Skip to content
Snippets Groups Projects
Commit ec039487 authored by Loïc Le Guyader's avatar Loïc Le Guyader
Browse files

Merge branch 'knife_edge' into 'master'

Knife edge

See merge request SCS/ToolBox!36
parents a0647fa2 27215b74
No related branches found
No related tags found
No related merge requests found
from ToolBox.Load import *
from ToolBox.xgm import *
from ToolBox.XAS import *
from ToolBox.knife_edge import *
""" Toolbox for SCS.
Various utilities function to quickly process data measured at the SCS instruments.
Copyright (2019) SCS Team.
"""
import matplotlib.pyplot as plt
import numpy as np
from scipy.special import erfc
from scipy.optimize import curve_fit
def knife_edge(nrun, axisKey='scannerX', signalKey='FastADC4peaks', p0=None, full=False, plot=False):
''' Calculates the beam radius at 1/e^2 from a knife-edge scan by fitting with
erfc function: f(a, u) = a*erfc(u) or f(a, u) = a*erfc(-u) where
u = sqrt(2)*(x-x0)/w0 with w0 the beam radius at 1/e^2 and x0 the beam center.
Inputs:
nrun: xarray Dataset containing the detector signal and the motor
position.
axisKey: string, key of the axis against which the knife-edge is
performed.
signalKey: string, key of the detector signal.
p0: list, initial parameters used for the fit: x0, w0, a. If None, a beam
radius of 100 um is assumed.
full: bool: If False, returns the beam radius and standard error. If True,
returns the popt, pcov list of parameters and covariance matrix from
curve_fit.
plot: bool: If True, plots the data and the result of the fit.
Outputs:
If full is False, ndarray with beam radius at 1/e^2 in mm and standard
error from the fit in mm. If full is True, returns popt and pcov from
curve_fit function.
'''
def integPowerUp(x, x0, w0, a):
return a*erfc(-np.sqrt(2)*(x-x0)/w0)
def integPowerDown(x, x0, w0, a):
return a*erfc(np.sqrt(2)*(x-x0)/w0)
#get the number of pulses per train from the signal source:
dim = nrun[signalKey].dims[1]
#duplicate motor position values to match signal shape
#this is much faster than using nrun.stack()
positions = np.repeat(nrun[axisKey].values,
len(nrun[dim])).astype(nrun[signalKey].dtype)
#sort the data to decide which fitting function to use
sortIdx = np.argsort(positions)
positions = positions[sortIdx]
intensities = nrun[signalKey].values.flatten()[sortIdx]
# estimate a linear slope fitting the data to determine which function to fit
slope = np.cov(positions, intensities)[0][1]/np.var(positions)
if slope < 0:
func = integPowerDown
funcStr = 'a*erfc(np.sqrt(2)*(x-x0)/w0)'
else:
func = integPowerUp
funcStr = 'a*erfc(-np.sqrt(2)*(x-x0)/w0)'
if p0 is None:
p0 = [np.mean(positions), 0.1, np.max(intensities)/2]
popt, pcov = curve_fit(func, positions, intensities, p0=p0)
print('fitting function:', funcStr)
print('w0 = (%.1f +/- %.1f) um'%(popt[1]*1e3, pcov[1,1]**0.5*1e3))
print('x0 = (%.3f +/- %.3f) mm'%(popt[0], pcov[0,0]**0.5*1e3))
print('a = %e +/- %e '%(popt[2], pcov[2,2]**0.5*1e3))
if plot:
xfit = np.linspace(positions.min(), positions.max(), 1000)
yfit = func(xfit, *popt)
plt.figure(figsize=(7,4))
plt.scatter(positions, intensities, color='C1', label='exp', s=2, alpha=0.01)
plt.plot(xfit, yfit, color='C4',
label=r'fit $\rightarrow$ $w_0=$(%.1f $\pm$ %.1f) $\mu$m'%(popt[1]*1e3, pcov[1,1]**0.5*1e3))
leg = plt.legend()
for lh in leg.legendHandles:
lh.set_alpha(1)
plt.ylabel(signalKey)
plt.xlabel(axisKey + ' position [mm]')
plt.tight_layout()
if full:
return popt, pcov
else:
return np.array([popt[1], pcov[1,1]**0.5])
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment