Skip to content
Snippets Groups Projects
Supervised classification.ipynb 448 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "1bba0128",
   "metadata": {},
   "source": [
    "# Supervised learning with PyTorch\n",
    "\n",
    "This is an example of how to build and optimize neural networks with PyTorch. PyTorch and Tensorflow offer a handy mechanism to provide automatic differentiation, using the chain rule in Calculus to calculate the derivative of a function very fast and with GPU support.\n",
    "\n",
    "Our dataset will consist of images of handwritten digits and the task shall be to classify those handwritten digits in the classes {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.\n",
    "\n",
    "If this was a regression problem, we would often try to minimise the mean-squared-error between the output of the neural network and the correct prediction. As we saw in the presentation, this assumes that the underlying probability distribution of the prediction is a Gaussian, which is certainly not true for the distribution of digit classes: for one, the digit classes are discrete and Gaussians are only defined for continuous outputs. The most general probability distribution for a choice of 10 classes is a Categorical distribution (https://en.wikipedia.org/wiki/Categorical_distribution), which is simply a discrete distribution with a given probability value for each class. How can we then sculpt a function that maps the input image to a given class?\n",
    "\n",
    "Suppose the neural network provides an output $f_k(x)$ in the form of a list of probabilities, informing us of the probability that a given image belongs to a certain class $k$. If we know that a given input image x belongs to class C, then the true probability t for this image x to belong to each class is zero for classes that differ from C and 1 for the class C. The network's objective will be to output such probabilities, so that only the i-th component of the output is 1 if the input belongs to class i. The presentation shows how the Bayes' rule leads us naturally to minimize the cross entropy between the target probabilities and the predicted probabilities: $- \\sum_k t_k \\log f_k(x)$. One can gain intuition on this by reading more on the Information Theory concept of cross-entropy and how it relates to Mutual Information: minimizing the mutual information between the labels distribution and the predicted one moves them closer together:  https://en.wikipedia.org/wiki/Cross_entropy\n",
    "\n",
    "The neural network will therefore model a parametrized function that maps the input image pixels into a vector with 10 components, which refer to the probability that the image correspond to that digit.\n"
   ]
  },
  {
   "cell_type": "code",
   "id": "d0681795",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: torchvision in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (0.11.2)\r\n",
      "Requirement already satisfied: torch in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (1.10.1)\r\n",
      "Requirement already satisfied: pandas in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (1.1.5)\r\n",
      "Requirement already satisfied: numpy in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (1.19.2)\r\n",
      "Requirement already satisfied: matplotlib in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (3.3.4)\r\n",
      "Requirement already satisfied: pillow!=8.3.0,>=5.3.0 in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (from torchvision) (8.3.1)\r\n",
      "Requirement already satisfied: typing_extensions in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (from torch) (3.10.0.2)\r\n",
      "Requirement already satisfied: dataclasses in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (from torch) (0.8)\r\n",
      "Requirement already satisfied: python-dateutil>=2.7.3 in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (from pandas) (2.8.2)\r\n",
      "Requirement already satisfied: pytz>=2017.2 in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (from pandas) (2021.3)\r\n",
      "Requirement already satisfied: cycler>=0.10 in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (from matplotlib) (0.11.0)\r\n",
      "Requirement already satisfied: kiwisolver>=1.0.1 in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (from matplotlib) (1.3.1)\r\n",
      "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (from matplotlib) (3.0.4)\r\n",
      "Requirement already satisfied: six>=1.5 in /home/daniloefl/miniconda3/envs/ml2/lib/python3.6/site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\r\n"
   "source": [
    "!pip install torchvision torch pandas numpy matplotlib"
   ]
  },
  {
   "cell_type": "code",
   "id": "23feddde",
   "metadata": {},
   "outputs": [],
   "source": [
    "# import standard PyTorch modules\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import torch.nn.functional as F\n",
    "\n",
    "# import torchvision module to handle image manipulation\n",
    "import torchvision\n",
    "import torchvision.transforms as transforms\n",
    "\n",
    "import pandas as pd\n",
    "import numpy as np\n",
   ]
  },
  {
   "cell_type": "markdown",
   "id": "48433f6f",
   "metadata": {},
   "source": [
    "PyTorch allows you to create a class that outputs a single data entry and use that to feed input to your neural network. An example of how you would write such a class is given below, but for this exercise we shall use something ready-made which loads the standard MNIST handwritten digits dataset, just to simplify things.\n",
    "\n",
    "If you want to load a different dataset (for example your own data!), feel free to copy and modify the example Dataset class below."
