear
=
True
,
figsize
=
(
15
,
6
))
values
,
bins
,
_
=
ax
.
hist
(
np
.
ravel
(
data
.
data
),
bins
=
2000
,
range
=
(
-
1500
,
2000
))
def
find_nearest_index
(
array
,
value
):
return
(
np
.
abs
(
array
-
value
)).
argmin
()
cum_values
=
np
.
cumsum
(
values
)
vmin
=
bins
[
find_nearest_index
(
cum_values
,
cum_values
[
-
1
]
*
left_edge_ratio
)]
vmax
=
bins
[
find_nearest_index
(
cum_values
,
cum_values
[
-
1
]
*
right_edge_ratio
)]
max_value
=
values
.
max
()
ax
.
vlines
([
vmin
,
vmax
],
0
,
max_value
,
color
=
'
red
'
,
linewidth
=
5
,
alpha
=
0.2
)
ax
.
text
(
vmin
,
max_value
,
f
'
{
left_edge_ratio
*
100
:
.
0
f
}
%
'
,
color
=
'
red
'
,
ha
=
'
center
'
,
va
=
'
bottom
'
,
size
=
'
large
'
)
ax
.
text
(
vmax
,
max_value
,
f
'
{
right_edge_ratio
*
100
:
.
0
f
}
%
'
,
color
=
'
red
'
,
ha
=
'
center
'
,
va
=
'
bottom
'
,
size
=
'
large
'
)
ax
.
text
(
vmax
+
(
vmax
-
vmin
)
*
0.01
,
max_value
/
2
,
'
Colormap interval
'
,
color
=
'
red
'
,
rotation
=
90
,
ha
=
'
left
'
,
va
=
'
center
'
,
size
=
'
x-large
'
)
ax
.
set_xlim
(
vmin
-
(
vmax
-
vmin
)
*
0.1
,
vmax
+
(
vmax
-
vmin
)
*
0.1
)
ax
.
set_ylim
(
0
,
max_value
*
1.1
)
pass
```
%% Cell type:markdown id: tags:
### First memory cell
%% Cell type:code id: tags:
```
python
fig
,
ax
=
plt
.
subplots
(
num
=
2
,
figsize
=
(
15
,
15
),
clear
=
True
,
nrows
=
1
,
ncols
=
1
)
geom
.
plot_data_fast
(
data
[:,
0
,
0
],
ax
=
ax
,
vmin
=
vmin
,
vmax
=
vmax
)
pass
```
%% Cell type:markdown id: tags:
### Train average
%% Cell type:code id: tags:
```
python
fig
,
ax
=
plt
.
subplots
(
num
=
3
,
figsize
=
(
15
,
15
),
clear
=
True
,
nrows
=
1
,
ncols
=
1
)
geom
.
plot_data_fast
(
data
[:,
0
].
mean
(
axis
=
1
),
ax
=
ax
,
vmin
=
vmin
,
vmax
=
vmax
)
pass
```
%% Cell type:markdown id: tags:
### Lowest gain stage per pixel
%% Cell type:code id: tags:
```
python
highest_gain_stage
=
det
.
get_array
(
'
image.gain
'
,
pulses
=
np
.
s_
[:]).
max
(
axis
=
(
1
,
2
))
fig
,
ax
=
plt
.
subplots
(
num
=
4
,
figsize
=
(
15
,
15
),
clear
=
True
,
nrows
=
1
,
ncols
=
1
)
p
=
geom
.
plot_data_fast
(
highest_gain_stage
,
ax
=
ax
,
vmin
=
0
,
vmax
=
2
);
cb
=
ax
.
images
[
0
].
colorbar
cb
.
set_ticks
([
0
,
1
,
2
])
cb
.
set_ticklabels
([
'
High gain
'
,
'
Medium gain
'
,
'
Low gain
'
])
```
%% Cell type:markdown id: tags:
### Create virtual CXI file
%% Cell type:code id: tags:
```
python
if
create_virtual_cxi_in
:
vcxi_folder
=
Path
(
create_virtual_cxi_in
.
format
(
run
=
run
,
proposal_folder
=
str
(
Path
(
in_folder
).
parent
)))
vcxi_folder
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
def
sort_files_by_seq
(
by_seq
,
outp_path
):
by_seq
.
setdefault
(
int
(
outp_path
.
stem
[
-
5
:]),
[]).
append
(
outp_path
)
return
by_seq
from
functools
import
reduce
reduce
(
sort_files_by_seq
,
output_paths
,
output_by_seq
:
=
{})
for
seq_number
,
seq_output_paths
in
output_by_seq
.
items
():
# Create data collection and detector components only for this sequence.
try
:
det
=
LPD1M
(
xd
.
DataCollection
.
from_paths
(
seq_output_paths
),
detector_name
=
karabo_id
,
min_modules
=
4
)
except
ValueError
:
# Couldn't find enough data for min_modules
continue
det
.
write_virtual_cxi
(
vcxi_folder
/
f
'
VCXI-LPD-R
{
run
:
04
d
}
-S
{
seq_number
:
05
d
}
.cxi
'
)
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment