Skip to content
Snippets Groups Projects
writer.py 15 KiB
Newer Older

from collections import defaultdict
from pathlib import Path
import fnmatch
import logging

from packaging.version import Version
import numpy as np

from extra_data import by_id
from extra_data.read_machinery import select_train_ids

from exdf.write import SourceDataWriter


class ReduceWriter(SourceDataWriter):
    log = logging.getLogger('exdf.data_reduction.ReduceWriter')

    def __init__(self, data, methods, scope, sequence_len=-1, version=None):
        self._data = data
        self._methods = methods
        self._scope = scope
        self._sequence_len = sequence_len

        metadata = self._data.run_metadata()

        input_version = Version(metadata.get('dataFormatVersion', '1.0'))

        if input_version < Version('1.0'):
            raise ValueError('Currently input files are required to be '
                             'EXDF-v1.0+')

        if version == 'same':
            version = input_version
        else:
            self._version = Version(version)

        try:
            self.run_number = int(metadata['runNumber'])
        except KeyError:
            raise ValueError('runNumber dataset required in input METADATA')

        self._ops = sum(methods.values(), [])

        if not self._ops:
            self.log.warning('Sum of reduction methods yielded no operations '
                             'to apply')

        self._sources = sorted(data.all_sources)
        self._touched_sources = set()

        # Only populated if trains/keys are selected/removed for sources.
        self._custom_keys = {}  # source -> set(<keys>)
        self._custom_trains = {}  # source -> list(<trains>)
        self._custom_xtdf_masks = {}  # source -> dict(train_id -> mask)
        self._custom_xtdf_counts = {}  # source -> ndarray
        self._custom_rows = {}  # source -> dict(train_id -> mask)
        self._rechunked_keys = {}  # (source, key) -> chunks
        self._partial_copies = {}  # (source, key) -> list(<regions>)

        # TODO: Raise error if rechunking is overwritten!
        # TODO: make partial copies a list of slices!

        # Collect reductions resulting from operations.
        for source_glob, in self._filter_ops('remove-sources'):
            for source in fnmatch.filter(self._sources, source_glob):
                self._touched_sources.add(source)
                self._sources.remove(source)

        for source_glob, key_glob in self._filter_ops('remove-keys'):
            for source in fnmatch.filter(self._sources, source_glob):
                self._touched_sources.add(source)

                keys = self._custom_keys.setdefault(
                    source, set(self._data[source].keys()))

                for key in fnmatch.filter(keys, key_glob):
                    keys.remove(key)

        for source_glob, train_sel in self._filter_ops('select-trains'):
            for source in fnmatch.filter(self._sources, source_glob):
                self._touched_sources.add(source)
                train_ids = self._custom_trains.setdefault(
                    source, list(self._data.train_ids))

                self._custom_trains[source] = select_train_ids(
                    train_ids, train_sel)

        for source_glob, index_group, train_sel, row_sel in self._filter_ops(
            'select-rows'
        ):
            for source in fnmatch.filter(self._sources, source_glob):
                if index_group not in self._data[source].index_groups:
                    raise ValueError(f'{index_group} not index group of '
                                     f'{source}')

                self._touched_sources.add(source)
                self._custom_rows.setdefault((source, index_group), {}).update(
                    self._get_row_masks(source, index_group,
                                        train_sel, row_sel))

        for source_glob, train_sel, row_sel in self._filter_ops('select-xtdf'):
            for source in fnmatch.filter(self._sources, source_glob):
                if not source.endswith(':xtdf'):
                    # Simply ignore matches without trailing :xtdf.
                    continue

                if not self._is_xtdf_source(source):
                    # Raise exception if essentials are missing.
                    raise ValueError(f'{source} is not a valid XTDF source')

                self._touched_sources.add(source)
                self._custom_xtdf_masks.setdefault(source, {}).update(
                    self._get_row_masks(source, 'image', train_sel, row_sel))

        if (
            {x[0] for x in self._custom_rows.keys()} &
            self._custom_xtdf_masks.keys()
        ):
            raise ValueError('source may not be affected by both select-rows '
                             'and select-xtdf operations')

        for source_glob, key_glob, chunking in self._filter_ops(
            'rechunk-keys'
        ):
            for source in fnmatch.filter(self._sources, source_glob):
                if not self._data[source].is_instrument:
                    raise ValueError(
                        f'rechunking keys only supported for instrument '
                        f'sources, but {source_glob} matches '
                        f'{self._data[source].section}/{source}')

                self._touched_sources.add(source)

                keys = self._custom_keys.get(
                    source, set(self._data[source].keys()))

                for key in fnmatch.filter(keys, key_glob):
                    old_chunking = self._rechunked_keys.setdefault(
                        (source, key), chunking)

                    if old_chunking != chunking:
                        raise ValueError(
                            f'reduction sequence yields conflicting chunks '
                            f'for {source}.{key}: {old_chunking}, {chunking}')

                    self._rechunked_keys[(source, key)] = chunking

        for source_glob, key_glob, region in self._filter_ops('partial-copy'):
            for source in fnmatch.filter(self._sources, source_glob):
                self._touched_sources.add(source)

                keys = self._custom_keys.get(
                    source, set(self._data[source].keys()))

                for key in fnmatch.filter(keys, key_glob):
                    self._partial_copies.setdefault((source, key), []).append(
                        region)

        if self._scope == 'sources':
            self._sources = sorted(
                self._touched_sources.intersection(self._sources))

        elif self._scope == 'aggregators':
            touched_aggregators = {self._data[source].aggregator
                                   for source in self._touched_sources}

            self._sources = sorted(
                {source for source in self._sources
                 if (self._data[source].aggregator in touched_aggregators)})

        if not self._sources:
            raise ValueError('reduction sequence yields empty source '
                             'selection')

    def _filter_ops(self, op):
        return [args[1:] for args in self._ops if args[0] == op]

    def _is_xtdf_source(self, source):
        return self._data[source].keys() > {'header.pulseCount', 'image.data'}

    def _get_row_masks(self, source, index_group, train_sel, row_sel):
        train_ids = select_train_ids(
            self._custom_trains.get(source, list(self._data.train_ids)),
            train_sel)
        counts = self._data[source].select_trains(by_id[train_ids]) \
            .data_counts(index_group=index_group)
        masks = {}

        if isinstance(row_sel, slice):
            for train_id, count in counts.items():
                if count > 0:
                    masks[train_id] = np.zeros(count, dtype=bool)
                    masks[train_id][row_sel] = True

        elif np.issubdtype(type(row_sel[0]), np.integer):
            max_row = max(row_sel)

            for train_id, count in counts.items():
                if count == 0:
                    continue
                elif max_row >= count:
                    raise ValueError(
                        f'row index exceeds data counts of train {train_id}')

                masks[train_id] = np.zeros(count, dtype=bool)
                masks[train_id][row_sel] = True

        elif np.issubdtype(type(row_sel[0]), bool):
            mask_len = len(row_sel)

            for train_id, count in counts.items():
                if count == 0:
                    continue
                elif mask_len != counts.get(train_id, 0):
                    raise ValueError(
                        f'mask length mismatch for train {train_id}')

                masks[train_id] = row_sel

        else:
            raise ValueError('unknown row mask format')

        return masks

    def write_collection(self, output_path):
        outp_data = self._data.select([(s, '*') for s in self._sources])

        # Collect all items (combination of data category and
        # aggregator) and the sources they contain.
        sources_by_item = defaultdict(list)
        for source in self._sources:
            sd = outp_data[source]
            sources_by_item[(sd.data_category, sd.aggregator)].append(source)

        for (data_category, aggregator), sources in sources_by_item.items():
            self.write_item(
                output_path, sources, f'{data_category}-{aggregator}',
                dict(data_category=data_category, aggregator=aggregator))

    def write_collapsed(self, output_path):
        self.write_item(output_path,  self._sources, 'COLLAPSED')

    def write_voview(self, output_path):
        raise NotImplementedError('voview output layout')

    def write_item(self, output_path, source_names, name, filename_fields={}):
        """Write sources to a single item."""

        # Select output data down to what's in this item both in terms
        # of sources and trains (via require_any).
        item_data = self._data.select({
            s: self._custom_keys[s] if s in self._custom_keys else set()
            for s in source_names
        }, require_any=True)

        # Switch to representation of SourceData objects for
        # per-source tracking of trains.
        item_sources = [item_data[source]
                        for source in item_data.all_sources]

        # Tetermine input sequence length if no explicit value was given
        # for output.
        if self._sequence_len < 1:
            sequence_len = max({
                len(sd._get_first_source_file().train_ids)
                for sd in item_sources
            })
        else:
            sequence_len = self._sequence_len

        # Apply custom train selections, if any.
        for i, sd in enumerate(item_sources):
            train_sel = self._custom_trains.get(sd.source, None)

            if train_sel is not None:
                item_sources[i] = sd.select_trains(by_id[train_sel])

        # Find the union of trains across all sources as total
        # trains for this item.
        item_train_ids = np.zeros(0, dtype=np.uint64)
        for sd in item_sources:
            item_train_ids = np.union1d(
                item_train_ids, sd.drop_empty_trains().train_ids)

        num_trains = len(item_train_ids)
        num_sequences = int(np.ceil(num_trains / sequence_len))

        self.log.info(
            f'{name} containing {len(item_sources)} sources with {num_trains} '
            f'trains over {num_sequences} sequences')

        for seq_no in range(num_sequences):
            seq_slice = np.s_[
                (seq_no * sequence_len):((seq_no + 1) * sequence_len)]

            # Slice out the train IDs and timestamps for this sequence.
            seq_train_ids = item_train_ids[seq_slice]

            # Select item data down to what's in this sequence.
            seq_sources = [sd.select_trains(by_id[seq_train_ids])
                           for sd in item_sources]

            # Build explicit output path for this sequence.
            seq_path = Path(str(output_path).format(
                run=self.run_number, sequence=seq_no, **filename_fields))

            self.log.debug(f'{seq_path.stem} containing {len(seq_sources)} '
                           f'sources with {len(seq_train_ids)} trains')
            self.write_sequence(seq_path, seq_sources, seq_no)

    # SourceDataWriter hooks.

    def write_base(self, f, sources, sequence):
        super().write_base(f, sources, sequence)

        # Add reduction-specific METADATA
        red_group = f.require_group('METADATA/reduction')

        for name, method in self._methods.items():
            ops = np.array([
                '\t'.join([str(x) for x in op[:]]).encode('ascii')
                for op in method
            ])
            red_group.create_dataset(name, shape=len(method), data=ops,)

    def get_data_format_version(self):
        return str(self._version)

    def with_origin(self):
        return self._version >= Version('1.2')

    def with_attrs(self):
        return self._version >= Version('1.3')

    def chunk_instrument_data(self, source, key, orig_chunks):
        try:
            chunks = list(self._rechunked_keys[source, key])
            assert len(chunks) == len(orig_chunks)

            for i, dim_len in enumerate(chunks):
                if dim_len is None:
                    chunks[i] = orig_chunks[i]

            if -1 in chunks:
                chunks[chunks.index(-1)] = \
                    np.prod(orig_chunks) // -np.prod(chunks)

            return tuple(chunks)
        except KeyError:
            return orig_chunks

    def mask_instrument_data(self, source, index_group, train_ids, counts):
        if source in self._custom_xtdf_masks and index_group == 'image':
            custom_masks = self._custom_xtdf_masks[source]
        elif (source, index_group) in self._custom_rows:
            custom_masks = self._custom_rows[source, index_group]
        else:
            return  # None efficiently selects all rows.

        masks = []

        for train_id, count_all in zip(train_ids, counts):
            if train_id in custom_masks:
                mask = custom_masks[train_id]
            else:
                mask = np.ones(count_all, dtype=bool)

            masks.append(mask)

        if source in self._custom_xtdf_masks:
            # Sources are guaranteed to never use both XTDF and general
            # row slicing. In the XTDF case, the new data counts for the
            # image index group must be determined to be filled into
            # the respective header field.

            self._custom_xtdf_counts[source] = {
                train_id: mask.sum() for train_id, mask
                in zip(train_ids, masks) if mask.any()}

        return masks

    def copy_instrument_data(self, source, key, dest, train_ids, data):
        if source in self._custom_xtdf_counts and key == 'header.pulseCount':
            custom_counts = self._custom_xtdf_counts[source]

            for i, train_id in enumerate(train_ids):
                data[i] = custom_counts.get(train_id, data[i])

        try:
            regions = self._partial_copies[source, key]
        except KeyError:
            dest[:] = data
        else:
            for region in regions:
                sel = (np.s_[:], *region)
                dest[sel] = data[sel]