Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
SFX addons
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
calibration
SFX addons
Commits
46b9c9f6
Commit
46b9c9f6
authored
1 month ago
by
Egor Sobolev
Committed by
xonc
1 month ago
Browse files
Options
Downloads
Patches
Plain Diff
Add SFX hitfinder arbiter kernel
parent
3fe7aa5d
No related branches found
No related tags found
1 merge request
!3
SFX hitfinder kernel
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
setup.py
+1
-1
1 addition, 1 deletion
setup.py
src/sfx_addons/sfx_hitfinder.py
+197
-0
197 additions, 0 deletions
src/sfx_addons/sfx_hitfinder.py
with
198 additions
and
1 deletion
setup.py
+
1
−
1
View file @
46b9c9f6
...
...
@@ -22,8 +22,8 @@ setup(
packages
=
find_packages
(
"
src
"
),
entry_points
=
{
"
calng.arbiter_kernel
"
:
[
"
HitFinderSPI = sfx_addons.hitfinder_spi:HitFinderSPI
"
,
"
SPIhitfinder = sfx_addons.spi_hitfinder:SPIhitfinder
"
,
"
SFXhitfinder = sfx_addons.sfx_hitfinder:SFXhitfinder
"
,
],
},
requires
=
[],
...
...
This diff is collapsed.
Click to expand it.
src/sfx_addons/sfx_hitfinder.py
0 → 100644
+
197
−
0
View file @
46b9c9f6
from
collections
import
deque
import
numpy
as
np
from
calng.arbiter_kernels.base_kernel
import
BaseArbiterKernel
from
karabo.bound
import
(
DOUBLE_ELEMENT
,
INT32_ELEMENT
,
NDARRAY_ELEMENT
,
NODE_ELEMENT
,
OVERWRITE_ELEMENT
,
VECTOR_UINT32_ELEMENT
,
Hash
)
from
.utils
import
guess_module_number
class
Peaks
:
def
__init__
(
self
):
self
.
_reset_parts
()
def
_reset_parts
(
self
):
self
.
_parts
=
dict
(
x
=
[],
y
=
[],
intensity
=
[],
mod
=
[],
num
=
[])
def
add_module
(
self
,
mod_no
,
data
):
self
.
_parts
[
"
num
"
].
append
(
data
[
"
numPeaks
"
])
self
.
_parts
[
"
mod
"
].
append
(
mod_no
)
self
.
_parts
[
"
x
"
].
append
(
data
[
"
peakX
"
])
self
.
_parts
[
"
y
"
].
append
(
data
[
"
peakY
"
])
self
.
_parts
[
"
intensity
"
].
append
(
data
[
"
peakIntensity
"
])
def
compress
(
self
):
self
.
num
=
np
.
sum
(
self
.
_parts
[
"
num
"
],
axis
=
0
)
max_peaks
=
np
.
max
(
self
.
num
)
num_frames
=
len
(
self
.
num
)
self
.
mod
=
np
.
zeros
([
num_frames
,
max_peaks
],
np
.
uint16
)
self
.
x
=
np
.
zeros
([
num_frames
,
max_peaks
],
np
.
float32
)
self
.
y
=
np
.
zeros
([
num_frames
,
max_peaks
],
np
.
float32
)
self
.
intensity
=
np
.
zeros
([
num_frames
,
max_peaks
],
np
.
float32
)
num_current
=
np
.
zeros
(
num_frames
,
dtype
=
int
)
for
mod_ix
,
mod_no
in
enumerate
(
self
.
_parts
[
"
mod
"
]):
num_on_module
=
self
.
_parts
[
"
num
"
][
mod_ix
]
for
frame_ix
,
(
f0
,
n
)
in
enumerate
(
zip
(
num_current
,
num_on_module
)):
fN
=
f0
+
n
self
.
x
[
frame_ix
,
f0
:
fN
]
=
self
.
_parts
[
"
x
"
][
mod_ix
][
frame_ix
,
:
n
]
self
.
y
[
frame_ix
,
f0
:
fN
]
=
self
.
_parts
[
"
y
"
][
mod_ix
][
frame_ix
,
:
n
]
self
.
mod
[
frame_ix
,
f0
:
fN
]
=
mod_no
self
.
intensity
[
frame_ix
,
f0
:
fN
]
=
self
.
_parts
[
"
intensity
"
][
mod_ix
][
frame_ix
,
:
n
]
num_current
+=
num_on_module
self
.
_reset_parts
()
def
to_hash
(
self
,
out
=
Hash
()):
out
.
set
(
"
number
"
,
list
(
map
(
float
,
self
.
num
)))
out
.
set
(
"
mod
"
,
self
.
mod
)
out
.
set
(
"
x
"
,
self
.
x
)
out
.
set
(
"
y
"
,
self
.
y
)
out
.
set
(
"
intensity
"
,
self
.
intensity
)
return
out
@staticmethod
def
extend_schema
(
schema
,
prefix
):
(
VECTOR_UINT32_ELEMENT
(
schema
)
.
key
(
f
"
{
prefix
}
.number
"
)
.
assignmentOptional
()
.
defaultValue
([])
.
commit
(),
NDARRAY_ELEMENT
(
schema
)
.
key
(
f
"
{
prefix
}
.mod
"
)
.
dtype
(
"
UINT32
"
)
.
commit
(),
NDARRAY_ELEMENT
(
schema
)
.
key
(
f
"
{
prefix
}
.x
"
)
.
dtype
(
"
FLOAT
"
)
.
commit
(),
NDARRAY_ELEMENT
(
schema
)
.
key
(
f
"
{
prefix
}
.y
"
)
.
dtype
(
"
FLOAT
"
)
.
commit
(),
NDARRAY_ELEMENT
(
schema
)
.
key
(
f
"
{
prefix
}
.intensity
"
)
.
dtype
(
"
FLOAT
"
)
.
commit
(),
)
class
SFXhitfinder
(
BaseArbiterKernel
):
_node_name
=
"
sfxHitfinder
"
def
__init__
(
self
,
device
,
name
,
config
):
self
.
_history_hitrate
=
deque
([],
100
)
super
().
__init__
(
device
,
name
,
config
)
@staticmethod
def
extend_device_schema
(
schema
,
prefix
):
(
OVERWRITE_ELEMENT
(
schema
)
.
key
(
prefix
)
.
setNewDescription
(
"
This kernel selects the frames by comparing the number
"
"
of peaks to the threshold.
"
)
.
commit
(),
INT32_ELEMENT
(
schema
)
.
key
(
f
"
{
prefix
}
.minPeaks
"
)
.
assignmentOptional
()
.
defaultValue
(
10
)
.
reconfigurable
()
.
commit
(),
INT32_ELEMENT
(
schema
)
.
key
(
f
"
{
prefix
}
.maxPeaks
"
)
.
assignmentOptional
()
.
defaultValue
(
2000
)
.
reconfigurable
()
.
commit
(),
INT32_ELEMENT
(
schema
)
.
key
(
f
"
{
prefix
}
.hitrateAverageWindow
"
)
.
assignmentOptional
()
.
defaultValue
(
100
)
.
reconfigurable
()
.
commit
(),
)
@staticmethod
def
extend_output_schema
(
schema
,
name
):
(
NODE_ELEMENT
(
schema
)
.
key
(
f
"
{
name
}
.peaks
"
)
.
commit
(),
INT32_ELEMENT
(
schema
)
.
key
(
f
"
{
name
}
.numberOfHits
"
)
.
assignmentOptional
()
.
defaultValue
(
0
)
.
commit
(),
INT32_ELEMENT
(
schema
)
.
key
(
f
"
{
name
}
.numberOfMiss
"
)
.
assignmentOptional
()
.
defaultValue
(
0
)
.
commit
(),
DOUBLE_ELEMENT
(
schema
)
.
key
(
f
"
{
name
}
.hitrate
"
)
.
assignmentOptional
()
.
defaultValue
(
0.0
)
.
commit
(),
DOUBLE_ELEMENT
(
schema
)
.
key
(
f
"
{
name
}
.averageHitrate
"
)
.
assignmentOptional
()
.
defaultValue
(
0.0
)
.
commit
(),
)
Peaks
.
extend_schema
(
schema
,
f
"
{
name
}
.peaks
"
)
def
reconfigure
(
self
,
config
):
if
config
.
has
(
"
minPeaks
"
):
self
.
_min_peaks
=
config
[
"
minPeaks
"
]
if
config
.
has
(
"
maxPeaks
"
):
self
.
_max_peaks
=
config
[
"
maxPeaks
"
]
if
config
.
has
(
"
hitrateAverageWindow
"
):
self
.
_hitrate_window
=
config
[
"
hitrateAverageWindow
"
]
self
.
_history_hitrate
=
deque
(
self
.
_history_hitrate
,
self
.
_hitrate_window
)
def
consider
(
self
,
train_id
,
sources
,
num_frames
,
mask
,
out_hash
):
num_work_frames
=
int
(
np
.
sum
(
mask
))
peaks
=
Peaks
()
for
source
,
(
data
,
_
)
in
sources
.
items
():
modno
=
guess_module_number
(
source
)
if
modno
<
0
:
continue
if
data
.
has
(
"
peakfinding
"
):
peaks
.
add_module
(
modno
,
data
[
"
peakfinding
"
])
peaks
.
compress
()
hits
=
mask
&
(
self
.
_min_peaks
<=
peaks
.
num
)
&
(
peaks
.
num
<=
self
.
_max_peaks
)
num_hits
=
int
(
np
.
sum
(
hits
))
num_miss
=
num_work_frames
-
num_hits
hitrate
=
num_hits
/
num_work_frames
if
num_work_frames
>
0
else
.
0
self
.
_history_hitrate
.
append
(
hitrate
)
out_hash
.
set
(
f
"
{
self
.
_name
}
.peaks
"
,
peaks
.
to_hash
())
out_hash
.
set
(
f
"
{
self
.
_name
}
.numberOfHits
"
,
num_hits
)
out_hash
.
set
(
f
"
{
self
.
_name
}
.numberOfMiss
"
,
num_miss
)
out_hash
.
set
(
f
"
{
self
.
_name
}
.hitrate
"
,
hitrate
)
out_hash
.
set
(
f
"
{
self
.
_name
}
.averageHitrate
"
,
np
.
mean
(
self
.
_history_hitrate
))
return
hits
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment