Skip to content
Snippets Groups Projects
DSSC1module.py 16.8 KiB
Newer Older
Loïc Le Guyader's avatar
Loïc Le Guyader committed
import multiprocessing
from time import strftime
from tqdm.auto import tqdm
import os
import warnings
import psutil

import extra_data as ed
from extra_data.read_machinery import find_proposal
Loïc Le Guyader's avatar
Loïc Le Guyader committed
import ToolBox as tb
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
import matplotlib.patches as patches
import numpy as np
import xarray as xr
import h5py
from glob import glob

from imageio import imread

class DSSC1module:
        
    def __init__(self, module, proposal):
        """ Create a DSSC object to process 1 module of DSSC data.
        
            inputs:
                module: module number to process
                proposal: (int,str) proposal number string
            
        """
        self.module = module
        
        if isinstance(proposal,int):
            proposal = 'p{:06d}'.format(proposal)
        self.runFolder = find_proposal(proposal)
        self.semester = self.runFolder.split('/')[-2]
        self.proposal = proposal
        self.topic = self.runFolder.split('/')[-3]
        self.save_folder = os.path.join(self.runFolder, 'usr/condensed_runs/')
        self.px_pitch_h = 236 # horizontal pitch in microns
        self.px_pitch_v = 204 # vertical pitch in microns
        self.aspect = self.px_pitch_v/self.px_pitch_h # aspect ratio of the DSSC images
        
        print('DSSC configuration')
        print(f'DSSC module: {self.module}')
        print(f'Topic: {self.topic}')
        print(f'Semester: {self.semester}')
        print(f'Proposal: {self.proposal}')
        print(f'Default save folder: {self.save_folder}')
        
        if not os.path.exists(self.save_folder):
            warnings.warn(f'Default save folder does not exist: {self.save_folder}')
            
        self.dark_data = 0
        self.max_fraction_memory = 0.8
        self.Nworker = 10
        self.rois = None
        self.maxSaturatedPixel = 1
Loïc Le Guyader's avatar
Loïc Le Guyader committed
           
    def open_run(self, run_nr, t0=0.0):
        """ Open a run with extra-data and prepare the virtual dataset for multiprocessing
Loïc Le Guyader's avatar
Loïc Le Guyader committed
        
            inputs:
                run_nr: the run number
                t0: optional t0 in mm
        """
        
        print('Opening run data with extra-data')
Loïc Le Guyader's avatar
Loïc Le Guyader committed
        self.run_nr = run_nr
        self.xgm = None
        
        self.run = ed.open_run(self.proposal, self.run_nr)
Loïc Le Guyader's avatar
Loïc Le Guyader committed
        self.plot_title = f'{self.proposal} run: {self.run_nr}'
        
        self.fpt = self.run.detector_info(f'SCS_DET_DSSC1M-1/DET/{self.module}CH0:xtdf')['frames_per_train']
        self.nbunches = self.run.get_array('SCS_RR_UTC/MDL/BUNCH_DECODER', 'sase3.nPulses.value')
        self.nbunches = np.unique(self.nbunches)
        if len(self.nbunches) == 1:
            self.nbunches = self.nbunches[0]
        else:
            warnings.warn('not all trains have same length DSSC data')
            print(f'nbunches: {self.nbunches}')
            self.nbunches = self.nbunches[-1]
            
        print(f'DSSC frames per train: {self.fpt}')
        print(f'SA3 bunches per train: {self.nbunches}')
        
        print('Collecting DSSC module files')
        self.collect_dssc_module_file()
        
        
        print(f'Loading XGM data')
        self.xgm = self.run.get_array(tb.mnemonics['SCS_SA3']['source'],
                                      tb.mnemonics['SCS_SA3']['key'],
                                      roi=ed.by_index[:self.nbunches])
Loïc Le Guyader's avatar
Loïc Le Guyader committed
        self.xgm = self.xgm.rename({'dim_0':'pulseId'})
        self.xgm['pulseId'] = np.arange(0, 2*self.nbunches, 2)
        
        print(f'Loading mono nrj data')
        self.nrj = self.run.get_array(tb.mnemonics['nrj']['source'],
                                      tb.mnemonics['nrj']['key'])
        print(f'Loading delay line data')
Loïc Le Guyader's avatar
Loïc Le Guyader committed
        try:
            self.delay_mm = self.run.get_array(tb.mnemonics['PP800_DelayLine']['source'],
                                               tb.mnemonics['PP800_DelayLine']['key'])
        except:
            self.delay_mm = 0*self.nrj
        self.t0 = t0
        self.delay_ps = tb.positionToDelay(self.delay_mm, origin=self.t0, invert=True)
Loïc Le Guyader's avatar
Loïc Le Guyader committed
                    
    def collect_dssc_module_file(self):
        """ Collect the raw DSSC module h5 files.
        """
        
        pattern = self.runFolder + f'/raw/r{self.run_nr:04d}/RAW-R{self.run_nr:04d}-DSSC{self.module:02d}-S*.h5'
        self.h5list = glob(pattern)
       
    def process(self, dark_pass=None):
        """ Process DSSC data from one module using multiprocessing
        
            dark_pass: if None, process data, if 'mean', compute the mean, if 'std', compute the std
        
        """

        # get available memory in GB, we will try to use 80 % of it
        max_GB = psutil.virtual_memory().available/1024**3
        print(f'max available memory: {max_GB} GB')
        
        # max_GB / (8byte * Nworker * 128px * 512px * N_pulses)
        self.chunksize = int(self.max_fraction_memory*max_GB * 1024**3 // (8 * self.Nworker * 128 * 512 * self.fpt))
                
        print('processing', self.chunksize, 'trains per chunk')
        
        if dark_pass == 'mean':
            rois = None
            dark = 0
            mask = 1
        elif dark_pass == 'std':
            dark = self.dark_data['dark_mean']
            rois = None
            mask = 1
        elif dark_pass is None:
            dark = self.dark_data['dark_mean']
            rois = self.rois
            mask = self.dark_data['mask']
        else:
            raise ValueError(f"dark_pass should be either None or 'mean' or 'std' but not {dark_pass}")
                   
        jobs = []
        for m,h5fname in enumerate(self.h5list):
            jobs.append(dict(
            fpt=self.fpt,
            module=self.module,
            h5fname=h5fname,
            chunksize=self.chunksize,
            nbunches=self.nbunches,
            workerId=m,
            Nworker=self.Nworker,
            dark_data=dark,
            rois=rois,
            mask=mask,
            maxSaturatedPixel=self.maxSaturatedPixel
Loïc Le Guyader's avatar
Loïc Le Guyader committed
            ))
            
        timestamp = strftime('%X')
        print(f'start time: {timestamp}')

        with multiprocessing.Pool(self.Nworker) as pool:
            res = pool.map(process_one_module, jobs)
        
        print('finished:', strftime('%X'))
        
        # rearange the multiprocessed data
        # this is to get rid of the worker dimension, there is no sum over worker really involved
        self.module_data = xr.concat(res, dim='worker').sum(dim='worker')
        
        # reorder the dimension
        if 'trainId' in self.module_data.dims:
            self.module_data = self.module_data.transpose('trainId', 'pulseId', 'x', 'y')
        else:
            self.module_data = self.module_data.transpose('pulseId', 'x', 'y')
        
        # fix some computation now that we have everything
        self.module_data['std_data'] = np.sqrt(self.module_data['std_data']/(self.module_data['counts'] - 1))
        self.module_data['dark_corrected_data'] = self.module_data['dark_corrected_data']/self.module_data['counts']
             
        self.module_data['run'] = self.run_nr
      
        if dark_pass == 'mean':
            self.dark_data = self.module_data['dark_corrected_data'].to_dataset('dark_mean')
            self.dark_data['run'] = self.run_nr
        elif dark_pass == 'std':
            self.dark_data['dark_std'] = self.module_data['std_data']
            assert self.dark_data['run'] == self.run_nr, "noise map computed from different darks"
        else:
            self.module_data['xgm'] = self.xgm
            self.module_data['nrj'] = self.nrj
            self.module_data['delay_mm'] = self.delay_mm
            self.module_data['delay_ps'] = self.delay_ps
            self.module_data['t0'] = self.t0
            
            
        self.plot_title = f"{self.proposal} run: {self.module_data['run'].values} dark: {self.dark_data['run'].values}"
        self.module_data.attrs['plot_title'] = self.plot_title
        
    def compute_mask(self, low=0.01, high=0.8):
        """ Compute a DSSC module mask from the noise map of a dark run.
        """
        
        if self.dark_data['dark_std'] is None:
            raise ValueError('Cannot compute from from a missing dark noise map')
            
        self.dark_data['mask_low'] = low
        self.dark_data['mask_high'] = high
        
        m_std = self.dark_data['dark_std'].mean('pulseId')
        
        self.dark_data['mask'] = 1 - ((m_std > self.dark_data['mask_high']) + (m_std < self.dark_data['mask_low']))

    def plot_module(self, plot_dark=False, low=1, high=98, vmin=None, vmax=None):
        """ Plot a module.
        
            inputs:
                plot_dark: if true, plot dark instead of run data.
                low: low percentile fraction of the display scale
                high: high percentile fraction of the display scale
                vmin: low value of the display scale, overwrites vmin computed from low
                vmax: max value of the display scale, overwrites vmax computed from high
                
        """
        
        if plot_dark:
            mean = self.dark_data['dark_mean'].mean('pulseId')
            std = self.dark_data['dark_std']
            title = f"{self.proposal} dark: {self.dark_data['run'].values}"
        else:
            mean = self.module_data['dark_corrected_data'].mean('pulseId')
            std = self.module_data['std_data']
            title = self.plot_title
            
        fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=4, figsize=[5, 4*2.5])
        _vmin, _vmax = np.percentile((mean.values[~self.dark_data['mask']]).flatten(), [low, high])
        if vmin is None:
            vmin = _vmin
        if vmax is None:
            vmax = _vmax
        im = ax1.imshow(mean, vmin=vmin, vmax=vmax)
        fig.colorbar(im, ax=ax1)
        ax1.set_title('mean')
        fig.suptitle(title)
        
        im = ax2.imshow(std.mean('pulseId'), vmin=0, vmax=2)
        fig.colorbar(im, ax=ax2)
        ax2.set_title('std')
        
        ax3.hist(std.values.flatten(), bins=200, range=[0, 2], density=True)
        ax3.axvline(self.dark_data['mask_low'], ls='--', c='k')
        ax3.axvline(self.dark_data['mask_high'], ls='--', c='k')
        ax3.set_yscale('log')
        ax3.set_ylabel('density')
        ax3.set_xlabel('std values')
        
        im = ax4.imshow(self.dark_data['mask'])
        fig.colorbar(im, ax=ax4)

    def save(self, save_folder=None, overwrite=False, isDark=False):
        """ Save the crunched data.
        
            inputs:
                save_folder: string of the fodler where to save the data.
                overwrite: boolean whether or not to overwrite existing files.
                isDark: save the dark or the process data
        """
        if save_folder is None:
            save_folder = self.save_folder

        if isDark:
            fname = f'run{self.run_nr}_dark.h5'  # no scan
            data = self.dark_data
        else:
            fname = f'run{self.run_nr}.h5'  # run with delay scan (change for other scan types!)
            data = self.module_data


        save_path = os.path.join(save_folder, fname)
        file_exists = os.path.isfile(save_path)

        if not file_exists or (file_exists and overwrite):
            if file_exists:
                warnings.warn(f'Overwriting file: {save_path}')
                os.remove(save_path)
            data.to_netcdf(save_path, group='data')
Loïc Le Guyader's avatar
Loïc Le Guyader committed
            os.chmod(save_path, 0o664)
            print('saving: ', save_path)
        else:
            print('file', save_path, 'exists and overwrite is False')
            
    def load_dark(self, dark_runNB, save_folder=None):
        """ Load dark data.
        
            inputs:
                save_folder: string of the folder where the data were saved.
        """

        if save_folder is None:
            save_folder = self.save_folder
            
        self.run_nr = dark_runNB
        self.dark_data = xr.load_dataset(os.path.join(save_folder, f'run{dark_runNB}_dark.h5'), group='data')
Loïc Le Guyader's avatar
Loïc Le Guyader committed
        self.plot_title = f"{self.proposal} dark: {self.dark_data['run'].values}"

    def show_rois(self):
        fig, ax1 = plt.subplots(nrows=1, figsize=[5, 2.5])
        try:
            ax1.imshow(self.module_data['dark_corrected_data'].mean('pulseId') * self.dark_data['mask'])
        except:
            ax1.imshow(self.dark_data['dark_mean'].mean('pulseId') * self.dark_data['mask'])            
        for r,v in self.rois.items():
            rect = patches.Rectangle((v['y'][0], v['x'][0]),
                                     v['y'][1] - v['y'][0],
                                     v['x'][1] - v['x'][0],
                                     linewidth=1, edgecolor='r', facecolor='none')

            ax1.add_patch(rect)
            
        fig.suptitle(self.plot_title)

 
# since 'self' is not pickable, this function has to be outside the DSSC class so that it can be used
# by the multiprocessing pool.map function
def process_one_module(job):
    
    chunksize = job['chunksize']
    Nworker = job['Nworker']
    workerId = job['workerId']
    dark_data = job['dark_data']
    fpt = job['fpt']
    module = job['module']
    rois = job['rois']
    mask = job['mask']
    h5fname = job['h5fname']
    maxSaturatedPixel = job['maxSaturatedPixel']
Loïc Le Guyader's avatar
Loïc Le Guyader committed
    
    image_path = f"INSTRUMENT/SCS_DET_DSSC1M-1/DET/{module}CH0:xtdf/image/data"
    npulse_path = f"INDEX/SCS_DET_DSSC1M-1/DET/{module}CH0:xtdf/image/count"
        
    with h5py.File(h5fname, 'r') as m:
        all_trainIds = m['INDEX/trainId'][()]
    n_trains = len(all_trainIds)
    
    n_chunk = np.ceil(n_trains/chunksize) + 1
    
    chunks = np.linspace(0, n_trains, n_chunk, endpoint=True, dtype=int)
        
    # create empty dataset to add actual data to
    module_data = xr.DataArray(np.zeros([fpt, 128, 512], dtype=np.float64),
                               dims=['pulseId', 'x', 'y'],
                               coords={'pulseId':np.arange(fpt)}).to_dataset(name='dark_corrected_data')
    module_data['std_data'] = xr.DataArray(np.zeros([fpt, 128, 512], dtype=np.float64),
                               dims=['pulseId', 'x', 'y'])

    if rois is not None:
        for k in rois.keys():
            module_data[k] = xr.DataArray(np.empty([n_trains], dtype=np.float64),
                                   dims=['trainId'], coords = {'trainId': all_trainIds})
    module_data['counts'] = 0
    
    # crunching
    with h5py.File(h5fname, 'r') as m:

        #chunk_start = np.arange(len(all_trainIds), step=job['chunksize'], dtype=int)
        trains_start = 0
                   
        # This line is the strange hack from https://github.com/tqdm/tqdm/issues/485
        print(' ', end='', flush=True)
         
        for k,v in enumerate(tqdm(chunks[:-1], desc=f"pool.map#{workerId:02d}")):              
            chunk_dssc = np.s_[int(chunks[k] * fpt):int(chunks[k+1] * fpt)]  # for dssc data
            data = m[image_path][chunk_dssc].squeeze()
            
            trains = m['INDEX/trainId'][np.s_[int(chunks[k]):int(chunks[k+1])]]
            n_trains = len(trains)                   
                    
            data = data.astype(np.float64)
            data = xr.DataArray(np.reshape(data, [n_trains, fpt, 128, 512]),
                                dims=['trainId', 'pulseId', 'x', 'y'],
                                coords={'trainId': trains})
            
            temp = data - dark_data
            
            if rois is not None:
                temp2 = temp.where(mask)
                for k,v in rois.items():
                    bkg = dark_data.isel({'x':slice(v['x'][0], v['x'][1]),
                                     'y':slice(v['y'][0], v['y'][1])})
                    
                    im = data.isel({'x':slice(v['x'][0], v['x'][1]),
                                     'y':slice(v['y'][0], v['y'][1])})
                    
                    smask = mask.isel({'x':slice(v['x'][0], v['x'][1]),
                                     'y':slice(v['y'][0], v['y'][1])})
                    
                    im = im.where(smask)
                                        

                    cim = im - bkg.where(smask)
                    
                    val = cim.sum(dim=['x','y'])
                    
                    tokeep = (im>254).sum(dim=['x', 'y']) < maxSaturatedPixel
                    tokeep = tokeep.assign_coords(pulseId = val.coords['pulseId'].values)
                    todrop = 1-tokeep
                    
                    Ndropped = todrop.sum().values
                    percent_dropped = 100*Ndropped/(n_trains * fpt)
                    
                    print(f'Dropped: {Ndropped}, i.e. {percent_dropped:.2f}%')
                    gval = val.where(tokeep, np.nan) 
                    module_data[k] = gval
Loïc Le Guyader's avatar
Loïc Le Guyader committed

            module_data['dark_corrected_data'] += temp.sum(dim='trainId')
            module_data['std_data'] += (temp**2).sum(dim='trainId')
            module_data['counts'] += n_trains