Newer
Older
# -*- coding: utf-8 -*-
""" Toolbox for SCS.
Various utilities function to quickly process data measured at the SCS instruments.
Copyright (2019) SCS Team.
"""
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
def pulsePatternInfo(data, plot=False):
''' display general information on the pulse patterns operated by SASE1 and SASE3.
This is useful to track changes of number of pulses or mode of operation of
SASE1 and SASE3. It also determines which SASE comes first in the train and
the minimum separation between the two SASE sub-trains.
Inputs:
data: xarray Dataset containing pulse pattern info from the bunch decoder MDL:
{'sase1, sase3', 'npulses_sase1', 'npulses_sase3'}
plot: bool enabling/disabling the plotting of the pulse patterns
Outputs:
print of pulse pattern info. If plot==True, plot of the pulse pattern.
'''
#Which SASE comes first?
npulses_sa3 = data['npulses_sase3']
npulses_sa1 = data['npulses_sase1']
dedicated = False
if np.all(npulses_sa1.where(npulses_sa3 !=0, drop=True) == 0):
dedicated = True
print('No SASE 1 pulses during SASE 3 operation')
if np.all(npulses_sa3.where(npulses_sa1 !=0, drop=True) == 0):
dedicated = True
print('No SASE 3 pulses during SASE 1 operation')
if dedicated==False:
pulseIdmin_sa1 = data['sase1'].where(npulses_sa1 != 0).where(data['sase1']>1).min().values
pulseIdmax_sa1 = data['sase1'].where(npulses_sa1 != 0).where(data['sase1']>1).max().values
pulseIdmin_sa3 = data['sase3'].where(npulses_sa3 != 0).where(data['sase3']>1).min().values
pulseIdmax_sa3 = data['sase3'].where(npulses_sa3 != 0).where(data['sase3']>1).max().values
#print(pulseIdmin_sa1, pulseIdmax_sa1, pulseIdmin_sa3, pulseIdmax_sa3)
if pulseIdmin_sa1 > pulseIdmax_sa3:
t = 0.220*(pulseIdmin_sa1 - pulseIdmax_sa3 + 1)
print('SASE 3 pulses come before SASE 1 pulses (minimum separation %.1f µs)'%t)
elif pulseIdmin_sa3 > pulseIdmax_sa1:
t = 0.220*(pulseIdmin_sa3 - pulseIdmax_sa1 + 1)
print('SASE 1 pulses come before SASE 3 pulses (minimum separation %.1f µs)'%t)
else:
print('Interleaved mode')
#What is the pulse pattern of each SASE?
for key in['sase3', 'sase1']:
print('\n*** %s pulse pattern: ***'%key.upper())
npulses = data['npulses_%s'%key]
sase = data[key]
if not np.all(npulses == npulses[0]):
print('Warning: number of pulses per train changed during the run!')
#take the derivative along the trainId to track changes in pulse number:
diff = npulses.diff(dim='trainId')
#only keep trainIds where a change occured:
diff = diff.where(diff !=0, drop=True)
#get a list of indices where a change occured:
idx_change = np.argwhere(np.isin(npulses.trainId.values,
diff.trainId.values, assume_unique=True))[:,0]
#add index 0 to get the initial pulse number per train:
idx_change = np.insert(idx_change, 0, 0)
print('npulses\tindex From\tindex To\ttrainId From\ttrainId To\trep. rate [kHz]')
for i,idx in enumerate(idx_change):
n = npulses[idx]
idxFrom = idx
trainIdFrom = npulses.trainId[idx]
if i < len(idx_change)-1:
idxTo = idx_change[i+1]-1
else:
idxTo = npulses.shape[0]-1
trainIdTo = npulses.trainId[idxTo]
if n <= 1:
print('%i\t%i\t\t%i\t\t%i\t%i'%(n, idxFrom, idxTo, trainIdFrom, trainIdTo))
else:
f = 1/((sase[idxFrom,1] - sase[idxFrom,0])*222e-6)
print('%i\t%i\t\t%i\t\t%i\t%i\t%.0f'%(n, idxFrom, idxTo, trainIdFrom, trainIdTo, f))
print('\n')
if plot:
plt.figure(figsize=(6,3))
plt.plot(data['npulses_sase3'].trainId, data['npulses_sase3'], 'o-',
ms=3, label='SASE 3')
plt.xlabel('trainId')
plt.ylabel('pulses per train')
plt.plot(data['npulses_sase1'].trainId, data['npulses_sase1'], '^-',
ms=3, color='C2', label='SASE 1')
plt.legend()
plt.tight_layout()
def repRate(data, sase='sase3'):
''' Calculates the pulse repetition rate in sase according
to the bunch pattern and assuming a minimum pulse
Mercadier
committed
separation of 221.54e-9 seconds.
Inputs:
data: xarray Dataset containing pulse pattern
sase: sase in which the repetition rate is
calculated (1,2 or 3)
Output:
f: repetition rate in kHz
'''
assert sase in data, 'key "{}" not found in data!'.format(sase)
sase = data[sase].where(data['npulses_{}'.format(sase)]>1,
drop=True).values
if len(sase)==0:
print('Not enough pulses to extract repetition rate')
return 0
Mercadier
committed
f = 1/((sase[0,1] - sase[0,0])*221.54e-6)
Mercadier
committed
def cleanXGMdata(data, npulses=None, sase3First=True):
''' Cleans the XGM data arrays obtained from load() function.
The XGM "TD" data arrays have arbitrary size of 1000 and default value 1.0
when there is no pulse. This function sorts the SASE 1 and SASE 3 pulses.
For DAQ runs after April 2019, sase-resolved arrays can be used. For older runs,
Mercadier
committed
the function selectSASEinXGM can be used to extract sase-resolved pulses.
Inputs:
data: xarray Dataset containing XGM TD arrays.
npulses: number of pulses, needed if pulse pattern not available.
sase3First: bool, needed if pulse pattern not available.
Output:
xarray Dataset containing sase- and pulse-resolved XGM data, with
dimension names 'sa1_pId' and 'sa3_pId'
'''
dropList = []
mergeList = []
dedicated = False
if 'sase3' in data:
if np.all(data['npulses_sase1'].where(data['npulses_sase3'] !=0,
drop=True) == 0):
dedicated = True
print('Dedicated trains, skip loading SASE 1 data.')
#pulse-resolved signals from XGMs
keys = ["XTD10_XGM", "XTD10_SA3", "XTD10_SA1",
"XTD10_XGM_sigma", "XTD10_SA3_sigma", "XTD10_SA1_sigma",
"SCS_XGM", "SCS_SA3", "SCS_SA1",
"SCS_XGM_sigma", "SCS_SA3_sigma", "SCS_SA1_sigma"]
if ("SCS_SA3" not in data and "SCS_XGM" in data):
Mercadier
committed
#no SASE-resolved arrays available
sa3 = selectSASEinXGM(data, xgm='SCS_XGM', sase='sase3', npulses=npulses,
sase3First=sase3First).rename({'XGMbunchId':'sa3_pId'})
mergeList.append(sa3)
if not dedicated:
sa1 = selectSASEinXGM(data, xgm='SCS_XGM', sase='sase1',
npulses=npulses, sase3First=sase3First).rename(
{'XGMbunchId':'sa1_pId'})
Mercadier
committed
mergeList.append(sa1)
dropList.append('SCS_XGM')
keys.remove('SCS_XGM')
Mercadier
committed
if ("XTD10_SA3" not in data and "XTD10_XGM" in data):
#no SASE-resolved arrays available
sa3 = selectSASEinXGM(data, xgm='XTD10_XGM', sase='sase3', npulses=npulses,
sase3First=sase3First).rename({'XGMbunchId':'sa3_pId'})
mergeList.append(sa3)
if not dedicated:
sa1 = selectSASEinXGM(data, xgm='XTD10_XGM', sase='sase1',
npulses=npulses, sase3First=sase3First).rename(
{'XGMbunchId':'sa1_pId'})
Mercadier
committed
mergeList.append(sa1)
dropList.append('XTD10_XGM')
keys.remove('XTD10_XGM')
Mercadier
committed
for key in keys:
if key not in data:
continue
if "sa3" in key.lower():
sase = 'sa3_'
elif "sa1" in key.lower():
sase = 'sa1_'
Mercadier
committed
else:
dropList.append(key)
continue
res = data[key].where(data[key] != 1.0, drop=True).rename(
{'XGMbunchId':'{}pId'.format(sase)}).rename(key)
res = res.assign_coords(
{f'{sase}pId':np.arange(res[f'{sase}pId'].shape[0])})
Mercadier
committed
dropList.append(key)
mergeList.append(res)
mergeList.append(data.drop(dropList))
for k in data.attrs.keys():
subset.attrs[k] = data.attrs[k]
Mercadier
committed
return subset
def selectSASEinXGM(data, sase='sase3', xgm='SCS_XGM', sase3First=True, npulses=None):
''' Given an array containing both SASE1 and SASE3 data, extracts SASE1-
or SASE3-only XGM data. The function tracks the changes of bunch patterns
in sase 1 and sase 3 and applies a mask to the XGM array to extract the
relevant pulses. This way, all complicated patterns are accounted for.
Inputs:
data: xarray Dataset containing xgm data
sase: key of sase to select: {'sase1', 'sase3'}
xgm: key of xgm to select: {'XTD10_XGM', 'SCS_XGM'}
sase3First: bool, optional. Used in case no bunch pattern was recorded
Laurent Mercadier
committed
npulses: int, optional. Required in case no bunch pattern was recorded.
Output:
DataArray that has all trainIds that contain a lasing
train in sase, with dimension equal to the maximum number of pulses of
that sase in the run. The missing values, in case of change of number of pulses,
are filled with NaNs.
'''
#1. case where bunch pattern is missing:
if sase not in data:
Laurent Mercadier
committed
print('Missing bunch pattern info!')
if npulses is None:
raise TypeError('npulses argument is required when bunch pattern ' +
'info is missing.')
print('Retrieving {} SASE {} pulses assuming that '.format(npulses, sase[4])
+'SASE {} pulses come first.'.format('3' if sase3First else '1'))
Laurent Mercadier
committed
#in older version of DAQ, non-data numbers were filled with 0.0.
xgmData = data[xgm].where(data[xgm]!=0.0, drop=True)
xgmData = xgmData.fillna(0.0).where(xgmData!=1.0, drop=True)
if (sase3First and sase=='sase3') or (not sase3First and sase=='sase1'):
return xgmData[:,:npulses]
else:
if xr.ufuncs.isnan(xgmData).any():
raise Exception('The number of pulses changed during the run. '
'This is not supported yet.')
else:
start=xgmData.shape[1]-npulses
return xgmData[:,start:start+npulses]
#2. case where bunch pattern is provided
#2.1 Merge sase1 and sase3 bunch patterns to get indices of all pulses
xgm_arr = data[xgm].where(data[xgm] != 1., drop=True)
sa3 = data['sase3'].where(data['sase3'] > 1, drop=True)
sa3_val=np.unique(sa3)
sa3_val = sa3_val[~np.isnan(sa3_val)]
sa1 = data['sase1'].where(data['sase1'] > 1, drop=True)
sa1_val=np.unique(sa1)
sa1_val = sa1_val[~np.isnan(sa1_val)]
sa_all = xr.concat([sa1, sa3], dim='bunchId').rename('sa_all')
sa_all = xr.DataArray(np.sort(sa_all)[:,:xgm_arr['XGMbunchId'].shape[0]],
dims=['trainId', 'bunchId'],
coords={'trainId':data.trainId},
name='sase_all')
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
idxListSase = np.unique(sa3)
newName = xgm.split('_')[0] + '_SA3'
else:
idxListSase = np.unique(sa1)
newName = xgm.split('_')[0] + '_SA1'
#2.2 track the changes of pulse patterns and the indices at which they occured (invAll)
idxListAll, invAll = np.unique(sa_all.fillna(-1), axis=0, return_inverse=True)
#2.3 define a mask, loop over the different patterns and update the mask for each pattern
mask = xr.DataArray(np.zeros((data.dims['trainId'], sa_all['bunchId'].shape[0]), dtype=bool),
dims=['trainId', 'XGMbunchId'],
coords={'trainId':data.trainId,
'XGMbunchId':sa_all['bunchId'].values},
name='mask')
big_sase = []
for i,idxXGM in enumerate(idxListAll):
mask.values = np.zeros(mask.shape, dtype=bool)
idxXGM = np.isin(idxXGM, idxListSase)
idxTid = invAll==i
mask[idxTid, idxXGM] = True
sa_arr = xgm_arr.where(mask, drop=True)
if sa_arr.trainId.size > 0:
sa_arr = sa_arr.assign_coords(XGMbunchId=np.arange(sa_arr.XGMbunchId.size))
big_sase.append(sa_arr)
if len(big_sase) > 0:
da_sase = xr.concat(big_sase, dim='trainId').rename(newName)
else:
da_sase = xr.DataArray([], dims=['trainId'], name=newName)
return da_sase
def saseContribution(data, sase='sase1', xgm='XTD10_XGM'):
''' Calculate the relative contribution of SASE 1 or SASE 3 pulses
for each train in the run. Supports fresh bunch, dedicated trains
and pulse on demand modes.
Inputs:
data: xarray Dataset containing xgm data
sase: key of sase for which the contribution is computed: {'sase1', 'sase3'}
xgm: key of xgm to select: {'XTD10_XGM', 'SCS_XGM'}
Output:
1D DataArray equal to sum(sase)/sum(sase1+sase3)
'''
xgm_sa1 = selectSASEinXGM(data, 'sase1', xgm=xgm)
xgm_sa3 = selectSASEinXGM(data, 'sase3', xgm=xgm)
#Fill missing train ids with 0
r = xr.align(*[xgm_sa1, xgm_sa3], join='outer', exclude=['XGMbunchId'])
xgm_sa1 = r[0].fillna(0)
xgm_sa3 = r[1].fillna(0)
contrib = xgm_sa1.sum(axis=1)/(xgm_sa1.sum(axis=1) + xgm_sa3.sum(axis=1))
if sase=='sase1':
return contrib
else:
return 1 - contrib
Mercadier
committed
def calibrateXGMs(data, rollingWindow=200, plot=False):
''' Calibrate the fast (pulse-resolved) signals of the XTD10 and SCS XGM
(read in intensityTD property) to the respective slow ion signal
(photocurrent read by Keithley, channel 'pulseEnergy.photonFlux.value').
If the sase-resolved signal (introduced in May 2019) are recorded, the
calibration is defined as the mean ratio between the photocurrent and
the low-pass slowTrain signal. Otherwise, calibrateXGMsFromAllPulses()
is called.
Inputs:
data: xarray Dataset
Mercadier
committed
rollingWindow: length of running average to calculate E_fast_avg
plot: boolean, plot the calibration output
Mercadier
committed
factors: numpy ndarray of shape 1 x 2 containing
[XTD10 calibration factor, SCS calibration factor]
Mercadier
committed
XTD10_factor = np.nan
SCS_factor = np.nan
if "XTD10_slowTrain" in data or "SCS_slowTrain" in data:
if "XTD10_slowTrain" in data:
XTD10_factor = np.mean(data.XTD10_photonFlux/data.XTD10_slowTrain)
else:
print('no XTD10 XGM data. Skipping calibration for XTD10 XGM')
if "SCS_slowTrain" in data:
#XTD10_SA3_contrib = data.XTD10_slowTrain_SA3 * data.npulses_sase3 / (
# data.XTD10_slowTrain * (data.npulses_sase3+data.npulses_sase1))
#SCS_SA3_SLOW = data.SCS_photonFlux*(data.npulses_sase3+
# data.npulses_sase1)*XTD10_SA3_contrib/data.npulses_sase3
#SCS_factor = np.mean(SCS_SA3_SLOW/data.SCS_slowTrain_SA3)
SCS_factor = np.mean(data.SCS_photonFlux/data.SCS_slowTrain)
else:
print('no SCS XGM data. Skipping calibration for SCS XGM')
#TODO: plot the results of calibration
return np.array([XTD10_factor, SCS_factor])
else:
return calibrateXGMsFromAllPulses(data, rollingWindow, plot)
def calibrateXGMsFromAllPulses(data, rollingWindow=200, plot=False):
''' Calibrate the fast (pulse-resolved) signals of the XTD10 and SCS XGM
(read in intensityTD property) to the respective slow ion signal
(photocurrent read by Keithley, channel 'pulseEnergy.photonFlux.value').
One has to take into account the possible signal created by SASE1 pulses. In the
tunnel, this signal is usually large enough to be read by the XGM and the relative
contribution C of SASE3 pulses to the overall signal is computed.
In the tunnel, the calibration F is defined as:
F = E_slow / E_fast_avg, where
E_fast_avg is the rolling average (with window rollingWindow) of the fast signal.
In SCS XGM, the signal from SASE1 is usually in the noise, so we calculate the
average over the pulse-resolved signal of SASE3 pulses only and calibrate it to the
slow signal modulated by the SASE3 contribution:
F = (N1+N3) * E_avg * C/(N3 * E_fast_avg_sase3), where N1 and N3 are the number
of pulses in SASE1 and SASE3, E_fast_avg_sase3 is the rolling average (with window
rollingWindow) of the SASE3-only fast signal.
Mercadier
committed
Inputs:
data: xarray Dataset
rollingWindow: length of running average to calculate E_fast_avg
plot: boolean, plot the calibration output
Mercadier
committed
Output:
factors: numpy ndarray of shape 1 x 2 containing
[XTD10 calibration factor, SCS calibration factor]
'''
Mercadier
committed
XTD10_factor = np.nan
SCS_factor = np.nan
noSCS = noXTD10 = False
if 'SCS_XGM' not in data:
print('no SCS XGM data. Skipping calibration for SCS XGM')
noSCS = True
if 'XTD10_XGM' not in data:
print('no XTD10 XGM data. Skipping calibration for XTD10 XGM')
Mercadier
committed
noXTD10 = True
if noSCS and noXTD10:
return np.array([XTD10_factor, SCS_factor])
if not noSCS and noXTD10:
print('XTD10 data is needed to calibrate SCS XGM.')
return np.array([XTD10_factor, SCS_factor])
start = 0
stop = None
npulses = data['npulses_sase3']
ntrains = npulses.shape[0]
# First, in case of change in number of pulses, locate a region where
# the number of pulses is maximum.
if not np.all(npulses == npulses[0]):
print('Warning: Number of pulses per train changed during the run!')
start = np.argmax(npulses.values)
stop = ntrains + np.argmax(npulses.values[::-1]) - 1
if stop - start < rollingWindow:
print('not enough consecutive data points with the largest number of pulses per train')
start += rollingWindow
stop = np.min((ntrains, stop+rollingWindow))
# Calculate SASE3 slow data
sa3contrib = saseContribution(data, 'sase3', 'XTD10_XGM')
SA3_SLOW = data['XTD10_photonFlux']*(data['npulses_sase3']+data['npulses_sase1'])*sa3contrib/data['npulses_sase3']
SA1_SLOW = data['XTD10_photonFlux']*(data['npulses_sase3']+data['npulses_sase1'])*(1-sa3contrib)/data['npulses_sase1']
Mercadier
committed
# Calibrate XTD10 XGM with all signal from SASE1 and SASE3
if not noXTD10:
xgm_avg = selectSASEinXGM(data, 'sase3', 'XTD10_XGM').mean(axis=1)
rolling_sa3_xgm = xgm_avg.rolling(trainId=rollingWindow).mean()
ratio = SA3_SLOW/rolling_sa3_xgm
Mercadier
committed
XTD10_factor = ratio[start:stop].mean().values
print('calibration factor XTD10 XGM: %f'%XTD10_factor)
# Calibrate SCS XGM with SASE3-only contribution
if not noSCS:
Mercadier
committed
SCS_SLOW = data['SCS_photonFlux']*(data['npulses_sase3']+data['npulses_sase1'])*sa3contrib/data['npulses_sase3']
scs_sase3_fast = selectSASEinXGM(data, 'sase3', 'SCS_XGM').mean(axis=1)
meanFast = scs_sase3_fast.rolling(trainId=rollingWindow).mean()
Mercadier
committed
SCS_factor = ratio[start:stop].median().values
print('calibration factor SCS XGM: %f'%SCS_factor)
Mercadier
committed
if noSCS ^ noXTD10:
plt.figure(figsize=(8,4))
else:
plt.figure(figsize=(8,8))
Mercadier
committed
plt.title('E[uJ] = %.2f x IntensityTD' %(XTD10_factor))
plt.plot(SA3_SLOW, label='SA3 slow', color='C1')
Mercadier
committed
plt.plot(rolling_sa3_xgm*XTD10_factor,
label='SA3 fast signal rolling avg', color='C4')
Mercadier
committed
plt.plot(xgm_avg*XTD10_factor, label='SA3 fast signal train avg', alpha=0.2, color='C4')
plt.ylabel('Energy [uJ]')
plt.xlabel('train in run')
plt.legend(loc='upper left', fontsize=10)
plt.twinx()
plt.plot(SA1_SLOW, label='SA1 slow', alpha=0.2, color='C2')
plt.ylabel('SA1 slow signal [uJ]')
plt.legend(loc='lower right', fontsize=10)
plt.subplot(212)
Mercadier
committed
plt.title('E[uJ] = %.2g x HAMP' %SCS_factor)
plt.plot(SCS_SLOW, label='SCS slow', color='C1')
Mercadier
committed
plt.plot(meanFast*SCS_factor, label='SCS HAMP rolling avg', color='C2')
plt.ylabel('Energy [uJ]')
plt.xlabel('train in run')
Mercadier
committed
plt.plot(scs_sase3_fast*SCS_factor, label='SCS HAMP train avg', alpha=0.2, color='C2')
plt.legend(loc='upper left', fontsize=10)
Mercadier
committed
return np.array([XTD10_factor, SCS_factor])
Laurent Mercadier
committed
def mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=1, t_offset=None, npulses=None):
''' Computes peak integration from raw MCP traces.
Inputs:
data: xarray Dataset containing MCP raw traces (e.g. 'MCP1raw')
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
mcp: MCP channel number
t_offset: index separation between two pulses. Needed if bunch
pattern info is not available. If None, checks the pulse
pattern and determine the t_offset assuming mininum pulse
separation of 220 ns and digitizer resolution of 2 GHz.
npulses: number of pulses. If None, takes the maximum number of
pulses according to the bunch pattern (field 'npulses_sase3')
Output:
results: DataArray with dims trainId x max(sase3 pulses)
'''
keyraw = 'MCP{}raw'.format(mcp)
if keyraw not in data:
raise ValueError("Source not found: {}!".format(keyraw))
if npulses is None:
Laurent Mercadier
committed
npulses = int(data['npulses_sase3'].max().values)
sa3 = data['sase3'].where(data['sase3']>1)
if npulses > 1:
#Calculate the number of pulses between two lasing pulses (step)
step = sa3.where(data['npulses_sase3']>1, drop=True)[0,:2].values
step = int(step[1] - step[0])
#multiply by elementary samples length (220 ns @ 2 GHz = 440)
Laurent Mercadier
committed
t_offset = 440 * step
Laurent Mercadier
committed
t_offset = 1
results = xr.DataArray(np.zeros((data.trainId.shape[0], npulses)), coords=data[keyraw].coords,
dims=['trainId', 'MCP{}fromRaw'.format(mcp)])
for i in range(npulses):
a = intstart + t_offset*i
b = intstop + t_offset*i
bkga = bkgstart + t_offset*i
bkgb = bkgstop + t_offset*i
if b > data.dims['samplesId']:
break
bg = np.outer(np.median(data[keyraw][:,bkga:bkgb], axis=1), np.ones(b-a))
results[:,i] = np.trapz(data[keyraw][:,a:b] - bg, axis=1)
return results
def getTIMapd(data, mcp=1, use_apd=True, intstart=None, intstop=None,
bkgstart=None, bkgstop=None, t_offset=None, npulses=None,
stride=1):
''' Extract peak-integrated data from TIM where pulses are from SASE3 only.
If use_apd is False it calculates integration from raw traces.
The missing values, in case of change of number of pulses, are filled
with NaNs. If no bunch pattern info is available, the function assumes
that SASE 3 comes first and that the number of pulses is fixed in both
data: xarray Dataset containing MCP raw traces (e.g. 'MCP1raw')
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
t_offset: number of ADC samples between two pulses
mcp: MCP channel number
Laurent Mercadier
committed
npulses: int, optional. Number of pulses to compute. Required if
no bunch pattern info is available.
stride: int, optional. Used to select pulses in the APD array if
no bunch pattern info is available.
Output:
tim: DataArray of shape trainId only for SASE3 pulses x N
with N=max(number of pulses per train)
'''
#1. case where no bunch pattern is available:
if 'sase3' not in data:
Laurent Mercadier
committed
print('Missing bunch pattern info!\n')
if npulses is None:
raise TypeError('npulses argument is required when bunch pattern ' +
'info is missing.')
print('Retrieving {} SASE 3 pulses assuming that '.format(npulses) +
'SASE 3 pulses come first.')
tim = data[f'MCP{mcp}apd'][:,:npulses:stride]
else:
tim = mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=mcp,
t_offset=t_offset, npulses=npulses)
return tim
#2. If bunch pattern available, define a mask that corresponds to the SASE 3 pulses
Laurent Mercadier
committed
sa3 = data['sase3'].where(data['sase3']>1, drop=True)
sa3 -= sa3[0,0]
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
#2.1 case where apd is used:
if use_apd:
pulseId = 'apdId'
pulseIdDim = data.dims['apdId']
initialDelay = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.initialDelay.value')[0].values
upperLimit = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.upperLimit.value')[0].values
#440 = samples between two pulses @4.5 MHz with ADQ412 digitizer:
period = int((upperLimit - initialDelay)/440)
#display some warnings if apd parameters do not match pulse pattern:
period_from_bunch_pattern = int(np.nanmin(np.diff(sa3)))
if period > period_from_bunch_pattern:
print(f'Warning: apd parameter was set to record 1 pulse out of {period} @ 4.5 MHz ' +
f'but XFEL delivered 1 pulse out of {period_from_bunch_pattern}.')
maxPulses = data['npulses_sase3'].max().values
if period*pulseIdDim < period_from_bunch_pattern*maxPulses:
print(f'Warning: Number of pulses and/or rep. rate in apd parameters were set ' +
f'too low ({pulseIdDim})to record the {maxPulses} SASE 3 pulses')
peaks = data[f'MCP{mcp}apd']
#2.2 case where integration is performed on raw trace:
else:
pulseId = f'MCP{mcp}fromRaw'
pulseIdDim = int(np.max(sa3).values) + 1
period = int(np.nanmin(np.diff(sa3)))
peaks = mcpPeaks(data, intstart, intstop, bkgstart, bkgstop, mcp=mcp, t_offset=period*440,
npulses=pulseIdDim)
sa3 = sa3/period
#2.3 track the changes of pulse patterns and the indices at which they occured (invAll)
idxList, inv = np.unique(sa3, axis=0, return_inverse=True)
mask = xr.DataArray(np.zeros((data.dims['trainId'], pulseIdDim), dtype=bool),
dims=['trainId', pulseId],
coords={'trainId':data.trainId,
pulseId:np.arange(pulseIdDim)})
mask = mask.sel(trainId=sa3.trainId)
for i,idxApd in enumerate(idxList):
idxApd = idxApd[idxApd>=0].astype(int)
idxTid = inv==i
mask[idxTid, idxApd] = True
peaks = peaks.where(mask, drop=True)
peaks = peaks.assign_coords({pulseId:np.arange(peaks[pulseId].shape[0])})
return peaks
def calibrateTIM(data, rollingWindow=200, mcp=1, plot=False, use_apd=True, intstart=None,
Laurent Mercadier
committed
intstop=None, bkgstart=None, bkgstop=None, t_offset=None, npulses_apd=None):
Laurent Mercadier
committed
''' Calibrate TIM signal (Peak-integrated signal) to the slow ion signal of SCS_XGM
(photocurrent read by Keithley, channel 'pulseEnergy.photonFlux.value').
The aim is to find F so that E_tim_peak[uJ] = F x TIM_peak. For this, we want to
match the SASE3-only average TIM pulse peak per train (TIM_avg) to the slow XGM
signal E_slow.
Since E_slow is the average energy per pulse over all SASE1 and SASE3
pulses (N1 and N3), we first extract the relative contribution C of the SASE3 pulses
by looking at the pulse-resolved signals of the SA3_XGM in the tunnel.
There, the signal of SASE1 is usually strong enough to be above noise level.
Let TIM_avg be the average of the TIM pulses (SASE3 only).
The calibration factor is then defined as: F = E_slow * C * (N1+N3) / ( N3 * TIM_avg ).
If N3 changes during the run, we locate the indices for which N3 is maximum and define
a window where to apply calibration (indices start/stop).
Warning: the calibration does not include the transmission by the KB mirrors!
Inputs:
data: xarray Dataset
rollingWindow: length of running average to calculate TIM_avg
Laurent Mercadier
committed
mcp: MCP channel
plot: boolean. If True, plot calibration results.
Laurent Mercadier
committed
use_apd: boolean. If False, the TIM pulse peaks are extract from raw traces using
getTIMapd
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
t_offset: index separation between two pulses
npulses_apd: number of pulses
Output:
F: float, TIM calibration factor.
'''
start = 0
stop = None
npulses = data['npulses_sase3']
ntrains = npulses.shape[0]
Laurent Mercadier
committed
if not np.all(npulses == npulses[0]):
start = np.argmax(npulses.values)
stop = ntrains + np.argmax(npulses.values[::-1]) - 1
if stop - start < rollingWindow:
print('not enough consecutive data points with the largest number of pulses per train')
start += rollingWindow
stop = np.min((ntrains, stop+rollingWindow))
filteredTIM = getTIMapd(data, mcp, use_apd, intstart, intstop, bkgstart, bkgstop, t_offset, npulses_apd)
sa3contrib = saseContribution(data, 'sase3', 'XTD10_XGM')
Laurent Mercadier
committed
avgFast = filteredTIM.mean(axis=1).rolling(trainId=rollingWindow).mean()
ratio = ((data['npulses_sase3']+data['npulses_sase1']) *
data['SCS_photonFlux'] * sa3contrib) / (avgFast*data['npulses_sase3'])
Laurent Mercadier
committed
F = float(ratio[start:stop].median().values)
if plot:
fig = plt.figure(figsize=(8,5))
ax = plt.subplot(211)
ax.set_title('E[uJ] = {:2e} x TIM (MCP{})'.format(F, mcp))
ax.plot(data['SCS_photonflux'], label='SCS XGM slow (all SASE)', color='C0')
slow_avg_sase3 = data['SCS_photonflux']*(data['npulses_sase1']
+data['npulses_sase3'])*sa3contrib/data['npulses_sase3']
ax.plot(slow_avg_sase3, label='SCS XGM slow (SASE3 only)', color='C1')
ax.plot(avgFast*F, label='Calibrated TIM rolling avg', color='C2')
ax.legend(loc='upper left', fontsize=8)
ax.set_ylabel('Energy [$\mu$J]', size=10)
ax.plot(filteredTIM.mean(axis=1)*F, label='Calibrated TIM train avg', alpha=0.2, color='C9')
ax.legend(loc='best', fontsize=8, ncol=2)
plt.xlabel('train in run')
ax = plt.subplot(234)
xgm_fast = selectSASEinXGM(data)
ax.scatter(filteredTIM, xgm_fast, s=5, alpha=0.1, rasterized=True)
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
fit, cov = np.polyfit(filteredTIM.values.flatten(),xgm_fast.values.flatten(),1, cov=True)
y=np.poly1d(fit)
x=np.linspace(filteredTIM.min(), filteredTIM.max(), 10)
ax.plot(x, y(x), lw=2, color='r')
ax.set_ylabel('Raw HAMP [$\mu$J]', size=10)
ax.set_xlabel('TIM (MCP{}) signal'.format(mcp), size=10)
ax.annotate(s='y(x) = F x + A\n'+
'F = %.3e\n$\Delta$F/F = %.2e\n'%(fit[0],np.abs(np.sqrt(cov[0,0])/fit[0]))+
'A = %.3e'%fit[1],
xy=(0.5,0.6), xycoords='axes fraction', fontsize=10, color='r')
print('TIM calibration factor: %e'%(F))
ax = plt.subplot(235)
ax.hist(filteredTIM.values.flatten()*F, bins=50, rwidth=0.8)
ax.set_ylabel('number of pulses', size=10)
ax.set_xlabel('Pulse energy MCP{} [uJ]'.format(mcp), size=10)
ax.set_yscale('log')
ax = plt.subplot(236)
if not use_apd:
pulseStart = intstart
pulseStop = intstop
else:
pulseStart = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.pulseStart.value')[0].values
pulseStop = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1', 'board1.apd.channel_0.pulseStop.value')[0].values
if 'MCP{}raw'.format(mcp) not in data:
tid, data = data.attrs['run'].train_from_index(0)
trace = data['SCS_UTC1_ADQ/ADC/1:network']['digitizers.channel_1_D.raw.samples']
print('no raw data for MCP{}. Loading trace from MCP1'.format(mcp))
label_trace='MCP1 Voltage [V]'
else:
trace = data['MCP{}raw'.format(mcp)][0]
label_trace='MCP{} Voltage [V]'.format(mcp)
ax.plot(trace[:pulseStop+25], 'o-', ms=2, label='trace')
ax.axvspan(pulseStart, pulseStop, color='C2', alpha=0.2, label='APD region')
ax.axvline(pulseStart, color='gray', ls='--')
ax.axvline(pulseStop, color='gray', ls='--')
ax.set_xlim(pulseStart - 25, pulseStop + 25)
ax.set_ylabel(label_trace, size=10)
ax.set_xlabel('sample #', size=10)
ax.legend(fontsize=8)
plt.tight_layout()
return F
Laurent Mercadier
committed
''' TIM calibration table
Dict with key= photon energy and value= array of polynomial coefficients for each MCP (1,2,3).
The polynomials correspond to a fit of the logarithm of the calibration factor as a function
of MCP voltage. If P is a polynomial and V the MCP voltage, the calibration factor (in microjoule
per APD signal) is given by -exp(P(V)).
This table was generated from the calibration of March 2019, proposal 900074, semester 201930,
runs 69 - 111 (Ni edge): https://in.xfel.eu/elog/SCS+Beamline/2323
runs 113 - 153 (Co edge): https://in.xfel.eu/elog/SCS+Beamline/2334
runs 163 - 208 (Fe edge): https://in.xfel.eu/elog/SCS+Beamline/2349
'''
tim_calibration_table = {
705.5: np.array([
[-6.85344690e-12, 5.00931986e-08, -1.27206912e-04, 1.15596821e-01, -3.15215367e+01],
[ 1.25613942e-11, -5.41566381e-08, 8.28161004e-05, -7.27230153e-02, 3.10984925e+01],
[ 1.14094964e-12, 7.72658935e-09, -4.27504907e-05, 4.07253378e-02, -7.00773062e+00]]),
779: np.array([
[ 4.57610777e-12, -2.33282497e-08, 4.65978738e-05, -6.43305156e-02, 3.73958623e+01],
[ 2.96325102e-11, -1.61393276e-07, 3.32600044e-04, -3.28468195e-01, 1.28328844e+02],
[ 1.14521506e-11, -5.81980336e-08, 1.12518434e-04, -1.19072484e-01, 5.37601559e+01]]),
851: np.array([
[ 3.15774215e-11, -1.71452934e-07, 3.50316512e-04, -3.40098861e-01, 1.31064501e+02],
[5.36341958e-11, -2.92533156e-07, 6.00574534e-04, -5.71083140e-01, 2.10547161e+02],
[ 3.69445588e-11, -1.97731342e-07, 3.98203522e-04, -3.78338599e-01, 1.41894119e+02]])
}
Laurent Mercadier
committed
def timFactorFromTable(voltage, photonEnergy, mcp=1):
''' Returns an energy calibration factor for TIM integrated peak signal (APD)
according to calibration from March 2019, proposal 900074, semester 201930,
runs 69 - 111 (Ni edge): https://in.xfel.eu/elog/SCS+Beamline/2323
runs 113 - 153 (Co edge): https://in.xfel.eu/elog/SCS+Beamline/2334
runs 163 - 208 (Fe edge): https://in.xfel.eu/elog/SCS+Beamline/2349
Uses the tim_calibration_table declared above.
Inputs:
voltage: MCP voltage in volts.
photonEnergy: FEL photon energy in eV. Calibration factor is linearly
interpolated between the known values from the calibration table.
mcp: MCP channel (1, 2, or 3).
Output:
f: calibration factor in microjoule per APD signal
'''
energies = np.sort([key for key in tim_calibration_table])
if photonEnergy > energies.max():
photonEnergy = energies.max()
elif photonEnergy < energies.min():
photonEnergy = energies.min()
else:
idx = np.searchsorted(energies, photonEnergy) - 1
polyA = np.poly1d(tim_calibration_table[energies[idx]][mcp-1])
polyB = np.poly1d(tim_calibration_table[energies[idx+1]][mcp-1])
fA = -np.exp(polyA(voltage))
fB = -np.exp(polyB(voltage))
f = fA + (fB-fA)/(energies[idx+1]-energies[idx])*(photonEnergy - energies[idx])
return f
poly = np.poly1d(tim_calibration_table[photonEnergy][mcp-1])
f = -np.exp(poly(voltage))
return f
def checkTimApdWindow(data, mcp=1, use_apd=True, intstart=None, intstop=None):
''' Plot the first and last pulses in MCP trace together with
the window of integration to check if the pulse integration
is properly calculated. If the number of pulses changed during
the run, it selects a train where the number of pulses was
maximum.
Inputs:
data: xarray Dataset
mcp: MCP channel (1, 2, 3 or 4)
use_apd: if True, gets the APD parameters from the digitizer
device. If False, uses intstart and intstop as boundaries
and uses the bunch pattern to determine the separation
between two pulses.
intstart: trace index of integration start of the first pulse
intstop: trace index of integration stop of the first pulse
Output:
Plot
'''
mcpToChannel={1:'D', 2:'C', 3:'B', 4:'A'}
apdChannels={1:3, 2:2, 3:1, 4:0}
npulses_max = data['npulses_sase3'].max().values
tid = data['npulses_sase3'].where(data['npulses_sase3'] == npulses_max,

Loïc Le Guyader
committed
drop=True).trainId.values
if 'MCP{}raw'.format(mcp) not in data:
print('no raw data for MCP{}. Loading average trace from MCP{}'.format(mcp, mcp))
trace = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1:network',
'digitizers.channel_1_{}.raw.samples'.format(mcpToChannel[mcp])
).sel({'trainId':tid}).mean(dim='trainId')

Loïc Le Guyader
committed
trace = data['MCP{}raw'.format(mcp)].sel({'trainId':tid}).mean(dim='trainId')
if use_apd:
pulseStart = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1',
'board1.apd.channel_{}.pulseStart.value'.format(apdChannels[mcp]))[0].values
pulseStop = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1',
'board1.apd.channel_{}.pulseStop.value'.format(apdChannels[mcp]))[0].values
initialDelay = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1',
'board1.apd.channel_{}.initialDelay.value'.format(apdChannels[mcp]))[0].values
upperLimit = data.attrs['run'].get_array(
'SCS_UTC1_ADQ/ADC/1',
'board1.apd.channel_{}.upperLimit.value'.format(apdChannels[mcp]))[0].values
else:
pulseStart = intstart
pulseStop = intstop
if npulses_max > 1:
sa3 = data['sase3'].where(data['sase3']>1)
step = sa3.where(data['npulses_sase3']>1, drop=True)[0,:2].values
step = int(step[1] - step[0])
nsamples = 440 * step
else:
nsamples = 0
fig, ax = plt.subplots(figsize=(5,3))
ax.plot(trace[:pulseStop+25], color='C1', label='first pulse')
ax.axvspan(pulseStart, pulseStop, color='k', alpha=0.1, label='APD region')
ax.axvline(pulseStart, color='gray', ls='--')
ax.axvline(pulseStop, color='gray', ls='--')
ax.set_xlim(pulseStart-25, pulseStop+25)
ax.locator_params(axis='x', nbins=4)
ax.set_ylabel('MCP{} Voltage [V]'.format(mcp))
ax.set_xlabel('First pulse sample #')
if npulses_max > 1:
pulseStart = pulseStart + nsamples*(npulses_max-1)
pulseStop = pulseStop + nsamples*(npulses_max-1)
ax2 = ax.twiny()
ax2.plot(range(pulseStart-25,pulseStop+25), trace[pulseStart-25:pulseStop+25],
color='C4', label='last pulse')
ax2.locator_params(axis='x', nbins=4)
ax2.set_xlabel('Last pulse sample #')
lines, labels = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines + lines2, labels + labels2, loc=0)
else:
ax.legend(loc='lower left')
plt.tight_layout()
def matchXgmTimPulseId(data, use_apd=True, intstart=None, intstop=None,
bkgstart=None, bkgstop=None, t_offset=None,
npulses=None, sase3First=True, stride=1):
''' Function to match XGM pulse Id with TIM pulse Id.
Inputs:
data: xarray Dataset containing XGM and TIM data
use_apd: bool. If True, uses the digitizer APD ('MCP[1,2,3,4]apd').
If False, peak integration is performed from raw traces.
All following parameters are needed in this case.
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
t_offset: index separation between two pulses
Laurent Mercadier
committed
npulses: number of pulses to compute. Required if no bunch
pattern info is available
sase3First: bool, needed if bunch pattern is missing.
stride: int, used to select pulses in the TIM APD array if
no bunch pattern info is available.
Mercadier
committed
xr DataSet containing XGM and TIM signals with the share d
dimension 'sa3_pId'. Raw traces, raw XGM and raw APD are dropped.
Mercadier
committed
dropList = []
mergeList = []
ndata = cleanXGMdata(data, npulses, sase3First)
for mcp in range(1,5):
if 'MCP{}apd'.format(mcp) in data or 'MCP{}raw'.format(mcp) in data:
MCPapd = getTIMapd(data, mcp=mcp, use_apd=use_apd, intstart=intstart,
intstop=intstop,bkgstart=bkgstart, bkgstop=bkgstop,
t_offset=t_offset, npulses=npulses,
stride=stride).rename('MCP{}apd'.format(mcp))
Mercadier
committed
MCPapd = MCPapd.rename({'apdId':'sa3_pId'})
Mercadier
committed
MCPapd = MCPapd.rename({'MCP{}fromRaw'.format(mcp):'sa3_pId'})
mergeList.append(MCPapd)
Mercadier
committed
if 'MCP{}raw'.format(mcp) in ndata:
dropList.append('MCP{}raw'.format(mcp))
if 'MCP{}apd'.format(mcp) in data:
dropList.append('MCP{}apd'.format(mcp))
Mercadier
committed
mergeList.append(ndata.drop(dropList))
subset = xr.merge(mergeList, join='inner')
for k in ndata.attrs.keys():
subset.attrs[k] = ndata.attrs[k]
Mercadier
committed
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
# Fast ADC
def fastAdcPeaks(data, channel, intstart, intstop, bkgstart, bkgstop, period=None, npulses=None):
''' Computes peak integration from raw FastADC traces.
Inputs:
data: xarray Dataset containing FastADC raw traces (e.g. 'FastADC1raw')
channel: FastADC channel number
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
period: number of samples between two pulses. Needed if bunch
pattern info is not available. If None, checks the pulse
pattern and determine the period assuming a resolution of
9.23 ns per sample which leads to 24 samples between
two bunches @ 4.5 MHz.
npulses: number of pulses. If None, takes the maximum number of
pulses according to the bunch patter (field 'npulses_sase3')
Output:
results: DataArray with dims trainId x max(sase3 pulses)
'''
keyraw = 'FastADC{}raw'.format(channel)
if keyraw not in data:
raise ValueError("Source not found: {}!".format(keyraw))
if npulses is None:
npulses = int(data['npulses_sase3'].max().values)
if period is None:
sa3 = data['sase3'].where(data['sase3']>1)
if npulses > 1:
#Calculate the number of pulses between two lasing pulses (step)
step = sa3.where(data['npulses_sase3']>1, drop=True)[0,:2].values
step = int(step[1] - step[0])
#multiply by elementary pulse length (221.5 ns / 9.23 ns = 24 samples)
period = 24 * step
else:
period = 1
results = xr.DataArray(np.empty((data.trainId.shape[0], npulses)), coords=data[keyraw].coords,
dims=['trainId', 'peakId'.format(channel)])
for i in range(npulses):
a = intstart + period*i
b = intstop + period*i
bkga = bkgstart + period*i
bkgb = bkgstop + period*i
bg = np.outer(np.median(data[keyraw][:,bkga:bkgb], axis=1), np.ones(b-a))
integ = np.trapz(data[keyraw][:,a:b] - bg, axis=1)
results[:,i] = integ
return results
def mergeFastAdcPeaks(data, channel, intstart, intstop, bkgstart, bkgstop,
period=None, npulses=None, dim='lasPulseId'):
''' Calculates the peaks from Fast ADC raw traces with fastAdcPeaks()
and merges the results in Dataset.
Inputs:
data: xr Dataset with 'FastADC[channel]raw' traces
channel: Fast ADC channel
intstart: trace index of integration start
intstop: trace index of integration stop
bkgstart: trace index of background start
bkgstop: trace index of background stop
period: Number of ADC samples between two pulses. Needed
if bunch pattern info is not available. If None, checks the
pulse pattern and determine the period assuming a resolution
of 9.23 ns per sample = 24 samples between two pulses @ 4.5 MHz.
npulses: number of pulses. If None, takes the maximum number of
pulses according to the bunch patter (field 'npulses_sase3')
dim: name of the xr dataset dimension along the peaks
'''
peaks = fastAdcPeaks(data, channel=channel, intstart=intstart, intstop=intstop,
bkgstart=bkgstart, bkgstop=bkgstop, period=period,
npulses=npulses)
key = 'FastADC{}peaks'.format(channel)
if key in data:
s = data.drop(key)
else:
s = data
peaks = peaks.rename(key).rename({'peakId':dim})