Newer
Older
from collections import defaultdict
from pathlib import Path
import fnmatch
import logging
from packaging.version import Version
import numpy as np
from extra_data import by_id
from extra_data.read_machinery import select_train_ids
from exdf.write import SourceDataWriter
class ReduceWriter(SourceDataWriter):
log = logging.getLogger('exdf.data_reduction.ReduceWriter')
def __init__(self, data, methods, scope, sequence_len=-1, version=None):
self._data = data
self._methods = methods
self._scope = scope
self._sequence_len = sequence_len
metadata = self._data.run_metadata()
input_version = Version(metadata.get('dataFormatVersion', '1.0'))
if input_version < Version('1.0'):
raise ValueError('Currently input files are required to be '
'EXDF-v1.0+')
if version == 'same':
version = input_version
else:
self._version = Version(version)
try:
self.run_number = int(metadata['runNumber'])
except KeyError:
raise ValueError('runNumber dataset required in input METADATA')
self._ops = sum(methods.values(), [])
if not self._ops:
self.log.warning('Sum of reduction methods yielded no operations '
'to apply')
self._sources = sorted(data.all_sources)
self._touched_sources = set()
# Only populated if trains/keys are selected/removed for sources.
self._custom_keys = {} # source -> set(<keys>)
self._custom_trains = {} # source -> list(<trains>)
self._custom_xtdf_masks = {} # source -> dict(train_id -> mask)
self._custom_xtdf_counts = {} # source -> ndarray
self._custom_entry_masks = {} # source -> dict(train_id -> mask)
self._rechunked_keys = {} # (source, key) -> chunks
self._subsliced_keys = {} # (source, key) -> list(<regions>)
# TODO: Raise error if rechunking is overwritten!
# TODO: make partial copies a list of slices!
# Collect reductions resulting from operations.
for source_glob, in self._filter_ops('remove-sources'):
for source in fnmatch.filter(self._sources, source_glob):
self._touched_sources.add(source)
self._sources.remove(source)
for source_glob, key_glob in self._filter_ops('remove-keys'):
for source in fnmatch.filter(self._sources, source_glob):
self._touched_sources.add(source)
keys = self._custom_keys.setdefault(
source, set(self._data[source].keys()))
for key in fnmatch.filter(keys, key_glob):
keys.remove(key)
for source_glob, train_sel in self._filter_ops('select-trains'):
for source in fnmatch.filter(self._sources, source_glob):
self._touched_sources.add(source)
train_ids = self._custom_trains.setdefault(
source, list(self._data.train_ids))
self._custom_trains[source] = select_train_ids(
train_ids, train_sel)
for source_glob, index_group, train_sel, entry_sel in self._filter_ops(
'select-entries'
):
for source in fnmatch.filter(self._sources, source_glob):
if index_group not in self._data[source].index_groups:
raise ValueError(f'{index_group} not index group of '
f'{source}')
new_mask = self._get_entry_masks(
source, index_group, train_sel, entry_sel)
self._touched_sources.add(source)
self._custom_entry_masks.setdefault(
(source, index_group), {}).update(new_mask)
for source_glob, train_sel, entry_sel in self._filter_ops(
'select-xtdf'
):
for source in fnmatch.filter(self._sources, source_glob):
if not source.endswith(':xtdf'):
# Simply ignore matches without trailing :xtdf.
continue
if not self._is_xtdf_source(source):
# Raise exception if essentials are missing.
raise ValueError(f'{source} is not a valid XTDF source')
new_mask = self._get_entry_masks(
source, 'image', train_sel, entry_sel)
self._touched_sources.add(source)
self._custom_xtdf_masks.setdefault(source, {}).update(new_mask)
{x[0] for x in self._custom_entry_masks.keys()} &
self._custom_xtdf_masks.keys()
):
raise ValueError('source may not be affected by both '
'select-entries and select-xtdf operations')
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
for source_glob, key_glob, chunking in self._filter_ops(
'rechunk-keys'
):
for source in fnmatch.filter(self._sources, source_glob):
if not self._data[source].is_instrument:
raise ValueError(
f'rechunking keys only supported for instrument '
f'sources, but {source_glob} matches '
f'{self._data[source].section}/{source}')
self._touched_sources.add(source)
keys = self._custom_keys.get(
source, set(self._data[source].keys()))
for key in fnmatch.filter(keys, key_glob):
old_chunking = self._rechunked_keys.setdefault(
(source, key), chunking)
if old_chunking != chunking:
raise ValueError(
f'reduction sequence yields conflicting chunks '
f'for {source}.{key}: {old_chunking}, {chunking}')
self._rechunked_keys[(source, key)] = chunking
for source_glob, key_glob, region in self._filter_ops('subslice-keys'):
for source in fnmatch.filter(self._sources, source_glob):
self._touched_sources.add(source)
keys = self._custom_keys.get(
source, set(self._data[source].keys()))
for key in fnmatch.filter(keys, key_glob):
self._subsliced_keys.setdefault((source, key), []).append(
region)
if self._scope == 'sources':
self._sources = sorted(
self._touched_sources.intersection(self._sources))
elif self._scope == 'aggregators':
touched_aggregators = {self._data[source].aggregator
for source in self._touched_sources}
self._sources = sorted(
{source for source in self._sources
if (self._data[source].aggregator in touched_aggregators)})
if not self._sources:
raise ValueError('reduction sequence yields empty source '
'selection')
def _filter_ops(self, op):
return [args[1:] for args in self._ops if args[0] == op]
def _is_xtdf_source(self, source):
return self._data[source].keys() > {'header.pulseCount', 'image.data'}
def _get_entry_masks(self, source, index_group, train_sel, entry_sel):
train_ids = select_train_ids(
self._custom_trains.get(source, list(self._data.train_ids)),
train_sel)
counts = self._data[source].select_trains(by_id[train_ids]) \
.data_counts(index_group=index_group)
masks = {}
for train_id, count in counts.items():
if count > 0:
masks[train_id] = np.zeros(count, dtype=bool)
elif np.issubdtype(type(entry_sel[0]), np.integer):
max_entry = max(entry_sel)
for train_id, count in counts.items():
if count == 0:
continue
f'entry index exceeds data counts of train {train_id}')
masks[train_id] = np.zeros(count, dtype=bool)
elif np.issubdtype(type(entry_sel[0]), bool):
mask_len = len(entry_sel)
for train_id, count in counts.items():
if count == 0:
continue
elif mask_len != counts.get(train_id, 0):
raise ValueError(
f'mask length mismatch for train {train_id}')
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
def write_collection(self, output_path):
outp_data = self._data.select([(s, '*') for s in self._sources])
# Collect all items (combination of data category and
# aggregator) and the sources they contain.
sources_by_item = defaultdict(list)
for source in self._sources:
sd = outp_data[source]
sources_by_item[(sd.data_category, sd.aggregator)].append(source)
for (data_category, aggregator), sources in sources_by_item.items():
self.write_item(
output_path, sources, f'{data_category}-{aggregator}',
dict(data_category=data_category, aggregator=aggregator))
def write_collapsed(self, output_path):
self.write_item(output_path, self._sources, 'COLLAPSED')
def write_voview(self, output_path):
raise NotImplementedError('voview output layout')
def write_item(self, output_path, source_names, name, filename_fields={}):
"""Write sources to a single item."""
# Select output data down to what's in this item both in terms
# of sources and trains (via require_any).
item_data = self._data.select({
s: self._custom_keys[s] if s in self._custom_keys else set()
for s in source_names
}, require_any=True)
# Switch to representation of SourceData objects for
# per-source tracking of trains.
item_sources = [item_data[source]
for source in item_data.all_sources]
# Tetermine input sequence length if no explicit value was given
# for output.
if self._sequence_len < 1:
sequence_len = max({
len(sd._get_first_source_file().train_ids)
for sd in item_sources
})
else:
sequence_len = self._sequence_len
# Apply custom train selections, if any.
for i, sd in enumerate(item_sources):
train_sel = self._custom_trains.get(sd.source, None)
if train_sel is not None:
item_sources[i] = sd.select_trains(by_id[train_sel])
# Find the union of trains across all sources as total
# trains for this item.
item_train_ids = np.zeros(0, dtype=np.uint64)
for sd in item_sources:
item_train_ids = np.union1d(
item_train_ids, sd.drop_empty_trains().train_ids)
num_trains = len(item_train_ids)
num_sequences = int(np.ceil(num_trains / sequence_len))
self.log.info(
f'{name} containing {len(item_sources)} sources with {num_trains} '
f'trains over {num_sequences} sequences')
for seq_no in range(num_sequences):
seq_slice = np.s_[
(seq_no * sequence_len):((seq_no + 1) * sequence_len)]
# Slice out the train IDs and timestamps for this sequence.
seq_train_ids = item_train_ids[seq_slice]
# Select item data down to what's in this sequence.
seq_sources = [sd.select_trains(by_id[seq_train_ids])
for sd in item_sources]
# Build explicit output path for this sequence.
seq_path = Path(str(output_path).format(
run=self.run_number, sequence=seq_no, **filename_fields))
self.log.debug(f'{seq_path.stem} containing {len(seq_sources)} '
f'sources with {len(seq_train_ids)} trains')
self.write_sequence(seq_path, seq_sources, seq_no)
# SourceDataWriter hooks.
def write_base(self, f, sources, sequence):
super().write_base(f, sources, sequence)
# Add reduction-specific METADATA
red_group = f.require_group('METADATA/reduction')
for name, method in self._methods.items():
ops = np.array([
'\t'.join([str(x) for x in op[:]]).encode('ascii')
for op in method
])
red_group.create_dataset(name, shape=len(method), data=ops,)
def get_data_format_version(self):
return str(self._version)
def with_origin(self):
return self._version >= Version('1.2')
def with_attrs(self):
return self._version >= Version('1.3')
def create_instrument_key(self, source, key, orig_dset, kwargs):
if (source, key) in self._rechunked_keys:
shape = kwargs['shape']
orig_chunks = kwargs['chunks']
chunks = list(self._rechunked_keys[source, key])
assert len(chunks) == len(orig_chunks)
for i, dim_len in enumerate(chunks):
if dim_len is None:
chunks[i] = orig_chunks[i]
if -1 in chunks:
chunks[chunks.index(-1)] = \
np.prod(orig_chunks) // -np.prod(chunks)
kwargs['chunks'] = tuple(chunks)
return kwargs
def mask_instrument_data(self, source, index_group, train_ids, counts):
if source in self._custom_xtdf_masks and index_group == 'image':
custom_masks = self._custom_xtdf_masks[source]
elif (source, index_group) in self._custom_entry_masks:
custom_masks = self._custom_entry_masks[source, index_group]
masks = []
for train_id, count_all in zip(train_ids, counts):
if train_id in custom_masks:
mask = custom_masks[train_id]
else:
mask = np.ones(count_all, dtype=bool)
masks.append(mask)
if source in self._custom_xtdf_masks:
# Sources are guaranteed to never use both XTDF and general
# entry slicing. In the XTDF case, the new data counts for
# the image index group must be determined to be filled into
# the respective header field.
self._custom_xtdf_counts[source] = {
train_id: mask.sum() for train_id, mask
in zip(train_ids, masks) if mask.any()}
return masks
def copy_instrument_data(self, source, key, dest, train_ids, data):
if source in self._custom_xtdf_counts and key == 'header.pulseCount':
custom_counts = self._custom_xtdf_counts[source]
for i, train_id in enumerate(train_ids):
data[i] = custom_counts.get(train_id, data[i])
regions = self._subsliced_keys[source, key]
except KeyError:
dest[:] = data
else:
for region in regions:
sel = (np.s_[:], *region)
dest[sel] = data[sel]