Skip to content
Snippets Groups Projects
Commit 9482ed4c authored by Egor Sobolev's avatar Egor Sobolev
Browse files

Remove unrelated code

parent acb9d7ea
No related branches found
No related tags found
1 merge request!815[AGIPD][CORRECT] Add reading of AGIPD number of cells from CONTROL data
......@@ -315,8 +315,7 @@ class CellSelection:
raise NotImplementedError
def get_cells_on_trains(
self, train_sel: np.ndarray, nfrm: np.ndarray,
cellid: np.ndarray, cm: int = 0
self, train_sel: np.ndarray, nfrm: np.ndarray, cm: int = 0
) -> np.array:
"""Returns mask of cells selected for processing
......@@ -327,8 +326,6 @@ class CellSelection:
for common-mode correction
:return: boolean array with flags indicating images for processing
:return: integer array with number of frames to use in the second
step in two step selection procedure
"""
raise NotImplementedError
......@@ -537,7 +534,7 @@ class AgipdCorrections:
n_valid_trains = len(valid_train_ids)
data_dict["n_valid_trains"][0] = n_valid_trains
data_dict["valid_trains"][:n_valid_trains] = valid_train_ids
#data_dict["nimg_in_trains"][:n_valid_trains] = nimg_in_trains
data_dict["nimg_in_trains"][:n_valid_trains] = nimg_in_trains
if "AGIPD500K" in agipd_base:
agipd_comp = components.AGIPD500K(im_dc)
......@@ -552,11 +549,8 @@ class AgipdCorrections:
cm = (self.cell_sel.CM_NONE if apply_sel_pulses
else self.cell_sel.CM_PRESEL)
cellid = np.squeeze(im_dc[agipd_base, "image.cellId"].ndarray())
img_selected, nimg_in_trains = self.cell_sel.get_cells_on_trains(
np.array(valid_train_ids), nimg_in_trains, cellid, cm=cm)
data_dict["nimg_in_trains"][:n_valid_trains] = nimg_in_trains
img_selected = self.cell_sel.get_cells_on_trains(
np.array(valid_train_ids), nimg_in_trains, cm=cm)
frm_ix = np.flatnonzero(img_selected)
data_dict["cm_presel"][0] = (cm == self.cell_sel.CM_PRESEL)
......@@ -1027,11 +1021,10 @@ class AgipdCorrections:
ntrains = data_dict["n_valid_trains"][0]
train_ids = data_dict["valid_trains"][:ntrains]
nimg_in_trains = data_dict["nimg_in_trains"][:ntrains]
cellid = data_dict["cellId"][:n_img]
# Initializing can_calibrate array
can_calibrate, _ = self.cell_sel.get_cells_on_trains(
train_ids, nimg_in_trains, cellid, cm=self.cell_sel.CM_FINSEL
can_calibrate = self.cell_sel.get_cells_on_trains(
train_ids, nimg_in_trains, cm=self.cell_sel.CM_FINSEL
)
if np.all(can_calibrate):
return n_img
......@@ -1630,7 +1623,6 @@ class CellRange(CellSelection):
self.flag_cm[:self.max_cells] = self.flag
self.flag_cm = (self.flag_cm.reshape(-1, self.row_size).any(1)
.repeat(self.row_size)[:self.max_cells])
self.sel_type = [self.flag, self.flag_cm, self.flag]
def msg(self):
return (
......@@ -1640,24 +1632,10 @@ class CellRange(CellSelection):
)
def get_cells_on_trains(
self, train_sel: np.ndarray, nfrm: np.ndarray,
cellid: np.ndarray, cm: int = 0
self, train_sel: np.ndarray, nfrm: np.ndarray, cm: int = 0
) -> np.array:
if cm < 0 or cm > 2:
raise ValueError("param 'cm' takes only 0,1,2")
flag = self.sel_type[cm]
sel = np.zeros(np.sum(nfrm), bool)
counts = np.zeros(len(nfrm), int)
i0 = 0
for i, nfrm_i in enumerate(nfrm):
iN = i0 + nfrm_i
f = flag[cellid[i0:iN]]
sel[i0:iN] = f
counts[i] = np.sum(f)
i0 = iN
return sel, counts
return np.tile(self._sel_for_cm(self.flag, self.flag_cm, cm),
len(train_sel))
def filter_trains(self, train_sel: np.ndarray):
return train_sel
......@@ -1734,14 +1712,12 @@ class LitFrameSelection(CellSelection):
)
def get_cells_on_trains(
self, train_sel: np.ndarray, nfrm: np.ndarray,
cellid: np.ndarray, cm: int = 0
self, train_sel: np.ndarray, nfrm: np.ndarray, cm: int = 0
) -> np.array:
cell_flags, cm_flags = self._sel.litframes_on_trains(
train_sel, nfrm, [self.final_sel_type, self.cm_sel_type])
sel = self._sel_for_cm(cell_flags, cm_flags, cm)
return sel, nfrm
return self._sel_for_cm(cell_flags, cm_flags, cm)
def filter_trains(self, train_sel: np.ndarray):
return self._sel.filter_trains(train_sel, drop_empty=True)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment