Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pycalibration
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Model registry
Analyze
Contributor analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
calibration
pycalibration
Commits
93f1edc8
Commit
93f1edc8
authored
2 years ago
by
Thomas Kluyver
Browse files
Options
Downloads
Patches
Plain Diff
Set default chunk_data = 1 for more efficient reading
parent
37d19b4a
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!676
[LPD] [Correct] Make virtual cxi for each worker's chunk
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
notebooks/LPD/LPD_Correct_Fast.ipynb
+1
-1
1 addition, 1 deletion
notebooks/LPD/LPD_Correct_Fast.ipynb
with
1 addition
and
1 deletion
notebooks/LPD/LPD_Correct_Fast.ipynb
+
1
−
1
View file @
93f1edc8
...
@@ -55,7 +55,7 @@
...
@@ -55,7 +55,7 @@
"\n",
"\n",
"# Output options\n",
"# Output options\n",
"overwrite = True # set to True if existing data should be overwritten\n",
"overwrite = True # set to True if existing data should be overwritten\n",
"chunks_data =
32
# HDF chunk size for pixel data in number of frames.\n",
"chunks_data =
1
# HDF chunk size for pixel data in number of frames.\n",
"chunks_ids = 32 # HDF chunk size for cellId and pulseId datasets.\n",
"chunks_ids = 32 # HDF chunk size for cellId and pulseId datasets.\n",
"create_virtual_cxi_in = '' # Folder to create virtual CXI files in (for each job's chunk)\n",
"create_virtual_cxi_in = '' # Folder to create virtual CXI files in (for each job's chunk)\n",
"\n",
"\n",
...
...
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
# LPD Offline Correction #
# LPD Offline Correction #
Author: European XFEL Data Analysis Group
Author: European XFEL Data Analysis Group
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# Input parameters
# Input parameters
in_folder
=
"
/gpfs/exfel/exp/FXE/202201/p003073/raw/
"
# the folder to read data from, required
in_folder
=
"
/gpfs/exfel/exp/FXE/202201/p003073/raw/
"
# the folder to read data from, required
out_folder
=
"
/gpfs/exfel/data/scratch/schmidtp/random/LPD_test
"
# the folder to output to, required
out_folder
=
"
/gpfs/exfel/data/scratch/schmidtp/random/LPD_test
"
# the folder to output to, required
metadata_folder
=
''
# Directory containing calibration_metadata.yml when run by xfel-calibrate.
metadata_folder
=
''
# Directory containing calibration_metadata.yml when run by xfel-calibrate.
sequences
=
[
-
1
]
# Sequences to correct, use [-1] for all
sequences
=
[
-
1
]
# Sequences to correct, use [-1] for all
modules
=
[
-
1
]
# Modules indices to correct, use [-1] for all, only used when karabo_da is empty
modules
=
[
-
1
]
# Modules indices to correct, use [-1] for all, only used when karabo_da is empty
karabo_da
=
[
''
]
# Data aggregators names to correct, use [''] for all
karabo_da
=
[
''
]
# Data aggregators names to correct, use [''] for all
run
=
10
# runs to process, required
run
=
10
# runs to process, required
# Source parameters
# Source parameters
karabo_id
=
'
FXE_DET_LPD1M-1
'
# Karabo domain for detector.
karabo_id
=
'
FXE_DET_LPD1M-1
'
# Karabo domain for detector.
input_source
=
'
{karabo_id}/DET/{module_index}CH0:xtdf
'
# Input fast data source.
input_source
=
'
{karabo_id}/DET/{module_index}CH0:xtdf
'
# Input fast data source.
output_source
=
''
# Output fast data source, empty to use same as input.
output_source
=
''
# Output fast data source, empty to use same as input.
# CalCat parameters
# CalCat parameters
use_dir_creation_date
=
True
# Use the creation date of the directory for database time derivation.
use_dir_creation_date
=
True
# Use the creation date of the directory for database time derivation.
cal_db_interface
=
''
# Not needed, compatibility with current webservice.
cal_db_interface
=
''
# Not needed, compatibility with current webservice.
cal_db_timeout
=
0
# Not needed, compatbility with current webservice.
cal_db_timeout
=
0
# Not needed, compatbility with current webservice.
cal_db_root
=
'
/gpfs/exfel/d/cal/caldb_store
'
cal_db_root
=
'
/gpfs/exfel/d/cal/caldb_store
'
# Operating conditions
# Operating conditions
mem_cells
=
512
# Memory cells, LPD constants are always taken with 512 cells.
mem_cells
=
512
# Memory cells, LPD constants are always taken with 512 cells.
bias_voltage
=
250.0
# Detector bias voltage.
bias_voltage
=
250.0
# Detector bias voltage.
capacitor
=
'
5pF
'
# Capacitor setting: 5pF or 50pF
capacitor
=
'
5pF
'
# Capacitor setting: 5pF or 50pF
photon_energy
=
9.2
# Photon energy in keV.
photon_energy
=
9.2
# Photon energy in keV.
category
=
0
# Whom to blame.
category
=
0
# Whom to blame.
# Correction parameters
# Correction parameters
offset_corr
=
True
# Offset correction.
offset_corr
=
True
# Offset correction.
rel_gain
=
True
# Gain correction based on RelativeGain constant.
rel_gain
=
True
# Gain correction based on RelativeGain constant.
ff_map
=
True
# Gain correction based on FFMap constant.
ff_map
=
True
# Gain correction based on FFMap constant.
gain_amp_map
=
True
# Gain correction based on GainAmpMap constant.
gain_amp_map
=
True
# Gain correction based on GainAmpMap constant.
# Output options
# Output options
overwrite
=
True
# set to True if existing data should be overwritten
overwrite
=
True
# set to True if existing data should be overwritten
chunks_data
=
32
# HDF chunk size for pixel data in number of frames.
chunks_data
=
1
# HDF chunk size for pixel data in number of frames.
chunks_ids
=
32
# HDF chunk size for cellId and pulseId datasets.
chunks_ids
=
32
# HDF chunk size for cellId and pulseId datasets.
create_virtual_cxi_in
=
''
# Folder to create virtual CXI files in (for each job's chunk)
create_virtual_cxi_in
=
''
# Folder to create virtual CXI files in (for each job's chunk)
# Parallelization options
# Parallelization options
sequences_per_node
=
1
# Sequence files to process per node
sequences_per_node
=
1
# Sequence files to process per node
num_workers
=
8
# Worker processes per node, 8 is safe on 768G nodes but won't work on 512G.
num_workers
=
8
# Worker processes per node, 8 is safe on 768G nodes but won't work on 512G.
num_threads_per_worker
=
32
# Number of threads per worker.
num_threads_per_worker
=
32
# Number of threads per worker.
def
balance_sequences
(
in_folder
,
run
,
sequences
,
sequences_per_node
,
karabo_da
):
def
balance_sequences
(
in_folder
,
run
,
sequences
,
sequences_per_node
,
karabo_da
):
from
xfel_calibrate.calibrate
import
balance_sequences
as
bs
from
xfel_calibrate.calibrate
import
balance_sequences
as
bs
return
bs
(
in_folder
,
run
,
sequences
,
sequences_per_node
,
karabo_da
)
return
bs
(
in_folder
,
run
,
sequences
,
sequences_per_node
,
karabo_da
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
from
collections
import
OrderedDict
from
collections
import
OrderedDict
from
pathlib
import
Path
from
pathlib
import
Path
from
time
import
perf_counter
from
time
import
perf_counter
import
gc
import
gc
import
re
import
re
import
warnings
import
warnings
import
numpy
as
np
import
numpy
as
np
import
h5py
import
h5py
import
matplotlib
import
matplotlib
matplotlib
.
use
(
'
agg
'
)
matplotlib
.
use
(
'
agg
'
)
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
%
matplotlib
inline
%
matplotlib
inline
from
calibration_client
import
CalibrationClient
from
calibration_client
import
CalibrationClient
from
calibration_client.modules
import
CalibrationConstantVersion
from
calibration_client.modules
import
CalibrationConstantVersion
import
extra_data
as
xd
import
extra_data
as
xd
import
extra_geom
as
xg
import
extra_geom
as
xg
import
pasha
as
psh
import
pasha
as
psh
from
extra_data.components
import
LPD1M
from
extra_data.components
import
LPD1M
from
cal_tools.lpdalgs
import
correct_lpd_frames
from
cal_tools.lpdalgs
import
correct_lpd_frames
from
cal_tools.tools
import
CalibrationMetadata
,
get_dir_creation_date
,
write_compressed_frames
from
cal_tools.tools
import
CalibrationMetadata
,
get_dir_creation_date
,
write_compressed_frames
from
cal_tools.files
import
DataFile
from
cal_tools.files
import
DataFile
from
cal_tools.restful_config
import
restful_config
from
cal_tools.restful_config
import
restful_config
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
# Prepare environment
# Prepare environment
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
file_re
=
re
.
compile
(
r
'
^RAW-R(\d{4})-(\w+\d+)-S(\d{5})$
'
)
# This should probably move to cal_tools
file_re
=
re
.
compile
(
r
'
^RAW-R(\d{4})-(\w+\d+)-S(\d{5})$
'
)
# This should probably move to cal_tools
run_folder
=
Path
(
in_folder
)
/
f
'
r
{
run
:
04
d
}
'
run_folder
=
Path
(
in_folder
)
/
f
'
r
{
run
:
04
d
}
'
out_folder
=
Path
(
out_folder
)
out_folder
=
Path
(
out_folder
)
out_folder
.
mkdir
(
exist_ok
=
True
)
out_folder
.
mkdir
(
exist_ok
=
True
)
output_source
=
output_source
or
input_source
output_source
=
output_source
or
input_source
cal_db_root
=
Path
(
cal_db_root
)
cal_db_root
=
Path
(
cal_db_root
)
metadata
=
CalibrationMetadata
(
metadata_folder
or
out_folder
)
metadata
=
CalibrationMetadata
(
metadata_folder
or
out_folder
)
if
use_dir_creation_date
:
if
use_dir_creation_date
:
creation_time
=
get_dir_creation_date
(
in_folder
,
run
)
creation_time
=
get_dir_creation_date
(
in_folder
,
run
)
else
:
else
:
from
datetime
import
datetime
from
datetime
import
datetime
creation_time
=
datetime
.
now
()
creation_time
=
datetime
.
now
()
print
(
f
'
Using
{
creation_time
.
isoformat
()
}
as creation time
'
)
print
(
f
'
Using
{
creation_time
.
isoformat
()
}
as creation time
'
)
# Pick all modules/aggregators or those selected.
# Pick all modules/aggregators or those selected.
if
not
karabo_da
or
karabo_da
==
[
''
]:
if
not
karabo_da
or
karabo_da
==
[
''
]:
if
not
modules
or
modules
==
[
-
1
]:
if
not
modules
or
modules
==
[
-
1
]:
modules
=
list
(
range
(
16
))
modules
=
list
(
range
(
16
))
karabo_da
=
[
f
'
LPD
{
i
:
02
d
}
'
for
i
in
modules
]
karabo_da
=
[
f
'
LPD
{
i
:
02
d
}
'
for
i
in
modules
]
# Pick all sequences or those selected.
# Pick all sequences or those selected.
if
not
sequences
or
sequences
==
[
-
1
]:
if
not
sequences
or
sequences
==
[
-
1
]:
do_sequence
=
lambda
seq
:
True
do_sequence
=
lambda
seq
:
True
else
:
else
:
do_sequence
=
[
int
(
x
)
for
x
in
sequences
].
__contains__
do_sequence
=
[
int
(
x
)
for
x
in
sequences
].
__contains__
# List of detector sources.
# List of detector sources.
det_inp_sources
=
[
input_source
.
format
(
karabo_id
=
karabo_id
,
module_index
=
int
(
da
[
-
2
:]))
for
da
in
karabo_da
]
det_inp_sources
=
[
input_source
.
format
(
karabo_id
=
karabo_id
,
module_index
=
int
(
da
[
-
2
:]))
for
da
in
karabo_da
]
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
# Select data to process
# Select data to process
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
data_to_process
=
[]
data_to_process
=
[]
for
inp_path
in
run_folder
.
glob
(
'
RAW-*.h5
'
):
for
inp_path
in
run_folder
.
glob
(
'
RAW-*.h5
'
):
match
=
file_re
.
match
(
inp_path
.
stem
)
match
=
file_re
.
match
(
inp_path
.
stem
)
if
match
[
2
]
not
in
karabo_da
or
not
do_sequence
(
int
(
match
[
3
])):
if
match
[
2
]
not
in
karabo_da
or
not
do_sequence
(
int
(
match
[
3
])):
continue
continue
outp_path
=
out_folder
/
'
CORR-R{run:04d}-{aggregator}-S{seq:05d}.h5
'
.
format
(
outp_path
=
out_folder
/
'
CORR-R{run:04d}-{aggregator}-S{seq:05d}.h5
'
.
format
(
run
=
int
(
match
[
1
]),
aggregator
=
match
[
2
],
seq
=
int
(
match
[
3
]))
run
=
int
(
match
[
1
]),
aggregator
=
match
[
2
],
seq
=
int
(
match
[
3
]))
data_to_process
.
append
((
match
[
2
],
inp_path
,
outp_path
))
data_to_process
.
append
((
match
[
2
],
inp_path
,
outp_path
))
print
(
'
Files to process:
'
)
print
(
'
Files to process:
'
)
for
data_descr
in
sorted
(
data_to_process
,
key
=
lambda
x
:
f
'
{
x
[
0
]
}{
x
[
1
]
}
'
):
for
data_descr
in
sorted
(
data_to_process
,
key
=
lambda
x
:
f
'
{
x
[
0
]
}{
x
[
1
]
}
'
):
print
(
f
'
{
data_descr
[
0
]
}
\t
{
data_descr
[
1
]
}
'
)
print
(
f
'
{
data_descr
[
0
]
}
\t
{
data_descr
[
1
]
}
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
# Obtain and prepare calibration constants
# Obtain and prepare calibration constants
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# Connect to CalCat.
# Connect to CalCat.
calcat_config
=
restful_config
[
'
calcat
'
]
calcat_config
=
restful_config
[
'
calcat
'
]
client
=
CalibrationClient
(
client
=
CalibrationClient
(
use_oauth2
=
calcat_config
[
'
use-oauth2
'
],
use_oauth2
=
calcat_config
[
'
use-oauth2
'
],
client_id
=
calcat_config
[
'
user-id
'
],
client_id
=
calcat_config
[
'
user-id
'
],
client_secret
=
calcat_config
[
'
user-secret
'
],
client_secret
=
calcat_config
[
'
user-secret
'
],
user_email
=
calcat_config
[
'
user-email
'
],
user_email
=
calcat_config
[
'
user-email
'
],
base_api_url
=
calcat_config
[
'
base-api-url
'
],
base_api_url
=
calcat_config
[
'
base-api-url
'
],
token_url
=
calcat_config
[
'
token-url
'
],
token_url
=
calcat_config
[
'
token-url
'
],
refresh_url
=
calcat_config
[
'
refresh-url
'
],
refresh_url
=
calcat_config
[
'
refresh-url
'
],
auth_url
=
calcat_config
[
'
auth-url
'
],
auth_url
=
calcat_config
[
'
auth-url
'
],
scope
=
''
)
scope
=
''
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
dark_calibrations
=
{
dark_calibrations
=
{
1
:
'
Offset
'
,
# np.float32
1
:
'
Offset
'
,
# np.float32
14
:
'
BadPixelsDark
'
# should be np.uint32, but is np.float64
14
:
'
BadPixelsDark
'
# should be np.uint32, but is np.float64
}
}
dark_condition
=
[
dark_condition
=
[
dict
(
parameter_id
=
1
,
value
=
bias_voltage
),
# Sensor bias voltage
dict
(
parameter_id
=
1
,
value
=
bias_voltage
),
# Sensor bias voltage
dict
(
parameter_id
=
7
,
value
=
mem_cells
),
# Memory cells
dict
(
parameter_id
=
7
,
value
=
mem_cells
),
# Memory cells
dict
(
parameter_id
=
15
,
value
=
capacitor
),
# Feedback capacitor
dict
(
parameter_id
=
15
,
value
=
capacitor
),
# Feedback capacitor
dict
(
parameter_id
=
13
,
value
=
256
),
# Pixels X
dict
(
parameter_id
=
13
,
value
=
256
),
# Pixels X
dict
(
parameter_id
=
14
,
value
=
256
),
# Pixels Y
dict
(
parameter_id
=
14
,
value
=
256
),
# Pixels Y
]
]
illuminated_calibrations
=
{
illuminated_calibrations
=
{
20
:
'
BadPixelsFF
'
,
# np.uint32
20
:
'
BadPixelsFF
'
,
# np.uint32
42
:
'
GainAmpMap
'
,
# np.float32
42
:
'
GainAmpMap
'
,
# np.float32
43
:
'
FFMap
'
,
# np.float32
43
:
'
FFMap
'
,
# np.float32
44
:
'
RelativeGain
'
# np.float32
44
:
'
RelativeGain
'
# np.float32
}
}
illuminated_condition
=
dark_condition
.
copy
()
illuminated_condition
=
dark_condition
.
copy
()
illuminated_condition
+=
[
illuminated_condition
+=
[
dict
(
parameter_id
=
3
,
value
=
photon_energy
),
# Source energy
dict
(
parameter_id
=
3
,
value
=
photon_energy
),
# Source energy
dict
(
parameter_id
=
25
,
value
=
category
)
# category
dict
(
parameter_id
=
25
,
value
=
category
)
# category
]
]
const_data
=
{}
const_data
=
{}
const_load_mp
=
psh
.
ProcessContext
(
num_workers
=
24
)
const_load_mp
=
psh
.
ProcessContext
(
num_workers
=
24
)
print
(
'
Querying calibration database
'
,
end
=
''
,
flush
=
True
)
print
(
'
Querying calibration database
'
,
end
=
''
,
flush
=
True
)
start
=
perf_counter
()
start
=
perf_counter
()
for
calibrations
,
condition
in
[
for
calibrations
,
condition
in
[
(
dark_calibrations
,
dark_condition
),
(
dark_calibrations
,
dark_condition
),
(
illuminated_calibrations
,
illuminated_condition
)
(
illuminated_calibrations
,
illuminated_condition
)
]:
]:
resp
=
CalibrationConstantVersion
.
get_closest_by_time_by_detector_conditions
(
resp
=
CalibrationConstantVersion
.
get_closest_by_time_by_detector_conditions
(
client
,
karabo_id
,
list
(
calibrations
.
keys
()),
client
,
karabo_id
,
list
(
calibrations
.
keys
()),
{
'
parameters_conditions_attributes
'
:
condition
},
{
'
parameters_conditions_attributes
'
:
condition
},
karabo_da
=
''
,
event_at
=
creation_time
.
isoformat
(),
snapshot_at
=
None
)
karabo_da
=
''
,
event_at
=
creation_time
.
isoformat
(),
snapshot_at
=
None
)
if
not
resp
[
'
success
'
]:
if
not
resp
[
'
success
'
]:
raise
RuntimeError
(
resp
)
raise
RuntimeError
(
resp
)
for
ccv
in
resp
[
'
data
'
]:
for
ccv
in
resp
[
'
data
'
]:
cc
=
ccv
[
'
calibration_constant
'
]
cc
=
ccv
[
'
calibration_constant
'
]
da
=
ccv
[
'
physical_detector_unit
'
][
'
karabo_da
'
]
da
=
ccv
[
'
physical_detector_unit
'
][
'
karabo_da
'
]
calibration_name
=
calibrations
[
cc
[
'
calibration_id
'
]]
calibration_name
=
calibrations
[
cc
[
'
calibration_id
'
]]
dtype
=
np
.
uint32
if
calibration_name
.
startswith
(
'
BadPixels
'
)
else
np
.
float32
dtype
=
np
.
uint32
if
calibration_name
.
startswith
(
'
BadPixels
'
)
else
np
.
float32
const_data
[(
da
,
calibration_name
)]
=
dict
(
const_data
[(
da
,
calibration_name
)]
=
dict
(
path
=
Path
(
ccv
[
'
path_to_file
'
])
/
ccv
[
'
file_name
'
],
path
=
Path
(
ccv
[
'
path_to_file
'
])
/
ccv
[
'
file_name
'
],
dataset
=
ccv
[
'
data_set_name
'
],
dataset
=
ccv
[
'
data_set_name
'
],
data
=
const_load_mp
.
alloc
(
shape
=
(
256
,
256
,
mem_cells
,
3
),
dtype
=
dtype
)
data
=
const_load_mp
.
alloc
(
shape
=
(
256
,
256
,
mem_cells
,
3
),
dtype
=
dtype
)
)
)
print
(
'
.
'
,
end
=
''
,
flush
=
True
)
print
(
'
.
'
,
end
=
''
,
flush
=
True
)
total_time
=
perf_counter
()
-
start
total_time
=
perf_counter
()
-
start
print
(
f
'
{
total_time
:
.
1
f
}
s
'
)
print
(
f
'
{
total_time
:
.
1
f
}
s
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
def
load_constant_dataset
(
wid
,
index
,
const_descr
):
def
load_constant_dataset
(
wid
,
index
,
const_descr
):
ccv_entry
=
const_data
[
const_descr
]
ccv_entry
=
const_data
[
const_descr
]
with
h5py
.
File
(
cal_db_root
/
ccv_entry
[
'
path
'
],
'
r
'
)
as
fp
:
with
h5py
.
File
(
cal_db_root
/
ccv_entry
[
'
path
'
],
'
r
'
)
as
fp
:
fp
[
ccv_entry
[
'
dataset
'
]
+
'
/data
'
].
read_direct
(
ccv_entry
[
'
data
'
])
fp
[
ccv_entry
[
'
dataset
'
]
+
'
/data
'
].
read_direct
(
ccv_entry
[
'
data
'
])
print
(
'
.
'
,
end
=
''
,
flush
=
True
)
print
(
'
.
'
,
end
=
''
,
flush
=
True
)
print
(
'
Loading calibration data
'
,
end
=
''
,
flush
=
True
)
print
(
'
Loading calibration data
'
,
end
=
''
,
flush
=
True
)
start
=
perf_counter
()
start
=
perf_counter
()
const_load_mp
.
map
(
load_constant_dataset
,
list
(
const_data
.
keys
()))
const_load_mp
.
map
(
load_constant_dataset
,
list
(
const_data
.
keys
()))
total_time
=
perf_counter
()
-
start
total_time
=
perf_counter
()
-
start
print
(
f
'
{
total_time
:
.
1
f
}
s
'
)
print
(
f
'
{
total_time
:
.
1
f
}
s
'
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# These are intended in order cell, X, Y, gain
# These are intended in order cell, X, Y, gain
ccv_offsets
=
{}
ccv_offsets
=
{}
ccv_gains
=
{}
ccv_gains
=
{}
ccv_masks
=
{}
ccv_masks
=
{}
ccv_shape
=
(
mem_cells
,
256
,
256
,
3
)
ccv_shape
=
(
mem_cells
,
256
,
256
,
3
)
constant_order
=
{
constant_order
=
{
'
Offset
'
:
(
2
,
1
,
0
,
3
),
'
Offset
'
:
(
2
,
1
,
0
,
3
),
'
BadPixelsDark
'
:
(
2
,
1
,
0
,
3
),
'
BadPixelsDark
'
:
(
2
,
1
,
0
,
3
),
'
RelativeGain
'
:
(
2
,
1
,
0
,
3
),
'
RelativeGain
'
:
(
2
,
1
,
0
,
3
),
'
FFMap
'
:
(
2
,
0
,
1
,
3
),
'
FFMap
'
:
(
2
,
0
,
1
,
3
),
'
BadPixelsFF
'
:
(
2
,
0
,
1
,
3
),
'
BadPixelsFF
'
:
(
2
,
0
,
1
,
3
),
'
GainAmpMap
'
:
(
2
,
0
,
1
,
3
),
'
GainAmpMap
'
:
(
2
,
0
,
1
,
3
),
}
}
def
prepare_constants
(
wid
,
index
,
aggregator
):
def
prepare_constants
(
wid
,
index
,
aggregator
):
consts
=
{
calibration_name
:
entry
[
'
data
'
]
consts
=
{
calibration_name
:
entry
[
'
data
'
]
for
(
aggregator_
,
calibration_name
),
entry
for
(
aggregator_
,
calibration_name
),
entry
in
const_data
.
items
()
in
const_data
.
items
()
if
aggregator
==
aggregator_
}
if
aggregator
==
aggregator_
}
def
_prepare_data
(
calibration_name
,
dtype
):
def
_prepare_data
(
calibration_name
,
dtype
):
return
consts
[
calibration_name
]
\
return
consts
[
calibration_name
]
\
.
transpose
(
constant_order
[
calibration_name
])
\
.
transpose
(
constant_order
[
calibration_name
])
\
.
astype
(
dtype
,
copy
=
True
)
# Make sure array is contiguous.
.
astype
(
dtype
,
copy
=
True
)
# Make sure array is contiguous.
if
offset_corr
and
'
Offset
'
in
consts
:
if
offset_corr
and
'
Offset
'
in
consts
:
ccv_offsets
[
aggregator
]
=
_prepare_data
(
'
Offset
'
,
np
.
float32
)
ccv_offsets
[
aggregator
]
=
_prepare_data
(
'
Offset
'
,
np
.
float32
)
else
:
else
:
ccv_offsets
[
aggregator
]
=
np
.
zeros
(
ccv_shape
,
dtype
=
np
.
float32
)
ccv_offsets
[
aggregator
]
=
np
.
zeros
(
ccv_shape
,
dtype
=
np
.
float32
)
ccv_gains
[
aggregator
]
=
np
.
ones
(
ccv_shape
,
dtype
=
np
.
float32
)
ccv_gains
[
aggregator
]
=
np
.
ones
(
ccv_shape
,
dtype
=
np
.
float32
)
if
'
BadPixelsDark
'
in
consts
:
if
'
BadPixelsDark
'
in
consts
:
ccv_masks
[
aggregator
]
=
_prepare_data
(
'
BadPixelsDark
'
,
np
.
uint32
)
ccv_masks
[
aggregator
]
=
_prepare_data
(
'
BadPixelsDark
'
,
np
.
uint32
)
else
:
else
:
ccv_masks
[
aggregator
]
=
np
.
zeros
(
ccv_shape
,
dtype
=
np
.
uint32
)
ccv_masks
[
aggregator
]
=
np
.
zeros
(
ccv_shape
,
dtype
=
np
.
uint32
)
if
rel_gain
and
'
RelativeGain
'
in
consts
:
if
rel_gain
and
'
RelativeGain
'
in
consts
:
ccv_gains
[
aggregator
]
*=
_prepare_data
(
'
RelativeGain
'
,
np
.
float32
)
ccv_gains
[
aggregator
]
*=
_prepare_data
(
'
RelativeGain
'
,
np
.
float32
)
if
ff_map
and
'
FFMap
'
in
consts
:
if
ff_map
and
'
FFMap
'
in
consts
:
ccv_gains
[
aggregator
]
*=
_prepare_data
(
'
FFMap
'
,
np
.
float32
)
ccv_gains
[
aggregator
]
*=
_prepare_data
(
'
FFMap
'
,
np
.
float32
)
if
'
BadPixelsFF
'
in
consts
:
if
'
BadPixelsFF
'
in
consts
:
np
.
bitwise_or
(
ccv_masks
[
aggregator
],
_prepare_data
(
'
BadPixelsFF
'
,
np
.
uint32
),
np
.
bitwise_or
(
ccv_masks
[
aggregator
],
_prepare_data
(
'
BadPixelsFF
'
,
np
.
uint32
),
out
=
ccv_masks
[
aggregator
])
out
=
ccv_masks
[
aggregator
])
if
gain_amp_map
and
'
GainAmpMap
'
in
consts
:
if
gain_amp_map
and
'
GainAmpMap
'
in
consts
:
ccv_gains
[
aggregator
]
*=
_prepare_data
(
'
GainAmpMap
'
,
np
.
float32
)
ccv_gains
[
aggregator
]
*=
_prepare_data
(
'
GainAmpMap
'
,
np
.
float32
)
print
(
'
.
'
,
end
=
''
,
flush
=
True
)
print
(
'
.
'
,
end
=
''
,
flush
=
True
)
print
(
'
Preparing constants
'
,
end
=
''
,
flush
=
True
)
print
(
'
Preparing constants
'
,
end
=
''
,
flush
=
True
)
start
=
perf_counter
()
start
=
perf_counter
()
psh
.
ThreadContext
(
num_workers
=
len
(
karabo_da
)).
map
(
prepare_constants
,
karabo_da
)
psh
.
ThreadContext
(
num_workers
=
len
(
karabo_da
)).
map
(
prepare_constants
,
karabo_da
)
total_time
=
perf_counter
()
-
start
total_time
=
perf_counter
()
-
start
print
(
f
'
{
total_time
:
.
1
f
}
s
'
)
print
(
f
'
{
total_time
:
.
1
f
}
s
'
)
const_data
.
clear
()
# Clear raw constants data now to save memory.
const_data
.
clear
()
# Clear raw constants data now to save memory.
gc
.
collect
();
gc
.
collect
();
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
def
correct_file
(
wid
,
index
,
work
):
def
correct_file
(
wid
,
index
,
work
):
aggregator
,
inp_path
,
outp_path
=
work
aggregator
,
inp_path
,
outp_path
=
work
module_index
=
int
(
aggregator
[
-
2
:])
module_index
=
int
(
aggregator
[
-
2
:])
start
=
perf_counter
()
start
=
perf_counter
()
dc
=
xd
.
H5File
(
inp_path
).
select
(
'
*
'
,
'
image.*
'
,
require_all
=
True
)
dc
=
xd
.
H5File
(
inp_path
).
select
(
'
*
'
,
'
image.*
'
,
require_all
=
True
)
inp_source
=
dc
[
input_source
.
format
(
karabo_id
=
karabo_id
,
module_index
=
module_index
)]
inp_source
=
dc
[
input_source
.
format
(
karabo_id
=
karabo_id
,
module_index
=
module_index
)]
open_time
=
perf_counter
()
-
start
open_time
=
perf_counter
()
-
start
# Load raw data for this file.
# Load raw data for this file.
start
=
perf_counter
()
start
=
perf_counter
()
in_raw
=
inp_source
[
'
image.data
'
].
ndarray
().
squeeze
()
in_raw
=
inp_source
[
'
image.data
'
].
ndarray
().
squeeze
()
in_cell
=
inp_source
[
'
image.cellId
'
].
ndarray
().
squeeze
()
in_cell
=
inp_source
[
'
image.cellId
'
].
ndarray
().
squeeze
()
in_pulse
=
inp_source
[
'
image.pulseId
'
].
ndarray
().
squeeze
()
in_pulse
=
inp_source
[
'
image.pulseId
'
].
ndarray
().
squeeze
()
read_time
=
perf_counter
()
-
start
read_time
=
perf_counter
()
-
start
# Allocate output arrays.
# Allocate output arrays.
out_data
=
np
.
zeros
((
in_raw
.
shape
[
0
],
256
,
256
),
dtype
=
np
.
float32
)
out_data
=
np
.
zeros
((
in_raw
.
shape
[
0
],
256
,
256
),
dtype
=
np
.
float32
)
out_gain
=
np
.
zeros
((
in_raw
.
shape
[
0
],
256
,
256
),
dtype
=
np
.
uint8
)
out_gain
=
np
.
zeros
((
in_raw
.
shape
[
0
],
256
,
256
),
dtype
=
np
.
uint8
)
out_mask
=
np
.
zeros
((
in_raw
.
shape
[
0
],
256
,
256
),
dtype
=
np
.
uint32
)
out_mask
=
np
.
zeros
((
in_raw
.
shape
[
0
],
256
,
256
),
dtype
=
np
.
uint32
)
start
=
perf_counter
()
start
=
perf_counter
()
correct_lpd_frames
(
in_raw
,
in_cell
,
correct_lpd_frames
(
in_raw
,
in_cell
,
out_data
,
out_gain
,
out_mask
,
out_data
,
out_gain
,
out_mask
,
ccv_offsets
[
aggregator
],
ccv_gains
[
aggregator
],
ccv_masks
[
aggregator
],
ccv_offsets
[
aggregator
],
ccv_gains
[
aggregator
],
ccv_masks
[
aggregator
],
num_threads
=
num_threads_per_worker
)
num_threads
=
num_threads_per_worker
)
correct_time
=
perf_counter
()
-
start
correct_time
=
perf_counter
()
-
start
image_counts
=
inp_source
[
'
image.data
'
].
data_counts
(
labelled
=
False
)
image_counts
=
inp_source
[
'
image.data
'
].
data_counts
(
labelled
=
False
)
start
=
perf_counter
()
start
=
perf_counter
()
if
(
not
outp_path
.
exists
()
or
overwrite
)
and
image_counts
.
sum
()
>
0
:
if
(
not
outp_path
.
exists
()
or
overwrite
)
and
image_counts
.
sum
()
>
0
:
fa
=
dc
.
files
[
0
]
fa
=
dc
.
files
[
0
]
sel_trains
=
np
.
isin
(
fa
.
train_ids
,
dc
.
train_ids
)
sel_trains
=
np
.
isin
(
fa
.
train_ids
,
dc
.
train_ids
)
outp_source_name
=
output_source
.
format
(
karabo_id
=
karabo_id
,
module_index
=
module_index
)
outp_source_name
=
output_source
.
format
(
karabo_id
=
karabo_id
,
module_index
=
module_index
)
with
DataFile
(
outp_path
,
'
w
'
)
as
outp_file
:
with
DataFile
(
outp_path
,
'
w
'
)
as
outp_file
:
outp_file
.
create_index
(
outp_file
.
create_index
(
train_ids
=
dc
.
train_ids
,
train_ids
=
dc
.
train_ids
,
timestamps
=
fa
.
file
[
'
INDEX/timestamp
'
][
sel_trains
],
timestamps
=
fa
.
file
[
'
INDEX/timestamp
'
][
sel_trains
],
flags
=
fa
.
validity_flag
[
sel_trains
])
flags
=
fa
.
validity_flag
[
sel_trains
])
outp_file
.
create_metadata
(
like
=
dc
,
instrument_channels
=
(
f
'
{
outp_source_name
}
/image
'
,))
outp_file
.
create_metadata
(
like
=
dc
,
instrument_channels
=
(
f
'
{
outp_source_name
}
/image
'
,))
outp_source
=
outp_file
.
create_instrument_source
(
outp_source_name
)
outp_source
=
outp_file
.
create_instrument_source
(
outp_source_name
)
outp_source
.
create_index
(
image
=
image_counts
)
outp_source
.
create_index
(
image
=
image_counts
)
outp_source
.
create_key
(
'
image.cellId
'
,
data
=
in_cell
,
outp_source
.
create_key
(
'
image.cellId
'
,
data
=
in_cell
,
chunks
=
(
chunks_ids
,))
chunks
=
(
chunks_ids
,))
outp_source
.
create_key
(
'
image.pulseId
'
,
data
=
in_pulse
,
outp_source
.
create_key
(
'
image.pulseId
'
,
data
=
in_pulse
,
chunks
=
(
chunks_ids
,))
chunks
=
(
chunks_ids
,))
outp_source
.
create_key
(
'
image.data
'
,
data
=
out_data
,
outp_source
.
create_key
(
'
image.data
'
,
data
=
out_data
,
chunks
=
(
chunks_data
,
256
,
256
))
chunks
=
(
chunks_data
,
256
,
256
))
write_compressed_frames
(
write_compressed_frames
(
out_gain
,
outp_file
,
f
'
INSTRUMENT/
{
outp_source_name
}
/image/gain
'
,
comp_threads
=
8
)
out_gain
,
outp_file
,
f
'
INSTRUMENT/
{
outp_source_name
}
/image/gain
'
,
comp_threads
=
8
)
write_compressed_frames
(
write_compressed_frames
(
out_mask
,
outp_file
,
f
'
INSTRUMENT/
{
outp_source_name
}
/image/mask
'
,
comp_threads
=
8
)
out_mask
,
outp_file
,
f
'
INSTRUMENT/
{
outp_source_name
}
/image/mask
'
,
comp_threads
=
8
)
write_time
=
perf_counter
()
-
start
write_time
=
perf_counter
()
-
start
total_time
=
open_time
+
read_time
+
correct_time
+
write_time
total_time
=
open_time
+
read_time
+
correct_time
+
write_time
frame_rate
=
in_raw
.
shape
[
0
]
/
total_time
frame_rate
=
in_raw
.
shape
[
0
]
/
total_time
print
(
'
{}
\t
{}
\t
{:.3f}
\t
{:.3f}
\t
{:.3f}
\t
{:.3f}
\t
{:.3f}
\t
{}
\t
{:.1f}
'
.
format
(
print
(
'
{}
\t
{}
\t
{:.3f}
\t
{:.3f}
\t
{:.3f}
\t
{:.3f}
\t
{:.3f}
\t
{}
\t
{:.1f}
'
.
format
(
wid
,
aggregator
,
open_time
,
read_time
,
correct_time
,
write_time
,
total_time
,
wid
,
aggregator
,
open_time
,
read_time
,
correct_time
,
write_time
,
total_time
,
in_raw
.
shape
[
0
],
frame_rate
))
in_raw
.
shape
[
0
],
frame_rate
))
in_raw
=
None
in_raw
=
None
in_cell
=
None
in_cell
=
None
in_pulse
=
None
in_pulse
=
None
out_data
=
None
out_data
=
None
out_gain
=
None
out_gain
=
None
out_mask
=
None
out_mask
=
None
gc
.
collect
()
gc
.
collect
()
print
(
'
worker
\t
DA
\t
open
\t
read
\t
correct
\t
write
\t
total
\t
frames
\t
rate
'
)
print
(
'
worker
\t
DA
\t
open
\t
read
\t
correct
\t
write
\t
total
\t
frames
\t
rate
'
)
start
=
perf_counter
()
start
=
perf_counter
()
psh
.
ProcessContext
(
num_workers
=
num_workers
).
map
(
correct_file
,
data_to_process
)
psh
.
ProcessContext
(
num_workers
=
num_workers
).
map
(
correct_file
,
data_to_process
)
total_time
=
perf_counter
()
-
start
total_time
=
perf_counter
()
-
start
print
(
f
'
Total time:
{
total_time
:
.
1
f
}
s
'
)
print
(
f
'
Total time:
{
total_time
:
.
1
f
}
s
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
# Data preview for first train
# Data preview for first train
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
geom
=
xg
.
LPD_1MGeometry
.
from_quad_positions
(
geom
=
xg
.
LPD_1MGeometry
.
from_quad_positions
(
[(
11.4
,
299
),
(
-
11.5
,
8
),
(
254.5
,
-
16
),
(
278.5
,
275
)])
[(
11.4
,
299
),
(
-
11.5
,
8
),
(
254.5
,
-
16
),
(
278.5
,
275
)])
output_paths
=
[
outp_path
for
_
,
_
,
outp_path
in
data_to_process
if
outp_path
.
exists
()]
output_paths
=
[
outp_path
for
_
,
_
,
outp_path
in
data_to_process
if
outp_path
.
exists
()]
dc
=
xd
.
DataCollection
.
from_paths
(
output_paths
).
select_trains
(
np
.
s_
[
0
])
dc
=
xd
.
DataCollection
.
from_paths
(
output_paths
).
select_trains
(
np
.
s_
[
0
])
det
=
LPD1M
(
dc
,
detector_name
=
karabo_id
)
det
=
LPD1M
(
dc
,
detector_name
=
karabo_id
)
data
=
det
.
get_array
(
'
image.data
'
)
data
=
det
.
get_array
(
'
image.data
'
)
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
### Intensity histogram across all cells
### Intensity histogram across all cells
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
left_edge_ratio
=
0.01
left_edge_ratio
=
0.01
right_edge_ratio
=
0.99
right_edge_ratio
=
0.99
fig
,
ax
=
plt
.
subplots
(
num
=
1
,
clear
=
True
,
figsize
=
(
15
,
6
))
fig
,
ax
=
plt
.
subplots
(
num
=
1
,
clear
=
True
,
figsize
=
(
15
,
6
))
values
,
bins
,
_
=
ax
.
hist
(
np
.
ravel
(
data
.
data
),
bins
=
2000
,
range
=
(
-
1500
,
2000
))
values
,
bins
,
_
=
ax
.
hist
(
np
.
ravel
(
data
.
data
),
bins
=
2000
,
range
=
(
-
1500
,
2000
))
def
find_nearest_index
(
array
,
value
):
def
find_nearest_index
(
array
,
value
):
return
(
np
.
abs
(
array
-
value
)).
argmin
()
return
(
np
.
abs
(
array
-
value
)).
argmin
()
cum_values
=
np
.
cumsum
(
values
)
cum_values
=
np
.
cumsum
(
values
)
vmin
=
bins
[
find_nearest_index
(
cum_values
,
cum_values
[
-
1
]
*
left_edge_ratio
)]
vmin
=
bins
[
find_nearest_index
(
cum_values
,
cum_values
[
-
1
]
*
left_edge_ratio
)]
vmax
=
bins
[
find_nearest_index
(
cum_values
,
cum_values
[
-
1
]
*
right_edge_ratio
)]
vmax
=
bins
[
find_nearest_index
(
cum_values
,
cum_values
[
-
1
]
*
right_edge_ratio
)]
max_value
=
values
.
max
()
max_value
=
values
.
max
()
ax
.
vlines
([
vmin
,
vmax
],
0
,
max_value
,
color
=
'
red
'
,
linewidth
=
5
,
alpha
=
0.2
)
ax
.
vlines
([
vmin
,
vmax
],
0
,
max_value
,
color
=
'
red
'
,
linewidth
=
5
,
alpha
=
0.2
)
ax
.
text
(
vmin
,
max_value
,
f
'
{
left_edge_ratio
*
100
:
.
0
f
}
%
'
,
ax
.
text
(
vmin
,
max_value
,
f
'
{
left_edge_ratio
*
100
:
.
0
f
}
%
'
,
color
=
'
red
'
,
ha
=
'
center
'
,
va
=
'
bottom
'
,
size
=
'
large
'
)
color
=
'
red
'
,
ha
=
'
center
'
,
va
=
'
bottom
'
,
size
=
'
large
'
)
ax
.
text
(
vmax
,
max_value
,
f
'
{
right_edge_ratio
*
100
:
.
0
f
}
%
'
,
ax
.
text
(
vmax
,
max_value
,
f
'
{
right_edge_ratio
*
100
:
.
0
f
}
%
'
,
color
=
'
red
'
,
ha
=
'
center
'
,
va
=
'
bottom
'
,
size
=
'
large
'
)
color
=
'
red
'
,
ha
=
'
center
'
,
va
=
'
bottom
'
,
size
=
'
large
'
)
ax
.
text
(
vmax
+
(
vmax
-
vmin
)
*
0.01
,
max_value
/
2
,
'
Colormap interval
'
,
ax
.
text
(
vmax
+
(
vmax
-
vmin
)
*
0.01
,
max_value
/
2
,
'
Colormap interval
'
,
color
=
'
red
'
,
rotation
=
90
,
ha
=
'
left
'
,
va
=
'
center
'
,
size
=
'
x-large
'
)
color
=
'
red
'
,
rotation
=
90
,
ha
=
'
left
'
,
va
=
'
center
'
,
size
=
'
x-large
'
)
ax
.
set_xlim
(
vmin
-
(
vmax
-
vmin
)
*
0.1
,
vmax
+
(
vmax
-
vmin
)
*
0.1
)
ax
.
set_xlim
(
vmin
-
(
vmax
-
vmin
)
*
0.1
,
vmax
+
(
vmax
-
vmin
)
*
0.1
)
ax
.
set_ylim
(
0
,
max_value
*
1.1
)
ax
.
set_ylim
(
0
,
max_value
*
1.1
)
pass
pass
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
### First memory cell
### First memory cell
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
fig
,
ax
=
plt
.
subplots
(
num
=
2
,
figsize
=
(
15
,
15
),
clear
=
True
,
nrows
=
1
,
ncols
=
1
)
fig
,
ax
=
plt
.
subplots
(
num
=
2
,
figsize
=
(
15
,
15
),
clear
=
True
,
nrows
=
1
,
ncols
=
1
)
geom
.
plot_data_fast
(
data
[:,
0
,
0
],
ax
=
ax
,
vmin
=
vmin
,
vmax
=
vmax
)
geom
.
plot_data_fast
(
data
[:,
0
,
0
],
ax
=
ax
,
vmin
=
vmin
,
vmax
=
vmax
)
pass
pass
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
### Train average
### Train average
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
fig
,
ax
=
plt
.
subplots
(
num
=
3
,
figsize
=
(
15
,
15
),
clear
=
True
,
nrows
=
1
,
ncols
=
1
)
fig
,
ax
=
plt
.
subplots
(
num
=
3
,
figsize
=
(
15
,
15
),
clear
=
True
,
nrows
=
1
,
ncols
=
1
)
geom
.
plot_data_fast
(
data
[:,
0
].
mean
(
axis
=
1
),
ax
=
ax
,
vmin
=
vmin
,
vmax
=
vmax
)
geom
.
plot_data_fast
(
data
[:,
0
].
mean
(
axis
=
1
),
ax
=
ax
,
vmin
=
vmin
,
vmax
=
vmax
)
pass
pass
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
### Lowest gain stage per pixel
### Lowest gain stage per pixel
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
highest_gain_stage
=
det
.
get_array
(
'
image.gain
'
,
pulses
=
np
.
s_
[:]).
max
(
axis
=
(
1
,
2
))
highest_gain_stage
=
det
.
get_array
(
'
image.gain
'
,
pulses
=
np
.
s_
[:]).
max
(
axis
=
(
1
,
2
))
fig
,
ax
=
plt
.
subplots
(
num
=
4
,
figsize
=
(
15
,
15
),
clear
=
True
,
nrows
=
1
,
ncols
=
1
)
fig
,
ax
=
plt
.
subplots
(
num
=
4
,
figsize
=
(
15
,
15
),
clear
=
True
,
nrows
=
1
,
ncols
=
1
)
p
=
geom
.
plot_data_fast
(
highest_gain_stage
,
ax
=
ax
,
vmin
=
0
,
vmax
=
2
);
p
=
geom
.
plot_data_fast
(
highest_gain_stage
,
ax
=
ax
,
vmin
=
0
,
vmax
=
2
);
cb
=
ax
.
images
[
0
].
colorbar
cb
=
ax
.
images
[
0
].
colorbar
cb
.
set_ticks
([
0
,
1
,
2
])
cb
.
set_ticks
([
0
,
1
,
2
])
cb
.
set_ticklabels
([
'
High gain
'
,
'
Medium gain
'
,
'
Low gain
'
])
cb
.
set_ticklabels
([
'
High gain
'
,
'
Medium gain
'
,
'
Low gain
'
])
```
```
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
### Create virtual CXI file
### Create virtual CXI file
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
if
create_virtual_cxi_in
:
if
create_virtual_cxi_in
:
vcxi_folder
=
Path
(
create_virtual_cxi_in
)
vcxi_folder
=
Path
(
create_virtual_cxi_in
)
vcxi_folder
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
vcxi_folder
.
mkdir
(
parents
=
True
,
exist_ok
=
True
)
if
not
sequences
or
sequences
==
[
-
1
]:
if
not
sequences
or
sequences
==
[
-
1
]:
seqs
=
'
all
'
seqs
=
'
all
'
else
:
else
:
seqs
=
'
_
'
.
join
(
str
(
s
)
for
s
in
sequences
)
seqs
=
'
_
'
.
join
(
str
(
s
)
for
s
in
sequences
)
det
.
write_virtual_cxi
(
vcxi_folder
/
f
'
r
{
run
}
_seqs_
{
seqs
}
.cxi
'
)
det
.
write_virtual_cxi
(
vcxi_folder
/
f
'
r
{
run
}
_seqs_
{
seqs
}
.cxi
'
)
```
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment