"cluster_profile = \"noDB\" # The ipcluster profile to use\n",
"start_date = \"2019-01-01\" # date to start investigation interval from\n",
"end_date = \"NOW\" # date to end investigation interval at, can be \"now\"\n",
"dclass=\"jungfrau\" # Detector class\n",
...
...
%% Cell type:markdown id: tags:
# Statistical analysis of calibration factors#
Author: Mikhail Karnevskiy, Version 0.2
Plot calibration constants retrieved from the cal. DB.
To be visualized, calibration constants are averaged per group of pixels. Plots shows calibration constant over time for each constant.
Values shown in plots are saved in h5 files.
%% Cell type:code id: tags:
``` python
cluster_profile="noDB"# The ipcluster profile to use
start_date="2019-01-01"# date to start investigation interval from
end_date="NOW"# date to end investigation interval at, can be "now"
dclass="jungfrau"# Detector class
modules=["Jungfrau_M035"]# detector entry in the DB to investigate
submodules=[2]# module index of a modular detector (1 for Q1M1 of AGIPD), range allowed
constants=['RelativeGain']# constants to plot
nconstants=20# Number of time stamps to plot. If not 0, overcome start_date.
max_time=15# max time margin in minutes to match bad pixels
nMemToShow=16# Number of memory cells to be shown in plots
gain_setting=[0,1,2]# gain stages
bias_voltage=[90,180]# Bias voltage
temperature=[291]# Operation temperature
integration_time=[4.96,10,50,250]# Integration time
pixels_x=[1024]# number of pixels along X axis
pixels_y=[512]# number of pixels along Y axis
in_vacuum=[0]# 0 if detector is operated in room pressure
memory_cells=[1,16]# number of memory cells
acquisition_rate=[1.1]# aquisition rate
parameter_names=['bias_voltage','integration_time','pixels_x','pixels_y','temperature','memory_cells']# names of parameters
separate_plot=['gain_setting','memory_cells','integration_time']# Plot on separate plots
x_labels=['Sensor Temperature','Integration Time']# parameters to be shown on X axis: Acquisition rate, Memory cells, Sensor Temperature, Integration Time