Skip to content
Snippets Groups Projects
Commit 91e05cb3 authored by Egor Sobolev's avatar Egor Sobolev
Browse files

Support multiple module detector in Characterize_DynamicFF_NBC.ipynb

parent 035e0ffa
No related branches found
No related tags found
No related merge requests found
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
# Shimadzu HPVX2 Characterization of dark and flat field # Characterization of dark and flat field for Dynamic Flat Field correction
Author: Egor Sobolev Author: Egor Sobolev
Computation of dark offsets and flat-field principal components Computation of dark offsets and flat-field principal components
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
in_folder = "/gpfs/exfel/exp/SPB/202121/p002919/raw/" # input folder, required in_folder = "/gpfs/exfel/exp/SPB/202430/p900425/raw" # input folder, required
out_folder = '/gpfs/exfel/data/scratch/esobolev/test/shimadzu' # output folder, required out_folder = '/gpfs/exfel/data/scratch/esobolev/test/shimadzu' # output folder, required
metadata_folder = "" # Directory containing calibration_metadata.yml when run by xfel-calibrate metadata_folder = "" # Directory containing calibration_metadata.yml when run by xfel-calibrate
dark_run = 59 # which run to read data from, required dark_run = 1 # which run to read data from, required
flat_run = 40 # which run to read flat_run = 2 # which run to read
# Data files parameters. # Data files parameters.
karabo_da = ['HPVX01'] # data aggregators karabo_da = ['HPVX01/1', 'HPVX01/2'] # data aggregators
karabo_id = "SPB_EHD_HPVX2_2" # karabo prefix of Shimadzu HPV-X2 devices karabo_id = "SPB_EHD_MIC" # karabo prefix of Shimadzu HPV-X2 devices
#receiver_id = "PNCCD_FMT-0" # inset for receiver devices #receiver_id = "PNCCD_FMT-0" # inset for receiver devices
#path_template = 'RAW-R{:04d}-{}-S{{:05d}}.h5' # the template to use to access data #path_template = 'RAW-R{:04d}-{}-S{{:05d}}.h5' # the template to use to access data
instrument_source_template = '{}/CAM/CAMERA:daqOutput' # data source path in h5file. Template filled with karabo_id and receiver_id instrument_source_template = 'SPB_EHD_MIC/CAM/HPVX2_{module}:daqOutput' # data source path in h5file.
#instrument_source_template = 'SPB_EHD_HPVX2_{module}/CAM/CAMERA:daqOutput'
image_key = "data.image.pixels" # image data key in Karabo or exdf notation image_key = "data.image.pixels" # image data key in Karabo or exdf notation
db_module_template = "Shimadzu_HPVX2_{}"
# Database access parameters. # Database access parameters.
use_dir_creation_date = True # use dir creation date as data production reference date use_dir_creation_date = True # use dir creation date as data production reference date
cal_db_interface = "tcp://max-exfl-cal001:8021" # calibration DB interface to use cal_db_interface = "tcp://max-exfl-cal001:8021" # calibration DB interface to use
cal_db_timeout = 300000 # timeout on caldb requests cal_db_timeout = 300000 # timeout on caldb requests
db_output = False # if True, the notebook sends dark constants to the calibration database db_output = False # if True, the notebook sends dark constants to the calibration database
local_output = True # if True, the notebook saves dark constants locally local_output = True # if True, the notebook saves dark constants locally
creation_time = "" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC.00 e.g. 2019-07-04 11:02:41.00 creation_time = "" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC.00 e.g. 2019-07-04 11:02:41.00
n_components = 50 n_components = 50 # Number of principal components to compute
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
import datetime import datetime
import os import os
import warnings import warnings
warnings.filterwarnings('ignore') warnings.filterwarnings('ignore')
import time import time
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from IPython.display import display, Markdown
from extra_data import RunDirectory from extra_data import RunDirectory
%matplotlib inline %matplotlib inline
from cal_tools.step_timing import StepTimer from cal_tools.step_timing import StepTimer
from cal_tools.tools import ( from cal_tools.tools import (
get_dir_creation_date, get_dir_creation_date,
get_pdu_from_db, get_pdu_from_db,
get_random_db_interface, get_random_db_interface,
get_report, get_report,
save_const_to_h5, save_const_to_h5,
save_dict_to_hdf5, save_dict_to_hdf5,
send_to_db, send_to_db,
run_prop_seq_from_path, run_prop_seq_from_path,
) )
import dffc import dffc
from dffc.draw import plot_images, plot_camera_image from dffc.draw import plot_images, plot_camera_image
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
creation_time=None creation_time=None
if use_dir_creation_date: if use_dir_creation_date:
creation_time = get_dir_creation_date(in_folder, max(dark_run, flat_run)) creation_time = get_dir_creation_date(in_folder, max(dark_run, flat_run))
print(f"Using {creation_time} as creation time of constant.") print(f"Using {creation_time} as creation time of constant.")
run, prop, seq = run_prop_seq_from_path(in_folder) run, prop, seq = run_prop_seq_from_path(in_folder)
file_loc = f'proposal: {prop}, runs: {dark_run} {flat_run}' file_loc = f'proposal: {prop}, runs: {dark_run} {flat_run}'
# Read report path and create file location tuple to add with the injection # Read report path and create file location tuple to add with the injection
file_loc = f"proposal:{prop} runs:{dark_run} {flat_run}" file_loc = f"proposal:{prop} runs:{dark_run} {flat_run}"
report = get_report(metadata_folder) report = get_report(metadata_folder)
cal_db_interface = get_random_db_interface(cal_db_interface) cal_db_interface = get_random_db_interface(cal_db_interface)
print(f'Calibration database interface: {cal_db_interface}') print(f'Calibration database interface: {cal_db_interface}')
print()
instrument, part, component = karabo_id.split('_')
instrument = karabo_id.split("_")[0] sources = {}
source = instrument_source_template.format(karabo_id) source_to_db = {}
print("Sources:")
for da in karabo_da:
aggr, _, module = da.partition('/')
source_name = instrument_source_template.format(
instrument=instrument, part=part, component=component,
module=module
)
sources[source_name] = aggr
source_to_db[source_name] = db_module_template.format(module)
print('-', source_name)
print()
print(f"Detector in use is {karabo_id}") print(f"Detector in use is {karabo_id}")
print(f"Instrument {instrument}") print(f"Instrument {instrument}")
step_timer = StepTimer() step_timer = StepTimer()
constants = {}
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
# Offset map # Offset map
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
step_timer.start() for source, aggr in sources.items():
display(Markdown(f"## {source}"))
dark_dc = RunDirectory(f"{in_folder}/r{dark_run:04d}") # read
dark_dc = dark_dc.select([(source, image_key)]) step_timer.start()
key_data = dark_dc[source][image_key] dark_dc = RunDirectory(f"{in_folder}/r{dark_run:04d}",
include=f"RAW-R{dark_run:04d}-{aggr}-S*.h5")
images_dark = key_data.ndarray() dark_dc = dark_dc.select([(source, image_key)])
ntrain, npulse, ny, nx = images_dark.shape key_data = dark_dc[source][image_key]
print(f"N image: {ntrain * npulse} (ntrain: {ntrain}, npulse: {npulse})") images_dark = key_data.ndarray()
print(f"Image size: {ny} x {nx} px") ntrain, npulse, ny, nx = images_dark.shape
step_timer.done_step("Read dark images")
``` print(f"N image: {ntrain * npulse} (ntrain: {ntrain}, npulse: {npulse})")
print(f"Image size: {ny} x {nx} px")
%% Cell type:code id: tags: step_timer.done_step("Read dark images")
``` python # process
step_timer.start() step_timer.start()
dark = dffc.process_dark(images_dark) dark = dffc.process_dark(images_dark)
step_timer.done_step("Process dark images") module_constants = constants.setdefault(source, {})
``` module_constants["Offset"] = dark
step_timer.done_step("Process dark images")
%% Cell type:code id: tags: display()
``` python # draw plots
step_timer.start() step_timer.start()
plot_camera_image(dark) plot_camera_image(dark)
plt.show() plt.show()
step_timer.done_step("Draw offset map") step_timer.done_step("Draw offsets")
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
# Flat-field PCA decomposition # Flat-field PCA decomposition
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
step_timer.start() for source, aggr in sources.items():
display(Markdown(f"## {source}"))
flat_dc = RunDirectory(f"{in_folder}/r{flat_run:04d}")
flat_dc = flat_dc.select([(source, image_key)])
key_data = flat_dc[source][image_key]
images_flat = key_data.ndarray()
ntrain, npulse, ny, nx = images_flat.shape
print(f"N image: {ntrain * npulse} (ntrain: {ntrain}, npulse: {npulse})")
print(f"Image size: {ny} x {nx} px")
step_timer.done_step("Read flat-field images")
tm0 = time.monotonic()
tm_cm = time.monotonic() - tm0
```
%% Cell type:code id: tags: # read
step_timer.start()
flat_dc = RunDirectory(f"{in_folder}/r{flat_run:04d}",
include=f"RAW-R{flat_run:04d}-{aggr}-S*.h5")
flat_dc = flat_dc.select([(source, image_key)])
key_data = flat_dc[source][image_key]
images_flat = key_data.ndarray()
ntrain, npulse, ny, nx = images_flat.shape
print(f"N image: {ntrain * npulse} (ntrain: {ntrain}, npulse: {npulse})")
print(f"Image size: {ny} x {nx} px")
step_timer.done_step("Read flat-field images")
# process
step_timer.start()
flat, components, explained_variance_ratio = dffc.process_flat(
images_flat, dark, n_components)
module_constants = constants.setdefault(source, {})
module_constants["DynamicFF"] = np.concatenate([flat[None, ...], components])
step_timer.done_step("Process flat-field images")
# draw plots
step_timer.start()
display(Markdown("### Average flat-field"))
plot_camera_image(flat)
plt.show()
display(Markdown("### Explained variance ratio"))
fig, ax = plt.subplots(1, 1, figsize=(10,4), tight_layout=True)
ax.semilogy(explained_variance_ratio, 'o')
ax.set_xticks(np.arange(len(explained_variance_ratio)))
ax.set_xlabel("Component no.")
ax.set_ylabel("Variance fraction")
plt.show()
display(Markdown("### The first principal components (up to 20)"))
plot_images(components[:20], figsize=(13, 8))
plt.show()
``` python step_timer.done_step("Draw flat-field")
step_timer.start()
flat, components, explained_variance_ratio = dffc.process_flat(
images_flat, dark, n_components)
step_timer.done_step("Process flat-field images")
```
%% Cell type:markdown id: tags:
## Average flat-field
%% Cell type:code id: tags:
``` python
step_timer.start()
plot_camera_image(flat)
plt.show()
```
%% Cell type:markdown id: tags:
## Explained variance ratio
%% Cell type:code id: tags:
``` python
fig, ax = plt.subplots(1, 1, figsize=(10,4), tight_layout=True)
ax.semilogy(explained_variance_ratio, 'o')
ax.set_xticks(np.arange(len(explained_variance_ratio)))
ax.set_xlabel("Component no.")
ax.set_ylabel("Variance fraction")
plt.show()
```
%% Cell type:markdown id: tags:
# The first principal components (up to 20)
%% Cell type:code id: tags:
``` python
plot_images(components[:20], figsize=(13, 8))
plt.show()
step_timer.done_step("Draw flat-field map and components")
``` ```
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
## Calibration constants ## Calibration constants
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
step_timer.start() step_timer.start()
# Output Folder Creation: # Output Folder Creation:
os.makedirs(out_folder, exist_ok=True) os.makedirs(out_folder, exist_ok=True)
db_module = "SHIMADZU_HPVX2_M001" for source, module_constants in constants.items():
for constant_name, data in module_constants.items():
constant_name = "Offset" db_module = source_to_db[source]
conditions = { conditions = {
'Memory cells': {'value': 128}, 'Frame Size': {'value': 1.0},
'Pixels X': {'value': flat.shape[1]}, }
'Pixels Y': {'value': flat.shape[0]},
'FF components': {'value': components.shape[0]} data_to_store = {
} 'condition': conditions,
'db_module': db_module,
data_to_store = { 'karabo_id': karabo_id,
'condition': conditions, 'constant': constant_name,
'db_module': db_module, 'data': data,
'karabo_id': karabo_id, 'creation_time': creation_time.replace(microsecond=0),
'constant': constant_name, 'file_loc': file_loc,
'data': dark, 'report': report,
'creation_time': creation_time.replace(microsecond=0), }
'file_loc': file_loc,
'report': report, ofile = f"{out_folder}/const_{constant_name}_{db_module}.h5"
} if os.path.isfile(ofile):
print(f'File {ofile} already exists and will be overwritten')
ofile = f"{out_folder}/const_{constant_name}_{db_module}.h5" save_dict_to_hdf5(data_to_store, ofile)
if os.path.isfile(ofile):
print(f'File {ofile} already exists and will be overwritten')
save_dict_to_hdf5(data_to_store, ofile)
constant_name = "ComponentsFF"
data_to_store.update({
'constant': constant_name,
'data': np.concatenate([flat[None, ...], components]),
})
ofile = f"{out_folder}/const_{constant_name}_{db_module}.h5"
if os.path.isfile(ofile):
print(f'File {ofile} already exists and will be overwritten')
save_dict_to_hdf5(data_to_store, ofile)
step_timer.done_step("Storing calibration constants") step_timer.done_step("Storing calibration constants")
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
print(f"Total processing time {step_timer.timespan():.01f} s") print(f"Total processing time {step_timer.timespan():.01f} s")
step_timer.print_summary() step_timer.print_summary()
``` ```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment