Skip to content
Snippets Groups Projects
Supervised regression.ipynb 495 KiB
Newer Older
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
       "    fig.image_mode = msg['mode'];\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
       "    for (var key in msg) {\n",
       "        if (!(key in fig.buttons)) {\n",
       "            continue;\n",
       "        }\n",
       "        fig.buttons[key].disabled = !msg[key];\n",
       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
       "    if (msg['mode'] === 'PAN') {\n",
       "        fig.buttons['Pan'].classList.add('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    } else if (msg['mode'] === 'ZOOM') {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.add('active');\n",
       "    } else {\n",
       "        fig.buttons['Pan'].classList.remove('active');\n",
       "        fig.buttons['Zoom'].classList.remove('active');\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message('ack', {});\n",
       "};\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            var img = evt.data;\n",
       "            if (img.type !== 'image/png') {\n",
       "                /* FIXME: We get \"Resource interpreted as Image but\n",
       "                 * transferred with MIME type text/plain:\" errors on\n",
       "                 * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "                 * to be part of the websocket stream */\n",
       "                img.type = 'image/png';\n",
       "            }\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src\n",
       "                );\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                img\n",
       "            );\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        } else if (\n",
       "            typeof evt.data === 'string' &&\n",
       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
       "        ) {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig['handle_' + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\n",
       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
       "                msg\n",
       "            );\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\n",
       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
       "                    e,\n",
       "                    e.stack,\n",
       "                    msg\n",
       "                );\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "};\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function (e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e) {\n",
       "        e = window.event;\n",
       "    }\n",
       "    if (e.target) {\n",
       "        targ = e.target;\n",
       "    } else if (e.srcElement) {\n",
       "        targ = e.srcElement;\n",
       "    }\n",
       "    if (targ.nodeType === 3) {\n",
       "        // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "    }\n",
       "\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    var boundingRect = targ.getBoundingClientRect();\n",
       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
       "\n",
       "    return { x: x, y: y };\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys(original) {\n",
       "    return Object.keys(original).reduce(function (obj, key) {\n",
       "        if (typeof original[key] !== 'object') {\n",
       "            obj[key] = original[key];\n",
       "        }\n",
       "        return obj;\n",
       "    }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
       "    var canvas_pos = mpl.findpos(event);\n",
       "\n",
       "    if (name === 'button_press') {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * this.ratio;\n",
       "    var y = canvas_pos.y * this.ratio;\n",
       "\n",
       "    this.send_message(name, {\n",
       "        x: x,\n",
       "        y: y,\n",
       "        button: event.button,\n",
       "        step: event.step,\n",
       "        guiEvent: simpleKeys(event),\n",
       "    });\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.key_event = function (event, name) {\n",
       "    // Prevent repeat events\n",
       "    if (name === 'key_press') {\n",
       "        if (event.key === this._key) {\n",
       "            return;\n",
       "        } else {\n",
       "            this._key = event.key;\n",
       "        }\n",
       "    }\n",
       "    if (name === 'key_release') {\n",
       "        this._key = null;\n",
       "    }\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.key !== 'Control') {\n",
       "        value += 'ctrl+';\n",
       "    }\n",
       "    else if (event.altKey && event.key !== 'Alt') {\n",
       "        value += 'alt+';\n",
       "    }\n",
       "    else if (event.shiftKey && event.key !== 'Shift') {\n",
       "        value += 'shift+';\n",
       "    }\n",
       "\n",
       "    value += 'k' + event.key;\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
       "    return false;\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
       "    if (name === 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message('toolbar_button', { name: name });\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "\n",
       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
       "// prettier-ignore\n",
       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";/* global mpl */\n",
       "\n",
       "var comm_websocket_adapter = function (comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.binaryType = comm.kernel.ws.binaryType;\n",
       "    ws.readyState = comm.kernel.ws.readyState;\n",
       "    function updateReadyState(_event) {\n",
       "        if (comm.kernel.ws) {\n",
       "            ws.readyState = comm.kernel.ws.readyState;\n",
       "        } else {\n",
       "            ws.readyState = 3; // Closed state.\n",
       "        }\n",
       "    }\n",
       "    comm.kernel.ws.addEventListener('open', updateReadyState);\n",
       "    comm.kernel.ws.addEventListener('close', updateReadyState);\n",
       "    comm.kernel.ws.addEventListener('error', updateReadyState);\n",
       "\n",
       "    ws.close = function () {\n",
       "        comm.close();\n",
       "    };\n",
       "    ws.send = function (m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function (msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        var data = msg['content']['data'];\n",
       "        if (data['blob'] !== undefined) {\n",
       "            data = {\n",
       "                data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
       "            };\n",
       "        }\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(data);\n",
       "    });\n",
       "    return ws;\n",
       "};\n",
       "\n",
       "mpl.mpl_figure_comm = function (comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = document.getElementById(id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm);\n",
       "\n",
       "    function ondownload(figure, _format) {\n",
       "        window.open(figure.canvas.toDataURL());\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element;\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error('Failed to find cell for figure', id, fig);\n",
       "        return;\n",
       "    }\n",
       "    fig.cell_info[0].output_area.element.on(\n",
       "        'cleared',\n",
       "        { fig: fig },\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
       "    var width = fig.canvas.width / fig.ratio;\n",
       "    fig.cell_info[0].output_area.element.off(\n",
       "        'cleared',\n",
       "        fig._remove_fig_handler\n",
       "    );\n",
       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable();\n",
       "    fig.parent_element.innerHTML =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "    fig.close_ws(fig, msg);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width / this.ratio;\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] =\n",
       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function () {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message('ack', {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () {\n",
       "        fig.push_to_output();\n",
       "    }, 1000);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function () {\n",
       "    var fig = this;\n",
       "\n",
       "    var toolbar = document.createElement('div');\n",
       "    toolbar.classList = 'btn-toolbar';\n",
       "    this.root.appendChild(toolbar);\n",
       "\n",
       "    function on_click_closure(name) {\n",
       "        return function (_event) {\n",
       "            return fig.toolbar_button_onclick(name);\n",
       "        };\n",
       "    }\n",
       "\n",
       "    function on_mouseover_closure(tooltip) {\n",
       "        return function (event) {\n",
       "            if (!event.currentTarget.disabled) {\n",
       "                return fig.toolbar_button_onmouseover(tooltip);\n",
       "            }\n",
       "        };\n",
       "    }\n",
       "\n",
       "    fig.buttons = {};\n",
       "    var buttonGroup = document.createElement('div');\n",
       "    buttonGroup.classList = 'btn-group';\n",
       "    var button;\n",
       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            /* Instead of a spacer, we start a new button group. */\n",
       "            if (buttonGroup.hasChildNodes()) {\n",
       "                toolbar.appendChild(buttonGroup);\n",
       "            }\n",
       "            buttonGroup = document.createElement('div');\n",
       "            buttonGroup.classList = 'btn-group';\n",
       "            continue;\n",
       "        }\n",
       "\n",
       "        button = fig.buttons[name] = document.createElement('button');\n",
       "        button.classList = 'btn btn-default';\n",
       "        button.href = '#';\n",
       "        button.title = name;\n",
       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
       "        button.addEventListener('click', on_click_closure(method_name));\n",
       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
       "        buttonGroup.appendChild(button);\n",
       "    }\n",
       "\n",
       "    if (buttonGroup.hasChildNodes()) {\n",
       "        toolbar.appendChild(buttonGroup);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = document.createElement('span');\n",
       "    status_bar.classList = 'mpl-message pull-right';\n",
       "    toolbar.appendChild(status_bar);\n",
       "    this.message = status_bar;\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = document.createElement('div');\n",
       "    buttongrp.classList = 'btn-group inline pull-right';\n",
       "    button = document.createElement('button');\n",
       "    button.classList = 'btn btn-mini btn-primary';\n",
       "    button.href = '#';\n",
       "    button.title = 'Stop Interaction';\n",
       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
       "    button.addEventListener('click', function (_evt) {\n",
       "        fig.handle_close(fig, {});\n",
       "    });\n",
       "    button.addEventListener(\n",
       "        'mouseover',\n",
       "        on_mouseover_closure('Stop Interaction')\n",
       "    );\n",
       "    buttongrp.appendChild(button);\n",
       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
       "    var fig = event.data.fig;\n",
       "    if (event.target !== this) {\n",
       "        // Ignore bubbled events from children.\n",
       "        return;\n",
       "    }\n",
       "    fig.close_ws(fig, {});\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function (el) {\n",
       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
       "    // this is important to make the div 'focusable\n",
       "    el.setAttribute('tabindex', 0);\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    } else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager) {\n",
       "        manager = IPython.keyboard_manager;\n",
       "    }\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which === 13) {\n",
       "        this.canvas_div.blur();\n",
       "        // select the cell after this one\n",
       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
       "        IPython.notebook.select(index + 1);\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "};\n",
       "\n",
       "mpl.find_output_cell = function (html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i = 0; i < ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code') {\n",
       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] === html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "};\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel !== null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target(\n",
       "        'matplotlib',\n",
       "        mpl.mpl_figure_comm\n",
       "    );\n",
       "}\n"
      ],
       "<IPython.core.display.Javascript object>"
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"640\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig = plt.figure()\n",
    "ax = fig.add_subplot(111)\n",
    "ax.scatter(test_data[:, 0], test_data[:, 1], label=\"Test data\")\n",
    "ax.scatter(test_data[:, 0], predicted, label=\"Predicted\")\n",
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
    "ax.set(xlabel=\"$x$\", ylabel=\"$f(x)$\")\n",
    "#ax.set_yscale('log')\n",
    "plt.legend(frameon=False)\n",
    "plt.show()"
   ]
  },
  {
   "attachments": {
    "elbo.png": {
     "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAACdCAYAAAA6/zu5AAAABHNCSVQICAgIfAhkiAAAABl0RVh0U29mdHdhcmUAZ25vbWUtc2NyZWVuc2hvdO8Dvz4AACAASURBVHic7N0/UONYn/D7795667EyayP7jawboTeyN7JvhDbCG9lPhDtCT4Q3Qk+EbtXWljM8VVuFJsIToYnQRGgiNBGaqDU3QR2hjlBHqCPUESI6NzBNG2MbTAPdzJxPFVPTsv7//enod875FyGEQJIkSZIkaY7/61uvgCRJkiRJ3zcZLEiSJEmStJAMFiRJkiRJWkgGC5IkSZIkLSSDBUmSJEmSFpLBgiRJkiRJC8lgQZIkSZKkhWSwIEmSJEnSQjJYkCRJkiRpIRksSJIkSZK0kAwWJEmSJElaSAYLkiRJkiQtJIMFSZIkSZIWksGCJEmSJEkLyWBBkiRJkqSFZLAgSZIkSdJCMliQJEmSJGmhZwwWCori+eYuSZIkSdLLeL5gIbaxfBktSIvkuG2VqqahaW1G6dfNrUhc7FH8JGs2LXN7WOFjJw4YOiH5PaMF/R7ejJHmDX9aOeFwSJA9x7wj7O6I9InnWoQOQ3/OChc+pqahaVVU3eZ5zgpJ+uv4X4+ZKI9G2G6KpkFGm4FtoE6PlGaEaQroX7mK0ixFllFUq3f3+2PnN6cYSFGUBb8rKMr90y5ers4gjuh/7YZkHr1+wiAwv3JGsxVZQqIUwLxtKkhcGyeuoikZecti2NXGP1XbmFqPnq3iDxtz5lCQJQn5nV05b/jnn2PcgUcyb8XVKrqu0zLa6HP3cUFkdRm1PLzqvHG+Rk4aJwuCpYIsiQjDhKzIKbIc1CqKqqCqVbRGi5ZevbPfFKNPq9+lr3qMjKmNU7q4aRcI6GnBk2+RJP3liCWdH22IWn1bnFwKIcSlOOhUxPrR5fi3412xtbUj9g6OxOFWXZTWdsXx4b7Y3d4S2wenyy5KmuftlqiAKHUOxeWTzPBMHO/tiI16WQACEJXVTbGzdyzOhRBCnIu3B3tifWX8G+W6WN/eFQdvz4UQ5+J4b0esr5RuT7v/edpFLsTealPsXXzt+p+KndVVsXf2tfOZ72ynLtYO5u3tS/F2qy5WNo6uj8ex2Kitiv3z2+McbzbFxtH8eeyv1sXunZ02b/iX389PT8XJXkeUQJTWdsXJ6ak4OzsTp6en4uTtkdjfWhWVUk109mdfgxdH66K5cfxE59IsR2K9tiVO7qz6mTja6YhmvS6aq01RA0FpRax11sTaal1UStycU6Xamtg+PJsx71Ox3VwTB3P3z5xlS5K0lOWChbNd0SytiO2JK+/tVkWU1g9v/n15diR2N5qiAgJKora2Jfbf3v/YkJZwuiea5bJY2Xr7tPM92RrfsJn1cDoXe01EaWVTHM06nG83r495U+w9+HA/TbBwvr8qVjafeF9MWRQsnB+siXJlQxzf/HwmduqI1f2pDTvfE82VTfF25mweGyx8nvWqAMT64ex1PFovC6jdunbH3orN2qqYXtWnNeOBfXYg1uurYvv4/DpIORQdEKzuiS+rcinOT4/E3mZTlEFARXT2z+7M/fKwI2rr8wJnGSxI0lNYImchZdSziY0BduPLUEVRuIqjm2JQRWtj2V3UUo2VikKjP8BsPUvZ5l+X3ifKcxKn9bTzVbXrzxoq6q1S3YLIbmMX24TRiPaswzk57Yse7oiBndO3n3hfPFTu0+//hm4PMG7KycefZ+Jo6kt51WTQ8LGfIQEhCiJglbYx+yNHVVOBD4Th7W/82cjGa9n0nup71oNEWMYbkt6IoXH9eSFLSYGSpk98WlOo6m36o4j4cJ0KH/n1H12cqTQFpTugG9k46cttgST91Tw8WIgcBn8omHbv1nfyLMsgL/jySTXHtX3aQUwSORTDgUwuei0mH3Y3A3NCu0U3bBNEQ1rzHiozp31+ReDgaiY97QUXOiEdDfi16GD3J1cgI82guJNooNDuGUSO+8TJfhFBeAUrbaY/3Y8VJPEHANTq5Agp7iim22+/6DEjzdGHJ4T2RD5TmpIBjdbsHCetO8LplIB3+P50sNWg184ZOfJOI0nP5YEJjgWB4/Kx0sM0JodnJMkVqBOJdmlI0fdxDBUw8UcjvAga3+jF77acJPAJkxyq46Svxq234HEyWZplZJlCo2eg5QlhmKK2DBrV27fUPI2I4pRCbWAYOmoe43shKTrdfhttatlpnJDlOVlepdVtUC1SojAizVV0Y2L+eUoUxWRU0Vut24lpRUaSpGRZRq7odA39ZnicpORZRqY26LU0yGKCKKFQdRqtBtrST4QM3zQwky5hOKTxok+U6zWIA6JUQTeM8X7IUrKqxufDFnoB1ZbNdGFGEft4cQ6KgnJdjVdt9GgrIV6UoyhAUVCg0up10RXIIo8g4TppU7kZPl+MM3pHqTugOzlekZB8ALU948lttGm9GxFkFv2nKoFJQsJPUOkZU+fctdzHDYHaJoPJFc18vHct7hbKZIRuQHorgVWjbeqkbkCijAPCoihAa2MaVSgSAi8iUxSUoqDQ2/NLFLU2t2IrIE9iPlKm25i3U1Ta7Rb8+jtZnsFUam+rbZDZHgkNmVItSc/gYSULuY/jf6Lc7nL7vhIRxoD25eaN1qU/UU6tNPqY30OgUEQMezaR2sa0LHp6xsDQ6XmTeeQ5se/iWD3+/mZIGHtYo5g8tPk3rTtRfS3D7zcwrAg0HTUdYugtuoOUhtmlGPUZTaenFymh62Kb/8HfzRFJ6jN0QgqtRaMaY+k6ZpBTxC62G4PWQMejp+kMJ1+Y8oTAHdLv/p2/Dyaq46UR3mg8/M0wIg8dbD+j2mhRTQa0tC7eMtXiioRRu4GZmN8mUChihu0W/VBBb6jEAws3HGG0BhOZ/wlh+ImG0bg7eZ4ShyOsN2948+YfDLyINC9gcvg/BnhRerMPiywicPq8MQf44fhNd+EqBg7uBzC67ds/xCERoOna3YnUFq3aHwTRMjtjsSwMeE8Joz3rQkvxTIvf1A4H0YjWxHEswpB3K40ZxzYniyO84RvevHnDPyyHIM7Ir2st+AOTN2/eYDkBSZ7fTJOELgPzDdYoIE6X+9QShzHQYsahvKFWx/cVTdPu/tgyaLwPCZ+9iqkk/UU9JLHhcn9NAKJcXxOdTufL3+qKKIGo75w9TQbF2b7o1OuivuRfc+v43llf7K8KqIiNL1lo4vJwXZRKMxLyjjdEibpY3TkQF0KIi6Mtsbq6fZPAdr6/Kkqsicl8t6ONsqC+I+6r83G+2xSUmmJ973b2+UEHwcqa2NybTMU6F7tNRGnt4E7y1kFnOhnsevgagnpH7B5ObtSx2Cgjalv3pHmd74o6CKiJ+nXNiPLqrjh9SJr82Y5YAQEdcXj/2NfmJDheHIvNlbJYnazecHkk1ksIOpP74kislypi/madiu3rGhzlWwlwn4eXb2ryfHa8URH13TMxbVaC49F6SUBJrKx2bl0Xa/WygIqYnX96Ifaas66Zxyc4HnZKAlbE5sGxOD4e/x0dHoi9nU2xVq+LzvbhzGN4tlsXrO3PrQVxeTiuYQErYnJ1Lw8741oK9R1xayvO90SzvC7uVvi4L8lwnBBKfXdhDZqLvdVxkubMi+xQdGbuc5ngKElP4UGfIaIwApoMw+BWffjE1vn19xrtz/XJv5Zm4kW95ad7QH1+VW+zWoeG+mVcpdVCv/qFIIJ+9/b8FN6hat1xYWfbIZx4eYz837mqbN0qotYbGvzsE+b2gvrs120PXCVUW8at78S6VoNfM/Tu5KtVFV0rcRXHpPRuFa/O22RFARIFvTtZnKvT0ODnNAEWvLrdKNDaJiQ/8u73f2J0VaLAnF3E/eQKQtvkp8LkZLKsWhnnxTTbE/utyMiuVBpz97eOZTX54T//4NMvDt6oi6kCeUT0HuATvuORt83xcS58HF/HcrR5M5yQEEZXsLKNHw4njk3OqPWv/Fbu0p1ZojZOAE3TFJ5kj17nK1R0GupEq6mqRqs3pG/PPxmzNANVnZuvoHQteuVf+fnTe0ZOhH2dUDsuBQDejXBiG+f6lEoch8x0aS9bCpWHBO9gZbt953PSFwVBEEHTwZr5nUFFLX8kfZZGpSRJesBniJwk+QS11lRyW0YQvoemNefifRxFUZb/e8iMWzZhHGI1CrI4wBs5OE5AzqxENIAa+pwP1lWtAkV+q5GZIiugpKE9KKt8/PCe3m7Q0aszhi/bEKY2/d1Wuf5G/9AZNOgNHKJoh2YJPv72D4yef2+x/JNIR1g/fWCl178d1kQh0VUNY/I7eJaTo6IuOAGqpsVaCeB3HDcdL8J1iDsbrJXg6jeH68FkrkPYfmjNgHFeQrll3N7XRYD/B9T6FsacKVW1NLchq6Vd5yuUjD79dpv25z+jReOekzHPcsrKonEMrH4NgA+uQ1AARYDjqmxsrAAfcJ3PDR5FOC5Y1vLfHHPf43cqGN0FN5LUxQmqbDnmnIBiXIPnyfarJEm3PCBYyEhzoNG6ffNOPdw/SqxZ8y7e701G6PRo6AZ2BHrbpG93F7zbKVPVB79o2UPWCHCD6xtTETPyU5rDAe3Zk9yZ98ySgdIT1SR4aAB132waNuF1wPDhl79j9O9vsvhr5aHPOyq0px4caRjysWzQnjwJFYBicQyk9LB6ZQDeOQ4xMY6T0x+42GYFeIczioEEx0kwrQfWDMgzMkBv3S6pyT2X36hj9eeX4BTFFerCh/TD5WHAe5iTr3AP5d69R8OyqAN88nH8nNx3CFo2ztCiCXzyHLwcCn+Ip9uY2rIrUeB7v0GluyC3KWVkDmAY4LTmHZ3rJNYHlDJKkrS8B3yGUFAVKFdvhwTxyOFduYfTfcIK2qlP33KXfoNVDBtv4RtNQdhv8e+uxl4SfcnEzm/fWIpisnh/8QO30R9SDfr0gypKnlMdJoRP9TnmO6I0bMIwp2X8wLuf2hhqSDRsPT4YSVxGuUl/zuEat01gTCW65QTBO2jZtxNsVRWVnCyHRRFr2+pT+/kHPnxwGVoZgWoRN0CzTFZ++oH3I4ewreBiET30mXsdkKm3rosMd/QbpbWDBQ/NgjyH6tys/+WEQQTUac+uM7mQqqpc3ZeIWDWx12ze/HbFb46NTUR34KNWwepYvPn1NxwvJvdC2pa3fPPjhY/3G9S2+szc9UWCa/bwuz7hwiLMnDyvUH0dby6S9Oo8IFioolWn2vnPfQajnI7rTDRE8wQ0A3uoL13qjqot/r3wGf70gfLG6HaVrSwh5br3isJlMDIYWvfMCyAKSBouw5657Jp+34ov/zN5DJTWkMBN0N/8yrsf2rSrEYGl3w4YHnTQMty+S+Gac8dQFAUq2u1qnkVIEEFzeDvPA0VHL2dkGYu7IGn0seo/8M93n/jlx19Y2x+NS5R0C6v5A//5h0evp6APkodnESgaWhmKydoF0YBh3MRJegsemjl5BtUneap9zlcwMLTlp9Z1HaJxCcn8tVHpWj3Kv/3Mpz9+4qfKFifXSQk9y6T/60/8MWiT0sPvLn8zKHyP36ixfackJid2B1hOQmsYEMxsCWxyRjn5VRXZ/pskPY8HlSy0e6vkN93R5fj9PknPJ3rKUgUAVLRF2YGPpVSplu9+z0yinGoF8iKHPOfmu0NRUHx+Y51F00jabazcpKEqKCgoqorWaN1pi2Ha53UopvokKooCru4WChdFcb0+08OBfJw3oU4PvzN+cWv43DXMPlcXHD/QJp+c1Z6L62n8/ddP/P7PFl0lwu9PBAw306bczd0ryJOAgdnnx8zk9NZvtzXabcruZD5ITtC3+PWqxrYx/SRo0Gpd4UQpi5+WGqa1xj//8RuU17FukhKq9KwO1ptf+Zi3GZnLPGkMuu0STnZ9BIoIqxdgeNGdNgRuiwiTGo25xelLiDz8T1BqGw9KW52mthpUrIgYFn4+U9oWZu1nfvwAdcv6sizDol/7iR8+fETdtmaXDCxU4LsB1EwMEpI4J8tSkjAgiDKUdh83ch7WPkgcEpUb2NrSKyFJ0kM8rNLEqdjtdMTO4ZHY3+qI9Z2HdBL0fTk/2hKrlZpY2zkQx8dHYn93RxycXIqzvVVRLtfF+sa2OLo4E/ubHbG2UhGlUklU6muis74pDs7uzE3srZZEqVITtVpFVMpfOlEq1zfEzP5uLo/FznpHNGslUSqVRa3ZEeu7b4U4PxRbnTVRr4yHr6x2xMb+qRCn+2KjsyZWyl+Gbx6eC3GyJ9Y7q9fDa6LZ2RD7p2LG8HWxfXQhLo93xHqnKWqlkiiVKqK+1hG7d6qXnYmj3S3RmegMqtzcENs3HUldiLcHu2Kz+aWjKSiJlc6W2Dv+/+5MS6kiaisrYmVlRazUKtfV7647mbrVh8OsqpMX4mizKVY3D8TR0YHY3d4RO+srgtKGOJ6xW892m4LOwf0nwOWRWC8janfq1h2LzQqisjlr7hPLmdU3xPmBWF/bEodHB2J7vSO2Zh74KSfbolbeFHdrVT686uTZ4ZZY73REs1YWpVJJlCp1sdZZFzvHy3bwcCw2yvOqIt52tlsXlNbEwZ3uLlYFpelOs6bNqr54KvbWKl86iipXRK2+KjqbO2Lv8OROleD7nO8253SsJqtOStJTWKojqYuzU3H+fF3TvYBLcX52Ik5OzsTFxHZcXlws0ePeidhprorNw7OpaS7FxdmR2Fkti9La/tI3u7+m+R1JXZ6fitOzCyHEhdhfZX57AOf7YrXcEXP6T3oy8zuSuhRnp2cPPt6n2yszApbxfL6mI6nHertZESs7z90j7HM/sM/FXvNumxkvs2xJ+mtYoiMpUDWde0rZv3MKVa1Bo6Hdqm6nLKhrfkfgMFB6DLva1DQKqtbGdkzUKJT9YXwlpaqjayoQEURQbxuzj1G1h92OcJZqnvIpKWi69sDEvpChq2I/onrhc2lZNsrI4QkblHx5iYOT97GXbuBBkqSHWipYkAC9RSPxCeY8m9IwojDaj/h+K80U+YRXFYy5OQkKbWcIzvC7D9Ayd0jcG92T0/DCdItRN2LwzYKtr1UQDHxazuBReRuSJD2MDBaWpfUJ/Da+2aXv+IRxQpomxKHHsN+mH5tEXu+ZevErSEMP1w1I/uxtz2QBQ6tP23T5SEHkWAyDdPa4VRPPTun3w+Vr0ryUdITpNnCH398jrTV0aTjmTeNUr0nmmwzUESNZqiBJz+qBvU5Kk9SWhRdY5ElEnCZECahVnd4wYEHrul8pJ+h38QwXpx1gtkc4Yf+FmmB+TimebZOqVdq29aWL5aqBaTfoD4bAda0QdX5thWrPY5SaWL7OqPud1Z8rYoZ2jOWNvknPnfdSGgz9PqY1pOHaz7OOzzHP1MXy23jurE9UMa7tkZAQ/wmuEkn61v5FCCG+9UpI94uHLczMIXZaQIbTMCi8BPuV98ebRj5xBqCit417uoS+X5ZmVLVnCBaylFTVHtHNN5CnpNzfFHiepqDdzX+YN/zJPXA9l1eQpjnaEx+XIkspqvP2S0bkR+PqvIqO0daff/9J0p+YDBZeg2xES/OxsuC634KUof5/EzsC72HtS0uSJEnSo8mchVcgGg75wzD50gZWQpxWqMpXJUmSJOkFyJyF717IyP1AzUhxR6PxoNQnvNIZvvJPEJIkSdLrIIOF712WkHxaoWebfO6nKnUcPta6U12GS5IkSdLzkMHC9y6JSUothq3qdWc/OX74nlXbWth3kiRJkiQ9FRksfPcKCq36pVfAZISTrOMs1emRJEmSJD2eTHD83jUMWje9SGaMLJ924CLboJEkSZJeiqw6+d0riOweI61LIwpIukNGn5MXJEmSJOkFyGDhlSjyjEKtyoZlJEmSpBcngwVJkiRJkhaSOQuSJEmSJC0kgwVJkiRJkhaSwYIkSZIkSQvJYEGSJEmSpIVksCBJkiRJ0kIyWJAkSZIkaSEZLEiSJEmStJAMFiRJkiRJWkgGC5IkvRpF4mKP4meZd+b2sMLHThwwdELyp1whSfqOyGBBkqTXIfPo9RN6ZuNZZl9kCUlWLBghxbf7WMMhtmXhJRO/VduY2oieHbNgDpL0askuqqWvVkQOppOgNVTQegx6DWSnmNLTShj2RrTdkMa3OLmKBMdoE1oRfq8KiY3eG9KIbfTrUapdFzsw6AchruwWVvqTkSUL0tfJfHpdl9ZwRDf3cd70cNJvvVLSn03m9nH1IX3tWyy9IOgbDKpD3F51PEjTqb5z8dPJ8RSMgUliWUSyeEH6k5HBgvRV4qHFrw0LU7seUNbQZNeY0pOKGNg5fbv1TZZehBbmzwr9Qe9Lr6+KgsJ7oun0iarJoOFjezJ7QfpzkcGC9HiFz2D0gdVeFxVoDROKPKAngwXpCRWBg6uZ9LRvsfQcb/ATH5s21mSqRJaRAUU+XYSg0O4ZRI5L+nIrKUnPTuYsSI9WBC7B1QoDQ0YH0uNlcUCUKuiGga4CWUpW1bgu8Cf0Aqot++bfnxWxjxfn12/5BUUBaqNHWwnxohxFAYqCApVWr4uuQBZ5BAkoChSFcjN8rtTF+R1W93u3l5/EJICuzpjYaNN6NyLILPrTKy1Jr5QsWZAeLfACrsoGhvat10R6lYqYYbtFP1TQGyrxwMINRxitAV8qGiSE4Scaxt0aEEWeEocjrDdvePPmHwy8iDQvYHL4PwZ4UXpTpbHIIgKnzxtzgB+mZPesYuw4vKNOt307IE6iiCtqaNqMidQWrdofBNFSe0OSvmuyZEF6pBA/uALD4Nt8SZZetTyk3+qSWDHhddaiPmzTU/+D39sHE+dUSppVZj6UVcPCMdoo0f/hh/eQq236hopCH6dlXA/PUbt9WtcFAFrXoe97JGaAb82Y6S0xrvcBAK/fJZz4JYveQ2mdGTEMUEWrQpCkwH3LkKTXQZYsSI8T+QSfoG7IUEFaVkFom/xUmDiT1RuUggJoto0vVW+LjOxKpTr3S5eOZTUB+PSLw01eYR4RvQf4hO94XxpLKnwcX8e6ychdIIuIPkJ50yXyffzPf55JNYdSu4sxc0IVtQppmt6/DEl6JWSwID1KGoZ8pEyroX3rVZFem3SE9dMHVnp9br2YRyHRVQ2jNfGhP8vJUZmVGvBZ1bRYKwH8juOm40W4DnFng7USXP3mcD2YzHUI2/bDknCv8xJa0wFx5BNelelZvbntiahqiaKQ9SelPw8ZLEiPkBMG74AGLVmwIC0pD33eUaHd1W8NT8OQj2WD9mQEoQAUi1tFVHpYvTIA7xyHmBjHyekPXGyzArzDGcVAguMkmFb7YY2G5RmfqNGYagUqGPl8qplYxvxJi+IKVZGJv9KfhwwWpEeIxslbtca3aU1PetXiKAZaU9/7c4LgHbTat3NgVBWVnOyeZgvaVp8awAeXoTXEVS36DTAskxXgw8ghDB1cLKyHBriKwuf8gy+r6eH4n2haFvMbnS7Ic6hqsiqE9OchgwVpeVFAeAU0WgtumJI0m6IoUNHQJgPNIiSIpvIVABQdvZyR3VdtodHHqgN84pcff6FlmePUQt3CagKfPHo9D/3z8IeoatRQxjHDtWQ0JNS2cRcmR+bkGVSrMliQ/jxksCAtLY1CPgIrLRkqSMtrtNuUi3yih8acoG/x61UNw5h+wDZota6Io/SeuWqY1tr4f8vrWDdJCVV6VocSV3zMDSxziQd4o0u7MhGoJEN6jsooGKIvnDAiTGo0WrLYTfrzkMGCtKSCKHgHQKOx+Jb5lDLfxgmfJ2Es6Pd4bOu88cjGS590df70lLaD10sY9D2CwMOxR8SFAqWpfIXx2BjtJu+i+xstUHsW62WomRaT/TipPQuzAhXTorvU87vF0DUIhy6B72DaKXYYcG9FijgiVtp0X+7ykKRn9y9CCPGtV0JaXpFlFNUqL59CFdFX/x9++lRn9yzm3qrqTyAPTLq+STAynqE3ywLXaJF7Mda8l84sZDjwyDWNIlMwh9ZErkbMsD1Edz269720Jh6WE5DlOXm1j+88MNHuT6rIEtKiiq6Ba/wr/1D2uQzMu/skczF0Hyvzl3zYLycdNuhrEUFvaiFFRpIp6A/s9CSxddqFS+q8tuzfnDgIyBs97hTwSH95smThNYostP/9v6l2/cVZ4s8hDQk/ASUdXXuB5WUuvUEVx3mOQOEBUo92y0a1RwxtG1v36NqTb7kN7JHBqOfc3xeAZtDvd1GiX/ktTl/+2H1nlKp+/QAeJ8zWp/MVPqv2sNsRjndf4sIzUaoPDhQgZOiq2A/OovweZITDHrr6r/zbf/RlSZk0kwwWXiNVRyuX0bTqiz9AiyjkPbxQcmOBbw1Q7cE3qnURY7VNctu76Rq5qmlknsutQnGtj607mO49DzOlit7o0pWpHrdFPuFVBWNuu+EKbWcIzpDpTh6/N5k7JO6NvlFX2o9VxbA9Rt3yt14R6Tsmg4XXSO8T5TnJNyjmjMLxY7LcaNzp2OfJJQ521MV+zrLnBWK7x49Zj+GtVgYV+BgTT+U4GLZFbg+4/8s6/KW/PUzKAoZWn7bp8pGCyLEYBunscasmnp3S74ffb4lMOsJ0G7jD1xkNqvObyZQk2TeEtIyUKPoEQOMFakJEI4eiF3yb6plFwHD0npW+d6tJ3yLLuKKgyOFWwojWpac2GAUOrbaMBh6kamDaDfqDIcC4xUN1fgha7XmMUhPL1xndmyDywoqYoR1jeSPZ9oj0p/QXCxZyksAnTHKo6rSMNo1b95yCLElIs4wsU2j0DLQ8IQxT1JZBo3r7LpCnEVGcUqgNDENHzWN8LyRFp9tvT9XnzknjhCzPyfIqrW6DapEShRFprqIbE/PPU6IoJqOK3mqNu+29WcWMJEnJsoxc0eka+s3wOEnJs4xMbdBraZDFBFFCoeo0Wo3b9dofo4iJ3gFUaDS+9i0kJwlDkkKjZTSoKpClKaqmXb94x3h+jjG6GyokgUuUXdfXLwoKFPRuj2rsEqbKdffDBSg63V4LlZzY94mL666MadDtNRYmh+aewy+fVtjp315+EieAhnpnYg3DUBj6EbSNx++VJCKMItKiSqNl0GrM+dRUZMRRwhvwHwAAIABJREFURJIpaIZBq6qQhS5elFNtm/S++vi8BGXJtggUGrbHIH2e3AXN9Bktald6kUKlNxrx4NSG70Aajhh5EVkBasOkPVVk8xLXmfSKiL+Ky7diZ31T7L89F5dCiIuTfdFZWRHrB6cTI52Lo50tsV4vC1gT+ycHYmvnQBxu1QWlNXFw8WW8w826qHd2xdHJiTje3xD1labobB2Ks8szsVOvie3T6eWfiP2tTbFaQ1DeFMdnh2JnZ18cn56J0+MdsVquiY2jC3F5si+2dw/F29MzcXq0JerlFbFzMrmKx2J3qyNWSghW98TNKp0eiu3N6+GdA3FxvCu2947EydmZeLvXEZVKRxycf+U+fLslKiBgTRxcPn42l6f7otNcEztHp+Ls9Ehsb+6J44N1UesciJvZnu+JJk2xd3F3+rf7W2JztSYAARXR3NgRR+dCnOxvic216+GVptjYORLjTb4QRzvrollBlGprYmP783AhhLgU+6t1sXtr35yJ3TqC2pY4ubXkC7G3iqC0IY5nbddBR7CyLaYP/bTD9aljJ4QQl2fiYKMpVrcOxen5pbi8OBXHOx3R7OyJk6l9cHmyK9ZWVsXWwVtxcnIkttdWRH1tQ+y+vRCXR+uiPLkfJemOC/F2uylqqzs359b50aaolxBQFptvx8Oe9jqTXrvvK1g42xedel3Ul/xrbh3fO+uL/VUBFbFx/OU2enm4LkqlptibPqOPN0SJuljdORAXQoiLoy2xurotPk96vr8qSlMPzKONsqC+c++D4ny3KSg1xfre8a0b+kEHwcqa2Ny7FRmI3SaitHb35n/QmfHAEUIcrCGod8Tu4eRGHYuNMqK2dSK+xvlec3yDeMADcZ7Lkx1RL6+I7ZOJLboOQpqTB+JkS1RK6+Jo/sqIJghArO5P7IWLz8NXxf6tnXMqtldq4u4umBEsnO2K+vWNsNPpTPw1Ra2EYHX/zn4XQghxvCnKLFjna3eDhUtxtF4RlY2jO8f57VZNlNb2J266b8VmBVHbntiQ811RpyzWj2SIIN3v8nhDVLh73ztaL90KFoQQT3idSa/d9xUsCCEuLy+X/3vIjN/uiNX6qti99SwePxQ6h9PjbooyiM6c1+fDDoLK7bfOs926YM6b8KSLvXHQMn0xnWzVBEy/4V5fwDMezjPfTj+v252H7Pn4TblzsHjl7jG+mSBK69M77KFOxfYKojz9UHy7KcpMlcYcrQsqm+KtmOdSHHTG60N9R5x9Hnq0LsrXN7f67tmX0Y83RWVivMn5TAcLlwcdAYjO4dTxPx6fF8070eXnzdsWtQecA3eO3cmWqFAWG8czRj7ZFrXJQOB0R6yAWNufXLcjsV5ClDdnzUCSJl3fC+q7d976T7Zrd4OFJ7vOpNfuu8tZUJRnyg5q2YSxDRRkcUgYJWRpQA4UecHdFPUauj57XapaBcLJ5mqhyAoo6Q/8Zqkz3bPzeLt19OqM4cumf2uNqeZor9u3/6o08oQwvgJAf2RyY+5aOO/LmKPbjRGlYcSnskF7YqWLLAdFW/C9U6Fn9ej/+jOf3o1wYhunkeM5Aa2NdeKffxn3QGg5NCjwHY+GlT6oX4A0ToA6xlRzvXEQ8Km0htWb851draJSsGzPxGkQ8hHtzjkBgK6j8YkwiKHdAq1KFciLHG7qoxQUV6Bps2Zw23/913/x448/LreC0qu2ubnJ//zP/1z/KyJ8B3SqD6zN9HzXmfS6fHfBwvPJCB0La5TSsAZYbZOuquD/8Nuc8ZUZSWxjLXvImmvjBgVGW4EiZuSnNIc+7Qety+3OaW6UlKepVac80XwmFTHxe4ASjZlPtfuFQchVqUvXmBx63d11y77d2+BDuiY2LMzaz/z44QOuE+AMEpyoi5PZBNEv/PDexQkdXN1lGLYZeA9LtcryDMrdqeTXGNf7QLk3ojdvNkVBgcqyOXJpkgL67HPi+lh+TFKgBUqP4dYQw/VI+xYakHkuYWUd7wGV+//7v/8b27aXW0HpVfvb3/725R9pQgKQj6+tB52qz3SdSa/L9xUspD59y2XZXGfFsPEWtphWEPZb/LursZdEXxpMyW9fKkXBxA178QO30R9SDfr0gypKnlMdJoRdbcEUr1wcXTeI06D1qDbvE6L4ChrG7aCAED+C5vB2632KqlLKb5fe3NXAspr8+M8/+OQ5WCTkpo+h6OhWkx/+8w88x8NqOaQ9l4fWaFQUBapTb16hg/uhRt9aEA7mGTlVlq2urjd0+DknnywsuJnneB/U9M87XYFqm2E/Y2BaVNWCjDZB0qf1gOX+7W9/u/3wkP5ars/r92lMAg+slvw815n0unxfwYJmYA/15UvLVW3x74XP8KcPlDemWlbLElIYF9kXLoORwfAhnR1EAUnDZdgzl13TVyuPYz4CVFq0HlXFXUFVoKRNfVoIA8KrGv3pxui1BtqnkOye1x/NtFiz3/Db1W/8+HOd3bPx7a9q2nSsv/PrrxbtSMUKH96AlaZpoKgTi80YDTzUzYDBortrlpNXHlq8+0W13WXln/8vQZRj61NP/CgkpoLZ+7zgBD+EXjDEMpdckCQpDRo1+P2Dxyh0GBkTvxXj/8z6jPYc15n0unxnLTiqaLqOvuxf9Z5QVqlSLV/XCZ6QRDnVyvX33zzn5rtDUVCQk817rdU0EquNNXJxPQ/P8/GDkDi7P8wZr8PdC7IoCri6W+xeFMX1+kwP5+at887wO+MXc4Y/XBxdN7TbMh7ZSJJG26hxledf1qGIsPo/8WlWb4N6g0Yp5vNi51K7WJ+bqV21vvQIqHSxemXgIx81C3OJ0pBqt8tKlt6UcGWuyaAY4N/TP0USR1y1Wvd0XzzjGOk23k6daDggmjxARcJw4FPd9PjSWKdGQ/EwzSGu6+J5Hr7vE0TJPaUwz6yIcWzv/v4xlp1t6DD0X7pPiJxwOCR48sVG2N3Rk+8jWGY/NRgMO5T4yE+9LqPrpkiL1GPofwCuiFyPKJ06m57hOpNel++rZOHZGAy9LVLToj0ssFsqaRyjGA7eIKFht+lFbUwnx+2beGEEpRzXbJPoGr3hiJ42MbuGhaVrWIOUqlJQ5DkfP42T/8r1DVzf5c4XiSJkaDr4UUyppDBodwl6Nl4vw+qPCKOMUinAMrq0zCFuK8K0PaIQSoVLz0gxrBEjzac38IjDEqViRK+b0B+6mMVoPDz6PDzG6I8YKCNMxydKSpSwabV9zIHPcv3cZMTJuOXGpvH4N4fG0GOnbdF3VXpKQhhDoQJGm7tzNegaH3HijMVFGQpt26T2i4th926VWhi2zcrPQxq2udzbvmbhml2cUYCJzyhqEwTWPS3zFcThe1a7CwKKeDRx7By63Yiu5WIbCg07Iq5a9Ns9Wr0uDWICP6LohcRWa2KeCl27i20MsUMVpcjJPn7iCqBUY23o4d8a/x5FjDvwxt+xZ1Gr6Pq4AbPpQo8vEpyujTIKnjyxTTH6tPpd+qrHyLjnO8uTbEtBZHUZtTy8OSdNkcWEYUSSFRRFRo5KVVFRVZWq3qDV0uck5o4bZnuOoG6Z/aT2PKLcpGf9wn/+279ilcpoXYdBt4bvVWlUc/I7Z9AzXGfS6/Ktq2O8rEtxfnYiTk7OxMVEzbPLi4slGrE5ETvNVbF5eDY1zaW4ODsSO6tlUVqbUw//1ToWG6Vxwyxb8+syPtjF2ak4uxDic5W/W1WvJlwerovy6t4zN+wyq1Gm61/OT8Xp+QPPjMtD0SlP1zl/nIuzU3F6NntG54frot7ZFSfT63t5Lk4ONsTKjGq5i12K89NTcbLXESUQpbVdcXJ6Ks7OzsTp6ak4eXsk9rdWRaVUE539Wa1rXIq3W03R+eoWvxY5FdvNtQc0Kva12yLExdG6aG4cz7gfXIrTgy2x1qyLZnNV1CvjBozqax2xttYUK5Xr6oUgKK+I9Z3jGeftkVi/09DXU3rofvrsUpyfnYqz641d7j4o/dX8xYKFJ3C0IUoz2je4cbIlKuXZLfy9Wp8bKaIjHtvCwkxvt0Rl4cPtrdiqrYidx7YA9SDzg4VlnO81RWXmQ+YpnYnd+nQ9+EmXYn9tQTsQC5zvrQpArE+3LXHtaL0soCa2p4/V6Y6ov0C9+svDjqitHz5o/z56W8RbsVmbEfBdnoq9tbro7L29vu6vW/Kcuh4uz0/E4e66WCmPg4baxuFUwPDcwcJy+0mSlvGd5Sy8AnqLRuLP/Z6ZhhHFzGL1VyyJxkW7zemaDF852zDg46x8hRstBqMG3jD4fnsaBCBmOFJx7slp+HoajYZC6MWz90ceEsQ1jEdkoEZBBKzSNua1LaICHwjDyRO/wLeHVK3+s9erV7oDupGNk94/7uO2BbKRjdeyp6rGFgSmgVVYuP3WdfF7SpICNf1WfopSbdC1POJoj9UyfPi5h+m9bCbJMvtJkpYhg4VlaX0Cv41vduk7PmGckKYJcegx7LfpxyaR13umh0ZBGnq4bkDygk/PNE64Aiqt1pN8k8zDEVa/S2/wHogZWTbenA/NanvEkAGm/03T9xYoCPt9soE7v/2FJ2S4EYPCpmvauEFEkqYkcUQwsuj1RmhuxPI9JEcE4RWstJn9ubsgiT8AU90Y5x5O0MJ8iQ2nQa+dM3Luy3h95LaQ4o5iuv321LWbkrdGxIE58Z0+I/sANBozgyRF7+MOm8AVv3nhfRv2xB66nyRpOX+RBMenpbYsvMAiTyLiNCFKQK3q9IYB9rPdN3OCfhfPcHHaAWZ7hBM+/xsdQDzuahLjK5IbJ6mtHrbe47pnYoqiQJkbhai0XY+s18dteF+ysL8TmW8x0ke4L9ZlskZvFNArMuI4JolSCqWKZti4/Tk9VN4nCQk/QaVnzD6fch83BGqbDLpfllAEHr/rbbzpheYRnp9QXDcoVRTFuDvqVo7nx3xuTnQ82KStAWmIG6YoikJRFGiGiTG1Mq22QWZ7JEy3UPr120Lm471rYd85xXV61tTS0pgYWGk15u5vzeiywh+8zzOmezP/si7fcD9J0rK+9XcQ6WFOdpqifpNdeC5268/9Lf+zcX8OzOh45mVdiLOHJhsuO+ezs0cnpJ6fvf5+9cbf+EtidpcfZ+KgUxHM6LX0eKM8uz+K8yOxvbV+3YshgpWO2Nw/EeL8SOxsrYv69Tf9lc6m2P/8Af9kX2x0VkSJsqivTwy/vaJzeyL92m15aI+hN+NSEhuLegy72BerIEq3RprKWfiG+0mSliVLFl6DbER/oGJnn197CoriPXEKz//qkJC85ysaY3oqKtozLV99QJ8K81Sfa6Ve0Pgbv4ZahITheFiRZ6RJiO9FKO0Rp16X212lFKTZJ7S2dneG1TZDp027CPn3nz5CXsU0x99GbKdNqwj4958+UWgm5udPJg2TUc/HL2xCz5z9Jl6tUiUlSWBe8szjtgWyLAWt+6CSujiKAIO2sWCkLCMDGov6UfmG+0mSliVzFl6BaDjkD8Oke3NnSIjTytLNCj/KdTPPJeOxjTFJ37frb/wVnYZaUBTjP1SNVm9IEMf4w7sPV8jIMlDndaACGJZJDeCjhxN8TrJJiaJxmx0fXIebwWS4Tkjb6i3oPExFLX8kndv20GO3BbI0A1V9wGeclDD4CM0uc/Inx/MLfd6XOtjm/cHky+8nSVqeLFn47oWM3A/UjBR3NBoPSn3CK53hC3yQzOOID8Dawtco6dW6/sZfavfptx/WDdpYPg4WlAURq25hNX/gn398wnc88raJGjuM8nU2Vn/h5999HD+n3VMhcXFSE29hxwIqqgpZMacN8EdvC+RZTnnRtnyW+njvYWXHWJDsG+M4MfVBTPf+6OPl95MkPYIsWfjeZQnJpxV6tkm326Xb7dIg5WOt9aCOg75WHMZAnfZ9redJr1IeBrwHjPYjyquV+/oFrWJaa5SAq98c3BQCx6VqDRlZHUpc8Zsz7jgudBwUq39P6dU42U+d0439827LWOq7vGMFszcvUi+IbRNXGxHYD43mX3Y/SdJjyGDhe5fEJKUW7VaVarVKtaqMmxW2rRfIdL4uCq0YdzKupT+HMIh4XDCoUlUhzxdXaVV7Nr0ywDucoYXjt7BMDaVr0asAfzg4kY/j6Vj3diyQk+cVqnNe6R+/LePPKVf3bAtk+O47qPfn1MrJiZ0uZmIR+ss1ffyS+0mSHkMGC9+9gkKb6MkwGeEk6w/6Fvr1i44I30O53ZX5Cn9Kn7/xPyYY1NC162/9CxlYZg2ADz/9SNS2rnNvDGxzBfjAqNsnNCx6953SRU5+VZ2T6Po12wK6rt8kJc6V+XjvoNnv3QkEsmiE2WozYEDomzPzIhZ7qf0kSY8jg4XvXcOgddNDYcbI8mkHL9RnfBwSUaLdM15gYdKLizz8T49PXm0YdT5Ec1qTnBzPsqgDUMG0vjR6pFsWTeDTx4Ke1b3/63ocEpUbNLQZv33ltqitBpXrZN55Ms/lD+oYjZwkjonCAM+xMNsG5qjA9CN8q7Ug8XCxF9lPkvRY37rupnSfS/F2uyM29vbF7sa62Dw8e7Eln26vCErr4kg2NP+ncna4JdY7HdGslUWpVBKlSl2sddbFzvGSFfNPtkXtQf2gXIj9tZKgvjvVh8SFOOiUBSs7D2rf4Hy3KUqd2/0ePNm2iGOxUa6J7Zkrcine7jRF+bqjqFKpLCq1ulhd3xI7+0fi9MGLuq9viOfbT5L0tf5FCCG+dcAi3a/IMwq1+ui3luUl2Pr/YdQ6JneNF1uq9JokDHWD1M0YPXt9/oxRSyccZPfUBHi8qF/F1EKSBycmLiugpwXYqfOMn/Wefz9Jf03yM8QroTx3oBCP6LZ7uJ/7aIhdvPd1BgPjOZcqvWo6pt3Ad/zn7+grcXDyPvYzPgBblo0ycoiebQkv4AX2k/TXJIMFCYA0GPHrb7/gxTnj3AgHZWtEX/vWayZ9z6rmCCsdMkqfcykFwcCn5QyeN9FWtxh1Iwbea23N6IX2k/SXJIMFCQDNHLDZ2aCrRLj9Hq7mEjgt2aSLdA8N2zXxzSFzOg79aplvMlBHjF7gbbk1dGk4Jm767It6ci+5n6S/HpmzIE0oyJKEXNXRq/KGIz1cHlqYfhfPMZ42wExdegMYuuaL9LAKQOZjWgmWa9N40o0J6OkBdvIMOQvfYj9JfykyWJAk6UkUaUqhaU+aW1NkKUX1aef5IHlKiob2pAsuSNMc7RkaQPhm+0n6y5DBgiRJkiRJC8mcBUmSJEmSFpLBgiRJkiRJC8lgQZIkSZKkhWSwIEmSJEnSQjJYkCRJkiRpIRksSJIkSZK0kAwWJEmSJElaSAYLkiRJkiQtJIMFSZIkSZIWksGC9P2ILLRqFU3T0PrBV84sJxwOCZ6lA8EIuzsifeTU8cjGe+zEiUPXjh8+/IVkvo0TPnVH1SmePSKeM9t42BqfK1WVrvfsnWRLD5Q4LdSqhqZp9Lz8W6/Os3ie8x2Cfo/n2WVffy39r+dYLen5FVlGUa0+WVvwRTH7BFEUZcHvCopy/7RLrAVK1yMZGUtOd3c+kdVl1PLwnr4ZfiAnjRMWXtNZyHDgkWsaRaZgDq2bToka/R5Bu4fvenSXXb88Jc5mREDzht8jDYaMwnlbolLVNLRGi3ZLm9tBVB6Y9AKTYPTUnY9p9PrQ7Y1w/P6dDpIadkRqQzps0H/iJT9E6g9xwofucwW9a9M3/gK9NxQ5xijF717/O/GwnIAsz8mrfXyn/c16s32R871IiYKQOM0pioIMqCoqiqqgVnVardacPkeuO/J7lrj3Ca4lIb0+b7dEBUSpcygun2SGZ+J4b0ds1MsCEICorG6Knb1jcS6EEOJcvD3YE+sr498o18X69q44eHsuhDgXx3s7Yn2ldHva/c/TLrNdm2Jl8/irt+biaF00N46faN/MciTWa1viZN7PZwdirdYUe2fjf57vNUVt6+3UOHtibXVXnC276LdborZx9PDh97i8OBOnp8diq46AFbF5dCpOT8/E2dmpOD15K44PdsX6SkmUm1vi+GLGDM73xVpzW5w8384WF4frojm9/yac7dTF2sEzrsAclxen4uR4R6zWN8XR6ak4PdoS9ea2OD45EScnb8XR4b7Y3VoTtUpdbO1uiOYTnNuvwenOiugcTgy4PBenJ4dio4ZgdU/MOo1eynOe7xcn+2JzrSnqzaZYXRnfSyvNjuisrYrmSlmUru+PUBHNjT3x9s78L8X+al3sLn3jfLivuZZksPAane6JZrksVhYc9Ec52RI1EDDrhD0Xe01EaWVTHM06md9uigoIaIq9x57sTxIsvBWbtVWx/6x3pEXBwonYWimJ5udIQQghjtZFqbIppo/W8WZNrO4vubOeOFi4nlhslhGs7MwOXs52RR1EuXMwdaO/FIfrNbF++NwP6lOxXa+LndPZv36rYGHsVGyvXh/bt5uiuT1jJc8PxXqtJCp/1WDh2mHn2wcLY099vl+Ktzuror6+L06vJzjdWRFQFpuTF/3FmXh7sC3WauMXq1J9aypgeP5g4WuuJZmz8BrpfaI8J3FaTztf9XMXtyrqrWKygshuYxfbhNGI9qyi88lpn6Xo/2GykY3Xsul9o9Le2O7xY9Zj2Ne+DFQU+BgTT5V+GrZFbg+IXnQNZ0hCwk9QMYw7xZMAaFWqwKcg4FZWROJgR13s7nMXKuvYVpXhwOd7z0xQbp13OWlWQLWLO2x/q1X6fnyrbw/Tnvh8z9wuxrDK0DXRr49/mqSATmNyAapGqzckSCK26yWu3v1I2/ra3KxlPf5aksGC9IXy5X++XA45od2iG7YJoiGteQ/hmdO+tBR3FNPtf6NvokXAcPSelb6FMTk4y7iioJj+VKp16akeo+DbPgKzMOA9JYx2Y/YIcUwCUFVv5chEI4eiZzJnqieldns0/BH+a8qXi4e0rRAApWvjdPVvuz4S8NTne0FKFz92aStfhmXpFZR19FkvTkqDoWtRAz75/ou/LDz2WvqLJTjmJIFPmORQ1WkZbRq3DuY4wSTNMrJModEz0PKEMExRWwaN6u1HUJ5GRHFKoTYwDB01j/G9kBSdbr89FbWOk+KyPCfLq7S6DapFShRGpLmKbkzMP0+JopiMKnqrdROtjlcxI0lSsiwjV3S6hn4zPE5S8iwjUxv0WhpkMUGUUKg6jVYDbeknaIZvGphJlzAc3iTofTN5ShjGFNUGRktDISdNQfucLZT5eO9a2HcKXDJCNyC9lZCp0TZ1UjcgUcYBTlEUoLUxjSoUCYEXkSkKSlFQ6G3M1uIik9xz+OXTCjv927eTJE4Abaq0BkDDMBSGfgRt45E75etFQQS0aBuzD3Ds+XygzOrAmrhRxnh+jjG6e8NNApcou05wLQoKFPRuj2rsEqYTx0DR6fZaqOTEvk9cKCgUFDTo9hq3k3dVg7b2D7ywoPfsJRlPIw0C0s9ho9KiJwsX5iqyhCiKiFPQGq3x/XT2iMRRRJIpaIZBq6qQhS5elFNtm/Qa9xcpPu35rtAyp1MCY6IEaLTmB9KNLu3yD/z0KWNRiuz3dC39dUoWiohhzyZS25iWRU/PGBg6PS+ZGCkn9l0cq8ff3wwJYw9rFJOHNv+mdSeqtGT4/QaGFYGmo6ZDDL1Fd5DSMLsUoz6jZHr5KaHrYpv/wd/NEUnqM3RCCq1Foxpj6TpmkFPELrYbg9ZAx6On6Qwny8LyhMAd0u/+nb8Pwi8Z+WmENxoPfzOMyEMH28+oNlpUkwEtrYu3TLJ8kTBqNzAT87sIFFLfpNV1yLQGWuFjDQP+//bOHzxRrVvj762gk046uZV00smt9Kukk1NpKvmqeKvwVaG0i6eSU8WpwqnCqcJUYaowVZjbhKniVCGVpJJUkmrdQk38H01iJnMOv+fheRKULcLauPbe71rLbcrQpkbliefhe15acq4xosCH3d7D3t4e/q2bcIMIMRJEPR9OS8Pe3h5000Uvjh+P6XkWWtoe9K6LIHzODQ9hmV+AnAJFmP1s378FGGGpAloqy7j3XMyby/vhw/UegLyCZUL92DegmSEKhy5cTXh6IfLh30qQl6yExVEA32phb28Pe/820PVCxAkQhwF82xjdA6MLL4wfp0KjnouuvgfNsOEF0ZIpUgGynIHn/vRFm+dJIgS2hrqdvFm00t+XBEG3jrLmAKIKvalAjC2osga7N2sFSWBCkeqwIh6iCDiaBEnRYLMqmpKPZsvdYGr97e19gShAcAfkJHnN/ech8ABywvKlkMn5fKS+tEMlxfbcnFC1UKDCllvx4OLZpgcnJQKy1Lh4Em8Mz2rEMEsEeRcNYlCg0tFI4DI4P6BS6ZAmh/ZPSsSgQtM6kPNGhlA4ohW6kUf6nSKBKVLteFatf1oFIV+h/eNp2VyfOkUQUzldUPafrhALnVZAKFSpczb9pS6okQHlDlbq9ycnRwWAgBwVxpERmVKHrjfRjt0cUR4goEpLtE2bsULgeH1coUyuQVO3jm6OCgTkaFpPdtMpEConK6MghmfVsSI5T0c3s/sBEApzgqf+MRUzNTpfaHCJwHEsikK2SNVqdWorUo4BoXSyXNh1sU8Z1GhjaeJbCxyvR/eNqRzRxcXFeDun05MOHdZKVCg26PhyieLq6oCyzJrz7h9Tcaz+Lk2rTQeT/fMi1Gs6zOdonYleH+YJpcX7+5EEjtlsjnIZhsCU6PiiQ6XaS0Wncwzf6Pu9VTtrWClwrC0+s/onFWLyi2Lh4XmNMtkanT+++ZL2s6Dc4dQ7+x0qIEO1xQ667uR2Y+/TnNeIAUPru+NIZMlUp5/tKwSOH6QvfayZBUGD7fvwt9w8s/xs05yooFQQIXFPw05WliE+fMOCg8WyYPEdnKCCA8ApJjyvjcmsle98xUNWhDg1ghUlAfjuYGUI72PTLPAQgpfLM+vqopADfkQQ1emJKx6iwOAhDBYSAK1KYcCyAHosxJkA/pHQ5jbcdPyaQFA0FBjg/uu6PNL5AAARaUlEQVR/UFatFycgejVRF5ruQW6bmJ41TJAAmTKUqWXgKIwAjlupV2BVHfUMAPxA13y66YE3nrr53oU5NYvTM01Emj61FrmaxPfwHUC168FxnKdNlxA/AMW6snyUwXPgEOLZiYsdEXsufgCQRBFJkow3gJcU6JaHwLfQXLb8EkW447jVIydeg15lAABfzacEVonvjWdRvsK0wqf3eyYstgl9jQCCEzgg6v08W9wAUXcRxjH6Xh1uszUrkHspsQfTdNdOV2+Kp6swVzUUB3AsC44/9YYkQNew0Ht+yL49iQtd/wJeXdS9sEoTavIXtNa4n/Y8eHeAKE51eF6EyNzDdTYfIe/M3qfwHQ8PUKCW17yp58C9z0LT68/rqz5IX/pYzgJGP6Zbb5s0LBvwAg+6lCAKXNhdE6bpIgaQLM2CkYMoLm+ZF7JAEs8k5UmiZOVU8yJzKllMEhgtCmJGa1WbtDmFIGFWSjVa29q8HQn1lgnfP0KRAe6+/BvluvMmD6vtSODqBr5BQVOdvrAxfPcHICuYnhWMoxgZdt0NKENv5gAAt5YJNwGQuDAtDo1GHsAtLHOiTvZhWoCubxZxEgY9AAWU5VmbCVwX90wFen2F3oHjwWH0wPoZjKYiC6jrKhRFedzKkgh+TcdKohhg1z08WdT1OjLAlBMWwzZdyI0asgC+m+b4xzSBY9qQ9MVkMdNwHDdet30ZiWdAKZdR3nhTYLwoSx8LXm7CfovkQ4kPXfNRNlTsNMioZ0Ktu+BVFZxVR3PyvVkJTYODqb08Y+lKAhfe/ZwD8IgAUQDuPG/0ueMIhXhGJZwgeQAEQdj4I3dn749fCrZzB5QUrJBEAEjgtS3EpTZa5U3O+mP0pQ/nLOyOCJ5ZhySWYfiAqGhoGuqaC8ouEaSNkI02KnBhTdbLkwBdJ0Sx3cJmGiZ2+cwA80aRBJs6UM81Ixnwxg7D7V+/odz01mctfHMCON49IKtzHc+H6wNFZXZ2Bux4xmENkq6jAAD3DkwnRuyYcGUDZltHEcC9bcKOgcRpwxYNTC9briOKIyAjzQlmA1j2LTJ1fXUoZ5IgAQfuTW78tozXb7NllIUtD2WBZ692WYeWAx6dsNCC6aswui1oeQC3FkwPQGSh7SnQn4l3HQm5Xp61lC23YNk27I03C63VT/wNPk+bE8VGCLf0uIOWgcTQdxtxEruoqy7qtgGZ41BWBdjm1Po/p6KluNCtNx4uhCHusCrT6/gZ2RuPftk62gd5BJb96LREtgUvW5sNU17Lju0dAAIL9h1Q0uor7TT2dGieAtvRNncAP0Bf+ljREKGDpm5tPYJlywbstSPABF5Txr8sAcc9H4+2Fc8aaZJMT++v/8GVmm3wbhNNlwcbx+DbPXiqsOaIXxNWMuB5MeTy7/j+SUGZ8+C35Zc7Iz0L3VhDc5MBezwSCuW1OaGQ78B7yI2iFqbgOA4Pz83n8xqMioG9Lw/4Yhow4ENtOeB4QK/q2Pv8BaYdILY9KLq9cWdiWRbg+dnO75mwbnNo6mtcyDhCDB78z1DCjePNGUXZ+seI5TgwcfyM8yhB14v44z/fcG+b0NFDrDkosyJEvYjf//cbbNOGLpsI69azyz1xHC9e4+3OGjz/jklAWAVt/enf2NKg9kwE7Q1DKGMLuiOj296tJ+npGnzFhT2xwSTBfdhDBDwOpvi6Bogt+FoXm821bYAoIofPo/u60NNiRDEAcTJLygK8gnYzQkvTwXMJIihwe83V4dzz7NzegcBycIcKTHX5SUWegbqRwPQsKFv1+Z/flz6WsyCUYbTF7acZOWH964mD9qdbZBpdzDih4zUbEQASC61uGW39mbYAwHfRkyy069q2Z/qxSZ7+mL4HrNyGa/Ug7n3G998VKLwPVxdnHYaNbloEq2khsbTNzmc8QyKIwszunuPhjiljPkxaFEXAH4Uire4EHFS9jsyXP3H/7RM+ZQ9wNe5ZdV1D8/MnfGspCFGHs0VYkSAIADutl4jQbdng9l201j2Zohhx9jU/gC9nsn5bUV7w+BckCPceogRrk+0Imo6KsYcvD1/wx58FdG5GF4PXDFT13/D5sw7F56B7z59DHMZgeP7D5PZZxkIujcn+0ELd+AKhO+soJJEP1w0QcxIUVUTo9iAqI+c4cW2ESntmSTFy22hPqqMlIupmE6zdhBWMrgpb1tFWhXE0VAgWCSStC22VDcYWWjaLuv/0hrDXAzhl1iZZBXVJh+1js4iATZBUKNnfYXke0FRnX4t9+D+A/NHkPHpwPKDutqFrL/u43dt7D7ZzC6baxryvkIQeTN2Aw2rovjC67Gf3pY/lLICDIO5giMXy4DOLBY96fgw+O14Hi2M8rjskCZKJZ7sMQUBPUaDHGiSOBQsWLMdBkOSFXAzzTM4hmTO6JEmAh8VpriRJlq4tJQmAsafLze9feH8ys3/lGUbheFYnRjw9rADA1y1YtoDfPt/j639kqKwPpznlMDweGyIMZ48FEsQ9Fy2tiT8iDdczr62BLUMtAHYcY/Lzn/RMaOYPoNxaGOFwsoSs7iMA1i4HsYoOLfcn/rgFCvrUFG9ZRzP3Cb/f3oE71LcaQfGqinw7fByNRZaGVtKCa5bXdshe4ONBbs1pTN6DGI7tA8ij/JLiRqIEiTHhB0B93YXiVOhqBl/+ugdK+tOyDqtCr2fw+c873AktaM9egBh+cAup/h4poLZhvIwEjJ4f8dxDIw5gd9voejwkqQh+6nuGjgbNktC1dYiJg6Zchy2YiMfG67kehLn5ck5SUHbq+O3TD+Qa5zBYgJXrYLv/wu/fijhqjvoJJ0qAayBQHaybpY/sLr4+8BD9LrpjnaBvf0dWnhsMgIUoAm0vBOQ1Da5h8dkkw7T34SptmD0F+qNGLIHfasPPH8I3JhdMgMTa0DQeepl/0qvxImR5RU6GGd7B3gML9i0g6yLCXoA4jhH1AniuiyAWUG+58DeeBlnCz+5L64I7/k70zw+olM1R5eiULi7O6aRzRKdXQ7o5LlEmU6Ba45DOBzd0sl+lSj5LDMNQtlCham2fTm8WWqPjEkNMNke5XJaymaciSplCg84W3k9Ewws6qlWpmGOIYTKUK1ap1rkk6p/RQbVChexof75UpcbJNdH1CTWqFcpnnvbvn/WJro6pVi2N9+eoWG3QyTUt2V+jw/MBDS+OqFYtUo5hiGGyVKhUqbNQUuKGzjsHVJ0qBpUpNujwsZDUgC5PO7RffCo0BTCUrx7Q8cX/LRwLJku5fJ7y+Tzlc9mpAiqg7P6aehZLQieH18dUKVapc3ZOZ8dHdHh8QCUGVFyaQP2CGpnZcMpV3HQKBKZCp3PxjP3jEoEp0fqSDctqQwzp8rBCteNzOj/ep2qjQ1fPJsEf0mkFVNqmmMZrQyeHl9SpValaKVCWGdtiqUrVxsmzYb9zDdFpBVTc5NyvDiiHDDXmQ9yujyiPzIa1JS6oweSX5rT/WaGT1yc1KhWyxGRyVCyVqFTKUwZZyhdLVCoVqfBo+xnKl0qUz02F3t10qJiZtr9RmPRTaNyQTkorwu8moXQTGxyeUy0z6l+VyfE3HSosrUdSmQnNu2hkiKmeUL/fH2+nVGUYqi65nv3jImU2qG+xEDq55Nl0NBUHPbg8plqpQo2jYzo96dBBrUSlxslCyPbwcp9yTIayuRzlslOFmZgcVTqXy0Om38neB+cHlGcm55OhbDZPxUqDDjqndHGzqW1uUBviJ/alf4yzMGJI/Zsrurq6ocHU9RgOBltUKLyio2KJ9s9u5o4Z0uDmnI5KGWIqK2LqU9azspDUgG6ur6k/pHHFzezKGOLL/SzlV1VJeTNWF5Ia9q/pur+hNQ3PqJrZsujVTgpJvYzhWY0ypePtq4u+hIt9ys7nwRjzc/MsvIyL/QxhOsZ+eEoVTD/A+9QpzhUiemRIZ7UMAQzVzoY0OClRtnFMh4Wn4kiX+zkqdG6WfO60szCg4+Kc432xT5klTgYR0fCkQswGNrYqz8JzjCpC3ix9dvbPalSoduhq3tiGfbo6bVB+zTPhrdi9vb9HISl6cV/6B0VDAAALXpAgScKM+pxdE5u/gGuixdbRVufrnbPgBAWGqYHzvbeJr04Zw0EQR6FNobdcrzBB1g2wXfOnFWdieRHiM0tREyKrDV9t/bSiV6+FVXVooQlr5+knE9imA9lYHw726xAh8O+Rl6WnZ4jvws+UUX6cQubBc/cLqxojWKiGhiwe8Fdbh94OoelNGEYFzA8TbddG2xZhPBvKM1oS4AX+8X/HtCEYxtIluCiOIPDPtflyWE6AKApLlhRC2C0XsqHPRRsBYHlI9S6Myh386fwQuzi/d7P3XfLyvvQPcxbeAFGG1HPgrrDL0PORlJW3UwynTBHDdb8DZWWmUNMMoo6u6qO1VW7rn0GAdpeD+Yym4WMjo9WVYLc3SbP7CsIuzMiA+at6VQtw4AWAe8wJEsMxnYXnhijlEK2K7pF0GAUA3z7hT86ALgFc3UA9cwdL1eCrm1Re5SFL2cc8M4mvo52YcFaIvKNetCA2fh8ESBILzw6W21nswQ1yKD9Tu+X1vJO975JX9KXUWdgWoQnXUeBoKpqmAy/oIQx7CDwb7aaCZqDBtzfIyvUiEoSeDctyd5NR7cOSILAM6JoC4yuAng1DtxCsuAZy24JkaphOavaxSOA1m4ha1i87qzCBU7poowVtZ+UgAxiaC83W/yazCgDAot4+BucYsGwbpqGj7d9DnismJikKeq63og0BWquKDDKoGZN4/TIMo4CHBwG6UV5x3CyyYYJzW7C7BjRThOloK65zCM8XoG6SznQHlC0frcSAqhmwXB+9MEQv8OF2ddTrXQiWj/Y7aF93b++75JV9aadrI39zBteXdHF+RqenZ3R+cUU3OxUqDOh8v0SN0xsa9I+pWjpeuub0S3O5T9lCjQ4PD+nwdFZ3MBz0qd8f0GAwoMH477Wr1P0zatSO6GonS9nnVFuSz35T+mf7VOtcbaGTmeLygPIrNAtL978LN3RSq9HJzVu3O6SLgxodXizvWP3zDh0eHlKjmPnlNAsjhtQfDJfoFSZc02GxSus0a8PB/ItDGq6p/zAvcJwcM1hoZ46bDhUrpxtpsa6P8pSrHNDh4SGdvHUHHPbp6vKczk5P6fTsgi6v+y/rR69id/a+O83C6/vSfxERvbH7krIDgrYMLTIRmDKACKZURmL3YLx/zN3uiAO4Xjia4hNkqAsLlNu2FyLEpim4tyFBGMYQhJedXxRGU+vEWx+NMOQgLNQbX7X/vYgRRiyEDfUaG7cZsiu/U9xz4Y2n2HhZxc5noXeFq4Grs3DjxYRHiatBCQx4b9TRvaaCoOVC3+paJXA1BYHhbfS8SXoe3N5o5M1L6ksjLT84u7B3IA5DQFim23h1y6/uS6mz8CsQdSELDvTIHU9bh2iL/43AJNib5ZdOSUn5gAS2AdNy4UcCynoLpibNLWEmCEwdrmzCkF//w/QSZyGyNeixAbv5dxqZpGxL6iz8Avi6gP/ptTF0J1oIF3VWA+9FMFMlZUrK35wEgeOBU5VX6zZCu4tQba4pcjT/0T5sh4Nan0/SlPJPI3UWPjweNO5f8MpHMCbJxEMHrd8TtAcetF9cIJeSkpKS8vH5YOmeUxaIeujd51E3NEzqVIWmibucunkBlZSUlJSUlFeQOgsfnV6AHiOjLU+KDcVwvB8oGfpPqCeQkpKSkvJPJHUWPjwJEmGqKmGvC7NXg6n9qtLvlJSUlJRfjTQp00dHKkN+rNQWoas7UNzn65WnpKSkpKS8FanA8cOTwDfq6AoqJN9FT22jOxEvpKSkpKSkvAOps/CLkMQREo7fQbKOlJSUlJSU9aTOQkpKSkpKSspaUs1CSkpKSkpKylpSZyElJSUlJSVlLamzkJKSkpKSkrKW1FlISUlJSUlJWUvqLKSkpKSkpKSs5f8BpLzYp7Bd9NQAAAAASUVORK5CYII="
    }
   },
   "cell_type": "markdown",
   "id": "6bd7c62d",
   "metadata": {},
   "source": [
    "## What about an uncertainty?!\n",
    "\n",
    "The method shown before finds the neural network parameters which maximize the log-likelihood of the data. But not all parameters are equally likely and we can estimate an uncertainty for them.\n",
    "\n",
    "With an uncertainty for the parameters, we can propagate the uncertainty through the neural network and obtain an uncertainty on the prediction of the regression output.\n",
    "\n",
    "This can be done assuming each weight in the network function has a given probability distribution and instead of fitting a single value for the weight, we fit the parameters of this probability distribution. For the example shown here, we assume that the probability distribution of the weights is Gaussian and we aim to obtain the mean and variance of the Gaussian.\n",
    "\n",
    "We are going to include the epistemic uncertainty through the variation of the weights. That is, the fact that the weights vary and lead to different effective functions allow us to model different $f(x)$ dependence relationships and this is attributed to the epistemic uncertainty.\n",
    "\n",
    "We additionally assume that the data collected has some aleatoric uncertainty, which means that every point is uncertain by some fixed unknown amount. To model this effect, we assume that the likelihood function $p(\\text{data}|\\theta)$ can be modelled by a Gaussian distribution with a certain standard deviation $\\sigma_a$. This standard deviation will be used to model the aleatoric uncertainty.\n",
    "\n",
    "The final loss function to be optimised here is:\n",
    "\n",
    "$\\mathcal{L} = -\\mathbb{E}_{\\text{data}}\\left[\\log p(\\text{data}|\\text{weights})\\right] + \\frac{1}{M} KL(\\text{weights}|\\text{prior})$\n",
    "\n",
    "The first term is assumed to be a Gaussian with the standard deviation given by the aleatoric uncertainty (assumed to be the same for every data point, but this could be changed to be data-point specific as well!). The second term corresponds to a penalty for varying the weights away from the prior assumption that the weights are Gaussian with a mean zero and standard deviation 0.1. In this equation, $M$ is the number of batches used.\n",
    "\n",
    "It can be shown that by minimizing this loss function, we obtain weights mean and standard deviations that approximately optimize the posterior probability given by the Bayes rule: $p(\\text{weights}|\\text{data}) = \\frac{p(\\text{data}|\\text{weights}) p(\\text{weights})}{p(\\text{data})}$. The proof follows by algebraically trying to minimize the Kullback-Leibler divergence between the true posterior given by the Bayes rule and the approximate posterior, on which the weights are assumed to be Gaussian and the likelihood is assumed to be Gaussian.\n",
    "\n",
    "![elbo.png](attachment:elbo.png)\n",
    "\n",
    "The details of the derivation can be consulted in the following paper:\n",
    "\n",
    "https://arxiv.org/pdf/1505.05424.pdf\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "f8d501ff",
   "metadata": {},
   "outputs": [],
   "source": [
    "class BayesianNetwork(nn.Module):\n",
    "    \"\"\"\n",
    "        A model Bayesian Neural network.\n",
    "        Each weight is represented by a Gaussian with a mean and a standard deviation.\n",
    "        Each evaluation of forward leads to a different choice of the weights, so running\n",
    "        forward several times we can check the effect of the weights variation on the same input.\n",
    "        The nll function implements the negative log likelihood to be used as the first part of the loss\n",
    "        function (the second shall be the Kullback-Leibler divergence).\n",
    "        The negative log-likelihood is simply the negative log likelihood of a Gaussian\n",
    "        between the prediction and the true value. The standard deviation of the Gaussian is left as a\n",
    "        parameter to be fit: sigma.\n",
    "    \"\"\"\n",
    "    def __init__(self, input_dimension: int=1, output_dimension: int=1):\n",
    "        super(BayesianNetwork, self).__init__()\n",
    "        hidden_dimension = 100\n",
    "        self.model = nn.Sequential(\n",
    "                                   bnn.BayesLinear(prior_mu=0,\n",
    "                                                   prior_sigma=0.1,\n",
    "                                                   in_features=input_dimension,\n",
    "                                                   out_features=hidden_dimension),\n",
    "                                   nn.ReLU(),\n",
    "                                   bnn.BayesLinear(prior_mu=0,\n",
    "                                                   prior_sigma=0.1,\n",
    "                                                   in_features=hidden_dimension,\n",
    "                                                   out_features=hidden_dimension),\n",
    "                                   nn.ReLU(),\n",
    "                                   bnn.BayesLinear(prior_mu=0,\n",
    "                                                   prior_sigma=0.1,\n",
    "                                                   in_features=hidden_dimension,\n",
    "                                                   out_features=output_dimension)\n",
    "                                    )\n",
    "        self.log_sigma2 = nn.Parameter(torch.ones(1), requires_grad=True)\n",
    "\n",
    "    def forward(self, x: torch.Tensor) -> torch.Tensor:\n",
    "        \"\"\"\n",
    "        Calculate the result f(x) applied on the input x.\n",
    "        \"\"\"\n",
    "        return self.model(x)\n",
    "\n",
    "    def nll(self, prediction: torch.Tensor, target: torch.Tensor) -> torch.Tensor:\n",
    "        \"\"\"\n",
    "        Calculate the negative log-likelihood (divided by the batch size, since we take the mean).\n",
    "        \"\"\"\n",
    "        error = prediction - target\n",
    "        squared_error = error**2\n",
    "        sigma2 = torch.exp(self.log_sigma2)[0]\n",
    "        norm_error = 0.5*squared_error/sigma2\n",
    "        norm_term = 0.5*(np.log(2*np.pi) + self.log_sigma2[0])\n",
    "        return norm_error.mean() + norm_term\n",
    "\n",
    "    def aleatoric_uncertainty(self) -> torch.Tensor:\n",
    "        \"\"\"\n",
    "            Get the aleatoric component of the uncertainty.\n",
    "        \"\"\"\n",
    "        return torch.exp(0.5*self.log_sigma2[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "7b9beb21",
   "metadata": {},
   "outputs": [],
   "source": [
    "# create the neural network:\n",
    "b_network = BayesianNetwork()\n",
    "\n",
    "# create the object to load the data:\n",
    "B = 10\n",
    "loader = torch.utils.data.DataLoader(my_dataset, batch_size=B)\n",
    "\n",
    "# create the optimizer to be used \n",
    "optimizer = torch.optim.Adam(b_network.parameters(), lr=0.001)\n",
    "\n",
    "# the Kullback-Leibler divergence should be scaled by 1/number_of_batches\n",
    "# see https://arxiv.org/abs/1505.05424 for more information on this\n",
    "number_of_batches = len(my_dataset)/float(B)\n",
    "weight_kl = 1.0/float(number_of_batches)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c68ba2e2",
   "metadata": {},
   "source": [
    "The criteria for finding the optimal weights are based on the Bayes' theorem, on which the posterior probability of the weights is proportional to the likelihood of the data given the weights and to the prior probability of the weights. We assume the prior probability of the weights is Gaussian corresponding to a unit Gaussian centred at zero and with standard deviation 0.1. This prior has a regularizing effect, preventing overtraining.\n",
    "\n",
    "We can translate the Bayes theorem and the assumption that the final posterior distribution is also Gaussian into an optimization procedure to find the posterior mean and variance of the posterior distribution. The function optimized to obtain the mean and variances of the Gaussians for the weights is the sum between the mean-squared-error (corresponding to a Gaussian log-likelihood of the data) and the Kullback-Leibler divergence between the weights distribution and the prior Gaussian."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "fbea6b0c",
   "metadata": {},
   "outputs": [],
   "source": [
    "kl_loss = bnn.BKLLoss(reduction='mean', last_layer_only=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "b92ed4b0",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 0/500  total: 58.60563, -LL: 29.30297, prior: 0.49401, aleatoric unc.: 1.70738\n",
      "Epoch 1/500  total: 29.89883, -LL: 22.77377, prior: 0.51578, aleatoric unc.: 1.74675\n",
      "Epoch 2/500  total: 24.01581, -LL: 19.56905, prior: 0.54058, aleatoric unc.: 1.78531\n",
      "Epoch 3/500  total: 20.88541, -LL: 15.23512, prior: 0.56686, aleatoric unc.: 1.82458\n",
      "Epoch 4/500  total: 18.42086, -LL: 12.56114, prior: 0.59138, aleatoric unc.: 1.86375\n",
      "Epoch 5/500  total: 16.78540, -LL: 11.47957, prior: 0.61184, aleatoric unc.: 1.90320\n",
      "Epoch 6/500  total: 15.74639, -LL: 10.39981, prior: 0.63168, aleatoric unc.: 1.94387\n",
      "Epoch 7/500  total: 15.23265, -LL: 10.92122, prior: 0.64618, aleatoric unc.: 1.98676\n",
      "Epoch 8/500  total: 14.43628, -LL: 14.04801, prior: 0.65764, aleatoric unc.: 2.03084\n",
      "Epoch 9/500  total: 13.75567, -LL: 9.28419, prior: 0.66495, aleatoric unc.: 2.07617\n",
      "Epoch 10/500  total: 13.46332, -LL: 9.24567, prior: 0.67066, aleatoric unc.: 2.12401\n",
      "Epoch 11/500  total: 12.68328, -LL: 8.02405, prior: 0.68236, aleatoric unc.: 2.17244\n",
      "Epoch 12/500  total: 12.16965, -LL: 10.14399, prior: 0.69100, aleatoric unc.: 2.22149\n",
      "Epoch 13/500  total: 11.89046, -LL: 10.02692, prior: 0.69707, aleatoric unc.: 2.27265\n",
      "Epoch 14/500  total: 11.31826, -LL: 8.22698, prior: 0.70348, aleatoric unc.: 2.32503\n",
      "Epoch 15/500  total: 11.15097, -LL: 8.46218, prior: 0.70463, aleatoric unc.: 2.37917\n",
      "Epoch 16/500  total: 10.78811, -LL: 6.91465, prior: 0.70900, aleatoric unc.: 2.43505\n",
      "Epoch 17/500  total: 10.27545, -LL: 7.55249, prior: 0.70822, aleatoric unc.: 2.49083\n",
      "Epoch 18/500  total: 9.88403, -LL: 7.78374, prior: 0.70896, aleatoric unc.: 2.54750\n",
      "Epoch 19/500  total: 9.49734, -LL: 6.96424, prior: 0.71104, aleatoric unc.: 2.60481\n",
      "Epoch 20/500  total: 9.18567, -LL: 6.83609, prior: 0.71782, aleatoric unc.: 2.66279\n",
      "Epoch 21/500  total: 8.77549, -LL: 6.85847, prior: 0.72051, aleatoric unc.: 2.72092\n",
      "Epoch 22/500  total: 8.64839, -LL: 6.52611, prior: 0.71736, aleatoric unc.: 2.78174\n",
      "Epoch 23/500  total: 8.43415, -LL: 7.78695, prior: 0.71795, aleatoric unc.: 2.84376\n",
      "Epoch 24/500  total: 8.17714, -LL: 6.13595, prior: 0.72104, aleatoric unc.: 2.90688\n",
      "Epoch 25/500  total: 7.70156, -LL: 6.61542, prior: 0.72217, aleatoric unc.: 2.96854\n",
      "Epoch 26/500  total: 7.61942, -LL: 6.63054, prior: 0.72667, aleatoric unc.: 3.03244\n",
      "Epoch 27/500  total: 7.42529, -LL: 5.76781, prior: 0.72993, aleatoric unc.: 3.09773\n",
      "Epoch 28/500  total: 7.29471, -LL: 6.51807, prior: 0.72927, aleatoric unc.: 3.16509\n",
      "Epoch 29/500  total: 7.12159, -LL: 5.48303, prior: 0.73176, aleatoric unc.: 3.23374\n",
      "Epoch 30/500  total: 6.79870, -LL: 6.10557, prior: 0.73237, aleatoric unc.: 3.30124\n",
      "Epoch 31/500  total: 6.60342, -LL: 5.65072, prior: 0.73511, aleatoric unc.: 3.36955\n",
      "Epoch 32/500  total: 6.63333, -LL: 6.37231, prior: 0.73616, aleatoric unc.: 3.44177\n",
      "Epoch 33/500  total: 6.25342, -LL: 5.67089, prior: 0.73999, aleatoric unc.: 3.51138\n",
      "Epoch 34/500  total: 6.25324, -LL: 5.80523, prior: 0.74006, aleatoric unc.: 3.58479\n",
      "Epoch 35/500  total: 6.06724, -LL: 4.63822, prior: 0.73928, aleatoric unc.: 3.65814\n",
      "Epoch 36/500  total: 5.97354, -LL: 4.87066, prior: 0.73962, aleatoric unc.: 3.73306\n",
      "Epoch 37/500  total: 5.75250, -LL: 5.21252, prior: 0.74361, aleatoric unc.: 3.80782\n",
      "Epoch 38/500  total: 5.70047, -LL: 4.60235, prior: 0.74538, aleatoric unc.: 3.88453\n",
      "Epoch 39/500  total: 5.65181, -LL: 5.21456, prior: 0.74527, aleatoric unc.: 3.96423\n",
      "Epoch 40/500  total: 5.43323, -LL: 4.63033, prior: 0.74861, aleatoric unc.: 4.04155\n",
      "Epoch 41/500  total: 5.28977, -LL: 5.04850, prior: 0.74891, aleatoric unc.: 4.11915\n",
      "Epoch 42/500  total: 5.24329, -LL: 5.24680, prior: 0.74535, aleatoric unc.: 4.19924\n",
      "Epoch 43/500  total: 5.17848, -LL: 4.70368, prior: 0.75037, aleatoric unc.: 4.28055\n",
      "Epoch 44/500  total: 5.16991, -LL: 4.86729, prior: 0.74977, aleatoric unc.: 4.36667\n",
      "Epoch 45/500  total: 5.00426, -LL: 4.76213, prior: 0.74627, aleatoric unc.: 4.45042\n",
      "Epoch 46/500  total: 4.96309, -LL: 4.31775, prior: 0.75200, aleatoric unc.: 4.53622\n",
      "Epoch 47/500  total: 4.89156, -LL: 4.62450, prior: 0.75400, aleatoric unc.: 4.62413\n",
      "Epoch 48/500  total: 4.77733, -LL: 4.33423, prior: 0.75599, aleatoric unc.: 4.71083\n",
      "Epoch 49/500  total: 4.70859, -LL: 4.23383, prior: 0.75542, aleatoric unc.: 4.79768\n",
      "Epoch 50/500  total: 4.61107, -LL: 4.23617, prior: 0.75896, aleatoric unc.: 4.88461\n",
      "Epoch 51/500  total: 4.53410, -LL: 4.05732, prior: 0.76156, aleatoric unc.: 4.97112\n",
      "Epoch 52/500  total: 4.53218, -LL: 4.03225, prior: 0.76646, aleatoric unc.: 5.06118\n",
      "Epoch 53/500  total: 4.47935, -LL: 4.09978, prior: 0.76704, aleatoric unc.: 5.15256\n",
      "Epoch 54/500  total: 4.39028, -LL: 3.94386, prior: 0.76755, aleatoric unc.: 5.24289\n",
      "Epoch 55/500  total: 4.38337, -LL: 4.36773, prior: 0.76699, aleatoric unc.: 5.33596\n",
      "Epoch 56/500  total: 4.35281, -LL: 4.11247, prior: 0.77196, aleatoric unc.: 5.43080\n",
      "Epoch 57/500  total: 4.29956, -LL: 3.87602, prior: 0.77093, aleatoric unc.: 5.52630\n",
      "Epoch 58/500  total: 4.23197, -LL: 4.01298, prior: 0.77028, aleatoric unc.: 5.62054\n",
      "Epoch 59/500  total: 4.24475, -LL: 3.99289, prior: 0.77126, aleatoric unc.: 5.71866\n",
      "Epoch 60/500  total: 4.16691, -LL: 3.89405, prior: 0.77055, aleatoric unc.: 5.81574\n",
      "Epoch 61/500  total: 4.16522, -LL: 3.96328, prior: 0.76699, aleatoric unc.: 5.91432\n",
      "Epoch 62/500  total: 4.11586, -LL: 3.69259, prior: 0.76921, aleatoric unc.: 6.01400\n",
      "Epoch 63/500  total: 4.07180, -LL: 3.89622, prior: 0.77077, aleatoric unc.: 6.11181\n",
      "Epoch 64/500  total: 4.07462, -LL: 3.86786, prior: 0.77294, aleatoric unc.: 6.21290\n",
      "Epoch 65/500  total: 4.01141, -LL: 3.77488, prior: 0.77207, aleatoric unc.: 6.31128\n",
      "Epoch 66/500  total: 3.99999, -LL: 3.65617, prior: 0.77586, aleatoric unc.: 6.41138\n",
      "Epoch 67/500  total: 4.02086, -LL: 3.71232, prior: 0.77457, aleatoric unc.: 6.51647\n",
      "Epoch 68/500  total: 3.96727, -LL: 3.82445, prior: 0.77131, aleatoric unc.: 6.61852\n",
      "Epoch 69/500  total: 3.91331, -LL: 3.59059, prior: 0.77492, aleatoric unc.: 6.71576\n",
      "Epoch 70/500  total: 3.92368, -LL: 3.87038, prior: 0.77663, aleatoric unc.: 6.81692\n",
      "Epoch 71/500  total: 3.91091, -LL: 3.71611, prior: 0.77434, aleatoric unc.: 6.91915\n",
      "Epoch 72/500  total: 3.90254, -LL: 3.84058, prior: 0.77568, aleatoric unc.: 7.02362\n",
      "Epoch 73/500  total: 3.86610, -LL: 3.79804, prior: 0.77613, aleatoric unc.: 7.12259\n",
      "Epoch 74/500  total: 3.86877, -LL: 3.67038, prior: 0.77967, aleatoric unc.: 7.22509\n",
      "Epoch 75/500  total: 3.83692, -LL: 3.71282, prior: 0.78043, aleatoric unc.: 7.32391\n",
      "Epoch 76/500  total: 3.84445, -LL: 3.81955, prior: 0.77407, aleatoric unc.: 7.42552\n",
      "Epoch 77/500  total: 3.82880, -LL: 3.67313, prior: 0.77377, aleatoric unc.: 7.52656\n",
      "Epoch 78/500  total: 3.81437, -LL: 3.66513, prior: 0.77432, aleatoric unc.: 7.62591\n",
      "Epoch 79/500  total: 3.78821, -LL: 3.75625, prior: 0.77875, aleatoric unc.: 7.71907\n",
      "Epoch 80/500  total: 3.83347, -LL: 3.61354, prior: 0.77968, aleatoric unc.: 7.82734\n",
      "Epoch 81/500  total: 3.78359, -LL: 3.59515, prior: 0.77631, aleatoric unc.: 7.92300\n",
      "Epoch 82/500  total: 3.78367, -LL: 3.67180, prior: 0.77953, aleatoric unc.: 8.01834\n",
      "Epoch 83/500  total: 3.75569, -LL: 3.61895, prior: 0.78101, aleatoric unc.: 8.10435\n",
      "Epoch 84/500  total: 3.76833, -LL: 3.55765, prior: 0.78393, aleatoric unc.: 8.19697\n",
      "Epoch 85/500  total: 3.76053, -LL: 3.68451, prior: 0.78236, aleatoric unc.: 8.28731\n",
      "Epoch 86/500  total: 3.76217, -LL: 3.74953, prior: 0.78270, aleatoric unc.: 8.37660\n",
      "Epoch 87/500  total: 3.73655, -LL: 3.64136, prior: 0.77914, aleatoric unc.: 8.45761\n",
      "Epoch 88/500  total: 3.75396, -LL: 3.62085, prior: 0.77929, aleatoric unc.: 8.54510\n",
      "Epoch 89/500  total: 3.74527, -LL: 3.68434, prior: 0.77997, aleatoric unc.: 8.62806\n",
      "Epoch 90/500  total: 3.75304, -LL: 3.66249, prior: 0.77914, aleatoric unc.: 8.71503\n",
      "Epoch 91/500  total: 3.72325, -LL: 3.60384, prior: 0.77980, aleatoric unc.: 8.78583\n",
      "Epoch 92/500  total: 3.74192, -LL: 3.59396, prior: 0.78044, aleatoric unc.: 8.86492\n",
      "Epoch 93/500  total: 3.71866, -LL: 3.61358, prior: 0.78299, aleatoric unc.: 8.93002\n",
      "Epoch 94/500  total: 3.72444, -LL: 3.58171, prior: 0.78235, aleatoric unc.: 8.99536\n",
      "Epoch 95/500  total: 3.72439, -LL: 3.60700, prior: 0.77858, aleatoric unc.: 9.05974\n",
      "Epoch 96/500  total: 3.73727, -LL: 3.67353, prior: 0.77897, aleatoric unc.: 9.13145\n",
      "Epoch 97/500  total: 3.73587, -LL: 3.65088, prior: 0.78041, aleatoric unc.: 9.19960\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 98/500  total: 3.72790, -LL: 3.58224, prior: 0.78028, aleatoric unc.: 9.25964\n",
      "Epoch 99/500  total: 3.71771, -LL: 3.66020, prior: 0.77745, aleatoric unc.: 9.31000\n",
      "Epoch 100/500  total: 3.72549, -LL: 3.62102, prior: 0.77761, aleatoric unc.: 9.36518\n",
      "Epoch 101/500  total: 3.71956, -LL: 3.57595, prior: 0.77925, aleatoric unc.: 9.41201\n",
      "Epoch 102/500  total: 3.72677, -LL: 3.57028, prior: 0.77652, aleatoric unc.: 9.46463\n",
      "Epoch 103/500  total: 3.72387, -LL: 3.65744, prior: 0.77754, aleatoric unc.: 9.50802\n",
      "Epoch 104/500  total: 3.71402, -LL: 3.60348, prior: 0.77234, aleatoric unc.: 9.54170\n",
      "Epoch 105/500  total: 3.72198, -LL: 3.63285, prior: 0.77360, aleatoric unc.: 9.58104\n",
      "Epoch 106/500  total: 3.71737, -LL: 3.64993, prior: 0.77597, aleatoric unc.: 9.61322\n",
      "Epoch 107/500  total: 3.71005, -LL: 3.56981, prior: 0.77387, aleatoric unc.: 9.63459\n",
      "Epoch 108/500  total: 3.71906, -LL: 3.58226, prior: 0.77644, aleatoric unc.: 9.66549\n",
      "Epoch 109/500  total: 3.72139, -LL: 3.63789, prior: 0.77184, aleatoric unc.: 9.69481\n",
      "Epoch 110/500  total: 3.70912, -LL: 3.60181, prior: 0.77226, aleatoric unc.: 9.71032\n",
      "Epoch 111/500  total: 3.71838, -LL: 3.63031, prior: 0.77578, aleatoric unc.: 9.73120\n",
      "Epoch 112/500  total: 3.71506, -LL: 3.61052, prior: 0.77374, aleatoric unc.: 9.74926\n",
      "Epoch 113/500  total: 3.71562, -LL: 3.72471, prior: 0.77285, aleatoric unc.: 9.76058\n",
      "Epoch 114/500  total: 3.71990, -LL: 3.74557, prior: 0.76846, aleatoric unc.: 9.78141\n",
      "Epoch 115/500  total: 3.72581, -LL: 3.67777, prior: 0.76765, aleatoric unc.: 9.80824\n",
      "Epoch 116/500  total: 3.72395, -LL: 3.66619, prior: 0.76687, aleatoric unc.: 9.82927\n",
      "Epoch 117/500  total: 3.72196, -LL: 3.67000, prior: 0.76839, aleatoric unc.: 9.84076\n",
      "Epoch 118/500  total: 3.70945, -LL: 3.61228, prior: 0.76902, aleatoric unc.: 9.84046\n",
      "Epoch 119/500  total: 3.71781, -LL: 3.57591, prior: 0.77380, aleatoric unc.: 9.84767\n",
      "Epoch 120/500  total: 3.70874, -LL: 3.66554, prior: 0.77551, aleatoric unc.: 9.83665\n",
      "Epoch 121/500  total: 3.72752, -LL: 3.65136, prior: 0.77845, aleatoric unc.: 9.86153\n",
      "Epoch 122/500  total: 3.73040, -LL: 3.62794, prior: 0.77837, aleatoric unc.: 9.88645\n",
      "Epoch 123/500  total: 3.71462, -LL: 3.68275, prior: 0.78350, aleatoric unc.: 9.88238\n",
      "Epoch 124/500  total: 3.71511, -LL: 3.59032, prior: 0.78381, aleatoric unc.: 9.87697\n",
      "Epoch 125/500  total: 3.72409, -LL: 3.58439, prior: 0.78439, aleatoric unc.: 9.89114\n",
      "Epoch 126/500  total: 3.71711, -LL: 3.66987, prior: 0.78606, aleatoric unc.: 9.88819\n",
      "Epoch 127/500  total: 3.71188, -LL: 3.63467, prior: 0.78302, aleatoric unc.: 9.87889\n",
      "Epoch 128/500  total: 3.72376, -LL: 3.58284, prior: 0.78485, aleatoric unc.: 9.88960\n",
      "Epoch 129/500  total: 3.71365, -LL: 3.66670, prior: 0.78087, aleatoric unc.: 9.88381\n",
      "Epoch 130/500  total: 3.72456, -LL: 3.66885, prior: 0.78370, aleatoric unc.: 9.89316\n",
      "Epoch 131/500  total: 3.71323, -LL: 3.62470, prior: 0.78227, aleatoric unc.: 9.88930\n",
      "Epoch 132/500  total: 3.71856, -LL: 3.66937, prior: 0.78154, aleatoric unc.: 9.88618\n",
      "Epoch 133/500  total: 3.71670, -LL: 3.64594, prior: 0.77825, aleatoric unc.: 9.88424\n",
      "Epoch 134/500  total: 3.72210, -LL: 3.60950, prior: 0.77902, aleatoric unc.: 9.89171\n",
      "Epoch 135/500  total: 3.71507, -LL: 3.59651, prior: 0.77877, aleatoric unc.: 9.88918\n",
      "Epoch 136/500  total: 3.71900, -LL: 3.65212, prior: 0.78622, aleatoric unc.: 9.89051\n",
      "Epoch 137/500  total: 3.71307, -LL: 3.61388, prior: 0.78563, aleatoric unc.: 9.88130\n",
      "Epoch 138/500  total: 3.71602, -LL: 3.60536, prior: 0.78637, aleatoric unc.: 9.88007\n",
      "Epoch 139/500  total: 3.72967, -LL: 3.64175, prior: 0.78606, aleatoric unc.: 9.89858\n",
      "Epoch 140/500  total: 3.71805, -LL: 3.57543, prior: 0.78286, aleatoric unc.: 9.90221\n",
      "Epoch 141/500  total: 3.71457, -LL: 3.60350, prior: 0.78505, aleatoric unc.: 9.89543\n",
      "Epoch 142/500  total: 3.71818, -LL: 3.66506, prior: 0.79071, aleatoric unc.: 9.89198\n",
      "Epoch 143/500  total: 3.70745, -LL: 3.66879, prior: 0.79167, aleatoric unc.: 9.87098\n",
      "Epoch 144/500  total: 3.71752, -LL: 3.59973, prior: 0.79228, aleatoric unc.: 9.87335\n",
      "Epoch 145/500  total: 3.71323, -LL: 3.68346, prior: 0.78821, aleatoric unc.: 9.86594\n",
      "Epoch 146/500  total: 3.69810, -LL: 3.62257, prior: 0.79184, aleatoric unc.: 9.83553\n",
      "Epoch 147/500  total: 3.70289, -LL: 3.60558, prior: 0.79325, aleatoric unc.: 9.81485\n",
      "Epoch 148/500  total: 3.71252, -LL: 3.67221, prior: 0.79652, aleatoric unc.: 9.81311\n",
      "Epoch 149/500  total: 3.73219, -LL: 3.57769, prior: 0.79471, aleatoric unc.: 9.85562\n",
      "Epoch 150/500  total: 3.72208, -LL: 3.67267, prior: 0.78948, aleatoric unc.: 9.87345\n",
      "Epoch 151/500  total: 3.71389, -LL: 3.65466, prior: 0.79006, aleatoric unc.: 9.87153\n",
      "Epoch 152/500  total: 3.72419, -LL: 3.67915, prior: 0.79090, aleatoric unc.: 9.87917\n",
      "Epoch 153/500  total: 3.71665, -LL: 3.62692, prior: 0.79997, aleatoric unc.: 9.88276\n",
      "Epoch 154/500  total: 3.72019, -LL: 3.58589, prior: 0.79751, aleatoric unc.: 9.88690\n",
      "Epoch 155/500  total: 3.71445, -LL: 3.61408, prior: 0.80268, aleatoric unc.: 9.88311\n",
      "Epoch 156/500  total: 3.70221, -LL: 3.68263, prior: 0.80404, aleatoric unc.: 9.85331\n",
      "Epoch 157/500  total: 3.70698, -LL: 3.70702, prior: 0.80339, aleatoric unc.: 9.83723\n",
      "Epoch 158/500  total: 3.72310, -LL: 3.59278, prior: 0.80445, aleatoric unc.: 9.85699\n",
      "Epoch 159/500  total: 3.71378, -LL: 3.73156, prior: 0.80416, aleatoric unc.: 9.85512\n",
      "Epoch 160/500  total: 3.70706, -LL: 3.63655, prior: 0.80595, aleatoric unc.: 9.84014\n",
      "Epoch 161/500  total: 3.71271, -LL: 3.57877, prior: 0.80410, aleatoric unc.: 9.84335\n",
      "Epoch 162/500  total: 3.71768, -LL: 3.63120, prior: 0.80659, aleatoric unc.: 9.85032\n",
      "Epoch 163/500  total: 3.71903, -LL: 3.65138, prior: 0.80638, aleatoric unc.: 9.85763\n",
      "Epoch 164/500  total: 3.71713, -LL: 3.64704, prior: 0.80705, aleatoric unc.: 9.86186\n",
      "Epoch 165/500  total: 3.71419, -LL: 3.64462, prior: 0.80874, aleatoric unc.: 9.86155\n",
      "Epoch 166/500  total: 3.70272, -LL: 3.60857, prior: 0.80695, aleatoric unc.: 9.83837\n",
      "Epoch 167/500  total: 3.71688, -LL: 3.60935, prior: 0.81090, aleatoric unc.: 9.84529\n",
      "Epoch 168/500  total: 3.70292, -LL: 3.60577, prior: 0.80637, aleatoric unc.: 9.82553\n",
      "Epoch 169/500  total: 3.71970, -LL: 3.63841, prior: 0.80866, aleatoric unc.: 9.83715\n",
      "Epoch 170/500  total: 3.71758, -LL: 3.67275, prior: 0.81033, aleatoric unc.: 9.84604\n",
      "Epoch 171/500  total: 3.72500, -LL: 3.59006, prior: 0.81392, aleatoric unc.: 9.86759\n",
      "Epoch 172/500  total: 3.70126, -LL: 3.64450, prior: 0.81116, aleatoric unc.: 9.84247\n",
      "Epoch 173/500  total: 3.72101, -LL: 3.64824, prior: 0.81156, aleatoric unc.: 9.84976\n",
      "Epoch 174/500  total: 3.71152, -LL: 3.69934, prior: 0.81262, aleatoric unc.: 9.84919\n",
      "Epoch 175/500  total: 3.71467, -LL: 3.68428, prior: 0.81517, aleatoric unc.: 9.85176\n",
      "Epoch 176/500  total: 3.70291, -LL: 3.63773, prior: 0.81583, aleatoric unc.: 9.83082\n",
      "Epoch 177/500  total: 3.70896, -LL: 3.66547, prior: 0.81045, aleatoric unc.: 9.82290\n",
      "Epoch 178/500  total: 3.71117, -LL: 3.68764, prior: 0.81337, aleatoric unc.: 9.82000\n",
      "Epoch 179/500  total: 3.70928, -LL: 3.61341, prior: 0.81607, aleatoric unc.: 9.81955\n",
      "Epoch 180/500  total: 3.70466, -LL: 3.65554, prior: 0.81575, aleatoric unc.: 9.80751\n",
      "Epoch 181/500  total: 3.70420, -LL: 3.64272, prior: 0.81693, aleatoric unc.: 9.79344\n",
      "Epoch 182/500  total: 3.71046, -LL: 3.64984, prior: 0.81584, aleatoric unc.: 9.79500\n",
      "Epoch 183/500  total: 3.71474, -LL: 3.66882, prior: 0.81325, aleatoric unc.: 9.80760\n",
      "Epoch 184/500  total: 3.71527, -LL: 3.61031, prior: 0.81348, aleatoric unc.: 9.82014\n",
      "Epoch 185/500  total: 3.70042, -LL: 3.66272, prior: 0.81257, aleatoric unc.: 9.80154\n",
      "Epoch 186/500  total: 3.71282, -LL: 3.61934, prior: 0.81781, aleatoric unc.: 9.80770\n",
      "Epoch 187/500  total: 3.71327, -LL: 3.67081, prior: 0.81615, aleatoric unc.: 9.81168\n",
      "Epoch 188/500  total: 3.70315, -LL: 3.66320, prior: 0.81042, aleatoric unc.: 9.80011\n",
      "Epoch 189/500  total: 3.69962, -LL: 3.63048, prior: 0.81293, aleatoric unc.: 9.78159\n",
      "Epoch 190/500  total: 3.71830, -LL: 3.68563, prior: 0.81299, aleatoric unc.: 9.80476\n",
      "Epoch 191/500  total: 3.71706, -LL: 3.64913, prior: 0.81458, aleatoric unc.: 9.81613\n",
      "Epoch 192/500  total: 3.70988, -LL: 3.62455, prior: 0.81865, aleatoric unc.: 9.81723\n",
      "Epoch 193/500  total: 3.70870, -LL: 3.63595, prior: 0.81586, aleatoric unc.: 9.81325\n",
      "Epoch 194/500  total: 3.71062, -LL: 3.63609, prior: 0.81832, aleatoric unc.: 9.81209\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 195/500  total: 3.72410, -LL: 3.62442, prior: 0.81648, aleatoric unc.: 9.83962\n",
      "Epoch 196/500  total: 3.71915, -LL: 3.66803, prior: 0.81624, aleatoric unc.: 9.84151\n",
      "Epoch 197/500  total: 3.71432, -LL: 3.64483, prior: 0.81001, aleatoric unc.: 9.85190\n",
      "Epoch 198/500  total: 3.71493, -LL: 3.59165, prior: 0.81170, aleatoric unc.: 9.85324\n",
      "Epoch 199/500  total: 3.70331, -LL: 3.60793, prior: 0.80896, aleatoric unc.: 9.83340\n",
      "Epoch 200/500  total: 3.70812, -LL: 3.59062, prior: 0.81499, aleatoric unc.: 9.82334\n",
      "Epoch 201/500  total: 3.71478, -LL: 3.62452, prior: 0.81519, aleatoric unc.: 9.82977\n",
      "Epoch 202/500  total: 3.71517, -LL: 3.56803, prior: 0.81508, aleatoric unc.: 9.83826\n",
      "Epoch 203/500  total: 3.69960, -LL: 3.63084, prior: 0.81742, aleatoric unc.: 9.81023\n",
      "Epoch 204/500  total: 3.70639, -LL: 3.66974, prior: 0.81871, aleatoric unc.: 9.80200\n",
      "Epoch 205/500  total: 3.70826, -LL: 3.62572, prior: 0.81504, aleatoric unc.: 9.79858\n",
      "Epoch 206/500  total: 3.71623, -LL: 3.64392, prior: 0.81659, aleatoric unc.: 9.81016\n",
      "Epoch 207/500  total: 3.71774, -LL: 3.65070, prior: 0.81498, aleatoric unc.: 9.82834\n",
      "Epoch 208/500  total: 3.69666, -LL: 3.65249, prior: 0.81455, aleatoric unc.: 9.79752\n",
      "Epoch 209/500  total: 3.70594, -LL: 3.67450, prior: 0.81606, aleatoric unc.: 9.79126\n",
      "Epoch 210/500  total: 3.69925, -LL: 3.68792, prior: 0.81400, aleatoric unc.: 9.77435\n",
      "Epoch 211/500  total: 3.70082, -LL: 3.60530, prior: 0.81230, aleatoric unc.: 9.76606\n",
      "Epoch 212/500  total: 3.71195, -LL: 3.64706, prior: 0.81609, aleatoric unc.: 9.77611\n",
      "Epoch 213/500  total: 3.70414, -LL: 3.64134, prior: 0.81544, aleatoric unc.: 9.77201\n",
      "Epoch 214/500  total: 3.71389, -LL: 3.63395, prior: 0.81622, aleatoric unc.: 9.78563\n",
      "Epoch 215/500  total: 3.71683, -LL: 3.66099, prior: 0.81664, aleatoric unc.: 9.80171\n",
      "Epoch 216/500  total: 3.72204, -LL: 3.66836, prior: 0.81515, aleatoric unc.: 9.82727\n",
      "Epoch 217/500  total: 3.70703, -LL: 3.63465, prior: 0.81890, aleatoric unc.: 9.82033\n",
      "Epoch 218/500  total: 3.70247, -LL: 3.71451, prior: 0.81721, aleatoric unc.: 9.80064\n",
      "Epoch 219/500  total: 3.71433, -LL: 3.63672, prior: 0.82165, aleatoric unc.: 9.80686\n",
      "Epoch 220/500  total: 3.70779, -LL: 3.61201, prior: 0.82151, aleatoric unc.: 9.80850\n",
      "Epoch 221/500  total: 3.72726, -LL: 3.65804, prior: 0.82183, aleatoric unc.: 9.83772\n",
      "Epoch 222/500  total: 3.71228, -LL: 3.65686, prior: 0.81864, aleatoric unc.: 9.84025\n",
      "Epoch 223/500  total: 3.72339, -LL: 3.64982, prior: 0.82202, aleatoric unc.: 9.85690\n",
      "Epoch 224/500  total: 3.70915, -LL: 3.63755, prior: 0.81988, aleatoric unc.: 9.85046\n",
      "Epoch 225/500  total: 3.70552, -LL: 3.63990, prior: 0.82102, aleatoric unc.: 9.82943\n",
      "Epoch 226/500  total: 3.70323, -LL: 3.64443, prior: 0.82060, aleatoric unc.: 9.81781\n",
      "Epoch 227/500  total: 3.70019, -LL: 3.65555, prior: 0.82249, aleatoric unc.: 9.79478\n",
      "Epoch 228/500  total: 3.71216, -LL: 3.69579, prior: 0.82333, aleatoric unc.: 9.79841\n",
      "Epoch 229/500  total: 3.71140, -LL: 3.62137, prior: 0.82447, aleatoric unc.: 9.80692\n",
      "Epoch 230/500  total: 3.70575, -LL: 3.64446, prior: 0.82529, aleatoric unc.: 9.79880\n",
      "Epoch 231/500  total: 3.71456, -LL: 3.75829, prior: 0.82439, aleatoric unc.: 9.80728\n",
      "Epoch 232/500  total: 3.70966, -LL: 3.63882, prior: 0.82492, aleatoric unc.: 9.80583\n",
      "Epoch 233/500  total: 3.71351, -LL: 3.61270, prior: 0.82613, aleatoric unc.: 9.81784\n",
      "Epoch 234/500  total: 3.70172, -LL: 3.62794, prior: 0.81822, aleatoric unc.: 9.79805\n",
      "Epoch 235/500  total: 3.71109, -LL: 3.64488, prior: 0.82053, aleatoric unc.: 9.80066\n",
      "Epoch 236/500  total: 3.70431, -LL: 3.62616, prior: 0.82161, aleatoric unc.: 9.78883\n",
      "Epoch 237/500  total: 3.70279, -LL: 3.68337, prior: 0.82063, aleatoric unc.: 9.77969\n",
      "Epoch 238/500  total: 3.71613, -LL: 3.67027, prior: 0.82166, aleatoric unc.: 9.79706\n",
      "Epoch 239/500  total: 3.70064, -LL: 3.66745, prior: 0.82222, aleatoric unc.: 9.78118\n",
      "Epoch 240/500  total: 3.70537, -LL: 3.60819, prior: 0.82710, aleatoric unc.: 9.77992\n",
      "Epoch 241/500  total: 3.71476, -LL: 3.61006, prior: 0.82356, aleatoric unc.: 9.79421\n",
      "Epoch 242/500  total: 3.71145, -LL: 3.64876, prior: 0.82434, aleatoric unc.: 9.79779\n",
      "Epoch 243/500  total: 3.70802, -LL: 3.58574, prior: 0.82809, aleatoric unc.: 9.79796\n",
      "Epoch 244/500  total: 3.70571, -LL: 3.65710, prior: 0.82588, aleatoric unc.: 9.79101\n",
      "Epoch 245/500  total: 3.70188, -LL: 3.62964, prior: 0.82486, aleatoric unc.: 9.77658\n",
      "Epoch 246/500  total: 3.72030, -LL: 3.63991, prior: 0.82122, aleatoric unc.: 9.80154\n",
      "Epoch 247/500  total: 3.71523, -LL: 3.61676, prior: 0.82447, aleatoric unc.: 9.81099\n",
      "Epoch 248/500  total: 3.71168, -LL: 3.59765, prior: 0.82207, aleatoric unc.: 9.81821\n",
      "Epoch 249/500  total: 3.71399, -LL: 3.63747, prior: 0.82239, aleatoric unc.: 9.82253\n",
      "Epoch 250/500  total: 3.70465, -LL: 3.64624, prior: 0.82184, aleatoric unc.: 9.81008\n",
      "Epoch 251/500  total: 3.69921, -LL: 3.60426, prior: 0.82150, aleatoric unc.: 9.78902\n",
      "Epoch 252/500  total: 3.71118, -LL: 3.67592, prior: 0.82288, aleatoric unc.: 9.79504\n",
      "Epoch 253/500  total: 3.70237, -LL: 3.62898, prior: 0.82680, aleatoric unc.: 9.78291\n",
      "Epoch 254/500  total: 3.70794, -LL: 3.64745, prior: 0.82541, aleatoric unc.: 9.78084\n",
      "Epoch 255/500  total: 3.70302, -LL: 3.62780, prior: 0.82535, aleatoric unc.: 9.77530\n",
      "Epoch 256/500  total: 3.71729, -LL: 3.63795, prior: 0.82601, aleatoric unc.: 9.79276\n",
      "Epoch 257/500  total: 3.70993, -LL: 3.63274, prior: 0.82741, aleatoric unc.: 9.79693\n",
      "Epoch 258/500  total: 3.71243, -LL: 3.65305, prior: 0.82601, aleatoric unc.: 9.80389\n",
      "Epoch 259/500  total: 3.70296, -LL: 3.64940, prior: 0.82313, aleatoric unc.: 9.79133\n",
      "Epoch 260/500  total: 3.71093, -LL: 3.59715, prior: 0.82558, aleatoric unc.: 9.79233\n",
      "Epoch 261/500  total: 3.71045, -LL: 3.63395, prior: 0.82771, aleatoric unc.: 9.79831\n",
      "Epoch 262/500  total: 3.69963, -LL: 3.67210, prior: 0.82712, aleatoric unc.: 9.77961\n",
      "Epoch 263/500  total: 3.71113, -LL: 3.65016, prior: 0.82726, aleatoric unc.: 9.78695\n",
      "Epoch 264/500  total: 3.70665, -LL: 3.60633, prior: 0.83064, aleatoric unc.: 9.78443\n",
      "Epoch 265/500  total: 3.71054, -LL: 3.65116, prior: 0.83137, aleatoric unc.: 9.79059\n",
      "Epoch 266/500  total: 3.69886, -LL: 3.60721, prior: 0.83100, aleatoric unc.: 9.77077\n",
      "Epoch 267/500  total: 3.70686, -LL: 3.65023, prior: 0.83398, aleatoric unc.: 9.77222\n",
      "Epoch 268/500  total: 3.69995, -LL: 3.71522, prior: 0.83159, aleatoric unc.: 9.75908\n",
      "Epoch 269/500  total: 3.70539, -LL: 3.64799, prior: 0.83221, aleatoric unc.: 9.75858\n",
      "Epoch 270/500  total: 3.70420, -LL: 3.63578, prior: 0.83041, aleatoric unc.: 9.75445\n",
      "Epoch 271/500  total: 3.70999, -LL: 3.68182, prior: 0.82908, aleatoric unc.: 9.76730\n",
      "Epoch 272/500  total: 3.70793, -LL: 3.63381, prior: 0.83376, aleatoric unc.: 9.76915\n",
      "Epoch 273/500  total: 3.70842, -LL: 3.64926, prior: 0.83353, aleatoric unc.: 9.77610\n",
      "Epoch 274/500  total: 3.70973, -LL: 3.62482, prior: 0.83395, aleatoric unc.: 9.77950\n",
      "Epoch 275/500  total: 3.71090, -LL: 3.60236, prior: 0.83533, aleatoric unc.: 9.78900\n",
      "Epoch 276/500  total: 3.70221, -LL: 3.67710, prior: 0.83294, aleatoric unc.: 9.77734\n",
      "Epoch 277/500  total: 3.70494, -LL: 3.64316, prior: 0.83875, aleatoric unc.: 9.77393\n",
      "Epoch 278/500  total: 3.71155, -LL: 3.61530, prior: 0.83769, aleatoric unc.: 9.78493\n",
      "Epoch 279/500  total: 3.72149, -LL: 3.63981, prior: 0.83667, aleatoric unc.: 9.81001\n",
      "Epoch 280/500  total: 3.70467, -LL: 3.62610, prior: 0.83533, aleatoric unc.: 9.80246\n",
      "Epoch 281/500  total: 3.70502, -LL: 3.66885, prior: 0.83573, aleatoric unc.: 9.79123\n",
      "Epoch 282/500  total: 3.70405, -LL: 3.63700, prior: 0.83748, aleatoric unc.: 9.78283\n",
      "Epoch 283/500  total: 3.70889, -LL: 3.63902, prior: 0.83531, aleatoric unc.: 9.78254\n",
      "Epoch 284/500  total: 3.71741, -LL: 3.60456, prior: 0.83570, aleatoric unc.: 9.80172\n",
      "Epoch 285/500  total: 3.71138, -LL: 3.68161, prior: 0.83478, aleatoric unc.: 9.80546\n",
      "Epoch 286/500  total: 3.70675, -LL: 3.59507, prior: 0.83560, aleatoric unc.: 9.80310\n",
      "Epoch 287/500  total: 3.70698, -LL: 3.61376, prior: 0.83594, aleatoric unc.: 9.79633\n",
      "Epoch 288/500  total: 3.70635, -LL: 3.60290, prior: 0.83656, aleatoric unc.: 9.78862\n",
      "Epoch 289/500  total: 3.71560, -LL: 3.64837, prior: 0.83419, aleatoric unc.: 9.80237\n",
      "Epoch 290/500  total: 3.70476, -LL: 3.65473, prior: 0.83240, aleatoric unc.: 9.79643\n",
      "Epoch 291/500  total: 3.70503, -LL: 3.67415, prior: 0.83116, aleatoric unc.: 9.78742\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 292/500  total: 3.69757, -LL: 3.58311, prior: 0.82735, aleatoric unc.: 9.77046\n",
      "Epoch 293/500  total: 3.70371, -LL: 3.64588, prior: 0.82783, aleatoric unc.: 9.76296\n",