Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • calibration/pycalibration
1 result
Show changes
Commits on Source (4)
Showing with 2850 additions and 1321 deletions
......@@ -624,7 +624,7 @@ class AgipdCorrections:
# slopeFF = slopeFFpix/avarege(slopeFFpix)
# To apply them we have to / not *
if self.corr_bools.get("xray_corr"):
data /= self.xray_cor[module_idx]
data /= self.xray_cor[module_idx][cellid, ...]
# use sharedmem raw_data and t0_rgain
# after calculating it while offset correcting.
......@@ -818,7 +818,7 @@ class AgipdCorrections:
uq, fidxv, cntsv = np.unique(trains, return_index=True,
return_counts=True)
# Validate calculated CORR INDEX contents by checking
# Validate calculated CORR INDEX contents by checking
# difference between trainId stored in RAW data and trains from
train_diff = np.isin(np.array(infile["/INDEX/trainId"]), uq,
invert=True)
......@@ -905,12 +905,12 @@ class AgipdCorrections:
exists of the current AGIPD instances.
Relative gain is derived both from pulse capacitor as well as low
intensity flat field data, information from flat field data is
needed to 'calibrate' pulse capacitor data, if there is no
intensity flat field data, information from flat field data is
needed to 'calibrate' pulse capacitor data, if there is no
available FF data, relative gain for High Gain stage is set to 1:
* Relative gain for High gain stage - from the FF data we get
the relative slopes of a given pixel and memory cells with
* Relative gain for High gain stage - from the FF data we get
the relative slopes of a given pixel and memory cells with
respect to all memory cells and all pixels in the module,
Please note: Current slopesFF avaialble in calibibration
constants are created per pixel only, not per memory cell:
......@@ -923,9 +923,9 @@ class AgipdCorrections:
between high and medium gain using slope information from
fits to the linear part of high and medium gain:
rfpc_high_medium = m_h/m_m
rfpc_high_medium = m_h/m_m
where m_h and m_m is the medium gain slope of given memory cells
where m_h and m_m is the medium gain slope of given memory cells
and pixel and m_h is the high gain slope as above
rel_gain_medium = rel_high_gain * rfpc_high_medium
......@@ -954,32 +954,16 @@ class AgipdCorrections:
if self.corr_bools.get("xray_corr"):
bpixels |= cons_data["BadPixelsFF"].astype(np.uint32)[..., :bpixels.shape[2], None] # noqa
slopesFF = np.squeeze(cons_data["SlopesFF"])
slopesFF = cons_data["SlopesFF"]
if len(slopesFF.shape) == 4:
slopesFF = slopesFF[..., 0]
# first 32 cells are known to behave differently so if we can avoid
# them
# when calculating the mean X-ray derived gain slope for each pixel
if slopesFF.shape[2] > 32:
xray_cor = np.nanmedian(
slopesFF[..., 32:min(96, self.max_cells)], axis=2)
elif slopesFF.shape[2] > 2:
xray_cor = np.nanmedian(
slopesFF[..., :min(96, self.max_cells)], axis=2)
else:
xray_cor = np.squeeze(slopesFF[..., 0])
# Memory cell resolved xray_cor correction
xray_cor = slopesFF # (128, 512, mem_cells)
# relative X-ray correction is normalized by the median
# of all pixels
# TODO: A check is required to know why it is again divided by
# median. If we have relative slopes in the constants
# and (we have!)
# xray cor = (slopeFF/avarege_slopeFF)/avarege_slopeFF.
# It didn't not make sense and was removed.
# xray_cor /= np.nanmedian(xray_cor)
xray_cor /= np.nanmedian(xray_cor)
self.xray_cor[module_idx][...] = xray_cor.transpose()[...]
......@@ -1041,13 +1025,19 @@ class AgipdCorrections:
# ration between HG and MG per pixel per mem cell used
# for rel gain calculation
frac_high_med_pix = pc_high_m / pc_med_m
# avarage ration between HG and MG as a function of
# avarage ration between HG and MG as a function of
# mem cell (needed for bls_stripes)
# TODO: Per pixel would be more optimal correction
frac_high_med = pc_high_med / pc_med_med
# calculate additional medium-gain offset
md_additional_offset = pc_high_l - pc_med_l * pc_high_m / pc_med_m
# Calculate relative gain. If FF constants are available,
# use them for high gain
# if not rel_gain is calculated using PC data only
# if self.corr_bools.get("xray_corr"):
# rel_gain[..., :self.max_cells, 0] /= xray_corr
# PC data should be 'calibrated with X-ray data,
# if it is not done, it is better to use 1 instead of bias
# the results with PC arteffacts.
......@@ -1078,17 +1068,35 @@ class AgipdCorrections:
dname = device.device_name
cons_data = dict()
when = dict()
for cname, mdata in const_yaml[dname].items():
when[cname] = mdata["creation-time"]
if when[cname]:
cf = h5py.File(mdata["file-path"], "r")
cons_data[cname] = np.copy(cf[f"{dname}/{cname}/0/data"])
cf.close()
# This path is only used when testing new flat fields from
# file during development: it takes ages to test using all
# cells. Consequently, the shape needs to be fixed when less
# cells are used.
with h5py.File(mdata["file-path"], "r") as cf:
cons_data[cname] = np.copy(cf[f"{dname}/{cname}/0/data"])
shape = cons_data[cname].shape # (128, 512, mem_cells)
extra_dims = shape[:2] + (self.max_cells-shape[2], )
if extra_dims[-1] != 0 and cname == "BadPixelsFF":
extra_temp = np.zeros(extra_dims, dtype=np.int32)
cons_data[cname] = np.concatenate(
(cons_data[cname], extra_temp), axis=2)
print('An extra dimension was added to the constants '
'for the benefit of BadPixelsFF')
if extra_dims[-1] != 0 and cname == "SlopesFF":
extra_temp = np.ones(extra_dims, dtype=np.float32)
cons_data[cname] = np.concatenate(
(cons_data[cname], extra_temp), axis=2)
print('An extra dimension was added to the constants '
'for the benefit of SlopesFF')
else:
# Create empty constant using the list elements
cons_data[cname] = \
getattr(np, mdata["file-path"][0])(mdata["file-path"][1])
cons_data[cname] = getattr(np, mdata["file-path"][0])(mdata["file-path"][1]) # noqa
self.init_constants(cons_data, module_idx)
return when
......@@ -1191,7 +1199,7 @@ class AgipdCorrections:
dtype='f4')
self.mask[module_idx] = sharedmem.empty(constant_shape, dtype='i4')
self.xray_cor[module_idx] = sharedmem.empty(constant_shape[2:],
self.xray_cor[module_idx] = sharedmem.empty(constant_shape[1:],
dtype='f4')
def allocate_images(self, shape, n_cores_files):
......
......@@ -43,7 +43,7 @@ def assemble_constant_dict(corr_bools, pc_bools, memory_cells, bias_voltage,
const_dict = {
"Offset": ["zeros", (128, 512, memory_cells, 3), darkcond],
"Noise": ["zeros", (128, 512, memory_cells, 3), darkcond],
"ThresholdsDark": ["ones", (128, 512, memory_cells, 2), darkcond],
"ThresholdsDark": ["ones", (128, 512, memory_cells, 5), darkcond],
"BadPixelsDark": ["zeros", (128, 512, memory_cells, 3), darkcond],
}
......
from typing import Any, Dict, List, Optional, Tuple
from iminuit import Minuit
import numpy as np
from cal_tools.enums import BadPixelsFF
def any_in(mask: np.ndarray, bits: int) -> bool:
return mask.astype(np.uint) & bits > 0
def gaussian(x: np.ndarray, norm: int = 1, mean: int = 0, sigma: int = 1) -> float: # noqa
"""
Return value of Gaussian function
:param x: Argument (float of 1D array) of Gaussian function
:param norm: Normalization of Gaussian function
:param mean: Mean parameter
:param sigma: Sigma parameter
:return: Value of gaussian function.
"""
return norm * np.exp(-1 / 2 * ((x - mean) / sigma) ** 2) / (sigma * np.sqrt(2 * np.pi)) # noqa
def gaussian_sum(x: np.ndarray, ng: int = 4, *p: Tuple[Any]) -> float:
"""Sum of ng Gaussian functions
:param x: Argument (float of 1D array) of the function
:param ng: Number of Gaussian functions
:param p: List of parameters (norm1,mean1,sigma1,norm2,mean2,sigma2,...)
"""
r = 0.
for i in range(ng):
r += gaussian(x, *p[i * 3:(i + 1) * 3])
return r
def get_statistical_parameters(x: np.ndarray,
y: np.ndarray,
x_range: List) -> Tuple[np.uint64, np.float64, np.float64, np.ndarray]: # noqa
"""Return statistical parameters of selected part of a histogram.
:param x: Center of bins of the histogram
:param y: Value of bins of the histogram
:param x_range: x range to be considered
:return: Sum of histogram, Mean value, Standard deviation,
List of selected bins
"""
# TODO: Check if wq.median works better than mean
sel = (x >= x_range[0]) & (x < x_range[1])
h_sum = np.sum(y[sel])
h_norm = y[sel] / h_sum
h_mean = np.sum(h_norm * x[sel])
h_sqr = (x[sel] - h_mean) ** 2
h_std = np.sqrt(np.sum(h_norm * h_sqr))
return h_sum, h_mean, h_std, sel
def get_starting_parameters(xe: np.ndarray,
ye: np.ndarray,
limits: np.ndarray,
n_peaks: int = 3,
f_lim: int = 2) -> Tuple[Dict[str, Any], List[Tuple]]: # noqa
"""
Estimate starting parameters for Gaussian fit of several peaks.
:param xe: Center of bins of the histogram
:param ye: Value of bins of the histogram
:param limits: Position of each peak ((left1, right1),
(left2, right2), ...) to be considered.
:param n_peaks: Number of peaks
:param f_lim: Limits in units of standard deviation to consider
"""
parameters = {}
shapes = []
for peak in range(n_peaks):
n, m, rms, idx = get_statistical_parameters(xe, ye, limits[peak])
limits2 = [m - f_lim * rms, m + f_lim * rms]
n, m, rms, idx = get_statistical_parameters(xe, ye, limits2)
shapes.append((n, m, rms, idx))
parameters.update({f'g{peak}sigma': rms,
f'g{peak}n': float(n),
f'g{peak}mean': m})
return parameters, shapes
def fit_n_peaks(x: np.ndarray,
y: np.ndarray,
pars: Dict[str, Any],
x_range: Tuple[float, float],
do_minos: Optional[bool] = False,
n_peaks: Optional[int] = 4,
fix_d01: Optional[bool] = True) -> Minuit:
"""
Fit histogram with n-Gaussian function.
:param x: Center of bins of the histogram
:param y: Value of bins of the histogram
:param pars: Dictionary of initial parameters for fitting
:param x_range: x Range to be considered for the fitting
:param do_minos: Run Minos if True
:param n_peaks: Number of Gaussian peaks to fit (min 2, max 4)
:param fix_d01: Fix position of peaks to the distance between noise and
first photon peak.
:return: minuit object
"""
sel = (x >= x_range[0]) & (x < x_range[1])
# Square of bin errors
yrr2 = np.copy(y[sel])
yrr2[yrr2 == 0] = 1 # bins with zero events have error=1
if fix_d01:
pars['fix_g2mean'] = True
pars['fix_g3mean'] = True
if n_peaks < 4:
pars['g3n'] = 0
pars['fix_g3n'] = True
pars['g3sigma'] = 1
pars['fix_g3sigma'] = True
pars['fix_g3mean'] = True
if n_peaks < 3:
pars['g2n'] = 0
pars['fix_g2n'] = True
pars['g2sigma'] = 1
pars['fix_g2sigma'] = True
pars['fix_g2mean'] = True
def chi2_f(g0n, g0mean, g0sigma,
g1n, g1mean, g1sigma,
g2n, g2mean, g2sigma,
g3n, g3mean, g3sigma, ):
d01 = (g1mean - g0mean)
if 'fix_g2mean' in pars and pars['fix_g2mean']:
g2mean = g0mean + d01 * 2
if 'fix_g3mean' in pars and pars['fix_g3mean']:
g3mean = g0mean + d01 * 3
if g3n == 0:
n_peaks = 3
elif g2n == 0:
n_peaks = 2
else:
n_peaks = 4
yt = gaussian_sum(x[sel], n_peaks,
g0n, g0mean, g0sigma,
g1n, g1mean, g1sigma,
g2n, g2mean, g2sigma,
g3n, g3mean, g3sigma)
return np.nansum((yt - y[sel]) ** 2 / yrr2)
minuit = Minuit(chi2_f, **pars, pedantic=False)
minuit.migrad()
if do_minos:
if minuit.get_fmin().is_valid:
minuit.minos()
return minuit
def set_par_limits(pars: Dict[str, Any],
peak_range: np.ndarray,
peak_norm_range: np.ndarray,
peak_width_range: np.ndarray,
n_peaks: Optional[int] = 4):
"""
Set limits on initial fit parameters based on given values
:param pars: Dictionary of initial fit parameters
:param peak_range: Limits on peak positions
:param peak_norm_range: Limits on normalization of Gaussian peaks
:param peak_width_range: Limits on width of Gaussian peaks
:param n_peaks: Number of Gaussian peaks
"""
for peak in range(n_peaks):
pars.update({f'limit_g{peak}n': peak_norm_range[peak],
f'limit_g{peak}mean': peak_range[peak],
f'limit_g{peak}sigma': peak_width_range[peak],
})
def get_mask(fit_summary: Dict[str, Any],
peak_lim: List,
d0_lim: List,
chi2_lim: List,
peak_width_lim: np.array) -> int:
"""
Calculate Bad pixels mask based on fit results and given limits
:param fit_summary: Dictionary of the fit output from Multi-Gaussian fit
:param peak_lim: Limits on noise peak position
:param d0_lim: Limits on distance between noise and first photon peak
:param chi2_lim: Limits on reduced chi^2 value
:param peak_width_lim: Limits on noise peak width
:return: Bad pixel mask
"""
if not fit_summary['is_valid']:
return BadPixelsFF.FIT_FAILED.value
m0 = fit_summary['g0mean']
s0 = fit_summary['g0sigma']
s1 = fit_summary['g1sigma']
s2 = fit_summary['g2sigma']
chi2_ndof = fit_summary['chi2_ndof']
d01 = fit_summary['g1mean'] - m0
mask = 0
if not fit_summary['is_valid']:
mask |= BadPixelsFF.FIT_FAILED.value
if not fit_summary['has_accurate_covar']:
mask |= BadPixelsFF.ACCURATE_COVAR.value
if not peak_lim[0] <= m0 <= peak_lim[1]:
mask |= BadPixelsFF.NOISE_PEAK_THRESHOLD.value
if not d0_lim[0] <= d01 <= d0_lim[1]:
mask |= BadPixelsFF.GAIN_THRESHOLD.value
if not chi2_lim[0] <= chi2_ndof <= chi2_lim[1]:
mask |= BadPixelsFF.CHI2_THRESHOLD.value
width_lim = peak_width_lim[0] * s0
inside_s1 = width_lim[0] <= s1 <= width_lim[1]
width_lim = peak_width_lim[1] * s0
inside_s2 = width_lim[0] <= s2 <= width_lim[1]
if not inside_s1 and inside_s2:
mask |= BadPixelsFF.PEAK_WIDTH_THRESHOLD.value
return mask
......@@ -28,6 +28,21 @@ class BadPixels(Enum):
NON_LIN_RESPONSE_REGION = 0b100000000000000000000 # bit 21
class BadPixelsFF(Enum):
""" The SLopesFF Bad Pixel Encoding
"""
FIT_FAILED = 0b000000000000000000001 # bit 1
CHI2_THRESHOLD = 0b000000000000000000010 # bit 2
NOISE_PEAK_THRESHOLD = 0b000000000000000000100 # bit 3
GAIN_THRESHOLD = 0b000000000000000001000 # bit 4
PEAK_WIDTH_THRESHOLD = 0b000000000000000010000 # bit 5
ACCURATE_COVAR = 0b000000000000000100000 # bit 6
BAD_DARK = 0b000000000000001000000 # bit 6
NO_ENTRY = 0b000000000000010000000 # bit 7
GAIN_DEVIATION = 0b000000000000100000000 # bit 8
class SnowResolution(Enum):
""" An Enum specifying how to resolve snowy pixels
"""
......
......@@ -264,13 +264,15 @@ def get_dir_creation_date(directory: str, run: int,
ntries = 100
while ntries > 0:
try:
dates = []
for f in directory.glob('*.h5'):
with h5py.File(f, 'r') as fin:
cdate = fin['METADATA/creationDate'][0].decode()
cdate = datetime.datetime.strptime(cdate, "%Y%m%dT%H%M%SZ")
dates.append(cdate)
return min(dates)
rfiles = list(directory.glob('*.h5'))
rfiles.sort(key=path.getmtime)
# get creation time for oldest file,
# as creation time between run files
# should be different only within few seconds
with h5py.File(rfiles[0], 'r') as fin:
cdate = fin['METADATA/creationDate'][0].decode()
cdate = datetime.datetime.strptime(cdate, "%Y%m%dT%H%M%SZ")
return cdate
except (IOError, ValueError):
ntries -= 1
except KeyError: # The files are here, but it's an older dataset
......
%% Cell type:markdown id: tags:
# AGIPD Offline Correction #
Author: European XFEL Detector Group, Version: 2.0
Offline Calibration for the AGIPD Detector
%% Cell type:code id: tags:
``` python
in_folder = "/gpfs/exfel/exp/HED/202031/p900174/raw" # the folder to read data from, required
out_folder = "/gpfs/exfel/data/scratch/ahmedk/test/hibef_agipd2" # the folder to output to, required
sequences = [-1] # sequences to correct, set to -1 for all, range allowed
modules = [-1] # modules to correct, set to -1 for all, range allowed
run = 155 # runs to process, required
karabo_id = "HED_DET_AGIPD500K2G" # karabo karabo_id
karabo_da = ['-1'] # a list of data aggregators names, Default [-1] for selecting all data aggregators
receiver_id = "{}CH0" # inset for receiver devices
path_template = 'RAW-R{:04d}-{}-S{:05d}.h5' # the template to use to access data
h5path = 'INSTRUMENT/{}/DET/{}:xtdf/' # path in the HDF5 file to images
h5path_idx = 'INDEX/{}/DET/{}:xtdf/' # path in the HDF5 file to images
h5path_ctrl = '/CONTROL/{}/MDL/FPGA_COMP' # path to control information
karabo_id_control = "HED_EXP_AGIPD500K2G" # karabo-id for control device
karabo_da_control = 'AGIPD500K2G00' # karabo DA for control infromation
slopes_ff_from_files = "" # Path to locally stored SlopesFF and BadPixelsFF constants
use_dir_creation_date = True # use the creation data of the input dir for database queries
cal_db_interface = "tcp://max-exfl016:8015#8045" # the database interface to use
cal_db_timeout = 30000 # in milli seconds
creation_date_offset = "00:00:00" # add an offset to creation date, e.g. to get different constants
max_cells = 0 # number of memory cells used, set to 0 to automatically infer
bias_voltage = 300 # Bias voltage
acq_rate = 0. # the detector acquisition rate, use 0 to try to auto-determine
gain_setting = 0.1 # the gain setting, use 0.1 to try to auto-determine
photon_energy = 9.2 # photon energy in keV
overwrite = True # set to True if existing data should be overwritten
max_pulses = [0, 500, 1] # range list [st, end, step] of maximum pulse indices within a train. 3 allowed maximum list input elements.
mem_cells_db = 0 # set to a value different than 0 to use this value for DB queries
cell_id_preview = 1 # cell Id used for preview in single-shot plots
# Correction parameters
blc_noise_threshold = 5000 # above this mean signal intensity now baseline correction via noise is attempted
cm_dark_fraction = 0.66 # threshold for fraction of empty pixels to consider module enough dark to perform CM correction
cm_dark_range = [-50.,30] # range for signal value ADU for pixel to be consider as a dark pixel
cm_n_itr = 4 # number of iterations for common mode correction
hg_hard_threshold = 1000 # threshold to force medium gain offset subtracted pixel to high gain
mg_hard_threshold = 1000 # threshold to force medium gain offset subtracted pixel from low to medium gain
noisy_adc_threshold = 0.25 # threshold to mask complete adc
# Correction Booleans
only_offset = False # Apply only Offset correction. if False, Offset is applied by Default. if True, Offset is only applied.
rel_gain = False # do relative gain correction based on PC data
xray_gain = False # do relative gain correction based on xray data
blc_noise = False # if set, baseline correction via noise peak location is attempted
blc_stripes = False # if set, baseline corrected via stripes
blc_hmatch = False # if set, base line correction via histogram matching is attempted
match_asics = False # if set, inner ASIC borders are matched to the same signal level
adjust_mg_baseline = False # adjust medium gain baseline to match highest high gain value
zero_nans = False # set NaN values in corrected data to 0
zero_orange = False # set to 0 very negative and very large values in corrected data
blc_set_min = False # Shift to 0 negative medium gain pixels after offset corr
corr_asic_diag = False # if set, diagonal drop offs on ASICs are correted
force_hg_if_below = False # set high gain if mg offset subtracted value is below hg_hard_threshold
force_mg_if_below = False # set medium gain if mg offset subtracted value is below mg_hard_threshold
mask_noisy_adc = False # Mask entire ADC if they are noise above a relative threshold
common_mode = False # Common mode correction
melt_snow = False # Identify (and optionally interpolate) 'snowy' pixels
mask_zero_std = False # Mask pixels with zero standard deviation across train
low_medium_gap = False # 5 sigma separation in thresholding between low and medium gain
# Paralellization parameters
chunk_size = 1000 # Size of chunk for image-weise correction
chunk_size_idim = 1 # chunking size of imaging dimension, adjust if user software is sensitive to this.
n_cores_correct = 16 # Number of chunks to be processed in parallel
n_cores_files = 4 # Number of files to be processed in parallel
sequences_per_node = 2 # number of sequence files per cluster node if run as slurm job, set to 0 to not run SLURM parallel
def balance_sequences(in_folder, run, sequences, sequences_per_node, karabo_da):
from xfel_calibrate.calibrate import balance_sequences as bs
return bs(in_folder, run, sequences, sequences_per_node, karabo_da)
```
%% Cell type:code id: tags:
``` python
import copy
from datetime import timedelta
from dateutil import parser
import gc
import glob
import itertools
from IPython.display import HTML, display, Markdown, Latex
import math
from multiprocessing import Pool
import os
import re
import sys
import traceback
from time import time, sleep, perf_counter
import tabulate
import warnings
warnings.filterwarnings('ignore')
import yaml
from extra_geom import AGIPD_1MGeometry, AGIPD_500K2GGeometry
from extra_data import RunDirectory, stack_detector_data
from iCalibrationDB import Detectors
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from matplotlib.colors import LogNorm
from matplotlib import cm as colormap
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use("agg")
%matplotlib inline
import numpy as np
import seaborn as sns
sns.set()
sns.set_context("paper", font_scale=1.4)
sns.set_style("ticks")
from cal_tools.agipdlib import (AgipdCorrections, get_acq_rate,
get_gain_setting, get_num_cells)
from cal_tools.cython import agipdalgs as calgs
from cal_tools.ana_tools import get_range
from cal_tools.enums import BadPixels
from cal_tools.tools import get_dir_creation_date, map_modules_from_folder
from cal_tools.step_timing import StepTimer
import seaborn as sns
sns.set()
sns.set_context("paper", font_scale=1.4)
sns.set_style("ticks")
```
%% Cell type:markdown id: tags:
## Evaluated parameters ##
%% Cell type:code id: tags:
``` python
# Fill dictionaries comprising bools and arguments for correction and data analysis
# Here the herarichy and dependability for correction booleans are defined
corr_bools = {}
# offset is at the bottom of AGIPD correction pyramid.
corr_bools["only_offset"] = only_offset
# Dont apply any corrections if only_offset is requested
if not only_offset:
corr_bools["adjust_mg_baseline"] = adjust_mg_baseline
corr_bools["rel_gain"] = rel_gain
corr_bools["xray_corr"] = xray_gain
corr_bools["blc_noise"] = blc_noise
corr_bools["blc_stripes"] = blc_stripes
corr_bools["blc_hmatch"] = blc_hmatch
corr_bools["blc_set_min"] = blc_set_min
corr_bools["match_asics"] = match_asics
corr_bools["corr_asic_diag"] = corr_asic_diag
corr_bools["zero_nans"] = zero_nans
corr_bools["zero_orange"] = zero_orange
corr_bools["mask_noisy_adc"] = mask_noisy_adc
corr_bools["force_hg_if_below"] = force_hg_if_below
corr_bools["force_mg_if_below"] = force_mg_if_below
corr_bools["common_mode"] = common_mode
corr_bools["melt_snow"] = melt_snow
corr_bools["mask_zero_std"] = mask_zero_std
corr_bools["low_medium_gap"] = low_medium_gap
```
%% Cell type:code id: tags:
``` python
if in_folder[-1] == "/":
in_folder = in_folder[:-1]
if sequences[0] == -1:
sequences = None
control_fname = f'{in_folder}/r{run:04d}/RAW-R{run:04d}-{karabo_da_control}-S00000.h5'
h5path_ctrl = h5path_ctrl.format(karabo_id_control)
h5path = h5path.format(karabo_id, receiver_id)
h5path_idx = h5path_idx.format(karabo_id, receiver_id)
print(f'Path to control file {control_fname}')
```
%% Cell type:code id: tags:
``` python
# Create output folder
os.makedirs(out_folder, exist_ok=overwrite)
# Evaluate detector instance for mapping
instrument = karabo_id.split("_")[0]
if instrument == "SPB":
dinstance = "AGIPD1M1"
nmods = 16
elif instrument == "MID":
dinstance = "AGIPD1M2"
nmods = 16
# TODO: Remove DETLAB
elif instrument == "HED" or instrument == "DETLAB":
dinstance = "AGIPD500K"
nmods = 8
# Evaluate requested modules
if karabo_da[0] == '-1':
if modules[0] == -1:
modules = list(range(nmods))
karabo_da = ["AGIPD{:02d}".format(i) for i in modules]
else:
modules = [int(x[-2:]) for x in karabo_da]
def mod_name(modno):
return f"Q{modno // 4 + 1}M{modno % 4 + 1}"
print("Process modules: ", ', '.join(
[mod_name(x) for x in modules]))
print(f"Detector in use is {karabo_id}")
print(f"Instrument {instrument}")
print(f"Detector instance {dinstance}")
```
%% Cell type:code id: tags:
``` python
# Display Information about the selected pulses indices for correction.
pulses_lst = list(range(*max_pulses)) if not (len(max_pulses)==1 and max_pulses[0]==0) else max_pulses
try:
if len(pulses_lst) > 1:
print("A range of {} pulse indices is selected: from {} to {} with a step of {}"
.format(len(pulses_lst), pulses_lst[0] , pulses_lst[-1] + (pulses_lst[1] - pulses_lst[0]),
pulses_lst[1] - pulses_lst[0]))
else:
print("one pulse is selected: a pulse of idx {}".format(pulses_lst[0]))
except Exception as e:
raise ValueError('max_pulses input Error: {}'.format(e))
```
%% Cell type:code id: tags:
``` python
# set everything up filewise
mmf = map_modules_from_folder(in_folder, run, path_template,
karabo_da, sequences)
mapped_files, mod_ids, total_sequences, sequences_qm, _ = mmf
file_list = []
# ToDo: Split table over pages
print(f"Processing a total of {total_sequences} sequence files in chunks of {n_cores_files}")
table = []
ti = 0
for k, files in mapped_files.items():
i = 0
for f in list(files.queue):
file_list.append(f)
if i == 0:
table.append((ti, k, i, f))
else:
table.append((ti, "", i, f))
i += 1
ti += 1
md = display(Latex(tabulate.tabulate(table, tablefmt='latex',
headers=["#", "module", "# module", "file"])))
file_list = sorted(file_list, key=lambda name: name[-10:])
```
%% Cell type:code id: tags:
``` python
filename = file_list[0]
channel = int(re.findall(r".*-AGIPD([0-9]+)-.*", filename)[0])
# Evaluate number of memory cells
mem_cells = get_num_cells(filename, karabo_id, channel)
if mem_cells is None:
raise ValueError(f"No raw images found in {filename}")
mem_cells_db = mem_cells if mem_cells_db == 0 else mem_cells_db
max_cells = mem_cells if max_cells == 0 else max_cells
# Evaluate aquisition rate
if acq_rate == 0:
acq_rate = get_acq_rate((filename, karabo_id, channel))
print(f"Maximum memory cells to calibrate: {max_cells}")
```
%% Cell type:code id: tags:
``` python
# Evaluate creation time
creation_time = None
if use_dir_creation_date:
creation_time = get_dir_creation_date(in_folder, run)
offset = parser.parse(creation_date_offset)
delta = timedelta(hours=offset.hour,
minutes=offset.minute, seconds=offset.second)
creation_time += delta
# Evaluate gain setting
if gain_setting == 0.1:
if creation_time.replace(tzinfo=None) < parser.parse('2020-01-31'):
print("Set gain-setting to None for runs taken before 2020-01-31")
gain_setting = None
else:
try:
gain_setting = get_gain_setting(control_fname, h5path_ctrl)
except Exception as e:
print(f'ERROR: while reading gain setting from: \n{control_fname}')
print(e)
print("Set gain setting to 0")
gain_setting = 0
```
%% Cell type:code id: tags:
``` python
print(f"Using {creation_time} as creation time")
print(f"Operating conditions are:\n• Bias voltage: {bias_voltage}\n• Memory cells: {mem_cells_db}\n"
f"• Acquisition rate: {acq_rate}\n• Gain setting: {gain_setting}\n• Photon Energy: {photon_energy}\n")
```
%% Cell type:markdown id: tags:
## Data processing ##
%% Cell type:code id: tags:
``` python
agipd_corr = AgipdCorrections(max_cells, max_pulses,
h5_data_path=h5path,
h5_index_path=h5path_idx,
corr_bools=corr_bools)
agipd_corr.baseline_corr_noise_threshold = -blc_noise_threshold
agipd_corr.hg_hard_threshold = hg_hard_threshold
agipd_corr.mg_hard_threshold = mg_hard_threshold
agipd_corr.cm_dark_min = cm_dark_range[0]
agipd_corr.cm_dark_max = cm_dark_range[1]
agipd_corr.cm_dark_fraction = cm_dark_fraction
agipd_corr.cm_n_itr = cm_n_itr
agipd_corr.noisy_adc_threshold = noisy_adc_threshold
```
%% Cell type:code id: tags:
``` python
# Retrieve calibration constants to RAM
agipd_corr.allocate_constants(modules, (3, mem_cells_db, 512, 128))
const_yaml = None
if os.path.isfile(f'{out_folder}/retrieved_constants.yml'):
with open(f'{out_folder}/retrieved_constants.yml', "r") as f:
const_yaml = yaml.safe_load(f.read())
# retrive constants
def retrieve_constants(mod):
"""
Retrieve calibration constants and load them to shared memory
Metadata for constants is taken from yml file or retrieved from the DB
"""
device = getattr(getattr(Detectors, dinstance), mod_name(mod))
err = ''
try:
# check if there is a yaml file in out_folder that has the device constants.
if const_yaml and device.device_name in const_yaml:
when = agipd_corr.initialize_from_yaml(const_yaml, mod, device)
else:
when = agipd_corr.initialize_from_db(cal_db_interface, creation_time, mem_cells_db, bias_voltage,
photon_energy, gain_setting, acq_rate, mod, device, False)
except Exception as e:
err = f"Error: {e}\nError traceback: {traceback.format_exc()}"
when = None
return err, mod, when, device.device_name
ts = perf_counter()
with Pool(processes=len(modules)) as pool:
const_out = pool.map(retrieve_constants, modules)
print(f"Constants were loaded in {perf_counter()-ts:.01f}s")
```
%% Cell type:code id: tags:
``` python
# allocate memory for images and hists
n_images_max = max_cells*256
data_shape = (n_images_max, 512, 128)
agipd_corr.allocate_images(data_shape, n_cores_files)
```
%% Cell type:code id: tags:
``` python
def batches(l, batch_size):
"""Group a list into batches of (up to) batch_size elements"""
start = 0
while start < len(l):
yield l[start:start + batch_size]
start += batch_size
```
%% Cell type:code id: tags:
``` python
def imagewise_chunks(img_counts):
"""Break up the loaded data into chunks of up to chunk_size
Yields (file data slot, start index, stop index)
"""
for i_proc, n_img in enumerate(img_counts):
n_chunks = math.ceil(n_img / chunk_size)
for i in range(n_chunks):
yield i_proc, i * n_img // n_chunks, (i+1) * n_img // n_chunks
```
%% Cell type:code id: tags:
``` python
step_timer = StepTimer()
```
%% Cell type:code id: tags:
``` python
with Pool() as pool:
for file_batch in batches(file_list, n_cores_files):
# TODO: Move some printed output to logging or similar
print(f"Processing next {len(file_batch)} files:")
for file_name in file_batch:
print(" ", file_name)
step_timer.start()
img_counts = pool.starmap(agipd_corr.read_file, enumerate(file_batch))
step_timer.done_step('Loading data from files')
# Evaluate zero-data-std mask
pool.starmap(agipd_corr.mask_zero_std, itertools.product(
range(len(file_batch)), np.array_split(np.arange(agipd_corr.max_cells), n_cores_correct)
))
step_timer.done_step('Mask 0 std')
# Perform offset image-wise correction
pool.starmap(agipd_corr.offset_correction, imagewise_chunks(img_counts))
step_timer.done_step("Offset correction")
if blc_noise or blc_stripes or blc_hmatch:
# Perform image-wise correction
pool.starmap(agipd_corr.baseline_correction, imagewise_chunks(img_counts))
step_timer.done_step("Base-line shift correction")
if common_mode:
# Perform cross-file correction parallel over asics
pool.starmap(agipd_corr.cm_correction, itertools.product(
range(len(file_batch)), range(16) # 16 ASICs per module
))
step_timer.done_step("Common-mode correction")
# Perform image-wise correction
pool.starmap(agipd_corr.gain_correction, imagewise_chunks(img_counts))
step_timer.done_step("Image-wise correction")
# Save corrected data
pool.starmap(agipd_corr.write_file, [
(i_proc, file_name, os.path.join(out_folder, os.path.basename(file_name).replace("RAW", "CORR")))
for i_proc, file_name in enumerate(file_batch)
])
step_timer.done_step("Save")
```
%% Cell type:code id: tags:
``` python
print(f"Correction of {len(file_list)} files is finished")
print(f"Total processing time {step_timer.timespan():.01f} s")
print(f"Timing summary per batch of {n_cores_files} files:")
step_timer.print_summary()
```
%% Cell type:code id: tags:
``` python
# if there is a yml file that means a leading notebook got processed
# and the reporting would be generated from it.
fst_print = True
to_store = []
line = []
for i, (error, modno, when, mod_dev) in enumerate(const_out):
qm = mod_name(modno)
# expose errors while applying correction
if error:
print("Error: {}".format(error) )
if not const_yaml or mod_dev not in const_yaml:
if fst_print:
print("Constants are retrieved with creation time: ")
fst_print = False
line = [qm]
# If correction is crashed
if not error:
print(f"{qm}:")
for key, item in when.items():
if hasattr(item, 'strftime'):
item = item.strftime('%y-%m-%d %H:%M')
when[key] = item
print('{:.<12s}'.format(key), item)
# Store few time stamps if exists
# Add NA to keep array structure
for key in ['Offset', 'SlopesPC', 'SlopesFF']:
if when and key in when and when[key]:
line.append(when[key])
else:
if error is not None:
line.append('Err')
else:
line.append('NA')
if len(line) > 0:
to_store.append(line)
seq = sequences[0] if sequences else 0
if len(to_store) > 0:
with open(f"{out_folder}/retrieved_constants_s{seq}.yml","w") as fyml:
yaml.safe_dump({"time-summary": {f"S{seq}":to_store}}, fyml)
```
%% Cell type:code id: tags:
``` python
def do_3d_plot(data, edges, x_axis, y_axis):
fig = plt.figure(figsize=(10, 10))
ax = fig.gca(projection='3d')
# Make data.
X = edges[0][:-1]
Y = edges[1][:-1]
X, Y = np.meshgrid(X, Y)
Z = data.T
# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=colormap.coolwarm,
linewidth=0, antialiased=False)
ax.set_xlabel(x_axis)
ax.set_ylabel(y_axis)
ax.set_zlabel("Counts")
def do_2d_plot(data, edges, y_axis, x_axis):
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111)
extent = [np.min(edges[1]), np.max(edges[1]),
np.min(edges[0]), np.max(edges[0])]
im = ax.imshow(data[::-1, :], extent=extent, aspect="auto",
norm=LogNorm(vmin=1, vmax=max(10, np.max(data))))
ax.set_xlabel(x_axis)
ax.set_ylabel(y_axis)
cb = fig.colorbar(im)
cb.set_label("Counts")
```
%% Cell type:code id: tags:
``` python
def get_trains_data(run_folder, source, include, tid=None, path='*/DET/*', modules=16, fillvalue=np.nan):
"""
Load single train for all module
:param run_folder: Path to folder with data
:param source: Data source to be loaded
:param include: Inset of file name to be considered
:param tid: Train Id to be loaded. First train is considered if None is given
:param path: Path to find image data inside h5 file
"""
run_data = RunDirectory(run_folder, include)
if tid:
tid, data = run_data.select('*/DET/*', source).train_from_id(tid)
return tid, stack_detector_data(train=data, data=source, fillvalue=fillvalue, modules=modules)
else:
for tid, data in run_data.select('*/DET/*', source).trains(require_all=True):
return tid, stack_detector_data(train=data, data=source, fillvalue=fillvalue, modules=modules)
return None, None
```
%% Cell type:code id: tags:
``` python
if dinstance == "AGIPD500K":
geom = AGIPD_500K2GGeometry.from_origin()
else:
geom = AGIPD_1MGeometry.from_quad_positions(quad_pos=[
(-525, 625),
(-550, -10),
(520, -160),
(542.5, 475),
])
```
%% Cell type:code id: tags:
``` python
include = '*S00000*' if sequences is None else f'*S{sequences[0]:05d}*'
tid, corrected = get_trains_data(f'{out_folder}/', 'image.data', include, modules=nmods)
_, gains = get_trains_data(f'{out_folder}/', 'image.gain', include, tid, modules=nmods)
_, mask = get_trains_data(f'{out_folder}/', 'image.mask', include, tid, modules=nmods)
_, blshift = get_trains_data(f'{out_folder}/', 'image.blShift', include, tid, modules=nmods)
_, cellId = get_trains_data(f'{out_folder}/', 'image.cellId', include, tid, modules=nmods)
_, pulseId = get_trains_data(f'{out_folder}/', 'image.pulseId', include, tid,
modules=nmods, fillvalue=0)
_, raw = get_trains_data(f'{in_folder}/r{run:04d}/', 'image.data', include, tid, modules=nmods)
```
%% Cell type:code id: tags:
``` python
display(Markdown(f'## Preview and statistics for {gains.shape[0]} images of the train {tid} ##\n'))
```
%% Cell type:markdown id: tags:
### Signal vs. Analogue Gain ###
%% Cell type:code id: tags:
``` python
hist, bins_x, bins_y = calgs.histogram2d(raw[:,0,...].flatten().astype(np.float32),
raw[:,1,...].flatten().astype(np.float32),
bins=(100, 100),
range=[[4000, 8192], [4000, 8192]])
do_2d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Analogue gain (ADU)")
do_3d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Analogue gain (ADU)")
```
%% Cell type:markdown id: tags:
### Signal vs. Digitized Gain ###
The following plot shows plots signal vs. digitized gain
%% Cell type:code id: tags:
``` python
hist, bins_x, bins_y = calgs.histogram2d(corrected.flatten().astype(np.float32),
gains.flatten().astype(np.float32), bins=(100, 3),
range=[[-50, 8192], [0, 3]])
do_2d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Gain bit value")
```
%% Cell type:code id: tags:
``` python
print(f"Gain statistics in %")
table = [[f'{gains[gains==0].size/gains.size*100:.02f}',
f'{gains[gains==1].size/gains.size*100:.03f}',
f'{gains[gains==2].size/gains.size*100:.03f}']]
md = display(Latex(tabulate.tabulate(table, tablefmt='latex',
headers=["High", "Medium", "Low"])))
```
%% Cell type:markdown id: tags:
### Intensity per Pulse ###
%% Cell type:code id: tags:
``` python
pulse_range = [np.min(pulseId[pulseId>=0]), np.max(pulseId[pulseId>=0])]
mean_data = np.nanmean(corrected, axis=(2, 3))
hist, bins_x, bins_y = calgs.histogram2d(mean_data.flatten().astype(np.float32),
pulseId.flatten().astype(np.float32),
bins=(100, int(pulse_range[1])),
range=[[-50, 1000], pulse_range])
do_2d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Pulse id")
do_3d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Pulse id")
hist, bins_x, bins_y = calgs.histogram2d(mean_data.flatten().astype(np.float32),
pulseId.flatten().astype(np.float32),
bins=(100, int(pulse_range[1])),
range=[[-50, 200000], pulse_range])
do_2d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Pulse id")
do_3d_plot(hist, (bins_x, bins_y), "Signal (ADU)", "Pulse id")
```
%% Cell type:markdown id: tags:
### Baseline shift ###
Estimated base-line shift with respect to the total ADU counts of corrected image.
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
h = ax.hist(blshift.flatten(), bins=100, log=True)
_ = plt.xlabel('Baseline shift [ADU]')
_ = plt.ylabel('Counts')
_ = ax.grid()
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(10, 10))
corrected_ave = np.nansum(corrected, axis=(2, 3))
plt.scatter(corrected_ave.flatten()/10**6, blshift.flatten(), s=0.9)
plt.xlim(-1, 1000)
plt.grid()
plt.xlabel('Illuminated corrected [MADU] ')
_ = plt.ylabel('Estimated baseline shift [ADU]')
```
%% Cell type:code id: tags:
``` python
display(Markdown('### Raw preview ###\n'))
display(Markdown(f'Mean over images of the RAW data\n'))
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
data = np.mean(raw[:, 0, ...], axis=0)
vmin, vmax = get_range(data, 5)
ax = geom.plot_data_fast(data, ax=ax, cmap="jet", vmin=vmin, vmax=vmax)
```
%% Cell type:code id: tags:
``` python
display(Markdown(f'Single shot of the RAW data from cell {np.max(cellId[cell_id_preview])} \n'))
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
vmin, vmax = get_range(raw[cell_id_preview, 0, ...], 5)
ax = geom.plot_data_fast(raw[cell_id_preview, 0, ...], ax=ax, cmap="jet", vmin=vmin, vmax=vmax)
```
%% Cell type:code id: tags:
``` python
display(Markdown('### Corrected preview ###\n'))
display(Markdown(f'A single shot image from cell {np.max(cellId[cell_id_preview])} \n'))
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
vmin, vmax = get_range(corrected[cell_id_preview], 7, -50)
vmin = - 50
ax = geom.plot_data_fast(corrected[cell_id_preview], ax=ax, cmap="jet", vmin=vmin, vmax=vmax)
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
vmin, vmax = get_range(corrected[cell_id_preview], 5, -50)
nbins = np.int((vmax + 50) / 2)
h = ax.hist(corrected[cell_id_preview].flatten(),
bins=nbins, range=(-50, vmax),
histtype='stepfilled', log=True)
_ = plt.xlabel('[ADU]')
_ = plt.ylabel('Counts')
_ = ax.grid()
```
%% Cell type:code id: tags:
``` python
display(Markdown('### Mean CORRECTED Preview ###\n'))
display(Markdown(f'A mean across one train \n'))
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
data = np.mean(corrected, axis=0)
vmin, vmax = get_range(data, 7)
ax = geom.plot_data_fast(data, ax=ax, cmap="jet", vmin=-50, vmax=vmax)
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
vmin, vmax = get_range(corrected, 10, -100)
vmax = np.nanmax(corrected)
if vmax > 50000:
vmax=50000
nbins = np.int((vmax + 100) / 5)
h = ax.hist(corrected.flatten(), bins=nbins,
range=(-100, vmax), histtype='step', log=True, label = 'All')
_ = ax.hist(corrected[gains == 0].flatten(), bins=nbins, range=(-100, vmax),
alpha=0.5, log=True, label='High gain', color='green')
_ = ax.hist(corrected[gains == 1].flatten(), bins=nbins, range=(-100, vmax),
alpha=0.5, log=True, label='Medium gain', color='red')
_ = ax.hist(corrected[gains == 2].flatten(), bins=nbins,
range=(-100, vmax), alpha=0.5, log=True, label='Low gain', color='yellow')
_ = ax.legend()
_ = ax.grid()
_ = plt.xlabel('[ADU]')
_ = plt.ylabel('Counts')
```
%% Cell type:code id: tags:
``` python
display(Markdown('### Maximum GAIN Preview ###\n'))
display(Markdown(f'The per pixel maximum across one train for the digitized gain'))
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
ax = geom.plot_data_fast(np.max(gains, axis=0), ax=ax,
cmap="jet", vmin=-1, vmax=3)
```
%% Cell type:markdown id: tags:
## Bad Pixels ##
The mask contains dedicated entries for all pixels and memory cells as well as all three gains stages. Each mask entry is encoded in 32 bits as:
%% Cell type:code id: tags:
``` python
table = []
for item in BadPixels:
table.append((item.name, "{:016b}".format(item.value)))
md = display(Latex(tabulate.tabulate(table, tablefmt='latex',
headers=["Bad pixel type", "Bit mask"])))
```
%% Cell type:code id: tags:
``` python
display(Markdown(f'### Single Shot Bad Pixels ### \n'))
display(Markdown(f'A single shot bad pixel map from cell {np.max(cellId[cell_id_preview])} \n'))
```
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
ax = geom.plot_data_fast(np.log2(mask[cell_id_preview]), ax=ax, vmin=0, vmax=32, cmap="jet")
```
%% Cell type:markdown id: tags:
### Percentage of Bad Pixels across one train ###
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
ax = geom.plot_data_fast(np.mean(mask>0, axis=0),
vmin=0, ax=ax, vmax=1, cmap="jet")
```
%% Cell type:markdown id: tags:
### Percentage of Bad Pixels across one train. Only Dark Related ###
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
cm = np.copy(mask)
cm[cm > BadPixels.NO_DARK_DATA.value] = 0
ax = geom.plot_data_fast(np.mean(cm>0, axis=0),
vmin=0, ax=ax, vmax=1, cmap="jet")
```
......
%% Cell type:markdown id: tags:
# AGIPD Retrieving Constants Pre-correction #
Author: European XFEL Detector Group, Version: 1.0
Retrieving Required Constants for Offline Calibration of the AGIPD Detector
%% Cell type:code id: tags:
``` python
cluster_profile = "noDB"
in_folder = "/gpfs/exfel/exp/SPB/202030/p900119/raw" # the folder to read data from, required
out_folder = "/gpfs/exfel/data/scratch/ahmedk/test/AGIPD_" # the folder to output to, required
sequences = [-1] # sequences to correct, set to -1 for all, range allowed
modules = [-1] # modules to correct, set to -1 for all, range allowed
run = 80 # runs to process, required
karabo_id = "SPB_DET_AGIPD1M-1" # karabo karabo_id
karabo_da = ['-1'] # a list of data aggregators names, Default [-1] for selecting all data aggregators
path_template = 'RAW-R{:04d}-{}-S{:05d}.h5' # the template to use to access data
h5path_ctrl = '/CONTROL/{}/MDL/FPGA_COMP_TEST' # path to control information
karabo_id_control = "SPB_IRU_AGIPD1M1" # karabo-id for control device
karabo_da_control = 'AGIPD1MCTRL00' # karabo DA for control infromation
use_dir_creation_date = True # use the creation data of the input dir for database queries
cal_db_interface = "tcp://max-exfl016:8015#8045" # the database interface to use
creation_date_offset = "00:00:00" # add an offset to creation date, e.g. to get different constants
slopes_ff_from_files = "" # Path to locally stored SlopesFF and BadPixelsFF constants
calfile = "" # path to calibration file. Leave empty if all data should come from DB
nodb = False # if set only file-based constants will be used
mem_cells = 0 # number of memory cells used, set to 0 to automatically infer
bias_voltage = 300
acq_rate = 0. # the detector acquisition rate, use 0 to try to auto-determine
gain_setting = 0.1 # the gain setting, use 0.1 to try to auto-determine
photon_energy = 9.2 # photon energy in keV
max_cells_db_dark = 0 # set to a value different than 0 to use this value for dark data DB queries
max_cells_db = 0 # set to a value different than 0 to use this value for DB queries
# Correction Booleans
only_offset = False # Apply only Offset correction. if False, Offset is applied by Default. if True, Offset is only applied.
rel_gain = False # do relative gain correction based on PC data
xray_gain = True # do relative gain correction based on xray data
blc_noise = False # if set, baseline correction via noise peak location is attempted
blc_stripes = False # if set, baseline corrected via stripes
blc_hmatch = False # if set, base line correction via histogram matching is attempted
match_asics = False # if set, inner ASIC borders are matched to the same signal level
adjust_mg_baseline = False # adjust medium gain baseline to match highest high gain value
```
%% Cell type:code id: tags:
``` python
# Fill dictionaries comprising bools and arguments for correction and data analysis
# Here the herarichy and dependability for correction booleans are defined
corr_bools = {}
# offset is at the bottom of AGIPD correction pyramid.
corr_bools["only_offset"] = only_offset
# Dont apply any corrections if only_offset is requested
if not only_offset:
corr_bools["adjust_mg_baseline"] = adjust_mg_baseline
corr_bools["rel_gain"] = rel_gain
corr_bools["xray_corr"] = xray_gain
corr_bools["blc_noise"] = blc_noise
corr_bools["blc_hmatch"] = blc_hmatch
```
%% Cell type:code id: tags:
``` python
import sys
from collections import OrderedDict
# make sure a cluster is running with ipcluster start --n=32, give it a while to start
import os
import h5py
import numpy as np
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
from ipyparallel import Client
print(f"Connecting to profile {cluster_profile}")
view = Client(profile=cluster_profile)[:]
view.use_dill()
import multiprocessing as mp
from iCalibrationDB import Constants, Conditions, Detectors
from cal_tools.tools import (map_modules_from_folder, get_dir_creation_date)
from cal_tools.agipdlib import get_gain_setting
from dateutil import parser
from datetime import timedelta
```
%% Cell type:code id: tags:
``` python
max_cells = mem_cells
creation_time = None
if use_dir_creation_date:
creation_time = get_dir_creation_date(in_folder, run)
offset = parser.parse(creation_date_offset)
delta = timedelta(hours=offset.hour, minutes=offset.minute, seconds=offset.second)
creation_time += delta
print(f"Using {creation_time} as creation time")
if sequences[0] == -1:
sequences = None
if in_folder[-1] == "/":
in_folder = in_folder[:-1]
print(f"Outputting to {out_folder}")
os.makedirs(out_folder, exist_ok=True)
import warnings
warnings.filterwarnings('ignore')
from cal_tools.agipdlib import SnowResolution
melt_snow = False if corr_bools["only_offset"] else SnowResolution.NONE
```
%% Cell type:code id: tags:
``` python
control_fname = f'{in_folder}/r{run:04d}/RAW-R{run:04d}-{karabo_da_control}-S00000.h5'
h5path_ctrl = h5path_ctrl.format(karabo_id_control)
if gain_setting == 0.1:
if creation_time.replace(tzinfo=None) < parser.parse('2020-01-31'):
print("Set gain-setting to None for runs taken before 2020-01-31")
gain_setting = None
else:
try:
gain_setting = get_gain_setting(control_fname, h5path_ctrl)
except Exception as e:
print(f'ERROR: while reading gain setting from: \n{control_fname}')
print(e)
print("Set gain setting to 0")
gain_setting = 0
print(f"Gain setting: {gain_setting}")
print(f"Detector in use is {karabo_id}")
# Extracting Instrument string
instrument = karabo_id.split("_")[0]
# Evaluate detector instance for mapping
if instrument == "SPB":
dinstance = "AGIPD1M1"
nmods = 16
elif instrument == "MID":
dinstance = "AGIPD1M2"
nmods = 16
# TODO: Remove DETLAB
elif instrument == "HED" or instrument == "DETLAB":
dinstance = "AGIPD500K"
nmods = 8
print(f"Instrument {instrument}")
print(f"Detector instance {dinstance}")
if karabo_da[0] == '-1':
if modules[0] == -1:
modules = list(range(nmods))
karabo_da = ["AGIPD{:02d}".format(i) for i in modules]
else:
modules = [int(x[-2:]) for x in karabo_da]
```
%% Cell type:code id: tags:
``` python
# set everything up filewise
print(f"Checking the files before retrieving constants")
mmf = map_modules_from_folder(in_folder, run, path_template, karabo_da, sequences)
mapped_files, mod_ids, total_sequences, sequences_qm, _ = mmf
```
%% Cell type:markdown id: tags:
## Retrieve Constants ##
%% Cell type:code id: tags:
``` python
from functools import partial
import yaml
def retrieve_constants(karabo_id, bias_voltage, max_cells, acq_rate,
gain_setting, photon_energy, only_dark, nodb_with_dark,
cal_db_interface, creation_time,
corr_bools, pc_bools, inp):
"""
Retreive constant for each module in parallel and produce a dictionary
with the creation-time and constant file path.
:param karabo_id: (STR) Karabo ID
:param bias_voltage: (FLOAT) Bias Voltage
:param max_cells: (INT) Memory cells
:param acq_rate: (FLOAT) Acquisition Rate
:param gain_setting: (FLOAT) Gain setting
:param photon_energy: (FLOAT) Photon Energy
:param only_dark: (BOOL) only retrieve dark constants
:param nodb_with_dark: (BOOL) no constant retrieval even for dark
:param cal_db_interface: (STR) the database interface port
:param creation_time: (STR) raw data creation time
:param corr_bools: (DICT) A dictionary with bools for applying requested corrections
:param pc_bools: (LIST) list of bools to retrieve pulse capacitor constants
:param inp: (LIST) input for the parallel cluster of the partial function
:return:
mdata_dict: (DICT) dictionary with the metadata for the retrieved constants
dev.device_name: (STR) device name
"""
import numpy as np
import sys
import traceback
from cal_tools.agipdlib import get_num_cells, get_acq_rate
from cal_tools.agipdutils import assemble_constant_dict
from cal_tools.tools import get_from_db
from iCalibrationDB import Constants, Conditions, Detectors
err = None
qm_files, qm, dev, idx = inp
# get number of memory cells from a sequence file with image data
for f in qm_files:
if not max_cells:
max_cells = get_num_cells(f, karabo_id, idx)
if max_cells is None:
if f != qm_files[-1]:
continue
else:
raise ValueError(f"No raw images found for {qm} for all sequences")
else:
cells = np.arange(max_cells)
# get out of the loop,
# if max_cells is successfully calculated.
break
if acq_rate == 0.:
acq_rate = get_acq_rate((f, karabo_id, idx))
print(f"Set memory cells to {max_cells}")
print(f"Set acquistion rate cells to {acq_rate} MHz")
# avoid creating retireving constant, if requested.
if not nodb_with_dark:
const_dict = assemble_constant_dict(corr_bools, pc_bools, max_cells, bias_voltage,
gain_setting, acq_rate, photon_energy,
beam_energy=None, only_dark=only_dark)
# Retrieve multiple constants through an input dictionary
# to return a dict of useful metadata.
mdata_dict = dict()
for cname, cval in const_dict.items():
try:
condition = getattr(Conditions, cval[2][0]).AGIPD(**cval[2][1])
co, mdata = \
get_from_db(dev, getattr(Constants.AGIPD, cname)(),
condition, getattr(np, cval[0])(cval[1]),
cal_db_interface, creation_time, meta_only=True)
mdata_const = mdata.calibration_constant_version
# saving metadata in a dict
mdata_dict[cname] = dict()
# check if constant was sucessfully retrieved.
if mdata.comm_db_success:
mdata_dict[cname]["file-path"] = f"{mdata_const.hdf5path}" \
f"{mdata_const.filename}"
mdata_dict[cname]["creation-time"] = f"{mdata_const.begin_at}"
else:
mdata_dict[cname]["file-path"] = const_dict[cname][:2]
mdata_dict[cname]["creation-time"] = None
except Exception as e:
err = f"Error: {e}, Traceback: {traceback.format_exc()}"
print(err)
# saving metadata in a dict
mdata_dict[cname] = dict()
if slopes_ff_from_files and cname in ["SlopesFF", "BadPixelsFF"]:
mdata_dict[cname]["file-path"] = f"{slopes_ff_from_files}/slopesff_bpmask_module_{qm}.h5"
mdata_dict[cname]["creation-time"] = "00:00:00"
else:
try:
condition = getattr(Conditions, cval[2][0]).AGIPD(**cval[2][1])
co, mdata = \
get_from_db(dev, getattr(Constants.AGIPD, cname)(),
condition, getattr(np, cval[0])(cval[1]),
cal_db_interface, creation_time, meta_only=True, verbosity=0)
mdata_const = mdata.calibration_constant_version
# check if constant was sucessfully retrieved.
if mdata.comm_db_success:
mdata_dict[cname]["file-path"] = f"{mdata_const.hdf5path}" \
f"{mdata_const.filename}"
mdata_dict[cname]["creation-time"] = f"{mdata_const.begin_at}"
else:
mdata_dict[cname]["file-path"] = const_dict[cname][:2]
mdata_dict[cname]["creation-time"] = None
except Exception as e:
err = f"Error: {e}, Traceback: {traceback.format_exc()}"
print(err)
return qm, mdata_dict, dev.device_name, acq_rate, max_cells, err
pc_bools = [corr_bools.get("rel_gain"),
corr_bools.get("adjust_mg_baseline"),
corr_bools.get('blc_noise'),
corr_bools.get('blc_hmatch'),
corr_bools.get('blc_stripes'),
melt_snow]
inp = []
only_dark = False
nodb_with_dark = False
if not nodb:
only_dark=(calfile != "")
if calfile != "" and not corr_bools["only_offset"]:
nodb_with_dark = nodb
# A dict to connect virtual device
# to actual device name.
for i in modules:
qm = f"Q{i//4+1}M{i%4+1}"
if qm in mapped_files and not mapped_files[qm].empty():
device = getattr(getattr(Detectors, dinstance), qm)
qm_files = [str(mapped_files[qm].get()) for _ in range(mapped_files[qm].qsize())]
else:
print(f"Skipping {qm}")
continue
inp.append((qm_files, qm, device, i))
p = partial(retrieve_constants, karabo_id, bias_voltage, max_cells,
acq_rate, gain_setting, photon_energy, only_dark, nodb_with_dark,
cal_db_interface, creation_time,
corr_bools, pc_bools)
results = view.map_sync(p, inp)
#results = list(map(p, inp))
with mp.Pool(processes=16) as pool:
results = pool.map(p, inp)
mod_dev = dict()
mdata_dict = dict()
for r in results:
if r:
qm, md_dict, dname, acq_rate, max_cells, err = r
mod_dev[dname] = {"mod": qm, "err": err}
if err:
print(f"Error for module {qm}: {err}")
mdata_dict[dname] = md_dict
# check if it is requested not to retrieve any constants from the database
if not nodb_with_dark:
with open(f"{out_folder}/retrieved_constants.yml", "w") as outfile:
yaml.safe_dump(mdata_dict, outfile)
print("\nRetrieved constants for modules: ",
f"{[', '.join([f'Q{x//4+1}M{x%4+1}' for x in modules])]}")
print(f"Operating conditions are:\n• Bias voltage: {bias_voltage}\n• Memory cells: {max_cells}\n"
f"• Acquisition rate: {acq_rate}\n• Gain setting: {gain_setting}\n• Photon Energy: {photon_energy}\n")
print(f"Constant metadata is saved in retrieved_constants.yml\n")
else:
print("No constants were retrieved as calibrated files will be used.")
```
%% Cell type:code id: tags:
``` python
print("Constants are retrieved with creation time: ")
i = 0
when = dict()
to_store = []
for dname, dinfo in mod_dev.items():
print(dinfo["mod"], ":")
line = [dinfo["mod"]]
if dname in mdata_dict:
for cname, mdata in mdata_dict[dname].items():
if hasattr(mdata["creation-time"], 'strftime'):
mdata["creation-time"] = mdata["creation-time"].strftime('%y-%m-%d %H:%M')
print(f'{cname:.<12s}', mdata["creation-time"])
# Store few time stamps if exists
# Add NA to keep array structure
for cname in ['Offset', 'SlopesPC', 'SlopesFF']:
if not dname in mdata_dict or dinfo["err"]:
line.append('Err')
else:
if cname in mdata_dict[dname]:
if mdata_dict[dname][cname]["creation-time"]:
line.append(mdata_dict[dname][cname]["creation-time"])
else:
line.append('NA')
else:
line.append('NA')
to_store.append(line)
i += 1
if sequences:
seq_num = sequences[0]
else:
# if sequences[0] changed to None as it was -1
seq_num = 0
with open(f"{out_folder}/retrieved_constants.yml","r") as fyml:
time_summary = yaml.safe_load(fyml)
time_summary.update({"time-summary": {
"SAll":to_store
}})
with open(f"{out_folder}/retrieved_constants.yml","w") as fyml:
yaml.safe_dump(time_summary, fyml)
```
%% Cell type:code id: tags:
``` python
```
......
%% Cell type:markdown id: tags:
# Gain Characterization (Flat Fields) #
# Gain Characterization #
The following code characterizes the gain of the AGIPD detector from flat field data, i.e. data with X-rays of defined intensity. This data should fullfil the following requirements:
* intensity should be such that single photon peaks are visible
* data for all modules should be present
* no shadowing should occur on any of the modules
* each pixel should have at minimum arround 100 events per photon peak per memory cell
* if central beam edges are visible, they should not be significantly more intense
Characterization is done by a weighted average algorithm, which evaluates the peak locations for all pixels
and memory cells of a given module. These locations are then fitted to a linear function of the average peak
location in each module, such that it yield a relative gain correction.
%% Cell type:code id: tags:
``` python
# the following lines should be adjusted depending on data
in_folder = '/gpfs/exfel/exp/MID/201931/p900091/raw/' # path to input data, required
modules = [3] # modules to work on, required, range allowed
out_folder = "/gpfs/exfel/exp/MID/201931/p900091/usr/FF/2.2" # path to output to, required
runs = [484, 485,] # runs to use, required, range allowed
sequences = [0,1,2,3]#,4,5,6,7,8] #,5,6,7,8,9,10] # sequences files to use, range allowed
cluster_profile = "noDB" # The ipcluster profile to use
in_folder = "/gpfs/exfel/exp/SPB/202030/p900138/scratch/karnem/r0203_r0204_v01/" # the folder to read histograms from, required
out_folder = "/gpfs/exfel/exp/SPB/202030/p900138/scratch/karnem/r0203_r0204_v01/" # the folder to output to, required
hist_file_template = "hists_m{:02d}_sum.h5" # the template to use to access histograms
modules = [10] # modules to correct, set to -1 for all, range allowed
image_data_path = "/gpfs/exfel/exp/MID/202030/p900137/raw" # Path to image data used to create histograms
run = 449 # of the run of image data used to create histograms
karabo_id = "MID_DET_AGIPD1M-1" # karabo karabo_id
karabo_da = ['-1'] # a list of data aggregators names, Default [-1] for selecting all data aggregators
receiver_id = "{}CH0" # inset for receiver devices
path_template = 'RAW-R{:04d}-{}-S{:05d}.h5' # the template to use to access data
h5path = 'INSTRUMENT/{}/DET/{}:xtdf/' # path in the HDF5 file to images
h5path_idx = 'INDEX/{}/DET/{}:xtdf/' # path in the HDF5 file to images
h5path_ctrl = '/CONTROL/{}/MDL/FPGA_COMP' # path to control information
karabo_id_control = "MID_IRU_AGIPD1M1" # karabo-id for control device
karabo_da_control = 'AGIPD1MCTRL00' # karabo DA for control infromation
use_dir_creation_date = True # use the creation data of the input dir for database queries
cal_db_interface = "tcp://max-exfl016:8015#8045" # the database interface to use
cal_db_timeout = 30000 # in milli seconds
local_output = True # output constants locally
db_output = False # output constants to database
bias_voltage = 300 # detector bias voltage
cal_db_interface = "tcp://max-exfl016:8026#8035" # the database interface to use
mem_cells = 0 # number of memory cells used
interlaced = False # assume interlaced data format, for data prior to Dec. 2017
fit_hook = True # fit a hook function to medium gain slope
rawversion = 2 # RAW file format version
instrument = "MID"
photon_energy = 9.2 # the photon energy in keV
offset_store = "" # for file-baed access
high_res_badpix_3d = False # set this to True if you need high-resolution 3d bad pixel plots. Runtime: ~ 1h
db_input = True # retreive data from calibration database, setting offset-store will overwrite this
deviation_threshold = 0.75 # peaks with an absolute location deviation larger than the medium are are considere bad
acqrate = 0. # acquisition rate
use_dir_creation_date = True
creation_time = "" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC.ms e.g. 2019-07-04 11:02:41.00
gain_setting = 0.1 # gain setting can have value 0 or 1, Default=0.1 for no (None) gain-setting
karabo_da_control = "AGIPD1MCTRL00" # karabo DA for control infromation
h5path_ctrl = '/CONTROL/{}/MDL/FPGA_COMP_TEST' # path to control information
# Fit parameters
peak_range = [-30, 30, 35, 70, 95, 135, 145, 220] # where to look for the peaks, [a0, b0, a1, b1, ...] exactly 8 elements
peak_width_range = [0, 30, 0, 35, 0, 40, 0, 45] # fit limits on the peak widths, [a0, b0, a1, b1, ...] exactly 8 elements
peak_norm_range = [0.0, -1, 0, -1, 0, -1, 0, -1] #
# Bad-pixel thresholds (gain evaluation error). Contribute to BadPixel bit "Gain_Evaluation_Error"
peak_lim = [-30, 30] # Limit of position of noise peak
d0_lim = [10, 80] # hard limits for distance between noise and first peak
peak_width_lim = [0.9, 1.55, 0.95, 1.65] # hard limits on the peak widths for first and second peak, in units of the noise peak. 4 parameters.
chi2_lim = [0, 3.0] # Hard limit on chi2/nDOF value
intensity_lim = 15 # Threshold on standard deviation of a histogram in ADU. Contribute to BadPixel bit "No_Entry"
gain_lim = [0.85, 1.15] # Threshold on gain in relative number. Contribute to BadPixel bit "Gain_deviation"
cell_range = [1, 3] # range of cell to be considered, [0,0] for all
pixel_range = [0, 0, 32, 32] # range of pixels x1,y1,x2,y2 to consider [0,0,512,128] for all
max_bins = 0 # Maximum number of bins to consider, 0 for all bins
batch_size = [1, 8, 8] # batch size: [cell,x,y]
fit_range = [0, 0] # range of a histogram considered for fitting in ADU. Dynamically evaluated in case [0,0]
n_peaks_fit = 4 # Number of gaussian peaks to fit including noise peak
fix_peaks = False # Fix distance between photon peaks
do_minos = False # This is additional feature of minuit to evaluate errors.
# Detector conditions
max_cells = 0 # number of memory cells used, set to 0 to automatically infer
bias_voltage = 0 # Bias voltage
acq_rate = 0. # the detector acquisition rate, use 0 to try to auto-determine
gain_setting = 0.1 # the gain setting, use 0.1 to try to auto-determine
photon_energy = 8.05 # photon energy in keV
```
%% Cell type:code id: tags:
``` python
# std library imports
from datetime import datetime
import dateutil
from functools import partial
import warnings
warnings.filterwarnings('ignore')
import glob
from multiprocessing import Pool
import os
import traceback
import warnings
import h5py
# numpy and matplot lib specific
import numpy as np
import matplotlib
matplotlib.use("Agg")
from iminuit import Minuit
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sharedmem
from XFELDetAna.plotting.heatmap import heatmapPlot
from XFELDetAna.plotting.simpleplot import simplePlot
import XFELDetAna.xfelpyanatools as xana
# parallel processing via ipcluster
# make sure a cluster is running with ipcluster start --n=32, give it a while to start
from ipyparallel import Client
client = Client(profile=cluster_profile)
view = client[:]
view.use_dill()
from cal_tools.ana_tools import save_dict_to_hdf5, get_range
from cal_tools.agipdlib import get_bias_voltage
from cal_tools.agipdutils_ff import (
any_in, gaussian, gaussian_sum, get_mask,
get_starting_parameters, set_par_limits, fit_n_peaks
)
from cal_tools.enums import BadPixelsFF
# pyDetLib imports
import XFELDetAna.xfelpycaltools as xcal
import XFELDetAna.xfelpyanatools as xana
from XFELDetAna.util import env
env.iprofile = cluster_profile
profile = cluster_profile
from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions
from cal_tools.agipdlib import get_num_cells, get_acq_rate, get_gain_setting
from cal_tools.enums import BadPixels
from cal_tools.influx import InfluxLogger
from cal_tools.plotting import show_overview, plot_badpix_3d
from cal_tools.tools import gain_map_files, parse_runs, run_prop_seq_from_path, get_notebook_name, get_dir_creation_date, get_random_db_interface
# %load_ext autotime
%matplotlib inline
warnings.filterwarnings('ignore')
```
%% Cell type:code id: tags:
``` python
# usually no need to change these lines
sensor_size = [128, 512]
block_size = [128, 512]
QUADRANTS = 4
MODULES_PER_QUAD = 4
DET_FILE_INSET = "AGIPD"
# Define constant creation time.
if creation_time:
try:
creation_time = datetime.strptime(creation_time, '%Y-%m-%d %H:%M:%S.%f')
except Exception as e:
print(f"creation_time value error: {e}."
"Use same format as YYYY-MM-DD HR:MN:SC.ms e.g. 2019-07-04 11:02:41.00/n")
creation_time = None
print("Given creation time wont be used.")
else:
creation_time = None
if not creation_time and use_dir_creation_date:
ntries = 100
while ntries > 0:
try:
creation_time = get_dir_creation_date(in_folder, runs[0])
break
except OSError:
pass
ntries -= 1
print("Using {} as creation time".format(creation_time))
runs = parse_runs(runs)
if offset_store != "":
db_input = False
else:
db_input = True
limit_trains = 20
limit_trains_eval = None
print("Parameters are:")
print("Runs: {}".format(runs))
print("Modules: {}".format(modules))
print("Sequences: {}".format(sequences))
print("Using DB: {}".format(db_output))
if instrument == "SPB":
loc = "SPB_DET_AGIPD1M-1"
dinstance = "AGIPD1M1"
karabo_id_control = "SPB_IRU_AGIPD1M1"
else:
loc = "MID_DET_AGIPD1M-1"
dinstance = "AGIPD1M2"
karabo_id_control = "MID_EXP_AGIPD1M1"
cal_db_interface = get_random_db_interface(cal_db_interface)
# these lines can usually stay as is
fbase = "{}/{{}}/RAW-{{}}-AGIPD{{:02d}}-S{{:05d}}.h5".format(in_folder)
gains = np.arange(3)
run, prop, seq = run_prop_seq_from_path(in_folder)
logger = InfluxLogger(detector="AGIPD", instrument=instrument, mem_cells=mem_cells,
notebook=get_notebook_name(), proposal=prop)
# extract the memory cells and acquisition rate from
# the file of the first module, first sequence and first run
channel = 0
fname = fbase.format(runs[0], runs[0].upper(), channel, sequences[0])
if acqrate == 0.:
acqrate = get_acq_rate((fname, loc, channel))
if mem_cells == 0:
cells = get_num_cells(fname, loc, channel)
mem_cells = cells # avoid setting twice
IL_MODE = interlaced
max_cells = mem_cells if not interlaced else mem_cells*2
memory_cells = mem_cells
print("Interlaced mode: {}".format(IL_MODE))
cells = np.arange(max_cells)
print(f"Acquisition rate and memory cells set from file {fname} are "
f"{acqrate} MHz and {max_cells}, respectively")
peak_range = np.reshape(peak_range,(4,2))
peak_width_range = np.reshape(peak_width_range,(4,2))
peak_width_lim = np.reshape(peak_width_lim,(2,2))
peak_norm_range = [None if x == -1 else x for x in peak_norm_range]
peak_norm_range = np.reshape(peak_norm_range,(4,2))
module = modules[0]
```
%% Cell type:code id: tags:
``` python
control_fname = f'{in_folder}/{runs[0]}/RAW-{runs[0].upper()}-{karabo_da_control}-S00000.h5'
if "{" in h5path_ctrl:
h5path_ctrl = h5path_ctrl.format(karabo_id_control)
if gain_setting == 0.1:
if creation_time.replace(tzinfo=None) < dateutil.parser.parse('2020-01-31'):
print("Set gain-setting to None for runs taken before 2020-01-31")
gain_setting = None
else:
try:
gain_setting = get_gain_setting(control_fname, h5path_ctrl)
except Exception as e:
print(f'Error while reading gain setting from: \n{control_fname}')
print(e)
print("Gain setting is not found in the control information")
print("Data will not be processed")
sequences = []
print(f"Gain setting: {gain_setting}")
if bias_voltage == 0:
# Read the bias voltage from files, if recorded.
# If not available, make use of the historical voltage the detector is running at
control_filename = f'{image_data_path}/r{run:04d}/RAW-R{run:04d}-{karabo_da_control}-S00000.h5'
bias_voltage = get_bias_voltage(control_filename, karabo_id_control)
bias_voltage = bias_voltage if bias_voltage is not None else 300
print(f"Bias voltage: {bias_voltage}V")
```
%% Cell type:markdown id: tags:
For the characterization offset maps for each module are needed. The are read in either locally or through the XFEL calibration database.
%% Cell type:code id: tags:
``` python
from dateutil import parser
offset_g = {}
noise_g = {}
thresholds_g = {}
pc_g = {}
if not db_input:
print("Offset, noise and thresholds have been read in from: {}".format(offset_store))
store_file = h5py.File(offset_store, "r")
for i in modules:
qm = "Q{}M{}".format(i//4+1, i%4+1)
offset_g[qm] = np.array(store_file["{}/Offset/0/data".format(qm)])
noise_g[qm] = np.array(store_file["{}/Noise/0/data".format(qm)])
thresholds_g[qm] = np.array(store_file["{}/Threshold/0/data".format(qm)])
store_file.close()
else:
print("Offset, noise and thresholds have been read in from calibration database:")
first_ex = True
for i in modules:
qm = "Q{}M{}".format(i//4+1, i%4+1)
metadata = ConstantMetaData()
offset = Constants.AGIPD.Offset()
metadata.calibration_constant = offset
det = getattr(Detectors, dinstance)
# set the operating condition
condition = Conditions.Dark.AGIPD(memory_cells=max_cells, bias_voltage=bias_voltage,
acquisition_rate=acqrate, gain_setting=gain_setting)
metadata.detector_condition = condition
# specify the a version for this constant
if creation_time is None:
metadata.calibration_constant_version = Versions.Now(device=getattr(det, qm))
else:
metadata.calibration_constant_version = Versions.Timespan(device=getattr(det, qm), start=creation_time)
metadata.retrieve(cal_db_interface, when=creation_time.isoformat(), timeout=300000)
offset_g[qm] = offset.data
if first_ex:
print("Offset map was injected on: {}".format(metadata.calibration_constant_version.begin_at))
metadata = ConstantMetaData()
noise = Constants.AGIPD.Noise()
metadata.calibration_constant = noise
# set the operating condition
condition = Conditions.Dark.AGIPD(memory_cells=max_cells, bias_voltage=bias_voltage,
acquisition_rate=acqrate, gain_setting=gain_setting)
metadata.detector_condition = condition
# specify the a version for this constant
if creation_time is None:
metadata.calibration_constant_version = Versions.Now(device=getattr(det, qm))
else:
metadata.calibration_constant_version = Versions.Timespan(device=getattr(det, qm), start=creation_time)
metadata.retrieve(cal_db_interface, when=creation_time.isoformat(), timeout=300000)
noise_g[qm] = noise.data
if first_ex:
print("Noise map was injected on: {}".format(metadata.calibration_constant_version.begin_at))
metadata = ConstantMetaData()
thresholds = Constants.AGIPD.ThresholdsDark()
metadata.calibration_constant = thresholds
# set the operating condition
condition = Conditions.Dark.AGIPD(memory_cells=max_cells, bias_voltage=bias_voltage,
acquisition_rate=acqrate, gain_setting=gain_setting)
metadata.detector_condition = condition
# specify the a version for this constant
if creation_time is None:
metadata.calibration_constant_version = Versions.Now(device=getattr(det, qm))
else:
metadata.calibration_constant_version = Versions.Timespan(device=getattr(det, qm), start=creation_time)
metadata.retrieve(cal_db_interface, when=creation_time.isoformat(), timeout=300000)
thresholds_g[qm] = thresholds.data
if first_ex:
print("Threshold map was injected on: {}".format(metadata.calibration_constant_version.begin_at))
metadata = ConstantMetaData()
pc = Constants.AGIPD.SlopesPC()
metadata.calibration_constant = pc
# set the operating condition
condition = Conditions.Dark.AGIPD(memory_cells=max_cells, bias_voltage=bias_voltage,
acquisition_rate=acqrate, gain_setting=gain_setting)
metadata.detector_condition = condition
# specify the a version for this constant
if creation_time is None:
metadata.calibration_constant_version = Versions.Now(device=getattr(det, qm))
else:
metadata.calibration_constant_version = Versions.Timespan(device=getattr(det, qm), start=creation_time)
metadata.retrieve(cal_db_interface, when=creation_time.isoformat(), timeout=300000)
pc_g[qm] = np.nanmedian(pc.data[0,...])/pc.data
if first_ex:
print("PC map was injected on: {}".format(metadata.calibration_constant_version.begin_at))
first_ex = False
def idx_gen(batch_start, batch_size):
"""
This generator iterate across pixels and memory cells starting
from batch_start until batch_start+batch_size
"""
for c_idx in range(batch_start[0], batch_start[0]+batch_size[0]):
for x_idx in range(batch_start[1], batch_start[1]+batch_size[1]):
for y_idx in range(batch_start[2], batch_start[2]+batch_size[2]):
yield(c_idx, x_idx, y_idx)
```
%% Cell type:markdown id: tags:
## Initial peak estimates ##
First initial peak estimates need to be defined. This is done by inspecting histograms created from (a subset of) the offset-corrected data for peak locations and peak heights.
%% Cell type:code id: tags:
``` python
def hist_single_module(fbase, runs, sequences, sensor_size, memory_cells, block_size,
il_mode, limit_trains, profile, rawversion, instrument, inp):
""" This function calculates a per-pixel histogram for a single module
n_pixels_x = pixel_range[2]-pixel_range[0]
n_pixels_y = pixel_range[3]-pixel_range[1]
Runs and sequences give the data to calculate histogram from
"""
channel, offset, thresholds, pc, noise = inp
hist_data = {}
with h5py.File(f"{in_folder}/{hist_file_template.format(module)}", 'r') as hf:
hist_data['cellId'] = np.array(hf['cellId'][()])
hist_data['hRange'] = np.array(hf['hRange'][()])
hist_data['nBins'] = np.array(hf['nBins'][()])
import XFELDetAna.xfelpycaltools as xcal
import numpy as np
import h5py
from XFELDetAna.util import env
env.iprofile = profile
def baseline_correct_via_noise(d, noise, g, baseline_corr_noise_threshold=1000):
""" Correct baseline shifts by evaluating position of the noise peak
:param: d: the data to correct, should be a single image
:param noise: the mean noise for the cell id of `d`
:param g: gain array matching `d` array
Correction is done by identifying the left-most (significant) peak
in the histogram of `d` and shifting it to be centered on 0.
This is done via a continous wavelet transform (CWT), using a Ricker
wavelet.
Only high gain data is evaulated, and data larger than 50 ADU,
equivalent of roughly a 9 keV photon is ignored.
Two passes are executed: the first shift is accurate to 10 ADU and
will catch baseline shifts smaller then -2000 ADU. CWT is evaluated
for peaks of widths one, three and five time the noise.
The baseline is then shifted by the position of the summed CWT maximum.
In a second pass histogram is evaluated within a range of
+- 5*noise of the initial shift value, for peak of width noise.
Baseline shifts larger than the maximum threshold or positive shifts
larger 10 are discarded, and the original data is returned, otherwise
the shift corrected data is returned.
"""
import copy
from scipy.signal import cwt, ricker
# we work on a copy to be able to filter values by setting them to
# np.nan
dd = copy.copy(d)
dd[g != 0] = np.nan # only high gain data
dd[dd > 50] = np.nan # only noise data
h, e = np.histogram(dd, bins=210, range=(-2000, 100))
c = (e[1:] + e[:-1]) / 2
if cell_range == [0,0]:
cell_range[1] = hist_data['cellId'].shape[0]
try:
cwtmatr = cwt(h, ricker, [noise, 3. * noise, 5. * noise])
except:
return d
cwtall = np.sum(cwtmatr, axis=0)
marg = np.argmax(cwtall)
pc = c[marg]
high_res_range = (dd > pc - 5 * noise) & (dd < pc + 5 * noise)
dd[~high_res_range] = np.nan
h, e = np.histogram(dd, bins=200,
range=(pc - 5 * noise, pc + 5 * noise))
c = (e[1:] + e[:-1]) / 2
try:
cwtmatr = cwt(h, ricker, [noise, ])
except:
return d
marg = np.argmax(cwtmatr)
pc = c[marg]
# too large shift to be easily decernable via noise
if pc > 10 or pc < -baseline_corr_noise_threshold:
return d
return d - pc
# function needs to be inline for parallell processing
def read_fun(filename, channel):
""" A reader function used by pyDetLib
"""
infile = h5py.File(filename, "r", driver="core")
if rawversion == 2:
count = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/count".format(instrument, channel)])
first = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/first".format(instrument, channel)])
last_index = int(first[count != 0][-1]+count[count != 0][-1])
first_index = int(first[count != 0][0])
else:
status = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/status".format(instrument, channel)])
if np.count_nonzero(status != 0) == 0:
return
last = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/last".format(instrument, channel)])
last_index = int(last[status != 0][-1])
first_index = int(last[status != 0][0])
if limit_trains is not None:
last_index = min(limit_trains*memory_cells+first_index, last_index)
im = np.array(infile["/INSTRUMENT/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/data".format(instrument, channel)][first_index:last_index,...])
carr = infile["/INSTRUMENT/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/cellId".format(instrument, channel)][first_index:last_index]
cells = np.squeeze(np.array(carr))
infile.close()
if il_mode:
ga = im[1::2, 0, ...]
im = im[0::2, 0, ...].astype(np.float32)
else:
ga = im[:, 1, ...]
im = im[:, 0, ...].astype(np.float32)
if max_bins == 0:
max_bins = hist_data['nBins']
im = np.rollaxis(im, 2)
im = np.rollaxis(im, 2, 1)
hist_data['cellId'] = hist_data['cellId'][cell_range[0]:cell_range[1]]
hist_data['hist'] = np.array(hf['hist'][cell_range[0]:cell_range[1], :max_bins, :])
ga = np.rollaxis(ga, 2)
ga = np.rollaxis(ga, 2, 1)
return im, ga, cells
offset_cor = xcal.OffsetCorrection(sensor_size,
offset,
nCells=memory_cells,
blockSize=block_size,
gains=[0,1,2])
offset_cor.mapper = offset_cor._view.map_sync
offset_cor.debug() # force non-parallel processing since outer function will run concurrently
hist_calc = xcal.HistogramCalculator(sensor_size,
bins=4000,
range=(-4000, 8000),
blockSize=block_size)
hist_calc.mapper = hist_calc._view.map_sync
hist_calc.debug() # force non-parallel processing since outer function will run concurrently
for run in runs:
for seq in sequences:
fname = fbase.format(run, run.upper(), channel, seq)
d, ga, c = read_fun(fname, channel)
vidx = (c < offset.shape[2]) & (c < thresholds.shape[2])
c = c[vidx]
d = d[:,:,vidx]
ga = ga[:,:,vidx]
# we need to do proper gain thresholding
g = np.zeros(ga.shape, np.uint8)
g[...] = 2
g[ga < thresholds[...,c,1]] = 1
g[ga < thresholds[...,c,0]] = 0
d = offset_cor.correct(d, cellTable=c, gainMap=g)
for i in range(d.shape[2]):
mn_noise = np.nanmean(noise[...,c[i]])
d[...,i] = baseline_correct_via_noise(d[...,i],
mn_noise,
g[..., i])
d *= np.moveaxis(pc[c,...], 0, 2)
hist_calc.fill(d)
h, e, c, _ = hist_calc.get()
return h, e, c
inp = []
for i in modules:
qm = "Q{}M{}".format(i//4+1, i%4+1)
inp.append((i, offset_g[qm], thresholds_g[qm], pc_g[qm][0,...], noise_g[qm][...,0]))
p = partial(hist_single_module, fbase, runs, sequences,
sensor_size, memory_cells, block_size, IL_MODE, limit_trains, profile, rawversion, instrument)
res_uncorr = list(map(p, inp))
```
n_cells = cell_range[1]-cell_range[0]
hist_data['hist'] = hist_data['hist'].reshape(n_cells, max_bins, 512, 128)
hist_data['hist'] = hist_data['hist'][:,:,pixel_range[0]:pixel_range[2],pixel_range[1]:pixel_range[3]]
%% Cell type:code id: tags:
print(f'Data shape {hist_data["hist"].shape}')
``` python
d = []
qms = []
for i, r in enumerate(res_uncorr):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
qms.append(qm)
h, e, c = r
d.append({
'x': c,
'y': h,
'drawstyle': 'steps-mid'
})
fig = xana.simplePlot(d, y_log=False,
figsize="2col",
aspect=2,
x_range=(-50, 500),
x_label="Intensity (ADU)",
y_label="Counts")
bin_edges = np.linspace(hist_data['hRange'][0], hist_data['hRange'][1], int(hist_data['nBins']+1))
x = (bin_edges[1:] + bin_edges[:-1])[:max_bins] * 0.5
batches = []
for c_idx in range(0, n_cells, batch_size[0]):
for x_idx in range(0, n_pixels_x, batch_size[1]):
for y_idx in range(0, n_pixels_y, batch_size[2]):
batches.append([c_idx,x_idx,y_idx])
fig.savefig("{}/FF_module_{}_peak_pos.png".format(out_folder, ",".join(qms)))
print(f'Number of batches {len(batches)}')
```
%% Cell type:code id: tags:
``` python
# these should be quite stable
def fit_batch(batch_start):
current_result = {}
prev = None
for c_idx, x_idx, y_idx in idx_gen(batch_start, batch_size):
try:
y = hist_data['hist'][c_idx, :, x_idx, y_idx]
peak_estimates = [0, 55, 105, 155]
peak_heights = [5e7, 5e6, 1e6, 5e5]
peak_sigma = [5., 5.,5., 5.,]
if prev is None:
prev, _ = get_starting_parameters(x, y, peak_range, n_peaks=n_peaks_fit)
print("Using the following peak estimates: {}".format(peak_estimates))
if fit_range == [0, 0]:
frange = (prev[f'g0mean']-2*prev[f'g0sigma'],
prev[f'g{n_peaks_fit-1}mean'] + prev[f'g{n_peaks_fit-1}sigma'])
else:
frange = fit_range
set_par_limits(prev, peak_range, peak_norm_range,
peak_width_range, n_peaks_fit)
minuit = fit_n_peaks(x, y, prev, frange,
do_minos=do_minos, n_peaks=n_peaks_fit,
fix_d01=fix_peaks)
ndof = np.rint(frange[1]-frange[0])-len(minuit.args)
current_result['chi2_ndof'] = minuit.fval/ndof
current_result.update(minuit.fitarg)
current_result.update(minuit.get_fmin())
fit_result['chi2_ndof'][c_idx, x_idx, y_idx] = current_result['chi2_ndof']
fit_result['g0mean'][c_idx, x_idx, y_idx] = current_result['g0mean']
fit_result['g1mean'][c_idx, x_idx, y_idx] = current_result['g1mean']
fit_result['g2mean'][c_idx, x_idx, y_idx] = current_result['g2mean']
fit_result['g3mean'][c_idx, x_idx, y_idx] = current_result['g3mean']
for key in minuit.fitarg.keys():
if key in fit_result:
fit_result[key][c_idx, x_idx, y_idx] = minuit.fitarg[key]
fit_result['mask'][c_idx, x_idx, y_idx] = get_mask(current_result,
peak_lim,
d0_lim, chi2_lim,
peak_width_lim)
except Exception as e:
fit_result['mask'][c_idx, x_idx,
y_idx] = BadPixelsFF.FIT_FAILED.value
print(c_idx, x_idx, y_idx, e, traceback.format_exc())
if fit_result['mask'][c_idx, x_idx, y_idx] == 0:
prev = minuit.fitarg
else:
prev = None
```
%% Cell type:markdown id: tags:
## Calculate relative gain per module ##
# Single fit ##
Using the so obtained estimates, we calculate the relative gain per module. For this we use the weighted average method implemented in pyDetLib.
Left plot shows starting parameters for fitting. Right plot shows result of the fit. Errors are evaluated with minos.
%% Cell type:code id: tags:
``` python
block_size = [64, 64]
def relgain_single_module(fbase, runs, sequences, peak_estimates,
peak_heights, peak_sigma, memory_cells, sensor_size,
block_size, il_mode, profile, limit_trains_eval, rawversion, instrument, inp):
""" A function for calculated the relative gain of a single AGIPD module
"""
# import needed inline for parallel processing
import XFELDetAna.xfelpycaltools as xcal
import numpy as np
import h5py
from XFELDetAna.util import env
env.iprofile = profile
channel, offset, thresholds, noise, pc = inp
def baseline_correct_via_noise(d, noise, g, baseline_corr_noise_threshold=1000):
""" Correct baseline shifts by evaluating position of the noise peak
:param: d: the data to correct, should be a single image
:param noise: the mean noise for the cell id of `d`
:param g: gain array matching `d` array
Correction is done by identifying the left-most (significant) peak
in the histogram of `d` and shifting it to be centered on 0.
This is done via a continous wavelet transform (CWT), using a Ricker
wavelet.
Only high gain data is evaulated, and data larger than 50 ADU,
equivalent of roughly a 9 keV photon is ignored.
Two passes are executed: the first shift is accurate to 10 ADU and
will catch baseline shifts smaller then -2000 ADU. CWT is evaluated
for peaks of widths one, three and five time the noise.
The baseline is then shifted by the position of the summed CWT maximum.
In a second pass histogram is evaluated within a range of
+- 5*noise of the initial shift value, for peak of width noise.
Baseline shifts larger than the maximum threshold or positive shifts
larger 10 are discarded, and the original data is returned, otherwise
the shift corrected data is returned.
"""
import copy
from scipy.signal import cwt, ricker
# we work on a copy to be able to filter values by setting them to
# np.nan
dd = copy.copy(d)
dd[g != 0] = np.nan # only high gain data
dd[dd > 50] = np.nan # only noise data
h, e = np.histogram(dd, bins=210, range=(-2000, 100))
c = (e[1:] + e[:-1]) / 2
hist = hist_data['hist'][1,:,1, 1]
prev, shapes = get_starting_parameters(x, hist, peak_range, n_peaks=n_peaks_fit)
try:
cwtmatr = cwt(h, ricker, [noise, 3. * noise, 5. * noise])
except:
return d
cwtall = np.sum(cwtmatr, axis=0)
marg = np.argmax(cwtall)
pc = c[marg]
high_res_range = (dd > pc - 5 * noise) & (dd < pc + 5 * noise)
dd[~high_res_range] = np.nan
h, e = np.histogram(dd, bins=200,
range=(pc - 5 * noise, pc + 5 * noise))
c = (e[1:] + e[:-1]) / 2
try:
cwtmatr = cwt(h, ricker, [noise, ])
except:
return d
marg = np.argmax(cwtmatr)
pc = c[marg]
# too large shift to be easily decernable via noise
if pc > 10 or pc < -baseline_corr_noise_threshold:
return d
return d - pc
# function needs to be inline for parallell processing
def read_fun(filename, channel):
""" A reader function used by pyDetLib
"""
infile = h5py.File(filename, "r", driver="core")
if rawversion == 2:
count = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/count".format(instrument, channel)])
first = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/first".format(instrument, channel)])
last_index = int(first[count != 0][-1]+count[count != 0][-1])
first_index = int(first[count != 0][0])
else:
status = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/status".format(instrument, channel)])
if np.count_nonzero(status != 0) == 0:
return
last = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/last".format(instrument, channel)])
last_index = int(last[status != 0][-1])
first_index = int(last[status != 0][0])
if limit_trains is not None:
last_index = min(limit_trains*memory_cells+first_index, last_index)
im = np.array(infile["/INSTRUMENT/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/data".format(instrument, channel)][first_index:last_index,...])
carr = infile["/INSTRUMENT/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/cellId".format(instrument, channel)][first_index:last_index]
cells = np.squeeze(np.array(carr))
infile.close()
if il_mode:
ga = im[1::2, 0, ...]
im = im[0::2, 0, ...].astype(np.float32)
else:
ga = im[:, 1, ...]
im = im[:, 0, ...].astype(np.float32)
im = np.rollaxis(im, 2)
im = np.rollaxis(im, 2, 1)
if fit_range == [0, 0]:
frange = (prev[f'g0mean']-2*prev[f'g0sigma'],
prev[f'g3mean'] + prev[f'g3sigma'])
else:
frange = fit_range
ga = np.rollaxis(ga, 2)
ga = np.rollaxis(ga, 2, 1)
return im, ga, cells
offset_cor = xcal.OffsetCorrection(sensor_size, offset, nCells=memory_cells,
blockSize=block_size, gains=[0,1,2])
offset_cor.mapper = offset_cor._view.map_sync
rel_gain = xcal.GainMapCalculator(sensor_size,
peak_estimates,
peak_sigma,
nCells=memory_cells,
peakHeights = peak_heights,
noiseMap=noise,
deviationType="relative")
rel_gain.mapper = rel_gain._view.map_sync
for run in runs:
for seq in sequences:
fname = fbase.format(run, run.upper(), channel, seq)
d, ga, c = read_fun(fname, channel)
# we need to do proper gain thresholding
vidx = (c < offset.shape[2]) & (c < thresholds.shape[2])
c = c[vidx]
d = d[:,:,vidx]
ga = ga[:,:,vidx]
# we need to do proper gain thresholding
g = np.zeros(ga.shape, np.uint8)
g[...] = 2
g[ga < thresholds[...,c,1]] = 1
g[ga < thresholds[...,c,0]] = 0
d = offset_cor.correct(d, cellTable=c, gainMap=g)
for i in range(d.shape[2]):
mn_noise = np.nanmean(noise[...,c[i]])
d[...,i] = baseline_correct_via_noise(d[...,i],
mn_noise,
g[..., i])
d *= np.moveaxis(pc[c,...], 0, 2)
rel_gain.fill(d, cellTable=c)
gain_map = rel_gain.get()
gain_map_func = rel_gain.getUsingFunc(inverse=False)
pks, stds = rel_gain.getRawPeaks()
return gain_map, pks, stds, gain_map_func
inp = []
for i in modules:
qm = "Q{}M{}".format(i//4+1, i%4+1)
inp.append((i, offset_g[qm], thresholds_g[qm], noise_g[qm][...,0], pc_g[qm][0,...]))
start = datetime.now()
p = partial(relgain_single_module, fbase, runs, sequences,
peak_estimates, peak_heights, peak_sigma, memory_cells,
sensor_size, block_size, IL_MODE, profile, limit_trains_eval, rawversion, instrument)
res_gain = list(map(p, inp)) # don't run concurently as inner function are parelllized
duration = (datetime.now()-start).total_seconds()
logger.runtime_summary_entry(success=True, runtime=duration)
logger.send()
set_par_limits(prev, peak_range, peak_norm_range,
peak_width_range, n_peaks=n_peaks_fit)
minuit = fit_n_peaks(x, hist, prev, frange,
do_minos=True, n_peaks=n_peaks_fit,
fix_d01=fix_peaks)
res = minuit.fitarg
err = minuit.errors
p = minuit.args
ya = np.arange(0,1e4)
y = gaussian_sum(x,n_peaks_fit, *p)
peak_colors = ['g', 'y', 'b', 'orange']
d = [{'x': x,
'y': hist.astype(np.float64),
'y_err': np.sqrt(hist),
'drawstyle': 'bars',
'errorstyle': 'bars',
'ecolor': 'navy',
'errorcoarsing': 3,
'label': 'X-ray Data'
},
{'x': x,
'y': y,
'y2': (hist-y)/np.sqrt(hist),
'color': 'red',
'drawstyle':'line',
'drawstyle2': 'steps-mid',
'label': 'Fit'
},
]
for i in range(n_peaks_fit):
d.append({'x': x,
'y': gaussian_sum(x, 1, res[f'g{i}n'], res[f'g{i}mean'], res[f'g{i}sigma']),
'drawstyle':'line',
'color': peak_colors[i],
})
d.append({'x': np.full_like(ya, res[f'g{i}mean']),
'y': ya,
'drawstyle': 'line',
'linestyle': 'dashed',
'color': peak_colors[i],
'label': f'peak {i} = {res[f"g{i}mean"]:0.1f} $ \pm $ {err[f"g{i}mean"]:0.2f} ADU' })
fig = plt.figure(figsize=(16,7))
ax = fig.add_subplot(121)
for i, shape in enumerate(shapes):
idx = shape[3]
plt.errorbar(x[idx], hist[idx], np.sqrt(hist[idx]),
marker='+', ls=''
)
yg = gaussian(x[idx], *shape[:3])
l = f'Peak {i}: {shape[1]:0.1f} $ \pm $ {shape[2]:0.2f} ADU'
plt.plot(x[idx], yg, label=l)
plt.grid(True)
plt.xlabel("Signal [ADU]")
plt.ylabel("Counts")
plt.legend(ncol=2)
ax2 = fig.add_subplot(122)
fig2 = xana.simplePlot(d,
use_axis=ax2,
x_label='Signal [ADU]',
y_label='Counts',
secondpanel=True, y_log=False,
x_range=(frange[0], frange[1]),
y_range=(1., np.max(hist)*1.6),
legend='top-left-frame-ncol2')
print (minuit.get_fmin())
minuit.print_matrix()
print(minuit.get_param_states())
```
%% Cell type:markdown id: tags:
Finally, we inspect the results, by plotting the number of entries, peak locations and resulting gain maps for each peak. In the course of doing so, we identify bad pixels by either having 0 entries for a peak, or having `nan` values for the peak location.
%% Cell type:code id: tags:
``` python
gain_m = {}
flatsff = {}
gainoff_g = {}
entries_g = {}
peaks_g = {}
mask_g = {}
cell_to_preview = 4
masks_eval_peaks = [1, 2]
global_eval_peaks = [1]
global_meds = {}
for i, r in enumerate(res_gain):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
gain, pks, std, gfunc = r
gains, errors, chisq, valid, max_dev, stats = gfunc
_, entries, stds, sow = gain
gain_db = np.zeros((gains.shape[0], gains.shape[1], memory_cells))
gain_mdb = np.zeros((gains.shape[0], gains.shape[1], memory_cells))
entries_db = np.zeros((gains.shape[0], gains.shape[1], memory_cells, 5))
gainoff_db = np.zeros((gains.shape[0], gains.shape[1], memory_cells))
mask_db = np.zeros((gains.shape[0], gains.shape[1], memory_cells), np.uint32)
gainoff_g[qm] = gainoff_db
gain_m[qm] = gain_mdb
entries_g[qm] = entries_db
peaks_g[qm] = pks
# create a mask for unregular pixels
# first bit set if first peak has nan entries
for pk in masks_eval_peaks:
mask_db[~(np.isfinite(gain_mdb) & np.isfinite(gainoff_db))] |= BadPixels.FF_GAIN_EVAL_ERROR.value
mask_db[(np.abs(1-gain_mdb/np.nanmedian(gain_mdb) > deviation_threshold) )] |= BadPixels.FF_GAIN_DEVIATION.value
# second bit set if entries are 0 for first peak
mask_db[entries[...,1] == 0] |= BadPixels.FF_NO_ENTRIES.value
zero_oc = np.count_nonzero((entries > 0).astype(np.int), axis=3)
mask_db[zero_oc <= len(peak_estimates)-2] |= BadPixels.FF_NO_ENTRIES.value
# third bit set if entries of a given adc show significant noise
stds = []
for ii in range(8):
for jj in range(8):
stds.append(np.std(entries_db[ii*16:(ii+1)*16,jj*64+2:(jj+1)*64-2,:,1], axis=(0,1)))
avg_stds = np.median(np.array(stds), axis=0)
for ii in range(8):
for jj in range(8):
std = np.std(entries_db[ii*16:(ii+1)*16,jj*64+2:(jj+1)*64-2,:,1], axis=(0,1))
if np.any(std > 5*avg_stds):
mask_db[ii*16:(ii+1)*16,jj*64:(jj+1)*64,std > 5*avg_stds] |= BadPixels.FF_GAIN_DEVIATION
mask_g[qm] = mask_db
flat = np.zeros((gains.shape[0], gains.shape[1], memory_cells, 3))
for j in range(2,len(peak_estimates)):
flat[...,j-2] = np.mean(entries[...,j]/np.mean(entries[...,j]))
flat = np.mean(flat, axis=3)
#flat_db = np.zeros((gains.shape[0], gains.shape[1], memory_cells))
#for j in range(2):
# flat_db[...,j::2] = flat
flatsff[qm] = flat
global_meds[qm] = np.nanmedian(pks[...,global_eval_peaks][np.max(mask_db, axis=2) != 0])
# Allocate memory for fit results
fit_result = {}
keys = list(minuit.fitarg.keys())
keys = [x for x in keys if 'limit_' not in x and 'fix_' not in x]
keys += ['chi2_ndof', 'mask', 'gain']
for key in keys:
dtype = 'f4'
if key == 'mask':
dtype = 'i4'
fit_result[key] = sharedmem.empty([n_cells, n_pixels_x, n_pixels_y], dtype=dtype)
```
%% Cell type:markdown id: tags:
## Evaluated peak locations ##
The following plot shows the evaluated peak locations for each peak. Peak ids increase downward:
%% Cell type:code id: tags:
``` python
from mpl_toolkits.axes_grid1 import AxesGrid
cell_to_preview = 4
for qm, data in peaks_g.items():
print("The module shown is: {}".format(qm))
print("The cell shown is: {}".format(cell_to_preview))
print("Evaluated peaks: {}".format(data.shape[-1]))
fig = plt.figure(figsize=(15,15))
grid = AxesGrid(fig, 111,
nrows_ncols=(data.shape[-1], 1),
axes_pad=0.1,
share_all=True,
label_mode="L",
cbar_location="right",
cbar_mode="each",
cbar_size="7%",
cbar_pad="2%")
for j in range(data.shape[-1]):
d = data[...,cell_to_preview,j]
d[~np.isfinite(d)] = 0
im = grid[j].imshow(d, interpolation="nearest", vmin=0.9*np.nanmedian(d), vmax=max(1.1*np.nanmedian(d), 50))
cb = grid.cbar_axes[j].colorbar(im)
cb.set_label_text("Peak location (ADU)")
# Perform fitting
with Pool() as pool:
const_out = pool.map(fit_batch, batches)
```
%% Cell type:markdown id: tags:
## Gain Slopes And Offsets ##
The gain slopes and offsets are deduced by fitting a linear function $y = mx + b$ to the evaluated peaks. Gains are normalized to all pixels and all memory cells of a module by using the average peak locations a $x$ values. Thus slopes centered around 1 are to be expected.
%% Cell type:code id: tags:
``` python
for i, r in enumerate(res_gain):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
gain, pks, std, gfunc = r
gains, errors, chisq, valid, max_dev, stats = gfunc
_, entries, stds, sow = gain
fig = plt.figure(figsize=(15,8))
ax = fig.add_subplot(211)
im = ax.imshow(gains[...,0], interpolation="nearest", vmin=0.85, vmax=1.15)
cb = fig.colorbar(im)
cb.set_label("Gain slope m")
fig.savefig("{}/gain_m_mod{}.png".format(out_folder, qm))
ax = fig.add_subplot(212)
ax.hist(gains[...,0].flatten(), range=(0.5, 1.5), bins=100)
ax.set_ylabel("Occurences")
ax.set_xlabel("Gain slope m")
ax.semilogy()
# Evaluate bad pixels
fit_result['gain'] = (fit_result['g1mean'] - fit_result['g0mean'])/photon_energy
# Calculate histogram width and evaluate cut
h_sums = np.sum(hist_data['hist'], axis=1)
hist_norm = hist_data['hist'] / h_sums[:, None, :, :]
hist_mean = np.sum(hist_norm[:, :max_bins, ...] *
x[None, :, None, None], axis=1)
hist_sqr = (x[None, :, None, None] - hist_mean[:, None, ...])**2
hist_std = np.sqrt(np.sum(hist_norm[:, :max_bins, ...] * hist_sqr, axis=1))
fit_result['mask'][hist_std<intensity_lim] |= BadPixelsFF.NO_ENTRY.value
# Bad pixel on gain deviation
gains = np.copy(fit_result['gain'])
gains[fit_result['mask']>0] = np.nan
gain_mean = np.nanmean(gains, axis=(1,2))
fit_result['mask'][fit_result['gain'] > gain_mean[:,None,None]*gain_lim[1] ] |= BadPixelsFF.GAIN_DEVIATION.value
fit_result['mask'][fit_result['gain'] < gain_mean[:,None,None]*gain_lim[0] ] |= BadPixelsFF.GAIN_DEVIATION.value
```
%% Cell type:markdown id: tags:
The gain offsets b are expected to be centered around 0 and minimal, as data is already offset substracted.
%% Cell type:code id: tags:
``` python
for i, r in enumerate(res_gain):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
gain, pks, std, gfunc = r
gains, errors, chisq, valid, max_dev, stats = gfunc
_, entries, stds, sow = gain
fig = plt.figure(figsize=(15,8))
ax = fig.add_subplot(211)
im = ax.imshow(gains[...,1], interpolation="nearest", vmin=-25, vmax=25)
cb = fig.colorbar(im)
cb.set_label("Gain offset b")
fig.savefig("{}/gain_b_mod{}.png".format(out_folder, qm))
ax = fig.add_subplot(212)
ax.hist(gains[...,1].flatten(), range=(-25, 25), bins=100)
ax.set_ylabel("Occurences")
ax.set_xlabel("Gain offset b")
ax.semilogy()
# Save fit results
os.makedirs(out_folder, exist_ok=True)
out_name = f'{out_folder}/fits_m{module:02d}.h5'
print(f'Save to file: {out_name}')
save_dict_to_hdf5({'data': fit_result}, out_name)
```
%% Cell type:markdown id: tags:
## Bad Pixels ##
Bad pixels are defined as any of the following criteria:
* the gain evaluation did not converge, or location of noise peak deviates by more than than the deviation threshold from the median location.
* the number of entries for the noise peak in 0.
* the standard deviation of the number of entries is larger than 5 times the standard deviation for the ASIC the pixel is on.
## Summary across cells ##
%% Cell type:code id: tags:
``` python
print("The deviation threshold is: {}".format(deviation_threshold))
labels = ['Noise peak [ADU]',
'First photon peak [ADU]',
f"gain [ADU/keV], $\gamma$={photon_energy} [keV]",
"$\chi^2$/nDOF",
'Fraction of bad pixels']
for i, key in enumerate(['g0mean', 'g1mean', 'gain', 'chi2_ndof', 'mask']):
fig = plt.figure(figsize=(20,5))
ax = fig.add_subplot(121)
data = fit_result[key]
if key == 'mask':
data = data>0
vmin, vmax = [0, 1]
else:
vmin, vmax = get_range(data, 5)
_ = heatmapPlot(np.mean(data, axis=0).T,
add_panels=False, cmap='viridis', use_axis=ax,
vmin=vmin, vmax=vmax, lut_label=labels[i] )
if key != 'mask':
vmin, vmax = get_range(data, 7)
ax1 = fig.add_subplot(122)
_ = xana.histPlot(ax1,data.flatten(),
bins=45,range=[vmin, vmax],
log=True,color='red',histtype='stepfilled')
plt.xlabel(labels[i])
plt.ylabel("Counts")
```
%% Cell type:code id: tags:
%% Cell type:markdown id: tags:
``` python
for i, r in enumerate(res_gain):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
mask_db = mask_g[qm]
fig = plt.figure(figsize=(15,8))
ax = fig.add_subplot(211)
im = ax.imshow(np.log2(mask_db[...,cell_to_preview]), interpolation="nearest", vmin=0, vmax=32)
cb = fig.colorbar(im)
cb.set_label("Mask value")
fig.savefig("{}/mask_mod{}.png".format(out_folder, qm))
ax = fig.add_subplot(212)
ax.hist(np.log2(mask_db.flatten()), range=(0, 32), bins=32, normed=True)
ax.set_ylabel("Occurences")
ax.set_xlabel("Mask value")
ax.semilogy()
```
## histograms of fit parameters ##
%% Cell type:code id: tags:
``` python
cols = {BadPixels.FF_GAIN_EVAL_ERROR.value: (BadPixels.FF_GAIN_EVAL_ERROR.name, '#FF000080'),
BadPixels.FF_GAIN_DEVIATION.value: (BadPixels.FF_GAIN_DEVIATION.name, '#0000FF80'),
BadPixels.FF_NO_ENTRIES.value: (BadPixels.FF_NO_ENTRIES.name, '#00FF0080'),
BadPixels.FF_GAIN_EVAL_ERROR.value |
BadPixels.FF_GAIN_DEVIATION.value: ('EVAL+DEV', '#DD00DD80'),
BadPixels.FF_GAIN_EVAL_ERROR.value |
BadPixels.FF_NO_ENTRIES.value: ('EVAL+NO_ENTRY', '#00DDDD80'),
BadPixels.FF_GAIN_DEVIATION.value |
BadPixels.FF_NO_ENTRIES.value: ('DEV+NO_ENTRY', '#DDDD0080'),
}
rebin = 32 if not high_res_badpix_3d else 2
gain = 0
for mod, data in mask_g.items():
plot_badpix_3d(data, cols, title=mod, rebin_fac=rebin)
fig = plt.figure(figsize=(10, 5))
ax0 = fig.add_subplot(111)
a = ax0.hist(hist_std.flatten(), bins=100, range=(0,100) )
ax0.plot([intensity_lim, intensity_lim], [0, np.nanmax(a[0])], linewidth=1.5, color='red' )
ax0.set_xlabel('Histogram width [ADU]', fontsize=14)
ax0.set_ylabel('Number of histograms', fontsize=14)
ax0.set_title(f'{hist_std[hist_std<intensity_lim].shape[0]} histograms below threshold in {intensity_lim} ADU',
fontsize=14, fontweight='bold')
ax0.grid()
plt.yscale('log')
```
%% Cell type:code id: tags:
``` python
if local_output:
ofile = "{}/agipd_gain_store_{}_modules_{}.h5".format(out_folder,
"_".join([str(r) for r in runs]),
"_".join([str(m) for m in modules]))
store_file = h5py.File(ofile, "w")
for i, r in enumerate(res_gain):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
gain, pks, std, gfunc = r
gains, errors, chisq, valid, max_dev, stats = gfunc
gainmap, entires, stds, sow = gain
store_file["/{}/Gain/0/data".format(qm)] = gains[...,0]
store_file["/{}/GainOffset/0/data".format(qm)] = gains[...,1]
store_file["/{}/Flat/0/data".format(qm)] = flatsff[qm]
store_file["/{}/Entries/0/data".format(qm)] = entires
store_file["/{}/BadPixels/0/data".format(qm)] = mask_g[qm]
store_file.close()
```
num_bins = int(frange[1] - frange[0])
fig = plt.figure(figsize=(16,5))
ax = fig.add_subplot(131)
_ = xana.histPlot(ax,fit_result['g1mean'].flatten(),
bins= num_bins,range=[frange[0] ,frange[1]],
log=True,color='red',histtype='stepfilled')
plt.xlabel("g1 mean [ADU]")
%% Cell type:code id: tags:
ax1 = fig.add_subplot(132)
_ = xana.histPlot(ax1,fit_result['g2mean'].flatten(),
# bins=45,range=[80 ,140],
bins= num_bins,range=[frange[0] ,frange[1]],
log=True,color='red',histtype='stepfilled')
plt.xlabel("g2 mean [ADU]")
``` python
proposal = list(filter(None, in_folder.strip('/').split('/')))[-2]
file_loc = proposal + ' ' + ' '.join(list(map(str,runs)))
ax2 = fig.add_subplot(133)
_ = xana.histPlot(ax2,fit_result['g3mean'].flatten(),
bins= num_bins,range=[frange[0] ,frange[1]],
log=True,color='red',histtype='stepfilled')
_ = plt.xlabel("g3 mean [ADU]")
```
%% Cell type:code id: tags:
``` python
if db_output:
for i, r in enumerate(res_gain):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
gain, pks, std, gfunc = r
gains, errors, chisq, valid, max_dev, stats = gfunc
gainmap, entires, stds, sow = gain
det = getattr(Detectors, dinstance)
device = getattr(det, qm)
# gains related
metadata = ConstantMetaData()
cgain = Constants.AGIPD.SlopesFF()
cgain.data = gains
metadata.calibration_constant = cgain
# set the operating condition
condition = Conditions.Illuminated.AGIPD(memory_cells, bias_voltage, 9.2,
pixels_x=512, pixels_y=128, beam_energy=None,
acquisition_rate=acqrate, gain_setting=gain_setting)
metadata.detector_condition = condition
# specify the a version for this constant
if creation_time is None:
metadata.calibration_constant_version = Versions.Now(device=getattr(det, qm))
else:
metadata.calibration_constant_version = Versions.Timespan(device=getattr(det, qm), start=creation_time)
fig = plt.figure(figsize=(16,5))
ax = fig.add_subplot(131)
_ = xana.histPlot(ax,fit_result['g0sigma'].flatten(),
bins=45,range=[0 ,50],
log=True,color='red',histtype='stepfilled')
plt.xlabel("g1 sigma [ADU]")
metadata.calibration_constant_version.raw_data_location = file_loc
metadata.send(cal_db_interface, timeout=300000)
ax1 = fig.add_subplot(132)
_ = xana.histPlot(ax1,fit_result['g1sigma'].flatten(),
bins=45,range=[0 ,50],
log=True,color='red',histtype='stepfilled')
plt.xlabel("g2 sigma [ADU]")
# bad pixels
metadata = ConstantMetaData()
bp = Constants.AGIPD.BadPixelsFF()
bp.data = mask_g[qm]
metadata.calibration_constant = bp
# set the operating condition
condition = Conditions.Illuminated.AGIPD(memory_cells, bias_voltage, 9.2,
pixels_x=512, pixels_y=128, beam_energy=None,
acquisition_rate=acqrate, gain_setting=gain_setting)
metadata.detector_condition = condition
# specify the a version for this constant
if creation_time is None:
metadata.calibration_constant_version = Versions.Now(device=getattr(det, qm))
else:
metadata.calibration_constant_version = Versions.Timespan(device=getattr(det, qm), start=creation_time)
metadata.calibration_constant_version.raw_data_location = file_loc
metadata.send(cal_db_interface, timeout=300000)
ax2 = fig.add_subplot(133)
_ = xana.histPlot(ax2,fit_result['g2sigma'].flatten(),
bins=45,range=[0 ,50],
log=True,color='red',histtype='stepfilled')
_ = plt.xlabel("g3 sigma [ADU]")
```
%% Cell type:markdown id: tags:
## Sanity check ##
## Summary across pixels ##
Finally, we perform a correction of the data used to derive the gain constants with said constants. We expected an improvement in peak FWHM, if constants have been deduced correctly.
Mean and median values are calculated across all pixels for each memory cell.
%% Cell type:code id: tags:
``` python
def hist_single_module(fbase, runs, sequences, il_mode, profile, limit_trains, memory_cells, rawversion, instrument, inp):
channel, offset, thresholds, relgain, noise, pc = inp
gain, pks, std, gfunc = relgain
gains, errors, chisq, valid, max_dev, stats = gfunc
import XFELDetAna.xfelpycaltools as xcal
import numpy as np
import h5py
import copy
from XFELDetAna.util import env
env.iprofile = profile
sensor_size = [128, 512]
block_size = sensor_size
def baseline_correct_via_noise(d, noise, g, baseline_corr_noise_threshold=1000):
""" Correct baseline shifts by evaluating position of the noise peak
:param: d: the data to correct, should be a single image
:param noise: the mean noise for the cell id of `d`
:param g: gain array matching `d` array
Correction is done by identifying the left-most (significant) peak
in the histogram of `d` and shifting it to be centered on 0.
This is done via a continous wavelet transform (CWT), using a Ricker
wavelet.
Only high gain data is evaulated, and data larger than 50 ADU,
equivalent of roughly a 9 keV photon is ignored.
Two passes are executed: the first shift is accurate to 10 ADU and
will catch baseline shifts smaller then -2000 ADU. CWT is evaluated
for peaks of widths one, three and five time the noise.
The baseline is then shifted by the position of the summed CWT maximum.
In a second pass histogram is evaluated within a range of
+- 5*noise of the initial shift value, for peak of width noise.
Baseline shifts larger than the maximum threshold or positive shifts
larger 10 are discarded, and the original data is returned, otherwise
the shift corrected data is returned.
"""
import copy
from scipy.signal import cwt, ricker
# we work on a copy to be able to filter values by setting them to
# np.nan
dd = copy.copy(d)
dd[g != 0] = np.nan # only high gain data
dd[dd > 50] = np.nan # only noise data
h, e = np.histogram(dd, bins=210, range=(-2000, 100))
c = (e[1:] + e[:-1]) / 2
def plot_error_band(key, x, ax):
try:
cwtmatr = cwt(h, ricker, [noise, 3. * noise, 5. * noise])
except:
return d
cwtall = np.sum(cwtmatr, axis=0)
marg = np.argmax(cwtall)
pc = c[marg]
high_res_range = (dd > pc - 5 * noise) & (dd < pc + 5 * noise)
dd[~high_res_range] = np.nan
h, e = np.histogram(dd, bins=200,
range=(pc - 5 * noise, pc + 5 * noise))
c = (e[1:] + e[:-1]) / 2
try:
cwtmatr = cwt(h, ricker, [noise, ])
except:
return d
marg = np.argmax(cwtmatr)
pc = c[marg]
# too large shift to be easily decernable via noise
if pc > 10 or pc < -baseline_corr_noise_threshold:
return d
return d - pc
def read_fun(filename, channel):
infile = h5py.File(filename, "r", driver="core")
if rawversion == 2:
count = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/count".format(instrument, channel)])
first = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/first".format(instrument, channel)])
last_index = int(first[count != 0][-1]+count[count != 0][-1])
first_index = int(first[count != 0][0])
else:
status = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/status".format(instrument, channel)])
if np.count_nonzero(status != 0) == 0:
return
last = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/last".format(instrument, channel)])
last_index = int(last[status != 0][-1])
first_index = int(last[status != 0][0])
if limit_trains is not None:
last_index = min(limit_trains*memory_cells+first_index, last_index)
im = np.array(infile["/INSTRUMENT/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/data".format(instrument, channel)][first_index:last_index,...])
carr = infile["/INSTRUMENT/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/cellId".format(instrument, channel)][first_index:last_index]
cells = np.squeeze(np.array(carr))
infile.close()
if il_mode:
ga = im[1::2, 0, ...]
im = im[0::2, 0, ...].astype(np.float32)
else:
ga = im[:, 1, ...]
im = im[:, 0, ...].astype(np.float32)
im = np.rollaxis(im, 2)
im = np.rollaxis(im, 2, 1)
ga = np.rollaxis(ga, 2)
ga = np.rollaxis(ga, 2, 1)
return im, ga, cells
offset_cor = xcal.OffsetCorrection(sensor_size, offset, nCells=memory_cells, blockSize=block_size, gains=[0,1,2])
offset_cor.debug()
hist_calc = xcal.HistogramCalculator(sensor_size, bins=2000, range=(0, 2000), blockSize=block_size)
hist_calc.debug()
hist_calc_uncorr = xcal.HistogramCalculator(sensor_size, bins=2000, range=(0, 2000), blockSize=block_size)
hist_calc_uncorr.debug()
for run in runs:
for seq in sequences[:2]:
cdata = np.copy(fit_result[key])
cdata[fit_result['mask']>0] = np.nan
fname = fbase.format(run, run.upper(), channel, seq)
mean = np.nanmean(cdata, axis=(1,2))
median = np.nanmedian(cdata, axis=(1,2))
std = np.nanstd(cdata, axis=(1,2))
mad = np.nanmedian(np.abs(cdata - median[:,None,None]), axis=(1,2))
d, ga, c = read_fun(fname, channel)
ax0 = fig.add_subplot(111)
ax0.plot(x, mean, 'k', color='#3F7F4C', label=" mean value ")
ax0.plot(x, median, 'o', color='red', label=" median value ")
ax0.fill_between(x, mean-std, mean+std,
alpha=0.6, edgecolor='#3F7F4C', facecolor='#7EFF99',
linewidth=1, linestyle='dashdot', antialiased=True,
label=" mean value $ \pm $ std ")
# we need to do proper gain thresholding
vidx = (c < offset.shape[2]) & (c < thresholds.shape[2])
c = c[vidx]
d = d[:,:,vidx]
ga = ga[:,:,vidx]
ax0.fill_between(x, median-mad, median+mad,
alpha=0.3, edgecolor='red', facecolor='red',
linewidth=1, linestyle='dashdot', antialiased=True,
label=" median value $ \pm $ mad ")
g = np.zeros(ga.shape, np.uint8)
g[...] = 2
if f'error_{key}' in fit_result:
cerr = np.copy(fit_result[f'error_{key}'])
cerr[fit_result['mask']>0] = np.nan
g[ga < thresholds[...,c,1]] = 1
g[ga < thresholds[...,c,0]] = 0
d = offset_cor.correct(d, cellTable=c, gainMap=g)
for i in range(d.shape[2]):
mn_noise = np.nanmean(noise[...,c[i]])
d[...,i] = baseline_correct_via_noise(d[...,i],
mn_noise,
g[..., i])
meanerr = np.nanmean(cerr, axis=(1,2))
ax0.fill_between(x, mean-meanerr, mean+meanerr,
alpha=0.6, edgecolor='#089FFF', facecolor='#089FFF',
linewidth=1, linestyle='dashdot', antialiased=True,
label=" mean fit error ")
d *= np.moveaxis(pc[c,...], 0, 2)
hist_calc_uncorr.fill(d)
d = (d-gains[..., 1][...,None])/gains[..., 0][...,None]
#d = d/gains[..., 0][...,None]
hist_calc.fill(d)
x = np.linspace(*cell_range, n_cells)
h, e, c, _ = hist_calc.get()
hu = hist_calc_uncorr.get()
return h, e, c, hu[0]
for i, key in enumerate(['g0mean', 'g1mean', 'gain', 'chi2_ndof']):
inp = []
idx = 0
for i in modules:
qm = "Q{}M{}".format(i//4+1, i%4+1)
fig = plt.figure(figsize=(10, 5))
ax0 = fig.add_subplot(111)
plot_error_band(key, x, ax0)
inp.append((i, offset_g[qm], thresholds_g[qm], res_gain[idx], noise_g[qm][...,0], pc_g[qm][0,...]))
idx += 1
p = partial(hist_single_module, fbase, runs, sequences, IL_MODE, profile, limit_trains, memory_cells, rawversion, instrument)
#res = view.map_sync(p, inp)
res = list(map(p, inp))
ax0.set_xlabel('Memory Cell ID', fontsize=14)
ax0.set_ylabel(labels[i], fontsize=14)
ax0.grid()
_ = ax0.legend()
```
%% Cell type:code id: tags:
``` python
from iminuit import Minuit
from iminuit.util import make_func_code, describe
from IPython.display import HTML, display
import tabulate
# fitting
par_ests = {}
par_ests["mu0"] = 0
par_ests["mu1"] = 50
par_ests["mu2"] = 100
par_ests["limit_mu0"] = [-5, 5]
par_ests["limit_mu1"] = [35, 65]
par_ests["limit_mu2"] = [100, 150]
par_ests["s0"] = 10
par_ests["s1"] = 10
par_ests["s2"] = 10
par_ests["limit_A0"] = [1e5, 1e12]
par_ests["limit_A1"] = [1e4, 1e10]
par_ests["limit_A2"] = [1e3, 1e10]
par_ests["throw_nan"] = False
par_ests["pedantic"] = False
par_ests["print_level"] = 1
def gaussian3(x, mu0, s0, A0, mu1, s1, A1, mu2, s2, A2):
return (A0/np.sqrt(2*np.pi*s0**2)*np.exp(-0.5*((x-mu0)/s0)**2) +
A1/np.sqrt(2*np.pi*s1**2)*np.exp(-0.5*((x-mu1)/s1)**2) +
A2/np.sqrt(2*np.pi*s2**2)*np.exp(-0.5*((x-mu2)/s2)**2))
f_sig = describe(gaussian3)[1:]
class _Chi2Functor:
def __init__(self, f, x, y, err):
self.f = f
self.x = x
self.y = y
self.err = err
f_sig = describe(f)
# this is how you fake function
# signature dynamically
self.func_code = make_func_code(
f_sig[1:]) # docking off independent variable
self.func_defaults = None # this keeps numpy.vectorize happy
def __call__(self, *arg):
# notice that it accept variable length
# positional arguments
# chi2 = sum((y-self.f(x,*arg))**2 for x,y in zip(self.x,self.y))
return np.sum(((self.f(self.x, *arg) - self.y) ** 2) / self.err)
d = []
y_range_max = 0
table = []
headers = ['Module',
'FWHM (cor.) [ADU]', 'Separation (cor.) [$\sigma$]',
'FWHM (uncor.) [ADU]', 'Separation (uncor.) [$\sigma$]',
'Improvement'
]
for i, r in enumerate(res):
qm = "Q{}M{}".format(i//4+1, i%4+1)
row = []
row.append(qm)
h, e, c, hu = r
d.append({
'x': c,
'y': h,
'drawstyle': 'steps-mid',
'label': '{}: corrected'.format(qm),
'marker': '.',
'color': 'blue',
})
idx = (h > 0) & np.isfinite(h)
h_non_zero = h[idx]
c_non_zero = c[idx]
par_ests["A0"] = np.float(h[np.argmin(abs(c-0))])
par_ests["A1"] = np.float(h[np.argmin(abs(c-50))])
par_ests["A2"] = np.float(h[np.argmin(abs(c-100))])
wrapped = _Chi2Functor(gaussian3, c_non_zero, h_non_zero,
np.sqrt(h_non_zero))
m = Minuit(wrapped, **par_ests)
fmin = m.migrad()
xt = np.arange(0, 200)
yt = gaussian3(xt, m.values['mu0'], m.values['s0'], m.values['A0'],
m.values['mu1'], m.values['s1'], m.values['A1'],
m.values['mu2'], m.values['s2'], m.values['A2'])
d.append({
'x': xt,
'y': yt,
'label': '{}: corrected (fit)'.format(qm),
'color': 'green',
'drawstyle': 'line',
'linewidth': 2
})
d.append({
'x': c,
'y': hu,
'drawstyle': 'steps-mid',
'label': '{}: uncorrected'.format(qm),
'marker': '.',
'color': 'grey',
'alpha': 0.5
})
row += [m.values['s1']*2.35, (m.values['mu1']-m.values['mu0'])/m.values['s1']]
idx = (hu > 0) & np.isfinite(hu)
h_non_zero = hu[idx]
c_non_zero = c[idx]
wrapped = _Chi2Functor(gaussian3, c_non_zero, h_non_zero,
np.sqrt(h_non_zero))
m = Minuit(wrapped, **par_ests)
fmin = m.migrad()
xt = np.arange(0, 200)
yt = gaussian3(xt, m.values['mu0'], m.values['s0'], m.values['A0'],
m.values['mu1'], m.values['s1'], m.values['A1'],
m.values['mu2'], m.values['s2'], m.values['A2'])
d.append({
'x': xt,
'y': yt,
'label': '{}: uncorrected (fit)'.format(qm),
'color': 'red',
'linewidth': 2
})
row += [m.values['s1']*2.35, (m.values['mu1']-m.values['mu0'])/m.values['s1']]
row.append("{:0.2f} %".format(100*(row[3]/row[1]-1)))
y_range_max = max(y_range_max, np.max(h[c>25])*1.5)
# output table
table.append(row)
fig = xana.simplePlot(d, y_log=False, figsize="2col",
aspect=2,
x_range=(0, 200),
legend='top-right-frame',
y_range=(0, y_range_max),
x_label='Energy (ADU)',
y_label='Counts')
%% Cell type:markdown id: tags:
display(HTML(tabulate.tabulate(table, tablefmt='html', headers=headers,
numalign="right", floatfmt="0.2f")))
```
## Cut flow ##
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(111)
n_bars = 8
x = np.arange(n_bars)
width = 0.3
msk = fit_result['mask']
n_fits = np.prod(msk.shape)
y = [any_in(msk, BadPixelsFF.FIT_FAILED.value),
any_in(msk, BadPixelsFF.FIT_FAILED.value | BadPixelsFF.ACCURATE_COVAR.value),
any_in(msk, BadPixelsFF.FIT_FAILED.value | BadPixelsFF.ACCURATE_COVAR.value |
BadPixelsFF.CHI2_THRESHOLD.value),
any_in(msk, BadPixelsFF.FIT_FAILED.value | BadPixelsFF.ACCURATE_COVAR.value |
BadPixelsFF.CHI2_THRESHOLD.value | BadPixelsFF.GAIN_THRESHOLD.value),
any_in(msk, BadPixelsFF.FIT_FAILED.value | BadPixelsFF.ACCURATE_COVAR.value |
BadPixelsFF.CHI2_THRESHOLD.value | BadPixelsFF.GAIN_THRESHOLD.value |
BadPixelsFF.NOISE_PEAK_THRESHOLD.value),
any_in(msk, BadPixelsFF.FIT_FAILED.value | BadPixelsFF.ACCURATE_COVAR.value |
BadPixelsFF.CHI2_THRESHOLD.value | BadPixelsFF.GAIN_THRESHOLD.value |
BadPixelsFF.NOISE_PEAK_THRESHOLD.value | BadPixelsFF.PEAK_WIDTH_THRESHOLD.value),
any_in(msk, BadPixelsFF.FIT_FAILED.value | BadPixelsFF.ACCURATE_COVAR.value |
BadPixelsFF.CHI2_THRESHOLD.value | BadPixelsFF.GAIN_THRESHOLD.value |
BadPixelsFF.NOISE_PEAK_THRESHOLD.value | BadPixelsFF.PEAK_WIDTH_THRESHOLD.value
| BadPixelsFF.NO_ENTRY.value),
any_in(msk, BadPixelsFF.FIT_FAILED.value | BadPixelsFF.ACCURATE_COVAR.value |
BadPixelsFF.CHI2_THRESHOLD.value | BadPixelsFF.GAIN_THRESHOLD.value |
BadPixelsFF.NOISE_PEAK_THRESHOLD.value | BadPixelsFF.PEAK_WIDTH_THRESHOLD.value
| BadPixelsFF.NO_ENTRY.value| BadPixelsFF.GAIN_DEVIATION.value)
]
y2 = [any_in(msk, BadPixelsFF.FIT_FAILED.value),
any_in(msk, BadPixelsFF.ACCURATE_COVAR.value),
any_in(msk, BadPixelsFF.CHI2_THRESHOLD.value),
any_in(msk, BadPixelsFF.GAIN_THRESHOLD.value),
any_in(msk, BadPixelsFF.NOISE_PEAK_THRESHOLD.value),
any_in(msk, BadPixelsFF.PEAK_WIDTH_THRESHOLD.value),
any_in(msk, BadPixelsFF.NO_ENTRY.value),
any_in(msk, BadPixelsFF.GAIN_DEVIATION.value)
]
y = (1 - np.sum(y, axis=(1,2,3))/n_fits)*100
y2 = (1 - np.sum(y2, axis=(1,2,3))/n_fits)*100
labels = ['Fit failes',
'Accurate covar',
'Chi2/nDOF',
'Gain',
'Noise peak',
'Peak width',
'No Entry',
'Gain deviation']
ax.bar(x, y2, width, label='Only this cut')
ax.bar(x, y, width, label='Cut flow')
plt.xticks(x, labels, rotation=90)
plt.ylim(y[5]-0.5,100)
plt.grid(True)
plt.legend()
plt.show()
```
......
%% Cell type:markdown id: tags:
# Gain Characterization Summary #
%% Cell type:code id: tags:
``` python
in_folder = "" # in this notebook, in_folder is not used as the data source is in the destination folder
out_folder = "/gpfs/exfel/exp/SPB/202030/p900138/scratch/karnem/r0203_r0204_v02" # the folder to output to, required
hist_file_template = "hists_m{:02d}_sum.h5"
modules = [10] # modules to correct, set to -1 for all, range allowed
image_data_path = ""
run = 449 # runs of image data used to create histograms
karabo_id = "MID_DET_AGIPD1M-1" # karabo karabo_id
karabo_da = ['-1'] # a list of data aggregators names, Default [-1] for selecting all data aggregators
receiver_id = "{}CH0" # inset for receiver devices
path_template = 'RAW-R{:04d}-{}-S{:05d}.h5' # the template to use to access data
h5path = 'INSTRUMENT/{}/DET/{}:xtdf/' # path in the HDF5 file to images
h5path_idx = 'INDEX/{}/DET/{}:xtdf/' # path in the HDF5 file to images
h5path_ctrl = '/CONTROL/{}/MDL/FPGA_COMP' # path to control information
karabo_id_control = "MID_IRU_AGIPD1M1" # karabo-id for control device
karabo_da_control = 'AGIPD1MCTRL00' # karabo DA for control infromation
use_dir_creation_date = True # use the creation data of the input dir for database queries
cal_db_interface = "tcp://max-exfl016:8015#8045" # the database interface to use
cal_db_timeout = 30000 # in milli seconds
local_output = True # output constants locally
db_output = False # output constants to database
# Fit parameters
peak_range = [-30,30,35,65,80,130,145,200] # where to look for the peaks, [a0, b0, a1, b1, ...] exactly 8 elements
peak_width_range = [0, 30, 0, 35, 0, 40, 0, 45] # fit limits on the peak widths, [a0, b0, a1, b1, ...] exactly 8 elements
# Bad-pixel thresholds
d0_lim = [10, 70] # hard limits for d0 value (distance between noise and first peak)
peak_width_lim = [0.97, 1.43, 1.03, 1.57] # hard limits on the peak widths, [a0, b0, a1, b1, ...] in units of the noise peak. 4 parameters.
chi2_lim = [0,3.0] # Hard limit on chi2/nDOF value
cell_range = [1,5] # range of cell to be considered, [0,0] for all
pixel_range = [0,0,512,128] # range of pixels x1,y1,x2,y2 to consider [0,0,512,128] for all
max_bins = 250 # Maximum number of bins to consider
batch_size = [1,8,8] # batch size: [cell,x,y]
n_peaks_fit = 4 # Number of gaussian peaks to fit including noise peak
fix_peaks = True # Fix distance between photon peaks
# Detector conditions
max_cells = 0 # number of memory cells used, set to 0 to automatically infer
bias_voltage = 300 # Bias voltage
acq_rate = 0. # the detector acquisition rate, use 0 to try to auto-determine
gain_setting = 0.1 # the gain setting, use 0.1 to try to auto-determine
photon_energy = 9.2 # photon energy in keV
```
%% Cell type:code id: tags:
``` python
import glob
from multiprocessing import Pool
import re
import os
import traceback
import warnings
from dateutil import parser
from extra_data import RunDirectory, stack_detector_data
from extra_geom import AGIPD_1MGeometry
import h5py
from iCalibrationDB import Detectors, Conditions, Constants
from iminuit import Minuit
from IPython.display import HTML, display, Markdown, Latex
import matplotlib.pyplot as plt
import numpy as np
import tabulate
from XFELDetAna.plotting.heatmap import heatmapPlot
from XFELDetAna.plotting.simpleplot import simplePlot
from cal_tools.ana_tools import get_range, save_dict_to_hdf5
from cal_tools.agipdlib import get_acq_rate, get_bias_voltage, get_gain_setting, get_num_cells
from cal_tools.agipdutils_ff import any_in, fit_n_peaks, gaussian_sum, get_starting_parameters
from cal_tools.tools import get_dir_creation_date, send_to_db
from cal_tools.enums import BadPixels, BadPixelsFF
%matplotlib inline
warnings.filterwarnings('ignore')
```
%% Cell type:code id: tags:
``` python
# Get operation conditions
filename = glob.glob(f"{image_data_path}/r{run:04d}/*-AGIPD[0-1][0-9]-*")[0]
channel = int(re.findall(r".*-AGIPD([0-9]+)-.*", filename)[0])
control_fname = f'{image_data_path}/r{run:04d}/RAW-R{run:04d}-{karabo_da_control}-S00000.h5'
# Evaluate number of memory cells
mem_cells = get_num_cells(filename, karabo_id, channel)
if mem_cells is None:
raise ValueError(f"No raw images found in {filename}")
# Evaluate aquisition rate
if acq_rate == 0.:
acq_rate = get_acq_rate((filename, karabo_id, channel))
# Evaluate creation time
creation_time = None
if use_dir_creation_date:
creation_time = get_dir_creation_date(image_data_path, run)
# Evaluate gain setting
if gain_setting == 0.1:
if creation_time.replace(tzinfo=None) < parser.parse('2020-01-31'):
print("Set gain-setting to None for runs taken before 2020-01-31")
gain_setting = None
else:
try:
gain_setting = get_gain_setting(control_fname, h5path_ctrl)
except Exception as e:
print(f'Error while reading gain setting from: \n{control_fname}')
print(e)
print("Set gain settion to 0")
gain_setting = 0
# Evaluate detector instance for mapping
instrument = karabo_id.split("_")[0]
if instrument == "SPB":
dinstance = "AGIPD1M1"
else:
dinstance = "AGIPD1M2"
print(f"Using {creation_time} as creation time")
print(f"Operating conditions are:\n• Bias voltage: {bias_voltage}\n• Memory cells: {mem_cells}\n"
f"• Acquisition rate: {acq_rate}\n• Gain setting: {gain_setting}\n• Photon Energy: {photon_energy}\n")
```
%% Cell type:code id: tags:
``` python
# Load constants for all modules
keys = ['g0mean', 'g1mean', 'gain', 'chi2_ndof', 'mask']
fit_data = {}
labels = {'g0mean': 'Noise peak position [ADU]',
'g1mean': 'First photon peak [ADU]',
'gain': f"Gain [ADU/keV], $\gamma$={photon_energy} [keV]",
'chi2_ndof': '$\chi^2$/nDOF',
'mask': 'Fraction of bad pixels over cells' }
modules = []
for mod in range(16):
qm = f"Q{mod // 4 + 1}M{mod % 4 + 1}"
fit_data[mod] = {}
try:
hf = h5py.File(f'{out_folder}/fits_m{mod:02d}.h5', 'r')
shape = hf['data/g0mean'].shape
for key in keys:
fit_data[mod][key] = hf[f'data/{key}'][()]
#print(shape)
print(f"{in_folder}/{hist_file_template.format(mod)}")
modules.append(mod)
except Exception as e:
err = f"Error: {e}\nError traceback: {traceback.format_exc()}"
print(f"No fit data available for module {qm}")
```
%% Cell type:code id: tags:
``` python
# Calculate SlopesFF and BadPixels to be send to DB
bpmask = {}
slopesFF = {}
for mod in modules:
bpmask[mod] = np.zeros(fit_data[mod]['mask'].shape).astype(np.int32)
bpmask[mod][ any_in(fit_data[mod]['mask'], BadPixelsFF.NO_ENTRY.value) ] = BadPixels.FF_NO_ENTRIES.value
bpmask[mod][ any_in(fit_data[mod]['mask'],
BadPixelsFF.GAIN_DEVIATION.value) ] |= BadPixels.FF_GAIN_DEVIATION.value
bpmask[mod][ any_in(fit_data[mod]['mask'],
BadPixelsFF.FIT_FAILED.value | BadPixelsFF.ACCURATE_COVAR.value |
BadPixelsFF.CHI2_THRESHOLD.value | BadPixelsFF.GAIN_THRESHOLD.value |
BadPixelsFF.NOISE_PEAK_THRESHOLD.value | BadPixelsFF.PEAK_WIDTH_THRESHOLD.value) ] |= BadPixels.FF_GAIN_EVAL_ERROR.value
# Set value for bad pixel to average across pixels for a given module
slopesFF[mod] = np.copy(fit_data[mod]['gain'])
slopesFF[mod][fit_data[mod]['mask']>0] = np.nan
gain_mean = np.nanmean(slopesFF[mod], axis=(1,2))
for i in range(slopesFF[mod].shape[0]):
slopesFF[mod][i][ fit_data[mod]['mask'][i] > 0 ] = gain_mean[i]
```
%% Cell type:code id: tags:
``` python
# Send constants to DB
def send_const(mod):
try:
device = getattr(getattr(Detectors, dinstance), f'Q{mod // 4 + 1}M{mod % 4 + 1}')
# gain
constant = Constants.AGIPD.SlopesFF()
constant.data = np.moveaxis(np.moveaxis(slopesFF[mod],0,2),0,1)
send_to_db(device, constant, condition, file_loc,
cal_db_interface, creation_time,
verbosity=1, timeout=cal_db_timeout)
# bad pixels
constant_bp = Constants.AGIPD.BadPixelsFF()
constant_bp.data = np.moveaxis(np.moveaxis(bpmask[mod],0,2),0,1)
send_to_db(device, constant_bp, condition, file_loc,
cal_db_interface, creation_time,
verbosity=1, timeout=cal_db_timeout)
except Exception as e:
err = f"Error: {e}\nError traceback: {traceback.format_exc()}"
when = None
# set the operating condition
condition = Conditions.Illuminated.AGIPD(mem_cells, bias_voltage, 9.2,
pixels_x=512, pixels_y=128, beam_energy=None,
acquisition_rate=acq_rate, gain_setting=gain_setting)
# Check, if we have a shape we expect
if db_output:
if slopesFF[modules[0]].shape == (mem_cells, 512, 128):
with Pool(processes=len(modules)) as pool:
const_out = pool.map(send_const, modules)
else:
print(f"Constants are not sent to the DB because of the shape mismatsh")
print(f"Expected {(mem_cells, 512, 128)}, observed {slopesFF[modules[0]].shape}")
condition_dict ={}
for entry in condition.to_dict()['parameters']:
key = entry.pop('parameter_name')
del entry['description']
del entry['flg_available']
condition_dict[key] = entry
# Create the same file structure as database constants files, in which
# each constant type has its corresponding condition and data.
if local_output:
for mod in modules:
qm = f"Q{mod // 4 + 1}M{mod % 4 + 1}"
device = getattr(getattr(Detectors, dinstance), qm).device_name
file = f"{out_folder}/slopesff_bpmask_module_{qm}.h5"
dic = {
device:{
'SlopesFF': {
0:{
'condition': condition_dict,
'data': np.moveaxis(np.moveaxis(slopesFF[mod],0,2),0,1)}
},
'BadPixelsFF':{
0:{
'condition': condition_dict,
'data': np.moveaxis(np.moveaxis(bpmask[mod],0,2),0,1)}
},
}
}
save_dict_to_hdf5(dic, file)
```
%% Cell type:code id: tags:
``` python
# Define AGIPD geometry
geom = AGIPD_1MGeometry.from_quad_positions(quad_pos=[
(-525, 625),
(-550, -10),
(520, -160),
(542.5, 475),
])
```
%% Cell type:code id: tags:
``` python
# Create the arrays that will be used for figures.
# A dictionary contains all the data for each of the processing stages (gains, mean, slopesFF...).
# Each array correponds to the data for all 16 modules.
# These are updated with their fit/slopes data in the following loops.
if cell_range==[0,0]:
cell_range[1] = shape[0]
const_data = {}
for key in keys:
const_data[key] = np.full((16,shape[0],512,128), np.nan)
for i in range(16):
if key in fit_data[i]:
const_data[key][i,:,pixel_range[0]:pixel_range[2],
pixel_range[1]:pixel_range[3]] = fit_data[i][key]
const_data['slopesFF'] = np.full((16,shape[0],512,128), np.nan)
labels['slopesFF'] = f'slopesFF [ADU/keV], $\gamma$={photon_energy} [keV]'
for i in range(16):
if i in slopesFF:
const_data['slopesFF'][i,:,pixel_range[0]:pixel_range[2],
pixel_range[1]:pixel_range[3]] = slopesFF[i]
```
%% Cell type:markdown id: tags:
## Summary across pixels ##
%% Cell type:code id: tags:
``` python
for key in const_data.keys():
fig = plt.figure(figsize=(20,20))
ax = fig.add_subplot(111)
if key=='mask':
data = np.nanmean(const_data[key]>0, axis=1)
vmin, vmax = (0,1)
else:
data = np.nanmean(const_data[key], axis=1)
vmin, vmax = get_range(data, 5)
ax = geom.plot_data_fast(data, ax=ax, cmap="jet", vmin=vmin, vmax=vmax, figsize=(20,20))
_ = ax.set_title(labels[key])
```
%% Cell type:markdown id: tags:
## Summary across cells ##
Good pixels only.
%% Cell type:code id: tags:
``` python
for key in const_data.keys():
data = np.copy(const_data[key])
if key=='mask':
data = data>0
else:
data[const_data['mask']>0] = np.nan
d = []
for i in range(16):
d.append({'x': np.arange(data[i].shape[0]),
'y': np.nanmean(data[i], axis=(1,2)),
'drawstyle': 'steps-pre',
'label': f'{i}',
'linewidth': 2,
'linestyle': '--' if i>7 else '-'
})
fig = plt.figure(figsize=(15, 6))
ax = fig.add_subplot(111)
_ = simplePlot(d, xrange=(-12, 510),
x_label='Memory Cell ID',
y_label=labels[key],
use_axis=ax,
legend='top-left-frame-ncol8',)
ylim = ax.get_ylim()
ax.set_ylim(ylim[0], ylim[1] + np.abs(ylim[1]-ylim[0])*0.2)
```
%% Cell type:markdown id: tags:
## Summary table ##
%% Cell type:code id: tags:
``` python
table = []
for i in modules:
table.append((i,
f"{np.nanmean(slopesFF[i]):0.1f} +- {np.nanstd(slopesFF[i]):0.2f}",
f"{np.nanmean(bpmask[i]>0)*100:0.1f} ({np.nansum(bpmask[i]>0)})"
))
md = display(Latex(tabulate.tabulate(table, tablefmt='latex',
headers=["Module", "Gain [ADU/keV]", "Bad pixels [%(Count)]"])))
```
%% Cell type:markdown id: tags:
## Performance plots
%% Cell type:code id: tags:
``` python
def get_trains_data(run_folder, source, include, tid=None):
"""
Load single train for all module
:param run_folder: Path to folder with data
:param source: Data source to be loaded
:param include: Inset of file name to be considered
:param tid: Train Id to be loaded. First train is considered if None is given
"""
run_data = RunDirectory(run_folder, include)
if tid:
tid, data = run_data.select('*/DET/*', source).train_from_id(tid)
return tid, stack_detector_data(data, source)
else:
for tid, data in run_data.select('*/DET/*', source).trains(require_all=True):
return tid, stack_detector_data(data, source)
return None, None
include = '*S00000*'
tid, orig = get_trains_data(f'{image_data_path}/r{run:04d}/', 'image.data', include)
orig = orig[cell_range[0]:cell_range[1], ...]
```
%% Cell type:code id: tags:
``` python
# FIXME: mask bad pixels from median
# mask = const_data['BadPixelsFF']
corrections = const_data['slopesFF'] # (16,shape[0],512,128) shape[0]= cell_range[1]-cell_range[0] /
corrections = np.moveaxis(corrections,1,0) # (shape[0],16,512,128)
rel_corr = corrections/np.nanmedian(corrections)
corrected = orig / rel_corr
```
%% Cell type:markdown id: tags:
### Mean value not corrected (train 0)
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20,20))
ax = fig.add_subplot(111)
odata = np.nanmean(orig, axis=0)
vmin, vmax = get_range(odata, 5)
ax = geom.plot_data_fast(odata, ax=ax, cmap="jet", vmin=vmin, vmax=vmax, figsize=(20,20))
_ = ax.set_title("Original data, mean across one train")
```
%% Cell type:markdown id: tags:
### Mean value corrected (train 0)
%% Cell type:code id: tags:
``` python
fig = plt.figure(figsize=(20,20))
ax = fig.add_subplot(111)
cdata = np.nanmean(corrected, axis=0)
vmin, vmax = get_range(cdata, 5)
ax = geom.plot_data_fast(cdata, ax=ax, cmap="jet", vmin=vmin, vmax=vmax, figsize=(20,20))
_ = ax.set_title("Corrected data, mean across one train")
```
%% Cell type:markdown id: tags:
### Histogram of corrected and uncorrected spectrum (train 0)
%% Cell type:code id: tags:
``` python
######################################
# FIT PEAKS
######################################
limits = np.reshape(peak_range,(4,2))
x_range = [limits[0][0], limits[-1][-1]]
nb = x_range[1] - x_range[0]+1
sel = ~np.isnan(corrected)
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
y,xe, _ = ax.hist(corrected[sel].flatten(), bins=nb, range=x_range, label='corrected', alpha=0.5)
# get the bin centers from the bin edges
xc=xe[:-1]+(xe[1]-xe[0])/2
pars, _ = get_starting_parameters(xc, y, limits,4)
minuit = fit_n_peaks(xc, y, pars, x_range,fix_d01=False)
pc = minuit.args
yfc = multi_gauss(xc,4, *pc)
plt.plot(xc, yfc, label='corrected fit')
y,_, _ = ax.hist(orig[sel].flatten(), bins=nb, range=x_range, label='original',alpha=0.5)
minuit = fit_n_peaks(xc, y, pars, x_range,fix_d01=False)
po = minuit.args
yfo = multi_gauss(xc,4, *po)
plt.plot(xc, yfo, label='original fit')
plt.title(f"Signal spectrum, first train")
plt.xlabel('[ADU]')
plt.legend()
plt.yscale('log')
plt.show()
```
%% Cell type:code id: tags:
``` python
table = []
for i in range(4):
table.append((f"Sigma{i} ",
f"{po[2+3*i]:0.2f} ",
f"{pc[2+3*i]:0.2f} "))
md = display(Latex(tabulate.tabulate(table, tablefmt='latex',
headers=["Parameter", "Value (original data)", "Value (corrected data)"])))
```
%% Cell type:markdown id: tags:
# Gain Characterization (Flat Fields) #
The following code characterizes the gain of the AGIPD detector from flat field data, i.e. data with X-rays of defined intensity. This data should fullfil the following requirements:
* intensity should be such that single photon peaks are visible
* data for all modules should be present
* no shadowing should occur on any of the modules
* each pixel should have at minimum arround 100 events per photon peak per memory cell
* if central beam edges are visible, they should not be significantly more intense
Characterization is done by a weighted average algorithm, which evaluates the peak locations for all pixels
and memory cells of a given module. These locations are then fitted to a linear function of the average peak
location in each module, such that it yield a relative gain correction.
%% Cell type:code id: tags:
``` python
# the following lines should be adjusted depending on data
in_folder = '/gpfs/exfel/exp/MID/201931/p900091/raw/' # path to input data, required
modules = [3] # modules to work on, required, range allowed
out_folder = "/gpfs/exfel/exp/MID/201931/p900091/usr/FF/2.2" # path to output to, required
runs = [484, 485,] # runs to use, required, range allowed
sequences = [0,1,2,3]#,4,5,6,7,8] #,5,6,7,8,9,10] # sequences files to use, range allowed
cluster_profile = "noDB" # The ipcluster profile to use
local_output = True # output constants locally
db_output = False # output constants to database
bias_voltage = 300 # detector bias voltage
cal_db_interface = "tcp://max-exfl016:8026#8035" # the database interface to use
mem_cells = 0 # number of memory cells used
interlaced = False # assume interlaced data format, for data prior to Dec. 2017
fit_hook = True # fit a hook function to medium gain slope
rawversion = 2 # RAW file format version
instrument = "MID"
photon_energy = 9.2 # the photon energy in keV
offset_store = "" # for file-baed access
high_res_badpix_3d = False # set this to True if you need high-resolution 3d bad pixel plots. Runtime: ~ 1h
db_input = True # retreive data from calibration database, setting offset-store will overwrite this
deviation_threshold = 0.75 # peaks with an absolute location deviation larger than the medium are are considere bad
acqrate = 0. # acquisition rate
use_dir_creation_date = True
creation_time = "" # To overwrite the measured creation_time. Required Format: YYYY-MM-DD HR:MN:SC.ms e.g. 2019-07-04 11:02:41.00
gain_setting = 0.1 # gain setting can have value 0 or 1, Default=0.1 for no (None) gain-setting
karabo_da_control = "AGIPD1MCTRL00" # karabo DA for control infromation
h5path_ctrl = '/CONTROL/{}/MDL/FPGA_COMP_TEST' # path to control information
```
%% Cell type:code id: tags:
``` python
# std library imports
from datetime import datetime
import dateutil
from functools import partial
import warnings
warnings.filterwarnings('ignore')
import os
import h5py
# numpy and matplot lib specific
import numpy as np
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
%matplotlib inline
# parallel processing via ipcluster
# make sure a cluster is running with ipcluster start --n=32, give it a while to start
from ipyparallel import Client
client = Client(profile=cluster_profile)
view = client[:]
view.use_dill()
# pyDetLib imports
import XFELDetAna.xfelpycaltools as xcal
import XFELDetAna.xfelpyanatools as xana
from XFELDetAna.util import env
env.iprofile = cluster_profile
profile = cluster_profile
from iCalibrationDB import ConstantMetaData, Constants, Conditions, Detectors, Versions
from cal_tools.agipdlib import get_num_cells, get_acq_rate, get_gain_setting
from cal_tools.enums import BadPixels
from cal_tools.influx import InfluxLogger
from cal_tools.plotting import show_overview, plot_badpix_3d
from cal_tools.tools import gain_map_files, parse_runs, run_prop_seq_from_path, get_notebook_name, get_dir_creation_date, get_random_db_interface
```
%% Cell type:code id: tags:
``` python
# usually no need to change these lines
sensor_size = [128, 512]
block_size = [128, 512]
QUADRANTS = 4
MODULES_PER_QUAD = 4
DET_FILE_INSET = "AGIPD"
# Define constant creation time.
if creation_time:
try:
creation_time = datetime.strptime(creation_time, '%Y-%m-%d %H:%M:%S.%f')
except Exception as e:
print(f"creation_time value error: {e}."
"Use same format as YYYY-MM-DD HR:MN:SC.ms e.g. 2019-07-04 11:02:41.00/n")
creation_time = None
print("Given creation time wont be used.")
else:
creation_time = None
if not creation_time and use_dir_creation_date:
ntries = 100
while ntries > 0:
try:
creation_time = get_dir_creation_date(in_folder, runs[0])
break
except OSError:
pass
ntries -= 1
print("Using {} as creation time".format(creation_time))
runs = parse_runs(runs)
if offset_store != "":
db_input = False
else:
db_input = True
limit_trains = 20
limit_trains_eval = None
print("Parameters are:")
print("Runs: {}".format(runs))
print("Modules: {}".format(modules))
print("Sequences: {}".format(sequences))
print("Using DB: {}".format(db_output))
if instrument == "SPB":
loc = "SPB_DET_AGIPD1M-1"
dinstance = "AGIPD1M1"
karabo_id_control = "SPB_IRU_AGIPD1M1"
else:
loc = "MID_DET_AGIPD1M-1"
dinstance = "AGIPD1M2"
karabo_id_control = "MID_EXP_AGIPD1M1"
cal_db_interface = get_random_db_interface(cal_db_interface)
# these lines can usually stay as is
fbase = "{}/{{}}/RAW-{{}}-AGIPD{{:02d}}-S{{:05d}}.h5".format(in_folder)
gains = np.arange(3)
run, prop, seq = run_prop_seq_from_path(in_folder)
logger = InfluxLogger(detector="AGIPD", instrument=instrument, mem_cells=mem_cells,
notebook=get_notebook_name(), proposal=prop)
# extract the memory cells and acquisition rate from
# the file of the first module, first sequence and first run
channel = 0
fname = fbase.format(runs[0], runs[0].upper(), channel, sequences[0])
if acqrate == 0.:
acqrate = get_acq_rate(fname, loc, channel)
if mem_cells == 0:
cells = get_num_cells(fname, loc, channel)
mem_cells = cells # avoid setting twice
IL_MODE = interlaced
max_cells = mem_cells if not interlaced else mem_cells*2
memory_cells = mem_cells
print("Interlaced mode: {}".format(IL_MODE))
cells = np.arange(max_cells)
print(f"Acquisition rate and memory cells set from file {fname} are "
f"{acqrate} MHz and {max_cells}, respectively")
```
%% Cell type:code id: tags:
``` python
control_fname = f'{in_folder}/{runs[0]}/RAW-{runs[0].upper()}-{karabo_da_control}-S00000.h5'
if "{" in h5path_ctrl:
h5path_ctrl = h5path_ctrl.format(karabo_id_control)
if gain_setting == 0.1:
if creation_time.replace(tzinfo=None) < dateutil.parser.parse('2020-01-31'):
print("Set gain-setting to None for runs taken before 2020-01-31")
gain_setting = None
else:
try:
gain_setting = get_gain_setting(control_fname, h5path_ctrl)
except Exception as e:
print(f'Error while reading gain setting from: \n{control_fname}')
print(e)
print("Gain setting is not found in the control information")
print("Data will not be processed")
sequences = []
print(f"Gain setting: {gain_setting}")
```
%% Cell type:markdown id: tags:
For the characterization offset maps for each module are needed. The are read in either locally or through the XFEL calibration database.
%% Cell type:code id: tags:
``` python
from dateutil import parser
offset_g = {}
noise_g = {}
thresholds_g = {}
pc_g = {}
if not db_input:
print("Offset, noise and thresholds have been read in from: {}".format(offset_store))
store_file = h5py.File(offset_store, "r")
for i in modules:
qm = "Q{}M{}".format(i//4+1, i%4+1)
offset_g[qm] = np.array(store_file["{}/Offset/0/data".format(qm)])
noise_g[qm] = np.array(store_file["{}/Noise/0/data".format(qm)])
thresholds_g[qm] = np.array(store_file["{}/Threshold/0/data".format(qm)])
store_file.close()
else:
print("Offset, noise and thresholds have been read in from calibration database:")
first_ex = True
for i in modules:
qm = "Q{}M{}".format(i//4+1, i%4+1)
metadata = ConstantMetaData()
offset = Constants.AGIPD.Offset()
metadata.calibration_constant = offset
det = getattr(Detectors, dinstance)
# set the operating condition
condition = Conditions.Dark.AGIPD(memory_cells=max_cells, bias_voltage=bias_voltage,
acquisition_rate=acqrate, gain_setting=gain_setting)
metadata.detector_condition = condition
# specify the a version for this constant
if creation_time is None:
metadata.calibration_constant_version = Versions.Now(device=getattr(det, qm))
else:
metadata.calibration_constant_version = Versions.Timespan(device=getattr(det, qm), start=creation_time)
metadata.retrieve(cal_db_interface, when=creation_time.isoformat(), timeout=300000)
offset_g[qm] = offset.data
if first_ex:
print("Offset map was injected on: {}".format(metadata.calibration_constant_version.begin_at))
metadata = ConstantMetaData()
noise = Constants.AGIPD.Noise()
metadata.calibration_constant = noise
# set the operating condition
condition = Conditions.Dark.AGIPD(memory_cells=max_cells, bias_voltage=bias_voltage,
acquisition_rate=acqrate, gain_setting=gain_setting)
metadata.detector_condition = condition
# specify the a version for this constant
if creation_time is None:
metadata.calibration_constant_version = Versions.Now(device=getattr(det, qm))
else:
metadata.calibration_constant_version = Versions.Timespan(device=getattr(det, qm), start=creation_time)
metadata.retrieve(cal_db_interface, when=creation_time.isoformat(), timeout=300000)
noise_g[qm] = noise.data
if first_ex:
print("Noise map was injected on: {}".format(metadata.calibration_constant_version.begin_at))
metadata = ConstantMetaData()
thresholds = Constants.AGIPD.ThresholdsDark()
metadata.calibration_constant = thresholds
# set the operating condition
condition = Conditions.Dark.AGIPD(memory_cells=max_cells, bias_voltage=bias_voltage,
acquisition_rate=acqrate, gain_setting=gain_setting)
metadata.detector_condition = condition
# specify the a version for this constant
if creation_time is None:
metadata.calibration_constant_version = Versions.Now(device=getattr(det, qm))
else:
metadata.calibration_constant_version = Versions.Timespan(device=getattr(det, qm), start=creation_time)
metadata.retrieve(cal_db_interface, when=creation_time.isoformat(), timeout=300000)
thresholds_g[qm] = thresholds.data
if first_ex:
print("Threshold map was injected on: {}".format(metadata.calibration_constant_version.begin_at))
metadata = ConstantMetaData()
pc = Constants.AGIPD.SlopesPC()
metadata.calibration_constant = pc
# set the operating condition
condition = Conditions.Dark.AGIPD(memory_cells=max_cells, bias_voltage=bias_voltage,
acquisition_rate=acqrate, gain_setting=gain_setting)
metadata.detector_condition = condition
# specify the a version for this constant
if creation_time is None:
metadata.calibration_constant_version = Versions.Now(device=getattr(det, qm))
else:
metadata.calibration_constant_version = Versions.Timespan(device=getattr(det, qm), start=creation_time)
metadata.retrieve(cal_db_interface, when=creation_time.isoformat(), timeout=300000)
pc_g[qm] = np.nanmedian(pc.data[0,...])/pc.data
if first_ex:
print("PC map was injected on: {}".format(metadata.calibration_constant_version.begin_at))
first_ex = False
```
%% Cell type:markdown id: tags:
## Initial peak estimates ##
First initial peak estimates need to be defined. This is done by inspecting histograms created from (a subset of) the offset-corrected data for peak locations and peak heights.
%% Cell type:code id: tags:
``` python
def hist_single_module(fbase, runs, sequences, sensor_size, memory_cells, block_size,
il_mode, limit_trains, profile, rawversion, instrument, inp):
""" This function calculates a per-pixel histogram for a single module
Runs and sequences give the data to calculate histogram from
"""
channel, offset, thresholds, pc, noise = inp
import XFELDetAna.xfelpycaltools as xcal
import numpy as np
import h5py
from XFELDetAna.util import env
env.iprofile = profile
def baseline_correct_via_noise(d, noise, g, baseline_corr_noise_threshold=1000):
""" Correct baseline shifts by evaluating position of the noise peak
:param: d: the data to correct, should be a single image
:param noise: the mean noise for the cell id of `d`
:param g: gain array matching `d` array
Correction is done by identifying the left-most (significant) peak
in the histogram of `d` and shifting it to be centered on 0.
This is done via a continous wavelet transform (CWT), using a Ricker
wavelet.
Only high gain data is evaulated, and data larger than 50 ADU,
equivalent of roughly a 9 keV photon is ignored.
Two passes are executed: the first shift is accurate to 10 ADU and
will catch baseline shifts smaller then -2000 ADU. CWT is evaluated
for peaks of widths one, three and five time the noise.
The baseline is then shifted by the position of the summed CWT maximum.
In a second pass histogram is evaluated within a range of
+- 5*noise of the initial shift value, for peak of width noise.
Baseline shifts larger than the maximum threshold or positive shifts
larger 10 are discarded, and the original data is returned, otherwise
the shift corrected data is returned.
"""
import copy
from scipy.signal import cwt, ricker
# we work on a copy to be able to filter values by setting them to
# np.nan
dd = copy.copy(d)
dd[g != 0] = np.nan # only high gain data
dd[dd > 50] = np.nan # only noise data
h, e = np.histogram(dd, bins=210, range=(-2000, 100))
c = (e[1:] + e[:-1]) / 2
try:
cwtmatr = cwt(h, ricker, [noise, 3. * noise, 5. * noise])
except:
return d
cwtall = np.sum(cwtmatr, axis=0)
marg = np.argmax(cwtall)
pc = c[marg]
high_res_range = (dd > pc - 5 * noise) & (dd < pc + 5 * noise)
dd[~high_res_range] = np.nan
h, e = np.histogram(dd, bins=200,
range=(pc - 5 * noise, pc + 5 * noise))
c = (e[1:] + e[:-1]) / 2
try:
cwtmatr = cwt(h, ricker, [noise, ])
except:
return d
marg = np.argmax(cwtmatr)
pc = c[marg]
# too large shift to be easily decernable via noise
if pc > 10 or pc < -baseline_corr_noise_threshold:
return d
return d - pc
# function needs to be inline for parallell processing
def read_fun(filename, channel):
""" A reader function used by pyDetLib
"""
infile = h5py.File(filename, "r", driver="core")
if rawversion == 2:
count = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/count".format(instrument, channel)])
first = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/first".format(instrument, channel)])
last_index = int(first[count != 0][-1]+count[count != 0][-1])
first_index = int(first[count != 0][0])
else:
status = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/status".format(instrument, channel)])
if np.count_nonzero(status != 0) == 0:
return
last = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/last".format(instrument, channel)])
last_index = int(last[status != 0][-1])
first_index = int(last[status != 0][0])
if limit_trains is not None:
last_index = min(limit_trains*memory_cells+first_index, last_index)
im = np.array(infile["/INSTRUMENT/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/data".format(instrument, channel)][first_index:last_index,...])
carr = infile["/INSTRUMENT/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/cellId".format(instrument, channel)][first_index:last_index]
cells = np.squeeze(np.array(carr))
infile.close()
if il_mode:
ga = im[1::2, 0, ...]
im = im[0::2, 0, ...].astype(np.float32)
else:
ga = im[:, 1, ...]
im = im[:, 0, ...].astype(np.float32)
im = np.rollaxis(im, 2)
im = np.rollaxis(im, 2, 1)
ga = np.rollaxis(ga, 2)
ga = np.rollaxis(ga, 2, 1)
return im, ga, cells
offset_cor = xcal.OffsetCorrection(sensor_size,
offset,
nCells=memory_cells,
blockSize=block_size,
gains=[0,1,2])
offset_cor.mapper = offset_cor._view.map_sync
offset_cor.debug() # force non-parallel processing since outer function will run concurrently
hist_calc = xcal.HistogramCalculator(sensor_size,
bins=4000,
range=(-4000, 8000),
blockSize=block_size)
hist_calc.mapper = hist_calc._view.map_sync
hist_calc.debug() # force non-parallel processing since outer function will run concurrently
for run in runs:
for seq in sequences:
fname = fbase.format(run, run.upper(), channel, seq)
d, ga, c = read_fun(fname, channel)
vidx = (c < offset.shape[2]) & (c < thresholds.shape[2])
c = c[vidx]
d = d[:,:,vidx]
ga = ga[:,:,vidx]
# we need to do proper gain thresholding
g = np.zeros(ga.shape, np.uint8)
g[...] = 2
g[ga < thresholds[...,c,1]] = 1
g[ga < thresholds[...,c,0]] = 0
d = offset_cor.correct(d, cellTable=c, gainMap=g)
for i in range(d.shape[2]):
mn_noise = np.nanmean(noise[...,c[i]])
d[...,i] = baseline_correct_via_noise(d[...,i],
mn_noise,
g[..., i])
d *= np.moveaxis(pc[c,...], 0, 2)
hist_calc.fill(d)
h, e, c, _ = hist_calc.get()
return h, e, c
inp = []
for i in modules:
qm = "Q{}M{}".format(i//4+1, i%4+1)
inp.append((i, offset_g[qm], thresholds_g[qm], pc_g[qm][0,...], noise_g[qm][...,0]))
p = partial(hist_single_module, fbase, runs, sequences,
sensor_size, memory_cells, block_size, IL_MODE, limit_trains, profile, rawversion, instrument)
res_uncorr = list(map(p, inp))
```
%% Cell type:code id: tags:
``` python
d = []
qms = []
for i, r in enumerate(res_uncorr):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
qms.append(qm)
h, e, c = r
d.append({
'x': c,
'y': h,
'drawstyle': 'steps-mid'
})
fig = xana.simplePlot(d, y_log=False,
figsize="2col",
aspect=2,
x_range=(-50, 500),
x_label="Intensity (ADU)",
y_label="Counts")
fig.savefig("{}/FF_module_{}_peak_pos.png".format(out_folder, ",".join(qms)))
```
%% Cell type:code id: tags:
``` python
# these should be quite stable
peak_estimates = [0, 55, 105, 155]
peak_heights = [5e7, 5e6, 1e6, 5e5]
peak_sigma = [5., 5.,5., 5.,]
print("Using the following peak estimates: {}".format(peak_estimates))
```
%% Cell type:markdown id: tags:
## Calculate relative gain per module ##
Using the so obtained estimates, we calculate the relative gain per module. For this we use the weighted average method implemented in pyDetLib.
%% Cell type:code id: tags:
``` python
block_size = [64, 64]
def relgain_single_module(fbase, runs, sequences, peak_estimates,
peak_heights, peak_sigma, memory_cells, sensor_size,
block_size, il_mode, profile, limit_trains_eval, rawversion, instrument, inp):
""" A function for calculated the relative gain of a single AGIPD module
"""
# import needed inline for parallel processing
import XFELDetAna.xfelpycaltools as xcal
import numpy as np
import h5py
from XFELDetAna.util import env
env.iprofile = profile
channel, offset, thresholds, noise, pc = inp
def baseline_correct_via_noise(d, noise, g, baseline_corr_noise_threshold=1000):
""" Correct baseline shifts by evaluating position of the noise peak
:param: d: the data to correct, should be a single image
:param noise: the mean noise for the cell id of `d`
:param g: gain array matching `d` array
Correction is done by identifying the left-most (significant) peak
in the histogram of `d` and shifting it to be centered on 0.
This is done via a continous wavelet transform (CWT), using a Ricker
wavelet.
Only high gain data is evaulated, and data larger than 50 ADU,
equivalent of roughly a 9 keV photon is ignored.
Two passes are executed: the first shift is accurate to 10 ADU and
will catch baseline shifts smaller then -2000 ADU. CWT is evaluated
for peaks of widths one, three and five time the noise.
The baseline is then shifted by the position of the summed CWT maximum.
In a second pass histogram is evaluated within a range of
+- 5*noise of the initial shift value, for peak of width noise.
Baseline shifts larger than the maximum threshold or positive shifts
larger 10 are discarded, and the original data is returned, otherwise
the shift corrected data is returned.
"""
import copy
from scipy.signal import cwt, ricker
# we work on a copy to be able to filter values by setting them to
# np.nan
dd = copy.copy(d)
dd[g != 0] = np.nan # only high gain data
dd[dd > 50] = np.nan # only noise data
h, e = np.histogram(dd, bins=210, range=(-2000, 100))
c = (e[1:] + e[:-1]) / 2
try:
cwtmatr = cwt(h, ricker, [noise, 3. * noise, 5. * noise])
except:
return d
cwtall = np.sum(cwtmatr, axis=0)
marg = np.argmax(cwtall)
pc = c[marg]
high_res_range = (dd > pc - 5 * noise) & (dd < pc + 5 * noise)
dd[~high_res_range] = np.nan
h, e = np.histogram(dd, bins=200,
range=(pc - 5 * noise, pc + 5 * noise))
c = (e[1:] + e[:-1]) / 2
try:
cwtmatr = cwt(h, ricker, [noise, ])
except:
return d
marg = np.argmax(cwtmatr)
pc = c[marg]
# too large shift to be easily decernable via noise
if pc > 10 or pc < -baseline_corr_noise_threshold:
return d
return d - pc
# function needs to be inline for parallell processing
def read_fun(filename, channel):
""" A reader function used by pyDetLib
"""
infile = h5py.File(filename, "r", driver="core")
if rawversion == 2:
count = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/count".format(instrument, channel)])
first = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/first".format(instrument, channel)])
last_index = int(first[count != 0][-1]+count[count != 0][-1])
first_index = int(first[count != 0][0])
else:
status = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/status".format(instrument, channel)])
if np.count_nonzero(status != 0) == 0:
return
last = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/last".format(instrument, channel)])
last_index = int(last[status != 0][-1])
first_index = int(last[status != 0][0])
if limit_trains is not None:
last_index = min(limit_trains*memory_cells+first_index, last_index)
im = np.array(infile["/INSTRUMENT/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/data".format(instrument, channel)][first_index:last_index,...])
carr = infile["/INSTRUMENT/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/cellId".format(instrument, channel)][first_index:last_index]
cells = np.squeeze(np.array(carr))
infile.close()
if il_mode:
ga = im[1::2, 0, ...]
im = im[0::2, 0, ...].astype(np.float32)
else:
ga = im[:, 1, ...]
im = im[:, 0, ...].astype(np.float32)
im = np.rollaxis(im, 2)
im = np.rollaxis(im, 2, 1)
ga = np.rollaxis(ga, 2)
ga = np.rollaxis(ga, 2, 1)
return im, ga, cells
offset_cor = xcal.OffsetCorrection(sensor_size, offset, nCells=memory_cells,
blockSize=block_size, gains=[0,1,2])
offset_cor.mapper = offset_cor._view.map_sync
rel_gain = xcal.GainMapCalculator(sensor_size,
peak_estimates,
peak_sigma,
nCells=memory_cells,
peakHeights = peak_heights,
noiseMap=noise,
deviationType="relative")
rel_gain.mapper = rel_gain._view.map_sync
for run in runs:
for seq in sequences:
fname = fbase.format(run, run.upper(), channel, seq)
d, ga, c = read_fun(fname, channel)
# we need to do proper gain thresholding
vidx = (c < offset.shape[2]) & (c < thresholds.shape[2])
c = c[vidx]
d = d[:,:,vidx]
ga = ga[:,:,vidx]
# we need to do proper gain thresholding
g = np.zeros(ga.shape, np.uint8)
g[...] = 2
g[ga < thresholds[...,c,1]] = 1
g[ga < thresholds[...,c,0]] = 0
d = offset_cor.correct(d, cellTable=c, gainMap=g)
for i in range(d.shape[2]):
mn_noise = np.nanmean(noise[...,c[i]])
d[...,i] = baseline_correct_via_noise(d[...,i],
mn_noise,
g[..., i])
d *= np.moveaxis(pc[c,...], 0, 2)
rel_gain.fill(d, cellTable=c)
gain_map = rel_gain.get()
gain_map_func = rel_gain.getUsingFunc(inverse=False)
pks, stds = rel_gain.getRawPeaks()
return gain_map, pks, stds, gain_map_func
inp = []
for i in modules:
qm = "Q{}M{}".format(i//4+1, i%4+1)
inp.append((i, offset_g[qm], thresholds_g[qm], noise_g[qm][...,0], pc_g[qm][0,...]))
start = datetime.now()
p = partial(relgain_single_module, fbase, runs, sequences,
peak_estimates, peak_heights, peak_sigma, memory_cells,
sensor_size, block_size, IL_MODE, profile, limit_trains_eval, rawversion, instrument)
res_gain = list(map(p, inp)) # don't run concurently as inner function are parelllized
duration = (datetime.now()-start).total_seconds()
logger.runtime_summary_entry(success=True, runtime=duration)
logger.send()
```
%% Cell type:markdown id: tags:
Finally, we inspect the results, by plotting the number of entries, peak locations and resulting gain maps for each peak. In the course of doing so, we identify bad pixels by either having 0 entries for a peak, or having `nan` values for the peak location.
%% Cell type:code id: tags:
``` python
gain_m = {}
flatsff = {}
gainoff_g = {}
entries_g = {}
peaks_g = {}
mask_g = {}
cell_to_preview = 4
masks_eval_peaks = [1, 2]
global_eval_peaks = [1]
global_meds = {}
for i, r in enumerate(res_gain):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
gain, pks, std, gfunc = r
gains, errors, chisq, valid, max_dev, stats = gfunc
_, entries, stds, sow = gain
gain_db = np.zeros((gains.shape[0], gains.shape[1], memory_cells))
gain_mdb = np.zeros((gains.shape[0], gains.shape[1], memory_cells))
entries_db = np.zeros((gains.shape[0], gains.shape[1], memory_cells, 5))
gainoff_db = np.zeros((gains.shape[0], gains.shape[1], memory_cells))
mask_db = np.zeros((gains.shape[0], gains.shape[1], memory_cells), np.uint32)
gainoff_g[qm] = gainoff_db
gain_m[qm] = gain_mdb
entries_g[qm] = entries_db
peaks_g[qm] = pks
# create a mask for unregular pixels
# first bit set if first peak has nan entries
for pk in masks_eval_peaks:
mask_db[~(np.isfinite(gain_mdb) & np.isfinite(gainoff_db))] |= BadPixels.FF_GAIN_EVAL_ERROR.value
mask_db[(np.abs(1-gain_mdb/np.nanmedian(gain_mdb) > deviation_threshold) )] |= BadPixels.FF_GAIN_DEVIATION.value
# second bit set if entries are 0 for first peak
mask_db[entries[...,1] == 0] |= BadPixels.FF_NO_ENTRIES.value
zero_oc = np.count_nonzero((entries > 0).astype(np.int), axis=3)
mask_db[zero_oc <= len(peak_estimates)-2] |= BadPixels.FF_NO_ENTRIES.value
# third bit set if entries of a given adc show significant noise
stds = []
for ii in range(8):
for jj in range(8):
stds.append(np.std(entries_db[ii*16:(ii+1)*16,jj*64+2:(jj+1)*64-2,:,1], axis=(0,1)))
avg_stds = np.median(np.array(stds), axis=0)
for ii in range(8):
for jj in range(8):
std = np.std(entries_db[ii*16:(ii+1)*16,jj*64+2:(jj+1)*64-2,:,1], axis=(0,1))
if np.any(std > 5*avg_stds):
mask_db[ii*16:(ii+1)*16,jj*64:(jj+1)*64,std > 5*avg_stds] |= BadPixels.FF_GAIN_DEVIATION
mask_g[qm] = mask_db
flat = np.zeros((gains.shape[0], gains.shape[1], memory_cells, 3))
for j in range(2,len(peak_estimates)):
flat[...,j-2] = np.mean(entries[...,j]/np.mean(entries[...,j]))
flat = np.mean(flat, axis=3)
#flat_db = np.zeros((gains.shape[0], gains.shape[1], memory_cells))
#for j in range(2):
# flat_db[...,j::2] = flat
flatsff[qm] = flat
global_meds[qm] = np.nanmedian(pks[...,global_eval_peaks][np.max(mask_db, axis=2) != 0])
```
%% Cell type:markdown id: tags:
## Evaluated peak locations ##
The following plot shows the evaluated peak locations for each peak. Peak ids increase downward:
%% Cell type:code id: tags:
``` python
from mpl_toolkits.axes_grid1 import AxesGrid
cell_to_preview = 4
for qm, data in peaks_g.items():
print("The module shown is: {}".format(qm))
print("The cell shown is: {}".format(cell_to_preview))
print("Evaluated peaks: {}".format(data.shape[-1]))
fig = plt.figure(figsize=(15,15))
grid = AxesGrid(fig, 111,
nrows_ncols=(data.shape[-1], 1),
axes_pad=0.1,
share_all=True,
label_mode="L",
cbar_location="right",
cbar_mode="each",
cbar_size="7%",
cbar_pad="2%")
for j in range(data.shape[-1]):
d = data[...,cell_to_preview,j]
d[~np.isfinite(d)] = 0
im = grid[j].imshow(d, interpolation="nearest", vmin=0.9*np.nanmedian(d), vmax=max(1.1*np.nanmedian(d), 50))
cb = grid.cbar_axes[j].colorbar(im)
cb.set_label_text("Peak location (ADU)")
```
%% Cell type:markdown id: tags:
## Gain Slopes And Offsets ##
The gain slopes and offsets are deduced by fitting a linear function $y = mx + b$ to the evaluated peaks. Gains are normalized to all pixels and all memory cells of a module by using the average peak locations a $x$ values. Thus slopes centered around 1 are to be expected.
%% Cell type:code id: tags:
``` python
for i, r in enumerate(res_gain):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
gain, pks, std, gfunc = r
gains, errors, chisq, valid, max_dev, stats = gfunc
_, entries, stds, sow = gain
fig = plt.figure(figsize=(15,8))
ax = fig.add_subplot(211)
im = ax.imshow(gains[...,0], interpolation="nearest", vmin=0.85, vmax=1.15)
cb = fig.colorbar(im)
cb.set_label("Gain slope m")
fig.savefig("{}/gain_m_mod{}.png".format(out_folder, qm))
ax = fig.add_subplot(212)
ax.hist(gains[...,0].flatten(), range=(0.5, 1.5), bins=100)
ax.set_ylabel("Occurences")
ax.set_xlabel("Gain slope m")
ax.semilogy()
```
%% Cell type:markdown id: tags:
The gain offsets b are expected to be centered around 0 and minimal, as data is already offset substracted.
%% Cell type:code id: tags:
``` python
for i, r in enumerate(res_gain):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
gain, pks, std, gfunc = r
gains, errors, chisq, valid, max_dev, stats = gfunc
_, entries, stds, sow = gain
fig = plt.figure(figsize=(15,8))
ax = fig.add_subplot(211)
im = ax.imshow(gains[...,1], interpolation="nearest", vmin=-25, vmax=25)
cb = fig.colorbar(im)
cb.set_label("Gain offset b")
fig.savefig("{}/gain_b_mod{}.png".format(out_folder, qm))
ax = fig.add_subplot(212)
ax.hist(gains[...,1].flatten(), range=(-25, 25), bins=100)
ax.set_ylabel("Occurences")
ax.set_xlabel("Gain offset b")
ax.semilogy()
```
%% Cell type:markdown id: tags:
## Bad Pixels ##
Bad pixels are defined as any of the following criteria:
* the gain evaluation did not converge, or location of noise peak deviates by more than than the deviation threshold from the median location.
* the number of entries for the noise peak in 0.
* the standard deviation of the number of entries is larger than 5 times the standard deviation for the ASIC the pixel is on.
%% Cell type:code id: tags:
``` python
print("The deviation threshold is: {}".format(deviation_threshold))
```
%% Cell type:code id: tags:
``` python
for i, r in enumerate(res_gain):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
mask_db = mask_g[qm]
fig = plt.figure(figsize=(15,8))
ax = fig.add_subplot(211)
im = ax.imshow(np.log2(mask_db[...,cell_to_preview]), interpolation="nearest", vmin=0, vmax=32)
cb = fig.colorbar(im)
cb.set_label("Mask value")
fig.savefig("{}/mask_mod{}.png".format(out_folder, qm))
ax = fig.add_subplot(212)
ax.hist(np.log2(mask_db.flatten()), range=(0, 32), bins=32, normed=True)
ax.set_ylabel("Occurences")
ax.set_xlabel("Mask value")
ax.semilogy()
```
%% Cell type:code id: tags:
``` python
cols = {BadPixels.FF_GAIN_EVAL_ERROR.value: (BadPixels.FF_GAIN_EVAL_ERROR.name, '#FF000080'),
BadPixels.FF_GAIN_DEVIATION.value: (BadPixels.FF_GAIN_DEVIATION.name, '#0000FF80'),
BadPixels.FF_NO_ENTRIES.value: (BadPixels.FF_NO_ENTRIES.name, '#00FF0080'),
BadPixels.FF_GAIN_EVAL_ERROR.value |
BadPixels.FF_GAIN_DEVIATION.value: ('EVAL+DEV', '#DD00DD80'),
BadPixels.FF_GAIN_EVAL_ERROR.value |
BadPixels.FF_NO_ENTRIES.value: ('EVAL+NO_ENTRY', '#00DDDD80'),
BadPixels.FF_GAIN_DEVIATION.value |
BadPixels.FF_NO_ENTRIES.value: ('DEV+NO_ENTRY', '#DDDD0080'),
}
rebin = 32 if not high_res_badpix_3d else 2
gain = 0
for mod, data in mask_g.items():
plot_badpix_3d(data, cols, title=mod, rebin_fac=rebin)
```
%% Cell type:code id: tags:
``` python
if local_output:
ofile = "{}/agipd_gain_store_{}_modules_{}.h5".format(out_folder,
"_".join([str(r) for r in runs]),
"_".join([str(m) for m in modules]))
store_file = h5py.File(ofile, "w")
for i, r in enumerate(res_gain):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
gain, pks, std, gfunc = r
gains, errors, chisq, valid, max_dev, stats = gfunc
gainmap, entires, stds, sow = gain
store_file["/{}/Gain/0/data".format(qm)] = gains[...,0]
store_file["/{}/GainOffset/0/data".format(qm)] = gains[...,1]
store_file["/{}/Flat/0/data".format(qm)] = flatsff[qm]
store_file["/{}/Entries/0/data".format(qm)] = entires
store_file["/{}/BadPixels/0/data".format(qm)] = mask_g[qm]
store_file.close()
```
%% Cell type:code id: tags:
``` python
proposal = list(filter(None, in_folder.strip('/').split('/')))[-2]
file_loc = proposal + ' ' + ' '.join(list(map(str,runs)))
```
%% Cell type:code id: tags:
``` python
if db_output:
for i, r in enumerate(res_gain):
ii = list(modules)[i]
qm = "Q{}M{}".format(ii//4+1, ii%4+1)
gain, pks, std, gfunc = r
gains, errors, chisq, valid, max_dev, stats = gfunc
gainmap, entires, stds, sow = gain
det = getattr(Detectors, dinstance)
device = getattr(det, qm)
# gains related
metadata = ConstantMetaData()
cgain = Constants.AGIPD.SlopesFF()
cgain.data = gains
metadata.calibration_constant = cgain
# set the operating condition
condition = Conditions.Illuminated.AGIPD(memory_cells, bias_voltage, 9.2,
pixels_x=512, pixels_y=128, beam_energy=None,
acquisition_rate=acqrate, gain_setting=gain_setting)
metadata.detector_condition = condition
# specify the a version for this constant
if creation_time is None:
metadata.calibration_constant_version = Versions.Now(device=getattr(det, qm))
else:
metadata.calibration_constant_version = Versions.Timespan(device=getattr(det, qm), start=creation_time)
metadata.calibration_constant_version.raw_data_location = file_loc
metadata.send(cal_db_interface, timeout=300000)
# bad pixels
metadata = ConstantMetaData()
bp = Constants.AGIPD.BadPixelsFF()
bp.data = mask_g[qm]
metadata.calibration_constant = bp
# set the operating condition
condition = Conditions.Illuminated.AGIPD(memory_cells, bias_voltage, 9.2,
pixels_x=512, pixels_y=128, beam_energy=None,
acquisition_rate=acqrate, gain_setting=gain_setting)
metadata.detector_condition = condition
# specify the a version for this constant
if creation_time is None:
metadata.calibration_constant_version = Versions.Now(device=getattr(det, qm))
else:
metadata.calibration_constant_version = Versions.Timespan(device=getattr(det, qm), start=creation_time)
metadata.calibration_constant_version.raw_data_location = file_loc
metadata.send(cal_db_interface, timeout=300000)
```
%% Cell type:markdown id: tags:
## Sanity check ##
Finally, we perform a correction of the data used to derive the gain constants with said constants. We expected an improvement in peak FWHM, if constants have been deduced correctly.
%% Cell type:code id: tags:
``` python
def hist_single_module(fbase, runs, sequences, il_mode, profile, limit_trains, memory_cells, rawversion, instrument, inp):
channel, offset, thresholds, relgain, noise, pc = inp
gain, pks, std, gfunc = relgain
gains, errors, chisq, valid, max_dev, stats = gfunc
import XFELDetAna.xfelpycaltools as xcal
import numpy as np
import h5py
import copy
from XFELDetAna.util import env
env.iprofile = profile
sensor_size = [128, 512]
block_size = sensor_size
def baseline_correct_via_noise(d, noise, g, baseline_corr_noise_threshold=1000):
""" Correct baseline shifts by evaluating position of the noise peak
:param: d: the data to correct, should be a single image
:param noise: the mean noise for the cell id of `d`
:param g: gain array matching `d` array
Correction is done by identifying the left-most (significant) peak
in the histogram of `d` and shifting it to be centered on 0.
This is done via a continous wavelet transform (CWT), using a Ricker
wavelet.
Only high gain data is evaulated, and data larger than 50 ADU,
equivalent of roughly a 9 keV photon is ignored.
Two passes are executed: the first shift is accurate to 10 ADU and
will catch baseline shifts smaller then -2000 ADU. CWT is evaluated
for peaks of widths one, three and five time the noise.
The baseline is then shifted by the position of the summed CWT maximum.
In a second pass histogram is evaluated within a range of
+- 5*noise of the initial shift value, for peak of width noise.
Baseline shifts larger than the maximum threshold or positive shifts
larger 10 are discarded, and the original data is returned, otherwise
the shift corrected data is returned.
"""
import copy
from scipy.signal import cwt, ricker
# we work on a copy to be able to filter values by setting them to
# np.nan
dd = copy.copy(d)
dd[g != 0] = np.nan # only high gain data
dd[dd > 50] = np.nan # only noise data
h, e = np.histogram(dd, bins=210, range=(-2000, 100))
c = (e[1:] + e[:-1]) / 2
try:
cwtmatr = cwt(h, ricker, [noise, 3. * noise, 5. * noise])
except:
return d
cwtall = np.sum(cwtmatr, axis=0)
marg = np.argmax(cwtall)
pc = c[marg]
high_res_range = (dd > pc - 5 * noise) & (dd < pc + 5 * noise)
dd[~high_res_range] = np.nan
h, e = np.histogram(dd, bins=200,
range=(pc - 5 * noise, pc + 5 * noise))
c = (e[1:] + e[:-1]) / 2
try:
cwtmatr = cwt(h, ricker, [noise, ])
except:
return d
marg = np.argmax(cwtmatr)
pc = c[marg]
# too large shift to be easily decernable via noise
if pc > 10 or pc < -baseline_corr_noise_threshold:
return d
return d - pc
def read_fun(filename, channel):
infile = h5py.File(filename, "r", driver="core")
if rawversion == 2:
count = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/count".format(instrument, channel)])
first = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/first".format(instrument, channel)])
last_index = int(first[count != 0][-1]+count[count != 0][-1])
first_index = int(first[count != 0][0])
else:
status = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/status".format(instrument, channel)])
if np.count_nonzero(status != 0) == 0:
return
last = np.squeeze(infile["/INDEX/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/last".format(instrument, channel)])
last_index = int(last[status != 0][-1])
first_index = int(last[status != 0][0])
if limit_trains is not None:
last_index = min(limit_trains*memory_cells+first_index, last_index)
im = np.array(infile["/INSTRUMENT/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/data".format(instrument, channel)][first_index:last_index,...])
carr = infile["/INSTRUMENT/{}_DET_AGIPD1M-1/DET/{}CH0:xtdf/image/cellId".format(instrument, channel)][first_index:last_index]
cells = np.squeeze(np.array(carr))
infile.close()
if il_mode:
ga = im[1::2, 0, ...]
im = im[0::2, 0, ...].astype(np.float32)
else:
ga = im[:, 1, ...]
im = im[:, 0, ...].astype(np.float32)
im = np.rollaxis(im, 2)
im = np.rollaxis(im, 2, 1)
ga = np.rollaxis(ga, 2)
ga = np.rollaxis(ga, 2, 1)
return im, ga, cells
offset_cor = xcal.OffsetCorrection(sensor_size, offset, nCells=memory_cells, blockSize=block_size, gains=[0,1,2])
offset_cor.debug()
hist_calc = xcal.HistogramCalculator(sensor_size, bins=2000, range=(0, 2000), blockSize=block_size)
hist_calc.debug()
hist_calc_uncorr = xcal.HistogramCalculator(sensor_size, bins=2000, range=(0, 2000), blockSize=block_size)
hist_calc_uncorr.debug()
for run in runs:
for seq in sequences[:2]:
fname = fbase.format(run, run.upper(), channel, seq)
d, ga, c = read_fun(fname, channel)
# we need to do proper gain thresholding
vidx = (c < offset.shape[2]) & (c < thresholds.shape[2])
c = c[vidx]
d = d[:,:,vidx]
ga = ga[:,:,vidx]
g = np.zeros(ga.shape, np.uint8)
g[...] = 2
g[ga < thresholds[...,c,1]] = 1
g[ga < thresholds[...,c,0]] = 0
d = offset_cor.correct(d, cellTable=c, gainMap=g)
for i in range(d.shape[2]):
mn_noise = np.nanmean(noise[...,c[i]])
d[...,i] = baseline_correct_via_noise(d[...,i],
mn_noise,
g[..., i])
d *= np.moveaxis(pc[c,...], 0, 2)
hist_calc_uncorr.fill(d)
d = (d-gains[..., 1][...,None])/gains[..., 0][...,None]
#d = d/gains[..., 0][...,None]
hist_calc.fill(d)
h, e, c, _ = hist_calc.get()
hu = hist_calc_uncorr.get()
return h, e, c, hu[0]
inp = []
idx = 0
for i in modules:
qm = "Q{}M{}".format(i//4+1, i%4+1)
inp.append((i, offset_g[qm], thresholds_g[qm], res_gain[idx], noise_g[qm][...,0], pc_g[qm][0,...]))
idx += 1
p = partial(hist_single_module, fbase, runs, sequences, IL_MODE, profile, limit_trains, memory_cells, rawversion, instrument)
#res = view.map_sync(p, inp)
res = list(map(p, inp))
```
%% Cell type:code id: tags:
``` python
from iminuit import Minuit
from iminuit.util import make_func_code, describe
from IPython.display import HTML, display
import tabulate
# fitting
par_ests = {}
par_ests["mu0"] = 0
par_ests["mu1"] = 50
par_ests["mu2"] = 100
par_ests["limit_mu0"] = [-5, 5]
par_ests["limit_mu1"] = [35, 65]
par_ests["limit_mu2"] = [100, 150]
par_ests["s0"] = 10
par_ests["s1"] = 10
par_ests["s2"] = 10
par_ests["limit_A0"] = [1e5, 1e12]
par_ests["limit_A1"] = [1e4, 1e10]
par_ests["limit_A2"] = [1e3, 1e10]
par_ests["throw_nan"] = False
par_ests["pedantic"] = False
par_ests["print_level"] = 1
def gaussian3(x, mu0, s0, A0, mu1, s1, A1, mu2, s2, A2):
return (A0/np.sqrt(2*np.pi*s0**2)*np.exp(-0.5*((x-mu0)/s0)**2) +
A1/np.sqrt(2*np.pi*s1**2)*np.exp(-0.5*((x-mu1)/s1)**2) +
A2/np.sqrt(2*np.pi*s2**2)*np.exp(-0.5*((x-mu2)/s2)**2))
f_sig = describe(gaussian3)[1:]
class _Chi2Functor:
def __init__(self, f, x, y, err):
self.f = f
self.x = x
self.y = y
self.err = err
f_sig = describe(f)
# this is how you fake function
# signature dynamically
self.func_code = make_func_code(
f_sig[1:]) # docking off independent variable
self.func_defaults = None # this keeps numpy.vectorize happy
def __call__(self, *arg):
# notice that it accept variable length
# positional arguments
# chi2 = sum((y-self.f(x,*arg))**2 for x,y in zip(self.x,self.y))
return np.sum(((self.f(self.x, *arg) - self.y) ** 2) / self.err)
d = []
y_range_max = 0
table = []
headers = ['Module',
'FWHM (cor.) [ADU]', 'Separation (cor.) [$\sigma$]',
'FWHM (uncor.) [ADU]', 'Separation (uncor.) [$\sigma$]',
'Improvement'
]
for i, r in enumerate(res):
qm = "Q{}M{}".format(i//4+1, i%4+1)
row = []
row.append(qm)
h, e, c, hu = r
d.append({
'x': c,
'y': h,
'drawstyle': 'steps-mid',
'label': '{}: corrected'.format(qm),
'marker': '.',
'color': 'blue',
})
idx = (h > 0) & np.isfinite(h)
h_non_zero = h[idx]
c_non_zero = c[idx]
par_ests["A0"] = np.float(h[np.argmin(abs(c-0))])
par_ests["A1"] = np.float(h[np.argmin(abs(c-50))])
par_ests["A2"] = np.float(h[np.argmin(abs(c-100))])
wrapped = _Chi2Functor(gaussian3, c_non_zero, h_non_zero,
np.sqrt(h_non_zero))
m = Minuit(wrapped, **par_ests)
fmin = m.migrad()
xt = np.arange(0, 200)
yt = gaussian3(xt, m.values['mu0'], m.values['s0'], m.values['A0'],
m.values['mu1'], m.values['s1'], m.values['A1'],
m.values['mu2'], m.values['s2'], m.values['A2'])
d.append({
'x': xt,
'y': yt,
'label': '{}: corrected (fit)'.format(qm),
'color': 'green',
'drawstyle': 'line',
'linewidth': 2
})
d.append({
'x': c,
'y': hu,
'drawstyle': 'steps-mid',
'label': '{}: uncorrected'.format(qm),
'marker': '.',
'color': 'grey',
'alpha': 0.5
})
row += [m.values['s1']*2.35, (m.values['mu1']-m.values['mu0'])/m.values['s1']]
idx = (hu > 0) & np.isfinite(hu)
h_non_zero = hu[idx]
c_non_zero = c[idx]
wrapped = _Chi2Functor(gaussian3, c_non_zero, h_non_zero,
np.sqrt(h_non_zero))
m = Minuit(wrapped, **par_ests)
fmin = m.migrad()
xt = np.arange(0, 200)
yt = gaussian3(xt, m.values['mu0'], m.values['s0'], m.values['A0'],
m.values['mu1'], m.values['s1'], m.values['A1'],
m.values['mu2'], m.values['s2'], m.values['A2'])
d.append({
'x': xt,
'y': yt,
'label': '{}: uncorrected (fit)'.format(qm),
'color': 'red',
'linewidth': 2
})
row += [m.values['s1']*2.35, (m.values['mu1']-m.values['mu0'])/m.values['s1']]
row.append("{:0.2f} %".format(100*(row[3]/row[1]-1)))
y_range_max = max(y_range_max, np.max(h[c>25])*1.5)
# output table
table.append(row)
fig = xana.simplePlot(d, y_log=False, figsize="2col",
aspect=2,
x_range=(0, 200),
legend='top-right-frame',
y_range=(0, y_range_max),
x_label='Energy (ADU)',
y_label='Counts')
display(HTML(tabulate.tabulate(table, tablefmt='html', headers=headers,
numalign="right", floatfmt="0.2f")))
```
%% Cell type:code id: tags:
``` python
```
import numpy as np
from cal_tools.agipdutils_ff import get_mask, set_par_limits
def test_get_mask():
fit_summary = {
'chi2_ndof': 1.674524751845516,
'g0n': 6031.641198873036,
'error_g0n': 94.63055028459667,
'limit_g0n': np.array([0.0, None]),
'fix_g0n': False,
'g0mean': -13.711814669099589,
'error_g0mean': 0.2532017427306297,
'limit_g0mean': np.array([-30, 30]),
'fix_g0mean': False,
'g0sigma': 13.478502058651568,
'error_g0sigma': 0.2588135637661919,
'limit_g0sigma': np.array([0, 30]),
'fix_g0sigma': False,
'g1n': 4337.126861254491,
'error_g1n': 69.764180118274,
'limit_g1n': np.array([0, None]),
'fix_g1n': False,
'g1mean': 53.90265411499657,
'error_g1mean': 0.27585684670864746,
'limit_g1mean': None,
'fix_g1mean': False,
'g1sigma': 15.687448834904817,
'error_g1sigma': 0.2951166525483524,
'limit_g1sigma': np.array([0, 35]),
'fix_g1sigma': False,
'g2n': 1542.531700635003,
'error_g2n': 43.20145030604567,
'limit_g2n': np.array([0, None]),
'fix_g2n': False,
'g2mean': 120.98535387591575,
'error_g2mean': 0.509566354942716,
'limit_g2mean': None,
'fix_g2mean': False,
'g2sigma': 15.550452880533143,
'error_g2sigma': 0.5003254358001863,
'limit_g2sigma': np.array([0, 40]),
'fix_g2sigma': False,
'g3n': 1261189.2282171287,
'error_g3n': 1261190.2282163086,
'limit_g3n': np.array([0, None]),
'fix_g3n': False,
'g3mean': 348.68766379647343,
'error_g3mean': 17.23872285713375,
'limit_g3mean': None,
'fix_g3mean': False,
'g3sigma': 44.83987230934497,
'error_g3sigma': 30.956164693249242,
'limit_g3sigma': np.array([0, 45]),
'fix_g3sigma': False,
'fval': 336.5794751209487,
'edm': 0.00011660826330754263,
'tolerance': 0.1,
'nfcn': 4620,
'ncalls': 4620,
'up': 1.0,
'is_valid': True,
'has_valid_parameters': True,
'has_accurate_covar': True,
'has_posdef_covar': True,
'has_made_posdef_covar': False,
'hesse_failed': False,
'has_covariance': True,
'is_above_max_edm': False,
'has_reached_call_limit': False}
peak_lim = [-30, 30]
d0_lim = [10, 80]
chi2_lim = [0, 3.0]
peak_width_lim = np.array([[0.9, 1.55], [0.95, 1.65]])
mask = get_mask(fit_summary, peak_lim, d0_lim, chi2_lim, peak_width_lim)
assert mask == 0
def test_set_par_limits():
peak_range = np.array([[-30, 30],
[35, 70],
[95, 135],
[145, 220]])
peak_norm_range = np.array([[0.0, None],
[0, None],
[0, None],
[0, None]])
peak_width_range = np.array([[0, 30],
[0, 35],
[0, 40],
[0, 45]])
parameters = {
'g0sigma': 9.620186459204016,
'g0n': 5659.0,
'g0mean': -3.224686340342817,
'g1sigma': 8.149415371586683,
'g1n': 3612.0,
'g1mean': 54.6281838316722,
'g2sigma': 9.830124777667839,
'g2n': 1442.0,
'g2mean': 114.92510402219139,
'g3sigma': 15.336595220228498,
'g3n': 474.0,
'g3mean': 167.0295358649789}
expected = {
'g0sigma': 9.620186459204016,
'g0n': 5659.0,
'g0mean': -3.224686340342817,
'g1sigma': 8.149415371586683,
'g1n': 3612.0,
'g1mean': 54.6281838316722,
'g2sigma': 9.830124777667839,
'g2n': 1442.0,
'g2mean': 114.92510402219139,
'g3sigma': 15.336595220228498,
'g3n': 474.0,
'g3mean': 167.0295358649789,
'limit_g0n': np.array([0.0, None]),
'limit_g0mean': np.array([-30, 30]),
'limit_g0sigma': np.array([0, 30]),
'limit_g1n': np.array([0, None]),
'limit_g1mean': np.array([35, 70]),
'limit_g1sigma': np.array([0, 35]),
'limit_g2n': np.array([0, None]),
'limit_g2mean': np.array([95, 135]),
'limit_g2sigma': np.array([0, 40]),
'limit_g3n': np.array([0, None]),
'limit_g3mean': np.array([145, 220]),
'limit_g3sigma': np.array([0, 45])}
set_par_limits(parameters, peak_range, peak_norm_range, peak_width_range)
assert parameters.keys() == expected.keys()
for key in parameters.keys():
if isinstance(parameters[key], np.ndarray):
assert np.all(parameters[key] == expected[key])
else:
assert parameters[key] == expected[key]
......@@ -21,6 +21,8 @@ notebooks = {
"FF": {
"notebook":
"notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_NBC.ipynb",
"dep_notebooks": [
"notebooks/AGIPD/Characterize_AGIPD_Gain_FlatFields_Summary.ipynb"],
"concurrency": {"parameter": "modules",
"default concurrency": 16,
"cluster cores": 16},
......