Skip to content
Snippets Groups Projects
Commit 966273a1 authored by Thomas Kluyver's avatar Thomas Kluyver
Browse files

Merge branch 'feat/rm-pre-epix100' into 'master'

[ePix100] [Correct] Remove pre notebook

See merge request !821
parents 4922b975 b5a84d76
No related branches found
No related tags found
1 merge request!821[ePix100] [Correct] Remove pre notebook
%% Cell type:markdown id: tags:
# ePix100 Data Correction
Author: European XFEL Detector Group, Version: 2.0
The following notebook provides data correction of images acquired with the ePix100 detector.
The sequence of correction applied are:
Offset --> Common Mode Noise --> Relative Gain --> Charge Sharing --> Absolute Gain.
Offset, common mode and gain corrected data is saved to /data/image/pixels in the CORR files.
If pattern classification is applied (charge sharing correction), this data will be saved to /data/image/pixels_classified, while the corresponding patterns will be saved to /data/image/patterns in the CORR files.
%% Cell type:code id: tags:
``` python
in_folder = "/gpfs/exfel/exp/HED/202202/p003121/raw" # input folder, required
out_folder = "" # output folder, required
metadata_folder = "" # Directory containing calibration_metadata.yml when run by xfel-calibrate
sequences = [-1] # sequences to correct, set to -1 for all, range allowed
sequences_per_node = 1 # number of sequence files per cluster node if run as slurm job, set to 0 to not run SLURM parallel
run = 156 # which run to read data from, required
# Parameters for accessing the raw data.
karabo_id = "HED_IA1_EPX100-1" # karabo karabo_id
karabo_da = "EPIX01" # data aggregators
db_module = "" # module id in the database
receiver_template = "RECEIVER" # detector receiver template for accessing raw data files
path_template = 'RAW-R{:04d}-{}-S{{:05d}}.h5' # the template to use to access data
instrument_source_template = '{}/DET/{}:daqOutput' # instrument detector data source in h5files
# Parameters affecting writing corrected data.
chunk_size_idim = 1 # H5 chunking size of output data
limit_trains = 0 # Process only first N images, 0 - process all.
# Parameters for the calibration database.
cal_db_interface = "tcp://max-exfl016:8015#8025" # calibration DB interface to use
cal_db_timeout = 300000 # timeout on caldb requests
creation_time = "" # The timestamp to use with Calibration DBe. Required Format: "YYYY-MM-DD hh:mm:ss" e.g. 2019-07-04 11:02:41
# Conditions for retrieving calibration constants.
bias_voltage = 200 # bias voltage
in_vacuum = False # detector operated in vacuum
integration_time = -1 # Detector integration time, Default value -1 to use the value from the slow data.
fix_temperature = -1 # fixed temperature value in Kelvin, Default value -1 to use the value from files.
gain_photon_energy = 8.048 # Photon energy used for gain calibration
photon_energy = 0. # Photon energy to calibrate in number of photons, 0 for calibration in keV
# Flags to select type of applied corrections.
pattern_classification = True # do clustering.
relative_gain = True # Apply relative gain correction.
absolute_gain = True # Apply absolute gain correction (implies relative gain).
common_mode = True # Apply common mode correction.
# Parameters affecting applied correction.
cm_min_frac = 0.25 # No CM correction is performed if after masking the ratio of good pixels falls below this
cm_noise_sigma = 5. # CM correction noise standard deviation
split_evt_primary_threshold = 7. # primary threshold for split event correction
split_evt_secondary_threshold = 5. # secondary threshold for split event correction
split_evt_mip_threshold = 1000. # minimum ionizing particle threshold
def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da):
from xfel_calibrate.calibrate import balance_sequences as bs
return bs(in_folder, run, sequences, sequences_per_node, karabo_da)
```
%% Cell type:code id: tags:
``` python
import tabulate
import warnings
from logging import warning
from sys import exit
import h5py
import pasha as psh
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import Latex, display
from extra_data import RunDirectory, H5File
from pathlib import Path
import cal_tools.restful_config as rest_cfg
from XFELDetAna import xfelpyanatools as xana
from XFELDetAna import xfelpycaltools as xcal
from cal_tools.calcat_interface import EPIX100_CalibrationData
from cal_tools.epix100 import epix100lib
from cal_tools.files import DataFile
from cal_tools.restful_config import restful_config
from cal_tools.tools import (
calcat_creation_time,
CalibrationMetadata,
)
from cal_tools.step_timing import StepTimer
warnings.filterwarnings('ignore')
prettyPlotting = True
%matplotlib inline
```
%% Cell type:code id: tags:
``` python
x = 708 # rows of the ePix100
y = 768 # columns of the ePix100
if absolute_gain:
relative_gain = True
plot_unit = 'ADU'
```
%% Cell type:code id: tags:
``` python
in_folder = Path(in_folder)
out_folder = Path(out_folder)
out_folder.mkdir(parents=True, exist_ok=True)
run_folder = in_folder / f"r{run:04d}"
instrument_src = instrument_source_template.format(
karabo_id, receiver_template)
print(f"Correcting run: {run_folder}")
print(f"Instrument H5File source: {instrument_src}")
print(f"Data corrected files are stored at: {out_folder}")
```
%% Cell type:code id: tags:
``` python
creation_time = calcat_creation_time(in_folder, run, creation_time)
print(f"Using {creation_time.isoformat()} as creation time")
metadata = CalibrationMetadata(metadata_folder or out_folder)
# Constant paths are saved under retrieved-constants in calibration_metadata.yml.
# NOTE: this notebook shouldn't overwrite calibration metadata file.
const_yaml = metadata.get("retrieved-constants", {})
```
%% Cell type:code id: tags:
``` python
run_dc = RunDirectory(run_folder, _use_voview=False)
seq_files = [Path(f.filename) for f in run_dc.select(f"*{karabo_id}*").files]
# If a set of sequences requested to correct,
# adapt seq_files list.
if sequences != [-1]:
seq_files = [f for f in seq_files if any(f.match(f"*-S{s:05d}.h5") for s in sequences)]
if not len(seq_files):
raise IndexError("No sequence files available for the selected sequences.")
print(f"Processing a total of {len(seq_files)} sequence files")
```
%% Cell type:code id: tags:
``` python
step_timer = StepTimer()
```
%% Cell type:code id: tags:
``` python
step_timer.start()
sensorSize = [x, y]
# Sensor area will be analysed according to blocksize
blockSize = [sensorSize[0]//2, sensorSize[1]//2]
xcal.defaultBlockSize = blockSize
memoryCells = 1 # ePIX has no memory cells
run_parallel = False
# Read control data.
ctrl_data = epix100lib.epix100Ctrl(
run_dc=run_dc,
instrument_src=instrument_src,
ctrl_src=f"{karabo_id}/DET/CONTROL",
)
if integration_time < 0:
integration_time = ctrl_data.get_integration_time()
integration_time_str_add = ""
else:
integration_time_str_add = "(manual input)"
if fix_temperature < 0:
temperature = ctrl_data.get_temprature()
temperature_k = temperature + 273.15
temp_str_add = ""
else:
temperature_k = fix_temperature
temperature = fix_temperature - 273.15
temp_str_add = "(manual input)"
print(f"Bias voltage is {bias_voltage} V")
print(f"Detector integration time is set to {integration_time} \u03BCs {integration_time_str_add}")
print(f"Mean temperature: {temperature:0.2f}°C / {temperature_k:0.2f} K {temp_str_add}")
print(f"Operated in vacuum: {in_vacuum}")
```
%% Cell type:code id: tags:
``` python
# Table of sequence files to process
table = [(k, f) for k, f in enumerate(seq_files)]
if len(table):
md = display(Latex(tabulate.tabulate(
table,
tablefmt='latex',
headers=["#", "file"]
)))
```
%% Cell type:markdown id: tags:
## Retrieving calibration constants
As a first step, dark maps have to be loaded.
%% Cell type:code id: tags:
``` python
constant_names = ["OffsetEPix100", "NoiseEPix100"]
if relative_gain:
constant_names += ["RelativeGainEPix100"]
const_data = dict()
epix_cal = EPIX100_CalibrationData(
detector_name=karabo_id,
sensor_bias_voltage=bias_voltage,
integration_time=integration_time,
sensor_temperature=temperature_k,
in_vacuum=in_vacuum,
source_energy=gain_photon_energy,
event_at=creation_time,
client=rest_cfg.calibration_client(),
)
const_metadata = epix_cal.metadata(calibrations=constant_names)
if const_yaml: # Used while reproducing corrected data.
print(f"Using stored constants in {metadata.filename}")
when = dict()
for cname, mdata in const_yaml[karabo_da]["constants"].items():
const_data[cname] = dict()
when[cname] = mdata["creation-time"]
if when[cname]:
with h5py.File(mdata["path"], "r") as cf:
const_data[cname] = np.copy(
cf[f"{mdata['dataset']}/data"])
else:
epix_cal = EPIX100_CalibrationData(
detector_name=karabo_id,
sensor_bias_voltage=bias_voltage,
integration_time=integration_time,
sensor_temperature=temperature_k,
in_vacuum=in_vacuum,
source_energy=gain_photon_energy,
event_at=creation_time,
client=rest_cfg.calibration_client(),
)
const_data = epix_cal.ndarray_map(calibrations=constant_names)[karabo_da]
# Load the constant data from files
const_data = epix_cal.ndarray_map(metadata=const_metadata)[karabo_da]
# Validate the constants availability and raise/warn correspondingly.
missing_dark_constants = {"OffsetEPix100", "NoiseEPix100"} - set(const_data)
if missing_dark_constants:
raise ValueError(
f"Dark constants {missing_dark_constants} are not available to correct {karabo_da}."
"No correction is performed!")
if relative_gain and "RelativeGainEPix100" not in const_data.keys():
warning("RelativeGainEPix100 is not found in the calibration database.")
relative_gain = False
absolute_gain = False
```
%% Cell type:code id: tags:
``` python
# Record constant details in YAML metadata
epix_metadata = const_metadata[karabo_da]
CalibrationMetadata(metadata_folder or out_folder).add_fragment({
"retrieved-constants": {
karabo_da: {
"constants": {
cname: {
"path": str(epix_cal.caldb_root / ccv_metadata["path"]),
"dataset": ccv_metadata["dataset"],
"creation-time": ccv_metadata["begin_validity_at"],
"ccv_id": ccv_metadata["ccv_id"],
} for cname, ccv_metadata in epix_metadata.items()
},
"physical-name": list(epix_metadata.values())[0]["physical_name"],
}
}
})
```
%% Cell type:code id: tags:
``` python
# Initializing some parameters.
hscale = 1
stats = True
hrange = np.array([-50, 1000])
nbins = hrange[1] - hrange[0]
commonModeBlockSize = [x//2, y//2]
```
%% Cell type:code id: tags:
``` python
histCalOffsetCor = xcal.HistogramCalculator(
sensorSize,
bins=nbins,
range=hrange,
parallel=run_parallel,
nCells=memoryCells,
blockSize=blockSize
)
# *****************Histogram Calculators****************** #
histCalCor = xcal.HistogramCalculator(
sensorSize,
bins=1050,
range=[-50, 1000],
parallel=run_parallel,
nCells=memoryCells,
blockSize=blockSize
)
```
%% Cell type:code id: tags:
``` python
if common_mode:
histCalCMCor = xcal.HistogramCalculator(
sensorSize,
bins=nbins,
range=hrange,
parallel=run_parallel,
nCells=memoryCells,
blockSize=blockSize,
)
cmCorrectionB = xcal.CommonModeCorrection(
shape=sensorSize,
blockSize=commonModeBlockSize,
orientation='block',
nCells=memoryCells,
noiseMap=const_data['NoiseEPix100'],
runParallel=run_parallel,
parallel=run_parallel,
stats=stats,
minFrac=cm_min_frac,
noiseSigma=cm_noise_sigma,
)
cmCorrectionR = xcal.CommonModeCorrection(
shape=sensorSize,
blockSize=commonModeBlockSize,
orientation='row',
nCells=memoryCells,
noiseMap=const_data['NoiseEPix100'],
runParallel=run_parallel,
parallel=run_parallel,
stats=stats,
minFrac=cm_min_frac,
noiseSigma=cm_noise_sigma,
)
cmCorrectionC = xcal.CommonModeCorrection(
shape=sensorSize,
blockSize=commonModeBlockSize,
orientation='col',
nCells=memoryCells,
noiseMap=const_data['NoiseEPix100'],
runParallel=run_parallel,
parallel=run_parallel,
stats=stats,
minFrac=cm_min_frac,
noiseSigma=cm_noise_sigma,
)
```
%% Cell type:code id: tags:
``` python
if relative_gain:
gain_cnst = np.median(const_data["RelativeGainEPix100"])
hscale = gain_cnst
plot_unit = 'keV'
if photon_energy > 0:
plot_unit = '$\gamma$'
hscale /= photon_energy
gainCorrection = xcal.RelativeGainCorrection(
sensorSize,
gain_cnst/const_data["RelativeGainEPix100"][..., None],
nCells=memoryCells,
parallel=run_parallel,
blockSize=blockSize,
gains=None,
)
histCalRelGainCor = xcal.HistogramCalculator(
sensorSize,
bins=nbins,
range=hrange,
parallel=run_parallel,
nCells=memoryCells,
blockSize=blockSize
)
if absolute_gain:
histCalAbsGainCor = xcal.HistogramCalculator(
sensorSize,
bins=nbins,
range=hrange*hscale,
parallel=run_parallel,
nCells=memoryCells,
blockSize=blockSize
)
```
%% Cell type:code id: tags:
``` python
if pattern_classification :
patternClassifier = xcal.PatternClassifier(
[x, y],
const_data["NoiseEPix100"],
split_evt_primary_threshold,
split_evt_secondary_threshold,
split_evt_mip_threshold,
tagFirstSingles=0,
nCells=memoryCells,
allowElongated=False,
blockSize=[x, y],
parallel=run_parallel,
)
histCalCSCor = xcal.HistogramCalculator(
sensorSize,
bins=nbins,
range=hrange,
parallel=run_parallel,
nCells=memoryCells,
blockSize=blockSize,
)
histCalGainCorClusters = xcal.HistogramCalculator(
sensorSize,
bins=nbins,
range=hrange*hscale,
parallel=run_parallel,
nCells=memoryCells,
blockSize=blockSize
)
histCalGainCorSingles = xcal.HistogramCalculator(
sensorSize,
bins=nbins,
range=hrange*hscale,
parallel=run_parallel,
nCells=memoryCells,
blockSize=blockSize
)
```
%% Cell type:markdown id: tags:
## Applying corrections
%% Cell type:code id: tags:
``` python
def correct_train(wid, index, tid, d):
d = d[..., np.newaxis].astype(np.float32)
d = np.compress(
np.any(d > 0, axis=(0, 1)), d, axis=2)
# Offset correction.
d -= const_data["OffsetEPix100"]
histCalOffsetCor.fill(d)
# Common Mode correction.
if common_mode:
# Block CM
d = cmCorrectionB.correct(d)
# Row CM
d = cmCorrectionR.correct(d)
# COL CM
d = cmCorrectionC.correct(d)
histCalCMCor.fill(d)
# relative gain correction.
if relative_gain:
d = gainCorrection.correct(d)
histCalRelGainCor.fill(d)
"""The gain correction is currently applying
an absolute correction (not a relative correction
as the implied by the name);
it changes the scale (the unit of measurement)
of the data from ADU to either keV or n_of_photons.
But the pattern classification relies on comparing
data with the NoiseEPix100 map, which is still in ADU.
The best solution is to do a relative gain
correction first and apply the global absolute
gain to the data at the end, after clustering.
"""
if pattern_classification:
d_clu, patterns = patternClassifier.classify(d)
d_clu[d_clu < (split_evt_primary_threshold*const_data["NoiseEPix100"])] = 0
data_clu[index, ...] = np.squeeze(d_clu)
data_patterns[index, ...] = np.squeeze(patterns)
histCalCSCor.fill(d_clu)
# absolute gain correction
# changes data from ADU to keV (or n. of photons)
if absolute_gain:
d = d * gain_cnst
if photon_energy > 0:
d /= photon_energy
histCalAbsGainCor.fill(d)
if pattern_classification:
# Modify pattern classification.
d_clu = d_clu * gain_cnst
if photon_energy > 0:
d_clu /= photon_energy
data_clu[index, ...] = np.squeeze(d_clu)
histCalGainCorClusters.fill(d_clu)
d_sing = d_clu[patterns==100] # pattern 100 corresponds to single photons events
if len(d_sing):
histCalGainCorSingles.fill(d_sing)
data[index, ...] = np.squeeze(d)
histCalCor.fill(d)
```
%% Cell type:code id: tags:
``` python
# 10 is a number chosen after testing 1 ... 71 parallel threads
context = psh.context.ThreadContext(num_workers=10)
```
%% Cell type:code id: tags:
``` python
empty_seq = 0
for f in seq_files:
seq_dc = H5File(f)
# Save corrected data in an output file with name
# of corresponding raw sequence file.
out_file = out_folder / f.name.replace("RAW", "CORR")
# Data shape in seq_dc excluding trains with empty images.
ishape = seq_dc[instrument_src, "data.image.pixels"].shape
corr_ntrains = ishape[0]
all_train_ids = seq_dc.train_ids
# Raise a WARNING if this sequence has no trains to correct.
# Otherwise, print number of trains with no data.
if corr_ntrains == 0:
warning(f"No trains to correct for {f.name}: "
"Skipping the processing of this file.")
empty_seq += 1
continue
elif len(all_train_ids) != corr_ntrains:
print(f"{f.name} has {len(all_train_ids) - corr_ntrains} trains with missing data.")
# This parameter is only used for testing.
if limit_trains > 0:
print(f"\nCorrected trains are limited to: {limit_trains} trains")
corr_ntrains = min(corr_ntrains, limit_trains)
oshape = (corr_ntrains, *ishape[1:])
data = context.alloc(shape=oshape, dtype=np.float32)
if pattern_classification:
data_clu = context.alloc(shape=oshape, dtype=np.float32)
data_patterns = context.alloc(shape=oshape, dtype=np.int32)
step_timer.start() # Correct data.
# Overwrite seq_dc after eliminating empty trains or/and applying limited images.
seq_dc = seq_dc.select(
instrument_src, "*", require_all=True).select_trains(np.s_[:corr_ntrains])
pixel_data = seq_dc[instrument_src, "data.image.pixels"]
context.map(correct_train, pixel_data)
step_timer.done_step(f'Correcting {corr_ntrains} trains.')
step_timer.start() # Write corrected data.
# Create CORR files and add corrected data sections.
image_counts = seq_dc[instrument_src, "data.image.pixels"].data_counts(labelled=False)
# Write corrected data.
with DataFile(out_file, "w") as ofile:
dataset_chunk = ((chunk_size_idim,) + oshape[1:]) # e.g. (1, pixels_x, pixels_y)
# Create INDEX datasets.
ofile.create_index(seq_dc.train_ids, from_file=seq_dc.files[0])
# Create METDATA datasets
ofile.create_metadata(
like=seq_dc,
sequence=seq_dc.run_metadata()["sequenceNumber"],
instrument_channels=(f'{instrument_src}/data',)
)
# Create Instrument section to later add corrected datasets.
outp_source = ofile.create_instrument_source(instrument_src)
# Create count/first datasets at INDEX source.
outp_source.create_index(data=image_counts)
# Store uncorrected RAW image datasets for the corrected trains.
data_raw_fields = [ # /data/
"ambTemp", "analogCurr", "analogInputVolt", "backTemp",
"digitalInputVolt", "guardCurr", "relHumidity", "digitalCurr"
]
for field in data_raw_fields:
field_arr = seq_dc[instrument_src, f"data.{field}"].ndarray()
outp_source.create_key(
f"data.{field}", data=field_arr,
chunks=(chunk_size_idim, *field_arr.shape[1:]))
image_raw_fields = [ # /data/image/
"binning", "bitsPerPixel", "dimTypes", "dims",
"encoding", "flipX", "flipY", "roiOffsets", "rotation",
]
for field in image_raw_fields:
field_arr = seq_dc[instrument_src, f"data.image.{field}"].ndarray()
outp_source.create_key(
f"data.image.{field}", data=field_arr,
chunks=(chunk_size_idim, *field_arr.shape[1:]))
# Add main corrected `data.image.pixels` dataset and store corrected data.
outp_source.create_key(
"data.image.pixels", data=data, chunks=dataset_chunk)
outp_source.create_key(
"data.trainId", data=seq_dc.train_ids, chunks=min(50, len(seq_dc.train_ids)))
if pattern_classification:
# Add main corrected `data.image.pixels` dataset and store corrected data.
outp_source.create_key(
"data.image.pixels_classified", data=data_clu, chunks=dataset_chunk)
outp_source.create_key(
"data.image.patterns", data=data_patterns, chunks=dataset_chunk)
step_timer.done_step('Storing data.')
if empty_seq == len(seq_files):
warning("No valid trains for RAW data to correct.")
exit(0)
```
%% Cell type:code id: tags:
``` python
ho, eo, co, so = histCalCor.get()
d = [{
'x': co,
'y': ho,
'y_err': np.sqrt(ho[:]),
'drawstyle': 'steps-mid',
'errorstyle': 'bars',
'errorcoarsing': 2,
'label': 'Total corr.'
}]
ho, eo, co, so = histCalOffsetCor.get()
d.append({
'x': co,
'y': ho,
'y_err': np.sqrt(ho[:]),
'drawstyle': 'steps-mid',
'errorstyle': 'bars',
'errorcoarsing': 2,
'label': 'Offset corr.'
})
if common_mode:
ho, eo, co, so = histCalCMCor.get()
d.append({
'x': co,
'y': ho,
'y_err': np.sqrt(ho[:]),
'drawstyle': 'steps-mid',
'errorstyle': 'bars',
'errorcoarsing': 2,
'label': 'CM corr.'
})
if relative_gain :
ho, eo, co, so = histCalRelGainCor.get()
d.append({
'x': co,
'y': ho,
'y_err': np.sqrt(ho[:]),
'drawstyle': 'steps-mid',
'errorstyle': 'bars',
'errorcoarsing': 2,
'label': 'Relative gain corr.'
})
if pattern_classification:
ho, eo, co, so = histCalCSCor.get()
d.append({
'x': co,
'y': ho,
'y_err': np.sqrt(ho[:]),
'drawstyle': 'steps-mid',
'errorstyle': 'bars',
'errorcoarsing': 2,
'label': 'Charge sharing corr.'
})
fig = xana.simplePlot(
d, aspect=1, x_label=f'Energy (ADU)',
y_label='Number of occurrences', figsize='2col',
y_log=True, x_range=(-50, 500),
legend='top-center-frame-2col',
)
plt.title(f'run {run} - {karabo_da}')
plt.grid()
```
%% Cell type:code id: tags:
``` python
if absolute_gain :
d=[]
ho, eo, co, so = histCalAbsGainCor.get()
d.append({
'x': co,
'y': ho,
'y_err': np.sqrt(ho[:]),
'drawstyle': 'steps-mid',
'errorstyle': 'bars',
'errorcoarsing': 2,
'label': 'Absolute gain corr.'
})
if pattern_classification:
ho, eo, co, so = histCalGainCorClusters.get()
d.append({
'x': co,
'y': ho,
'y_err': np.sqrt(ho[:]),
'drawstyle': 'steps-mid',
'errorstyle': 'bars',
'errorcoarsing': 2,
'label': 'Charge sharing corr.'
})
ho, eo, co, so = histCalGainCorSingles.get()
d.append({
'x': co,
'y': ho,
'y_err': np.sqrt(ho[:]),
'drawstyle': 'steps-mid',
'errorstyle': 'bars',
'errorcoarsing': 2,
'label': 'Isolated photons (singles)'
})
fig = xana.simplePlot(
d, aspect=1, x_label=f'Energy ({plot_unit})',
y_label='Number of occurrences', figsize='2col',
y_log=True,
x_range=np.array((-50, 500))*hscale,
legend='top-center-frame-2col',
)
plt.grid()
plt.title(f'run {run} - {karabo_da}')
```
%% Cell type:markdown id: tags:
## Mean Image of the corrected data
%% Cell type:code id: tags:
``` python
step_timer.start()
fig = xana.heatmapPlot(
np.nanmedian(data, axis=0),
x_label='Columns', y_label='Rows',
lut_label=f'Signal ({plot_unit})',
x_range=(0, y),
y_range=(0, x),
vmin=-50, vmax=50)
step_timer.done_step(f'Plotting mean image of {data.shape[0]} trains.')
```
%% Cell type:markdown id: tags:
## Single Shot of the corrected data
%% Cell type:code id: tags:
``` python
step_timer.start()
fig = xana.heatmapPlot(
data[0, ...],
x_label='Columns', y_label='Rows',
lut_label=f'Signal ({plot_unit})',
x_range=(0, y),
y_range=(0, x),
vmin=-50, vmax=50)
step_timer.done_step(f'Plotting single shot of corrected data.')
```
......
%% Cell type:markdown id: tags:
# ePix100 retrieve constants precorrection
Author: European XFEL Detector Group, Version: 1.0
The following notebook provides constants for the selected ePix100 modules before executing correction on the selected sequence files.
%% Cell type:code id: tags:
``` python
in_folder = "/gpfs/exfel/exp/CALLAB/202031/p900113/raw" # input folder, required
out_folder = "/gpfs/exfel/data/scratch/ahmedk/test/remove/epix_correct" # output folder, required
metadata_folder = "" # Directory containing calibration_metadata.yml when run by xfel-calibrate
sequences = [-1] # sequences to correct, set to -1 for all, range allowed
run = 9988 # which run to read data from, required
# Parameters for accessing the raw data.
karabo_id = "MID_EXP_EPIX-1" # Detector Karabo_ID
karabo_da = "EPIX01" # data aggregators
receiver_template = "RECEIVER" # detector receiver template for accessing raw data files
instrument_source_template = '{}/DET/{}:daqOutput' # instrument detector data source in h5files
# Parameters for the calibration database.
creation_time = "" # The timestamp to use with Calibration DB. Required Format: "YYYY-MM-DD hh:mm:ss" e.g. 2019-07-04 11:02:41
cal_db_interface = "tcp://max-exfl016:8015#8025" # calibration DB interface to use
cal_db_timeout = 300000 # timeout on CalibrationDB requests
# Conditions for retrieving calibration constants.
bias_voltage = 200 # bias voltage
in_vacuum = False # detector operated in vacuum
fix_temperature = 290 # fixed temperature value in Kelvin. Default value -1 to use the value from files.
integration_time = -1 # Detector integration time, Default value -1 to use the value from the slow data.
gain_photon_energy = 9.0 # Photon energy used for gain calibration
# Flags to select type of applied corrections.
relative_gain = True # Apply relative gain correction.
```
%% Cell type:code id: tags:
``` python
from logging import warning
import numpy as np
from extra_data import RunDirectory
from pathlib import Path
import cal_tools.restful_config as rest_cfg
from cal_tools.calcat_interface import EPIX100_CalibrationData
from cal_tools.epix100 import epix100lib
from cal_tools.tools import (
calcat_creation_time,
CalibrationMetadata,
)
```
%% Cell type:code id: tags:
``` python
in_folder = Path(in_folder)
out_folder = Path(out_folder)
out_folder.mkdir(parents=True, exist_ok=True)
metadata = CalibrationMetadata(metadata_folder or out_folder)
# NOTE: this notebook will not overwrite calibration metadata file,
# if it already contains details about which constants to use.
retrieved_constants = metadata.setdefault("retrieved-constants", {})
```
%% Cell type:code id: tags:
``` python
creation_time = calcat_creation_time(in_folder, run, creation_time)
print(f"Using {creation_time.isoformat()} as creation time")
```
%% Cell type:code id: tags:
``` python
# Read control data.
run_dc = RunDirectory(in_folder / f"r{run:04d}")
ctrl_data = epix100lib.epix100Ctrl(
run_dc=run_dc,
instrument_src=f"{karabo_id}/DET/{receiver_template}:daqOutput",
ctrl_src=f"{karabo_id}/DET/CONTROL",
)
if integration_time < 0:
integration_time = ctrl_data.get_integration_time()
integration_time_str_add = ""
else:
integration_time_str_add = "(manual input)"
if fix_temperature < 0:
temperature = ctrl_data.get_temprature()
temperature_k = temperature + 273.15
temp_str_add = ""
else:
temperature_k = fix_temperature
temperature = fix_temperature - 273.15
temp_str_add = "(manual input)"
print(f"Bias voltage is {bias_voltage} V")
print(f"Detector integration time is set to {integration_time} \u03BCs {integration_time_str_add}")
print(f"Mean temperature: {temperature:0.2f}°C / {temperature_k:0.2f} K {temp_str_add}")
print(f"Operated in vacuum: {in_vacuum}")
```
%% Cell type:code id: tags:
``` python
epix_cal = EPIX100_CalibrationData(
detector_name=karabo_id,
sensor_bias_voltage=bias_voltage,
integration_time=integration_time,
sensor_temperature=temperature_k,
in_vacuum=in_vacuum,
source_energy=gain_photon_energy,
event_at=creation_time,
client=rest_cfg.calibration_client(),
)
mdata_dict = {"constants": dict()}
constant_names = ["OffsetEPix100", "NoiseEPix100"]
if relative_gain:
constant_names += ["RelativeGainEPix100"]
# Retrieve metadata for all epix100 constants.
epix_metadata = epix_cal.metadata(constant_names)[karabo_da]
# Validate the constants availability and raise/warn correspondingly.
missing_dark_constants = {"OffsetEPix100", "NoiseEPix100"} - set(epix_metadata)
if missing_dark_constants:
raise ValueError(
f"Dark constants {missing_dark_constants} are not available to correct {karabo_da}.")
if relative_gain and "RelativeGainEPix100" not in epix_metadata.keys():
warning("RelativeGainEPix100 is not found in CALCAT.")
for cname, ccv_metadata in epix_metadata.items():
mdata_dict["constants"][cname] = {
"path": str(epix_cal.caldb_root / ccv_metadata["path"]),
"dataset": ccv_metadata["dataset"],
"creation-time": ccv_metadata["begin_validity_at"],
"ccv_id": ccv_metadata["ccv_id"],
}
print(f"Retrieved {cname} with creation-time: {ccv_metadata['begin_validity_at']}")
mdata_dict["physical-name"] = ccv_metadata["physical_name"]
retrieved_constants[karabo_da] = mdata_dict
metadata.save()
print(f"Stored retrieved constants in {metadata.filename}")
```
......@@ -217,7 +217,6 @@ notebooks = {
},
"CORRECT": {
"pre_notebooks": ["notebooks/ePix100/ePix100_retrieve_constants_precorrection.ipynb"],
"notebook": "notebooks/ePix100/Correction_ePix100_NBC.ipynb",
"concurrency": {"parameter": "sequences",
"default concurrency": [-1],
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment