Skip to content
Snippets Groups Projects
cfel_vtk.py 20.9 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
#    This file is part of cfelpyutils.
#
#    cfelpyutils is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    cfelpyutils is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with cfelpyutils.  If not, see <http://www.gnu.org/licenses/>.
"""
Utilities for 3d data visualization using the Visualization Toolkit (VTK).
"""
import numpy
import vtk

VTK_VERSION = vtk.vtkVersion().GetVTKMajorVersion()


def get_lookup_table(minimum_value, maximum_value, log=False, colorscale="jet", number_of_colors=1000):
    """Create a vtkLookupTable with a specified range, and colorscale.

    Args:
        minimum_value (float): Lowest value the lookup table can display, lower values will be displayed as this value
        maximum_value (float): Highest value the lookup table can display, higher values will be displayed as this value
        log (Optional[bool]): True if the scale is logarithmic
        colorscale (Optional[string]): Accepts the name of any matplotlib colorscale. The lookuptable will
            replicate this scale.
        number_of_colors (Optional[int]): The length of the table. Higher values corresponds to a smoother color scale.

    Returns:
        lookup_table (vtk.vtkLookupTable): A vtk lookup table
    """

    import matplotlib
    import matplotlib.cm
    if log:
        lut = vtk.vtkLogLookupTable()
    else:
        lut = vtk.vtkLookupTable()
    lut.SetTableRange(minimum_value, maximum_value)
    lut.SetNumberOfColors(number_of_colors)
    lut.Build()
    for i in range(number_of_colors):
        color = matplotlib.cm.cmap_d[colorscale](float(i) / float(number_of_colors))
        lut.SetTableValue(i, color[0], color[1], color[2], 1.)
    lut.SetUseBelowRangeColor(True)
    lut.SetUseAboveRangeColor(True)
    return lut


def array_to_float_array(array_in, dtype=None):
    """Convert a numpy array into a vtkFloatArray of vtkDoubleArray, depending on the type of the input.
    This flattens the array and thus the shape is lost.

    Args:
        array_in (numpy.ndarray): The array to convert.
        dtype (Optional[type]): Optionaly convert the array to the specified data. Otherwise the original
            type will be preserved.

    Returns:
        float_array (vtk.vtkFloatArray): A float array of the specified type.
    """
    if dtype is None:
        dtype = array_in.dtype
    if dtype == "float32":
        float_array = vtk.vtkFloatArray()
    elif dtype == "float64":
        float_array = vtk.vtkDoubleArray()
    else:
        raise ValueError("Wrong format of input array, must be float32 or float64")
    if len(array_in.shape) == 2:
        float_array.SetNumberOfComponents(array_in.shape[1])
    elif len(array_in.shape) == 1:
        float_array.SetNumberOfComponents(1)
    else:
        raise ValueError("Wrong shape of array must be 1D or 2D.")
    float_array.SetVoidArray(numpy.ascontiguousarray(array_in, dtype), numpy.product(array_in.shape), 1)
    return float_array


def array_to_vtk(array_in, dtype=None):
    """Convert a numpy array into a vtk array of the specified type. This flattens the array and thus the shape is lost.

    Args:
        array_in (numpy.ndarray): The array to convert.
        dtype (Optional[type]): Optionaly convert the array to the specified data. Otherwise the original type
            will be preserved.

    Returns:
        vtk_array (vtk.vtkFloatArray): A float array of the specified type.
    """
    if dtype is None:
        dtype = numpy.dtype(array_in.dtype)
    else:
        dtype = numpy.dtype(dtype)
    if dtype == numpy.float32:
        vtk_array = vtk.vtkFloatArray()
    elif dtype == numpy.float64:
        vtk_array = vtk.vtkDoubleArray()
    elif dtype == numpy.uint8:
        vtk_array = vtk.vtkUnsignedCharArray()
    elif dtype == numpy.int8:
        vtk_array = vtk.vtkCharArray()
    else:
        raise ValueError("Wrong format of input array, must be float32 or float64")
    if len(array_in.shape) != 1 and len(array_in.shape) != 2:
        raise ValueError("Wrong shape: array must be 1D")
    vtk_array.SetNumberOfComponents(1)
    vtk_array.SetVoidArray(numpy.ascontiguousarray(array_in.flatten(), dtype), numpy.product(array_in.shape), 1)
    return vtk_array


def array_to_image_data(array_in, dtype=None):
    """Convert a numpy array to vtkImageData. Image data is a 3D object, thus the input must be 3D.

    Args:
        array_in (numpy.ndarray): Array to convert to vtkImageData. Must be 3D.
        dtype (Optional[type]): Optionaly convert the array to the specified data. Otherwise the original
            type will be preserved.

    Returns:
        image_data (vtk.vtkImageData): Image data containing the data from the array.
    """
    if len(array_in.shape) != 3:
        raise ValueError("Array must be 3D for conversion to vtkImageData")
    array_flat = array_in.flatten()
    float_array = array_to_float_array(array_flat, dtype)
    image_data = vtk.vtkImageData()
    image_data.SetDimensions(*array_in.shape)
    image_data.GetPointData().SetScalars(float_array)
    return image_data


def window_to_png(render_window, file_name, magnification=1):
    """Take a screen shot of a specific vt render window and save it to file.

    Args:
        render_window (vtk.vtkRenderWindow): The render window window to capture.
        file_name (string): A png file with this name will be created from the provided window.
        magnification (Optional[int]): Increase the resolution of the output file by this factor
    """
    magnification = int(magnification)
    window_to_image_filter = vtk.vtkWindowToImageFilter()
    window_to_image_filter.SetInput(render_window)
    window_to_image_filter.SetMagnification(magnification)
    window_to_image_filter.SetInputBufferTypeToRGBA()
    window_to_image_filter.Update()

    writer = vtk.vtkPNGWriter()
    writer.SetFileName(file_name)
    writer.SetInputConnection(window_to_image_filter.GetOutputPort())
    writer.Write()


def poly_data_to_actor(poly_data, lut):
    """Create a vtkActor from a vtkPolyData. This circumvents the need to create a vtkMapper by internally
    using a very basic vtkMapper

    Args:
        poly_data (vtk.vtkPolyData): vtkPolyData object.
        lut (vtk.vtkLookupTable): The vtkLookupTable specifies the colorscale to use for the maper.

    Returns:
        actor (vtk.vtkActor): Actor to display the provided vtkPolyData
    """
    mapper = vtk.vtkPolyDataMapper()
    mapper.SetInputData(poly_data)
    mapper.SetLookupTable(lut)
    mapper.SetUseLookupTableScalarRange(True)
    actor = vtk.vtkActor()
    actor.SetMapper(mapper)
    return actor


class IsoSurface(object):
    """Create and plot isosurfaces.

    Args:
        volume (numpy.ndimage): 3D floating point array.
        level (float or list of float): The threshold level for the isosurface, or a list of such levels.
    """
    def __init__(self, volume, level=None):
        self._surface_algorithm = None
        self._renderer = None
        self._actor = None
        self._mapper = None
        self._volume_array = None

        self._float_array = vtk.vtkFloatArray()
        self._image_data = vtk.vtkImageData()
        self._image_data.GetPointData().SetScalars(self._float_array)
        self._setup_data(volume)

        self._surface_algorithm = vtk.vtkMarchingCubes()
        self._surface_algorithm.SetInputData(self._image_data)
        self._surface_algorithm.ComputeNormalsOn()

        if level is not None:
            try:
                self.set_multiple_levels(iter(level))
            except TypeError:
                self.set_level(0, level)

        self._mapper = vtk.vtkPolyDataMapper()
        self._mapper.SetInputConnection(self._surface_algorithm.GetOutputPort())
        self._mapper.ScalarVisibilityOn()
        self._actor = vtk.vtkActor()
        self._actor.SetMapper(self._mapper)

    def _setup_data(self, volume):
        """Create the numpy array self._volume_array and vtk array self._float_array and make them share data.

        Args:
            volume (numpy.ndimage): This data will populate both the created numpy and vtk objects.
        """
        self._volume_array = numpy.zeros(volume.shape, dtype="float32", order="C")
        self._volume_array[:] = volume
        self._float_array.SetNumberOfValues(numpy.product(volume.shape))
        self._float_array.SetNumberOfComponents(1)
        self._float_array.SetVoidArray(self._volume_array, numpy.product(volume.shape), 1)
        self._image_data.SetDimensions(*self._volume_array.shape)

    def set_renderer(self, renderer):
        """Set the renderer of the isosurface and remove any existing renderer.

        Args:
            renderer (vtk.vtkRenderer): Give this renderer controll over all the surface actors.
        """
        if self._actor is None:
            raise RuntimeError("Actor does not exist.")
        if self._renderer is not None:
            self._renderer.RemoveActor(self._actor)
        self._renderer = renderer
        self._renderer.AddActor(self._actor)

    def set_multiple_levels(self, levels):
        """Remova any current surface levels and add the ones from the provided list.

        Args:
            levels (list of float): Levels for the isosurface, in absolute values (not e.g. ratios)
        """
        self._surface_algorithm.SetNumberOfContours(0)
        for index, this_level in enumerate(levels):
            self._surface_algorithm.SetValue(index, this_level)
        self._render()

    def get_levels(self):
        """Return a list of the current surface levels.

        Returns:
            levels (list of floats): The current surface levels.
        """
        return [self._surface_algorithm.GetValue(index)
                for index in range(self._surface_algorithm.GetNumberOfContours())]

    def add_level(self, level):
        """Add a single surface level.

        Args:
            level (float): The level of the new surface.
        """
        self._surface_algorithm.SetValue(self._surface_algorithm.GetNumberOfContours(), level)
        self._render()

    def remove_level(self, index):
        """Remove a singel surface level at the provided index.

        Args:
            index (int): The index of the level. If levels were added one by one this corresponds
                to the order in which they were added.
        """
        for index in range(index, self._surface_algorithm.GetNumberOfContours()-1):
            self._surface_algorithm.SetValue(index, self._surface_algorithm.GetValue(index+1))
        self._surface_algorithm.SetNumberOfContours(self._surface_algorithm.GetNumberOfContours()-1)
        self._render()

    def set_level(self, index, level):
        """Change the value of an existing surface level.

        Args:
            index (int): The index of the level to change. If levels were added one by one this corresponds to
                the order in which they were added.
            level (float): The new level of the surface.
        """
        self._surface_algorithm.SetValue(index, level)
        self._render()

    def set_cmap(self, cmap):
        """Set the colormap. The color is a function of surface level and mainly of relevance when plotting multiple surfaces.

        Args:
            cmap (string): Name of the colormap to use. Supports all colormaps provided by matplotlib.
        """
        self._mapper.ScalarVisibilityOn()
        self._mapper.SetLookupTable(get_lookup_table(self._volume_array.min(), self._volume_array.max(),
                                                     colorscale=cmap))
        self._render()

    def set_color(self, color):
        """Plot all surfaces in this provided color.

        Args:
            color (length 3 iterable): The RGB value of the color.
        """
        self._mapper.ScalarVisibilityOff()
        self._actor.GetProperty().SetColor(color[0], color[1], color[2])
        self._render()

    def set_opacity(self, opacity):
        """Set the opacity of all surfaces. (seting it individually for each surface is not supported)

        Args:
            opacity (float): Value between 0. and 1. where 0. is completely transparent and 1. is completely opaque.
        """
        self._actor.GetProperty().SetOpacity(opacity)
        self._render()

    def _render(self):
        """Render if a renderer is set, otherwise do nothing."""
        if self._renderer is not None:
            self._renderer.GetRenderWindow().Render()

    def set_data(self, volume):
        """Change the data displayed.

        Args:
            volume (numpy.ndarray): The new array. Must have the same shape as the old array."""
        if volume.shape != self._volume_array.shape:
            raise ValueError("New volume must be the same shape as the old one")
        self._volume_array[:] = volume
        self._float_array.Modified()
        self._render()


def plot_isosurface(volume, level=None, opacity=1.):
    """Plot isosurfaces of the provided module.

    Args:
        volume (numpy.ndarray): The 3D numpy array that will be plotted.
        level (float or list of floats): Levels can be iterable or singel value.
        opacity (float): Float between 0. and 1. where 0. is completely transparent and 1. is completely opaque.
    """

    surface_object = IsoSurface(volume, level)
    surface_object.set_opacity(opacity)

    renderer = vtk.vtkRenderer()
    if opacity != 1.:
        renderer.SetUseDepthPeeling(True)
    render_window = vtk.vtkRenderWindow()
    render_window.AddRenderer(renderer)
    interactor = vtk.vtkRenderWindowInteractor()
    interactor.SetRenderWindow(render_window)
    interactor.SetInteractorStyle(vtk.vtkInteractorStyleRubberBandPick())

    surface_object.set_renderer(renderer)

    renderer.SetBackground(0., 0., 0.)
    render_window.SetSize(800, 800)
    interactor.Initialize()
    render_window.Render()
    interactor.Start()


def plot_planes(array_in, log=False, cmap=None):
    """Plot the volume at two interactive planes that cut the volume.

    Args:
        array_in (numpy.ndarray): Input array must be 3D.
        log (bool): If true the data will be plotted in logarithmic scale.
        cmap (string): Name of the colormap to use. Supports all colormaps provided by matplotlib.
    """
    array_in = numpy.float64(array_in)
    renderer = vtk.vtkRenderer()
    render_window = vtk.vtkRenderWindow()
    render_window.AddRenderer(renderer)
    interactor = vtk.vtkRenderWindowInteractor()
    interactor.SetRenderWindow(render_window)
    interactor.SetInteractorStyle(vtk.vtkInteractorStyleRubberBandPick())

    if cmap is None:
        import matplotlib as _matplotlib
        cmap = _matplotlib.rcParams["image.cmap"]
    lut = get_lookup_table(max(0., array_in.min()), array_in.max(), log=log, colorscale=cmap)
    picker = vtk.vtkCellPicker()
    picker.SetTolerance(0.005)

    image_data = array_to_image_data(array_in)

    def setup_plane():
        """Create and setup a singel plane."""
        plane = vtk.vtkImagePlaneWidget()
        if VTK_VERSION >= 6:
            plane.SetInputData(image_data)
        else:
            plane.SetInput(image_data)
        plane.UserControlledLookupTableOn()
        plane.SetLookupTable(lut)
        plane.DisplayTextOn()
        plane.SetPicker(picker)
        plane.SetLeftButtonAction(1)
        plane.SetMiddleButtonAction(2)
        plane.SetRightButtonAction(0)
        plane.SetInteractor(interactor)
        return plane

    plane_1 = setup_plane()
    plane_1.SetPlaneOrientationToXAxes()
    plane_1.SetSliceIndex(array_in.shape[0]//2)
    plane_1.SetEnabled(1)
    plane_2 = setup_plane()
    plane_2.SetPlaneOrientationToYAxes()
    plane_2.SetSliceIndex(array_in.shape[1]//2)
    plane_2.SetEnabled(1)

    renderer.SetBackground(0., 0., 0.)
    render_window.SetSize(800, 800)
    interactor.Initialize()
    render_window.Render()
    interactor.Start()


def setup_window(size=(400, 400), background=(1., 1., 1.)):
    """Create a renderer, render_window and interactor and setup connections between them.

    Args:
        size (Optional[length 2 iterable of int]): The size of the window in pixels.
        background (Optional[length 3 iterable of float]): RGB value of the background color.

    Returns:
        renderer (vtk.vtkRenderer): A standard renderer connected to the window.
        render_window (vtk.vtkRenderWindow): With dimensions given in the arguments, or oterwise 400x400 pixels.
        interactor (vtk.vtkRenderWindowInteractor): The interactor will be given the rubber band pick interactor style.
    """
    renderer = vtk.vtkRenderer()
    render_window = vtk.vtkRenderWindow()
    render_window.AddRenderer(renderer)
    interactor = vtk.vtkRenderWindowInteractor()
    interactor.SetInteractorStyle(vtk.vtkInteractorStyleRubberBandPick())
    interactor.SetRenderWindow(render_window)

    renderer.SetBackground(background[0], background[1], background[2])
    render_window.SetSize(size[0], size[1])

    interactor.Initialize()
    render_window.Render()
    return renderer, render_window, interactor


def scatterplot_3d(data, color=None, point_size=None, cmap="jet", point_shape=None):
    """3D scatter plot.

    Args:
        data (numpy.ndimage): The array must have shape Nx3 where N is the number of points.

        color (Optional[numpy.ndimage]): 1D Array of floating points with same length as the data array.
            These numbers give the color of each point.
        point_size (Optional[float]): The size of each points. Behaves differently depending on the point_shape.
            If shape is spheres the size is relative to the scene and if squares the size is relative to the window.
        point_shape (Optional["spheres" or "squares"]): "spheres" plots each point as a sphere, recommended for
            small data sets. "squares" plot each point as a square without any 3D structure, recommended for
            large data sets.
    """
    if len(data.shape) != 2 or data.shape[1] != 3:
        raise ValueError("data must have shape (n, 3) where n is the number of points.")
    if point_shape is None:
        if len(data) <= 1000:
            point_shape = "spheres"
        else:
            point_shape = "squares"
    data = numpy.float32(data)
    data_vtk = array_to_float_array(data)
    point_data = vtk.vtkPoints()
    point_data.SetData(data_vtk)
    points_poly_data = vtk.vtkPolyData()
    points_poly_data.SetPoints(point_data)

    if color is not None:
        lut = get_lookup_table(color.min(), color.max())
        color_scalars = array_to_vtk(numpy.float32(color.copy()))
        color_scalars.SetLookupTable(lut)
        points_poly_data.GetPointData().SetScalars(color_scalars)

    if point_shape == "spheres":
        if point_size is None:
            point_size = numpy.array(data).std() / len(data)**(1./3.) / 3.
        glyph_filter = vtk.vtkGlyph3D()
        glyph_filter.SetInputData(points_poly_data)
        sphere_source = vtk.vtkSphereSource()
        sphere_source.SetRadius(point_size)
        glyph_filter.SetSourceConnection(sphere_source.GetOutputPort())
        glyph_filter.SetScaleModeToDataScalingOff()
        if color is not None:
            glyph_filter.SetColorModeToColorByScalar()
        else:
            glyph_filter.SetColorMode(0)
        glyph_filter.Update()
    elif point_shape == "squares":
        if point_size is None:
            point_size = 3
        glyph_filter = vtk.vtkVertexGlyphFilter()
        glyph_filter.SetInputData(points_poly_data)
        glyph_filter.Update()
    else:
        raise ValueError("{0} is not a valid entry for points".format(point_shape))

    poly_data = vtk.vtkPolyData()
    poly_data.ShallowCopy(glyph_filter.GetOutput())

    renderer, render_window, interactor = setup_window()

    mapper = vtk.vtkPolyDataMapper()
    mapper.SetInputData(poly_data)
    if color is not None:
        mapper.SetLookupTable(lut)
        mapper.SetUseLookupTableScalarRange(True)

    points_actor = vtk.vtkActor()
    points_actor.SetMapper(mapper)
    points_actor.GetProperty().SetPointSize(point_size)
    points_actor.GetProperty().SetColor(0., 0., 0.)

    axes_actor = vtk.vtkCubeAxesActor()
    axes_actor.SetBounds(points_actor.GetBounds())
    axes_actor.SetCamera(renderer.GetActiveCamera())
    axes_actor.SetFlyModeToStaticTriad()
    axes_actor.GetXAxesLinesProperty().SetColor(0., 0., 0.)
    axes_actor.GetYAxesLinesProperty().SetColor(0., 0., 0.)
    axes_actor.GetZAxesLinesProperty().SetColor(0., 0., 0.)
    for i in range(3):
        axes_actor.GetLabelTextProperty(i).SetColor(0., 0., 0.)
        axes_actor.GetTitleTextProperty(i).SetColor(0., 0., 0.)

    renderer.AddActor(points_actor)
    renderer.AddActor(axes_actor)

    render_window.Render()
    interactor.Start()