Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
" fig.image_mode = msg['mode'];\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
" for (var key in msg) {\n",
" if (!(key in fig.buttons)) {\n",
" continue;\n",
" }\n",
" fig.buttons[key].disabled = !msg[key];\n",
" fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
" if (msg['mode'] === 'PAN') {\n",
" fig.buttons['Pan'].classList.add('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" } else if (msg['mode'] === 'ZOOM') {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.add('active');\n",
" } else {\n",
" fig.buttons['Pan'].classList.remove('active');\n",
" fig.buttons['Zoom'].classList.remove('active');\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message('ack', {});\n",
"};\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function (fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" var img = evt.data;\n",
" if (img.type !== 'image/png') {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" img.type = 'image/png';\n",
" }\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src\n",
" );\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" img\n",
" );\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" } else if (\n",
" typeof evt.data === 'string' &&\n",
" evt.data.slice(0, 21) === 'data:image/png;base64'\n",
" ) {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig['handle_' + msg_type];\n",
" } catch (e) {\n",
" console.log(\n",
" \"No handler for the '\" + msg_type + \"' message type: \",\n",
" msg\n",
" );\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\n",
" \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
" e,\n",
" e.stack,\n",
" msg\n",
" );\n",
" }\n",
" }\n",
" };\n",
"};\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function (e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e) {\n",
" e = window.event;\n",
" }\n",
" if (e.target) {\n",
" targ = e.target;\n",
" } else if (e.srcElement) {\n",
" targ = e.srcElement;\n",
" }\n",
" if (targ.nodeType === 3) {\n",
" // defeat Safari bug\n",
" targ = targ.parentNode;\n",
" }\n",
"\n",
" // pageX,Y are the mouse positions relative to the document\n",
" var boundingRect = targ.getBoundingClientRect();\n",
" var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
" var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
"\n",
" return { x: x, y: y };\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys(original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object') {\n",
" obj[key] = original[key];\n",
" }\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function (event, name) {\n",
" var canvas_pos = mpl.findpos(event);\n",
"\n",
" if (name === 'button_press') {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * this.ratio;\n",
" var y = canvas_pos.y * this.ratio;\n",
"\n",
" this.send_message(name, {\n",
" x: x,\n",
" y: y,\n",
" button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event),\n",
" });\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"};\n",
"\n",
"mpl.figure.prototype.key_event = function (event, name) {\n",
" // Prevent repeat events\n",
" if (name === 'key_press') {\n",
" if (event.key === this._key) {\n",
" return;\n",
" } else {\n",
" this._key = event.key;\n",
" }\n",
" }\n",
" if (name === 'key_release') {\n",
" this._key = null;\n",
" }\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.key !== 'Control') {\n",
" value += 'ctrl+';\n",
" }\n",
" else if (event.altKey && event.key !== 'Alt') {\n",
" value += 'alt+';\n",
" }\n",
" else if (event.shiftKey && event.key !== 'Shift') {\n",
" value += 'shift+';\n",
" }\n",
"\n",
" value += 'k' + event.key;\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
" return false;\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
" if (name === 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message('toolbar_button', { name: name });\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"\n",
"///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
"// prettier-ignore\n",
"var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";/* global mpl */\n",
"\n",
"var comm_websocket_adapter = function (comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.binaryType = comm.kernel.ws.binaryType;\n",
" ws.readyState = comm.kernel.ws.readyState;\n",
" function updateReadyState(_event) {\n",
" if (comm.kernel.ws) {\n",
" ws.readyState = comm.kernel.ws.readyState;\n",
" } else {\n",
" ws.readyState = 3; // Closed state.\n",
" }\n",
" }\n",
" comm.kernel.ws.addEventListener('open', updateReadyState);\n",
" comm.kernel.ws.addEventListener('close', updateReadyState);\n",
" comm.kernel.ws.addEventListener('error', updateReadyState);\n",
"\n",
" ws.close = function () {\n",
" comm.close();\n",
" };\n",
" ws.send = function (m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function (msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" var data = msg['content']['data'];\n",
" if (data['blob'] !== undefined) {\n",
" data = {\n",
" data: new Blob(msg['buffers'], { type: data['blob'] }),\n",
" };\n",
" }\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(data);\n",
" });\n",
" return ws;\n",
"};\n",
"\n",
"mpl.mpl_figure_comm = function (comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = document.getElementById(id);\n",
" var ws_proxy = comm_websocket_adapter(comm);\n",
"\n",
" function ondownload(figure, _format) {\n",
" window.open(figure.canvas.toDataURL());\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element;\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error('Failed to find cell for figure', id, fig);\n",
" return;\n",
" }\n",
" fig.cell_info[0].output_area.element.on(\n",
" 'cleared',\n",
" { fig: fig },\n",
" fig._remove_fig_handler\n",
" );\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function (fig, msg) {\n",
" var width = fig.canvas.width / fig.ratio;\n",
" fig.cell_info[0].output_area.element.off(\n",
" 'cleared',\n",
" fig._remove_fig_handler\n",
" );\n",
" fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable();\n",
" fig.parent_element.innerHTML =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
" fig.close_ws(fig, msg);\n",
"};\n",
"\n",
"mpl.figure.prototype.close_ws = function (fig, msg) {\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"};\n",
"\n",
"mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width / this.ratio;\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] =\n",
" '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"};\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function () {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message('ack', {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () {\n",
" fig.push_to_output();\n",
" }, 1000);\n",
"};\n",
"\n",
"mpl.figure.prototype._init_toolbar = function () {\n",
" var fig = this;\n",
"\n",
" var toolbar = document.createElement('div');\n",
" toolbar.classList = 'btn-toolbar';\n",
" this.root.appendChild(toolbar);\n",
"\n",
" function on_click_closure(name) {\n",
" return function (_event) {\n",
" return fig.toolbar_button_onclick(name);\n",
" };\n",
" }\n",
"\n",
" function on_mouseover_closure(tooltip) {\n",
" return function (event) {\n",
" if (!event.currentTarget.disabled) {\n",
" return fig.toolbar_button_onmouseover(tooltip);\n",
" }\n",
" };\n",
" }\n",
"\n",
" fig.buttons = {};\n",
" var buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" var button;\n",
" for (var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" /* Instead of a spacer, we start a new button group. */\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
" buttonGroup = document.createElement('div');\n",
" buttonGroup.classList = 'btn-group';\n",
" continue;\n",
" }\n",
"\n",
" button = fig.buttons[name] = document.createElement('button');\n",
" button.classList = 'btn btn-default';\n",
" button.href = '#';\n",
" button.title = name;\n",
" button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
" button.addEventListener('click', on_click_closure(method_name));\n",
" button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
" buttonGroup.appendChild(button);\n",
" }\n",
"\n",
" if (buttonGroup.hasChildNodes()) {\n",
" toolbar.appendChild(buttonGroup);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = document.createElement('span');\n",
" status_bar.classList = 'mpl-message pull-right';\n",
" toolbar.appendChild(status_bar);\n",
" this.message = status_bar;\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = document.createElement('div');\n",
" buttongrp.classList = 'btn-group inline pull-right';\n",
" button = document.createElement('button');\n",
" button.classList = 'btn btn-mini btn-primary';\n",
" button.href = '#';\n",
" button.title = 'Stop Interaction';\n",
" button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
" button.addEventListener('click', function (_evt) {\n",
" fig.handle_close(fig, {});\n",
" });\n",
" button.addEventListener(\n",
" 'mouseover',\n",
" on_mouseover_closure('Stop Interaction')\n",
" );\n",
" buttongrp.appendChild(button);\n",
" var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
" titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
"};\n",
"\n",
"mpl.figure.prototype._remove_fig_handler = function (event) {\n",
" var fig = event.data.fig;\n",
" if (event.target !== this) {\n",
" // Ignore bubbled events from children.\n",
" return;\n",
" }\n",
" fig.close_ws(fig, {});\n",
"};\n",
"\n",
"mpl.figure.prototype._root_extra_style = function (el) {\n",
" el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
"};\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function (el) {\n",
" // this is important to make the div 'focusable\n",
" el.setAttribute('tabindex', 0);\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" } else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager) {\n",
" manager = IPython.keyboard_manager;\n",
" }\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which === 13) {\n",
" this.canvas_div.blur();\n",
" // select the cell after this one\n",
" var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
" IPython.notebook.select(index + 1);\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
" fig.ondownload(fig, null);\n",
"};\n",
"\n",
"mpl.find_output_cell = function (html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i = 0; i < ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code') {\n",
" for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] === html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"};\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel !== null) {\n",
" IPython.notebook.kernel.comm_manager.register_target(\n",
" 'matplotlib',\n",
" mpl.mpl_figure_comm\n",
" );\n",
"}\n"
],
"<IPython.core.display.Javascript object>"
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.add_subplot(111)\n",
"ax.scatter(test_data[:, 0], test_data[:, 1], label=\"Test data\")\n",
"ax.scatter(test_data[:, 0], predicted, label=\"Predicted\")\n",
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
"ax.set(xlabel=\"$x$\", ylabel=\"$f(x)$\")\n",
"#ax.set_yscale('log')\n",
"plt.legend(frameon=False)\n",
"plt.show()"
]
},
{
"attachments": {
"elbo.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAACdCAYAAAA6/zu5AAAABHNCSVQICAgIfAhkiAAAABl0RVh0U29mdHdhcmUAZ25vbWUtc2NyZWVuc2hvdO8Dvz4AACAASURBVHic7N0/UONYn/D7795667EyayP7jawboTeyN7JvhDbCG9lPhDtCT4Q3Qk+EbtXWljM8VVuFJsIToYnQRGgiNBGaqDU3QR2hjlBHqCPUESI6NzBNG2MbTAPdzJxPFVPTsv7//enod875FyGEQJIkSZIkaY7/61uvgCRJkiRJ3zcZLEiSJEmStJAMFiRJkiRJWkgGC5IkSZIkLSSDBUmSJEmSFpLBgiRJkiRJC8lgQZIkSZKkhWSwIEmSJEnSQjJYkCRJkiRpIRksSJIkSZK0kAwWJEmSJElaSAYLkiRJkiQtJIMFSZIkSZIWksGCJEmSJEkLyWBBkiRJkqSFZLAgSZIkSdJCMliQJEmSJGmhZwwWCori+eYuSZIkSdLLeL5gIbaxfBktSIvkuG2VqqahaW1G6dfNrUhc7FH8JGs2LXN7WOFjJw4YOiH5PaMF/R7ejJHmDX9aOeFwSJA9x7wj7O6I9InnWoQOQ3/OChc+pqahaVVU3eZ5zgpJ+uv4X4+ZKI9G2G6KpkFGm4FtoE6PlGaEaQroX7mK0ixFllFUq3f3+2PnN6cYSFGUBb8rKMr90y5ers4gjuh/7YZkHr1+wiAwv3JGsxVZQqIUwLxtKkhcGyeuoikZecti2NXGP1XbmFqPnq3iDxtz5lCQJQn5nV05b/jnn2PcgUcyb8XVKrqu0zLa6HP3cUFkdRm1PLzqvHG+Rk4aJwuCpYIsiQjDhKzIKbIc1CqKqqCqVbRGi5ZevbPfFKNPq9+lr3qMjKmNU7q4aRcI6GnBk2+RJP3liCWdH22IWn1bnFwKIcSlOOhUxPrR5fi3412xtbUj9g6OxOFWXZTWdsXx4b7Y3d4S2wenyy5KmuftlqiAKHUOxeWTzPBMHO/tiI16WQACEJXVTbGzdyzOhRBCnIu3B3tifWX8G+W6WN/eFQdvz4UQ5+J4b0esr5RuT7v/edpFLsTealPsXXzt+p+KndVVsXf2tfOZ72ynLtYO5u3tS/F2qy5WNo6uj8ex2Kitiv3z2+McbzbFxtH8eeyv1sXunZ02b/iX389PT8XJXkeUQJTWdsXJ6ak4OzsTp6en4uTtkdjfWhWVUk109mdfgxdH66K5cfxE59IsR2K9tiVO7qz6mTja6YhmvS6aq01RA0FpRax11sTaal1UStycU6Xamtg+PJsx71Ox3VwTB3P3z5xlS5K0lOWChbNd0SytiO2JK+/tVkWU1g9v/n15diR2N5qiAgJKora2Jfbf3v/YkJZwuiea5bJY2Xr7tPM92RrfsJn1cDoXe01EaWVTHM06nG83r495U+w9+HA/TbBwvr8qVjafeF9MWRQsnB+siXJlQxzf/HwmduqI1f2pDTvfE82VTfF25mweGyx8nvWqAMT64ex1PFovC6jdunbH3orN2qqYXtWnNeOBfXYg1uurYvv4/DpIORQdEKzuiS+rcinOT4/E3mZTlEFARXT2z+7M/fKwI2rr8wJnGSxI0lNYImchZdSziY0BduPLUEVRuIqjm2JQRWtj2V3UUo2VikKjP8BsPUvZ5l+X3ifKcxKn9bTzVbXrzxoq6q1S3YLIbmMX24TRiPaswzk57Yse7oiBndO3n3hfPFTu0+//hm4PMG7KycefZ+Jo6kt51WTQ8LGfIQEhCiJglbYx+yNHVVOBD4Th7W/82cjGa9n0nup71oNEWMYbkt6IoXH9eSFLSYGSpk98WlOo6m36o4j4cJ0KH/n1H12cqTQFpTugG9k46cttgST91Tw8WIgcBn8omHbv1nfyLMsgL/jySTXHtX3aQUwSORTDgUwuei0mH3Y3A3NCu0U3bBNEQ1rzHiozp31+ReDgaiY97QUXOiEdDfi16GD3J1cgI82guJNooNDuGUSO+8TJfhFBeAUrbaY/3Y8VJPEHANTq5Agp7iim22+/6DEjzdGHJ4T2RD5TmpIBjdbsHCetO8LplIB3+P50sNWg184ZOfJOI0nP5YEJjgWB4/Kx0sM0JodnJMkVqBOJdmlI0fdxDBUw8UcjvAga3+jF77acJPAJkxyq46Svxq234HEyWZplZJlCo2eg5QlhmKK2DBrV27fUPI2I4pRCbWAYOmoe43shKTrdfhttatlpnJDlOVlepdVtUC1SojAizVV0Y2L+eUoUxWRU0Vut24lpRUaSpGRZRq7odA39ZnicpORZRqY26LU0yGKCKKFQdRqtBtrST4QM3zQwky5hOKTxok+U6zWIA6JUQTeM8X7IUrKqxufDFnoB1ZbNdGFGEft4cQ6KgnJdjVdt9GgrIV6UoyhAUVCg0up10RXIIo8g4TppU7kZPl+MM3pHqTugOzlekZB8ALU948lttGm9GxFkFv2nKoFJQsJPUOkZU+fctdzHDYHaJoPJFc18vHct7hbKZIRuQHorgVWjbeqkbkCijAPCoihAa2MaVSgSAi8iUxSUoqDQ2/NLFLU2t2IrIE9iPlKm25i3U1Ta7Rb8+jtZnsFUam+rbZDZHgkNmVItSc/gYSULuY/jf6Lc7nL7vhIRxoD25eaN1qU/UU6tNPqY30OgUEQMezaR2sa0LHp6xsDQ6XmTeeQ5se/iWD3+/mZIGHtYo5g8tPk3rTtRfS3D7zcwrAg0HTUdYugtuoOUhtmlGPUZTaenFymh62Kb/8HfzRFJ6jN0QgqtRaMaY+k6ZpBTxC62G4PWQMejp+kMJ1+Y8oTAHdLv/p2/Dyaq46UR3mg8/M0wIg8dbD+j2mhRTQa0tC7eMtXiioRRu4GZmN8mUChihu0W/VBBb6jEAws3HGG0BhOZ/wlh+ImG0bg7eZ4ShyOsN2948+YfDLyINC9gcvg/BnhRerMPiywicPq8MQf44fhNd+EqBg7uBzC67ds/xCERoOna3YnUFq3aHwTRMjtjsSwMeE8Joz3rQkvxTIvf1A4H0YjWxHEswpB3K40ZxzYniyO84RvevHnDPyyHIM7Ir2st+AOTN2/eYDkBSZ7fTJOELgPzDdYoIE6X+9QShzHQYsahvKFWx/cVTdPu/tgyaLwPCZ+9iqkk/UU9JLHhcn9NAKJcXxOdTufL3+qKKIGo75w9TQbF2b7o1OuivuRfc+v43llf7K8KqIiNL1lo4vJwXZRKMxLyjjdEibpY3TkQF0KIi6Mtsbq6fZPAdr6/Kkqsicl8t6ONsqC+I+6r83G+2xSUmmJ973b2+UEHwcqa2NybTMU6F7tNRGnt4E7y1kFnOhnsevgagnpH7B5ObtSx2Cgjalv3pHmd74o6CKiJ+nXNiPLqrjh9SJr82Y5YAQEdcXj/2NfmJDheHIvNlbJYnazecHkk1ksIOpP74kislypi/madiu3rGhzlWwlwn4eXb2ryfHa8URH13TMxbVaC49F6SUBJrKx2bl0Xa/WygIqYnX96Ifaas66Zxyc4HnZKAlbE5sGxOD4e/x0dHoi9nU2xVq+LzvbhzGN4tlsXrO3PrQVxeTiuYQErYnJ1Lw8741oK9R1xayvO90SzvC7uVvi4L8lwnBBKfXdhDZqLvdVxkubMi+xQdGbuc5ngKElP4UGfIaIwApoMw+BWffjE1vn19xrtz/XJv5Zm4kW95ad7QH1+VW+zWoeG+mVcpdVCv/qFIIJ+9/b8FN6hat1xYWfbIZx4eYz837mqbN0qotYbGvzsE+b2gvrs120PXCVUW8at78S6VoNfM/Tu5KtVFV0rcRXHpPRuFa/O22RFARIFvTtZnKvT0ODnNAEWvLrdKNDaJiQ/8u73f2J0VaLAnF3E/eQKQtvkp8LkZLKsWhnnxTTbE/utyMiuVBpz97eOZTX54T//4NMvDt6oi6kCeUT0HuATvuORt83xcS58HF/HcrR5M5yQEEZXsLKNHw4njk3OqPWv/Fbu0p1ZojZOAE3TFJ5kj17nK1R0GupEq6mqRqs3pG/PPxmzNANVnZuvoHQteuVf+fnTe0ZOhH2dUDsuBQDejXBiG+f6lEoch8x0aS9bCpWHBO9gZbt953PSFwVBEEHTwZr5nUFFLX8kfZZGpSRJesBniJwk+QS11lRyW0YQvoemNefifRxFUZb/e8iMWzZhHGI1CrI4wBs5OE5AzqxENIAa+pwP1lWtAkV+q5GZIiugpKE9KKt8/PCe3m7Q0aszhi/bEKY2/d1Wuf5G/9AZNOgNHKJoh2YJPv72D4yef2+x/JNIR1g/fWCl178d1kQh0VUNY/I7eJaTo6IuOAGqpsVaCeB3HDcdL8J1iDsbrJXg6jeH68FkrkPYfmjNgHFeQrll3N7XRYD/B9T6FsacKVW1NLchq6Vd5yuUjD79dpv25z+jReOekzHPcsrKonEMrH4NgA+uQ1AARYDjqmxsrAAfcJ3PDR5FOC5Y1vLfHHPf43cqGN0FN5LUxQmqbDnmnIBiXIPnyfarJEm3PCBYyEhzoNG6ffNOPdw/SqxZ8y7e701G6PRo6AZ2BHrbpG93F7zbKVPVB79o2UPWCHCD6xtTETPyU5rDAe3Zk9yZ98ySgdIT1SR4aAB132waNuF1wPDhl79j9O9vsvhr5aHPOyq0px4caRjysWzQnjwJFYBicQyk9LB6ZQDeOQ4xMY6T0x+42GYFeIczioEEx0kwrQfWDMgzMkBv3S6pyT2X36hj9eeX4BTFFerCh/TD5WHAe5iTr3AP5d69R8OyqAN88nH8nNx3CFo2ztCiCXzyHLwcCn+Ip9uY2rIrUeB7v0GluyC3KWVkDmAY4LTmHZ3rJNYHlDJKkrS8B3yGUFAVKFdvhwTxyOFduYfTfcIK2qlP33KXfoNVDBtv4RtNQdhv8e+uxl4SfcnEzm/fWIpisnh/8QO30R9SDfr0gypKnlMdJoRP9TnmO6I0bMIwp2X8wLuf2hhqSDRsPT4YSVxGuUl/zuEat01gTCW65QTBO2jZtxNsVRWVnCyHRRFr2+pT+/kHPnxwGVoZgWoRN0CzTFZ++oH3I4ewreBiET30mXsdkKm3rosMd/QbpbWDBQ/NgjyH6tys/+WEQQTUac+uM7mQqqpc3ZeIWDWx12ze/HbFb46NTUR34KNWwepYvPn1NxwvJvdC2pa3fPPjhY/3G9S2+szc9UWCa/bwuz7hwiLMnDyvUH0dby6S9Oo8IFioolWn2vnPfQajnI7rTDRE8wQ0A3uoL13qjqot/r3wGf70gfLG6HaVrSwh5br3isJlMDIYWvfMCyAKSBouw5657Jp+34ov/zN5DJTWkMBN0N/8yrsf2rSrEYGl3w4YHnTQMty+S+Gac8dQFAUq2u1qnkVIEEFzeDvPA0VHL2dkGYu7IGn0seo/8M93n/jlx19Y2x+NS5R0C6v5A//5h0evp6APkodnESgaWhmKydoF0YBh3MRJegsemjl5BtUneap9zlcwMLTlp9Z1HaJxCcn8tVHpWj3Kv/3Mpz9+4qfKFifXSQk9y6T/60/8MWiT0sPvLn8zKHyP36ixfackJid2B1hOQmsYEMxsCWxyRjn5VRXZ/pskPY8HlSy0e6vkN93R5fj9PknPJ3rKUgUAVLRF2YGPpVSplu9+z0yinGoF8iKHPOfmu0NRUHx+Y51F00jabazcpKEqKCgoqorWaN1pi2Ha53UopvokKooCru4WChdFcb0+08OBfJw3oU4PvzN+cWv43DXMPlcXHD/QJp+c1Z6L62n8/ddP/P7PFl0lwu9PBAw306bczd0ryJOAgdnnx8zk9NZvtzXabcruZD5ITtC3+PWqxrYx/SRo0Gpd4UQpi5+WGqa1xj//8RuU17FukhKq9KwO1ptf+Zi3GZnLPGkMuu0STnZ9BIoIqxdgeNGdNgRuiwiTGo25xelLiDz8T1BqGw9KW52mthpUrIgYFn4+U9oWZu1nfvwAdcv6sizDol/7iR8+fETdtmaXDCxU4LsB1EwMEpI4J8tSkjAgiDKUdh83ch7WPkgcEpUb2NrSKyFJ0kM8rNLEqdjtdMTO4ZHY3+qI9Z2HdBL0fTk/2hKrlZpY2zkQx8dHYn93RxycXIqzvVVRLtfF+sa2OLo4E/ubHbG2UhGlUklU6muis74pDs7uzE3srZZEqVITtVpFVMpfOlEq1zfEzP5uLo/FznpHNGslUSqVRa3ZEeu7b4U4PxRbnTVRr4yHr6x2xMb+qRCn+2KjsyZWyl+Gbx6eC3GyJ9Y7q9fDa6LZ2RD7p2LG8HWxfXQhLo93xHqnKWqlkiiVKqK+1hG7d6qXnYmj3S3RmegMqtzcENs3HUldiLcHu2Kz+aWjKSiJlc6W2Dv+/+5MS6kiaisrYmVlRazUKtfV7647mbrVh8OsqpMX4mizKVY3D8TR0YHY3d4RO+srgtKGOJ6xW892m4LOwf0nwOWRWC8janfq1h2LzQqisjlr7hPLmdU3xPmBWF/bEodHB2J7vSO2Zh74KSfbolbeFHdrVT686uTZ4ZZY73REs1YWpVJJlCp1sdZZFzvHy3bwcCw2yvOqIt52tlsXlNbEwZ3uLlYFpelOs6bNqr54KvbWKl86iipXRK2+KjqbO2Lv8OROleD7nO8253SsJqtOStJTWKojqYuzU3H+fF3TvYBLcX52Ik5OzsTFxHZcXlws0ePeidhprorNw7OpaS7FxdmR2Fkti9La/tI3u7+m+R1JXZ6fitOzCyHEhdhfZX57AOf7YrXcEXP6T3oy8zuSuhRnp2cPPt6n2yszApbxfL6mI6nHertZESs7z90j7HM/sM/FXvNumxkvs2xJ+mtYoiMpUDWde0rZv3MKVa1Bo6Hdqm6nLKhrfkfgMFB6DLva1DQKqtbGdkzUKJT9YXwlpaqjayoQEURQbxuzj1G1h92OcJZqnvIpKWi69sDEvpChq2I/onrhc2lZNsrI4QkblHx5iYOT97GXbuBBkqSHWipYkAC9RSPxCeY8m9IwojDaj/h+K80U+YRXFYy5OQkKbWcIzvC7D9Ayd0jcG92T0/DCdItRN2LwzYKtr1UQDHxazuBReRuSJD2MDBaWpfUJ/Da+2aXv+IRxQpomxKHHsN+mH5tEXu+ZevErSEMP1w1I/uxtz2QBQ6tP23T5SEHkWAyDdPa4VRPPTun3w+Vr0ryUdITpNnCH398jrTV0aTjmTeNUr0nmmwzUESNZqiBJz+qBvU5Kk9SWhRdY5ElEnCZECahVnd4wYEHrul8pJ+h38QwXpx1gtkc4Yf+FmmB+TimebZOqVdq29aWL5aqBaTfoD4bAda0QdX5thWrPY5SaWL7OqPud1Z8rYoZ2jOWNvknPnfdSGgz9PqY1pOHaz7OOzzHP1MXy23jurE9UMa7tkZAQ/wmuEkn61v5FCCG+9UpI94uHLczMIXZaQIbTMCi8BPuV98ebRj5xBqCit417uoS+X5ZmVLVnCBaylFTVHtHNN5CnpNzfFHiepqDdzX+YN/zJPXA9l1eQpjnaEx+XIkspqvP2S0bkR+PqvIqO0daff/9J0p+YDBZeg2xES/OxsuC634KUof5/EzsC72HtS0uSJEnSo8mchVcgGg75wzD50gZWQpxWqMpXJUmSJOkFyJyF717IyP1AzUhxR6PxoNQnvNIZvvJPEJIkSdLrIIOF712WkHxaoWebfO6nKnUcPta6U12GS5IkSdLzkMHC9y6JSUothq3qdWc/OX74nlXbWth3kiRJkiQ9FRksfPcKCq36pVfAZISTrOMs1emRJEmSJD2eTHD83jUMWje9SGaMLJ924CLboJEkSZJeiqw6+d0riOweI61LIwpIukNGn5MXJEmSJOkFyGDhlSjyjEKtyoZlJEmSpBcngwVJkiRJkhaSOQuSJEmSJC0kgwVJkiRJkhaSwYIkSZIkSQvJYEGSJEmSpIVksCBJkiRJ0kIyWJAkSZIkaSEZLEiSJEmStJAMFiRJkiRJWkgGC5IkvRpF4mKP4meZd+b2sMLHThwwdELyp1whSfqOyGBBkqTXIfPo9RN6ZuNZZl9kCUlWLBghxbf7WMMhtmXhJRO/VduY2oieHbNgDpL0askuqqWvVkQOppOgNVTQegx6DWSnmNLTShj2RrTdkMa3OLmKBMdoE1oRfq8KiY3eG9KIbfTrUapdFzsw6AchruwWVvqTkSUL0tfJfHpdl9ZwRDf3cd70cNJvvVLSn03m9nH1IX3tWyy9IOgbDKpD3F51PEjTqb5z8dPJ8RSMgUliWUSyeEH6k5HBgvRV4qHFrw0LU7seUNbQZNeY0pOKGNg5fbv1TZZehBbmzwr9Qe9Lr6+KgsJ7oun0iarJoOFjezJ7QfpzkcGC9HiFz2D0gdVeFxVoDROKPKAngwXpCRWBg6uZ9LRvsfQcb/ATH5s21mSqRJaRAUU+XYSg0O4ZRI5L+nIrKUnPTuYsSI9WBC7B1QoDQ0YH0uNlcUCUKuiGga4CWUpW1bgu8Cf0Aqot++bfnxWxjxfn12/5BUUBaqNHWwnxohxFAYqCApVWr4uuQBZ5BAkoChSFcjN8rtTF+R1W93u3l5/EJICuzpjYaNN6NyLILPrTKy1Jr5QsWZAeLfACrsoGhvat10R6lYqYYbtFP1TQGyrxwMINRxitAV8qGiSE4Scaxt0aEEWeEocjrDdvePPmHwy8iDQvYHL4PwZ4UXpTpbHIIgKnzxtzgB+mZPesYuw4vKNOt307IE6iiCtqaNqMidQWrdofBNFSe0OSvmuyZEF6pBA/uALD4Nt8SZZetTyk3+qSWDHhddaiPmzTU/+D39sHE+dUSppVZj6UVcPCMdoo0f/hh/eQq236hopCH6dlXA/PUbt9WtcFAFrXoe97JGaAb82Y6S0xrvcBAK/fJZz4JYveQ2mdGTEMUEWrQpCkwH3LkKTXQZYsSI8T+QSfoG7IUEFaVkFom/xUmDiT1RuUggJoto0vVW+LjOxKpTr3S5eOZTUB+PSLw01eYR4RvQf4hO94XxpLKnwcX8e6ychdIIuIPkJ50yXyffzPf55JNYdSu4sxc0IVtQppmt6/DEl6JWSwID1KGoZ8pEyroX3rVZFem3SE9dMHVnp9br2YRyHRVQ2jNfGhP8vJUZmVGvBZ1bRYKwH8juOm40W4DnFng7USXP3mcD2YzHUI2/bDknCv8xJa0wFx5BNelelZvbntiahqiaKQ9SelPw8ZLEiPkBMG74AGLVmwIC0pD33eUaHd1W8NT8OQj2WD9mQEoQAUi1tFVHpYvTIA7xyHmBjHyekPXGyzArzDGcVAguMkmFb7YY2G5RmfqNGYagUqGPl8qplYxvxJi+IKVZGJv9KfhwwWpEeIxslbtca3aU1PetXiKAZaU9/7c4LgHbTat3NgVBWVnOyeZgvaVp8awAeXoTXEVS36DTAskxXgw8ghDB1cLKyHBriKwuf8gy+r6eH4n2haFvMbnS7Ic6hqsiqE9OchgwVpeVFAeAU0WgtumJI0m6IoUNHQJgPNIiSIpvIVABQdvZyR3VdtodHHqgN84pcff6FlmePUQt3CagKfPHo9D/3z8IeoatRQxjHDtWQ0JNS2cRcmR+bkGVSrMliQ/jxksCAtLY1CPgIrLRkqSMtrtNuUi3yih8acoG/x61UNw5h+wDZota6Io/SeuWqY1tr4f8vrWDdJCVV6VocSV3zMDSxziQd4o0u7MhGoJEN6jsooGKIvnDAiTGo0WrLYTfrzkMGCtKSCKHgHQKOx+Jb5lDLfxgmfJ2Es6Pd4bOu88cjGS590df70lLaD10sY9D2CwMOxR8SFAqWpfIXx2BjtJu+i+xstUHsW62WomRaT/TipPQuzAhXTorvU87vF0DUIhy6B72DaKXYYcG9FijgiVtp0X+7ykKRn9y9CCPGtV0JaXpFlFNUqL59CFdFX/x9++lRn9yzm3qrqTyAPTLq+STAynqE3ywLXaJF7Mda8l84sZDjwyDWNIlMwh9ZErkbMsD1Edz269720Jh6WE5DlOXm1j+88MNHuT6rIEtKiiq6Ba/wr/1D2uQzMu/skczF0Hyvzl3zYLycdNuhrEUFvaiFFRpIp6A/s9CSxddqFS+q8tuzfnDgIyBs97hTwSH95smThNYostP/9v6l2/cVZ4s8hDQk/ASUdXXuB5WUuvUEVx3mOQOEBUo92y0a1RwxtG1v36NqTb7kN7JHBqOfc3xeAZtDvd1GiX/ktTl/+2H1nlKp+/QAeJ8zWp/MVPqv2sNsRjndf4sIzUaoPDhQgZOiq2A/OovweZITDHrr6r/zbf/RlSZk0kwwWXiNVRyuX0bTqiz9AiyjkPbxQcmOBbw1Q7cE3qnURY7VNctu76Rq5qmlknsutQnGtj607mO49DzOlit7o0pWpHrdFPuFVBWNuu+EKbWcIzpDpTh6/N5k7JO6NvlFX2o9VxbA9Rt3yt14R6Tsmg4XXSO8T5TnJNyjmjMLxY7LcaNzp2OfJJQ521MV+zrLnBWK7x49Zj+GtVgYV+BgTT+U4GLZFbg+4/8s6/KW/PUzKAoZWn7bp8pGCyLEYBunscasmnp3S74ffb4lMOsJ0G7jD1xkNqvObyZQk2TeEtIyUKPoEQOMFakJEI4eiF3yb6plFwHD0npW+d6tJ3yLLuKKgyOFWwojWpac2GAUOrbaMBh6kamDaDfqDIcC4xUN1fgha7XmMUhPL1xndmyDywoqYoR1jeSPZ9oj0p/QXCxZyksAnTHKo6rSMNo1b95yCLElIs4wsU2j0DLQ8IQxT1JZBo3r7LpCnEVGcUqgNDENHzWN8LyRFp9tvT9XnzknjhCzPyfIqrW6DapEShRFprqIbE/PPU6IoJqOK3mqNu+29WcWMJEnJsoxc0eka+s3wOEnJs4xMbdBraZDFBFFCoeo0Wo3b9dofo4iJ3gFUaDS+9i0kJwlDkkKjZTSoKpClKaqmXb94x3h+jjG6GyokgUuUXdfXLwoKFPRuj2rsEqbKdffDBSg63V4LlZzY94mL666MadDtNRYmh+aewy+fVtjp315+EieAhnpnYg3DUBj6EbSNx++VJCKMItKiSqNl0GrM+dRUZMRRwhvwHwAAIABJREFURJIpaIZBq6qQhS5elFNtm/S++vi8BGXJtggUGrbHIH2e3AXN9Bktald6kUKlNxrx4NSG70Aajhh5EVkBasOkPVVk8xLXmfSKiL+Ky7diZ31T7L89F5dCiIuTfdFZWRHrB6cTI52Lo50tsV4vC1gT+ycHYmvnQBxu1QWlNXFw8WW8w826qHd2xdHJiTje3xD1labobB2Ks8szsVOvie3T6eWfiP2tTbFaQ1DeFMdnh2JnZ18cn56J0+MdsVquiY2jC3F5si+2dw/F29MzcXq0JerlFbFzMrmKx2J3qyNWSghW98TNKp0eiu3N6+GdA3FxvCu2947EydmZeLvXEZVKRxycf+U+fLslKiBgTRxcPn42l6f7otNcEztHp+Ls9Ehsb+6J44N1UesciJvZnu+JJk2xd3F3+rf7W2JztSYAARXR3NgRR+dCnOxvic216+GVptjYORLjTb4QRzvrollBlGprYmP783AhhLgU+6t1sXtr35yJ3TqC2pY4ubXkC7G3iqC0IY5nbddBR7CyLaYP/bTD9aljJ4QQl2fiYKMpVrcOxen5pbi8OBXHOx3R7OyJk6l9cHmyK9ZWVsXWwVtxcnIkttdWRH1tQ+y+vRCXR+uiPLkfJemOC/F2uylqqzs359b50aaolxBQFptvx8Oe9jqTXrvvK1g42xedel3Ul/xrbh3fO+uL/VUBFbFx/OU2enm4LkqlptibPqOPN0SJuljdORAXQoiLoy2xurotPk96vr8qSlMPzKONsqC+c++D4ny3KSg1xfre8a0b+kEHwcqa2Ny7FRmI3SaitHb35n/QmfHAEUIcrCGod8Tu4eRGHYuNMqK2dSK+xvlec3yDeMADcZ7Lkx1RL6+I7ZOJLboOQpqTB+JkS1RK6+Jo/sqIJghArO5P7IWLz8NXxf6tnXMqtldq4u4umBEsnO2K+vWNsNPpTPw1Ra2EYHX/zn4XQghxvCnKLFjna3eDhUtxtF4RlY2jO8f57VZNlNb2J266b8VmBVHbntiQ811RpyzWj2SIIN3v8nhDVLh73ztaL90KFoQQT3idSa/d9xUsCCEuLy+X/3vIjN/uiNX6qti99SwePxQ6h9PjbooyiM6c1+fDDoLK7bfOs926YM6b8KSLvXHQMn0xnWzVBEy/4V5fwDMezjPfTj+v252H7Pn4TblzsHjl7jG+mSBK69M77KFOxfYKojz9UHy7KcpMlcYcrQsqm+KtmOdSHHTG60N9R5x9Hnq0LsrXN7f67tmX0Y83RWVivMn5TAcLlwcdAYjO4dTxPx6fF8070eXnzdsWtQecA3eO3cmWqFAWG8czRj7ZFrXJQOB0R6yAWNufXLcjsV5ClDdnzUCSJl3fC+q7d976T7Zrd4OFJ7vOpNfuu8tZUJRnyg5q2YSxDRRkcUgYJWRpQA4UecHdFPUauj57XapaBcLJ5mqhyAoo6Q/8Zqkz3bPzeLt19OqM4cumf2uNqeZor9u3/6o08oQwvgJAf2RyY+5aOO/LmKPbjRGlYcSnskF7YqWLLAdFW/C9U6Fn9ej/+jOf3o1wYhunkeM5Aa2NdeKffxn3QGg5NCjwHY+GlT6oX4A0ToA6xlRzvXEQ8Km0htWb851draJSsGzPxGkQ8hHtzjkBgK6j8YkwiKHdAq1KFciLHG7qoxQUV6Bps2Zw23/913/x448/LreC0qu2ubnJ//zP/1z/KyJ8B3SqD6zN9HzXmfS6fHfBwvPJCB0La5TSsAZYbZOuquD/8Nuc8ZUZSWxjLXvImmvjBgVGW4EiZuSnNIc+7Qety+3OaW6UlKepVac80XwmFTHxe4ASjZlPtfuFQchVqUvXmBx63d11y77d2+BDuiY2LMzaz/z44QOuE+AMEpyoi5PZBNEv/PDexQkdXN1lGLYZeA9LtcryDMrdqeTXGNf7QLk3ojdvNkVBgcqyOXJpkgL67HPi+lh+TFKgBUqP4dYQw/VI+xYakHkuYWUd7wGV+//7v/8b27aXW0HpVfvb3/725R9pQgKQj6+tB52qz3SdSa/L9xUspD59y2XZXGfFsPEWtphWEPZb/LursZdEXxpMyW9fKkXBxA178QO30R9SDfr0gypKnlMdJoRdbcEUr1wcXTeI06D1qDbvE6L4ChrG7aCAED+C5vB2632KqlLKb5fe3NXAspr8+M8/+OQ5WCTkpo+h6OhWkx/+8w88x8NqOaQ9l4fWaFQUBapTb16hg/uhRt9aEA7mGTlVlq2urjd0+DknnywsuJnneB/U9M87XYFqm2E/Y2BaVNWCjDZB0qf1gOX+7W9/u/3wkP5ars/r92lMAg+slvw815n0unxfwYJmYA/15UvLVW3x74XP8KcPlDemWlbLElIYF9kXLoORwfAhnR1EAUnDZdgzl13TVyuPYz4CVFq0HlXFXUFVoKRNfVoIA8KrGv3pxui1BtqnkOye1x/NtFiz3/Db1W/8+HOd3bPx7a9q2nSsv/PrrxbtSMUKH96AlaZpoKgTi80YDTzUzYDBortrlpNXHlq8+0W13WXln/8vQZRj61NP/CgkpoLZ+7zgBD+EXjDEMpdckCQpDRo1+P2Dxyh0GBkTvxXj/8z6jPYc15n0unxnLTiqaLqOvuxf9Z5QVqlSLV/XCZ6QRDnVyvX33zzn5rtDUVCQk817rdU0EquNNXJxPQ/P8/GDkDi7P8wZr8PdC7IoCri6W+xeFMX1+kwP5+at887wO+MXc4Y/XBxdN7TbMh7ZSJJG26hxledf1qGIsPo/8WlWb4N6g0Yp5vNi51K7WJ+bqV21vvQIqHSxemXgIx81C3OJ0pBqt8tKlt6UcGWuyaAY4N/TP0USR1y1Wvd0XzzjGOk23k6daDggmjxARcJw4FPd9PjSWKdGQ/EwzSGu6+J5Hr7vE0TJPaUwz6yIcWzv/v4xlp1t6DD0X7pPiJxwOCR48sVG2N3Rk+8jWGY/NRgMO5T4yE+9LqPrpkiL1GPofwCuiFyPKJ06m57hOpNel++rZOHZGAy9LVLToj0ssFsqaRyjGA7eIKFht+lFbUwnx+2beGEEpRzXbJPoGr3hiJ42MbuGhaVrWIOUqlJQ5DkfP42T/8r1DVzf5c4XiSJkaDr4UUyppDBodwl6Nl4vw+qPCKOMUinAMrq0zCFuK8K0PaIQSoVLz0gxrBEjzac38IjDEqViRK+b0B+6mMVoPDz6PDzG6I8YKCNMxydKSpSwabV9zIHPcv3cZMTJuOXGpvH4N4fG0GOnbdF3VXpKQhhDoQJGm7tzNegaH3HijMVFGQpt26T2i4th926VWhi2zcrPQxq2udzbvmbhml2cUYCJzyhqEwTWPS3zFcThe1a7CwKKeDRx7By63Yiu5WIbCg07Iq5a9Ns9Wr0uDWICP6LohcRWa2KeCl27i20MsUMVpcjJPn7iCqBUY23o4d8a/x5FjDvwxt+xZ1Gr6Pq4AbPpQo8vEpyujTIKnjyxTTH6tPpd+qrHyLjnO8uTbEtBZHUZtTy8OSdNkcWEYUSSFRRFRo5KVVFRVZWq3qDV0uck5o4bZnuOoG6Z/aT2PKLcpGf9wn/+279ilcpoXYdBt4bvVWlUc/I7Z9AzXGfS6/Ktq2O8rEtxfnYiTk7OxMVEzbPLi4slGrE5ETvNVbF5eDY1zaW4ODsSO6tlUVqbUw//1ToWG6Vxwyxb8+syPtjF2ak4uxDic5W/W1WvJlwerovy6t4zN+wyq1Gm61/OT8Xp+QPPjMtD0SlP1zl/nIuzU3F6NntG54frot7ZFSfT63t5Lk4ONsTKjGq5i12K89NTcbLXESUQpbVdcXJ6Ks7OzsTp6ak4eXsk9rdWRaVUE539Wa1rXIq3W03R+eoWvxY5FdvNtQc0Kva12yLExdG6aG4cz7gfXIrTgy2x1qyLZnNV1CvjBozqax2xttYUK5Xr6oUgKK+I9Z3jGeftkVi/09DXU3rofvrsUpyfnYqz641d7j4o/dX8xYKFJ3C0IUoz2je4cbIlKuXZLfy9Wp8bKaIjHtvCwkxvt0Rl4cPtrdiqrYidx7YA9SDzg4VlnO81RWXmQ+YpnYnd+nQ9+EmXYn9tQTsQC5zvrQpArE+3LXHtaL0soCa2p4/V6Y6ov0C9+svDjqitHz5o/z56W8RbsVmbEfBdnoq9tbro7L29vu6vW/Kcuh4uz0/E4e66WCmPg4baxuFUwPDcwcJy+0mSlvGd5Sy8AnqLRuLP/Z6ZhhHFzGL1VyyJxkW7zemaDF852zDg46x8hRstBqMG3jD4fnsaBCBmOFJx7slp+HoajYZC6MWz90ceEsQ1jEdkoEZBBKzSNua1LaICHwjDyRO/wLeHVK3+s9erV7oDupGNk94/7uO2BbKRjdeyp6rGFgSmgVVYuP3WdfF7SpICNf1WfopSbdC1POJoj9UyfPi5h+m9bCbJMvtJkpYhg4VlaX0Cv41vduk7PmGckKYJcegx7LfpxyaR13umh0ZBGnq4bkDygk/PNE64Aiqt1pN8k8zDEVa/S2/wHogZWTbenA/NanvEkAGm/03T9xYoCPt9soE7v/2FJ2S4EYPCpmvauEFEkqYkcUQwsuj1RmhuxPI9JEcE4RWstJn9ubsgiT8AU90Y5x5O0MJ8iQ2nQa+dM3Luy3h95LaQ4o5iuv321LWbkrdGxIE58Z0+I/sANBozgyRF7+MOm8AVv3nhfRv2xB66nyRpOX+RBMenpbYsvMAiTyLiNCFKQK3q9IYB9rPdN3OCfhfPcHHaAWZ7hBM+/xsdQDzuahLjK5IbJ6mtHrbe47pnYoqiQJkbhai0XY+s18dteF+ysL8TmW8x0ke4L9ZlskZvFNArMuI4JolSCqWKZti4/Tk9VN4nCQk/QaVnzD6fch83BGqbDLpfllAEHr/rbbzpheYRnp9QXDcoVRTFuDvqVo7nx3xuTnQ82KStAWmIG6YoikJRFGiGiTG1Mq22QWZ7JEy3UPr120Lm471rYd85xXV61tTS0pgYWGk15u5vzeiywh+8zzOmezP/si7fcD9J0rK+9XcQ6WFOdpqifpNdeC5268/9Lf+zcX8OzOh45mVdiLOHJhsuO+ezs0cnpJ6fvf5+9cbf+EtidpcfZ+KgUxHM6LX0eKM8uz+K8yOxvbV+3YshgpWO2Nw/EeL8SOxsrYv69Tf9lc6m2P/8Af9kX2x0VkSJsqivTwy/vaJzeyL92m15aI+hN+NSEhuLegy72BerIEq3RprKWfiG+0mSliVLFl6DbER/oGJnn197CoriPXEKz//qkJC85ysaY3oqKtozLV99QJ8K81Sfa6Ve0Pgbv4ZahITheFiRZ6RJiO9FKO0Rp16X212lFKTZJ7S2dneG1TZDp027CPn3nz5CXsU0x99GbKdNqwj4958+UWgm5udPJg2TUc/HL2xCz5z9Jl6tUiUlSWBe8szjtgWyLAWt+6CSujiKAIO2sWCkLCMDGov6UfmG+0mSliVzFl6BaDjkD8Oke3NnSIjTytLNCj/KdTPPJeOxjTFJ37frb/wVnYZaUBTjP1SNVm9IEMf4w7sPV8jIMlDndaACGJZJDeCjhxN8TrJJiaJxmx0fXIebwWS4Tkjb6i3oPExFLX8kndv20GO3BbI0A1V9wGeclDD4CM0uc/Inx/MLfd6XOtjm/cHky+8nSVqeLFn47oWM3A/UjBR3NBoPSn3CK53hC3yQzOOID8Dawtco6dW6/sZfavfptx/WDdpYPg4WlAURq25hNX/gn398wnc88raJGjuM8nU2Vn/h5999HD+n3VMhcXFSE29hxwIqqgpZMacN8EdvC+RZTnnRtnyW+njvYWXHWJDsG+M4MfVBTPf+6OPl95MkPYIsWfjeZQnJpxV6tkm326Xb7dIg5WOt9aCOg75WHMZAnfZ9redJr1IeBrwHjPYjyquV+/oFrWJaa5SAq98c3BQCx6VqDRlZHUpc8Zsz7jgudBwUq39P6dU42U+d0439827LWOq7vGMFszcvUi+IbRNXGxHYD43mX3Y/SdJjyGDhe5fEJKUW7VaVarVKtaqMmxW2rRfIdL4uCq0YdzKupT+HMIh4XDCoUlUhzxdXaVV7Nr0ywDucoYXjt7BMDaVr0asAfzg4kY/j6Vj3diyQk+cVqnNe6R+/LePPKVf3bAtk+O47qPfn1MrJiZ0uZmIR+ss1ffyS+0mSHkMGC9+9gkKb6MkwGeEk6w/6Fvr1i44I30O53ZX5Cn9Kn7/xPyYY1NC162/9CxlYZg2ADz/9SNS2rnNvDGxzBfjAqNsnNCx6953SRU5+VZ2T6Po12wK6rt8kJc6V+XjvoNnv3QkEsmiE2WozYEDomzPzIhZ7qf0kSY8jg4XvXcOgddNDYcbI8mkHL9RnfBwSUaLdM15gYdKLizz8T49PXm0YdT5Ec1qTnBzPsqgDUMG0vjR6pFsWTeDTx4Ke1b3/63ocEpUbNLQZv33ltqitBpXrZN55Ms/lD+oYjZwkjonCAM+xMNsG5qjA9CN8q7Ug8XCxF9lPkvRY37rupnSfS/F2uyM29vbF7sa62Dw8e7Eln26vCErr4kg2NP+ncna4JdY7HdGslUWpVBKlSl2sddbFzvGSFfNPtkXtQf2gXIj9tZKgvjvVh8SFOOiUBSs7D2rf4Hy3KUqd2/0ePNm2iGOxUa6J7Zkrcine7jRF+bqjqFKpLCq1ulhd3xI7+0fi9MGLuq9viOfbT5L0tf5FCCG+dcAi3a/IMwq1+ui3luUl2Pr/YdQ6JneNF1uq9JokDHWD1M0YPXt9/oxRSyccZPfUBHi8qF/F1EKSBycmLiugpwXYqfOMn/Wefz9Jf03yM8QroTx3oBCP6LZ7uJ/7aIhdvPd1BgPjOZcqvWo6pt3Ad/zn7+grcXDyPvYzPgBblo0ycoiebQkv4AX2k/TXJIMFCYA0GPHrb7/gxTnj3AgHZWtEX/vWayZ9z6rmCCsdMkqfcykFwcCn5QyeN9FWtxh1Iwbea23N6IX2k/SXJIMFCQDNHLDZ2aCrRLj9Hq7mEjgt2aSLdA8N2zXxzSFzOg79aplvMlBHjF7gbbk1dGk4Jm767It6ci+5n6S/HpmzIE0oyJKEXNXRq/KGIz1cHlqYfhfPMZ42wExdegMYuuaL9LAKQOZjWgmWa9N40o0J6OkBdvIMOQvfYj9JfykyWJAk6UkUaUqhaU+aW1NkKUX1aef5IHlKiob2pAsuSNMc7RkaQPhm+0n6y5DBgiRJkiRJC8mcBUmSJEmSFpLBgiRJkiRJC8lgQZIkSZKkhWSwIEmSJEnSQjJYkCRJkiRpIRksSJIkSZK0kAwWJEmSJElaSAYLkiRJkiQtJIMFSZIkSZIWksGC9P2ILLRqFU3T0PrBV84sJxwOCZ6lA8EIuzsifeTU8cjGe+zEiUPXjh8+/IVkvo0TPnVH1SmePSKeM9t42BqfK1WVrvfsnWRLD5Q4LdSqhqZp9Lz8W6/Os3ie8x2Cfo/n2WVffy39r+dYLen5FVlGUa0+WVvwRTH7BFEUZcHvCopy/7RLrAVK1yMZGUtOd3c+kdVl1PLwnr4ZfiAnjRMWXtNZyHDgkWsaRaZgDq2bToka/R5Bu4fvenSXXb88Jc5mREDzht8jDYaMwnlbolLVNLRGi3ZLm9tBVB6Y9AKTYPTUnY9p9PrQ7Y1w/P6dDpIadkRqQzps0H/iJT9E6g9xwofucwW9a9M3/gK9NxQ5xijF717/O/GwnIAsz8mrfXyn/c16s32R871IiYKQOM0pioIMqCoqiqqgVnVardacPkeuO/J7lrj3Ca4lIb0+b7dEBUSpcygun2SGZ+J4b0ds1MsCEICorG6Knb1jcS6EEOJcvD3YE+sr498o18X69q44eHsuhDgXx3s7Yn2ldHva/c/TLrNdm2Jl8/irt+biaF00N46faN/MciTWa1viZN7PZwdirdYUe2fjf57vNUVt6+3UOHtibXVXnC276LdborZx9PDh97i8OBOnp8diq46AFbF5dCpOT8/E2dmpOD15K44PdsX6SkmUm1vi+GLGDM73xVpzW5w8384WF4frojm9/yac7dTF2sEzrsAclxen4uR4R6zWN8XR6ak4PdoS9ea2OD45EScnb8XR4b7Y3VoTtUpdbO1uiOYTnNuvwenOiugcTgy4PBenJ4dio4ZgdU/MOo1eynOe7xcn+2JzrSnqzaZYXRnfSyvNjuisrYrmSlmUru+PUBHNjT3x9s78L8X+al3sLn3jfLivuZZksPAane6JZrksVhYc9Ec52RI1EDDrhD0Xe01EaWVTHM06md9uigoIaIq9x57sTxIsvBWbtVWx/6x3pEXBwonYWimJ5udIQQghjtZFqbIppo/W8WZNrO4vubOeOFi4nlhslhGs7MwOXs52RR1EuXMwdaO/FIfrNbF++NwP6lOxXa+LndPZv36rYGHsVGyvXh/bt5uiuT1jJc8PxXqtJCp/1WDh2mHn2wcLY099vl+Ktzuror6+L06vJzjdWRFQFpuTF/3FmXh7sC3WauMXq1J9aypgeP5g4WuuJZmz8BrpfaI8J3FaTztf9XMXtyrqrWKygshuYxfbhNGI9qyi88lpn6Xo/2GykY3Xsul9o9Le2O7xY9Zj2Ne+DFQU+BgTT5V+GrZFbg+IXnQNZ0hCwk9QMYw7xZMAaFWqwKcg4FZWROJgR13s7nMXKuvYVpXhwOd7z0xQbp13OWlWQLWLO2x/q1X6fnyrbw/Tnvh8z9wuxrDK0DXRr49/mqSATmNyAapGqzckSCK26yWu3v1I2/ra3KxlPf5aksGC9IXy5X++XA45od2iG7YJoiGteQ/hmdO+tBR3FNPtf6NvokXAcPSelb6FMTk4y7iioJj+VKp16akeo+DbPgKzMOA9JYx2Y/YIcUwCUFVv5chEI4eiZzJnqieldns0/BH+a8qXi4e0rRAApWvjdPVvuz4S8NTne0FKFz92aStfhmXpFZR19FkvTkqDoWtRAz75/ou/LDz2WvqLJTjmJIFPmORQ1WkZbRq3DuY4wSTNMrJModEz0PKEMExRWwaN6u1HUJ5GRHFKoTYwDB01j/G9kBSdbr89FbWOk+KyPCfLq7S6DapFShRGpLmKbkzMP0+JopiMKnqrdROtjlcxI0lSsiwjV3S6hn4zPE5S8iwjUxv0WhpkMUGUUKg6jVYDbeknaIZvGphJlzAc3iTofTN5ShjGFNUGRktDISdNQfucLZT5eO9a2HcKXDJCNyC9lZCp0TZ1UjcgUcYBTlEUoLUxjSoUCYEXkSkKSlFQ6G3M1uIik9xz+OXTCjv927eTJE4Abaq0BkDDMBSGfgRt45E75etFQQS0aBuzD3Ds+XygzOrAmrhRxnh+jjG6e8NNApcou05wLQoKFPRuj2rsEqYTx0DR6fZaqOTEvk9cKCgUFDTo9hq3k3dVg7b2D7ywoPfsJRlPIw0C0s9ho9KiJwsX5iqyhCiKiFPQGq3x/XT2iMRRRJIpaIZBq6qQhS5elFNtm/Qa9xcpPu35rtAyp1MCY6IEaLTmB9KNLu3yD/z0KWNRiuz3dC39dUoWiohhzyZS25iWRU/PGBg6PS+ZGCkn9l0cq8ff3wwJYw9rFJOHNv+mdSeqtGT4/QaGFYGmo6ZDDL1Fd5DSMLsUoz6jZHr5KaHrYpv/wd/NEUnqM3RCCq1Foxpj6TpmkFPELrYbg9ZAx6On6Qwny8LyhMAd0u/+nb8Pwi8Z+WmENxoPfzOMyEMH28+oNlpUkwEtrYu3TLJ8kTBqNzAT87sIFFLfpNV1yLQGWuFjDQP+//bOHzxRrVvj762gk046uZV00smt9Kukk1NpKvmqeKvwVaG0i6eSU8WpwqnCqcJUYaowVZjbhKniVCGVpJJUkmrdQk38H01iJnMOv+fheRKULcLauPbe71rLbcrQpkbliefhe15acq4xosCH3d7D3t4e/q2bcIMIMRJEPR9OS8Pe3h5000Uvjh+P6XkWWtoe9K6LIHzODQ9hmV+AnAJFmP1s378FGGGpAloqy7j3XMyby/vhw/UegLyCZUL92DegmSEKhy5cTXh6IfLh30qQl6yExVEA32phb28Pe/820PVCxAkQhwF82xjdA6MLL4wfp0KjnouuvgfNsOEF0ZIpUgGynIHn/vRFm+dJIgS2hrqdvFm00t+XBEG3jrLmAKIKvalAjC2osga7N2sFSWBCkeqwIh6iCDiaBEnRYLMqmpKPZsvdYGr97e19gShAcAfkJHnN/ech8ABywvKlkMn5fKS+tEMlxfbcnFC1UKDCllvx4OLZpgcnJQKy1Lh4Em8Mz2rEMEsEeRcNYlCg0tFI4DI4P6BS6ZAmh/ZPSsSgQtM6kPNGhlA4ohW6kUf6nSKBKVLteFatf1oFIV+h/eNp2VyfOkUQUzldUPafrhALnVZAKFSpczb9pS6okQHlDlbq9ycnRwWAgBwVxpERmVKHrjfRjt0cUR4goEpLtE2bsULgeH1coUyuQVO3jm6OCgTkaFpPdtMpEConK6MghmfVsSI5T0c3s/sBEApzgqf+MRUzNTpfaHCJwHEsikK2SNVqdWorUo4BoXSyXNh1sU8Z1GhjaeJbCxyvR/eNqRzRxcXFeDun05MOHdZKVCg26PhyieLq6oCyzJrz7h9Tcaz+Lk2rTQeT/fMi1Gs6zOdonYleH+YJpcX7+5EEjtlsjnIZhsCU6PiiQ6XaS0Wncwzf6Pu9VTtrWClwrC0+s/onFWLyi2Lh4XmNMtkanT+++ZL2s6Dc4dQ7+x0qIEO1xQ667uR2Y+/TnNeIAUPru+NIZMlUp5/tKwSOH6QvfayZBUGD7fvwt9w8s/xs05yooFQQIXFPw05WliE+fMOCg8WyYPEdnKCCA8ApJjyvjcmsle98xUNWhDg1ghUlAfjuYGUI72PTLPAQgpfLM+vqopADfkQQ1emJKx6iwOAhDBYSAK1KYcCyAHosxJkA/pHQ5jbcdPyaQFA0FBjg/uu6PNL5AAARaUlEQVR/UFatFycgejVRF5ruQW6bmJ41TJAAmTKUqWXgKIwAjlupV2BVHfUMAPxA13y66YE3nrr53oU5NYvTM01Emj61FrmaxPfwHUC168FxnKdNlxA/AMW6snyUwXPgEOLZiYsdEXsufgCQRBFJkow3gJcU6JaHwLfQXLb8EkW447jVIydeg15lAABfzacEVonvjWdRvsK0wqf3eyYstgl9jQCCEzgg6v08W9wAUXcRxjH6Xh1uszUrkHspsQfTdNdOV2+Kp6swVzUUB3AsC44/9YYkQNew0Ht+yL49iQtd/wJeXdS9sEoTavIXtNa4n/Y8eHeAKE51eF6EyNzDdTYfIe/M3qfwHQ8PUKCW17yp58C9z0LT68/rqz5IX/pYzgJGP6Zbb5s0LBvwAg+6lCAKXNhdE6bpIgaQLM2CkYMoLm+ZF7JAEs8k5UmiZOVU8yJzKllMEhgtCmJGa1WbtDmFIGFWSjVa29q8HQn1lgnfP0KRAe6+/BvluvMmD6vtSODqBr5BQVOdvrAxfPcHICuYnhWMoxgZdt0NKENv5gAAt5YJNwGQuDAtDo1GHsAtLHOiTvZhWoCubxZxEgY9AAWU5VmbCVwX90wFen2F3oHjwWH0wPoZjKYiC6jrKhRFedzKkgh+TcdKohhg1z08WdT1OjLAlBMWwzZdyI0asgC+m+b4xzSBY9qQ9MVkMdNwHDdet30ZiWdAKZdR3nhTYLwoSx8LXm7CfovkQ4kPXfNRNlTsNMioZ0Ktu+BVFZxVR3PyvVkJTYODqb08Y+lKAhfe/ZwD8IgAUQDuPG/0ueMIhXhGJZwgeQAEQdj4I3dn749fCrZzB5QUrJBEAEjgtS3EpTZa5U3O+mP0pQ/nLOyOCJ5ZhySWYfiAqGhoGuqaC8ouEaSNkI02KnBhTdbLkwBdJ0Sx3cJmGiZ2+cwA80aRBJs6UM81Ixnwxg7D7V+/odz01mctfHMCON49IKtzHc+H6wNFZXZ2Bux4xmENkq6jAAD3DkwnRuyYcGUDZltHEcC9bcKOgcRpwxYNTC9briOKIyAjzQlmA1j2LTJ1fXUoZ5IgAQfuTW78tozXb7NllIUtD2WBZ692WYeWAx6dsNCC6aswui1oeQC3FkwPQGSh7SnQn4l3HQm5Xp61lC23YNk27I03C63VT/wNPk+bE8VGCLf0uIOWgcTQdxtxEruoqy7qtgGZ41BWBdjm1Po/p6KluNCtNx4uhCHusCrT6/gZ2RuPftk62gd5BJb96LREtgUvW5sNU17Lju0dAAIL9h1Q0uor7TT2dGieAtvRNncAP0Bf+ljREKGDpm5tPYJlywbstSPABF5Txr8sAcc9H4+2Fc8aaZJMT++v/8GVmm3wbhNNlwcbx+DbPXiqsOaIXxNWMuB5MeTy7/j+SUGZ8+C35Zc7Iz0L3VhDc5MBezwSCuW1OaGQ78B7yI2iFqbgOA4Pz83n8xqMioG9Lw/4Yhow4ENtOeB4QK/q2Pv8BaYdILY9KLq9cWdiWRbg+dnO75mwbnNo6mtcyDhCDB78z1DCjePNGUXZ+seI5TgwcfyM8yhB14v44z/fcG+b0NFDrDkosyJEvYjf//cbbNOGLpsI69azyz1xHC9e4+3OGjz/jklAWAVt/enf2NKg9kwE7Q1DKGMLuiOj296tJ+npGnzFhT2xwSTBfdhDBDwOpvi6Bogt+FoXm821bYAoIofPo/u60NNiRDEAcTJLygK8gnYzQkvTwXMJIihwe83V4dzz7NzegcBycIcKTHX5SUWegbqRwPQsKFv1+Z/flz6WsyCUYbTF7acZOWH964mD9qdbZBpdzDih4zUbEQASC61uGW39mbYAwHfRkyy069q2Z/qxSZ7+mL4HrNyGa/Ug7n3G998VKLwPVxdnHYaNbloEq2khsbTNzmc8QyKIwszunuPhjiljPkxaFEXAH4Uire4EHFS9jsyXP3H/7RM+ZQ9wNe5ZdV1D8/MnfGspCFGHs0VYkSAIADutl4jQbdng9l201j2Zohhx9jU/gC9nsn5bUV7w+BckCPceogRrk+0Imo6KsYcvD1/wx58FdG5GF4PXDFT13/D5sw7F56B7z59DHMZgeP7D5PZZxkIujcn+0ELd+AKhO+soJJEP1w0QcxIUVUTo9iAqI+c4cW2ESntmSTFy22hPqqMlIupmE6zdhBWMrgpb1tFWhXE0VAgWCSStC22VDcYWWjaLuv/0hrDXAzhl1iZZBXVJh+1js4iATZBUKNnfYXke0FRnX4t9+D+A/NHkPHpwPKDutqFrL/u43dt7D7ZzC6baxryvkIQeTN2Aw2rovjC67Gf3pY/lLICDIO5giMXy4DOLBY96fgw+O14Hi2M8rjskCZKJZ7sMQUBPUaDHGiSOBQsWLMdBkOSFXAzzTM4hmTO6JEmAh8VpriRJlq4tJQmAsafLze9feH8ys3/lGUbheFYnRjw9rADA1y1YtoDfPt/j639kqKwPpznlMDweGyIMZ48FEsQ9Fy2tiT8iDdczr62BLUMtAHYcY/Lzn/RMaOYPoNxaGOFwsoSs7iMA1i4HsYoOLfcn/rgFCvrUFG9ZRzP3Cb/f3oE71LcaQfGqinw7fByNRZaGVtKCa5bXdshe4ONBbs1pTN6DGI7tA8ij/JLiRqIEiTHhB0B93YXiVOhqBl/+ugdK+tOyDqtCr2fw+c873AktaM9egBh+cAup/h4poLZhvIwEjJ4f8dxDIw5gd9voejwkqQh+6nuGjgbNktC1dYiJg6Zchy2YiMfG67kehLn5ck5SUHbq+O3TD+Qa5zBYgJXrYLv/wu/fijhqjvoJJ0qAayBQHaybpY/sLr4+8BD9LrpjnaBvf0dWnhsMgIUoAm0vBOQ1Da5h8dkkw7T34SptmD0F+qNGLIHfasPPH8I3JhdMgMTa0DQeepl/0qvxImR5RU6GGd7B3gML9i0g6yLCXoA4jhH1AniuiyAWUG+58DeeBlnCz+5L64I7/k70zw+olM1R5eiULi7O6aRzRKdXQ7o5LlEmU6Ba45DOBzd0sl+lSj5LDMNQtlCham2fTm8WWqPjEkNMNke5XJaymaciSplCg84W3k9Ewws6qlWpmGOIYTKUK1ap1rkk6p/RQbVChexof75UpcbJNdH1CTWqFcpnnvbvn/WJro6pVi2N9+eoWG3QyTUt2V+jw/MBDS+OqFYtUo5hiGGyVKhUqbNQUuKGzjsHVJ0qBpUpNujwsZDUgC5PO7RffCo0BTCUrx7Q8cX/LRwLJku5fJ7y+Tzlc9mpAiqg7P6aehZLQieH18dUKVapc3ZOZ8dHdHh8QCUGVFyaQP2CGpnZcMpV3HQKBKZCp3PxjP3jEoEp0fqSDctqQwzp8rBCteNzOj/ep2qjQ1fPJsEf0mkFVNqmmMZrQyeHl9SpValaKVCWGdtiqUrVxsmzYb9zDdFpBVTc5NyvDiiHDDXmQ9yujyiPzIa1JS6oweSX5rT/WaGT1yc1KhWyxGRyVCyVqFTKUwZZyhdLVCoVqfBo+xnKl0qUz02F3t10qJiZtr9RmPRTaNyQTkorwu8moXQTGxyeUy0z6l+VyfE3HSosrUdSmQnNu2hkiKmeUL/fH2+nVGUYqi65nv3jImU2qG+xEDq55Nl0NBUHPbg8plqpQo2jYzo96dBBrUSlxslCyPbwcp9yTIayuRzlslOFmZgcVTqXy0Om38neB+cHlGcm55OhbDZPxUqDDjqndHGzqW1uUBviJ/alf4yzMGJI/Zsrurq6ocHU9RgOBltUKLyio2KJ9s9u5o4Z0uDmnI5KGWIqK2LqU9azspDUgG6ur6k/pHHFzezKGOLL/SzlV1VJeTNWF5Ia9q/pur+hNQ3PqJrZsujVTgpJvYzhWY0ypePtq4u+hIt9ys7nwRjzc/MsvIyL/QxhOsZ+eEoVTD/A+9QpzhUiemRIZ7UMAQzVzoY0OClRtnFMh4Wn4kiX+zkqdG6WfO60szCg4+Kc432xT5klTgYR0fCkQswGNrYqz8JzjCpC3ix9dvbPalSoduhq3tiGfbo6bVB+zTPhrdi9vb9HISl6cV/6B0VDAAALXpAgScKM+pxdE5u/gGuixdbRVufrnbPgBAWGqYHzvbeJr04Zw0EQR6FNobdcrzBB1g2wXfOnFWdieRHiM0tREyKrDV9t/bSiV6+FVXVooQlr5+knE9imA9lYHw726xAh8O+Rl6WnZ4jvws+UUX6cQubBc/cLqxojWKiGhiwe8Fdbh94OoelNGEYFzA8TbddG2xZhPBvKM1oS4AX+8X/HtCEYxtIluCiOIPDPtflyWE6AKApLlhRC2C0XsqHPRRsBYHlI9S6Myh386fwQuzi/d7P3XfLyvvQPcxbeAFGG1HPgrrDL0PORlJW3UwynTBHDdb8DZWWmUNMMoo6u6qO1VW7rn0GAdpeD+Yym4WMjo9WVYLc3SbP7CsIuzMiA+at6VQtw4AWAe8wJEsMxnYXnhijlEK2K7pF0GAUA3z7hT86ALgFc3UA9cwdL1eCrm1Re5SFL2cc8M4mvo52YcFaIvKNetCA2fh8ESBILzw6W21nswQ1yKD9Tu+X1vJO975JX9KXUWdgWoQnXUeBoKpqmAy/oIQx7CDwb7aaCZqDBtzfIyvUiEoSeDctyd5NR7cOSILAM6JoC4yuAng1DtxCsuAZy24JkaphOavaxSOA1m4ha1i87qzCBU7poowVtZ+UgAxiaC83W/yazCgDAot4+BucYsGwbpqGj7d9DnismJikKeq63og0BWquKDDKoGZN4/TIMo4CHBwG6UV5x3CyyYYJzW7C7BjRThOloK65zCM8XoG6SznQHlC0frcSAqhmwXB+9MEQv8OF2ddTrXQiWj/Y7aF93b++75JV9aadrI39zBteXdHF+RqenZ3R+cUU3OxUqDOh8v0SN0xsa9I+pWjpeuub0S3O5T9lCjQ4PD+nwdFZ3MBz0qd8f0GAwoMH477Wr1P0zatSO6GonS9nnVFuSz35T+mf7VOtcbaGTmeLygPIrNAtL978LN3RSq9HJzVu3O6SLgxodXizvWP3zDh0eHlKjmPnlNAsjhtQfDJfoFSZc02GxSus0a8PB/ItDGq6p/zAvcJwcM1hoZ46bDhUrpxtpsa6P8pSrHNDh4SGdvHUHHPbp6vKczk5P6fTsgi6v+y/rR69id/a+O83C6/vSfxERvbH7krIDgrYMLTIRmDKACKZURmL3YLx/zN3uiAO4Xjia4hNkqAsLlNu2FyLEpim4tyFBGMYQhJedXxRGU+vEWx+NMOQgLNQbX7X/vYgRRiyEDfUaG7cZsiu/U9xz4Y2n2HhZxc5noXeFq4Grs3DjxYRHiatBCQx4b9TRvaaCoOVC3+paJXA1BYHhbfS8SXoe3N5o5M1L6ksjLT84u7B3IA5DQFim23h1y6/uS6mz8CsQdSELDvTIHU9bh2iL/43AJNib5ZdOSUn5gAS2AdNy4UcCynoLpibNLWEmCEwdrmzCkF//w/QSZyGyNeixAbv5dxqZpGxL6iz8Avi6gP/ptTF0J1oIF3VWA+9FMFMlZUrK35wEgeOBU5VX6zZCu4tQba4pcjT/0T5sh4Nan0/SlPJPI3UWPjweNO5f8MpHMCbJxEMHrd8TtAcetF9cIJeSkpKS8vH5YOmeUxaIeujd51E3NEzqVIWmibucunkBlZSUlJSUlFeQOgsfnV6AHiOjLU+KDcVwvB8oGfpPqCeQkpKSkvJPJHUWPjwJEmGqKmGvC7NXg6n9qtLvlJSUlJRfjTQp00dHKkN+rNQWoas7UNzn65WnpKSkpKS8FanA8cOTwDfq6AoqJN9FT22jOxEvpKSkpKSkvAOps/CLkMQREo7fQbKOlJSUlJSU9aTOQkpKSkpKSspaUs1CSkpKSkpKylpSZyElJSUlJSVlLamzkJKSkpKSkrKW1FlISUlJSUlJWUvqLKSkpKSkpKSs5f8BpLzYp7Bd9NQAAAAASUVORK5CYII="
}
},
"cell_type": "markdown",
"id": "6bd7c62d",
"metadata": {},
"source": [
"## What about an uncertainty?!\n",
"\n",
"The method shown before finds the neural network parameters which maximize the log-likelihood of the data. But not all parameters are equally likely and we can estimate an uncertainty for them.\n",
"\n",
"With an uncertainty for the parameters, we can propagate the uncertainty through the neural network and obtain an uncertainty on the prediction of the regression output.\n",
"\n",
"This can be done assuming each weight in the network function has a given probability distribution and instead of fitting a single value for the weight, we fit the parameters of this probability distribution. For the example shown here, we assume that the probability distribution of the weights is Gaussian and we aim to obtain the mean and variance of the Gaussian.\n",
"\n",
"We are going to include the epistemic uncertainty through the variation of the weights. That is, the fact that the weights vary and lead to different effective functions allow us to model different $f(x)$ dependence relationships and this is attributed to the epistemic uncertainty.\n",
"\n",
"We additionally assume that the data collected has some aleatoric uncertainty, which means that every point is uncertain by some fixed unknown amount. To model this effect, we assume that the likelihood function $p(\\text{data}|\\theta)$ can be modelled by a Gaussian distribution with a certain standard deviation $\\sigma_a$. This standard deviation will be used to model the aleatoric uncertainty.\n",
"\n",
"The final loss function to be optimised here is:\n",
"\n",
"$\\mathcal{L} = -\\mathbb{E}_{\\text{data}}\\left[\\log p(\\text{data}|\\text{weights})\\right] + \\frac{1}{M} KL(\\text{weights}|\\text{prior})$\n",
"\n",
"The first term is assumed to be a Gaussian with the standard deviation given by the aleatoric uncertainty (assumed to be the same for every data point, but this could be changed to be data-point specific as well!). The second term corresponds to a penalty for varying the weights away from the prior assumption that the weights are Gaussian with a mean zero and standard deviation 0.1. In this equation, $M$ is the number of batches used.\n",
"\n",
"It can be shown that by minimizing this loss function, we obtain weights mean and standard deviations that approximately optimize the posterior probability given by the Bayes rule: $p(\\text{weights}|\\text{data}) = \\frac{p(\\text{data}|\\text{weights}) p(\\text{weights})}{p(\\text{data})}$. The proof follows by algebraically trying to minimize the Kullback-Leibler divergence between the true posterior given by the Bayes rule and the approximate posterior, on which the weights are assumed to be Gaussian and the likelihood is assumed to be Gaussian.\n",
"\n",
"\n",
"\n",
"The details of the derivation can be consulted in the following paper:\n",
"\n",
"https://arxiv.org/pdf/1505.05424.pdf\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "f8d501ff",
"metadata": {},
"outputs": [],
"source": [
"class BayesianNetwork(nn.Module):\n",
" \"\"\"\n",
" A model Bayesian Neural network.\n",
" Each weight is represented by a Gaussian with a mean and a standard deviation.\n",
" Each evaluation of forward leads to a different choice of the weights, so running\n",
" forward several times we can check the effect of the weights variation on the same input.\n",
" The nll function implements the negative log likelihood to be used as the first part of the loss\n",
" function (the second shall be the Kullback-Leibler divergence).\n",
" The negative log-likelihood is simply the negative log likelihood of a Gaussian\n",
" between the prediction and the true value. The standard deviation of the Gaussian is left as a\n",
" parameter to be fit: sigma.\n",
" \"\"\"\n",
" def __init__(self, input_dimension: int=1, output_dimension: int=1):\n",
" super(BayesianNetwork, self).__init__()\n",
" hidden_dimension = 100\n",
" self.model = nn.Sequential(\n",
" bnn.BayesLinear(prior_mu=0,\n",
" prior_sigma=0.1,\n",
" in_features=input_dimension,\n",
" out_features=hidden_dimension),\n",
" nn.ReLU(),\n",
" bnn.BayesLinear(prior_mu=0,\n",
" prior_sigma=0.1,\n",
" in_features=hidden_dimension,\n",
" out_features=hidden_dimension),\n",
" nn.ReLU(),\n",
" bnn.BayesLinear(prior_mu=0,\n",
" prior_sigma=0.1,\n",
" in_features=hidden_dimension,\n",
" out_features=output_dimension)\n",
" )\n",
" self.log_sigma2 = nn.Parameter(torch.ones(1), requires_grad=True)\n",
"\n",
" def forward(self, x: torch.Tensor) -> torch.Tensor:\n",
" \"\"\"\n",
" Calculate the result f(x) applied on the input x.\n",
" \"\"\"\n",
" return self.model(x)\n",
"\n",
" def nll(self, prediction: torch.Tensor, target: torch.Tensor) -> torch.Tensor:\n",
" \"\"\"\n",
" Calculate the negative log-likelihood (divided by the batch size, since we take the mean).\n",
" \"\"\"\n",
" error = prediction - target\n",
" squared_error = error**2\n",
" sigma2 = torch.exp(self.log_sigma2)[0]\n",
" norm_error = 0.5*squared_error/sigma2\n",
" norm_term = 0.5*(np.log(2*np.pi) + self.log_sigma2[0])\n",
" return norm_error.mean() + norm_term\n",
"\n",
" def aleatoric_uncertainty(self) -> torch.Tensor:\n",
" \"\"\"\n",
" Get the aleatoric component of the uncertainty.\n",
" \"\"\"\n",
" return torch.exp(0.5*self.log_sigma2[0])"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "7b9beb21",
"metadata": {},
"outputs": [],
"source": [
"# create the neural network:\n",
"b_network = BayesianNetwork()\n",
"\n",
"# create the object to load the data:\n",
"B = 10\n",
"loader = torch.utils.data.DataLoader(my_dataset, batch_size=B)\n",
"\n",
"# create the optimizer to be used \n",
"optimizer = torch.optim.Adam(b_network.parameters(), lr=0.001)\n",
"\n",
"# the Kullback-Leibler divergence should be scaled by 1/number_of_batches\n",
"# see https://arxiv.org/abs/1505.05424 for more information on this\n",
"number_of_batches = len(my_dataset)/float(B)\n",
"weight_kl = 1.0/float(number_of_batches)"
]
},
{
"cell_type": "markdown",
"id": "c68ba2e2",
"metadata": {},
"source": [
"The criteria for finding the optimal weights are based on the Bayes' theorem, on which the posterior probability of the weights is proportional to the likelihood of the data given the weights and to the prior probability of the weights. We assume the prior probability of the weights is Gaussian corresponding to a unit Gaussian centred at zero and with standard deviation 0.1. This prior has a regularizing effect, preventing overtraining.\n",
"\n",
"We can translate the Bayes theorem and the assumption that the final posterior distribution is also Gaussian into an optimization procedure to find the posterior mean and variance of the posterior distribution. The function optimized to obtain the mean and variances of the Gaussians for the weights is the sum between the mean-squared-error (corresponding to a Gaussian log-likelihood of the data) and the Kullback-Leibler divergence between the weights distribution and the prior Gaussian."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "fbea6b0c",
"metadata": {},
"outputs": [],
"source": [
"kl_loss = bnn.BKLLoss(reduction='mean', last_layer_only=False)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "b92ed4b0",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 0/500 total: 58.60563, -LL: 29.30297, prior: 0.49401, aleatoric unc.: 1.70738\n",
"Epoch 1/500 total: 29.89883, -LL: 22.77377, prior: 0.51578, aleatoric unc.: 1.74675\n",
"Epoch 2/500 total: 24.01581, -LL: 19.56905, prior: 0.54058, aleatoric unc.: 1.78531\n",
"Epoch 3/500 total: 20.88541, -LL: 15.23512, prior: 0.56686, aleatoric unc.: 1.82458\n",
"Epoch 4/500 total: 18.42086, -LL: 12.56114, prior: 0.59138, aleatoric unc.: 1.86375\n",
"Epoch 5/500 total: 16.78540, -LL: 11.47957, prior: 0.61184, aleatoric unc.: 1.90320\n",
"Epoch 6/500 total: 15.74639, -LL: 10.39981, prior: 0.63168, aleatoric unc.: 1.94387\n",
"Epoch 7/500 total: 15.23265, -LL: 10.92122, prior: 0.64618, aleatoric unc.: 1.98676\n",
"Epoch 8/500 total: 14.43628, -LL: 14.04801, prior: 0.65764, aleatoric unc.: 2.03084\n",
"Epoch 9/500 total: 13.75567, -LL: 9.28419, prior: 0.66495, aleatoric unc.: 2.07617\n",
"Epoch 10/500 total: 13.46332, -LL: 9.24567, prior: 0.67066, aleatoric unc.: 2.12401\n",
"Epoch 11/500 total: 12.68328, -LL: 8.02405, prior: 0.68236, aleatoric unc.: 2.17244\n",
"Epoch 12/500 total: 12.16965, -LL: 10.14399, prior: 0.69100, aleatoric unc.: 2.22149\n",
"Epoch 13/500 total: 11.89046, -LL: 10.02692, prior: 0.69707, aleatoric unc.: 2.27265\n",
"Epoch 14/500 total: 11.31826, -LL: 8.22698, prior: 0.70348, aleatoric unc.: 2.32503\n",
"Epoch 15/500 total: 11.15097, -LL: 8.46218, prior: 0.70463, aleatoric unc.: 2.37917\n",
"Epoch 16/500 total: 10.78811, -LL: 6.91465, prior: 0.70900, aleatoric unc.: 2.43505\n",
"Epoch 17/500 total: 10.27545, -LL: 7.55249, prior: 0.70822, aleatoric unc.: 2.49083\n",
"Epoch 18/500 total: 9.88403, -LL: 7.78374, prior: 0.70896, aleatoric unc.: 2.54750\n",
"Epoch 19/500 total: 9.49734, -LL: 6.96424, prior: 0.71104, aleatoric unc.: 2.60481\n",
"Epoch 20/500 total: 9.18567, -LL: 6.83609, prior: 0.71782, aleatoric unc.: 2.66279\n",
"Epoch 21/500 total: 8.77549, -LL: 6.85847, prior: 0.72051, aleatoric unc.: 2.72092\n",
"Epoch 22/500 total: 8.64839, -LL: 6.52611, prior: 0.71736, aleatoric unc.: 2.78174\n",
"Epoch 23/500 total: 8.43415, -LL: 7.78695, prior: 0.71795, aleatoric unc.: 2.84376\n",
"Epoch 24/500 total: 8.17714, -LL: 6.13595, prior: 0.72104, aleatoric unc.: 2.90688\n",
"Epoch 25/500 total: 7.70156, -LL: 6.61542, prior: 0.72217, aleatoric unc.: 2.96854\n",
"Epoch 26/500 total: 7.61942, -LL: 6.63054, prior: 0.72667, aleatoric unc.: 3.03244\n",
"Epoch 27/500 total: 7.42529, -LL: 5.76781, prior: 0.72993, aleatoric unc.: 3.09773\n",
"Epoch 28/500 total: 7.29471, -LL: 6.51807, prior: 0.72927, aleatoric unc.: 3.16509\n",
"Epoch 29/500 total: 7.12159, -LL: 5.48303, prior: 0.73176, aleatoric unc.: 3.23374\n",
"Epoch 30/500 total: 6.79870, -LL: 6.10557, prior: 0.73237, aleatoric unc.: 3.30124\n",
"Epoch 31/500 total: 6.60342, -LL: 5.65072, prior: 0.73511, aleatoric unc.: 3.36955\n",
"Epoch 32/500 total: 6.63333, -LL: 6.37231, prior: 0.73616, aleatoric unc.: 3.44177\n",
"Epoch 33/500 total: 6.25342, -LL: 5.67089, prior: 0.73999, aleatoric unc.: 3.51138\n",
"Epoch 34/500 total: 6.25324, -LL: 5.80523, prior: 0.74006, aleatoric unc.: 3.58479\n",
"Epoch 35/500 total: 6.06724, -LL: 4.63822, prior: 0.73928, aleatoric unc.: 3.65814\n",
"Epoch 36/500 total: 5.97354, -LL: 4.87066, prior: 0.73962, aleatoric unc.: 3.73306\n",
"Epoch 37/500 total: 5.75250, -LL: 5.21252, prior: 0.74361, aleatoric unc.: 3.80782\n",
"Epoch 38/500 total: 5.70047, -LL: 4.60235, prior: 0.74538, aleatoric unc.: 3.88453\n",
"Epoch 39/500 total: 5.65181, -LL: 5.21456, prior: 0.74527, aleatoric unc.: 3.96423\n",
"Epoch 40/500 total: 5.43323, -LL: 4.63033, prior: 0.74861, aleatoric unc.: 4.04155\n",
"Epoch 41/500 total: 5.28977, -LL: 5.04850, prior: 0.74891, aleatoric unc.: 4.11915\n",
"Epoch 42/500 total: 5.24329, -LL: 5.24680, prior: 0.74535, aleatoric unc.: 4.19924\n",
"Epoch 43/500 total: 5.17848, -LL: 4.70368, prior: 0.75037, aleatoric unc.: 4.28055\n",
"Epoch 44/500 total: 5.16991, -LL: 4.86729, prior: 0.74977, aleatoric unc.: 4.36667\n",
"Epoch 45/500 total: 5.00426, -LL: 4.76213, prior: 0.74627, aleatoric unc.: 4.45042\n",
"Epoch 46/500 total: 4.96309, -LL: 4.31775, prior: 0.75200, aleatoric unc.: 4.53622\n",
"Epoch 47/500 total: 4.89156, -LL: 4.62450, prior: 0.75400, aleatoric unc.: 4.62413\n",
"Epoch 48/500 total: 4.77733, -LL: 4.33423, prior: 0.75599, aleatoric unc.: 4.71083\n",
"Epoch 49/500 total: 4.70859, -LL: 4.23383, prior: 0.75542, aleatoric unc.: 4.79768\n",
"Epoch 50/500 total: 4.61107, -LL: 4.23617, prior: 0.75896, aleatoric unc.: 4.88461\n",
"Epoch 51/500 total: 4.53410, -LL: 4.05732, prior: 0.76156, aleatoric unc.: 4.97112\n",
"Epoch 52/500 total: 4.53218, -LL: 4.03225, prior: 0.76646, aleatoric unc.: 5.06118\n",
"Epoch 53/500 total: 4.47935, -LL: 4.09978, prior: 0.76704, aleatoric unc.: 5.15256\n",
"Epoch 54/500 total: 4.39028, -LL: 3.94386, prior: 0.76755, aleatoric unc.: 5.24289\n",
"Epoch 55/500 total: 4.38337, -LL: 4.36773, prior: 0.76699, aleatoric unc.: 5.33596\n",
"Epoch 56/500 total: 4.35281, -LL: 4.11247, prior: 0.77196, aleatoric unc.: 5.43080\n",
"Epoch 57/500 total: 4.29956, -LL: 3.87602, prior: 0.77093, aleatoric unc.: 5.52630\n",
"Epoch 58/500 total: 4.23197, -LL: 4.01298, prior: 0.77028, aleatoric unc.: 5.62054\n",
"Epoch 59/500 total: 4.24475, -LL: 3.99289, prior: 0.77126, aleatoric unc.: 5.71866\n",
"Epoch 60/500 total: 4.16691, -LL: 3.89405, prior: 0.77055, aleatoric unc.: 5.81574\n",
"Epoch 61/500 total: 4.16522, -LL: 3.96328, prior: 0.76699, aleatoric unc.: 5.91432\n",
"Epoch 62/500 total: 4.11586, -LL: 3.69259, prior: 0.76921, aleatoric unc.: 6.01400\n",
"Epoch 63/500 total: 4.07180, -LL: 3.89622, prior: 0.77077, aleatoric unc.: 6.11181\n",
"Epoch 64/500 total: 4.07462, -LL: 3.86786, prior: 0.77294, aleatoric unc.: 6.21290\n",
"Epoch 65/500 total: 4.01141, -LL: 3.77488, prior: 0.77207, aleatoric unc.: 6.31128\n",
"Epoch 66/500 total: 3.99999, -LL: 3.65617, prior: 0.77586, aleatoric unc.: 6.41138\n",
"Epoch 67/500 total: 4.02086, -LL: 3.71232, prior: 0.77457, aleatoric unc.: 6.51647\n",
"Epoch 68/500 total: 3.96727, -LL: 3.82445, prior: 0.77131, aleatoric unc.: 6.61852\n",
"Epoch 69/500 total: 3.91331, -LL: 3.59059, prior: 0.77492, aleatoric unc.: 6.71576\n",
"Epoch 70/500 total: 3.92368, -LL: 3.87038, prior: 0.77663, aleatoric unc.: 6.81692\n",
"Epoch 71/500 total: 3.91091, -LL: 3.71611, prior: 0.77434, aleatoric unc.: 6.91915\n",
"Epoch 72/500 total: 3.90254, -LL: 3.84058, prior: 0.77568, aleatoric unc.: 7.02362\n",
"Epoch 73/500 total: 3.86610, -LL: 3.79804, prior: 0.77613, aleatoric unc.: 7.12259\n",
"Epoch 74/500 total: 3.86877, -LL: 3.67038, prior: 0.77967, aleatoric unc.: 7.22509\n",
"Epoch 75/500 total: 3.83692, -LL: 3.71282, prior: 0.78043, aleatoric unc.: 7.32391\n",
"Epoch 76/500 total: 3.84445, -LL: 3.81955, prior: 0.77407, aleatoric unc.: 7.42552\n",
"Epoch 77/500 total: 3.82880, -LL: 3.67313, prior: 0.77377, aleatoric unc.: 7.52656\n",
"Epoch 78/500 total: 3.81437, -LL: 3.66513, prior: 0.77432, aleatoric unc.: 7.62591\n",
"Epoch 79/500 total: 3.78821, -LL: 3.75625, prior: 0.77875, aleatoric unc.: 7.71907\n",
"Epoch 80/500 total: 3.83347, -LL: 3.61354, prior: 0.77968, aleatoric unc.: 7.82734\n",
"Epoch 81/500 total: 3.78359, -LL: 3.59515, prior: 0.77631, aleatoric unc.: 7.92300\n",
"Epoch 82/500 total: 3.78367, -LL: 3.67180, prior: 0.77953, aleatoric unc.: 8.01834\n",
"Epoch 83/500 total: 3.75569, -LL: 3.61895, prior: 0.78101, aleatoric unc.: 8.10435\n",
"Epoch 84/500 total: 3.76833, -LL: 3.55765, prior: 0.78393, aleatoric unc.: 8.19697\n",
"Epoch 85/500 total: 3.76053, -LL: 3.68451, prior: 0.78236, aleatoric unc.: 8.28731\n",
"Epoch 86/500 total: 3.76217, -LL: 3.74953, prior: 0.78270, aleatoric unc.: 8.37660\n",
"Epoch 87/500 total: 3.73655, -LL: 3.64136, prior: 0.77914, aleatoric unc.: 8.45761\n",
"Epoch 88/500 total: 3.75396, -LL: 3.62085, prior: 0.77929, aleatoric unc.: 8.54510\n",
"Epoch 89/500 total: 3.74527, -LL: 3.68434, prior: 0.77997, aleatoric unc.: 8.62806\n",
"Epoch 90/500 total: 3.75304, -LL: 3.66249, prior: 0.77914, aleatoric unc.: 8.71503\n",
"Epoch 91/500 total: 3.72325, -LL: 3.60384, prior: 0.77980, aleatoric unc.: 8.78583\n",
"Epoch 92/500 total: 3.74192, -LL: 3.59396, prior: 0.78044, aleatoric unc.: 8.86492\n",
"Epoch 93/500 total: 3.71866, -LL: 3.61358, prior: 0.78299, aleatoric unc.: 8.93002\n",
"Epoch 94/500 total: 3.72444, -LL: 3.58171, prior: 0.78235, aleatoric unc.: 8.99536\n",
"Epoch 95/500 total: 3.72439, -LL: 3.60700, prior: 0.77858, aleatoric unc.: 9.05974\n",
"Epoch 96/500 total: 3.73727, -LL: 3.67353, prior: 0.77897, aleatoric unc.: 9.13145\n",
"Epoch 97/500 total: 3.73587, -LL: 3.65088, prior: 0.78041, aleatoric unc.: 9.19960\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 98/500 total: 3.72790, -LL: 3.58224, prior: 0.78028, aleatoric unc.: 9.25964\n",
"Epoch 99/500 total: 3.71771, -LL: 3.66020, prior: 0.77745, aleatoric unc.: 9.31000\n",
"Epoch 100/500 total: 3.72549, -LL: 3.62102, prior: 0.77761, aleatoric unc.: 9.36518\n",
"Epoch 101/500 total: 3.71956, -LL: 3.57595, prior: 0.77925, aleatoric unc.: 9.41201\n",
"Epoch 102/500 total: 3.72677, -LL: 3.57028, prior: 0.77652, aleatoric unc.: 9.46463\n",
"Epoch 103/500 total: 3.72387, -LL: 3.65744, prior: 0.77754, aleatoric unc.: 9.50802\n",
"Epoch 104/500 total: 3.71402, -LL: 3.60348, prior: 0.77234, aleatoric unc.: 9.54170\n",
"Epoch 105/500 total: 3.72198, -LL: 3.63285, prior: 0.77360, aleatoric unc.: 9.58104\n",
"Epoch 106/500 total: 3.71737, -LL: 3.64993, prior: 0.77597, aleatoric unc.: 9.61322\n",
"Epoch 107/500 total: 3.71005, -LL: 3.56981, prior: 0.77387, aleatoric unc.: 9.63459\n",
"Epoch 108/500 total: 3.71906, -LL: 3.58226, prior: 0.77644, aleatoric unc.: 9.66549\n",
"Epoch 109/500 total: 3.72139, -LL: 3.63789, prior: 0.77184, aleatoric unc.: 9.69481\n",
"Epoch 110/500 total: 3.70912, -LL: 3.60181, prior: 0.77226, aleatoric unc.: 9.71032\n",
"Epoch 111/500 total: 3.71838, -LL: 3.63031, prior: 0.77578, aleatoric unc.: 9.73120\n",
"Epoch 112/500 total: 3.71506, -LL: 3.61052, prior: 0.77374, aleatoric unc.: 9.74926\n",
"Epoch 113/500 total: 3.71562, -LL: 3.72471, prior: 0.77285, aleatoric unc.: 9.76058\n",
"Epoch 114/500 total: 3.71990, -LL: 3.74557, prior: 0.76846, aleatoric unc.: 9.78141\n",
"Epoch 115/500 total: 3.72581, -LL: 3.67777, prior: 0.76765, aleatoric unc.: 9.80824\n",
"Epoch 116/500 total: 3.72395, -LL: 3.66619, prior: 0.76687, aleatoric unc.: 9.82927\n",
"Epoch 117/500 total: 3.72196, -LL: 3.67000, prior: 0.76839, aleatoric unc.: 9.84076\n",
"Epoch 118/500 total: 3.70945, -LL: 3.61228, prior: 0.76902, aleatoric unc.: 9.84046\n",
"Epoch 119/500 total: 3.71781, -LL: 3.57591, prior: 0.77380, aleatoric unc.: 9.84767\n",
"Epoch 120/500 total: 3.70874, -LL: 3.66554, prior: 0.77551, aleatoric unc.: 9.83665\n",
"Epoch 121/500 total: 3.72752, -LL: 3.65136, prior: 0.77845, aleatoric unc.: 9.86153\n",
"Epoch 122/500 total: 3.73040, -LL: 3.62794, prior: 0.77837, aleatoric unc.: 9.88645\n",
"Epoch 123/500 total: 3.71462, -LL: 3.68275, prior: 0.78350, aleatoric unc.: 9.88238\n",
"Epoch 124/500 total: 3.71511, -LL: 3.59032, prior: 0.78381, aleatoric unc.: 9.87697\n",
"Epoch 125/500 total: 3.72409, -LL: 3.58439, prior: 0.78439, aleatoric unc.: 9.89114\n",
"Epoch 126/500 total: 3.71711, -LL: 3.66987, prior: 0.78606, aleatoric unc.: 9.88819\n",
"Epoch 127/500 total: 3.71188, -LL: 3.63467, prior: 0.78302, aleatoric unc.: 9.87889\n",
"Epoch 128/500 total: 3.72376, -LL: 3.58284, prior: 0.78485, aleatoric unc.: 9.88960\n",
"Epoch 129/500 total: 3.71365, -LL: 3.66670, prior: 0.78087, aleatoric unc.: 9.88381\n",
"Epoch 130/500 total: 3.72456, -LL: 3.66885, prior: 0.78370, aleatoric unc.: 9.89316\n",
"Epoch 131/500 total: 3.71323, -LL: 3.62470, prior: 0.78227, aleatoric unc.: 9.88930\n",
"Epoch 132/500 total: 3.71856, -LL: 3.66937, prior: 0.78154, aleatoric unc.: 9.88618\n",
"Epoch 133/500 total: 3.71670, -LL: 3.64594, prior: 0.77825, aleatoric unc.: 9.88424\n",
"Epoch 134/500 total: 3.72210, -LL: 3.60950, prior: 0.77902, aleatoric unc.: 9.89171\n",
"Epoch 135/500 total: 3.71507, -LL: 3.59651, prior: 0.77877, aleatoric unc.: 9.88918\n",
"Epoch 136/500 total: 3.71900, -LL: 3.65212, prior: 0.78622, aleatoric unc.: 9.89051\n",
"Epoch 137/500 total: 3.71307, -LL: 3.61388, prior: 0.78563, aleatoric unc.: 9.88130\n",
"Epoch 138/500 total: 3.71602, -LL: 3.60536, prior: 0.78637, aleatoric unc.: 9.88007\n",
"Epoch 139/500 total: 3.72967, -LL: 3.64175, prior: 0.78606, aleatoric unc.: 9.89858\n",
"Epoch 140/500 total: 3.71805, -LL: 3.57543, prior: 0.78286, aleatoric unc.: 9.90221\n",
"Epoch 141/500 total: 3.71457, -LL: 3.60350, prior: 0.78505, aleatoric unc.: 9.89543\n",
"Epoch 142/500 total: 3.71818, -LL: 3.66506, prior: 0.79071, aleatoric unc.: 9.89198\n",
"Epoch 143/500 total: 3.70745, -LL: 3.66879, prior: 0.79167, aleatoric unc.: 9.87098\n",
"Epoch 144/500 total: 3.71752, -LL: 3.59973, prior: 0.79228, aleatoric unc.: 9.87335\n",
"Epoch 145/500 total: 3.71323, -LL: 3.68346, prior: 0.78821, aleatoric unc.: 9.86594\n",
"Epoch 146/500 total: 3.69810, -LL: 3.62257, prior: 0.79184, aleatoric unc.: 9.83553\n",
"Epoch 147/500 total: 3.70289, -LL: 3.60558, prior: 0.79325, aleatoric unc.: 9.81485\n",
"Epoch 148/500 total: 3.71252, -LL: 3.67221, prior: 0.79652, aleatoric unc.: 9.81311\n",
"Epoch 149/500 total: 3.73219, -LL: 3.57769, prior: 0.79471, aleatoric unc.: 9.85562\n",
"Epoch 150/500 total: 3.72208, -LL: 3.67267, prior: 0.78948, aleatoric unc.: 9.87345\n",
"Epoch 151/500 total: 3.71389, -LL: 3.65466, prior: 0.79006, aleatoric unc.: 9.87153\n",
"Epoch 152/500 total: 3.72419, -LL: 3.67915, prior: 0.79090, aleatoric unc.: 9.87917\n",
"Epoch 153/500 total: 3.71665, -LL: 3.62692, prior: 0.79997, aleatoric unc.: 9.88276\n",
"Epoch 154/500 total: 3.72019, -LL: 3.58589, prior: 0.79751, aleatoric unc.: 9.88690\n",
"Epoch 155/500 total: 3.71445, -LL: 3.61408, prior: 0.80268, aleatoric unc.: 9.88311\n",
"Epoch 156/500 total: 3.70221, -LL: 3.68263, prior: 0.80404, aleatoric unc.: 9.85331\n",
"Epoch 157/500 total: 3.70698, -LL: 3.70702, prior: 0.80339, aleatoric unc.: 9.83723\n",
"Epoch 158/500 total: 3.72310, -LL: 3.59278, prior: 0.80445, aleatoric unc.: 9.85699\n",
"Epoch 159/500 total: 3.71378, -LL: 3.73156, prior: 0.80416, aleatoric unc.: 9.85512\n",
"Epoch 160/500 total: 3.70706, -LL: 3.63655, prior: 0.80595, aleatoric unc.: 9.84014\n",
"Epoch 161/500 total: 3.71271, -LL: 3.57877, prior: 0.80410, aleatoric unc.: 9.84335\n",
"Epoch 162/500 total: 3.71768, -LL: 3.63120, prior: 0.80659, aleatoric unc.: 9.85032\n",
"Epoch 163/500 total: 3.71903, -LL: 3.65138, prior: 0.80638, aleatoric unc.: 9.85763\n",
"Epoch 164/500 total: 3.71713, -LL: 3.64704, prior: 0.80705, aleatoric unc.: 9.86186\n",
"Epoch 165/500 total: 3.71419, -LL: 3.64462, prior: 0.80874, aleatoric unc.: 9.86155\n",
"Epoch 166/500 total: 3.70272, -LL: 3.60857, prior: 0.80695, aleatoric unc.: 9.83837\n",
"Epoch 167/500 total: 3.71688, -LL: 3.60935, prior: 0.81090, aleatoric unc.: 9.84529\n",
"Epoch 168/500 total: 3.70292, -LL: 3.60577, prior: 0.80637, aleatoric unc.: 9.82553\n",
"Epoch 169/500 total: 3.71970, -LL: 3.63841, prior: 0.80866, aleatoric unc.: 9.83715\n",
"Epoch 170/500 total: 3.71758, -LL: 3.67275, prior: 0.81033, aleatoric unc.: 9.84604\n",
"Epoch 171/500 total: 3.72500, -LL: 3.59006, prior: 0.81392, aleatoric unc.: 9.86759\n",
"Epoch 172/500 total: 3.70126, -LL: 3.64450, prior: 0.81116, aleatoric unc.: 9.84247\n",
"Epoch 173/500 total: 3.72101, -LL: 3.64824, prior: 0.81156, aleatoric unc.: 9.84976\n",
"Epoch 174/500 total: 3.71152, -LL: 3.69934, prior: 0.81262, aleatoric unc.: 9.84919\n",
"Epoch 175/500 total: 3.71467, -LL: 3.68428, prior: 0.81517, aleatoric unc.: 9.85176\n",
"Epoch 176/500 total: 3.70291, -LL: 3.63773, prior: 0.81583, aleatoric unc.: 9.83082\n",
"Epoch 177/500 total: 3.70896, -LL: 3.66547, prior: 0.81045, aleatoric unc.: 9.82290\n",
"Epoch 178/500 total: 3.71117, -LL: 3.68764, prior: 0.81337, aleatoric unc.: 9.82000\n",
"Epoch 179/500 total: 3.70928, -LL: 3.61341, prior: 0.81607, aleatoric unc.: 9.81955\n",
"Epoch 180/500 total: 3.70466, -LL: 3.65554, prior: 0.81575, aleatoric unc.: 9.80751\n",
"Epoch 181/500 total: 3.70420, -LL: 3.64272, prior: 0.81693, aleatoric unc.: 9.79344\n",
"Epoch 182/500 total: 3.71046, -LL: 3.64984, prior: 0.81584, aleatoric unc.: 9.79500\n",
"Epoch 183/500 total: 3.71474, -LL: 3.66882, prior: 0.81325, aleatoric unc.: 9.80760\n",
"Epoch 184/500 total: 3.71527, -LL: 3.61031, prior: 0.81348, aleatoric unc.: 9.82014\n",
"Epoch 185/500 total: 3.70042, -LL: 3.66272, prior: 0.81257, aleatoric unc.: 9.80154\n",
"Epoch 186/500 total: 3.71282, -LL: 3.61934, prior: 0.81781, aleatoric unc.: 9.80770\n",
"Epoch 187/500 total: 3.71327, -LL: 3.67081, prior: 0.81615, aleatoric unc.: 9.81168\n",
"Epoch 188/500 total: 3.70315, -LL: 3.66320, prior: 0.81042, aleatoric unc.: 9.80011\n",
"Epoch 189/500 total: 3.69962, -LL: 3.63048, prior: 0.81293, aleatoric unc.: 9.78159\n",
"Epoch 190/500 total: 3.71830, -LL: 3.68563, prior: 0.81299, aleatoric unc.: 9.80476\n",
"Epoch 191/500 total: 3.71706, -LL: 3.64913, prior: 0.81458, aleatoric unc.: 9.81613\n",
"Epoch 192/500 total: 3.70988, -LL: 3.62455, prior: 0.81865, aleatoric unc.: 9.81723\n",
"Epoch 193/500 total: 3.70870, -LL: 3.63595, prior: 0.81586, aleatoric unc.: 9.81325\n",
"Epoch 194/500 total: 3.71062, -LL: 3.63609, prior: 0.81832, aleatoric unc.: 9.81209\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 195/500 total: 3.72410, -LL: 3.62442, prior: 0.81648, aleatoric unc.: 9.83962\n",
"Epoch 196/500 total: 3.71915, -LL: 3.66803, prior: 0.81624, aleatoric unc.: 9.84151\n",
"Epoch 197/500 total: 3.71432, -LL: 3.64483, prior: 0.81001, aleatoric unc.: 9.85190\n",
"Epoch 198/500 total: 3.71493, -LL: 3.59165, prior: 0.81170, aleatoric unc.: 9.85324\n",
"Epoch 199/500 total: 3.70331, -LL: 3.60793, prior: 0.80896, aleatoric unc.: 9.83340\n",
"Epoch 200/500 total: 3.70812, -LL: 3.59062, prior: 0.81499, aleatoric unc.: 9.82334\n",
"Epoch 201/500 total: 3.71478, -LL: 3.62452, prior: 0.81519, aleatoric unc.: 9.82977\n",
"Epoch 202/500 total: 3.71517, -LL: 3.56803, prior: 0.81508, aleatoric unc.: 9.83826\n",
"Epoch 203/500 total: 3.69960, -LL: 3.63084, prior: 0.81742, aleatoric unc.: 9.81023\n",
"Epoch 204/500 total: 3.70639, -LL: 3.66974, prior: 0.81871, aleatoric unc.: 9.80200\n",
"Epoch 205/500 total: 3.70826, -LL: 3.62572, prior: 0.81504, aleatoric unc.: 9.79858\n",
"Epoch 206/500 total: 3.71623, -LL: 3.64392, prior: 0.81659, aleatoric unc.: 9.81016\n",
"Epoch 207/500 total: 3.71774, -LL: 3.65070, prior: 0.81498, aleatoric unc.: 9.82834\n",
"Epoch 208/500 total: 3.69666, -LL: 3.65249, prior: 0.81455, aleatoric unc.: 9.79752\n",
"Epoch 209/500 total: 3.70594, -LL: 3.67450, prior: 0.81606, aleatoric unc.: 9.79126\n",
"Epoch 210/500 total: 3.69925, -LL: 3.68792, prior: 0.81400, aleatoric unc.: 9.77435\n",
"Epoch 211/500 total: 3.70082, -LL: 3.60530, prior: 0.81230, aleatoric unc.: 9.76606\n",
"Epoch 212/500 total: 3.71195, -LL: 3.64706, prior: 0.81609, aleatoric unc.: 9.77611\n",
"Epoch 213/500 total: 3.70414, -LL: 3.64134, prior: 0.81544, aleatoric unc.: 9.77201\n",
"Epoch 214/500 total: 3.71389, -LL: 3.63395, prior: 0.81622, aleatoric unc.: 9.78563\n",
"Epoch 215/500 total: 3.71683, -LL: 3.66099, prior: 0.81664, aleatoric unc.: 9.80171\n",
"Epoch 216/500 total: 3.72204, -LL: 3.66836, prior: 0.81515, aleatoric unc.: 9.82727\n",
"Epoch 217/500 total: 3.70703, -LL: 3.63465, prior: 0.81890, aleatoric unc.: 9.82033\n",
"Epoch 218/500 total: 3.70247, -LL: 3.71451, prior: 0.81721, aleatoric unc.: 9.80064\n",
"Epoch 219/500 total: 3.71433, -LL: 3.63672, prior: 0.82165, aleatoric unc.: 9.80686\n",
"Epoch 220/500 total: 3.70779, -LL: 3.61201, prior: 0.82151, aleatoric unc.: 9.80850\n",
"Epoch 221/500 total: 3.72726, -LL: 3.65804, prior: 0.82183, aleatoric unc.: 9.83772\n",
"Epoch 222/500 total: 3.71228, -LL: 3.65686, prior: 0.81864, aleatoric unc.: 9.84025\n",
"Epoch 223/500 total: 3.72339, -LL: 3.64982, prior: 0.82202, aleatoric unc.: 9.85690\n",
"Epoch 224/500 total: 3.70915, -LL: 3.63755, prior: 0.81988, aleatoric unc.: 9.85046\n",
"Epoch 225/500 total: 3.70552, -LL: 3.63990, prior: 0.82102, aleatoric unc.: 9.82943\n",
"Epoch 226/500 total: 3.70323, -LL: 3.64443, prior: 0.82060, aleatoric unc.: 9.81781\n",
"Epoch 227/500 total: 3.70019, -LL: 3.65555, prior: 0.82249, aleatoric unc.: 9.79478\n",
"Epoch 228/500 total: 3.71216, -LL: 3.69579, prior: 0.82333, aleatoric unc.: 9.79841\n",
"Epoch 229/500 total: 3.71140, -LL: 3.62137, prior: 0.82447, aleatoric unc.: 9.80692\n",
"Epoch 230/500 total: 3.70575, -LL: 3.64446, prior: 0.82529, aleatoric unc.: 9.79880\n",
"Epoch 231/500 total: 3.71456, -LL: 3.75829, prior: 0.82439, aleatoric unc.: 9.80728\n",
"Epoch 232/500 total: 3.70966, -LL: 3.63882, prior: 0.82492, aleatoric unc.: 9.80583\n",
"Epoch 233/500 total: 3.71351, -LL: 3.61270, prior: 0.82613, aleatoric unc.: 9.81784\n",
"Epoch 234/500 total: 3.70172, -LL: 3.62794, prior: 0.81822, aleatoric unc.: 9.79805\n",
"Epoch 235/500 total: 3.71109, -LL: 3.64488, prior: 0.82053, aleatoric unc.: 9.80066\n",
"Epoch 236/500 total: 3.70431, -LL: 3.62616, prior: 0.82161, aleatoric unc.: 9.78883\n",
"Epoch 237/500 total: 3.70279, -LL: 3.68337, prior: 0.82063, aleatoric unc.: 9.77969\n",
"Epoch 238/500 total: 3.71613, -LL: 3.67027, prior: 0.82166, aleatoric unc.: 9.79706\n",
"Epoch 239/500 total: 3.70064, -LL: 3.66745, prior: 0.82222, aleatoric unc.: 9.78118\n",
"Epoch 240/500 total: 3.70537, -LL: 3.60819, prior: 0.82710, aleatoric unc.: 9.77992\n",
"Epoch 241/500 total: 3.71476, -LL: 3.61006, prior: 0.82356, aleatoric unc.: 9.79421\n",
"Epoch 242/500 total: 3.71145, -LL: 3.64876, prior: 0.82434, aleatoric unc.: 9.79779\n",
"Epoch 243/500 total: 3.70802, -LL: 3.58574, prior: 0.82809, aleatoric unc.: 9.79796\n",
"Epoch 244/500 total: 3.70571, -LL: 3.65710, prior: 0.82588, aleatoric unc.: 9.79101\n",
"Epoch 245/500 total: 3.70188, -LL: 3.62964, prior: 0.82486, aleatoric unc.: 9.77658\n",
"Epoch 246/500 total: 3.72030, -LL: 3.63991, prior: 0.82122, aleatoric unc.: 9.80154\n",
"Epoch 247/500 total: 3.71523, -LL: 3.61676, prior: 0.82447, aleatoric unc.: 9.81099\n",
"Epoch 248/500 total: 3.71168, -LL: 3.59765, prior: 0.82207, aleatoric unc.: 9.81821\n",
"Epoch 249/500 total: 3.71399, -LL: 3.63747, prior: 0.82239, aleatoric unc.: 9.82253\n",
"Epoch 250/500 total: 3.70465, -LL: 3.64624, prior: 0.82184, aleatoric unc.: 9.81008\n",
"Epoch 251/500 total: 3.69921, -LL: 3.60426, prior: 0.82150, aleatoric unc.: 9.78902\n",
"Epoch 252/500 total: 3.71118, -LL: 3.67592, prior: 0.82288, aleatoric unc.: 9.79504\n",
"Epoch 253/500 total: 3.70237, -LL: 3.62898, prior: 0.82680, aleatoric unc.: 9.78291\n",
"Epoch 254/500 total: 3.70794, -LL: 3.64745, prior: 0.82541, aleatoric unc.: 9.78084\n",
"Epoch 255/500 total: 3.70302, -LL: 3.62780, prior: 0.82535, aleatoric unc.: 9.77530\n",
"Epoch 256/500 total: 3.71729, -LL: 3.63795, prior: 0.82601, aleatoric unc.: 9.79276\n",
"Epoch 257/500 total: 3.70993, -LL: 3.63274, prior: 0.82741, aleatoric unc.: 9.79693\n",
"Epoch 258/500 total: 3.71243, -LL: 3.65305, prior: 0.82601, aleatoric unc.: 9.80389\n",
"Epoch 259/500 total: 3.70296, -LL: 3.64940, prior: 0.82313, aleatoric unc.: 9.79133\n",
"Epoch 260/500 total: 3.71093, -LL: 3.59715, prior: 0.82558, aleatoric unc.: 9.79233\n",
"Epoch 261/500 total: 3.71045, -LL: 3.63395, prior: 0.82771, aleatoric unc.: 9.79831\n",
"Epoch 262/500 total: 3.69963, -LL: 3.67210, prior: 0.82712, aleatoric unc.: 9.77961\n",
"Epoch 263/500 total: 3.71113, -LL: 3.65016, prior: 0.82726, aleatoric unc.: 9.78695\n",
"Epoch 264/500 total: 3.70665, -LL: 3.60633, prior: 0.83064, aleatoric unc.: 9.78443\n",
"Epoch 265/500 total: 3.71054, -LL: 3.65116, prior: 0.83137, aleatoric unc.: 9.79059\n",
"Epoch 266/500 total: 3.69886, -LL: 3.60721, prior: 0.83100, aleatoric unc.: 9.77077\n",
"Epoch 267/500 total: 3.70686, -LL: 3.65023, prior: 0.83398, aleatoric unc.: 9.77222\n",
"Epoch 268/500 total: 3.69995, -LL: 3.71522, prior: 0.83159, aleatoric unc.: 9.75908\n",
"Epoch 269/500 total: 3.70539, -LL: 3.64799, prior: 0.83221, aleatoric unc.: 9.75858\n",
"Epoch 270/500 total: 3.70420, -LL: 3.63578, prior: 0.83041, aleatoric unc.: 9.75445\n",
"Epoch 271/500 total: 3.70999, -LL: 3.68182, prior: 0.82908, aleatoric unc.: 9.76730\n",
"Epoch 272/500 total: 3.70793, -LL: 3.63381, prior: 0.83376, aleatoric unc.: 9.76915\n",
"Epoch 273/500 total: 3.70842, -LL: 3.64926, prior: 0.83353, aleatoric unc.: 9.77610\n",
"Epoch 274/500 total: 3.70973, -LL: 3.62482, prior: 0.83395, aleatoric unc.: 9.77950\n",
"Epoch 275/500 total: 3.71090, -LL: 3.60236, prior: 0.83533, aleatoric unc.: 9.78900\n",
"Epoch 276/500 total: 3.70221, -LL: 3.67710, prior: 0.83294, aleatoric unc.: 9.77734\n",
"Epoch 277/500 total: 3.70494, -LL: 3.64316, prior: 0.83875, aleatoric unc.: 9.77393\n",
"Epoch 278/500 total: 3.71155, -LL: 3.61530, prior: 0.83769, aleatoric unc.: 9.78493\n",
"Epoch 279/500 total: 3.72149, -LL: 3.63981, prior: 0.83667, aleatoric unc.: 9.81001\n",
"Epoch 280/500 total: 3.70467, -LL: 3.62610, prior: 0.83533, aleatoric unc.: 9.80246\n",
"Epoch 281/500 total: 3.70502, -LL: 3.66885, prior: 0.83573, aleatoric unc.: 9.79123\n",
"Epoch 282/500 total: 3.70405, -LL: 3.63700, prior: 0.83748, aleatoric unc.: 9.78283\n",
"Epoch 283/500 total: 3.70889, -LL: 3.63902, prior: 0.83531, aleatoric unc.: 9.78254\n",
"Epoch 284/500 total: 3.71741, -LL: 3.60456, prior: 0.83570, aleatoric unc.: 9.80172\n",
"Epoch 285/500 total: 3.71138, -LL: 3.68161, prior: 0.83478, aleatoric unc.: 9.80546\n",
"Epoch 286/500 total: 3.70675, -LL: 3.59507, prior: 0.83560, aleatoric unc.: 9.80310\n",
"Epoch 287/500 total: 3.70698, -LL: 3.61376, prior: 0.83594, aleatoric unc.: 9.79633\n",
"Epoch 288/500 total: 3.70635, -LL: 3.60290, prior: 0.83656, aleatoric unc.: 9.78862\n",
"Epoch 289/500 total: 3.71560, -LL: 3.64837, prior: 0.83419, aleatoric unc.: 9.80237\n",
"Epoch 290/500 total: 3.70476, -LL: 3.65473, prior: 0.83240, aleatoric unc.: 9.79643\n",
"Epoch 291/500 total: 3.70503, -LL: 3.67415, prior: 0.83116, aleatoric unc.: 9.78742\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 292/500 total: 3.69757, -LL: 3.58311, prior: 0.82735, aleatoric unc.: 9.77046\n",
"Epoch 293/500 total: 3.70371, -LL: 3.64588, prior: 0.82783, aleatoric unc.: 9.76296\n",