Skip to content
Snippets Groups Projects
Commit 9f6a65a2 authored by Karim Ahmed's avatar Karim Ahmed
Browse files

fix histogram data plot for flexible subplot numbers

parent 1dca99c3
No related branches found
No related tags found
1 merge request!841[JUNGFRAU][FF] Feat: new notebook for producing gain constants.
%% Cell type:markdown id: tags: %% Cell type:markdown id: tags:
# Jungfrau Spectra Fit Summary # Jungfrau Spectra Fit Summary
Author: European XFEL Detector Department, Version: 1.0 Author: European XFEL Detector Department, Version: 1.0
Summary for plotting Spectra Fit results for Jungfrau FF histogram and fitting notebook Summary for plotting Spectra Fit results for Jungfrau FF histogram and fitting notebook
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
in_folder = '/gpfs/exfel/exp/SPB/202330/p900343/raw' # RAW data path, required in_folder = '/gpfs/exfel/exp/SPB/202330/p900343/raw' # RAW data path, required
out_folder = "/gpfs/exfel/data/scratch/ahmedk/test/remove/JF4M_SPB_gain/r67" # Output path for gain data, required out_folder = "/gpfs/exfel/data/scratch/ahmedk/test/remove/JF4M_SPB_gain/r67" # Output path for gain data, required
metadata_folder = "" # Directory containing calibration_metadata.yml when run by xfel-calibrate. metadata_folder = "" # Directory containing calibration_metadata.yml when run by xfel-calibrate.
runs = [67] runs = [67]
# Parameters used to access raw data. # Parameters used to access raw data.
karabo_da = [] # list of data aggregators, which corresponds to different JF modules. This is only needed for the detectors of one module. karabo_da = [] # list of data aggregators, which corresponds to different JF modules. This is only needed for the detectors of one module.
karabo_id = "SPB_IRDA_JF4M" # detector identifier. karabo_id = "SPB_IRDA_JF4M" # detector identifier.
creation_time = "" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC e.g. "2022-06-28 13:00:00" creation_time = "" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC e.g. "2022-06-28 13:00:00"
fit_func = 'CHARGE_SHARING' # function used to fit the single photon peak\ fit_func = 'CHARGE_SHARING' # function used to fit the single photon peak\
g0_fit_dataset = 'gainMap_fit' # name of the data structure in the fit files g0_fit_dataset = 'gainMap_fit' # name of the data structure in the fit files
spectra_fit_temp = 'R{:04d}_{}_Gain_Spectra_{}_{}_Fit.h5' spectra_fit_temp = 'R{:04d}_{}_Gain_Spectra_{}_{}_Fit.h5'
histo_temp = 'R{:04d}_{}_Gain_Spectra_{}_Histo.h5' histo_temp = 'R{:04d}_{}_Gain_Spectra_{}_Histo.h5'
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
import math import math
import warnings import warnings
from pathlib import Path from pathlib import Path
warnings.filterwarnings('ignore') warnings.filterwarnings('ignore')
from h5py import File as h5file from h5py import File as h5file
import matplotlib import matplotlib
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np import numpy as np
from IPython.display import display from IPython.display import display
matplotlib.use("agg") matplotlib.use("agg")
%matplotlib inline %matplotlib inline
from cal_tools.plotting import init_jungfrau_geom from cal_tools.plotting import init_jungfrau_geom
from XFELDetAna.plotting.simpleplot import simplePlot from XFELDetAna.plotting.simpleplot import simplePlot
from cal_tools.restful_config import calibration_client from cal_tools.restful_config import calibration_client
from cal_tools.calcat_interface import CalCatApi from cal_tools.calcat_interface import CalCatApi
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
expected_modules, geom = init_jungfrau_geom(karabo_id=karabo_id, karabo_da=karabo_da) expected_modules, geom = init_jungfrau_geom(karabo_id=karabo_id, karabo_da=karabo_da)
nmods = len(expected_modules) nmods = len(expected_modules)
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
calcat_client = calibration_client() calcat_client = calibration_client()
calcat = CalCatApi(client=calcat_client) calcat = CalCatApi(client=calcat_client)
detector_id = calcat.detector(karabo_id)['id'] detector_id = calcat.detector(karabo_id)['id']
da_mapping = calcat.physical_detector_units(detector_id, pdu_snapshot_at=creation_time) da_mapping = calcat.physical_detector_units(detector_id, pdu_snapshot_at=creation_time)
da_to_pdu = {k: v["physical_name"] for k, v in da_mapping.items()} da_to_pdu = {k: v["physical_name"] for k, v in da_mapping.items()}
``` ```
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
proposal = list(filter(None, in_folder.strip('/').split('/')))[-2] proposal = list(filter(None, in_folder.strip('/').split('/')))[-2]
run = runs[0] # TODO this will need to be fixed when I start implementing multiple runs. run = runs[0] # TODO this will need to be fixed when I start implementing multiple runs.
stacked_constants = np.full(geom.expected_data_shape, np.nan) # nmods, 512, 1024 stacked_constants = np.full(geom.expected_data_shape, np.nan) # nmods, 512, 1024
for i, da in enumerate (da_to_pdu.keys()): for i, da in enumerate (da_to_pdu.keys()):
with h5file( with h5file(
Path(out_folder) / spectra_fit_temp.format(run, proposal.upper(), da, fit_func), Path(out_folder) / spectra_fit_temp.format(run, proposal.upper(), da, fit_func),
'r' 'r'
) as f: ) as f:
# f[g0_fit_dataset] shape is 1024, 512, mem_cells # f[g0_fit_dataset] shape is 1024, 512, mem_cells
stacked_constants[i] = np.moveaxis( stacked_constants[i] = np.moveaxis(
np.mean(np.array(f[g0_fit_dataset]), axis=-1), 0, 1) np.mean(np.array(f[g0_fit_dataset]), axis=-1), 0, 1)
fig, ax = plt.subplots(figsize=(18, 10)) fig, ax = plt.subplots(figsize=(18, 10))
vmin, vmax = np.percentile(stacked_constants, [5, 95]) vmin, vmax = np.percentile(stacked_constants, [5, 95])
geom.plot_data_fast( geom.plot_data_fast(
stacked_constants, stacked_constants,
ax=ax, ax=ax,
vmin=vmin, vmin=vmin,
vmax=vmax, vmax=vmax,
colorbar={'shrink': 1, 'pad': 0.01}, colorbar={'shrink': 1, 'pad': 0.01},
) )
ax.set_title(f'{karabo_id} - One photon peak position', size=18) ax.set_title(f'{karabo_id} - One photon peak position', size=18)
plt.show() plt.show()
``` ```
%% Cell type:markdown id: tags:
## Histogram data for all cells for each module
%% Cell type:code id: tags: %% Cell type:code id: tags:
``` python ``` python
fixed_cols = 4 if nmods > 4:
fig, axs = plt.subplots( fixed_cols = 4
math.ceil(nmods / fixed_cols), 4, figsize=(20, 10)) # Adjust for spatial histograms row, col = math.ceil(nmods / fixed_cols), 4
else:
row, col = 1, nmods
fig, axs = plt.subplots(row, col, figsize=(20, 10)) # Adjust for spatial histograms
axs = axs.ravel()
for i, da in enumerate (da_to_pdu.keys()): for i, da in enumerate (da_to_pdu.keys()):
with h5file( with h5file(
Path(out_folder) / histo_temp.format(run, proposal.upper(), da), Path(out_folder) / histo_temp.format(run, proposal.upper(), da),
'r' 'r'
) as f: ) as f:
histos = f["histos"][:] histos = f["histos"][:]
row, col = divmod(i, 4) row, col = divmod(i, 4)
for m in range(histos.shape[1]): for m in range(histos.shape[1]):
cell_hist = histos[m] cell_hist = histos[m]
axs[row, col].plot(cell_hist.ravel(), label=f'Cell {m}') axs[i].plot(cell_hist.ravel(), label=f'Cell {m}')
axs[row, col].set_title(f"{da} ({da_to_pdu[da]})") axs[i].set_title(f"{da} ({da_to_pdu[da]})")
for i, ax in enumerate(axs.flat): for i, ax in enumerate(axs):
if i > nmods: if i > nmods-1:
ax.set_visible(False) # Hide unused subplots ax.set_visible(False) # Hide unused subplots
# Create a legend for the whole figure # Create a legend for the whole figure
handles, labels = axs[0, 0].get_legend_handles_labels() handles, labels = axs[0].get_legend_handles_labels()
fig.legend(handles, labels, loc="center right") fig.legend(handles, labels, loc="center right" if nmods > 4 else "upper right")
plt.title("Histogram for all cell for each module.") plt.tight_layout(pad=3)
plt.tight_layout()
plt.show() plt.show()
``` ```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment