Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pycalibration
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Model registry
Analyze
Contributor analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
calibration
pycalibration
Commits
9f6a65a2
You need to sign in or sign up before continuing.
Commit
9f6a65a2
authored
1 year ago
by
Karim Ahmed
Browse files
Options
Downloads
Patches
Plain Diff
fix histogram data plot for flexible subplot numbers
parent
1dca99c3
No related branches found
No related tags found
1 merge request
!841
[JUNGFRAU][FF] Feat: new notebook for producing gain constants.
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
notebooks/Jungfrau/Jungfrau_gain_Spectra_Fit_Summary_NBC.ipynb
+22
-11
22 additions, 11 deletions
...ooks/Jungfrau/Jungfrau_gain_Spectra_Fit_Summary_NBC.ipynb
with
22 additions
and
11 deletions
notebooks/Jungfrau/Jungfrau_gain_Spectra_Fit_Summary_NBC.ipynb
+
22
−
11
View file @
9f6a65a2
...
@@ -113,15 +113,27 @@
...
@@ -113,15 +113,27 @@
"plt.show()"
"plt.show()"
]
]
},
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Histogram data for all cells for each module"
]
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": null,
"execution_count": null,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
"fixed_cols = 4\n",
"if nmods > 4:\n",
"fig, axs = plt.subplots(\n",
" fixed_cols = 4\n",
" math.ceil(nmods / fixed_cols), 4, figsize=(20, 10)) # Adjust for spatial histograms\n",
" row, col = math.ceil(nmods / fixed_cols), 4\n",
"else:\n",
" row, col = 1, nmods\n",
"\n",
"fig, axs = plt.subplots(row, col, figsize=(20, 10)) # Adjust for spatial histograms\n",
"axs = axs.ravel()\n",
"for i, da in enumerate (da_to_pdu.keys()):\n",
"for i, da in enumerate (da_to_pdu.keys()):\n",
" with h5file(\n",
" with h5file(\n",
" Path(out_folder) / histo_temp.format(run, proposal.upper(), da),\n",
" Path(out_folder) / histo_temp.format(run, proposal.upper(), da),\n",
...
@@ -131,17 +143,16 @@
...
@@ -131,17 +143,16 @@
" row, col = divmod(i, 4)\n",
" row, col = divmod(i, 4)\n",
" for m in range(histos.shape[1]):\n",
" for m in range(histos.shape[1]):\n",
" cell_hist = histos[m]\n",
" cell_hist = histos[m]\n",
" axs[
row, col
].plot(cell_hist.ravel(), label=f'Cell {m}')\n",
" axs[
i
].plot(cell_hist.ravel(), label=f'Cell {m}')\n",
" axs[
row, col
].set_title(f\"{da} ({da_to_pdu[da]})\")\n",
" axs[
i
].set_title(f\"{da} ({da_to_pdu[da]})\")\n",
"\n",
"\n",
"for i, ax in enumerate(axs
.flat
):\n",
"for i, ax in enumerate(axs):\n",
" if i > nmods:\n",
" if i > nmods
-1
:\n",
" ax.set_visible(False) # Hide unused subplots\n",
" ax.set_visible(False) # Hide unused subplots\n",
"# Create a legend for the whole figure\n",
"# Create a legend for the whole figure\n",
"handles, labels = axs[0, 0].get_legend_handles_labels()\n",
"handles, labels = axs[0].get_legend_handles_labels()\n",
"fig.legend(handles, labels, loc=\"center right\")\n",
"fig.legend(handles, labels, loc=\"center right\" if nmods > 4 else \"upper right\")\n",
"plt.title(\"Histogram for all cell for each module.\")\n",
"plt.tight_layout(pad=3)\n",
"plt.tight_layout()\n",
"plt.show()"
"plt.show()"
]
]
}
}
...
...
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
# Jungfrau Spectra Fit Summary
# Jungfrau Spectra Fit Summary
Author: European XFEL Detector Department, Version: 1.0
Author: European XFEL Detector Department, Version: 1.0
Summary for plotting Spectra Fit results for Jungfrau FF histogram and fitting notebook
Summary for plotting Spectra Fit results for Jungfrau FF histogram and fitting notebook
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
in_folder
=
'
/gpfs/exfel/exp/SPB/202330/p900343/raw
'
# RAW data path, required
in_folder
=
'
/gpfs/exfel/exp/SPB/202330/p900343/raw
'
# RAW data path, required
out_folder
=
"
/gpfs/exfel/data/scratch/ahmedk/test/remove/JF4M_SPB_gain/r67
"
# Output path for gain data, required
out_folder
=
"
/gpfs/exfel/data/scratch/ahmedk/test/remove/JF4M_SPB_gain/r67
"
# Output path for gain data, required
metadata_folder
=
""
# Directory containing calibration_metadata.yml when run by xfel-calibrate.
metadata_folder
=
""
# Directory containing calibration_metadata.yml when run by xfel-calibrate.
runs
=
[
67
]
runs
=
[
67
]
# Parameters used to access raw data.
# Parameters used to access raw data.
karabo_da
=
[]
# list of data aggregators, which corresponds to different JF modules. This is only needed for the detectors of one module.
karabo_da
=
[]
# list of data aggregators, which corresponds to different JF modules. This is only needed for the detectors of one module.
karabo_id
=
"
SPB_IRDA_JF4M
"
# detector identifier.
karabo_id
=
"
SPB_IRDA_JF4M
"
# detector identifier.
creation_time
=
""
# To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC e.g. "2022-06-28 13:00:00"
creation_time
=
""
# To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC e.g. "2022-06-28 13:00:00"
fit_func
=
'
CHARGE_SHARING
'
# function used to fit the single photon peak\
fit_func
=
'
CHARGE_SHARING
'
# function used to fit the single photon peak\
g0_fit_dataset
=
'
gainMap_fit
'
# name of the data structure in the fit files
g0_fit_dataset
=
'
gainMap_fit
'
# name of the data structure in the fit files
spectra_fit_temp
=
'
R{:04d}_{}_Gain_Spectra_{}_{}_Fit.h5
'
spectra_fit_temp
=
'
R{:04d}_{}_Gain_Spectra_{}_{}_Fit.h5
'
histo_temp
=
'
R{:04d}_{}_Gain_Spectra_{}_Histo.h5
'
histo_temp
=
'
R{:04d}_{}_Gain_Spectra_{}_Histo.h5
'
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
import
math
import
math
import
warnings
import
warnings
from
pathlib
import
Path
from
pathlib
import
Path
warnings
.
filterwarnings
(
'
ignore
'
)
warnings
.
filterwarnings
(
'
ignore
'
)
from
h5py
import
File
as
h5file
from
h5py
import
File
as
h5file
import
matplotlib
import
matplotlib
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
numpy
as
np
from
IPython.display
import
display
from
IPython.display
import
display
matplotlib
.
use
(
"
agg
"
)
matplotlib
.
use
(
"
agg
"
)
%
matplotlib
inline
%
matplotlib
inline
from
cal_tools.plotting
import
init_jungfrau_geom
from
cal_tools.plotting
import
init_jungfrau_geom
from
XFELDetAna.plotting.simpleplot
import
simplePlot
from
XFELDetAna.plotting.simpleplot
import
simplePlot
from
cal_tools.restful_config
import
calibration_client
from
cal_tools.restful_config
import
calibration_client
from
cal_tools.calcat_interface
import
CalCatApi
from
cal_tools.calcat_interface
import
CalCatApi
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
expected_modules
,
geom
=
init_jungfrau_geom
(
karabo_id
=
karabo_id
,
karabo_da
=
karabo_da
)
expected_modules
,
geom
=
init_jungfrau_geom
(
karabo_id
=
karabo_id
,
karabo_da
=
karabo_da
)
nmods
=
len
(
expected_modules
)
nmods
=
len
(
expected_modules
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
calcat_client
=
calibration_client
()
calcat_client
=
calibration_client
()
calcat
=
CalCatApi
(
client
=
calcat_client
)
calcat
=
CalCatApi
(
client
=
calcat_client
)
detector_id
=
calcat
.
detector
(
karabo_id
)[
'
id
'
]
detector_id
=
calcat
.
detector
(
karabo_id
)[
'
id
'
]
da_mapping
=
calcat
.
physical_detector_units
(
detector_id
,
pdu_snapshot_at
=
creation_time
)
da_mapping
=
calcat
.
physical_detector_units
(
detector_id
,
pdu_snapshot_at
=
creation_time
)
da_to_pdu
=
{
k
:
v
[
"
physical_name
"
]
for
k
,
v
in
da_mapping
.
items
()}
da_to_pdu
=
{
k
:
v
[
"
physical_name
"
]
for
k
,
v
in
da_mapping
.
items
()}
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
proposal
=
list
(
filter
(
None
,
in_folder
.
strip
(
'
/
'
).
split
(
'
/
'
)))[
-
2
]
proposal
=
list
(
filter
(
None
,
in_folder
.
strip
(
'
/
'
).
split
(
'
/
'
)))[
-
2
]
run
=
runs
[
0
]
# TODO this will need to be fixed when I start implementing multiple runs.
run
=
runs
[
0
]
# TODO this will need to be fixed when I start implementing multiple runs.
stacked_constants
=
np
.
full
(
geom
.
expected_data_shape
,
np
.
nan
)
# nmods, 512, 1024
stacked_constants
=
np
.
full
(
geom
.
expected_data_shape
,
np
.
nan
)
# nmods, 512, 1024
for
i
,
da
in
enumerate
(
da_to_pdu
.
keys
()):
for
i
,
da
in
enumerate
(
da_to_pdu
.
keys
()):
with
h5file
(
with
h5file
(
Path
(
out_folder
)
/
spectra_fit_temp
.
format
(
run
,
proposal
.
upper
(),
da
,
fit_func
),
Path
(
out_folder
)
/
spectra_fit_temp
.
format
(
run
,
proposal
.
upper
(),
da
,
fit_func
),
'
r
'
'
r
'
)
as
f
:
)
as
f
:
# f[g0_fit_dataset] shape is 1024, 512, mem_cells
# f[g0_fit_dataset] shape is 1024, 512, mem_cells
stacked_constants
[
i
]
=
np
.
moveaxis
(
stacked_constants
[
i
]
=
np
.
moveaxis
(
np
.
mean
(
np
.
array
(
f
[
g0_fit_dataset
]),
axis
=-
1
),
0
,
1
)
np
.
mean
(
np
.
array
(
f
[
g0_fit_dataset
]),
axis
=-
1
),
0
,
1
)
fig
,
ax
=
plt
.
subplots
(
figsize
=
(
18
,
10
))
fig
,
ax
=
plt
.
subplots
(
figsize
=
(
18
,
10
))
vmin
,
vmax
=
np
.
percentile
(
stacked_constants
,
[
5
,
95
])
vmin
,
vmax
=
np
.
percentile
(
stacked_constants
,
[
5
,
95
])
geom
.
plot_data_fast
(
geom
.
plot_data_fast
(
stacked_constants
,
stacked_constants
,
ax
=
ax
,
ax
=
ax
,
vmin
=
vmin
,
vmin
=
vmin
,
vmax
=
vmax
,
vmax
=
vmax
,
colorbar
=
{
'
shrink
'
:
1
,
'
pad
'
:
0.01
},
colorbar
=
{
'
shrink
'
:
1
,
'
pad
'
:
0.01
},
)
)
ax
.
set_title
(
f
'
{
karabo_id
}
- One photon peak position
'
,
size
=
18
)
ax
.
set_title
(
f
'
{
karabo_id
}
- One photon peak position
'
,
size
=
18
)
plt
.
show
()
plt
.
show
()
```
```
%% Cell type:markdown id: tags:
## Histogram data for all cells for each module
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
fixed_cols
=
4
if
nmods
>
4
:
fig
,
axs
=
plt
.
subplots
(
fixed_cols
=
4
math
.
ceil
(
nmods
/
fixed_cols
),
4
,
figsize
=
(
20
,
10
))
# Adjust for spatial histograms
row
,
col
=
math
.
ceil
(
nmods
/
fixed_cols
),
4
else
:
row
,
col
=
1
,
nmods
fig
,
axs
=
plt
.
subplots
(
row
,
col
,
figsize
=
(
20
,
10
))
# Adjust for spatial histograms
axs
=
axs
.
ravel
()
for
i
,
da
in
enumerate
(
da_to_pdu
.
keys
()):
for
i
,
da
in
enumerate
(
da_to_pdu
.
keys
()):
with
h5file
(
with
h5file
(
Path
(
out_folder
)
/
histo_temp
.
format
(
run
,
proposal
.
upper
(),
da
),
Path
(
out_folder
)
/
histo_temp
.
format
(
run
,
proposal
.
upper
(),
da
),
'
r
'
'
r
'
)
as
f
:
)
as
f
:
histos
=
f
[
"
histos
"
][:]
histos
=
f
[
"
histos
"
][:]
row
,
col
=
divmod
(
i
,
4
)
row
,
col
=
divmod
(
i
,
4
)
for
m
in
range
(
histos
.
shape
[
1
]):
for
m
in
range
(
histos
.
shape
[
1
]):
cell_hist
=
histos
[
m
]
cell_hist
=
histos
[
m
]
axs
[
row
,
col
].
plot
(
cell_hist
.
ravel
(),
label
=
f
'
Cell
{
m
}
'
)
axs
[
i
].
plot
(
cell_hist
.
ravel
(),
label
=
f
'
Cell
{
m
}
'
)
axs
[
row
,
col
].
set_title
(
f
"
{
da
}
(
{
da_to_pdu
[
da
]
}
)
"
)
axs
[
i
].
set_title
(
f
"
{
da
}
(
{
da_to_pdu
[
da
]
}
)
"
)
for
i
,
ax
in
enumerate
(
axs
.
flat
):
for
i
,
ax
in
enumerate
(
axs
):
if
i
>
nmods
:
if
i
>
nmods
-
1
:
ax
.
set_visible
(
False
)
# Hide unused subplots
ax
.
set_visible
(
False
)
# Hide unused subplots
# Create a legend for the whole figure
# Create a legend for the whole figure
handles
,
labels
=
axs
[
0
,
0
].
get_legend_handles_labels
()
handles
,
labels
=
axs
[
0
].
get_legend_handles_labels
()
fig
.
legend
(
handles
,
labels
,
loc
=
"
center right
"
)
fig
.
legend
(
handles
,
labels
,
loc
=
"
center right
"
if
nmods
>
4
else
"
upper right
"
)
plt
.
title
(
"
Histogram for all cell for each module.
"
)
plt
.
tight_layout
(
pad
=
3
)
plt
.
tight_layout
()
plt
.
show
()
plt
.
show
()
```
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment