Skip to content
Snippets Groups Projects
Commit 836abf74 authored by Valerio Mariani's avatar Valerio Mariani
Browse files

Fixed a few syntax problems and did some code cleanup

parent 8f35033b
No related branches found
No related tags found
No related merge requests found
This diff is collapsed.
......@@ -15,8 +15,8 @@
"""
Geometry utilities.
Functions that load, manipulate and apply geometry information to detector
pixel data.
Functions that load, manipulate and apply geometry information to
detector pixel data.
"""
from __future__ import (absolute_import, division, print_function,
......@@ -27,63 +27,58 @@ import collections
import numpy
PixelMaps = collections.namedtuple('PixelMaps', ['x', 'y', 'r'])
'''A namedtuple used for pixel maps objects.
Pixel maps are arrays of the same shape of the data whose geometry they
describe. Each cell in the array holds the coordinate, in the reference system
of the physical detector, of the corresponding pixel in the data array.
The first two fields store the pixel maps for the x coordinate
and the y coordinate respectively. The third field is instead a pixel map
storing the distance of each pixel in the data array from the center of the
reference system.
'''
def compute_pixel_maps(geometry):
"""Compute pixel maps from a CrystFEL geometry object.
"""
Compute pixel maps from a CrystFEL geometry object.
Take as input a CrystFEL-style geometry object (A dictionary
returned by the function load_crystfel_geometry function in the
crystfel_utils module) and return a PixelMap tuple . The origin
the reference system used by the pixel maps is set at the beam interaction
point.
crystfel_utils module) and return a PixelMap tuple . The origin the
reference system used by the pixel maps is set at the beam
interaction point.
Args:
geometry (dict): A CrystFEL geometry object (A dictionary returned by
the :obj:`cfelpyutils.crystfel_utils.load_crystfel_geometry`
geometry (dict): A CrystFEL geometry object (A dictionary
returned by the
:obj:`cfelpyutils.crystfel_utils.load_crystfel_geometry`
function).
Returns:
PixelMaps: a PixelMaps tuple.
Tuple[ndarray, ndarray, ndarray] A tuple containing the pixel
maps. The first two fields, named "x" and "y" respectively,
store the pixel maps for the x coordinate and the y coordinate.
The third field, named "r", is instead a pixel map storing the
distance of each pixel in the data array from the center of the
reference system.
"""
# Determine the max fs and ss in the geometry object.
max_slab_fs = numpy.array(
[geometry['panels'][k]['max_fs'] for k in geometry['panels']]
).max()
max_slab_ss = numpy.array(
[geometry['panels'][k]['max_ss'] for k in geometry['panels']]
).max()
# Create the empty arrays that will store the pixel maps.
max_slab_fs = numpy.array([
geometry['panels'][k]['max_fs']
for k in geometry['panels']
]).max()
max_slab_ss = numpy.array([
geometry['panels'][k]['max_ss']
for k in geometry['panels']
]).max()
# Create empty arrays, of the same size of the input data, that
# will store the x and y pixel maps.
x_map = numpy.zeros(
shape=(max_slab_ss + 1, max_slab_fs + 1),
dtype=numpy.float32
)
y_map = numpy.zeros(
shape=(max_slab_ss + 1, max_slab_fs + 1),
dtype=numpy.float32
)
# Iterate over the panels.
# Iterate over the panels. For each panel, determine the pixel
# indeces, then compute the x,y vectors using a comples notation.
for pan in geometry['panels']:
# Determine the pixel indexes for the current panel.
i, j = numpy.meshgrid(
numpy.arange(
geometry['panels'][pan]['max_ss'] -
......@@ -98,46 +93,43 @@ def compute_pixel_maps(geometry):
indexing='ij'
)
# Compute the x,y vectors, using the complex notation.
d_x = (
geometry['panels'][pan]['fsy'] +
1J * geometry['panels'][pan]['fsx']
)
d_y = (
geometry['panels'][pan]['ssy'] +
1J * geometry['panels'][pan]['ssx']
)
r_0 = (
geometry['panels'][pan]['cny'] +
1J * geometry['panels'][pan]['cnx']
)
d_x = (geometry['panels'][pan]['fsy'] +
1J * geometry['panels'][pan]['fsx'])
d_y = (geometry['panels'][pan]['ssy'] +
1J * geometry['panels'][pan]['ssx'])
r_0 = (geometry['panels'][pan]['cny'] +
1J * geometry['panels'][pan]['cnx'])
cmplx = i * d_y + j * d_x + r_0
# Compute values for the x and y maps.
y_map[
x_map[
geometry['panels'][pan]['min_ss']:
geometry['panels'][pan]['max_ss'] + 1,
geometry['panels'][pan]['min_fs']:
geometry['panels'][pan]['max_fs'] + 1
] = cmplx.real
] = cmplx.imag
x_map[
y_map[
geometry['panels'][pan]['min_ss']:
geometry['panels'][pan]['max_ss'] + 1,
geometry['panels'][pan]['min_fs']:
geometry['panels'][pan]['max_fs'] + 1
] = cmplx.imag
] = cmplx.real
# Compute the values for the radius pixel map.
# Finally, compute the values for the radius pixel map.
r_map = numpy.sqrt(numpy.square(x_map) + numpy.square(y_map))
# Return the pixel maps as a tuple.
PixelMaps = collections.namedtuple(
typename='PixelMaps',
field_names=['x', 'y', 'r']
)
return PixelMaps(x_map, y_map, r_map)
def apply_pixel_maps(data, pixel_maps, output_array=None):
"""Apply geometry in pixel map format to the input data.
"""
Apply geometry in pixel map format to the input data.
Turn an array of detector pixel values into an array
containing a representation of the physical layout of the detector.
......@@ -150,20 +142,19 @@ def apply_pixel_maps(data, pixel_maps, output_array=None):
pixel_maps (PixelMaps): a pixelmap tuple, as returned by the
:obj:`compute_pixel_maps` function in this module.
output_array (Optional[ndarray]): a preallocated array (of dtype
numpy.float32) to store the function output. If provided, this
array will be filled by the function and returned to the user.
If not provided, the function will create a new array
automatically and return it to the user. Defaults to None
(No array provided).
output_array (Optional[ndarray]): a preallocated array (of
dtype numpy.float32) to store the function output. If
provided, this array will be filled by the function and
and returned to the user. If not provided, the function
will create a new array automatically and return it to the
user. Defaults to None (No array provided).
Returns:
ndarray: a numpy.float32 array containing the geometry information
applied to the input data (i.e.: a physical representation of the
layout of the detector).
ndarray: a numpy.float32 array containing the geometry
information applied to the input data (i.e.: a representation
of the physical layout of the detector).
"""
# If no output array was provided, create one.
if output_array is None:
output_array = numpy.zeros(
......@@ -171,70 +162,83 @@ def apply_pixel_maps(data, pixel_maps, output_array=None):
dtype=numpy.float32
)
# Apply the pixel map geometry information the data.
# Apply the pixel map geometry information the data, then return
# the resulting array.
output_array[pixel_maps.y, pixel_maps.x] = data.ravel()
# Return the output array.
return output_array
def compute_minimum_array_size(pixel_maps):
"""
Compute the minimum size of an array that can store the applied geometry.
Compute the minimum size of an array that can store the applied
geometry.
Return the minimum size of an array that can store data on which the
geometry information described by the pixel maps has been applied.
Return the minimum size of an array that can store data on which
the geometry information described by the pixel maps has been
applied.
The returned array shape is big enough to display all the input pixel
values in the reference system of the physical detector. The array is
supposed to be centered at the center of the reference system of the
detector (i.e: the beam interaction point).
The returned array shape is big enough to display all the input
pixel values in the reference system of the physical detector. The
array is supposed to be centered at the center of the reference
system of the detector (i.e: the beam interaction point).
Args:
pixel_maps (PixelMaps): a PixelMaps tuple, as returned by the
:obj:`compute_pixel_maps` function in this module.
Tuple[ndarray, ndarray, ndarray]: a named tuple containing the
pixel maps. The first two fields, "x" and "y", should store
the pixel maps for the x coordinateand the y coordinate.
The third, "r", should instead store the distance of each
pixel in the data array from the center of the reference
system.
Returns:
tuple: numpy shape-like tuple storing the minimum array size.
Tuple[int, int]: a numpy-style shape tuple storing the minimum
array size.
"""
# Recover the x and y pixel maps.
# Find the largest absolute values of x and y in the maps. Since
# the returned array is centered on the origin, the minimum array
# size along a certain axis must be at least twice the maximum
# value for that axis. 2 pixels are added for good measure.
x_map, y_map = pixel_maps.x, pixel_maps.x.y
y_minimum = 2 * int(max(abs(y_map.max()), abs(y_map.min()))) + 2
x_minimum = 2 * int(max(abs(x_map.max()), abs(x_map.min()))) + 2
# Find the largest absolute values of x and y in the maps.
y_largest = 2 * int(max(abs(y_map.max()), abs(y_map.min()))) + 2
x_largest = 2 * int(max(abs(x_map.max()), abs(x_map.min()))) + 2
# Return a tuple with the computed shape.
return (y_largest, x_largest)
# Return a numpy-style tuple with the computed shape.
return (y_minimum, x_minimum)
def adjust_pixel_maps_for_pyqtgraph(pixel_maps):
"""
Adjust pixel maps for visualization of the data in a pyqtgraph widget.
Adjust pixel maps for visualization of the data in a pyqtgraph
widget.
The adjusted maps can be used for a Pyqtgraph ImageView widget.
Essentially, the origin of the reference system is moved to the
top-left of the image.
Args:
pixel_maps (PixelMaps): pixel maps, as returned by the
:obj:`compute_pixel_maps` function in this module.
Tuple[ndarray, ndarray, ndarray]: a named tuple containing the
pixel maps. The first two fields, "x" and "y", should store the
pixel maps for the x coordinateand the y coordinate. The third,
"r", should instead store the distance of each pixel in the
data array from the center of the reference system.
Returns:
PixelMaps: a PixelMaps tuple containing the ajusted pixel maps for
the x and y coordinates in the first two fields, and the
value None in the third.
Tuple[ndarray, ndarray] A tuple containing the pixel
maps. The first two fields, named "x" and "y" respectively,
store the pixel maps for the x coordinate and the y
coordinate. The third field, named "r", is instead a pixel
map storing the distance of each pixel in the data array
from the center of the reference system.
"""
# Compute the minimum image shape needed to represent the coordinates.
# Essentially, the origin of the reference system needs to be
# moved from the beam position to the top-left of the image that
# will be displayed. First, compute the size of the array used to
# display the data, then use this information to estimate the
# magnitude of the shift that needs to be applied to the origin of
# the system.
min_shape = compute_minimum_array_size(pixel_maps)
# Convert the old pixemap values to the new pixelmap values.
new_x_map = numpy.array(
object=pixel_maps.x,
dtype=numpy.int
......@@ -245,4 +249,8 @@ def adjust_pixel_maps_for_pyqtgraph(pixel_maps):
dtype=numpy.int
) + min_shape[0] // 2 - 1
return PixelMaps(new_x_map, new_y_map, None)
PixelMapsForIV = collections.namedtuple(
typename='PixelMapsForIV',
field_names=['x', 'y']
)
return PixelMapsForIV(new_x_map, new_y_map)
......@@ -24,36 +24,35 @@ import ast
def _parsing_error(section, option):
# Raise an exception after a parsing error.
raise RuntimeError(
'Error parsing parameter {0} in section [{1}]. Make sure that the '
'syntax is correct: list elements must be separated by commas and '
'dict entries must contain the colon symbol. Strings must be quoted, '
'even in lists and dicts.'.format(
option,
section
)
"Error parsing parameter {0} in section [{1}]. Make sure that the "
"syntax is correct: list elements must be separated by commas and "
"dict entries must contain the colon symbol. Strings must be quoted, "
"even in lists and dicts.".format(option, section)
)
def convert_parameters(config_dict):
"""Convert strings in parameter dictionaries to the corrent data type.
Read a parameter dictionary returned by the ConfigParser python module,
and convert each entry in an object of the corresponding type,
without changing the structure of the dictionary.
Read a parameter dictionary returned by the ConfigParser python
module, and convert each entry in an object of the corresponding
type, without changing the structure of the dictionary.
Try to convert each entry in the dictionary according to the following
rules. The first rule that applies to the entry determines the type.
Try to convert each entry in the dictionary according to the
following rules. The first rule that applies to the entry
determines the type.
- If the entry starts and ends with a single quote or double quote,
leave it as a string.
- If the entry starts and ends with a square bracket, convert it to a list.
- If the entry starts and ends with a square bracket, convert it to
a list.
- If the entry starts and ends with a curly braces, convert it to a
dictionary or a set.
- If the entry is the word None, without quotes, convert it to NoneType.
- If the entry is the word False, without quotes, convert it to a boolean
False.
- If the entry is the word None, without quotes, convert it to
NoneType.
- If the entry is the word False, without quotes, convert it to a
boolean False.
- If the entry is the word True, without quotes, convert it to a
boolean True.
- If none of the previous options match the content of the entry,
......@@ -77,26 +76,24 @@ def convert_parameters(config_dict):
Raises:
RuntimeError: if an entry cannot be converted to any supported type.
RuntimeError: if an entry cannot be converted to any supported
type.
"""
# Create the dictionary that will be returned.
monitor_params = {}
# Iterate over the sections in the dictionary (first level).
# Iterate over the sections in the dictionary (first level in the
# configuration file). Add the section to the dictionary that will
# be returned.
for section in config_dict.keys():
# Add the section to the dictionary that will be returned.
monitor_params[section] = {}
# Iterate over the content of the section (second level in the
# configuratio).
# Iterate then over the content of the section (second level in
# the configuration file). Get each option in turn and perform
# all the checks. If all checks fail, call the parsing_error
# function.
for option in config_dict['section'].keys():
# Get the option from the dictionary.
recovered_option = config_dict['section']
# Check if the option is a string delimited by single quotes.
if (
recovered_option.startswith("'") and
recovered_option.endswith("'")
......@@ -104,7 +101,6 @@ def convert_parameters(config_dict):
monitor_params[section][option] = recovered_option[1:-1]
continue
# Check if the option is a string delimited by double quotes.
if (
recovered_option.startswith('"') and
recovered_option.endswith('"')
......@@ -112,8 +108,6 @@ def convert_parameters(config_dict):
monitor_params[section][option] = recovered_option[1:-1]
continue
# Check if the option is a list. If it is, interpret it using the
# literal_eval function.
if (
recovered_option.startswith("[") and
recovered_option.endswith("]")
......@@ -126,8 +120,6 @@ def convert_parameters(config_dict):
except (SyntaxError, ValueError):
_parsing_error(section, option)
# Check if the option is a dictionary or a set. If it is,
# interpret it using the literal_eval function.
if (
recovered_option.startswith("{") and
recovered_option.endswith("}")
......@@ -140,40 +132,28 @@ def convert_parameters(config_dict):
except (SyntaxError, ValueError):
_parsing_error(section, option)
# Check if the option is the special string 'None' (without
# quotes).
if recovered_option == 'None':
monitor_params[section][option] = None
continue
# Check if the option is the special string 'False' (without
# quotes).
if recovered_option == 'False':
monitor_params[section][option] = False
continue
# Check if the option is the special string 'True' (without
# quotes).
if recovered_option == 'True':
monitor_params[section][option] = True
continue
# Check if the option is an int by trying to convert it to an int.
try:
monitor_params[section][option] = int(recovered_option)
continue
except ValueError:
# If the conversion to int failed, try to convert it to a
# float.
try:
monitor_params[section][option] = float(
recovered_option
)
continue
except ValueError:
# If the conversion to float also failed, return a parsing
# error.
_parsing_error(section, option)
# Returned the converted dictionary.
return monitor_params
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment