Newer
Older
""" Toolbox for SCS.
Various utilities function to quickly process data measured at the SCS instruments.
Copyright (2019) SCS Team.
"""
import matplotlib.pyplot as plt
import numpy as np
from scipy.special import erfc
from scipy.optimize import curve_fit
import bisect
def knife_edge(nrun, axisKey='scannerX', signalKey='FastADC4peaks',
axisRange=[None,None], p0=None, full=False, plot=False):
''' Calculates the beam radius at 1/e^2 from a knife-edge scan by fitting with
erfc function: f(a,b,u) = a*erfc(u)+b or f(a,b,u) = a*erfc(-u)+b where
u = sqrt(2)*(x-x0)/w0 with w0 the beam radius at 1/e^2 and x0 the beam center.
nrun: xarray Dataset containing the detector signal and the motor
position.
axisKey: string, key of the axis against which the knife-edge is
performed.
signalKey: string, key of the detector signal.
axisRange: list of length 2, minimum and maximum values between which to apply
the fit.
p0: list, initial parameters used for the fit: x0, w0, a, b. If None, a beam
full: bool: If False, returns the beam radius and standard error. If True,
returns the popt, pcov list of parameters and covariance matrix from
curve_fit as well as the fitting function.
plot: bool: If True, plots the data and the result of the fit.
Outputs:
If full is False, ndarray with beam radius at 1/e^2 in mm and standard
error from the fit in mm. If full is True, returns popt and pcov from
curve_fit function.
def integPowerUp(x, x0, w0, a, b):
return a*erfc(-np.sqrt(2)*(x-x0)/w0) + b
def integPowerDown(x, x0, w0, a, b):
return a*erfc(np.sqrt(2)*(x-x0)/w0) + b
#get the number of pulses per train from the signal source:
dim = nrun[signalKey].dims[1]
#duplicate motor position values to match signal shape
#this is much faster than using nrun.stack()
positions = np.repeat(nrun[axisKey].values,
len(nrun[dim])).astype(nrun[signalKey].dtype)
#sort the data to decide which fitting function to use
sortIdx = np.argsort(positions)
positions = positions[sortIdx]
intensities = nrun[signalKey].values.flatten()[sortIdx]
if axisRange[0] is None or axisRange[0] < positions[0]:
idxMin = 0
else:
if axisRange[0] >= positions[-1]:
raise ValueError('The minimum value of axisRange is too large')
idxMin = bisect.bisect(positions, axisRange[0])
if axisRange[1] is None or axisRange[1] > positions[-1]:
idxMax = None
else:
if axisRange[1] <= positions[0]:
raise ValueError('The maximum value of axisRange is too small')
idxMax = bisect.bisect(positions, axisRange[1]) + 1
positions = positions[idxMin:idxMax]
intensities = intensities[idxMin:idxMax]
# estimate a linear slope fitting the data to determine which function to fit
slope = np.cov(positions, intensities)[0][1]/np.var(positions)
if slope < 0:
funcStr = 'a*erfc(np.sqrt(2)*(x-x0)/w0) + b'
funcStr = 'a*erfc(-np.sqrt(2)*(x-x0)/w0) + b'
p0 = [np.mean(positions), 0.1, np.max(intensities)/2, 0]
popt, pcov = curve_fit(func, positions, intensities, p0=p0)
print('fitting function:', funcStr)
print('w0 = (%.1f +/- %.1f) um'%(popt[1]*1e3, pcov[1,1]**0.5*1e3))
print('x0 = (%.3f +/- %.3f) mm'%(popt[0], pcov[0,0]**0.5))
print('a = %e +/- %e '%(popt[2], pcov[2,2]**0.5))
print('b = %e +/- %e '%(popt[3], pcov[3,3]**0.5))
if plot:
xfit = np.linspace(positions.min(), positions.max(), 1000)
yfit = func(xfit, *popt)
plt.figure(figsize=(7,4))
plt.scatter(positions, intensities, color='C1', label='exp', s=2, alpha=0.01)
plt.plot(xfit, yfit, color='C4',
label=r'fit $\rightarrow$ $w_0=$(%.1f $\pm$ %.1f) $\mu$m'%(popt[1]*1e3, pcov[1,1]**0.5*1e3))
leg = plt.legend()
for lh in leg.legendHandles:
lh.set_alpha(1)
plt.ylabel(signalKey)
plt.xlabel(axisKey + ' position [mm]')
plt.title(nrun.attrs['runFolder'])
return popt, pcov, func