   ]
  },
  {
   "cell_type": "code",
   "id": "30205402",
   "metadata": {},
   "outputs": [],
   "source": [
    "class MyDataset(object):\n",
    "    def __init__(self):\n",
    "        pass\n",
    "    def __len__(self):\n",
    "        return 10 # these are how many samples I have\n",
    "    def __getitem__(self, idx):\n",
    "        # give me item with index idx\n",
    "        # read this from some file, but for the purposes of this example, generate a random image and label\n",
    "        my_image = np.random.randn(10,10, 1)\n",
    "        my_label = np.array(np.random.randint(10))\n",
    "        my_image = torch.from_numpy(my_image)\n",
    "        my_label = torch.from_numpy(my_label)\n",
    "        return {\"data\": my_image, \"label\": my_label}\n"
   ]
  },
  {
   "cell_type": "code",
   "id": "cc0b0774",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "10\n"
     ]
    }
   ],
   "source": [
    "my_dataset = MyDataset()\n",
    "print(len(my_dataset))"
   ]
  },
  {
   "cell_type": "code",
   "id": "6dccfac6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'data': tensor([[[-1.5903],\n",
      "         [ 0.8837],\n",
      "         [ 2.1141],\n",
      "         [-1.8746],\n",
      "         [ 2.3327],\n",
      "         [ 2.1160],\n",
      "         [ 0.0449],\n",
      "         [ 1.2784],\n",
      "         [-0.8988],\n",
      "         [-0.1769]],\n",
      "        [[-0.0614],\n",
      "         [-0.9508],\n",
      "         [ 0.1634],\n",
      "         [ 1.4063],\n",
      "         [-0.9053],\n",
      "         [-0.3190],\n",
      "         [-0.5812],\n",
      "         [-0.2460],\n",
      "         [-0.7800],\n",
      "         [-0.0228]],\n",
      "        [[ 1.3833],\n",
      "         [-2.2977],\n",
      "         [-0.0199],\n",
      "         [ 1.7388],\n",
      "         [-0.0649],\n",
      "         [ 0.2746],\n",
      "         [ 1.3149],\n",
      "         [-0.8462],\n",
      "         [ 0.6525],\n",
      "         [ 2.5329]],\n",
      "        [[-0.3927],\n",
      "         [ 0.3490],\n",
      "         [-1.0040],\n",
      "         [-1.3723],\n",
      "         [-1.3874],\n",
      "         [ 0.4323],\n",
      "         [-0.7121],\n",
      "         [ 0.5934],\n",
      "         [-0.3115],\n",
      "         [-1.2571]],\n",
      "        [[-0.2320],\n",
      "         [ 1.3630],\n",
      "         [-0.1194],\n",
      "         [-0.5032],\n",
      "         [-0.5004],\n",
      "         [-1.2361],\n",
      "         [-0.6109],\n",
      "         [ 0.0380],\n",
      "         [ 0.5508],\n",
      "         [ 0.4312]],\n",
      "        [[-0.2478],\n",
      "         [-0.5053],\n",
      "         [-0.3946],\n",
      "         [ 0.8356],\n",
      "         [ 1.3766],\n",
      "         [-1.7651],\n",
      "         [-0.4945],\n",
      "         [ 0.5495],\n",
      "         [-0.2553],\n",
      "         [-1.1360]],\n",
      "        [[ 0.2506],\n",
      "         [ 1.2353],\n",
      "         [ 1.5717],\n",
      "         [-0.8527],\n",
      "         [ 1.5974],\n",
      "         [-1.2808],\n",
      "         [ 1.3827],\n",
      "         [-0.7298],\n",
      "         [-0.2280],\n",
      "         [ 0.2150]],\n",
      "        [[ 1.1495],\n",
      "         [ 0.8084],\n",
      "         [-1.2161],\n",
      "         [-0.0541],\n",
      "         [-0.7714],\n",
      "         [-1.4911],\n",
      "         [ 1.6224],\n",
      "         [ 1.5048],\n",
      "         [-1.5900],\n",
      "         [-0.0092]],\n",
      "        [[-0.6734],\n",
      "         [-0.7315],\n",
      "         [-0.2723],\n",
      "         [ 0.5344],\n",
      "         [ 1.0258],\n",
      "         [ 2.0715],\n",
      "         [-1.1628],\n",
      "         [-0.5129],\n",
      "         [-0.5343],\n",
      "         [-0.8047]],\n",
      "        [[-0.3454],\n",
      "         [ 0.4138],\n",
      "         [ 0.6388],\n",
      "         [-1.5315],\n",
      "         [ 1.6333],\n",
      "         [-0.4601],\n",
      "         [ 0.1968],\n",
      "         [-0.0483],\n",
      "         [-0.3734],\n",
      "         [-0.6907]]], dtype=torch.float64), 'label': tensor(1)}\n"
     ]
    }
   ],
   "source": [
    "print(my_dataset[1])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6f1c9da9",
   "metadata": {},
   "source": [
    "But let's keep things simple and just focus on the actual neural network, using a standard class to load a standard dataset."
   ]
  },
  {
   "cell_type": "code",
   "id": "e97239d5",
   "metadata": {},
   "source": [
    "# Use standard MNIST dataset\n",
    "my_dataset = torchvision.datasets.MNIST(\n",
    "    root = './data/MNIST',\n",
    "    train = True,\n",
    "    download = True,\n",
    "    transform = transforms.Compose([\n",
    "        transforms.ToTensor()                                 \n",
    "    ])\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "527089bd",
   "metadata": {},
   "source": [
    "Plot some of the data with their labels:"
   ]
  },
  {
   "cell_type": "code",
   "id": "067b8105",
   "metadata": {},
   "outputs": [
    {
     "data": {
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = 'image/png';\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.which === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.which;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which !== 17) {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    if (event.altKey && event.which !== 18) {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    if (event.shiftKey && event.which !== 16) {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data']);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
      "text/plain": [
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"1000\">"
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, ax = plt.subplots(nrows=5, ncols=5, figsize=(10,10))\n",
    "for i in range(5):\n",
    "    for j in range(5):\n",
    "        idx = i*5+j\n",
    "        img = my_dataset[idx][0]\n",
    "        label = my_dataset[idx][1]\n",
    "        ax[i, j].imshow(img[0,...].detach().cpu().numpy())\n",
    "        ax[i, j].set(title=f\"Im. {idx}, true {label}\")\n",
    "        ax[i, j].set_xticklabels([])\n",
    "        ax[i, j].set_yticklabels([])\n",
    "plt.subplots_adjust(hspace=0.2,wspace=0)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e517975c",
   "metadata": {},
   "source": [
    "And now let us define the neural network. In PyTorch, neural networks always extend `nn.Module`. They define their sub-parts in their constructor, which are convolutional layers and fully connected linear layers in this case, and the method `forward` is expected to receive an input image and output the network target.\n",
    "\n",
    "The network parameters are the weights of the `Conv2d` and `Linear` layers, which are conveniently hidden here, but can be accessed if you try to access their `weights` elements.\n",
    "\n",
    "We will not directly output the label probabilities, since we do not actually need it to optimize the neural network: we need only the logits."
   ]
  },
  {
   "cell_type": "code",
   "id": "d908ef86",
   "metadata": {},
   "outputs": [],
   "source": [
    "class Network(nn.Module):\n",
    "    \"\"\"\n",
    "        This is our parametrized function.\n",
    "        It stores all the parametrized weights theta inside the conv1, conv2, fc1 and fc2 objects.\n",
    "        The forward function receives an image and outputs a vector.\n",
    "        \n",
    "        The intuition is that the i-th component of the vector represents the probability that\n",
    "        the probability that the image belongs to the i-th class however\n",
    "        we do not normalize the output to be in the range [0,1] and to sum to 1. The reason is\n",
    "        that this normalization is done later, in the training step, where the numerical error in it can be\n",
    "        minimized by calculating directly log(probability) instead of calculating first the probability\n",
    "        and then the log of it. Keep in mind therefore, that to get probabilities\n",
    "        from this object one should do F.softmax(my_network(x), dim=1).\n",
    "        \n",
    "        The code has been written like this, as this is a common optimization done in classification problems.\n",
    "    \"\"\"\n",
    "    def __init__(self):\n",
    "        \"\"\"\n",
    "        Constructor. Here we initialize the weights.\n",
    "        \"\"\"\n",
    "        super().__init__()\n",
    "\n",
    "        # define parameters\n",
    "        \n",
    "        # all these steps are purely linear (affine if one considers the bias)\n",
    "        # the forward function adds a non-linearity through the ReLU to allow this to do more than\n",
    "        # simple linear filters\n",
    "        \n",
    "        self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)\n",
    "        self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5)\n",
    "\n",
    "        self.fc1 = nn.Linear(in_features=12*4*4, out_features=120)\n",
    "        self.fc2 = nn.Linear(in_features=120, out_features=60)\n",
    "        self.out = nn.Linear(in_features=60, out_features=10)\n",
    "\n",
    "    def forward(self, x):\n",
    "        \"\"\"\n",
    "        This function is called when one does my_network(x) and it represents the action\n",
    "        of our parametrized function in the image, outputting the probabilities for that image as\n",
    "        a column vector. The input x has shape (B, C, H, W) (ie: batch dimension, channels, height and width).\n",
    "        The output has shape (B, K), where K is the number of classes.\n",
    "        Each row of the output has the probability for each class as a column vector.\n",
    "        Each column of the output has the probability for a single class for all images B given as an input.\n",
    "        \"\"\"\n",
    "\n",
    "        # first convolution\n",
    "        t = self.conv1(x)\n",
    "        # non-linearity\n",
    "        t = F.relu(t)\n",
    "        # reduce size of the image in width and height by taking the maximum\n",
    "        # pixel value in each 2x2 pixel matrix (kernel_size) and skipping one pixel (stride)\n",
    "        # the convolution receives one channel and outputs more\n",
    "        # the goal of the max_pool layer is to reduce the image size, so we\n",
    "        # can get more images in several channels which are smaller in size\n",
    "        # this is a trade off between memory and compute\n",
    "        t = F.max_pool2d(t, kernel_size=2, stride=2)\n",
    "\n",
    "        # second convolution\n",
    "        t = self.conv2(t)\n",
    "        # non-linearity\n",
    "        t = F.relu(t)\n",
    "        # reduce the size of the image in width and height again\n",
    "        t = F.max_pool2d(t, kernel_size=2, stride=2)\n",
    "\n",
    "        # transform images into a single vector using reshape\n",
    "        # this puts all pixel values in a single vector\n",
    "        t = t.reshape(-1, 12*4*4)\n",
    "        \n",
    "        # apply a linear transformation\n",
    "        t = self.fc1(t)\n",
    "        # add a non-linearity\n",
    "        t = F.relu(t)\n",
    "\n",
    "        # another linear transformation\n",
    "        t = self.fc2(t)\n",
    "        # another non-linearity\n",
    "        t = F.relu(t)\n",
    "\n",
    "        # final linear transformation\n",
    "        # the output of this has been set to 10 features, so the output will have the size\n",
    "        # (B, 10)\n",
    "        t = self.out(t)\n",
    "\n",
    "        # note: while we want the function to output a probability,\n",
    "        # we do not actually do any effort to normalize these numbers so that they are in [0, 1]\n",
    "        # and so that their sum is 1\n",
    "        # this would often be done by applying a transformation called Softmax(t) = exp(t)/sum(exp(t))\n",
    "        # however, this will be done internally by PyTorch in the function F.cross_entropy\n",
    "        # which we will call later on when training\n",
    "\n",
    "        return t"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9c5620dc",
   "metadata": {},
   "source": [
    "Let us create one instance of this network. We also create an instance of PyTorch's `DataLoader`, which has the task of taking a given number of data elements and outputing it in a single object. This \"mini-batch\" of data is used during training, so that we do not need to load the entire data in memory during the optimization procedure.\n",
    "\n",
    "We also create an instance of the Adam optimizer, which is used to tune the parameters of the network."
   ]
  },
  {
   "cell_type": "code",
   "id": "988e1979",
   "metadata": {},
   "outputs": [],
   "source": [
    "network = Network()\n",
    "B = 64\n",
    "loader = torch.utils.data.DataLoader(my_dataset, batch_size=B)\n",
    "optimizer = torch.optim.Adam(network.parameters(), lr=1e-3)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3ee54520",
   "metadata": {},
   "source": [
    "Now we actually repeatedly try to optimize the network parameters. Each time we go through all the data we have, we go through one \"epoch\". For each epoch, we take several \"mini-batches\" of data (given by the `DataLoader` in `loader`) and use it to make one training step."
   ]
  },
  {
   "cell_type": "code",
   "id": "d15d655d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 0/10: average loss 0.36806\n",
      "Epoch 1/10: average loss 0.11563\n",
      "Epoch 2/10: average loss 0.07839\n",
      "Epoch 3/10: average loss 0.05962\n",
      "Epoch 4/10: average loss 0.04747\n",
      "Epoch 5/10: average loss 0.03930\n",
      "Epoch 6/10: average loss 0.03396\n",
      "Epoch 7/10: average loss 0.02854\n",
      "Epoch 8/10: average loss 0.02372\n",
      "Epoch 9/10: average loss 0.02109\n"
     ]
    }
   ],
   "source": [
    "epochs = 10\n",
    "# for each epoch\n",
    "for epoch in range(epochs):\n",
    "    losses = list()\n",
    "    # for each mini-batch given by the loader:\n",
    "    for batch in loader:\n",
    "        # get the images in the mini-batch\n",
    "        # this has size (B, C, H, W)\n",
    "        # where B is the mini-batch size\n",
    "        # C is the number of channels in the image (1 for grayscale)\n",
    "        # H is the height of the image\n",
    "        # W is the width of the image\n",
    "        images = batch[0]\n",
    "        # get the labels in the mini-batch (there shall be B of them)\n",
    "        labels = batch[1]\n",
    "        # get the output of the neural network:\n",
    "        logits = network(images)\n",
    "        \n",
    "        # note: the network does not output probabilities directly: it outputs logits\n",
    "        # to get probabilities from it we would need to do F.softmax(logits, dim=1)\n",
    "        # however, this is done inside F.cross_entropy below and we therefore should\n",
    "        # not do it twice here\n",
    "        # the reason it is done internally, in F.cross_entropy, is that what we really\n",
    "        # need is log(probability) and we can reduce the numerical error\n",
    "        # in its calculation by calculating log(softmax(.)) in one go\n",
    "        # (remember softmax(x) = exp(x)/sum(exp(x)), so log(softmax(x)) = x - log(sum(exp(x))))\n",
    "        \n",
    "        # calculate the loss function being minimized\n",
    "        # in this case, it is the cross-entropy between the logits and the true labels\n",
    "        loss = F.cross_entropy(logits, labels)\n",
    "\n",
    "        # clean the optimizer temporary gradient storage\n",
    "        optimizer.zero_grad()\n",
    "        # calculate the gradient of the loss function as a function of the gradients\n",
    "        loss.backward()\n",
    "        # ask the Adam optimizer to change the parameters in the direction of - gradient\n",
    "        # Adam scales the gradient by a constant which is adaptively tuned\n",
    "        # take a look at the Adam paper for more details: https://arxiv.org/abs/1412.6980\n",
    "        optimizer.step()\n",
    "        losses.append(loss.detach().cpu().item())\n",
    "    avg_loss = np.mean(np.array(losses))\n",
    "    print(f\"Epoch {epoch}/{epochs}: average loss {avg_loss:.5f}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a4980bf4",
   "metadata": {},
   "source": [
    "Let us check what the network says about some new data it has never seen before (note that we set `train` to `False`, to take a statistically independent part of the dataset)."
   ]
  },
  {
   "cell_type": "code",
   "id": "09646d29",
   "metadata": {},
   "outputs": [],
   "source": [
    "test_dataset = torchvision.datasets.MNIST(\n",
    "    root = './data/MNIST',\n",
    "    train = False,\n",
    "    download = True,\n",
    "    transform = transforms.Compose([\n",
    "        transforms.ToTensor()                                 \n",
    "    ])\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e315b5dc",
   "metadata": {},
   "source": [
    "And now we can plot again the new images, now showing what the network tells us about it."
   ]
  },
  {
   "cell_type": "code",
   "id": "7a06a4c0",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "/* global mpl */\n",
       "window.mpl = {};\n",
       "\n",
       "mpl.get_websocket_type = function () {\n",
       "    if (typeof WebSocket !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert(\n",
       "            'Your browser does not have WebSocket support. ' +\n",
       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "                'Firefox 4 and 5 are also supported but you ' +\n",
       "                'have to enable WebSockets in about:config.'\n",
       "        );\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById('mpl-warnings');\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent =\n",
       "                'This browser does not support binary websocket messages. ' +\n",
       "                'Performance may be slow.';\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = document.createElement('div');\n",
       "    this.root.setAttribute('style', 'display: inline-block');\n",
       "    this._root_extra_style(this.root);\n",
       "\n",
       "    parent_element.appendChild(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen = function () {\n",
       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
       "        fig.send_message('send_image_mode', {});\n",
       "        if (fig.ratio !== 1) {\n",
       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
       "        }\n",
       "        fig.send_message('refresh', {});\n",
       "    };\n",
       "\n",
       "    this.imageObj.onload = function () {\n",
       "        if (fig.image_mode === 'full') {\n",
       "            // Full images could contain transparency (where diff images\n",
       "            // almost always do), so we need to clear the canvas so that\n",
       "            // there is no ghosting.\n",
       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "        }\n",
       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "    };\n",
       "\n",
       "    this.imageObj.onunload = function () {\n",
       "        fig.ws.close();\n",
       "    };\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_header = function () {\n",
       "    var titlebar = document.createElement('div');\n",
       "    titlebar.classList =\n",
       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
       "    var titletext = document.createElement('div');\n",
       "    titletext.classList = 'ui-dialog-title';\n",
       "    titletext.setAttribute(\n",
       "        'style',\n",
       "        'width: 100%; text-align: center; padding: 3px;'\n",
       "    );\n",
       "    titlebar.appendChild(titletext);\n",
       "    this.root.appendChild(titlebar);\n",
       "    this.header = titletext;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
       "    canvas_div.setAttribute(\n",
       "        'style',\n",
       "        'border: 1px solid #ddd;' +\n",
       "            'box-sizing: content-box;' +\n",
       "            'clear: both;' +\n",
       "            'min-height: 1px;' +\n",
       "            'min-width: 1px;' +\n",
       "            'outline: 0;' +\n",
       "            'overflow: hidden;' +\n",
       "            'position: relative;' +\n",
       "            'resize: both;'\n",
       "    );\n",
       "\n",
       "    function on_keyboard_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.key_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    canvas_div.addEventListener(\n",
       "        'keydown',\n",
       "        on_keyboard_event_closure('key_press')\n",
       "    );\n",
       "    canvas_div.addEventListener(\n",
       "        'keyup',\n",
       "        on_keyboard_event_closure('key_release')\n",
       "    );\n",
       "\n",
       "    this._canvas_extra_style(canvas_div);\n",
       "    this.root.appendChild(canvas_div);\n",
       "\n",
       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
       "    canvas.classList.add('mpl-canvas');\n",
       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
       "\n",
       "    this.context = canvas.getContext('2d');\n",
       "\n",
       "    var backingStore =\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        this.context.webkitBackingStorePixelRatio ||\n",
       "        this.context.mozBackingStorePixelRatio ||\n",
       "        this.context.msBackingStorePixelRatio ||\n",
       "        this.context.oBackingStorePixelRatio ||\n",
       "        this.context.backingStorePixelRatio ||\n",
       "        1;\n",
       "\n",
       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
       "        'canvas'\n",
       "    ));\n",
       "    rubberband_canvas.setAttribute(\n",
       "        'style',\n",
       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
       "    );\n",
       "\n",
       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
       "    if (this.ResizeObserver === undefined) {\n",
       "        if (window.ResizeObserver !== undefined) {\n",
       "            this.ResizeObserver = window.ResizeObserver;\n",
       "        } else {\n",
       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
       "            this.ResizeObserver = obs.ResizeObserver;\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
       "        var nentries = entries.length;\n",
       "        for (var i = 0; i < nentries; i++) {\n",
       "            var entry = entries[i];\n",
       "            var width, height;\n",
       "            if (entry.contentBoxSize) {\n",
       "                if (entry.contentBoxSize instanceof Array) {\n",
       "                    // Chrome 84 implements new version of spec.\n",
       "                    width = entry.contentBoxSize[0].inlineSize;\n",
       "                    height = entry.contentBoxSize[0].blockSize;\n",
       "                } else {\n",
       "                    // Firefox implements old version of spec.\n",
       "                    width = entry.contentBoxSize.inlineSize;\n",
       "                    height = entry.contentBoxSize.blockSize;\n",
       "                }\n",
       "            } else {\n",
       "                // Chrome <84 implements even older version of spec.\n",
       "                width = entry.contentRect.width;\n",
       "                height = entry.contentRect.height;\n",
       "            }\n",
       "\n",
       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
       "            // the canvas container.\n",
       "            if (entry.devicePixelContentBoxSize) {\n",
       "                // Chrome 84 implements new version of spec.\n",
       "                canvas.setAttribute(\n",
       "                    'width',\n",
       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
       "                );\n",
       "                canvas.setAttribute(\n",
       "                    'height',\n",
       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
       "                );\n",
       "            } else {\n",
       "                canvas.setAttribute('width', width * fig.ratio);\n",
       "                canvas.setAttribute('height', height * fig.ratio);\n",
       "            }\n",
       "            canvas.setAttribute(\n",
       "                'style',\n",
       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
       "            );\n",
       "\n",
       "            rubberband_canvas.setAttribute('width', width);\n",
       "            rubberband_canvas.setAttribute('height', height);\n",
       "\n",
       "            // And update the size in Python. We ignore the initial 0/0 size\n",
       "            // that occurs as the element is placed into the DOM, which should\n",
       "            // otherwise not happen due to the minimum size styling.\n",
       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
       "                fig.request_resize(width, height);\n",
       "            }\n",
       "        }\n",
       "    });\n",
       "    this.resizeObserverInstance.observe(canvas_div);\n",
       "\n",
       "    function on_mouse_event_closure(name) {\n",
       "        return function (event) {\n",
       "            return fig.mouse_event(event, name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousedown',\n",
       "        on_mouse_event_closure('button_press')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseup',\n",
       "        on_mouse_event_closure('button_release')\n",
       "    );\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mousemove',\n",
       "        on_mouse_event_closure('motion_notify')\n",
       "    );\n",
       "\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseenter',\n",
       "        on_mouse_event_closure('figure_enter')\n",
       "    );\n",
       "    rubberband_canvas.addEventListener(\n",
       "        'mouseleave',\n",
       "        on_mouse_event_closure('figure_leave')\n",
       "    );\n",
       "\n",
       "    canvas_div.addEventListener('wheel', function (event) {\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        on_mouse_event_closure('scroll')(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.appendChild(canvas);\n",
       "    canvas_div.appendChild(rubberband_canvas);\n",
       "\n",
       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
       "    this.rubberband_context.strokeStyle = '#000000';\n",
       "\n",
       "    this._resize_canvas = function (width, height, forward) {\n",
       "        if (forward) {\n",
       "            canvas_div.style.width = width + 'px';\n",
       "            canvas_div.style.height = height + 'px';\n",
       "        }\n",
       "    };\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
       "        event.preventDefault();\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus() {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'mpl-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'mpl-button-group';\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'mpl-button-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
       "        button.classList = 'mpl-widget';\n",
       "        button.setAttribute('role', 'button');\n",
       "        button.setAttribute('aria-disabled', 'false');\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "\n",
       "        var icon_img = document.createElement('img');\n",
       "        icon_img.src = '_images/' + image + '.png';\n",
       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
       "        icon_img.alt = tooltip;\n",
       "        button.appendChild(icon_img);\n",
       "\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    var fmt_picker = document.createElement('select');\n",
       "    fmt_picker.classList = 'mpl-widget';\n",
       "    toolbar.appendChild(fmt_picker);\n",
       "    this.format_dropdown = fmt_picker;\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = document.createElement('option');\n",
       "        option.selected = fmt === mpl.default_extension;\n",
       "        option.innerHTML = fmt;\n",
       "        fmt_picker.appendChild(option);\n",
       "    }\n",
       "\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_message = function (type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function () {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
       "        fig.send_message('refresh', {});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
       "    var x0 = msg['x0'] / fig.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
       "    var x1 = msg['x1'] / fig.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0,\n",
       "        0,\n",
       "        fig.canvas.width / fig.ratio,\n",
       "        fig.canvas.height / fig.ratio\n",
       "    );\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch (cursor) {\n",
       "        case 0:\n",
       "            cursor = 'pointer';\n",
       "            break;\n",
       "        case 1:\n",
       "            cursor = 'default';\n",
       "            break;\n",
       "        case 2:\n",
       "            cursor = 'crosshair';\n",
       "            break;\n",
       "        case 3:\n",
       "            cursor = 'move';\n",
       "            break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = 'image/png';\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.which === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.which;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which !== 17) {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    if (event.altKey && event.which !== 18) {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    if (event.shiftKey && event.which !== 16) {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
Loading
Loading full blame...