Newer
Older

Loïc Le Guyader
committed
import numpy as np
from karabo_data import RunDirectory
import xarray as xr
mnemonics = {
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Machine
"sase3": {'source':'SCS_RR_UTC/MDL/BUNCH_DECODER',
'key':'sase3.pulseIds.value',
'dim':['bunchId']},
"sase2": {'source':'SCS_RR_UTC/MDL/BUNCH_DECODER',
'key':'sase2.pulseIds.value',
'dim':['bunchId']},
"sase1": {'source':'SCS_RR_UTC/MDL/BUNCH_DECODER',
'key':'sase1.pulseIds.value',
'dim':['bunchId']},
"maindump": {'source':'SCS_RR_UTC/MDL/BUNCH_DECODER',
'key':'maindump.pulseIds.value',
'dim':['bunchId']},
"bunchpattern": {'source':'SCS_RR_UTC/TSYS/TIMESERVER',
'key':'readBunchPatternTable.value',
'dim':None},
"npulses_sase3": {'source':'SCS_RR_UTC/MDL/BUNCH_DECODER',
'key':'sase3.nPulses.value',
'dim':None},
"npulses_sase1": {'source':'SCS_RR_UTC/MDL/BUNCH_DECODER',
'key':'sase1.nPulses.value',
'dim':None},
# SA3
"nrj": {'source':'SA3_XTD10_MONO/MDL/PHOTON_ENERGY',
'key':'actualEnergy.value',
'dim':None},
"M2BEND": {'source': 'SA3_XTD10_MIRR-2/MOTOR/BENDER',
'key': 'actualPosition.value',
'dim':None},
"VSLIT": {'source':'SA3_XTD10_VSLIT/MDL/BLADE',
'key':'actualGap.value',
'dim':None},
"ESLIT": {'source':'SCS_XTD10_ESLIT/MDL/MAIN',
'key':'actualGap.value',
'dim':None},
"HSLIT": {'source':'SCS_XTD10_HSLIT/MDL/BLADE',
'key':'actualGap.value',
'dim':None},
"transmission": {'source':'SA3_XTD10_GATT/MDL/GATT_TRANSMISSION_MONITOR',
'key':'Estimated_Tr.value',
'dim':None},
"GATT_pressure": {'source':'P_GATT',
'key':'value.value',
'dim':None},
# XGMs
"SA3_XGM": {'source':'SA3_XTD10_XGM/XGM/DOOCS:output',
'key':'data.intensityTD',
'dim':['XGMbunchId']},
"SA3_XGM_SLOW": {'source':'SA3_XTD10_XGM/XGM/DOOCS',
'key':'pulseEnergy.photonFlux.value',
'dim':None},
"SCS_XGM": {'source':'SCS_BLU_XGM/XGM/DOOCS:output',
'key':'data.intensityTD',
'dim':['XGMbunchId']},
"SCS_XGM_SLOW": {'source':'SCS_BLU_XGM/XGM/DOOCS',
'key':'pulseEnergy.photonFlux.value',
'dim':None},
# KBS
"HFM_CAPB": {'source':'SCS_KBS_HFM/ASENS/CAPB',
'key':'value.value',
'dim':None},
"HFM_CAPF": {'source':'SCS_KBS_HFM/ASENS/CAPF',
'key':'value.value',
'dim':None},
"HFM_CAPM": {'source':'SCS_KBS_HFM/ASENS/CAPM',
'key':'value.value',
'dim':None},
"HFM_BENDERB": {'source':'SCS_KBS_HFM/MOTOR/BENDERB',
'key':'encoderPosition.value',
'dim':None},
"HFM_BENDERF": {'source':'SCS_KBS_HFM/MOTOR/BENDERF',
'key':'encoderPosition.value',
'dim':None},
"VFM_CAPB": {'source':'SCS_KBS_VFM/ASENS/CAPB',
'key':'value.value',
'dim':None},
"VFM_CAPF": {'source':'SCS_KBS_VFM/ASENS/CAPF',
'key':'value.value',
'dim':None},
"VFM_CAPM": {'source':'SCS_KBS_VFM/ASENS/CAPM',
'key':'value.value',
'dim':None},
"VFM_BENDERB": {'source':'SCS_KBS_VFM/MOTOR/BENDERB',
'key':'encoderPosition.value',
'dim':None},
"VFM_BENDERF": {'source':'SCS_KBS_VFM/MOTOR/BENDERF',
'key':'encoderPosition.value',
'dim':None},
# FFT
"scannerX": {'source':'SCS_CDIFFT_SAM/LMOTOR/SCANNERX',
'key':'actualPosition.value',
'dim':None},
"scannerY": {'source':'SCS_CDIFFT_SAM/MOTOR/SCANNERY',
'key':'actualPosition.value',
'dim':None},
"scannerY_enc": {'source':'SCS_CDIFFT_SAM/ENC/SCANNERY',
'key':'value.value',
'dim':None},
"SAM-Z": {'source':'SCS_CDIFFT_MOV/ENC/SAM_Z',
'key':'value.value',
'dim':None},
"magnet": {'source':'SCS_CDIFFT_MAG/SUPPLY/CURRENT',
'key':'actual_current.value',
'dim':None},
# FastCCD
"fastccd": {'source':'SCS_CDIDET_FCCD2M/DAQ/FCCD:daqOutput',
'key':'data.image.pixels',
'dim':['x', 'y']},
# TIM
"MCP1apd": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_D.apd.pulseIntegral',
'dim':['apdId']},
"MCP1raw": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_D.raw.samples',
'dim':['samplesId']},
"MCP2apd": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_C.apd.pulseIntegral',
'dim':['apdId']},
"MCP2raw": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_D.raw.samples',
'dim':['samplesId']},
"MCP3apd": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_B.apd.pulseIntegral',
'dim':['apdId']},
"MCP3raw": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_D.raw.samples',
'dim':['samplesId']},
"MCP4apd": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_A.apd.pulseIntegral',
'dim':['apdId']},
"MCP4raw": {'source':'SCS_UTC1_ADQ/ADC/1:network',
'key':'digitizers.channel_1_D.raw.samples',
'dim': ['samplesId']},
# KARABACON
"KARABACON": {'source':'SCS_DAQ_SCAN/MDL/KARABACON',
'key': 'actualStep.value',
'dim': None}

Loïc Le Guyader
committed
}
def load(fields, runNB, proposalNB, semesterNB, topic='SCS', display=False, validate=False):
""" Load a run and extract the data. Output is an xarray with aligned trainIds

Loïc Le Guyader
committed
Inputs:
fields: list of mnemonic strings to load specific data such as "fastccd", "SCS_XGM",
or dictionnaries defining a custom mnemonic such as
{"extra": {'SCS_CDIFFT_MAG/SUPPLY/CURRENT', 'actual_current.value', None}}

Loïc Le Guyader
committed
runNB: run number as integer
proposalNB: string of the proposal number
semesterNB: string of the semester number where the proposal data are saved
topic: string of the topic
display: boolean, whether to show the run.info or not
validate: boolean, whether to run karabo-data-validate or not

Loïc Le Guyader
committed
Outputs:
res: an xarray DataSet with aligned trainIds
"""
runFolder = '/gpfs/exfel/exp/{}/{}/{}/raw/r{:04d}/'.format(topic, semesterNB, proposalNB, runNB)
run = RunDirectory(runFolder)
if validate:
get_ipython().system('karabo-data-validate ' + runFolder)

Loïc Le Guyader
committed
if display:
run.info()
keys = []
vals = []

Loïc Le Guyader
committed
# always load pulse pattern infos
fields += ["sase1", "sase3", "npulses_sase3", "npulses_sase1"]

Loïc Le Guyader
committed
for f in fields:

Loïc Le Guyader
committed
if type(f) == dict:
# extracting mnemomic defined on the spot
if len(f.keys()) > 1:
print('Loading only one "on-the-spot" mnemonic at a time, skipping all others !')
k = list(f.keys())[0]
v = f[k]

Loïc Le Guyader
committed
else:
# extracting mnemomic from the table

Loïc Le Guyader
committed
if f in mnemonics:
v = mnemonics[f]
k = f

Loïc Le Guyader
committed
else:
print('Unknow mnemonic "{}". Skipping!'.format(f))
if k in keys:
continue # already loaded, skip
if display:
print('Loading {}'.format(k))
if v['source'] not in run.all_sources:
print('Source {} not found in run. Skipping!'.format(v['source']))
continue
vals.append(run.get_array(v['source'], v['key'], extra_dims=v['dim']))
keys.append(k)

Loïc Le Guyader
committed
aligned_vals = xr.align(*vals, join='inner')
result = dict(zip(keys, aligned_vals))
result = xr.Dataset(result)
result.attrs['run'] = run
return result