Skip to content
Snippets Groups Projects
Commit c8d0095a authored by Loïc Le Guyader's avatar Loïc Le Guyader
Browse files

Merge branch 'DSSC1module' into 'master'

Dssc1module

See merge request SCS/ToolBox!54
parents 58ea0a39 30f19660
No related branches found
No related tags found
No related merge requests found
import multiprocessing
from time import strftime
from tqdm.auto import tqdm
import os
import warnings
import psutil
import karabo_data as kd
from karabo_data.read_machinery import find_proposal
import ToolBox as tb
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
import matplotlib.patches as patches
import numpy as np
import xarray as xr
import h5py
from glob import glob
from imageio import imread
class DSSC1module:
def __init__(self, module, proposal):
""" Create a DSSC object to process 1 module of DSSC data.
inputs:
module: module number to process
proposal: (int,str) proposal number string
"""
self.module = module
if isinstance(proposal,int):
proposal = 'p{:06d}'.format(proposal)
self.runFolder = find_proposal(proposal)
self.semester = self.runFolder.split('/')[-2]
self.proposal = proposal
self.topic = self.runFolder.split('/')[-3]
self.save_folder = os.path.join(self.runFolder, 'usr/condensed_runs/')
self.px_pitch_h = 236 # horizontal pitch in microns
self.px_pitch_v = 204 # vertical pitch in microns
self.aspect = self.px_pitch_v/self.px_pitch_h # aspect ratio of the DSSC images
print('DSSC configuration')
print(f'DSSC module: {self.module}')
print(f'Topic: {self.topic}')
print(f'Semester: {self.semester}')
print(f'Proposal: {self.proposal}')
print(f'Default save folder: {self.save_folder}')
if not os.path.exists(self.save_folder):
warnings.warn(f'Default save folder does not exist: {self.save_folder}')
self.dark_data = 0
self.max_fraction_memory = 0.8
self.Nworker = 10
self.rois = None
def open_run(self, run_nr, t0=0.0):
""" Open a run with karabo-data and prepare the virtual dataset for multiprocessing
inputs:
run_nr: the run number
t0: optional t0 in mm
"""
print('Opening run data with karabo-data')
self.run_nr = run_nr
self.xgm = None
self.run = kd.open_run(self.proposal, self.run_nr)
self.plot_title = f'{self.proposal} run: {self.run_nr}'
self.fpt = self.run.detector_info(f'SCS_DET_DSSC1M-1/DET/{self.module}CH0:xtdf')['frames_per_train']
self.nbunches = self.run.get_array('SCS_RR_UTC/MDL/BUNCH_DECODER', 'sase3.nPulses.value')
self.nbunches = np.unique(self.nbunches)
if len(self.nbunches) == 1:
self.nbunches = self.nbunches[0]
else:
warnings.warn('not all trains have same length DSSC data')
print(f'nbunches: {self.nbunches}')
self.nbunches = self.nbunches[-1]
print(f'DSSC frames per train: {self.fpt}')
print(f'SA3 bunches per train: {self.nbunches}')
print('Collecting DSSC module files')
self.collect_dssc_module_file()
print(f'Loading XGM data')
self.xgm = self.run.get_array(tb.mnemonics['SCS_SA3']['source'],
tb.mnemonics['SCS_SA3']['key'],
roi=kd.by_index[:self.nbunches])
self.xgm = self.xgm.rename({'dim_0':'pulseId'})
self.xgm['pulseId'] = np.arange(0, 2*self.nbunches, 2)
print(f'Loading mono nrj data')
self.nrj = self.run.get_array(tb.mnemonics['nrj']['source'],
tb.mnemonics['nrj']['key'])
print(f'Loading daly line data')
try:
self.delay_mm = self.run.get_array(tb.mnemonics['PP800_DelayLine']['source'],
tb.mnemonics['PP800_DelayLine']['key'])
except:
self.delay_mm = 0*self.nrj
self.t0 = t0
self.delay_ps = tb.positionToDelay(self.delay_mm, origin=self.t0)
def collect_dssc_module_file(self):
""" Collect the raw DSSC module h5 files.
"""
pattern = self.runFolder + f'/raw/r{self.run_nr:04d}/RAW-R{self.run_nr:04d}-DSSC{self.module:02d}-S*.h5'
self.h5list = glob(pattern)
def process(self, dark_pass=None):
""" Process DSSC data from one module using multiprocessing
dark_pass: if None, process data, if 'mean', compute the mean, if 'std', compute the std
"""
# get available memory in GB, we will try to use 80 % of it
max_GB = psutil.virtual_memory().available/1024**3
print(f'max available memory: {max_GB} GB')
# max_GB / (8byte * Nworker * 128px * 512px * N_pulses)
self.chunksize = int(self.max_fraction_memory*max_GB * 1024**3 // (8 * self.Nworker * 128 * 512 * self.fpt))
print('processing', self.chunksize, 'trains per chunk')
if dark_pass == 'mean':
rois = None
dark = 0
mask = 1
elif dark_pass == 'std':
dark = self.dark_data['dark_mean']
rois = None
mask = 1
elif dark_pass is None:
dark = self.dark_data['dark_mean']
rois = self.rois
mask = self.dark_data['mask']
else:
raise ValueError(f"dark_pass should be either None or 'mean' or 'std' but not {dark_pass}")
jobs = []
for m,h5fname in enumerate(self.h5list):
jobs.append(dict(
fpt=self.fpt,
module=self.module,
h5fname=h5fname,
chunksize=self.chunksize,
nbunches=self.nbunches,
workerId=m,
Nworker=self.Nworker,
dark_data=dark,
rois=rois,
mask=mask
))
timestamp = strftime('%X')
print(f'start time: {timestamp}')
with multiprocessing.Pool(self.Nworker) as pool:
res = pool.map(process_one_module, jobs)
print('finished:', strftime('%X'))
# rearange the multiprocessed data
# this is to get rid of the worker dimension, there is no sum over worker really involved
self.module_data = xr.concat(res, dim='worker').sum(dim='worker')
# reorder the dimension
if 'trainId' in self.module_data.dims:
self.module_data = self.module_data.transpose('trainId', 'pulseId', 'x', 'y')
else:
self.module_data = self.module_data.transpose('pulseId', 'x', 'y')
# fix some computation now that we have everything
self.module_data['std_data'] = np.sqrt(self.module_data['std_data']/(self.module_data['counts'] - 1))
self.module_data['dark_corrected_data'] = self.module_data['dark_corrected_data']/self.module_data['counts']
self.module_data['run'] = self.run_nr
if dark_pass == 'mean':
self.dark_data = self.module_data['dark_corrected_data'].to_dataset('dark_mean')
self.dark_data['run'] = self.run_nr
elif dark_pass == 'std':
self.dark_data['dark_std'] = self.module_data['std_data']
assert self.dark_data['run'] == self.run_nr, "noise map computed from different darks"
else:
self.module_data['xgm'] = self.xgm
self.module_data['nrj'] = self.nrj
self.module_data['delay_mm'] = self.delay_mm
self.module_data['delay_ps'] = self.delay_ps
self.module_data['t0'] = self.t0
self.plot_title = f"{self.proposal} run: {self.module_data['run'].values} dark: {self.dark_data['run'].values}"
self.module_data.attrs['plot_title'] = self.plot_title
def compute_mask(self, low=0.01, high=0.8):
""" Compute a DSSC module mask from the noise map of a dark run.
"""
if self.dark_data['dark_std'] is None:
raise ValueError('Cannot compute from from a missing dark noise map')
self.dark_data['mask_low'] = low
self.dark_data['mask_high'] = high
m_std = self.dark_data['dark_std'].mean('pulseId')
self.dark_data['mask'] = 1 - ((m_std > self.dark_data['mask_high']) + (m_std < self.dark_data['mask_low']))
def plot_module(self, plot_dark=False, low=1, high=98, vmin=None, vmax=None):
""" Plot a module.
inputs:
plot_dark: if true, plot dark instead of run data.
low: low percentile fraction of the display scale
high: high percentile fraction of the display scale
vmin: low value of the display scale, overwrites vmin computed from low
vmax: max value of the display scale, overwrites vmax computed from high
"""
if plot_dark:
mean = self.dark_data['dark_mean'].mean('pulseId')
std = self.dark_data['dark_std']
title = f"{self.proposal} dark: {self.dark_data['run'].values}"
else:
mean = self.module_data['dark_corrected_data'].mean('pulseId')
std = self.module_data['std_data']
title = self.plot_title
fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=4, figsize=[5, 4*2.5])
_vmin, _vmax = np.percentile((mean.values[~self.dark_data['mask']]).flatten(), [low, high])
if vmin is None:
vmin = _vmin
if vmax is None:
vmax = _vmax
im = ax1.imshow(mean, vmin=vmin, vmax=vmax)
fig.colorbar(im, ax=ax1)
ax1.set_title('mean')
fig.suptitle(title)
im = ax2.imshow(std.mean('pulseId'), vmin=0, vmax=2)
fig.colorbar(im, ax=ax2)
ax2.set_title('std')
ax3.hist(std.values.flatten(), bins=200, range=[0, 2], density=True)
ax3.axvline(self.dark_data['mask_low'], ls='--', c='k')
ax3.axvline(self.dark_data['mask_high'], ls='--', c='k')
ax3.set_yscale('log')
ax3.set_ylabel('density')
ax3.set_xlabel('std values')
im = ax4.imshow(self.dark_data['mask'])
fig.colorbar(im, ax=ax4)
def save(self, save_folder=None, overwrite=False, isDark=False):
""" Save the crunched data.
inputs:
save_folder: string of the fodler where to save the data.
overwrite: boolean whether or not to overwrite existing files.
isDark: save the dark or the process data
"""
if save_folder is None:
save_folder = self.save_folder
if isDark:
fname = f'run{self.run_nr}_dark.h5' # no scan
data = self.dark_data
else:
fname = f'run{self.run_nr}.h5' # run with delay scan (change for other scan types!)
data = self.module_data
save_path = os.path.join(save_folder, fname)
file_exists = os.path.isfile(save_path)
if not file_exists or (file_exists and overwrite):
if file_exists:
warnings.warn(f'Overwriting file: {save_path}')
os.remove(save_path)
data.to_netcdf(save_path, group='data')
os.chmod(save_path, 0o664)
print('saving: ', save_path)
else:
print('file', save_path, 'exists and overwrite is False')
def load_dark(self, dark_runNB, save_folder=None):
""" Load dark data.
inputs:
save_folder: string of the folder where the data were saved.
"""
if save_folder is None:
save_folder = self.save_folder
self.run_nr = dark_runNB
self.dark_data = xr.open_dataset(os.path.join(save_folder, f'run{dark_runNB}_dark.h5'), group='data')
self.plot_title = f"{self.proposal} dark: {self.dark_data['run'].values}"
def show_rois(self):
fig, ax1 = plt.subplots(nrows=1, figsize=[5, 2.5])
try:
ax1.imshow(self.module_data['dark_corrected_data'].mean('pulseId') * self.dark_data['mask'])
except:
ax1.imshow(self.dark_data['dark_mean'].mean('pulseId') * self.dark_data['mask'])
for r,v in self.rois.items():
rect = patches.Rectangle((v['y'][0], v['x'][0]),
v['y'][1] - v['y'][0],
v['x'][1] - v['x'][0],
linewidth=1, edgecolor='r', facecolor='none')
ax1.add_patch(rect)
fig.suptitle(self.plot_title)
# since 'self' is not pickable, this function has to be outside the DSSC class so that it can be used
# by the multiprocessing pool.map function
def process_one_module(job):
chunksize = job['chunksize']
Nworker = job['Nworker']
workerId = job['workerId']
dark_data = job['dark_data']
fpt = job['fpt']
module = job['module']
rois = job['rois']
mask = job['mask']
h5fname = job['h5fname']
image_path = f"INSTRUMENT/SCS_DET_DSSC1M-1/DET/{module}CH0:xtdf/image/data"
npulse_path = f"INDEX/SCS_DET_DSSC1M-1/DET/{module}CH0:xtdf/image/count"
with h5py.File(h5fname, 'r') as m:
all_trainIds = m['INDEX/trainId'][()]
n_trains = len(all_trainIds)
n_chunk = np.ceil(n_trains/chunksize) + 1
chunks = np.linspace(0, n_trains, n_chunk, endpoint=True, dtype=int)
# create empty dataset to add actual data to
module_data = xr.DataArray(np.zeros([fpt, 128, 512], dtype=np.float64),
dims=['pulseId', 'x', 'y'],
coords={'pulseId':np.arange(fpt)}).to_dataset(name='dark_corrected_data')
module_data['std_data'] = xr.DataArray(np.zeros([fpt, 128, 512], dtype=np.float64),
dims=['pulseId', 'x', 'y'])
if rois is not None:
for k in rois.keys():
module_data[k] = xr.DataArray(np.empty([n_trains], dtype=np.float64),
dims=['trainId'], coords = {'trainId': all_trainIds})
module_data['counts'] = 0
# crunching
with h5py.File(h5fname, 'r') as m:
#chunk_start = np.arange(len(all_trainIds), step=job['chunksize'], dtype=int)
trains_start = 0
# This line is the strange hack from https://github.com/tqdm/tqdm/issues/485
print(' ', end='', flush=True)
for k,v in enumerate(tqdm(chunks[:-1], desc=f"pool.map#{workerId:02d}")):
chunk_dssc = np.s_[int(chunks[k] * fpt):int(chunks[k+1] * fpt)] # for dssc data
data = m[image_path][chunk_dssc].squeeze()
trains = m['INDEX/trainId'][np.s_[int(chunks[k]):int(chunks[k+1])]]
n_trains = len(trains)
data = data.astype(np.float64)
data = xr.DataArray(np.reshape(data, [n_trains, fpt, 128, 512]),
dims=['trainId', 'pulseId', 'x', 'y'],
coords={'trainId': trains})
temp = data - dark_data
if rois is not None:
temp2 = temp.where(mask)
for k,v in rois.items():
val = temp2.isel({'x':slice(v['x'][0], v['x'][1]),
'y':slice(v['y'][0], v['y'][1])}).sum(dim=['x','y'])
module_data[k] = val
module_data['dark_corrected_data'] += temp.sum(dim='trainId')
module_data['std_data'] += (temp**2).sum(dim='trainId')
module_data['counts'] += n_trains
return module_data
\ No newline at end of file
...@@ -135,10 +135,22 @@ def xas(nrun, bins=None, Iokey='SCS_SA3', Itkey='MCP3apd', nrjkey='nrj', Iooffse ...@@ -135,10 +135,22 @@ def xas(nrun, bins=None, Iokey='SCS_SA3', Itkey='MCP3apd', nrjkey='nrj', Iooffse
def whichIo(data): def whichIo(data):
""" Select which fields to use as I0 and which to use as I1 """ Select which fields to use as I0 and which to use as I1
""" """
if 'mcp' in Iokey.lower():
Io_sign = -1
else:
Io_sign = 1
if 'mcp' in Itkey.lower():
It_sign = -1
else:
It_sign = 1
if len(data) == 0: if len(data) == 0:
return absorption([], []) return absorption([], [])
else: else:
return absorption(-data['It'], data['Io']) return absorption(It_sign*data['It'], Io_sign*data['Io'])
if bins is None: if bins is None:
num_bins = 80 num_bins = 80
...@@ -169,9 +181,12 @@ def xas(nrun, bins=None, Iokey='SCS_SA3', Itkey='MCP3apd', nrjkey='nrj', Iooffse ...@@ -169,9 +181,12 @@ def xas(nrun, bins=None, Iokey='SCS_SA3', Itkey='MCP3apd', nrjkey='nrj', Iooffse
ax1_twin.bar(bins_c, nosample['muIo'], width=0.80*(bins_c[1]-bins_c[0]), ax1_twin.bar(bins_c, nosample['muIo'], width=0.80*(bins_c[1]-bins_c[0]),
color='C1', alpha=0.2) color='C1', alpha=0.2)
ax1_twin.set_ylabel('Io') ax1_twin.set_ylabel('Io')
proposalNB=int(nrun.attrs['runFolder'].split('/')[-4][1:]) try:
runNB=int(nrun.attrs['runFolder'].split('/')[-2][1:]) proposalNB=int(nrun.attrs['runFolder'].split('/')[-4][1:])
ax1.set_title('run {:d} p{:}'.format(runNB, proposalNB)) runNB=int(nrun.attrs['runFolder'].split('/')[-2][1:])
ax1.set_title('run {:d} p{:}'.format(runNB, proposalNB))
except:
f.suptitle(nrun.attrs['plot_title'])
ax2 = plt.subplot(gs[1]) ax2 = plt.subplot(gs[1])
ax2.bar(bins_c, nosample['counts'], width=0.80*(bins_c[1]-bins_c[0]), ax2.bar(bins_c, nosample['counts'], width=0.80*(bins_c[1]-bins_c[0]),
......
...@@ -5,3 +5,4 @@ from ToolBox.knife_edge import * ...@@ -5,3 +5,4 @@ from ToolBox.knife_edge import *
from ToolBox.Laser_utils import * from ToolBox.Laser_utils import *
from ToolBox.DSSC import DSSC from ToolBox.DSSC import DSSC
from ToolBox.azimuthal_integrator import * from ToolBox.azimuthal_integrator import *
from ToolBox.DSSC1module import *
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment