Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pycalibration
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Model registry
Analyze
Contributor analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
calibration
pycalibration
Commits
ee43d523
Commit
ee43d523
authored
1 year ago
by
Karim Ahmed
Browse files
Options
Downloads
Patches
Plain Diff
remove unneeded code from SUMMARY NBs and improve the BadPixel Plots
parent
c05d7f5d
No related branches found
No related tags found
1 merge request
!841
[JUNGFRAU][FF] Feat: new notebook for producing gain constants.
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
notebooks/Jungfrau/Jungfrau_gain_Spectra_Fit_Summary_NBC.ipynb
+1
-22
1 addition, 22 deletions
...ooks/Jungfrau/Jungfrau_gain_Spectra_Fit_Summary_NBC.ipynb
notebooks/Jungfrau/Jungfrau_gain_map_Summary_NBC.ipynb
+44
-27
44 additions, 27 deletions
notebooks/Jungfrau/Jungfrau_gain_map_Summary_NBC.ipynb
with
45 additions
and
49 deletions
notebooks/Jungfrau/Jungfrau_gain_Spectra_Fit_Summary_NBC.ipynb
+
1
−
22
View file @
ee43d523
...
...
@@ -46,13 +46,12 @@
"import matplotlib.gridspec as gridspec\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import yaml\n",
"from IPython.display import Markdown, display\n",
"\n",
"matplotlib.use(\"agg\")\n",
"%matplotlib inline\n",
"\n",
"from cal_tools.plotting import init_jungfrau_geom
, show_processed_modules_jungfrau
\n",
"from cal_tools.plotting import init_jungfrau_geom\n",
"from cal_tools.tools import CalibrationMetadata\n",
"from XFELDetAna.plotting.simpleplot import simplePlot\n",
"from cal_tools.restful_config import calibration_client\n",
...
...
@@ -82,26 +81,6 @@
"da_to_pdu = {k: v[\"physical_name\"] for k, v in da_mapping.items()}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# display(Markdown('## Processed modules'))\n",
"\n",
"# processed_modules = list(da_to_pdu.values())\n",
"# processed_pdus = list(da_to_pdu.keys())\n",
"\n",
"# show_processed_modules_jungfrau(\n",
"# jungfrau_geom=geom,\n",
"# constants=[\"RelativeGain10Hz\", \"BadPixelsFF10Hz\"],\n",
"# processed_modules=processed_modules,\n",
"# expected_modules=expected_modules,\n",
"# display_module_names=processed_pdus,\n",
"# )"
]
},
{
"cell_type": "code",
"execution_count": null,
...
...
%% Cell type:markdown id: tags:
# Jungfrau Spectra Fit Summary
Author: European XFEL Detector Department, Version: 1.0
Summary for plotting Spectra Fit results for Jungfrau FF histogram and fitting notebook
%% Cell type:code id: tags:
```
python
in_folder
=
'
/gpfs/exfel/exp/SPB/202330/p900343/raw
'
# RAW data path, required
out_folder
=
"
/gpfs/exfel/data/scratch/ahmedk/test/remove/JF4M_SPB_gain/r66/second/
"
# Output path for gain data, required
metadata_folder
=
""
# Directory containing calibration_metadata.yml when run by xfel-calibrate.
runs
=
[
66
]
# Parameters used to access raw data.
karabo_da
=
[]
# list of data aggregators, which corresponds to different JF modules. This is only needed for the detectors of one module.
karabo_id
=
"
SPB_IRDA_JF4M
"
# detector identifier.
creation_time
=
""
# To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC e.g. "2022-06-28 13:00:00"
_fit_func
=
'
CHARGE_SHARING
'
# function used to fit the single photon peak\
g0_fit_dataset
=
'
gainMap_fit
'
# name of the data structure in the fit files
spectra_fit_temp
=
'
R{:04d}_{}_Gain_Spectra_{}_{}_Fit.h5
'
```
%% Cell type:code id: tags:
```
python
import
warnings
from
pathlib
import
Path
warnings
.
filterwarnings
(
'
ignore
'
)
from
h5py
import
File
as
h5file
import
matplotlib
import
matplotlib.gridspec
as
gridspec
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
yaml
from
IPython.display
import
Markdown
,
display
matplotlib
.
use
(
"
agg
"
)
%
matplotlib
inline
from
cal_tools.plotting
import
init_jungfrau_geom
,
show_processed_modules_jungfrau
from
cal_tools.plotting
import
init_jungfrau_geom
from
cal_tools.tools
import
CalibrationMetadata
from
XFELDetAna.plotting.simpleplot
import
simplePlot
from
cal_tools.restful_config
import
calibration_client
from
cal_tools.calcat_interface
import
CalCatApi
```
%% Cell type:code id: tags:
```
python
expected_modules
,
geom
=
init_jungfrau_geom
(
karabo_id
=
karabo_id
,
karabo_da
=
karabo_da
)
nmods
=
len
(
expected_modules
)
```
%% Cell type:code id: tags:
```
python
calcat_client
=
calibration_client
()
calcat
=
CalCatApi
(
client
=
calcat_client
)
detector_id
=
calcat
.
detector
(
karabo_id
)[
'
id
'
]
da_mapping
=
calcat
.
physical_detector_units
(
detector_id
,
pdu_snapshot_at
=
creation_time
)
da_to_pdu
=
{
k
:
v
[
"
physical_name
"
]
for
k
,
v
in
da_mapping
.
items
()}
```
%% Cell type:code id: tags:
```
python
# display(Markdown('## Processed modules'))
# processed_modules = list(da_to_pdu.values())
# processed_pdus = list(da_to_pdu.keys())
# show_processed_modules_jungfrau(
# jungfrau_geom=geom,
# constants=["RelativeGain10Hz", "BadPixelsFF10Hz"],
# processed_modules=processed_modules,
# expected_modules=expected_modules,
# display_module_names=processed_pdus,
# )
```
%% Cell type:code id: tags:
```
python
proposal
=
list
(
filter
(
None
,
in_folder
.
strip
(
'
/
'
).
split
(
'
/
'
)))[
-
2
]
run
=
runs
[
0
]
# TODO this will need to be fixed when I start implementing multiple runs.
stacked_constants
=
np
.
full
(
geom
.
expected_data_shape
,
np
.
nan
)
# nmods, 512, 1024
for
i
,
da
in
enumerate
(
da_to_pdu
.
keys
()):
with
h5file
(
Path
(
out_folder
)
/
spectra_fit_temp
.
format
(
run
,
proposal
.
upper
(),
da
,
_fit_func
),
'
r
'
)
as
f
:
stacked_constants
[
i
]
=
np
.
moveaxis
(
np
.
mean
(
np
.
array
(
f
[
g0_fit_dataset
]),
axis
=-
1
),
0
,
1
)
fig
,
ax
=
plt
.
subplots
(
figsize
=
(
18
,
10
))
vmin
,
vmax
=
np
.
percentile
(
stacked_constants
,
[
5
,
95
])
geom
.
plot_data_fast
(
stacked_constants
,
ax
=
ax
,
vmin
=
vmin
,
vmax
=
vmax
,
cmap
=
"
jet
"
,
colorbar
=
{
'
shrink
'
:
1
,
'
pad
'
:
0.01
},
)
ax
.
set_title
(
f
'
{
karabo_id
}
- Mean RAW
'
,
size
=
18
)
plt
.
show
()
```
%% Cell type:code id: tags:
```
python
proposal
=
list
(
filter
(
None
,
in_folder
.
strip
(
'
/
'
).
split
(
'
/
'
)))[
-
2
]
run
=
runs
[
0
]
# TODO this will need to be fixed when I start implementing multiple runs.
stacked_constants
=
np
.
full
(
geom
.
expected_data_shape
,
np
.
nan
)
# nmods, 512, 1024
for
i
,
da
in
enumerate
(
da_to_pdu
.
keys
()):
with
h5file
(
Path
(
out_folder
)
/
spectra_fit_temp
.
format
(
run
,
proposal
.
upper
(),
da
,
_fit_func
),
'
r
'
)
as
f
:
stacked_constants
[
i
]
=
np
.
moveaxis
(
np
.
mean
(
np
.
array
(
f
[
g0_fit_dataset
]),
axis
=-
1
),
0
,
1
)
fig
,
ax
=
plt
.
subplots
(
figsize
=
(
18
,
10
))
geom
.
plot_data_fast
(
stacked_constants
,
ax
=
ax
,
vmin
=
200
,
vmax
=
450
,
cmap
=
"
jet
"
,
colorbar
=
{
'
shrink
'
:
1
,
'
pad
'
:
0.01
},
)
ax
.
set_title
(
f
'
{
karabo_id
}
- Mean RAW
'
,
size
=
18
)
plt
.
show
()
```
...
...
This diff is collapsed.
Click to expand it.
notebooks/Jungfrau/Jungfrau_gain_map_Summary_NBC.ipynb
+
44
−
27
View file @
ee43d523
...
...
@@ -44,12 +44,14 @@
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"from IPython.display import Markdown, display\n",
"import tabulate\n",
"from IPython.display import Latex, Markdown, display\n",
"\n",
"matplotlib.use(\"agg\")\n",
"%matplotlib inline\n",
"\n",
"from cal_tools.plotting import init_jungfrau_geom, show_processed_modules_jungfrau\n",
"from cal_tools.enums import BadPixels\n",
"from cal_tools.plotting import init_jungfrau_geom\n",
"from cal_tools.restful_config import calibration_client\n",
"from cal_tools.calcat_interface import CalCatApi"
]
...
...
@@ -77,34 +79,41 @@
"da_to_pdu = {k: v[\"physical_name\"] for k, v in da_mapping.items()}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Created gain calibration constants"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# display(Markdown('## Processed modules'))\n",
"\n",
"# processed_modules = list(da_to_pdu.values())\n",
"# processed_pdus = list(da_to_pdu.keys())\n",
"const_names_dict = {\n",
" \"RelativeGain10Hz\": \"RelativeGain\", # TODO: This name is not relevant should we display gain instead of Relative??\n",
" \"BadPixelsFF10Hz\": \"BadPixelsFF\",\n",
"}\n",
"# show_processed_modules_jungfrau(\n",
"# jungfrau_geom=geom,\n",
"# constants=list(const_names_dict.keys()),\n",
"# processed_modules=processed_modules,\n",
"# expected_modules=expected_modules,\n",
"# display_module_names=processed_pdus,\n",
"# )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Created gain calibration constants"
"\n",
"gains = [\"High gain\", \"Medium gain\", \"Low gain\"]\n",
"stacked_constants = {g: np.full(geom.expected_data_shape, np.nan) for g in gains}\n",
"constants = dict()\n",
"\n",
"def badpx(constant_name):\n",
" return True if \"bad\" in constant_name.lower() else False\n",
"\n",
"\n",
"def bp_entry(bp):\n",
" return [f\"{bp.name:<30s}\", f\"{bp.value:032b}\", f\"{int(bp.value)}\"]\n",
"\n",
"\n",
"badpixels = [\n",
" BadPixels.FF_NO_ENTRIES,\n",
" BadPixels.FF_GAIN_EVAL_ERROR,\n",
" BadPixels.FF_GAIN_DEVIATION,\n",
"]"
]
},
{
...
...
@@ -113,12 +122,16 @@
"metadata": {},
"outputs": [],
"source": [
"gains = [\"High gain\", \"Medium gain\", \"Low gain\"]\n",
"stacked_constants = {g: np.full(geom.expected_data_shape, np.nan) for g in gains}\n",
"constants = dict()\n",
"\n",
"for cname in const_names_dict.values():\n",
"\n",
" if badpx(cname):\n",
" table = [bp_entry(bp) for bp in badpixels]\n",
" display(Markdown(\"\"\"**The bad pixel** mask is encoded as a bit mask.\"\"\"))\n",
" display(Latex(\n",
" tabulate.tabulate(\n",
" table,\n",
" tablefmt='latex',\n",
" headers=[\"Name\", \"bit value\", \"integer value\"]\n",
" )))\n",
" for i, (da, pdu) in enumerate(da_to_pdu.items()):\n",
" with h5file(\n",
" Path(out_folder) / f\"const_{cname}_{pdu}.h5\",\n",
...
...
@@ -131,11 +144,15 @@
" f[\"data\"][..., j],\n",
" axis=-1\n",
" ), 0, 1).astype(np.float32 if cname == \"RelativeGain\" else np.uint32)\n",
"\n",
"
\n",
" display(Markdown(f\"### {cname} map per gain\"))\n",
" for g in gains:\n",
" fig, ax = plt.subplots(figsize=(18, 10))\n",
" vmin, vmax = np.percentile(stacked_constants[g], [5, 95])\n",
" if badpx(cname):\n",
" vmin, vmax = (0, sorted([bp.value for bp in badpixels])[-2])\n",
" else:\n",
" vmin, vmax = np.percentile(stacked_constants[g], [5, 95])\n",
"\n",
" geom.plot_data_fast(\n",
" stacked_constants[g],\n",
" ax=ax,\n",
...
...
%% Cell type:markdown id: tags:
# Jungfrau Gain Map Summary
Author: European XFEL Detector Department, Version: 1.0
Summary for plotting Gain map results for Jungfrau after creating and injecting it.
%% Cell type:code id: tags:
```
python
in_folder
=
'
/gpfs/exfel/exp/SPB/202330/p900343/raw
'
# RAW data path, required
out_folder
=
"
/gpfs/exfel/data/scratch/ahmedk/test/remove/JF4M_SPB_gain/r66/second/
"
# Output path for gain data, required
metadata_folder
=
""
# Directory containing calibration_metadata.yml when run by xfel-calibrate.
runs
=
[
66
]
# Parameters used to access raw data.
karabo_da
=
[]
# list of data aggregators, which corresponds to different JF modules. This is only needed for the detectors of one module.
karabo_id
=
"
SPB_IRDA_JF4M
"
# detector identifier.
creation_time
=
""
# To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC e.g. "2022-06-28 13:00:00"
_fit_func
=
'
CHARGE_SHARING
'
# function used to fit the single photon peak
g0_fit_dataset
=
'
gainMap_fit
'
# name of the data structure in the fit files
```
%% Cell type:code id: tags:
```
python
import
warnings
from
pathlib
import
Path
warnings
.
filterwarnings
(
'
ignore
'
)
from
h5py
import
File
as
h5file
import
matplotlib
import
matplotlib.pyplot
as
plt
import
numpy
as
np
from
IPython.display
import
Markdown
,
display
import
tabulate
from
IPython.display
import
Latex
,
Markdown
,
display
matplotlib
.
use
(
"
agg
"
)
%
matplotlib
inline
from
cal_tools.plotting
import
init_jungfrau_geom
,
show_processed_modules_jungfrau
from
cal_tools.enums
import
BadPixels
from
cal_tools.plotting
import
init_jungfrau_geom
from
cal_tools.restful_config
import
calibration_client
from
cal_tools.calcat_interface
import
CalCatApi
```
%% Cell type:code id: tags:
```
python
expected_modules
,
geom
=
init_jungfrau_geom
(
karabo_id
=
karabo_id
,
karabo_da
=
karabo_da
)
nmods
=
len
(
expected_modules
)
```
%% Cell type:code id: tags:
```
python
calcat_client
=
calibration_client
()
calcat
=
CalCatApi
(
client
=
calcat_client
)
detector_id
=
calcat
.
detector
(
karabo_id
)[
'
id
'
]
da_mapping
=
calcat
.
physical_detector_units
(
detector_id
,
pdu_snapshot_at
=
creation_time
)
da_to_pdu
=
{
k
:
v
[
"
physical_name
"
]
for
k
,
v
in
da_mapping
.
items
()}
```
%% Cell type:markdown id: tags:
## Created gain calibration constants
%% Cell type:code id: tags:
```
python
# display(Markdown('## Processed modules'))
# processed_modules = list(da_to_pdu.values())
# processed_pdus = list(da_to_pdu.keys())
const_names_dict
=
{
"
RelativeGain10Hz
"
:
"
RelativeGain
"
,
# TODO: This name is not relevant should we display gain instead of Relative??
"
BadPixelsFF10Hz
"
:
"
BadPixelsFF
"
,
}
# show_processed_modules_jungfrau(
# jungfrau_geom=geom,
# constants=list(const_names_dict.keys()),
# processed_modules=processed_modules,
# expected_modules=expected_modules,
# display_module_names=processed_pdus,
# )
```
%% Cell type:markdown id: tags:
gains
=
[
"
High gain
"
,
"
Medium gain
"
,
"
Low gain
"
]
stacked_constants
=
{
g
:
np
.
full
(
geom
.
expected_data_shape
,
np
.
nan
)
for
g
in
gains
}
constants
=
dict
()
## Created gain calibration constants
def
badpx
(
constant_name
):
return
True
if
"
bad
"
in
constant_name
.
lower
()
else
False
def
bp_entry
(
bp
):
return
[
f
"
{
bp
.
name
:
<
30
s
}
"
,
f
"
{
bp
.
value
:
032
b
}
"
,
f
"
{
int
(
bp
.
value
)
}
"
]
badpixels
=
[
BadPixels
.
FF_NO_ENTRIES
,
BadPixels
.
FF_GAIN_EVAL_ERROR
,
BadPixels
.
FF_GAIN_DEVIATION
,
]
```
%% Cell type:code id: tags:
```
python
gains
=
[
"
High gain
"
,
"
Medium gain
"
,
"
Low gain
"
]
stacked_constants
=
{
g
:
np
.
full
(
geom
.
expected_data_shape
,
np
.
nan
)
for
g
in
gains
}
constants
=
dict
()
for
cname
in
const_names_dict
.
values
():
if
badpx
(
cname
):
table
=
[
bp_entry
(
bp
)
for
bp
in
badpixels
]
display
(
Markdown
(
"""
**The bad pixel** mask is encoded as a bit mask.
"""
))
display
(
Latex
(
tabulate
.
tabulate
(
table
,
tablefmt
=
'
latex
'
,
headers
=
[
"
Name
"
,
"
bit value
"
,
"
integer value
"
]
)))
for
i
,
(
da
,
pdu
)
in
enumerate
(
da_to_pdu
.
items
()):
with
h5file
(
Path
(
out_folder
)
/
f
"
const_
{
cname
}
_
{
pdu
}
.h5
"
,
'
r
'
)
as
f
:
for
j
,
g
in
enumerate
(
gains
):
stacked_constants
[
g
][
i
]
=
np
.
moveaxis
(
np
.
mean
(
f
[
"
data
"
][...,
j
],
axis
=-
1
),
0
,
1
).
astype
(
np
.
float32
if
cname
==
"
RelativeGain
"
else
np
.
uint32
)
display
(
Markdown
(
f
"
###
{
cname
}
map per gain
"
))
for
g
in
gains
:
fig
,
ax
=
plt
.
subplots
(
figsize
=
(
18
,
10
))
vmin
,
vmax
=
np
.
percentile
(
stacked_constants
[
g
],
[
5
,
95
])
if
badpx
(
cname
):
vmin
,
vmax
=
(
0
,
sorted
([
bp
.
value
for
bp
in
badpixels
])[
-
2
])
else
:
vmin
,
vmax
=
np
.
percentile
(
stacked_constants
[
g
],
[
5
,
95
])
geom
.
plot_data_fast
(
stacked_constants
[
g
],
ax
=
ax
,
vmin
=
vmin
,
vmax
=
vmax
,
cmap
=
"
jet
"
,
colorbar
=
{
'
shrink
'
:
1
,
'
pad
'
:
0.01
},
)
ax
.
set_title
(
f
'
{
karabo_id
}
- Mean across cells
{
g
}
{
cname
}
map
'
,
size
=
18
)
plt
.
show
()
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment