Newer
Older
from euxfel_bunch_pattern import indices_at_sase # Installable from PyPI
import numpy as np
import string
from scipy.interpolate import interp1d
from pathlib import Path
detectors = np.genfromtxt(Path(__file__).parent / 'detectors.txt',
names=True, dtype=('|U5', '|U4', '|U3', '<f8', '<f8'))
def correct_adq_common_mode(trace, region, sym):
"""Baseline substraction based on common mode.
Since ADQ digitizers always interleave multiple ADCs per channel to sample
a trace, regular baseline substraction will cause an ADC-dependant common
mode to appear. This correction directly uses a per-ADC baseline instead
to perform include this in the substraction.
Empirical testing has shown that a symmetry of 8 (should be 4 for
non-interleaved) regularly shows better results in suppressing high
frequency signals from the common mode. Going 16 or higher is not recommend
in most cases, as additional artifacts appear.
Parameters
----------
trace : array_like
Vector to correct, will be modified in-place.
region : slice
Region to use for computing baseline.
sym : int
Periodic symmetry of ADC common mode.
Returns
-------
trace : array_like
Corrected vector, same shape as trace.
def separate_pulses(traces, ppt, adq_train_region, adq_pulse_region, adq_sample_rate=4, sase=3):
"""Separate train into seperate pulses using the pulse pattern table
ppt : array_like
Pulse pattern table from time server device.
adq_train_region : slice, optional
Region containing actual signal for the entire train.
adq_pulse_region : slice, optional
Region after pulse separation containing actual signal for the pulse.
adq_pulse_region : slice, optional
Region after pulse separation containing actual signal for the pulse.
adq_sample_rate : array_like or int, optional
Sample rate for all digitizer channels in GS/s.
sase : int, optional
Which SASE the experiments run at, 3 by default.
pulse_ids = indices_at_sase(ppt, sase=sase)
num_pulses = len(pulse_ids)
adq_sample_rate = np.asarray(adq_sample_rate)
if num_pulses < 2:
return trace[:, adq_pulse_region].reshape(trace.shape[0], 1, -1)
else:
# ADQ412s run at a clock factor of 440 relative to the PPT un-interleaved.
pulse_spacing = (pulse_ids[1] - pulse_ids[0]) * 220 * adq_sample_rate
return traces[:, :(len(trace) // pulse_spacing) * pulse_spacing].reshape(
-1, pulse_spacing)[..., adq_pulse_region]
def energy_calibration(traces, calib_params, sample_rate, valid_energies,
energy_nodes=None, model=_f, model_derivative=_df):
"""Calibrate time of flight traces to energy spectra
Parameters
----------
traces : array_like
Traces to be calibrated, shape (detectors, ..., samples)
calib_params : array_like
Calibration parameters passed to the model, first dimension needs
to be number of function arguments
sample_rate : array_like or int, optional
Sample rate for all digitizer channels in GS/s.
valid_energies : slice
Slice applied to input allowing to discard divergent values
energy_nodes : array_like, optional
Energy values to be evaluated in interpolation, if you want
model : function, optional
Mapping from time to energy, arguments (t, *args). Defaults to
a / t**3 + b / t**2 + c / t + d.
model_derivative : function, optional
energy : ndarray
Energy values corresponding to time of flight
spectra : ndarray
Reweighted spectra
resampled_spectra : ndarray
Spectra resampled according to `energy_nodes`
time : ndarray
Times of flight corresponding to samples
time = np.arange(traces.shape[-1])[:, np.newaxis] / sample_rate
energy = model(1e-9 * time, *calib_params)[valid_energies].T
dE = model_derivative(1e-9 * time[:, None], *calib_params)[valid_energies].T
spectra = traces[..., valid_energies] / dE
if energy_nodes is not None:
try:
resampled_spectra = np.asarray([interp1d(e, t)(energy_nodes) for e, t in
zip(energy, spectra)])
except ValueError as e:
print(e)
resampled_spectra = np.full((*traces.shape[:-1], len(energy_nodes)), np.nan)
else:
resampled_spectra = None
return energy, spectra, resampled_spectra, time[valid_energies]