Skip to content
Snippets Groups Projects
Commit 20c42486 authored by Laurent Mercadier's avatar Laurent Mercadier
Browse files

Adds axisRange parameter, returns fitting function when full=True

parent 1f092c28
No related branches found
No related tags found
No related merge requests found
...@@ -8,10 +8,12 @@ import matplotlib.pyplot as plt ...@@ -8,10 +8,12 @@ import matplotlib.pyplot as plt
import numpy as np import numpy as np
from scipy.special import erfc from scipy.special import erfc
from scipy.optimize import curve_fit from scipy.optimize import curve_fit
import bisect
def knife_edge(nrun, axisKey='scannerX', signalKey='FastADC4peaks', p0=None, full=False, plot=False): def knife_edge(nrun, axisKey='scannerX', signalKey='FastADC4peaks',
axisRange=[None,None], p0=None, full=False, plot=False):
''' Calculates the beam radius at 1/e^2 from a knife-edge scan by fitting with ''' Calculates the beam radius at 1/e^2 from a knife-edge scan by fitting with
erfc function: f(a, u) = a*erfc(u) or f(a, u) = a*erfc(-u) where erfc function: f(a,b,u) = a*erfc(u)+b or f(a,b,u) = a*erfc(-u)+b where
u = sqrt(2)*(x-x0)/w0 with w0 the beam radius at 1/e^2 and x0 the beam center. u = sqrt(2)*(x-x0)/w0 with w0 the beam radius at 1/e^2 and x0 the beam center.
Inputs: Inputs:
nrun: xarray Dataset containing the detector signal and the motor nrun: xarray Dataset containing the detector signal and the motor
...@@ -19,22 +21,24 @@ def knife_edge(nrun, axisKey='scannerX', signalKey='FastADC4peaks', p0=None, ful ...@@ -19,22 +21,24 @@ def knife_edge(nrun, axisKey='scannerX', signalKey='FastADC4peaks', p0=None, ful
axisKey: string, key of the axis against which the knife-edge is axisKey: string, key of the axis against which the knife-edge is
performed. performed.
signalKey: string, key of the detector signal. signalKey: string, key of the detector signal.
p0: list, initial parameters used for the fit: x0, w0, a. If None, a beam axisRange: list of length 2, minimum and maximum values between which to apply
the fit.
p0: list, initial parameters used for the fit: x0, w0, a, b. If None, a beam
radius of 100 um is assumed. radius of 100 um is assumed.
full: bool: If False, returns the beam radius and standard error. If True, full: bool: If False, returns the beam radius and standard error. If True,
returns the popt, pcov list of parameters and covariance matrix from returns the popt, pcov list of parameters and covariance matrix from
curve_fit. curve_fit as well as the fitting function.
plot: bool: If True, plots the data and the result of the fit. plot: bool: If True, plots the data and the result of the fit.
Outputs: Outputs:
If full is False, ndarray with beam radius at 1/e^2 in mm and standard If full is False, ndarray with beam radius at 1/e^2 in mm and standard
error from the fit in mm. If full is True, returns popt and pcov from error from the fit in mm. If full is True, returns popt and pcov from
curve_fit function. curve_fit function.
''' '''
def integPowerUp(x, x0, w0, a): def integPowerUp(x, x0, w0, a, b):
return a*erfc(-np.sqrt(2)*(x-x0)/w0) return a*erfc(-np.sqrt(2)*(x-x0)/w0) + b
def integPowerDown(x, x0, w0, a): def integPowerDown(x, x0, w0, a, b):
return a*erfc(np.sqrt(2)*(x-x0)/w0) return a*erfc(np.sqrt(2)*(x-x0)/w0) + b
#get the number of pulses per train from the signal source: #get the number of pulses per train from the signal source:
dim = nrun[signalKey].dims[1] dim = nrun[signalKey].dims[1]
...@@ -46,22 +50,38 @@ def knife_edge(nrun, axisKey='scannerX', signalKey='FastADC4peaks', p0=None, ful ...@@ -46,22 +50,38 @@ def knife_edge(nrun, axisKey='scannerX', signalKey='FastADC4peaks', p0=None, ful
sortIdx = np.argsort(positions) sortIdx = np.argsort(positions)
positions = positions[sortIdx] positions = positions[sortIdx]
intensities = nrun[signalKey].values.flatten()[sortIdx] intensities = nrun[signalKey].values.flatten()[sortIdx]
if axisRange[0] is None or axisRange[0] < positions[0]:
idxMin = 0
else:
if axisRange[0] >= positions[-1]:
raise ValueError('The minimum value of axisRange is too large')
idxMin = bisect.bisect(positions, axisRange[0])
if axisRange[1] is None or axisRange[1] > positions[-1]:
idxMax = None
else:
if axisRange[1] <= positions[0]:
raise ValueError('The maximum value of axisRange is too small')
idxMax = bisect.bisect(positions, axisRange[1]) + 1
positions = positions[idxMin:idxMax]
intensities = intensities[idxMin:idxMax]
# estimate a linear slope fitting the data to determine which function to fit # estimate a linear slope fitting the data to determine which function to fit
slope = np.cov(positions, intensities)[0][1]/np.var(positions) slope = np.cov(positions, intensities)[0][1]/np.var(positions)
if slope < 0: if slope < 0:
func = integPowerDown func = integPowerDown
funcStr = 'a*erfc(np.sqrt(2)*(x-x0)/w0)' funcStr = 'a*erfc(np.sqrt(2)*(x-x0)/w0) + b'
else: else:
func = integPowerUp func = integPowerUp
funcStr = 'a*erfc(-np.sqrt(2)*(x-x0)/w0)' funcStr = 'a*erfc(-np.sqrt(2)*(x-x0)/w0) + b'
if p0 is None: if p0 is None:
p0 = [np.mean(positions), 0.1, np.max(intensities)/2] p0 = [np.mean(positions), 0.1, np.max(intensities)/2, 0]
popt, pcov = curve_fit(func, positions, intensities, p0=p0) popt, pcov = curve_fit(func, positions, intensities, p0=p0)
print('fitting function:', funcStr) print('fitting function:', funcStr)
print('w0 = (%.1f +/- %.1f) um'%(popt[1]*1e3, pcov[1,1]**0.5*1e3)) print('w0 = (%.1f +/- %.1f) um'%(popt[1]*1e3, pcov[1,1]**0.5*1e3))
print('x0 = (%.3f +/- %.3f) mm'%(popt[0], pcov[0,0]**0.5*1e3)) print('x0 = (%.3f +/- %.3f) mm'%(popt[0], pcov[0,0]**0.5))
print('a = %e +/- %e '%(popt[2], pcov[2,2]**0.5*1e3)) print('a = %e +/- %e '%(popt[2], pcov[2,2]**0.5))
print('b = %e +/- %e '%(popt[3], pcov[3,3]**0.5))
if plot: if plot:
xfit = np.linspace(positions.min(), positions.max(), 1000) xfit = np.linspace(positions.min(), positions.max(), 1000)
...@@ -78,6 +98,6 @@ def knife_edge(nrun, axisKey='scannerX', signalKey='FastADC4peaks', p0=None, ful ...@@ -78,6 +98,6 @@ def knife_edge(nrun, axisKey='scannerX', signalKey='FastADC4peaks', p0=None, ful
plt.title(nrun.attrs['runFolder']) plt.title(nrun.attrs['runFolder'])
plt.tight_layout() plt.tight_layout()
if full: if full:
return popt, pcov return popt, pcov, func
else: else:
return np.array([popt[1], pcov[1,1]**0.5]) return np.array([popt[1], pcov[1,1]**0.5])
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment