Newer
Older
import multiprocessing
from time import strftime
from tqdm.auto import tqdm
import os
import warnings
import psutil
import extra_data as ed
from extra_data.read_machinery import find_proposal
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import ToolBox as tb
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
import matplotlib.patches as patches
import numpy as np
import xarray as xr
import h5py
from glob import glob
from imageio import imread
class DSSC1module:
def __init__(self, module, proposal):
""" Create a DSSC object to process 1 module of DSSC data.
inputs:
module: module number to process
proposal: (int,str) proposal number string
"""
self.module = module
if isinstance(proposal,int):
proposal = 'p{:06d}'.format(proposal)
self.runFolder = find_proposal(proposal)
self.semester = self.runFolder.split('/')[-2]
self.proposal = proposal
self.topic = self.runFolder.split('/')[-3]
self.save_folder = os.path.join(self.runFolder, 'usr/condensed_runs/')
self.px_pitch_h = 236 # horizontal pitch in microns
self.px_pitch_v = 204 # vertical pitch in microns
self.aspect = self.px_pitch_v/self.px_pitch_h # aspect ratio of the DSSC images
print('DSSC configuration')
print(f'DSSC module: {self.module}')
print(f'Topic: {self.topic}')
print(f'Semester: {self.semester}')
print(f'Proposal: {self.proposal}')
print(f'Default save folder: {self.save_folder}')
if not os.path.exists(self.save_folder):
warnings.warn(f'Default save folder does not exist: {self.save_folder}')
self.dark_data = 0
self.max_fraction_memory = 0.8
self.Nworker = 10
self.rois = None
""" Open a run with extra-data and prepare the virtual dataset for multiprocessing
inputs:
run_nr: the run number
t0: optional t0 in mm
"""
print('Opening run data with extra-data')
self.run = ed.open_run(self.proposal, self.run_nr)
self.plot_title = f'{self.proposal} run: {self.run_nr}'
self.fpt = self.run.detector_info(f'SCS_DET_DSSC1M-1/DET/{self.module}CH0:xtdf')['frames_per_train']
self.nbunches = self.run.get_array('SCS_RR_UTC/MDL/BUNCH_DECODER', 'sase3.nPulses.value')
self.nbunches = np.unique(self.nbunches)
if len(self.nbunches) == 1:
self.nbunches = self.nbunches[0]
else:
warnings.warn('not all trains have same length DSSC data')
print(f'nbunches: {self.nbunches}')
self.nbunches = self.nbunches[-1]
print(f'DSSC frames per train: {self.fpt}')
print(f'SA3 bunches per train: {self.nbunches}')
print('Collecting DSSC module files')
self.collect_dssc_module_file()
print(f'Loading XGM data')
self.xgm = self.run.get_array(tb.mnemonics['SCS_SA3']['source'],
tb.mnemonics['SCS_SA3']['key'],
roi=ed.by_index[:self.nbunches])
self.xgm = self.xgm.rename({'dim_0':'pulseId'})
self.xgm['pulseId'] = np.arange(0, 2*self.nbunches, 2)
print(f'Loading mono nrj data')
self.nrj = self.run.get_array(tb.mnemonics['nrj']['source'],
tb.mnemonics['nrj']['key'])
try:
self.delay_mm = self.run.get_array(tb.mnemonics['PP800_DelayLine']['source'],
tb.mnemonics['PP800_DelayLine']['key'])
except:
self.delay_mm = 0*self.nrj
self.t0 = t0
self.delay_ps = tb.positionToDelay(self.delay_mm, origin=self.t0, invert=True)
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
def collect_dssc_module_file(self):
""" Collect the raw DSSC module h5 files.
"""
pattern = self.runFolder + f'/raw/r{self.run_nr:04d}/RAW-R{self.run_nr:04d}-DSSC{self.module:02d}-S*.h5'
self.h5list = glob(pattern)
def process(self, dark_pass=None):
""" Process DSSC data from one module using multiprocessing
dark_pass: if None, process data, if 'mean', compute the mean, if 'std', compute the std
"""
# get available memory in GB, we will try to use 80 % of it
max_GB = psutil.virtual_memory().available/1024**3
print(f'max available memory: {max_GB} GB')
# max_GB / (8byte * Nworker * 128px * 512px * N_pulses)
self.chunksize = int(self.max_fraction_memory*max_GB * 1024**3 // (8 * self.Nworker * 128 * 512 * self.fpt))
print('processing', self.chunksize, 'trains per chunk')
if dark_pass == 'mean':
rois = None
dark = 0
mask = 1
elif dark_pass == 'std':
dark = self.dark_data['dark_mean']
rois = None
mask = 1
elif dark_pass is None:
dark = self.dark_data['dark_mean']
rois = self.rois
mask = self.dark_data['mask']
else:
raise ValueError(f"dark_pass should be either None or 'mean' or 'std' but not {dark_pass}")
jobs = []
for m,h5fname in enumerate(self.h5list):
jobs.append(dict(
fpt=self.fpt,
module=self.module,
h5fname=h5fname,
chunksize=self.chunksize,
nbunches=self.nbunches,
workerId=m,
Nworker=self.Nworker,
dark_data=dark,
rois=rois,
mask=mask,
maxSaturatedPixel=self.maxSaturatedPixel
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
))
timestamp = strftime('%X')
print(f'start time: {timestamp}')
with multiprocessing.Pool(self.Nworker) as pool:
res = pool.map(process_one_module, jobs)
print('finished:', strftime('%X'))
# rearange the multiprocessed data
# this is to get rid of the worker dimension, there is no sum over worker really involved
self.module_data = xr.concat(res, dim='worker').sum(dim='worker')
# reorder the dimension
if 'trainId' in self.module_data.dims:
self.module_data = self.module_data.transpose('trainId', 'pulseId', 'x', 'y')
else:
self.module_data = self.module_data.transpose('pulseId', 'x', 'y')
# fix some computation now that we have everything
self.module_data['std_data'] = np.sqrt(self.module_data['std_data']/(self.module_data['counts'] - 1))
self.module_data['dark_corrected_data'] = self.module_data['dark_corrected_data']/self.module_data['counts']
self.module_data['run'] = self.run_nr
if dark_pass == 'mean':
self.dark_data = self.module_data['dark_corrected_data'].to_dataset('dark_mean')
self.dark_data['run'] = self.run_nr
elif dark_pass == 'std':
self.dark_data['dark_std'] = self.module_data['std_data']
assert self.dark_data['run'] == self.run_nr, "noise map computed from different darks"
else:
self.module_data['xgm'] = self.xgm
self.module_data['nrj'] = self.nrj
self.module_data['delay_mm'] = self.delay_mm
self.module_data['delay_ps'] = self.delay_ps
self.module_data['t0'] = self.t0
self.plot_title = f"{self.proposal} run: {self.module_data['run'].values} dark: {self.dark_data['run'].values}"
self.module_data.attrs['plot_title'] = self.plot_title
def compute_mask(self, low=0.01, high=0.8):
""" Compute a DSSC module mask from the noise map of a dark run.
"""
if self.dark_data['dark_std'] is None:
raise ValueError('Cannot compute from from a missing dark noise map')
self.dark_data['mask_low'] = low
self.dark_data['mask_high'] = high
m_std = self.dark_data['dark_std'].mean('pulseId')
self.dark_data['mask'] = 1 - ((m_std > self.dark_data['mask_high']) + (m_std < self.dark_data['mask_low']))
def plot_module(self, plot_dark=False, low=1, high=98, vmin=None, vmax=None):
""" Plot a module.
inputs:
plot_dark: if true, plot dark instead of run data.
low: low percentile fraction of the display scale
high: high percentile fraction of the display scale
vmin: low value of the display scale, overwrites vmin computed from low
vmax: max value of the display scale, overwrites vmax computed from high
"""
if plot_dark:
mean = self.dark_data['dark_mean'].mean('pulseId')
std = self.dark_data['dark_std']
title = f"{self.proposal} dark: {self.dark_data['run'].values}"
else:
mean = self.module_data['dark_corrected_data'].mean('pulseId')
std = self.module_data['std_data']
title = self.plot_title
fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=4, figsize=[5, 4*2.5])
_vmin, _vmax = np.percentile((mean.values[~self.dark_data['mask']]).flatten(), [low, high])
if vmin is None:
vmin = _vmin
if vmax is None:
vmax = _vmax
im = ax1.imshow(mean, vmin=vmin, vmax=vmax)
fig.colorbar(im, ax=ax1)
ax1.set_title('mean')
fig.suptitle(title)
im = ax2.imshow(std.mean('pulseId'), vmin=0, vmax=2)
fig.colorbar(im, ax=ax2)
ax2.set_title('std')
ax3.hist(std.values.flatten(), bins=200, range=[0, 2], density=True)
ax3.axvline(self.dark_data['mask_low'], ls='--', c='k')
ax3.axvline(self.dark_data['mask_high'], ls='--', c='k')
ax3.set_yscale('log')
ax3.set_ylabel('density')
ax3.set_xlabel('std values')
im = ax4.imshow(self.dark_data['mask'])
fig.colorbar(im, ax=ax4)
def save(self, save_folder=None, overwrite=False, isDark=False):
""" Save the crunched data.
inputs:
save_folder: string of the fodler where to save the data.
overwrite: boolean whether or not to overwrite existing files.
isDark: save the dark or the process data
"""
if save_folder is None:
save_folder = self.save_folder
if isDark:
fname = f'run{self.run_nr}_dark.h5' # no scan
data = self.dark_data
else:
fname = f'run{self.run_nr}.h5' # run with delay scan (change for other scan types!)
data = self.module_data
save_path = os.path.join(save_folder, fname)
file_exists = os.path.isfile(save_path)
if not file_exists or (file_exists and overwrite):
if file_exists:
warnings.warn(f'Overwriting file: {save_path}')
os.remove(save_path)
data.to_netcdf(save_path, group='data')
data.close()
os.chmod(save_path, 0o664)
print('saving: ', save_path)
else:
print('file', save_path, 'exists and overwrite is False')
def load_dark(self, dark_runNB, save_folder=None):
""" Load dark data.
inputs:
save_folder: string of the folder where the data were saved.
"""
if save_folder is None:
save_folder = self.save_folder
self.run_nr = dark_runNB
self.dark_data = xr.load_dataset(os.path.join(save_folder, f'run{dark_runNB}_dark.h5'), group='data')
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
self.plot_title = f"{self.proposal} dark: {self.dark_data['run'].values}"
def show_rois(self):
fig, ax1 = plt.subplots(nrows=1, figsize=[5, 2.5])
try:
ax1.imshow(self.module_data['dark_corrected_data'].mean('pulseId') * self.dark_data['mask'])
except:
ax1.imshow(self.dark_data['dark_mean'].mean('pulseId') * self.dark_data['mask'])
for r,v in self.rois.items():
rect = patches.Rectangle((v['y'][0], v['x'][0]),
v['y'][1] - v['y'][0],
v['x'][1] - v['x'][0],
linewidth=1, edgecolor='r', facecolor='none')
ax1.add_patch(rect)
fig.suptitle(self.plot_title)
# since 'self' is not pickable, this function has to be outside the DSSC class so that it can be used
# by the multiprocessing pool.map function
def process_one_module(job):
chunksize = job['chunksize']
Nworker = job['Nworker']
workerId = job['workerId']
dark_data = job['dark_data']
fpt = job['fpt']
module = job['module']
rois = job['rois']
mask = job['mask']
h5fname = job['h5fname']
maxSaturatedPixel = job['maxSaturatedPixel']
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
image_path = f"INSTRUMENT/SCS_DET_DSSC1M-1/DET/{module}CH0:xtdf/image/data"
npulse_path = f"INDEX/SCS_DET_DSSC1M-1/DET/{module}CH0:xtdf/image/count"
with h5py.File(h5fname, 'r') as m:
all_trainIds = m['INDEX/trainId'][()]
n_trains = len(all_trainIds)
n_chunk = np.ceil(n_trains/chunksize) + 1
chunks = np.linspace(0, n_trains, n_chunk, endpoint=True, dtype=int)
# create empty dataset to add actual data to
module_data = xr.DataArray(np.zeros([fpt, 128, 512], dtype=np.float64),
dims=['pulseId', 'x', 'y'],
coords={'pulseId':np.arange(fpt)}).to_dataset(name='dark_corrected_data')
module_data['std_data'] = xr.DataArray(np.zeros([fpt, 128, 512], dtype=np.float64),
dims=['pulseId', 'x', 'y'])
if rois is not None:
for k in rois.keys():
module_data[k] = xr.DataArray(np.empty([n_trains], dtype=np.float64),
dims=['trainId'], coords = {'trainId': all_trainIds})
module_data['counts'] = 0
# crunching
with h5py.File(h5fname, 'r') as m:
#chunk_start = np.arange(len(all_trainIds), step=job['chunksize'], dtype=int)
trains_start = 0
# This line is the strange hack from https://github.com/tqdm/tqdm/issues/485
print(' ', end='', flush=True)
for k,v in enumerate(tqdm(chunks[:-1], desc=f"pool.map#{workerId:02d}")):
chunk_dssc = np.s_[int(chunks[k] * fpt):int(chunks[k+1] * fpt)] # for dssc data
data = m[image_path][chunk_dssc].squeeze()
trains = m['INDEX/trainId'][np.s_[int(chunks[k]):int(chunks[k+1])]]
n_trains = len(trains)
data = data.astype(np.float64)
data = xr.DataArray(np.reshape(data, [n_trains, fpt, 128, 512]),
dims=['trainId', 'pulseId', 'x', 'y'],
coords={'trainId': trains})
temp = data - dark_data
if rois is not None:
temp2 = temp.where(mask)
for k,v in rois.items():
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
bkg = dark_data.isel({'x':slice(v['x'][0], v['x'][1]),
'y':slice(v['y'][0], v['y'][1])})
im = data.isel({'x':slice(v['x'][0], v['x'][1]),
'y':slice(v['y'][0], v['y'][1])})
smask = mask.isel({'x':slice(v['x'][0], v['x'][1]),
'y':slice(v['y'][0], v['y'][1])})
im = im.where(smask)
cim = im - bkg.where(smask)
val = cim.sum(dim=['x','y'])
tokeep = (im>254).sum(dim=['x', 'y']) < maxSaturatedPixel
tokeep = tokeep.assign_coords(pulseId = val.coords['pulseId'].values)
todrop = 1-tokeep
Ndropped = todrop.sum().values
percent_dropped = 100*Ndropped/(n_trains * fpt)
print(f'Dropped: {Ndropped}, i.e. {percent_dropped:.2f}%')
gval = val.where(tokeep, np.nan)
module_data[k] = gval
module_data['dark_corrected_data'] += temp.sum(dim='trainId')
module_data['std_data'] += (temp**2).sum(dim='trainId')
module_data['counts'] += n_trains
return module_data