Skip to content
Snippets Groups Projects
Commit d00ed80a authored by Thomas Michelat's avatar Thomas Michelat
Browse files

Feat/ppu/number of trains

parent e6df7b77
No related branches found
No related tags found
1 merge request!877Feat/ppu/number of trains
%% Cell type:markdown id: tags:
# AGIPD Offline Correction #
Author: European XFEL Detector Group, Version: 2.0
Offline Calibration for the AGIPD Detector
%% Cell type:code id: tags:
``` python
in_folder = "/gpfs/exfel/exp/MID/202201/p002834/raw" # the folder to read data from, required
out_folder = "/gpfs/exfel/data/scratch/esobolev/pycal_litfrm/p002834/r0225" # the folder to output to, required
metadata_folder = "" # Directory containing calibration_metadata.yml when run by xfel-calibrate
sequences = [-1] # sequences to correct, set to -1 for all, range allowed
overwrite = False # IGNORED, NEEDED FOR COMPATIBILITY.
modules = [-1] # modules to correct, set to -1 for all, range allowed
train_ids = [-1] # train IDs to correct, set to -1 for all, range allowed
run = 225 # runs to process, required
karabo_id = "MID_DET_AGIPD1M-1" # karabo karabo_id
karabo_da = ['-1'] # a list of data aggregators names, Default [-1] for selecting all data aggregators
receiver_template = "{}CH0" # inset for receiver devices
path_template = 'RAW-R{:04d}-{}-S{:05d}.h5' # the template to use to access data
instrument_source_template = '{}/DET/{}:xtdf' # path in the HDF5 file to images
index_source_template = 'INDEX/{}/DET/{}:xtdf/' # path in the HDF5 file to images
ctrl_source_template = '{}/MDL/FPGA_COMP' # path to control information
karabo_id_control = "MID_EXP_AGIPD1M1" # karabo-id for control device
slopes_ff_from_files = "" # Path to locally stored SlopesFF and BadPixelsFF constants, loaded in precorrection notebook
creation_time = "" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC e.g. "2022-06-28 13:00:00"
cal_db_interface = "tcp://max-exfl016:8015#8045" # the database interface to use
cal_db_timeout = 30000 # in milliseconds
creation_date_offset = "00:00:00" # add an offset to creation date, e.g. to get different constants
mem_cells = -1 # Number of memory cells used, set to 0 to automatically infer
bias_voltage = -1 # bias voltage, set to 0 to use stored value in slow data.
acq_rate = -1. # the detector acquisition rate, use 0 to try to auto-determine
gain_setting = -1 # the gain setting, use -1 to use value stored in slow data.
gain_mode = -1 # gain mode (0: adaptive, 1-3 fixed high/med/low, -1: read from CONTROL data)
max_pulses = [0, 352, 1] # range list [st, end, step] of memory cell indices to be processed within a train. 3 allowed maximum list input elements.
mem_cells_db = -1 # set to a value different than 0 to use this value for DB queries
integration_time = -1 # integration time, negative values for auto-detection.
# Correction parameters
blc_noise_threshold = 5000 # above this mean signal intensity now baseline correction via noise is attempted
cm_dark_fraction = 0.66 # threshold for fraction of empty pixels to consider module enough dark to perform CM correction
cm_dark_range = [-50.,30] # range for signal value ADU for pixel to be consider as a dark pixel
cm_n_itr = 4 # number of iterations for common mode correction
hg_hard_threshold = 1000 # threshold to force medium gain offset subtracted pixel to high gain
mg_hard_threshold = 1000 # threshold to force medium gain offset subtracted pixel from low to medium gain
noisy_adc_threshold = 0.25 # threshold to mask complete adc
ff_gain = 7.2 # conversion gain for absolute FlatField constants, while applying xray_gain
photon_energy = -1.0 # photon energy in keV, non-positive value for XGM autodetection
# Correction Booleans
only_offset = False # Apply only Offset correction. if False, Offset is applied by Default. if True, Offset is only applied.
rel_gain = False # do relative gain correction based on PC data
xray_gain = False # do relative gain correction based on xray data
blc_noise = False # if set, baseline correction via noise peak location is attempted
blc_stripes = False # if set, baseline corrected via stripes
blc_hmatch = False # if set, base line correction via histogram matching is attempted
match_asics = False # if set, inner ASIC borders are matched to the same signal level
adjust_mg_baseline = False # adjust medium gain baseline to match highest high gain value
zero_nans = False # set NaN values in corrected data to 0
zero_orange = False # set to 0 very negative and very large values in corrected data
blc_set_min = False # Shift to 0 negative medium gain pixels after offset corr
corr_asic_diag = False # if set, diagonal drop offs on ASICs are corrected
force_hg_if_below = False # set high gain if mg offset subtracted value is below hg_hard_threshold
force_mg_if_below = False # set medium gain if mg offset subtracted value is below mg_hard_threshold
mask_noisy_adc = False # Mask entire ADC if they are noise above a relative threshold
common_mode = False # Common mode correction
melt_snow = False # Identify (and optionally interpolate) 'snowy' pixels
mask_zero_std = False # Mask pixels with zero standard deviation across train
low_medium_gap = False # 5 sigma separation in thresholding between low and medium gain
round_photons = False # Round to absolute number of photons, only use with gain corrections
# Optional auxiliary devices
use_ppu_device = '' # Device ID for a pulse picker device to only process picked trains, empty string to disable
ppu_train_offset = 0 # When using the pulse picker, offset between the PPU's sequence start and actually picked train
use_litframe_finder = 'off' # Process only illuminated frames: 'off' - disable, 'device' - use online device data, 'offline' - use offline algorithm, 'auto' - choose online/offline source automatically (default)
litframe_device_id = '' # Device ID for a lit frame finder device, empty string to auto detection
energy_threshold = -1000 # The low limit for the energy (uJ) exposed by frames subject to processing. If -1000, selection by pulse energy is disabled
use_super_selection = 'cm' # Make a common selection for entire run: 'off' - disable, 'final' - enable for final selection, 'cm' - enable only for common mode correction
use_xgm_device = '' # DoocsXGM device ID to obtain actual photon energy, operating condition else.
# Output parameters
recast_image_data = '' # Cast data to a different dtype before saving
compress_fields = ['gain', 'mask'] # Datasets in image group to compress.
# Plotting parameters
skip_plots = False # exit after writing corrected files and metadata
cell_id_preview = 1 # cell Id used for preview in single-shot plots
# Parallelization parameters
chunk_size = 1000 # Size of chunk for image-wise correction
n_cores_correct = 16 # Number of chunks to be processed in parallel
n_cores_files = 4 # Number of files to be processed in parallel
sequences_per_node = 2 # number of sequence files per cluster node if run as SLURM job, set to 0 to not run SLURM parallel
max_nodes = 8 # Maximum number of SLURM jobs to split correction work into
max_tasks_per_worker = 1 # the number of tasks a correction pool worker process can complete before it will exit and be replaced with a fresh worker process. Leave as -1 to keep worker alive as long as pool.
def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da, max_nodes):
from xfel_calibrate.calibrate import balance_sequences as bs
return bs(in_folder, run, sequences, sequences_per_node, karabo_da, max_nodes=max_nodes)
```
%% Cell type:code id: tags:
``` python
import itertools
import os
import math
import multiprocessing
import re
import warnings
from datetime import timedelta
from logging import warning
from pathlib import Path
from time import perf_counter
import tabulate
from dateutil import parser
from IPython.display import Latex, Markdown, display
warnings.filterwarnings('ignore')
import matplotlib
import matplotlib.pyplot as plt
import yaml
from extra_data import RunDirectory, stack_detector_data
from extra_data import by_id, RunDirectory, stack_detector_data
from extra_geom import AGIPD_1MGeometry, AGIPD_500K2GGeometry
from matplotlib import cm as colormap
from matplotlib.colors import LogNorm
matplotlib.use("agg")
%matplotlib inline
import numpy as np
import seaborn as sns
sns.set()
sns.set_context("paper", font_scale=1.4)
sns.set_style("ticks")
from cal_tools import agipdalgs as calgs
from cal_tools.agipdlib import (
AgipdCorrections,
AgipdCtrl,
CellRange,
LitFrameSelection,
)
from cal_tools.ana_tools import get_range
from cal_tools.enums import AgipdGainMode, BadPixels
from cal_tools.step_timing import StepTimer
from cal_tools.tools import (
CalibrationMetadata,
calcat_creation_time,
map_modules_from_folder,
module_index_to_qm,
)
```
%% Cell type:code id: tags:
``` python
in_folder = Path(in_folder)
out_folder = Path(out_folder)
run_folder = in_folder / f'r{run:04d}'
```
%% Cell type:markdown id: tags:
## Evaluated parameters ##
%% Cell type:code id: tags:
``` python
# Fill dictionaries comprising bools and arguments for correction and data analysis
# Here the hierarchy and dependability for correction booleans are defined
corr_bools = {}
# offset is at the bottom of AGIPD correction pyramid.
corr_bools["only_offset"] = only_offset
# Dont apply any corrections if only_offset is requested
if not only_offset:
corr_bools["adjust_mg_baseline"] = adjust_mg_baseline
corr_bools["rel_gain"] = rel_gain
corr_bools["xray_corr"] = xray_gain
corr_bools["blc_noise"] = blc_noise
corr_bools["blc_stripes"] = blc_stripes
corr_bools["blc_hmatch"] = blc_hmatch
corr_bools["blc_set_min"] = blc_set_min
corr_bools["match_asics"] = match_asics
corr_bools["corr_asic_diag"] = corr_asic_diag
corr_bools["zero_nans"] = zero_nans
corr_bools["zero_orange"] = zero_orange
corr_bools["mask_noisy_adc"] = mask_noisy_adc
corr_bools["force_hg_if_below"] = force_hg_if_below
corr_bools["force_mg_if_below"] = force_mg_if_below
corr_bools["common_mode"] = common_mode
corr_bools["melt_snow"] = melt_snow
corr_bools["mask_zero_std"] = mask_zero_std
corr_bools["low_medium_gap"] = low_medium_gap
corr_bools["round_photons"] = round_photons
# Many corrections don't apply to fixed gain mode; will explicitly disable later if detected
disable_for_fixed_gain = [
"adjust_mg_baseline",
"blc_set_min",
"force_hg_if_below",
"force_mg_if_below",
"low_medium_gap",
"melt_snow",
"rel_gain"
]
```
%% Cell type:code id: tags:
``` python
if sequences == [-1]:
sequences = None
dc = RunDirectory(run_folder)
ctrl_src = ctrl_source_template.format(karabo_id_control)
instrument_src = instrument_source_template.format(karabo_id, receiver_template)
index_src = index_source_template.format(karabo_id, receiver_template)
```
%% Cell type:code id: tags:
``` python
# Create output folder
out_folder.mkdir(parents=True, exist_ok=True)
# Evaluate detector instance for mapping
instrument = karabo_id.split("_")[0]
if instrument == "SPB":
dinstance = "AGIPD1M1"
nmods = 16
elif instrument == "MID":
dinstance = "AGIPD1M2"
nmods = 16
elif instrument == "HED":
dinstance = "AGIPD500K"
nmods = 8
# Evaluate requested modules
if karabo_da[0] == '-1':
if modules[0] == -1:
modules = list(range(nmods))
karabo_da = ["AGIPD{:02d}".format(i) for i in modules]
else:
modules = [int(x[-2:]) for x in karabo_da]
print("Process modules:", ', '.join(module_index_to_qm(x) for x in modules))
print(f"Detector in use is {karabo_id}")
print(f"Instrument {instrument}")
print(f"Detector instance {dinstance}")
```
%% Cell type:code id: tags:
``` python
if use_ppu_device:
# Obtain trains to process if using a pulse picker device.
# Will throw an uncaught exception if the device is wrong.
seq_start = dc[use_ppu_device, 'trainTrigger.sequenceStart.value'].ndarray()
# The trains picked are the unique values of trainTrigger.sequenceStart
# minus the first (previous trigger before this run).
train_ids = np.unique(seq_start)[1:] + ppu_train_offset
start_train_ids = np.unique(seq_start)[1:] + ppu_train_offset
train_ids = []
for train_id in start_train_ids:
n_trains = dc[
use_ppu_device, 'trainTrigger.numberOfTrains'
].select_trains(by_id[[train_id]]).ndarray()[0]
train_ids.extend(list(range(train_id, train_id + n_trains)))
print(f'PPU device {use_ppu_device} triggered for {len(train_ids)} train(s)')
elif train_ids != [-1]:
# Specific trains passed by parameter, convert to ndarray.
train_ids = np.array(train_ids)
print(f'Processing up to {len(train_ids)} manually selected train(s)')
else:
# Process all trains.
train_ids = None
print(f'Processing all valid trains')
```
%% Cell type:code id: tags:
``` python
# set everything up filewise
mapped_files, _, total_sequences, _, _ = map_modules_from_folder(
str(in_folder), run, path_template, karabo_da, sequences
)
file_list = []
# ToDo: Split table over pages
print(f"Processing a total of {total_sequences} sequence files in chunks of {n_cores_files}")
table = []
ti = 0
for k, files in mapped_files.items():
i = 0
for f in list(files.queue):
file_list.append(f)
if i == 0:
table.append((ti, k, i, f))
else:
table.append((ti, "", i, f))
i += 1
ti += 1
md = display(Latex(tabulate.tabulate(table, tablefmt='latex',
headers=["#", "module", "# module", "file"])))
file_list = sorted(file_list, key=lambda name: name[-10:])
```
%% Cell type:code id: tags:
``` python
first_mod_channel = sorted(modules)[0]
instrument_src_mod = [
s for s in list(dc.all_sources) if f"{first_mod_channel}CH" in s][0]
mod_channel = int(re.findall(rf".*{first_mod_channel}CH([0-9]+):.*", instrument_src_mod)[0])
agipd_cond = AgipdCtrl(
run_dc=dc,
image_src=instrument_src_mod,
ctrl_src=ctrl_src,
raise_error=False, # to be able to process very old data without gain_setting value
)
```
%% Cell type:code id: tags:
``` python
# Run's creation time:
creation_time = calcat_creation_time(in_folder, run, creation_time)
offset = parser.parse(creation_date_offset)
delta = timedelta(hours=offset.hour, minutes=offset.minute, seconds=offset.second)
creation_time += delta
print(f"Creation time: {creation_time}")
if acq_rate == -1.:
acq_rate = agipd_cond.get_acq_rate()
if mem_cells == -1:
mem_cells = agipd_cond.get_num_cells()
# TODO: look for alternative for passing creation_time
if gain_setting == -1:
gain_setting = agipd_cond.get_gain_setting(creation_time)
if bias_voltage == -1:
bias_voltage = agipd_cond.get_bias_voltage(karabo_id_control)
if integration_time == -1:
integration_time = agipd_cond.get_integration_time()
if gain_mode == -1:
gain_mode = agipd_cond.get_gain_mode()
else:
gain_mode = AgipdGainMode(gain_mode)
```
%% Cell type:code id: tags:
``` python
if mem_cells is None:
raise ValueError(f"No raw images found for {instrument_src_mod}")
mem_cells_db = mem_cells if mem_cells_db == -1 else mem_cells_db
print(f"Maximum memory cells to calibrate: {mem_cells}")
```
%% Cell type:code id: tags:
``` python
print(f"Using {creation_time} as creation time")
print("Operating conditions are:")
print(f"• Bias voltage: {bias_voltage}")
print(f"• Memory cells: {mem_cells_db}")
print(f"• Acquisition rate: {acq_rate}")
print(f"• Gain setting: {gain_setting}")
print(f"• Gain mode: {gain_mode.name}")
print(f"• Integration time: {integration_time}")
print(f"• Photon Energy: 9.2")
```
%% Cell type:code id: tags:
``` python
if gain_mode:
for to_disable in disable_for_fixed_gain:
if corr_bools.get(to_disable, False):
warning(f"{to_disable} correction was requested, but does not apply to fixed gain mode")
corr_bools[to_disable] = False
```
%% Cell type:code id: tags:
``` python
if use_litframe_finder != 'off':
from extra_redu import make_litframe_finder, LitFrameFinderError
if use_litframe_finder not in ['auto', 'offline', 'online']:
raise ValueError("Unexpected value in 'use_litframe_finder'.")
inst = karabo_id_control[:3]
litfrm = make_litframe_finder(inst, dc, litframe_device_id)
try:
get_data = {'auto': litfrm.read_or_process, 'offline': litfrm.process, 'online': litfrm.read}
r = get_data[use_litframe_finder]()
cell_sel = LitFrameSelection(r, train_ids, max_pulses, energy_threshold, use_super_selection)
cell_sel.print_report()
except LitFrameFinderError as err:
warning(f"Cannot use AgipdLitFrameFinder due to:\n{err}")
cell_sel = CellRange(max_pulses, max_cells=mem_cells)
else:
# Use range selection
cell_sel = CellRange(max_pulses, max_cells=mem_cells)
print(cell_sel.msg())
```
%% Cell type:code id: tags:
``` python
if round_photons and photon_energy <= 0.0:
if use_xgm_device:
# Try to obtain photon energy from XGM device.
wavelength_data = dc[use_xgm_device, 'pulseEnergy.wavelengthUsed']
try:
from scipy.constants import h, c, e
# Read wavelength as a single value and convert to hv.
photon_energy = (h * c / e) / (wavelength_data.as_single_value(rtol=1e-2) * 1e-6)
print(f'Obtained photon energy {photon_energy:.3f} keV from {use_xgm_device}')
except ValueError:
warning('XGM source available but photon energy varies greater than 1%, '
'photon rounding disabled!')
round_photons = False
else:
warning('Neither explicit photon energy nor XGM device configured, photon rounding disabled!')
round_photons = False
elif round_photons:
print(f'Photon energy for rounding: {photon_energy:.3f} keV')
```
%% Cell type:markdown id: tags:
## Data processing ##
%% Cell type:code id: tags:
``` python
agipd_corr = AgipdCorrections(
mem_cells,
cell_sel,
h5_data_path=instrument_src,
h5_index_path=index_src,
corr_bools=corr_bools,
gain_mode=gain_mode,
comp_threads=os.cpu_count() // n_cores_files,
train_ids=train_ids
)
agipd_corr.baseline_corr_noise_threshold = -blc_noise_threshold
agipd_corr.hg_hard_threshold = hg_hard_threshold
agipd_corr.mg_hard_threshold = mg_hard_threshold
agipd_corr.cm_dark_min = cm_dark_range[0]
agipd_corr.cm_dark_max = cm_dark_range[1]
agipd_corr.cm_dark_fraction = cm_dark_fraction
agipd_corr.cm_n_itr = cm_n_itr
agipd_corr.noisy_adc_threshold = noisy_adc_threshold
agipd_corr.ff_gain = ff_gain
agipd_corr.photon_energy = photon_energy
agipd_corr.compress_fields = compress_fields
if recast_image_data:
agipd_corr.recast_image_fields['data'] = np.dtype(recast_image_data)
```
%% Cell type:code id: tags:
``` python
module_index_to_karabo_da = {mod: da for (mod, da) in zip(modules, karabo_da)}
```
%% Cell type:code id: tags:
``` python
# Retrieve calibration constants to RAM
agipd_corr.allocate_constants(modules, (3, mem_cells_db, 512, 128))
metadata = CalibrationMetadata(metadata_folder or out_folder)
# NOTE: this notebook will not overwrite calibration metadata file
const_yaml = metadata.get("retrieved-constants", {})
def retrieve_constants(mod):
"""
Retrieve calibration constants and load them to shared memory
Metadata for constants is taken from yml file or retrieved from the DB
"""
k_da = module_index_to_karabo_da[mod]
# check if there is a yaml file in out_folder that has the device constants.
if k_da in const_yaml:
when = agipd_corr.initialize_from_yaml(k_da, const_yaml, mod)
print(f"Found constants for {k_da} in calibration_metadata.yml")
else:
try:
# TODO: replace with proper retrieval (as done in pre-correction)
when = agipd_corr.initialize_from_db(
karabo_id=karabo_id,
karabo_da=k_da,
cal_db_interface=cal_db_interface,
creation_time=creation_time,
memory_cells=mem_cells_db,
bias_voltage=bias_voltage,
photon_energy=9.2,
gain_setting=gain_setting,
acquisition_rate=acq_rate,
integration_time=integration_time,
module_idx=mod,
only_dark=False,
)
print(f"Queried CalCat for {k_da}")
except Exception as e:
warning(f"Module: {k_da}, {e}")
when = None
return mod, when, k_da
print(f'Preparing constants (FF: {agipd_corr.corr_bools.get("xray_corr", False)}, PC: {any(agipd_corr.pc_bools)}, '
f'BLC: {any(agipd_corr.blc_bools)})')
ts = perf_counter()
with multiprocessing.Pool(processes=len(modules)) as pool:
const_out = pool.map(retrieve_constants, modules)
print(f"Constants were loaded in {perf_counter()-ts:.01f}s")
```
%% Cell type:code id: tags:
``` python
# allocate memory for images and hists
n_images_max = mem_cells * 256
data_shape = (n_images_max, 512, 128)
agipd_corr.allocate_images(data_shape, n_cores_files)
```
%% Cell type:code id: tags:
``` python
def batches(l, batch_size):
"""Group a list into batches of (up to) batch_size elements"""
start = 0
while start < len(l):
yield l[start:start + batch_size]
start += batch_size
```
%% Cell type:code id: tags:
``` python
def imagewise_chunks(img_counts):
"""Break up the loaded data into chunks of up to chunk_size
Yields (file data slot, start index, stop index)
"""
for i_proc, n_img in enumerate(img_counts):
n_chunks = math.ceil(n_img / chunk_size)
for i in range(n_chunks):
yield i_proc, i * n_img // n_chunks, (i+1) * n_img // n_chunks
```
%% Cell type:code id: tags:
``` python
step_timer = StepTimer()
```
%% Cell type:code id: tags:
``` python
step_timer.start()
if max_tasks_per_worker == -1:
max_tasks_per_worker = None
with multiprocessing.Pool(maxtasksperchild=max_tasks_per_worker) as pool:
step_timer.done_step('Started pool')
for file_batch in batches(file_list, n_cores_files):
# TODO: Move some printed output to logging or similar
print(f"Processing next {len(file_batch)} files")
step_timer.start()
img_counts = pool.starmap(
agipd_corr.read_file,
zip(range(len(file_batch)), file_batch, [not common_mode]*len(file_batch))
)
step_timer.done_step(f'Loading data from files')
if img_counts == 0:
# Skip any further processing and output if there are no images to
# correct in this file.
continue
if mask_zero_std:
# Evaluate zero-data-std mask
pool.starmap(
agipd_corr.mask_zero_std, itertools.product(
range(len(file_batch)),
np.array_split(np.arange(agipd_corr.max_cells), n_cores_correct)
)
)
step_timer.done_step('Mask 0 std')
# Perform offset image-wise correction
pool.starmap(agipd_corr.offset_correction, imagewise_chunks(img_counts))
step_timer.done_step("Offset correction")
if blc_noise or blc_stripes or blc_hmatch:
# Perform image-wise correction
pool.starmap(agipd_corr.baseline_correction, imagewise_chunks(img_counts))
step_timer.done_step("Base-line shift correction")
if common_mode:
# In common mode corrected is enabled.
# Cell selection is only activated after common mode correction.
# Perform cross-file correction parallel over asics
image_files_idx = [i_proc for i_proc, n_img in enumerate(img_counts) if n_img > 0]
pool.starmap(agipd_corr.cm_correction, itertools.product(
image_files_idx, range(16) # 16 ASICs per module
))
step_timer.done_step("Common-mode correction")
img_counts = pool.map(agipd_corr.apply_selected_pulses, image_files_idx)
step_timer.done_step("Applying selected cells after common mode correction")
# Perform image-wise correction"
pool.starmap(agipd_corr.gain_correction, imagewise_chunks(img_counts))
step_timer.done_step("Gain corrections")
# Save corrected data
pool.starmap(agipd_corr.write_file, [
(i_proc, file_name, str(out_folder / Path(file_name).name.replace("RAW", "CORR")))
for i_proc, file_name in enumerate(file_batch)
])
step_timer.done_step("Save")
```
%% Cell type:code id: tags:
``` python
print(f"Correction of {len(file_list)} files is finished")
print(f"Total processing time {step_timer.timespan():.01f} s")
print(f"Timing summary per batch of {n_cores_files} files:")
step_timer.print_summary()
```
%% Cell type:code id: tags:
``` python
# if the yml file contains "retrieved-constants", that means a leading
# notebook got processed and the reporting would be generated from it.
fst_print = True
timestamps = {}
for i, (modno, when, k_da) in enumerate(const_out):
qm = module_index_to_qm(modno)
if k_da not in const_yaml:
if fst_print:
print("Constants are retrieved with creation time: ")
fst_print = False
module_timestamps = {}
print(f"{qm}:")
for key, item in when.items():
if hasattr(item, 'strftime'):
item = item.strftime('%y-%m-%d %H:%M')
when[key] = item
print('{:.<12s}'.format(key), item)
# Store few time stamps if exists
# Add NA to keep array structure
for key in ['Offset', 'SlopesPC', 'SlopesFF']:
if when and key in when and when[key]:
module_timestamps[key] = when[key]
else:
module_timestamps[key] = "NA"
timestamps[qm] = module_timestamps
seq = sequences[0] if sequences else 0
if timestamps:
with open(f"{out_folder}/retrieved_constants_s{seq}.yml","w") as fd:
yaml.safe_dump({"time-summary": {f"S{seq}": timestamps}}, fd)
```
%% Cell type:code id: tags:
``` python
if skip_plots:
print('Skipping plots')
import sys
sys.exit(0)
```
%% Cell type:code id: tags:
``` python
def do_3d_plot(data, edges, x_axis, y_axis):
fig = plt.figure(figsize=(10, 10))
ax = fig.gca(projection='3d')
# Make data.
X = edges[0][:-1]
Y = edges[1][:-1]
X, Y = np.meshgrid(X, Y)
Z = data.T
# Plot the surface.
ax.plot_surface(X, Y, Z, cmap=colormap.coolwarm, linewidth=0, antialiased=False)
ax.set_xlabel(x_axis)
ax.set_ylabel(y_axis)
ax.set_zlabel("Counts")
def do_2d_plot(data, edges, y_axis, x_axis):
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111)
extent = [np.min(edges[1]), np.max(edges[1]),
np.min(edges[0]), np.max(edges[0])]
im = ax.imshow(data[::-1, :], extent=extent, aspect="auto",
norm=LogNorm(vmin=1, vmax=max(10, np.max(data))))
ax.set_xlabel(x_axis)
ax.set_ylabel(y_axis)
cb = fig.colorbar(im)
cb.set_label("Counts")
```
%% Cell type:code id: tags:
``` python
def get_trains_data(data_folder, source, include, detector_id, tid=None, modules=16, fillvalue=None):
"""Load single train for all module
:param data_folder: Path to folder with data
:param source: Data source to be loaded
:param include: Inset of file name to be considered
:param detector_id: The karabo id of the detector to get data for
:param tid: Train Id to be loaded. First train is considered if None is given
:param path: Path to find image data inside h5 file
"""
try:
run_data = RunDirectory(data_folder, include)
except FileNotFoundError:
warning(f'No corrected files for {include}. Skipping plots.')
import sys
sys.exit(0)
if tid is not None:
tid, data = run_data.select(
f'{detector_id}/DET/*', source).train_from_id(tid, keep_dims=True)
else:
# A first full trainId for all available modules is of interest.
tid, data = next(run_data.select(
f'{detector_id}/DET/*', source).trains(require_all=True, keep_dims=True))
stacked_data = stack_detector_data(
train=data, data=source, fillvalue=fillvalue, modules=modules)
return tid, stacked_data
```
%% Cell type:code id: tags:
``` python
if dinstance == "AGIPD500K":
geom = AGIPD_500K2GGeometry.from_origin()
else:
geom = AGIPD_1MGeometry.from_quad_positions(quad_pos=[
(-525, 625),
(-550, -10),
(520, -160),
(542.5, 475),
])
```
%% Cell type:code id: tags:
``` python
include = '*S00000*' if sequences is None else f'*S{sequences[0]:05d}*'
tid, corrected = get_trains_data(out_folder, 'image.data', include, karabo_id, modules=nmods)
_, gains = get_trains_data(out_folder, 'image.gain', include, karabo_id, tid, modules=nmods)
_, mask = get_trains_data(out_folder, 'image.mask', include, karabo_id, tid, modules=nmods)
_, blshift = get_trains_data(out_folder, 'image.blShift', include, karabo_id, tid, modules=nmods)
_, cellId = get_trains_data(out_folder, 'image.cellId', include, karabo_id, tid, modules=nmods)
_, pulseId = get_trains_data(out_folder, 'image.pulseId', include, karabo_id, tid, modules=nmods, fillvalue=0)
_, raw = get_trains_data(run_folder, 'image.data', include, karabo_id, tid, modules=nmods)
```
%% Cell type:code id: tags:
``` python
display(Markdown(f'## Preview and statistics for {gains.shape[0]} images of the train {tid} ##\n'))
```
%% Cell type:markdown id: tags:
### Signal vs. Analogue Gain ###
%% Cell type:code id: tags:
``` python
hist, bins_x, bins_y = calgs.histogram2d(raw[:,0,...].flatten().astype(np.float32),
raw[:,1,...].flatten().astype(np.float32),
bins=(100, 100),
range=[[4000, 8192], [4000, 8192]])
do_2d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Analogue gain (ADU)")
do_3d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Analogue gain (ADU)")
```
%% Cell type:markdown id: tags:
### Signal vs. Digitized Gain ###
The following plot shows plots signal vs. digitized gain
%% Cell type:code id: tags:
``` python
hist, bins_x, bins_y = calgs.histogram2d(corrected.flatten().astype(np.float32),
gains.flatten().astype(np.float32), bins=(100, 3),
range=[[-50, 8192], [0, 3]])
do_2d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Gain bit value")
```
%% Cell type:code id: tags:
``` python
print(f"Gain statistics in %")
table = [[f'{gains[gains==0].size/gains.size*100:.02f}',
f'{gains[gains==1].size/gains.size*100:.03f}',
f'{gains[gains==2].size/gains.size*100:.03f}']]
md = display(Latex(tabulate.tabulate(table, tablefmt='latex',
headers=["High", "Medium", "Low"])))
```
%% Cell type:markdown id: tags:
### Intensity per Pulse ###
%% Cell type:code id: tags:
``` python
pulse_range = [np.min(pulseId[pulseId>=0]), np.max(pulseId[pulseId>=0])]
# Modify pulse_range, if only one pulse is selected.
if pulse_range[0] == pulse_range[1]:
pulse_range = [0, pulse_range[1]+int(acq_rate)]
mean_data = np.nanmean(corrected, axis=(2, 3))
hist, bins_x, bins_y = calgs.histogram2d(mean_data.flatten().astype(np.float32),
pulseId.flatten().astype(np.float32),
bins=(100, int(pulse_range[1])),
range=[[-50, 1000], pulse_range])
do_2d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Pulse id")
do_3d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Pulse id")
hist, bins_x, bins_y = calgs.histogram2d(mean_data.flatten().astype(np.float32),
pulseId.flatten().astype(np.float32),
bins=(100, int(pulse_range[1])),
range=[[-50, 200000], pulse_range])
do_2d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Pulse id")
do_3d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Pulse id")
```
%% Cell type:markdown id: tags:
### Baseline shift ###
Estimated base-line shift with respect to the total ADU counts of corrected image.
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
h = ax.hist(blshift.flatten(), bins=100, log=True)
_ = plt.xlabel('Baseline shift [ADU]')
_ = plt.ylabel('Counts')
_ = ax.grid()
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(10, 10))
corrected_ave = np.nansum(corrected, axis=(2, 3))
plt.scatter(corrected_ave.flatten()/10**6, blshift.flatten(), s=0.9)
plt.xlim(-1, 1000)
plt.grid()
plt.xlabel('Illuminated corrected [MADU] ')
_ = plt.ylabel('Estimated baseline shift [ADU]')
```
%% Cell type:code id: tags:
``` python
if cell_id_preview not in cellId[:, 0]:
print(f"WARNING: The selected cell_id_preview value {cell_id_preview} is not available in the corrected data.")
cell_id_preview = cellId[:, 0][0]
cell_idx_preview = 0
print(f"Previewing the first available cellId: {cell_id_preview}.")
else:
cell_idx_preview = np.where(cellId[:, 0] == cell_id_preview)[0][0]
```
%% Cell type:code id: tags:
``` python
display(Markdown('### Raw preview ###\n'))
if cellId.shape[0] != 1:
display(Markdown(f'Mean over images of the RAW data\n'))
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
data = np.mean(raw[slice(*cell_sel.crange), 0, ...], axis=0)
vmin, vmax = get_range(data, 5)
ax = geom.plot_data_fast(data, ax=ax, cmap="jet", vmin=vmin, vmax=vmax)
else:
print("Skipping mean RAW preview for single memory cell, "
f"see single shot image for selected cell ID {cell_id_preview}.")
```
%% Cell type:code id: tags:
``` python
display(Markdown(f'Single shot of the RAW data from cell {cell_id_preview} \n'))
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
vmin, vmax = get_range(raw[cell_idx_preview, 0, ...], 5)
ax = geom.plot_data_fast(raw[cell_idx_preview, 0, ...], ax=ax, cmap="jet", vmin=vmin, vmax=vmax)
```
%% Cell type:code id: tags:
``` python
display(Markdown('### Corrected preview ###\n'))
if cellId.shape[0] != 1:
display(Markdown('### Mean CORRECTED Preview ###\n'))
display(Markdown(f'A mean across train: {tid}\n'))
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
data = np.mean(corrected, axis=0)
vmin, vmax = get_range(data, 7)
ax = geom.plot_data_fast(data, ax=ax, cmap="jet", vmin=-50, vmax=vmax)
else:
print("Skipping mean CORRECTED preview for single memory cell, "
f"see single shot image for selected cell ID {cell_id_preview}.")
```
%% Cell type:code id: tags:
``` python
display(Markdown(f'A single shot of the CORRECTED image from cell {cell_id_preview} \n'))
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
vmin, vmax = get_range(corrected[cell_idx_preview], 7, -50)
vmin = - 50
ax = geom.plot_data_fast(corrected[cell_idx_preview], ax=ax, cmap="jet", vmin=vmin, vmax=vmax)
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
vmin, vmax = get_range(corrected[cell_idx_preview], 5, -50)
nbins = np.int((vmax + 50) / 2)
h = ax.hist(corrected[cell_idx_preview].flatten(),
bins=nbins, range=(-50, vmax),
histtype='stepfilled', log=True)
plt.xlabel('[ADU]')
plt.ylabel('Counts')
ax.grid()
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
vmin, vmax = get_range(corrected, 10, -100)
vmax = np.nanmax(corrected)
if vmax > 50000:
vmax=50000
nbins = np.int((vmax + 100) / 5)
h = ax.hist(corrected.flatten(), bins=nbins,
range=(-100, vmax), histtype='step', log=True, label = 'All')
ax.hist(corrected[gains == 0].flatten(), bins=nbins, range=(-100, vmax),
alpha=0.5, log=True, label='High gain', color='green')
ax.hist(corrected[gains == 1].flatten(), bins=nbins, range=(-100, vmax),
alpha=0.5, log=True, label='Medium gain', color='red')
ax.hist(corrected[gains == 2].flatten(), bins=nbins, range=(-100, vmax),
alpha=0.5, log=True, label='Low gain', color='yellow')
ax.legend()
ax.grid()
plt.xlabel('[ADU]')
plt.ylabel('Counts')
```
%% Cell type:code id: tags:
``` python
display(Markdown('### Maximum GAIN Preview ###\n'))
display(Markdown(f'The per pixel maximum across one train for the digitized gain'))
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
ax = geom.plot_data_fast(np.max(gains, axis=0), ax=ax,
cmap="jet", vmin=-1, vmax=3)
```
%% Cell type:markdown id: tags:
## Bad Pixels ##
The mask contains dedicated entries for all pixels and memory cells as well as all three gains stages. Each mask entry is encoded in 32 bits as:
%% Cell type:code id: tags:
``` python
table = []
for item in BadPixels:
table.append((item.name, "{:016b}".format(item.value)))
md = display(Latex(tabulate.tabulate(table, tablefmt='latex',
headers=["Bad pixel type", "Bit mask"])))
```
%% Cell type:code id: tags:
``` python
display(Markdown(f'### Single Shot Bad Pixels ### \n'))
display(Markdown(f'A single shot bad pixel map from cell {cell_id_preview} \n'))
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
geom.plot_data_fast(np.log2(mask[cell_idx_preview]), ax=ax, vmin=0, vmax=32, cmap="jet")
```
%% Cell type:code id: tags:
``` python
if round_photons:
display(Markdown('### Photonization histograms ###'))
x_preround = (agipd_corr.hist_bins_preround[1:] + agipd_corr.hist_bins_preround[:-1]) / 2
x_postround = (agipd_corr.hist_bins_postround[1:] + agipd_corr.hist_bins_postround[:-1]) / 2
x_photons = np.arange(0, (x_postround[-1] + 1) / photon_energy)
fig, ax = plt.subplots(ncols=1, nrows=1, clear=True)
ax.plot(x_preround, agipd_corr.shared_hist_preround, '.-', color='C0')
ax.bar(x_postround, agipd_corr.shared_hist_postround, photon_energy, color='C1', alpha=0.5)
ax.set_yscale('log')
ax.set_ylim(0, max(agipd_corr.shared_hist_preround.max(), agipd_corr.shared_hist_postround.max())*3)
ax.set_xlim(x_postround[0], x_postround[-1]+1)
ax.set_xlabel('Photon energy / keV')
ax.set_ylabel('Intensity')
ax.vlines(x_photons * photon_energy, *ax.get_ylim(), color='k', linestyle='dashed')
phx = ax.twiny()
phx.set_xlim(x_postround[0] / photon_energy, (x_postround[-1]+1)/photon_energy)
phx.set_xticks(x_photons)
phx.set_xlabel('# Photons')
pass
```
%% Cell type:markdown id: tags:
### Percentage of Bad Pixels across one train ###
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
geom.plot_data_fast(np.mean(mask>0, axis=0), vmin=0, ax=ax, vmax=1, cmap="jet")
```
%% Cell type:markdown id: tags:
### Percentage of Bad Pixels across one train. Only Dark Related ###
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
cm = np.copy(mask)
cm[cm > BadPixels.NO_DARK_DATA.value] = 0
ax = geom.plot_data_fast(np.mean(cm>0, axis=0),
vmin=0, ax=ax, vmax=1, cmap="jet")
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment