Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"id": "6386344d-b7ac-440d-9926-f03af4ff9d6f",
"metadata": {},
"source": [
"# Training the Virtual Spectrometer with Viking and PES data"
]
},
{
"cell_type": "markdown",
"id": "1711c3b9-5065-4a44-8b1b-a3e861b92bc5",
"metadata": {},
"source": [
"The objective here is to use the Viking detector to train the Virtual Spectrometer. This means that we will fit (\"train\") a model, which maps the PES measurements with the Viking measurements and use their correlation to interpolate in cases where the Viking is not available.\n",
"\n",
"The following conditions must be satisfied for this to be possible:\n",
"* The PES settings are the same in the \"training\" run and interesting run.\n",
"* The photon energies of the beam in \"training\" and in the interesting run are similar.\n",
"* The beam intensities are similar.\n",
"* The sample between PES and Viking is transparent.\n",
"* 1 pulse trains in \"training\".\n",
"\n",
"The following software implements:\n",
"1. retrieve data and calibrate Viking using the SCS toolbox;\n",
"2. the Virtual Spectrometer training excluding the last 10 trains avalable so that we can use them for validation;\n",
"3. the Virtual Spectrometer resolution function plotting;\n",
"4. comparison of the Virtual spectrometer results in a selected set in which the Viking data was available.\n",
"\n",
"Finally, the model is applied in data without the grating. This last part may be applied independently from the rest if the modal has been written in a `joblib` file."
]
},
{
"cell_type": "code",
"id": "4a627555-522a-4c9d-b6b2-6ff77148eaab",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"# replace this \n",
"sys.path.append('/home/danilo/scratch/karabo/devices/pes_to_spec')"
]
},
{
"cell_type": "code",
"id": "78bbc433-ac5e-44c3-8740-3e93800c4532",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cupy is not installed in this environment, no access to the GPU\n"
]
}
],
"source": [
"import numpy as np\n",
"import dask.array as da\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n",
"from pes_to_spec.model import Model\n",
"\n",
"import toolbox_scs as tb\n",
"from euxfel_bunch_pattern import indices_at_sase\n",
"\n",
"from scipy.signal import fftconvolve"
]
},
{
"cell_type": "markdown",
"id": "c7609899-5bc0-4211-ae97-010b3edcf676",
"metadata": {},
"source": [
"## Get data and calibrate Viking"
]
},
{
"cell_type": "code",
"id": "95da5231-e454-4f7f-a1ce-eef7e52fe457",
"metadata": {},
"outputs": [],
"source": [
"# pes channel names to be used for reference later\n",
"pes_map = dict(channel_1_A=\"PES_S_raw\",\n",
" channel_1_B=\"PES_SSW_raw\",\n",
" channel_1_C=\"PES_SW_raw\",\n",
" channel_1_D=\"PES_WSW_raw\",\n",
" channel_2_A=\"PES_W_raw\",\n",
" channel_2_B=\"PES_WNW_raw\",\n",
" channel_2_C=\"PES_NW_raw\",\n",
" channel_2_D=\"PES_NNW_raw\",\n",
" channel_3_A=\"PES_E_raw\",\n",
" channel_3_B=\"PES_ESE_raw\",\n",
" channel_3_C=\"PES_SE_raw\",\n",
" channel_3_D=\"PES_SSE_raw\",\n",
" channel_4_A=\"PES_N_raw\",\n",
" channel_4_B=\"PES_NNE_raw\",\n",
" channel_4_C=\"PES_NE_raw\",\n",
" channel_4_D=\"PES_ENE_raw\",\n",
" )"
]
},
{
"cell_type": "code",
"id": "48bb4c8c-04ad-44d5-b123-643ce3253ceb",
"metadata": {},
"outputs": [],
"source": [
"proposal = 2953\n",
"runTrain = 322 # run containing the data without sample\n",
"darkNB = 375 # dark run"
]
},
{
"cell_type": "code",
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"id": "0a467b2f-5f99-4ed8-bb1d-cb429454d3ce",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"newton: only 50.0% of trains (629 out of 1259) contain data.\n"
]
}
],
"source": [
"v = tb.Viking(proposal)\n",
"fields = ['XTD10_SA3',\n",
" *list(pes_map.values()) # add PES\n",
" ]\n",
"v.FIELDS += fields\n",
"v.X_RANGE = slice(0, 1500) # define the dispersive axis range of interest (in pixels)\n",
"v.Y_RANGE = slice(29, 82) # define the non-dispersive axis range of interest (in pixels)\n",
"v.ENERGY_CALIB = [1.47802667e-06, 2.30600328e-02, 5.15884589e+02] # energy calibration, see further below\n",
"v.BL_POLY_DEG = 1 # define the polynomial degree for baseline subtraction\n",
"v.BL_SIGNAL_RANGE = [500, 545] # define the range containing the signal, to be excluded for baseline subtraction\n",
"\n",
"v.load_dark(darkNB) # load a dark image (averaged over the dark run number)"
]
},
{
"cell_type": "code",
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"id": "4f6124d9-8c1b-44f8-a078-07475a9674fc",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"newton: only 50.0% of trains (661 out of 1323) contain data.\n"
]
},
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n",
"Dimensions: (trainId: 660, newt_y: 53, newt_x: 1500,\n",
" PESsampleId: 700000, pulse_slot: 2700, sa3_pId: 43)\n",
"Coordinates:\n",
" * trainId (trainId) uint64 1473952798 1473952800 ... 1473954118\n",
" * sa3_pId (sa3_pId) int64 1056 1088 1120 1152 ... 2336 2368 2400\n",
" * newt_x (newt_x) float64 515.9 515.9 515.9 ... 553.7 553.7 553.8\n",
"Dimensions without coordinates: newt_y, PESsampleId, pulse_slot\n",
"Data variables: (12/21)\n",
" newton (trainId, newt_y, newt_x) float64 943.0 800.0 ... 758.0\n",
" PES_S_raw (trainId, PESsampleId) int16 -2 1 1 2 -1 ... 2 -1 3 -3 1\n",
" PES_SSW_raw (trainId, PESsampleId) int16 -3 0 -3 -3 ... -3 -4 -4 -3\n",
" PES_SW_raw (trainId, PESsampleId) int16 -5 -8 -7 -4 ... -9 -7 -6 -9\n",
" PES_WSW_raw (trainId, PESsampleId) int16 -5 -6 -5 -5 ... 0 -3 -2 -7\n",
" PES_W_raw (trainId, PESsampleId) int16 3 1 3 1 3 1 ... 4 2 3 0 3 1\n",
" ... ...\n",
" PES_NE_raw (trainId, PESsampleId) int16 -4 -5 -1 -5 ... -2 -2 -2 -1\n",
" PES_ENE_raw (trainId, PESsampleId) int16 -5 -2 -5 -2 ... -7 0 -4 -1\n",
" bunchPatternTable (trainId, pulse_slot) uint32 2146089 2048 ... 16777216\n",
" XTD10_SA3 (trainId, sa3_pId) float32 1.674e+03 ... 1.465e+03\n",
" spectrum (trainId, newt_x) float64 941.8 960.7 ... 1.319e+03\n",
" spectrum_nobl (trainId, newt_x) float64 -25.84 -7.057 ... -41.9 -25.1\n",
"Attributes:\n",
" runFolder: /gpfs/exfel/exp/SCS/202202/p002953/raw/r0322\n",
" vbin:: 4\n",
" hbin: 1\n",
" startX: 1\n",
" endX: 2048\n",
" startY: 1\n",
" endY: 512\n",
" temperature: -50.04199981689453\n",
" high_capacity: 0\n",
" exposure_s: 0.0004\n",
" gain: 2\n",
" photoelectrons_per_count: 2.05</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-5c25c23a-638a-4d61-8679-07e9bad05d01' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-5c25c23a-638a-4d61-8679-07e9bad05d01' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>trainId</span>: 660</li><li><span>newt_y</span>: 53</li><li><span class='xr-has-index'>newt_x</span>: 1500</li><li><span>PESsampleId</span>: 700000</li><li><span>pulse_slot</span>: 2700</li><li><span class='xr-has-index'>sa3_pId</span>: 43</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-8c7bb192-4de6-4d39-9e05-db9bdf19c8cb' class='xr-section-summary-in' type='checkbox' checked><label for='section-8c7bb192-4de6-4d39-9e05-db9bdf19c8cb' class='xr-section-summary' >Coordinates: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>trainId</span></div><div class='xr-var-dims'>(trainId)</div><div class='xr-var-dtype'>uint64</div><div class='xr-var-preview xr-preview'>1473952798 ... 1473954118</div><input id='attrs-44d63e58-96be-47df-bd46-729870bef781' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-44d63e58-96be-47df-bd46-729870bef781' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-956868a6-7982-4dd4-9f15-62de50bce54f' class='xr-var-data-in' type='checkbox'><label for='data-956868a6-7982-4dd4-9f15-62de50bce54f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1473952798, 1473952800, 1473952802, ..., 1473954114, 1473954116,\n",
" 1473954118], dtype=uint64)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>sa3_pId</span></div><div class='xr-var-dims'>(sa3_pId)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1056 1088 1120 ... 2336 2368 2400</div><input id='attrs-2013517d-11c6-4a0f-bacf-fc75be67340f' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-2013517d-11c6-4a0f-bacf-fc75be67340f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5982e0ca-a510-4eab-8cf1-24f8ed3f5bf7' class='xr-var-data-in' type='checkbox'><label for='data-5982e0ca-a510-4eab-8cf1-24f8ed3f5bf7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1056, 1088, 1120, 1152, 1184, 1216, 1248, 1280, 1312, 1344, 1376, 1408,\n",
" 1440, 1472, 1504, 1536, 1568, 1600, 1632, 1664, 1696, 1728, 1760, 1792,\n",
" 1824, 1856, 1888, 1920, 1952, 1984, 2016, 2048, 2080, 2112, 2144, 2176,\n",
" 2208, 2240, 2272, 2304, 2336, 2368, 2400])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>newt_x</span></div><div class='xr-var-dims'>(newt_x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>515.9 515.9 515.9 ... 553.7 553.8</div><input id='attrs-a1c4d87f-6ac1-4f0d-b02c-daecb9cebd58' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a1c4d87f-6ac1-4f0d-b02c-daecb9cebd58' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-68dda5fd-bbaf-49b3-a914-8709bc1c122f' class='xr-var-data-in' type='checkbox'><label for='data-68dda5fd-bbaf-49b3-a914-8709bc1c122f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([515.884589, 515.907651, 515.930715, ..., 553.717729, 553.745216,\n",
" 553.772706])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-5fbdd184-b4c6-4a11-84e9-1cde45f68601' class='xr-section-summary-in' type='checkbox' ><label for='section-5fbdd184-b4c6-4a11-84e9-1cde45f68601' class='xr-section-summary' >Data variables: <span>(21)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>newton</span></div><div class='xr-var-dims'>(trainId, newt_y, newt_x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>943.0 800.0 697.0 ... 805.0 758.0</div><input id='attrs-38bd3d1a-cab9-4b8e-94b4-b00810c2b3fc' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-38bd3d1a-cab9-4b8e-94b4-b00810c2b3fc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7f7281ec-9692-41e9-90e8-0f1b568813b1' class='xr-var-data-in' type='checkbox'><label for='data-7f7281ec-9692-41e9-90e8-0f1b568813b1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[[ 943., 800., 697., ..., 985., 1057., 1038.],\n",
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
" [ 842., 921., 957., ..., 1037., 1041., 978.],\n",
" [ 744., 587., 558., ..., 1094., 925., 1030.],\n",
" ...,\n",
" [ 600., 688., 836., ..., 970., 1061., 1204.],\n",
" [ 681., 625., 675., ..., 921., 938., 887.],\n",
" [ 695., 593., 822., ..., 666., 582., 829.]],\n",
"\n",
" [[ 918., 949., 901., ..., 892., 976., 905.],\n",
" [ 857., 912., 1083., ..., 731., 757., 758.],\n",
" [ 630., 575., 599., ..., 1058., 967., 914.],\n",
" ...,\n",
" [ 741., 776., 874., ..., 784., 961., 1391.],\n",
" [ 684., 971., 878., ..., 954., 1218., 1041.],\n",
" [ 831., 647., 744., ..., 643., 690., 733.]],\n",
"\n",
" [[ 634., 709., 727., ..., 985., 963., 836.],\n",
" [ 553., 612., 787., ..., 1169., 788., 903.],\n",
" [ 668., 618., 621., ..., 785., 863., 835.],\n",
" ...,\n",
"...\n",
" ...,\n",
" [ 920., 815., 759., ..., 844., 1050., 839.],\n",
" [1080., 956., 661., ..., 968., 1001., 915.],\n",
" [ 811., 918., 652., ..., 873., 823., 1034.]],\n",
"\n",
" [[ 733., 606., 582., ..., 880., 1039., 1139.],\n",
" [ 784., 806., 787., ..., 1075., 1125., 827.],\n",
" [ 889., 848., 957., ..., 962., 1071., 811.],\n",
" ...,\n",
" [ 860., 649., 578., ..., 962., 1151., 985.],\n",
" [ 845., 663., 688., ..., 836., 978., 1340.],\n",
" [ 732., 784., 586., ..., 734., 872., 829.]],\n",
"\n",
" [[ 697., 934., 742., ..., 873., 753., 931.],\n",
" [ 694., 730., 774., ..., 802., 1020., 1206.],\n",
" [ 697., 956., 694., ..., 700., 785., 899.],\n",
" ...,\n",
" [ 799., 717., 918., ..., 898., 951., 1050.],\n",
" [ 870., 949., 918., ..., 911., 1283., 1080.],\n",
" [ 894., 627., 652., ..., 1032., 805., 758.]]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_S_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-2 1 1 2 -1 1 0 ... -2 2 -1 3 -3 1</div><input id='attrs-c923b58a-8a04-43df-af4d-df322852e792' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c923b58a-8a04-43df-af4d-df322852e792' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-592aae53-4746-4663-b2c9-6d60457d6efd' class='xr-var-data-in' type='checkbox'><label for='data-592aae53-4746-4663-b2c9-6d60457d6efd' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-2, 1, 1, ..., 4, -3, -2],\n",
" [ 1, 0, -1, ..., 3, -2, 0],\n",
" [-1, 6, 0, ..., 1, -4, 1],\n",
" ...,\n",
" [-2, 1, -1, ..., -1, 3, 0],\n",
" [-1, 4, 0, ..., 0, 2, 1],\n",
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
" [-2, 1, 0, ..., 3, -3, 1]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SSW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-3 0 -3 -3 -1 0 ... 1 -3 -4 -4 -3</div><input id='attrs-4b9318e0-75df-431d-ba44-63b082d17d05' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4b9318e0-75df-431d-ba44-63b082d17d05' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bb55e6a3-96fc-475e-955a-6326b4a9f825' class='xr-var-data-in' type='checkbox'><label for='data-bb55e6a3-96fc-475e-955a-6326b4a9f825' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-3, 0, -3, ..., -3, -1, -2],\n",
" [-1, 1, -1, ..., 1, 1, 1],\n",
" [-3, -2, 0, ..., -3, -1, 0],\n",
" ...,\n",
" [-3, -1, -1, ..., -7, 2, -2],\n",
" [ 1, -3, -3, ..., -2, -4, -1],\n",
" [-4, -2, -3, ..., -4, -4, -3]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-5 -8 -7 -4 -7 ... -9 -9 -7 -6 -9</div><input id='attrs-e81e9f33-58cc-4738-b5e0-e5944ed30608' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e81e9f33-58cc-4738-b5e0-e5944ed30608' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c9925ddb-fd09-4a0e-852e-d448820fcaad' class='xr-var-data-in' type='checkbox'><label for='data-c9925ddb-fd09-4a0e-852e-d448820fcaad' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -5, -8, -7, ..., -7, -8, -5],\n",
" [ -5, -6, -9, ..., -8, -5, -9],\n",
" [-10, -8, -10, ..., -8, -6, -8],\n",
" ...,\n",
" [ -7, -6, -7, ..., -9, -8, -9],\n",
" [ -8, -6, -8, ..., -7, -9, -9],\n",
" [ -8, -7, -8, ..., -7, -6, -9]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_WSW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-5 -6 -5 -5 -5 -8 ... -7 0 -3 -2 -7</div><input id='attrs-d4307e12-0054-4826-8f67-f9a9a0512c73' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d4307e12-0054-4826-8f67-f9a9a0512c73' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-14cc428e-3848-43ef-a376-2509dd5610dd' class='xr-var-data-in' type='checkbox'><label for='data-14cc428e-3848-43ef-a376-2509dd5610dd' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-5, -6, -5, ..., -4, -5, -6],\n",
" [-5, -5, -4, ..., -6, -6, -4],\n",
" [-2, -6, -4, ..., -3, -3, -5],\n",
" ...,\n",
" [-2, -5, -4, ..., -2, -5, -5],\n",
" [-2, -4, -5, ..., -4, -4, -3],\n",
" [-1, -4, -4, ..., -3, -2, -7]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_W_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>3 1 3 1 3 1 3 2 ... 2 3 4 2 3 0 3 1</div><input id='attrs-56badc9c-94f3-4881-837c-d5f2a7773d66' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-56badc9c-94f3-4881-837c-d5f2a7773d66' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bc35f2d0-23b5-46aa-9bea-4d53b46b0061' class='xr-var-data-in' type='checkbox'><label for='data-bc35f2d0-23b5-46aa-9bea-4d53b46b0061' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 3, 1, 3, ..., 1, 3, 3],\n",
" [ 3, 5, 1, ..., 4, 4, 3],\n",
" [-1, 2, -1, ..., 1, 1, 5],\n",
" ...,\n",
" [ 3, 3, 2, ..., 3, 2, 3],\n",
" [ 2, 4, 3, ..., 1, 1, 0],\n",
" [ 2, 3, 2, ..., 0, 3, 1]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_WNW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-6 -3 -5 -6 -5 ... -2 -4 -5 -4 -7</div><input id='attrs-5ae2779a-4fd3-4d32-8cd1-299494cfa506' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5ae2779a-4fd3-4d32-8cd1-299494cfa506' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3daf0a40-8a50-4de7-a01c-064999adc1f2' class='xr-var-data-in' type='checkbox'><label for='data-3daf0a40-8a50-4de7-a01c-064999adc1f2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-6, -3, -5, ..., -2, -1, -4],\n",
" [-7, -2, -2, ..., -2, -2, -5],\n",
" [-5, -4, -1, ..., -5, -3, -5],\n",
" ...,\n",
" [-1, -7, -6, ..., -6, -5, -7],\n",
" [-5, -4, -4, ..., -6, -3, -6],\n",
" [-6, -5, -7, ..., -5, -4, -7]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_NW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-9 -11 -11 -13 ... -10 -10 -10 -9</div><input id='attrs-607da0a0-d09d-4b2c-ac82-14ec87becfc9' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-607da0a0-d09d-4b2c-ac82-14ec87becfc9' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d6d0c51a-1651-4357-a0f4-ad4ad7a6ce11' class='xr-var-data-in' type='checkbox'><label for='data-d6d0c51a-1651-4357-a0f4-ad4ad7a6ce11' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -9, -11, -11, ..., -11, -7, -11],\n",
" [-10, -10, -9, ..., -8, -12, -9],\n",
" [-11, -11, -13, ..., -10, -10, -12],\n",
" ...,\n",
" [ -7, -11, -8, ..., -11, -11, -9],\n",
" [-12, -10, -10, ..., -12, -8, -11],\n",
" [-11, -10, -8, ..., -10, -10, -9]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_NNW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-2 -5 -5 -4 -5 ... -5 -7 -7 -6 -7</div><input id='attrs-c69dec9d-70bc-42aa-99fc-0b91982ae181' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c69dec9d-70bc-42aa-99fc-0b91982ae181' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-58939b35-465c-4c46-a31d-d41a5f867c45' class='xr-var-data-in' type='checkbox'><label for='data-58939b35-465c-4c46-a31d-d41a5f867c45' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-2, -5, -5, ..., -3, -6, -5],\n",
" [-4, -5, -4, ..., -1, -6, -5],\n",
" [-4, -5, -6, ..., -3, -6, -7],\n",
" ...,\n",
" [-4, -7, -3, ..., -7, -5, -7],\n",
" [-4, -4, -5, ..., -6, -7, -8],\n",
" [-4, -4, -5, ..., -7, -6, -7]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_E_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-7 -1 -6 -4 -5 ... -1 -4 -2 -4 -2</div><input id='attrs-8d4a4770-07a1-47de-9477-f09b0e740c2e' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8d4a4770-07a1-47de-9477-f09b0e740c2e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e4723261-f956-44b3-8f6c-13b4465b143e' class='xr-var-data-in' type='checkbox'><label for='data-e4723261-f956-44b3-8f6c-13b4465b143e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-7, -1, -6, ..., -6, -8, -4],\n",
" [-5, -4, -6, ..., -4, -5, -4],\n",
" [-6, -4, -3, ..., -5, -6, -2],\n",
" ...,\n",
" [-5, -4, -6, ..., -1, -5, -5],\n",
" [-3, -3, -7, ..., -6, -8, -6],\n",
" [-8, -1, -4, ..., -2, -4, -2]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_ESE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-11 -10 -12 -12 ... -11 -11 -13 -10</div><input id='attrs-6bbb9738-b814-4001-88e8-f6b61d814819' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6bbb9738-b814-4001-88e8-f6b61d814819' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1c714a94-e83b-45a9-9137-c96b4a05e12d' class='xr-var-data-in' type='checkbox'><label for='data-1c714a94-e83b-45a9-9137-c96b4a05e12d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-11, -10, -12, ..., -8, -9, -11],\n",
" [ -8, -13, -10, ..., -10, -9, -12],\n",
" [ -9, -11, -11, ..., -9, -10, -10],\n",
" ...,\n",
" [-11, -7, -12, ..., -9, -13, -10],\n",
" [ -9, -11, -11, ..., -10, -11, -9],\n",
" [-12, -9, -10, ..., -11, -13, -10]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>0 -7 -4 -3 -3 -4 ... -5 -2 -2 -4 -3</div><input id='attrs-909808f0-cc7d-4d9b-b650-9655154357da' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-909808f0-cc7d-4d9b-b650-9655154357da' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-962407ab-5a91-499e-abda-62f716a7c575' class='xr-var-data-in' type='checkbox'><label for='data-962407ab-5a91-499e-abda-62f716a7c575' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 0, -7, -4, ..., -1, -2, -5],\n",
" [-4, -3, -4, ..., -3, 0, -4],\n",
" [-2, -2, -7, ..., -2, -1, -4],\n",
" ...,\n",
" [-4, -4, -3, ..., -4, -3, -3],\n",
" [-3, -5, -3, ..., -4, -4, -5],\n",
" [-4, -3, -6, ..., -2, -4, -3]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SSE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-13 -13 -15 -12 ... -12 -12 -13 -14</div><input id='attrs-a432445a-c371-4de6-b733-fe1f6c1e600d' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a432445a-c371-4de6-b733-fe1f6c1e600d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-29f92f24-7dbf-49fa-b8b3-435173d7e1a6' class='xr-var-data-in' type='checkbox'><label for='data-29f92f24-7dbf-49fa-b8b3-435173d7e1a6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-13, -13, -15, ..., -14, -12, -14],\n",
" [-14, -15, -13, ..., -13, -9, -15],\n",
" [-13, -14, -11, ..., -14, -11, -11],\n",
" ...,\n",
" [-13, -14, -13, ..., -13, -12, -14],\n",
" [-13, -14, -11, ..., -11, -13, -14],\n",
" [-16, -13, -15, ..., -12, -13, -14]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_N_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-10 -12 -10 -9 -8 ... -8 -8 -8 -10</div><input id='attrs-a715828f-1f78-430b-add5-f509446a1813' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a715828f-1f78-430b-add5-f509446a1813' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-73a7b7c2-cbfd-4521-add4-b991d51953ad' class='xr-var-data-in' type='checkbox'><label for='data-73a7b7c2-cbfd-4521-add4-b991d51953ad' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-10, -12, -10, ..., -10, -10, -11],\n",
" [ -8, -11, -9, ..., -9, -7, -10],\n",
" [-11, -8, -11, ..., -12, -11, -12],\n",
" ...,\n",
" [ -8, -10, -10, ..., -7, -9, -12],\n",
" [-11, -9, -8, ..., -11, -10, -9],\n",
" [ -8, -9, -10, ..., -8, -8, -10]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_NNE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-6 -8 -7 -9 -9 ... -9 -7 -8 -10 -9</div><input id='attrs-f1972a0e-05f9-4144-b637-bee2f304c5cc' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f1972a0e-05f9-4144-b637-bee2f304c5cc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d1b9f190-7131-4308-a5f7-dc0b4704e7df' class='xr-var-data-in' type='checkbox'><label for='data-d1b9f190-7131-4308-a5f7-dc0b4704e7df' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -6, -8, -7, ..., -9, -5, -10],\n",
" [ -5, -7, -9, ..., -9, -6, -10],\n",
" [-10, -8, -9, ..., -8, -8, -10],\n",
" ...,\n",
" [ -7, -8, -10, ..., -8, -7, -10],\n",
" [ -5, -7, -5, ..., -8, -9, -11],\n",
" [ -7, -7, -7, ..., -8, -10, -9]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_NE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-4 -5 -1 -5 -2 ... -5 -2 -2 -2 -1</div><input id='attrs-493315df-dfff-4f85-9edb-edca2ce3ec44' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-493315df-dfff-4f85-9edb-edca2ce3ec44' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-673dc8a1-009b-4458-8a8e-743dbccf9d20' class='xr-var-data-in' type='checkbox'><label for='data-673dc8a1-009b-4458-8a8e-743dbccf9d20' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-4, -5, -1, ..., -5, 0, -5],\n",
" [-3, -4, -4, ..., -5, -1, -1],\n",
" [-2, -1, -1, ..., -3, -2, -5],\n",
" ...,\n",
" [-4, -3, -3, ..., -3, -1, -4],\n",
" [ 0, -3, -3, ..., 1, -2, -5],\n",
" [-1, -5, -6, ..., -2, -2, -1]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_ENE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-5 -2 -5 -2 -5 -1 ... -3 -7 0 -4 -1</div><input id='attrs-05020386-2993-4cfb-b615-bed6052bc600' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-05020386-2993-4cfb-b615-bed6052bc600' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c608bc72-5f42-470e-a290-b2521b7efc27' class='xr-var-data-in' type='checkbox'><label for='data-c608bc72-5f42-470e-a290-b2521b7efc27' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-5, -2, -5, ..., -4, -6, -1],\n",
" [-4, 2, -4, ..., -2, -6, -2],\n",
" [-2, 0, -5, ..., -1, -2, -3],\n",
" ...,\n",
" [-1, -4, -3, ..., 2, -4, -1],\n",
" [-9, -2, -5, ..., -2, -2, -3],\n",
" [-5, 0, 0, ..., 0, -4, -1]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>bunchPatternTable</span></div><div class='xr-var-dims'>(trainId, pulse_slot)</div><div class='xr-var-dtype'>uint32</div><div class='xr-var-preview xr-preview'>2146089 2048 ... 16777216 16777216</div><input id='attrs-a62a3040-56f4-4b0e-9330-026309882ce5' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a62a3040-56f4-4b0e-9330-026309882ce5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-048aad8c-b895-40ce-ae86-50e70e4d7da9' class='xr-var-data-in' type='checkbox'><label for='data-048aad8c-b895-40ce-ae86-50e70e4d7da9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 2146089, 2048, 2099241, ..., 16777216, 16777216, 16777216],\n",
" [ 2146089, 2048, 2099241, ..., 16777216, 16777216, 16777216],\n",
" [ 2211625, 2048, 2099241, ..., 16777216, 16777216, 16777216],\n",
" ...,\n",
" [ 2146089, 2048, 2099241, ..., 16777216, 16777216, 16777216],\n",
" [ 2146089, 2048, 2099241, ..., 16777216, 16777216, 16777216],\n",
" [ 2146089, 2048, 2099241, ..., 16777216, 16777216, 16777216]],\n",
" dtype=uint32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>XTD10_SA3</span></div><div class='xr-var-dims'>(trainId, sa3_pId)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1.674e+03 1.781e+03 ... 1.465e+03</div><input id='attrs-6ebe0c60-1349-48e9-be94-e828558f3453' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6ebe0c60-1349-48e9-be94-e828558f3453' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a7e7f684-e844-4f5e-adc7-162202f80191' class='xr-var-data-in' type='checkbox'><label for='data-a7e7f684-e844-4f5e-adc7-162202f80191' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[1673.9749, 1780.605 , 1452.1677, ..., 1836.0759, 1695.688 ,\n",
" 1458.0745],\n",
" [2012.4326, 1767.7134, 1716.7632, ..., 1651.4255, 1813.9778,\n",
" 1431.3564],\n",
" [1630.8784, 1645.9148, 1469.2832, ..., 1508.0568, 1385.6311,\n",
" 1416.7161],\n",
" ...,\n",
" [1507.3145, 1752.1653, 1686.9208, ..., 1737.3125, 1577.063 ,\n",
" 1616.5239],\n",
" [2101.6008, 1569.2412, 1855.7173, ..., 1483.9696, 1664.9822,\n",
" 1348.7126],\n",
" [1564.1768, 1731.567 , 1535.6467, ..., 1721.9434, 1681.0325,\n",
" 1465.4915]], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>spectrum</span></div><div class='xr-var-dims'>(trainId, newt_x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>941.8 960.7 ... 1.302e+03 1.319e+03</div><input id='attrs-48baa7bb-053f-4b03-b3ae-9436b60a23e0' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-48baa7bb-053f-4b03-b3ae-9436b60a23e0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b6497bc4-e3ab-46cf-8192-e82d08659f44' class='xr-var-data-in' type='checkbox'><label for='data-b6497bc4-e3ab-46cf-8192-e82d08659f44' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 941.7556739 , 960.7466906 , 985.17017035, ..., 1429.04684533,\n",
" 1345.94695049, 1329.10718964],\n",
" [1078.21605126, 1053.65423777, 1074.17111375, ..., 1328.01665665,\n",
" 1424.27242218, 1363.57039719],\n",
" [ 935.14152295, 949.06555853, 981.37960431, ..., 1409.16571326,\n",
" 1329.469592 , 1194.42605757],\n",
" ...,\n",
" [1025.26416446, 1002.32687928, 985.82771752, ..., 1286.78458118,\n",
" 1334.07242218, 1294.76001983],\n",
" [1083.24435314, 1097.98065287, 1044.15601941, ..., 1231.7053359 ,\n",
" 1391.47242218, 1360.74681228],\n",
" [1022.09246635, 1066.147634 , 1049.91922696, ..., 1362.59590193,\n",
" 1302.00732785, 1319.01190662]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>spectrum_nobl</span></div><div class='xr-var-dims'>(trainId, newt_x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-25.84 -7.057 17.15 ... -41.9 -25.1</div><input id='attrs-dc5974f5-52db-46c1-97f6-88458417fb16' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-dc5974f5-52db-46c1-97f6-88458417fb16' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-46a92e7e-8342-4a63-bf31-e73134d55547' class='xr-var-data-in' type='checkbox'><label for='data-46a92e7e-8342-4a63-bf31-e73134d55547' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -25.83624416, -7.0570592 , 17.15456166, ..., 113.93823559,\n",
" 30.58586118, 13.49359361],\n",
" [ 132.95311623, 108.13436457, 128.39426944, ..., -38.76150904,\n",
" 57.18801513, -3.82028416],\n",
" [ -4.23122332, 9.49350667, 41.60822133, ..., 142.82583547,\n",
" 62.89216441, -72.38894537],\n",
" ...,\n",
" [ 22.22432542, -0.8607938 , -17.50780854, ..., 41.21831883,\n",
" 88.32995832, 48.8413355 ],\n",
" [ 80.40705362, 94.91392577, 40.85983533, ..., -147.51518149,\n",
" 11.97845297, -19.02063816],\n",
" [ -34.8527069 , 9.02766964, -7.37555092, ..., 18.90036362,\n",
" -41.89654178, -25.10031672]])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-d49f9f59-de72-4395-b51c-20ba00881c51' class='xr-section-summary-in' type='checkbox' ><label for='section-d49f9f59-de72-4395-b51c-20ba00881c51' class='xr-section-summary' >Indexes: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>trainId</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-b4d1f00c-1a1b-4d7e-940f-e13ba4c79909' class='xr-index-data-in' type='checkbox'/><label for='index-b4d1f00c-1a1b-4d7e-940f-e13ba4c79909' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([1473952798, 1473952800, 1473952802, 1473952804, 1473952806, 1473952808,\n",
" 1473952810, 1473952812, 1473952814, 1473952816,\n",
" ...\n",
" 1473954100, 1473954102, 1473954104, 1473954106, 1473954108, 1473954110,\n",
" 1473954112, 1473954114, 1473954116, 1473954118],\n",
" dtype='uint64', name='trainId', length=660))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>sa3_pId</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-d1499bd9-c822-43c5-ad5d-2e37d90a46ae' class='xr-index-data-in' type='checkbox'/><label for='index-d1499bd9-c822-43c5-ad5d-2e37d90a46ae' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([1056, 1088, 1120, 1152, 1184, 1216, 1248, 1280, 1312, 1344, 1376, 1408,\n",
" 1440, 1472, 1504, 1536, 1568, 1600, 1632, 1664, 1696, 1728, 1760, 1792,\n",
" 1824, 1856, 1888, 1920, 1952, 1984, 2016, 2048, 2080, 2112, 2144, 2176,\n",
" 2208, 2240, 2272, 2304, 2336, 2368, 2400],\n",
" dtype='int64', name='sa3_pId'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>newt_x</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-5111143b-1c38-4e7a-90b1-d7acf156d259' class='xr-index-data-in' type='checkbox'/><label for='index-5111143b-1c38-4e7a-90b1-d7acf156d259' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([ 515.884589, 515.9076505108267, 515.9307149777067,\n",
" 515.9537824006401, 515.9768527796267, 515.9999261146668,\n",
" 516.0230024057602, 516.0460816529069, 516.0691638561069,\n",
" 516.0922490153603,\n",
" ...\n",
" 553.525404882067, 553.5528709123703, 553.5803398987268,\n",
" 553.6078118411368, 553.6352867396001, 553.6627645941168,\n",
" 553.6902454046867, 553.71772917131, 553.7452158939867,\n",
" 553.7727055727166],\n",
" dtype='float64', name='newt_x', length=1500))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-027fcb0a-bc9c-4f33-9fe9-411021548132' class='xr-section-summary-in' type='checkbox' ><label for='section-027fcb0a-bc9c-4f33-9fe9-411021548132' class='xr-section-summary' >Attributes: <span>(12)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>runFolder :</span></dt><dd>/gpfs/exfel/exp/SCS/202202/p002953/raw/r0322</dd><dt><span>vbin: :</span></dt><dd>4</dd><dt><span>hbin :</span></dt><dd>1</dd><dt><span>startX :</span></dt><dd>1</dd><dt><span>endX :</span></dt><dd>2048</dd><dt><span>startY :</span></dt><dd>1</dd><dt><span>endY :</span></dt><dd>512</dd><dt><span>temperature :</span></dt><dd>-50.04199981689453</dd><dt><span>high_capacity :</span></dt><dd>0</dd><dt><span>exposure_s :</span></dt><dd>0.0004</dd><dt><span>gain :</span></dt><dd>2</dd><dt><span>photoelectrons_per_count :</span></dt><dd>2.05</dd></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (trainId: 660, newt_y: 53, newt_x: 1500,\n",
" PESsampleId: 700000, pulse_slot: 2700, sa3_pId: 43)\n",
"Coordinates:\n",
" * trainId (trainId) uint64 1473952798 1473952800 ... 1473954118\n",
" * sa3_pId (sa3_pId) int64 1056 1088 1120 1152 ... 2336 2368 2400\n",
" * newt_x (newt_x) float64 515.9 515.9 515.9 ... 553.7 553.7 553.8\n",
"Dimensions without coordinates: newt_y, PESsampleId, pulse_slot\n",
"Data variables: (12/21)\n",
" newton (trainId, newt_y, newt_x) float64 943.0 800.0 ... 758.0\n",
" PES_S_raw (trainId, PESsampleId) int16 -2 1 1 2 -1 ... 2 -1 3 -3 1\n",
" PES_SSW_raw (trainId, PESsampleId) int16 -3 0 -3 -3 ... -3 -4 -4 -3\n",
" PES_SW_raw (trainId, PESsampleId) int16 -5 -8 -7 -4 ... -9 -7 -6 -9\n",
" PES_WSW_raw (trainId, PESsampleId) int16 -5 -6 -5 -5 ... 0 -3 -2 -7\n",
" PES_W_raw (trainId, PESsampleId) int16 3 1 3 1 3 1 ... 4 2 3 0 3 1\n",
" ... ...\n",
" PES_NE_raw (trainId, PESsampleId) int16 -4 -5 -1 -5 ... -2 -2 -2 -1\n",
" PES_ENE_raw (trainId, PESsampleId) int16 -5 -2 -5 -2 ... -7 0 -4 -1\n",
" bunchPatternTable (trainId, pulse_slot) uint32 2146089 2048 ... 16777216\n",
" XTD10_SA3 (trainId, sa3_pId) float32 1.674e+03 ... 1.465e+03\n",
" spectrum (trainId, newt_x) float64 941.8 960.7 ... 1.319e+03\n",
" spectrum_nobl (trainId, newt_x) float64 -25.84 -7.057 ... -41.9 -25.1\n",
"Attributes:\n",
" runFolder: /gpfs/exfel/exp/SCS/202202/p002953/raw/r0322\n",
" vbin:: 4\n",
" hbin: 1\n",
" startX: 1\n",
" endX: 2048\n",
" startY: 1\n",
" endY: 512\n",
" temperature: -50.04199981689453\n",
" high_capacity: 0\n",
" exposure_s: 0.0004\n",
" gain: 2\n",
" photoelectrons_per_count: 2.05"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_train = v.from_run(runTrain) # load refNB. The `newton` variable contains the CCD images.\n",
"v.integrate(data_train) # integrate over the non-dispersive dimension \n",
"v.removePolyBaseline(data_train) # remove baseline\n",
"data_train"
]
},
{
"cell_type": "code",
"id": "294b5f3a-1d59-444e-80ab-4834d26d62dc",
"metadata": {},
"outputs": [],
"source": [
"# transform PES data into the format expected\n",
"pes_data = {k: da.from_array(data_train[item].to_numpy())\n",
" for k, item in pes_map.items() if item in data_train}\n",
"xgm = data_train.XTD10_SA3.isel(sa3_pId=0).to_numpy()[:, np.newaxis]"
]
},
{
"cell_type": "code",
"id": "b477bf49-f5ca-4df0-b6ed-a270ee35cd28",
"metadata": {},
"outputs": [],
"source": [
"channels = tuple(pes_data.keys())"
]
},
{
"cell_type": "code",
"id": "8f154e38-d208-477e-9d9c-ef2a632514c8",
"metadata": {},
"outputs": [],
"source": [
"energy = data_train.newt_x.to_numpy()"
]
},
{
"cell_type": "code",
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
"id": "0c5ff2a0-0737-417d-9f57-158d4fbd8090",
"metadata": {},
"outputs": [],
"source": [
"vik = data_train.spectrum.to_numpy()"
]
},
{
"cell_type": "markdown",
"id": "995e2ac0-1898-46dd-b95f-f65a24496871",
"metadata": {},
"source": [
"## Train Virtual Spectrometer"
]
},
{
"cell_type": "markdown",
"id": "9cbf75c8-fbe0-42ec-af85-6194aede91f5",
"metadata": {},
"source": [
"So far we have only done pre-processing due to experimental problems with some data not being available in certain train IDs.\n",
"\n",
"Let's finally take a look at the data before training the model."
]
},
{
"cell_type": "code",
"id": "63b35dac-ad50-4124-b6f8-e1ceea667b4d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2b563aa392d0>]"
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD4CAYAAAAKA1qZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2JElEQVR4nO3deXhb1Zn48e8ryZL3bHY2OyuEJQkQkhTCvkMKLWHoUFJoSQvTtJTSdYbC/GCGDg2l7UwX9qaUspRCU5ZC2UPKHiA4ISQkIWRPnM2OE8e7rOX8/rhX8rUt23K8XMl6P8/jR1dH98qvryW9Oss9R4wxKKWUykwetwNQSinlHk0CSimVwTQJKKVUBtMkoJRSGUyTgFJKZTCf2wF0paioyIwfP97tMJRSKm0UFRXxyiuvvGKMmd3VvimfBMaPH09ZWZnbYSilVFoRkaJk9kuqOUhEfigia0TkExF5XESyRWSoiCwWkQ327RDH/jeJyEYRWS8iFzjKZ4jIavuxO0VEuv+nKaWU6i1dJgERKQG+B8w0xkwFvMBc4EZgiTFmErDEvo+ITLYfnwLMBu4VEa/9dPcB84FJ9k+XVRWllFJ9J9mOYR+QIyI+IBfYBcwBHrYffxi4xN6eAzxhjAkaY7YAG4ETRGQUUGiMec9Ylyk/4jhGKaWUC7pMAsaYncD/AtuB3cBBY8yrwAhjzG57n93AcPuQEmCH4ynK7bISe7tteTsiMl9EykSkrLKysnt/kVJKqaQl0xw0BOvb/QRgNJAnIl/t7JAEZaaT8vaFxiw0xsw0xswsLi7uKkSllFKHKJnmoHOBLcaYSmNMCHgaOBnYazfxYN9W2PuXA2Mcx5diNR+V29tty5VSSrkkmSSwHZglIrn2aJ5zgHXAc8A8e595wLP29nPAXBEJiMgErA7gZXaTUa2IzLKf5yrHMUoppVzQ5XUCxpgPRORJYAUQBj4CFgL5wCIRuQYrUVxm779GRBYBa+39rzPGROynuxZ4CMgBXrJ/lOq2jRW17Kpu4vQjtLlQqZ6QVF9PYObMmUYvFlNtjb/xBQC23nGRy5EolZpEZLkxZmZX++ncQSrtBMOR+Haqf4lRKtVpElBpp7G5JQk0hiKd7KmU6oomAZV2GhxJoLoh5GIkSqU/TQIq7Ti//R9s1CSgVE9oElBpx9kcdKCh2cVIlEp/mgRU2qmobYpvNwS1T0CpntAkoNLOzgON8e3mSNTFSJRKf5oEVNppCrV88DeHNQko1ROaBFTacX771ySgVM9oElBpozkcxRhD0DE6KKjNQUr1SMqvMawUQDRqOOLml/j6yeMJZLV8d9GagFI9ozUBlRZiTUAPLd1KcziK32u9dDUJKNUzmgRUWnD2AwTDUfKzrUqsJgGlekaTgEoLIceH/YH6ZrJ9HnweaTWZnFKq+zQJqLTgrAlU1TUTyPLi93m0JqBUD2kSUGkhFG6ZMrqmKYTf67GSgI4OUqpHNAmotOD8sK8LhvH7PAS0JqBUj2kSUGkh5EgCtU1hAj6PNgcp1Qs0Cai00DoJhPD7PPi9Hirrgi5GpVT66zIJiMiRIrLS8VMjIj8QkaEislhENti3QxzH3CQiG0VkvYhc4CifISKr7cfuFBHpqz9Mpbed1Y384ImPWPjWJowxrZJA1IDf58HrEdbvqXUxSqXSX5dJwBiz3hgzzRgzDZgBNADPADcCS4wxk4Al9n1EZDIwF5gCzAbuFRGv/XT3AfOBSfbP7F79a9SAccOTH/P3lbu4/cVP2VsTpDncei1hv9fDjHFDiOoaw0r1SHebg84BNhljtgFzgIft8oeBS+ztOcATxpigMWYLsBE4QURGAYXGmPeMtTr4I45jlGol6mjqD4Yj7UYBBbK8BHxegtonoFSPdDcJzAUet7dHGGN2A9i3w+3yEmCH45hyu6zE3m5b3o6IzBeRMhEpq6ys7GaIaiDI9Xvj25sq61pdLAbEh4iGdIioUj2SdBIQET9wMfC3rnZNUGY6KW9faMxCY8xMY8zM4uLiZENUA0huoGVuw6sfKuP9zVWtHo91DIci2hykVE90pybweWCFMWavfX+v3cSDfVthl5cDYxzHlQK77PLSBOVKtZPnqAkArN/bugM44POQ5fUQiRoiUU0ESh2q7iSBr9DSFATwHDDP3p4HPOsonysiARGZgNUBvMxuMqoVkVn2qKCrHMeoDLZjfwPjb3yBN9ZXdLhPU6j1HEEBn4csn1W51CYhpQ5dUklARHKB84CnHcV3AOeJyAb7sTsAjDFrgEXAWuBl4DpjTOwdfC3wAFZn8SbgpV74G1SaW7H9AAB/K2vpMmps86Ff3RBqdT/WHAS6zrBSPZHUojLGmAZgWJuyKqzRQon2XwAsSFBeBkztfphqIPN6rG/0zuGeTaEIY4bmsGO/taj8gbZJwGs1BwHtOo2VUsnTK4aV64L2wvHOJNAYijI0L8Cnt1mXklQ3NLc6JtueRRTQzmGlekCTgHJddaP1Ld/Zv9sUipCT5SE7y8uwPD/hNp2/gayWmoDOH6TUodMkoFx30E4CzlE+jc0RsrOsEUJ5gfatltboIKsZSfsElDp0mgSU62rsJBBLBgBVdUGG5QWAlgvHYn0HAAGfN94xrKODlDp0mgSU62Lt/QfsW2MMFbVBigusJBCw2/5jH/qxspY+AU0CSh0qTQLKdbEaQGwYaHMkSjhqKLAXk4+1/ceaf6B1n4AmAaUOXVJDRJXqS7Ek0NhsXRsQmxQuVgOIfdjHvvkDZPu8xGYi10nklDp0mgSU62KjgxpDEYwx8auDY0nAZ9cAspzNQVkt2zo6SKlDp0lAua7G0SEcDEfj1w0E7NFBsb6A2GghsDqGY/fbXk2slEqe9gko19U2heMf9E2hSIfNQQFf647hEYVWx/Hemqb+DFepAUWTgHJdKBKlMMeqlDaFoo7mIOubfpb94Z/jb10TyA/4yMnyUlGr6wwrdag0CShXRaOGqIH8QCwJROJDRYfm+YGWUUHZPkcSyPIgIowoDLCrurGfo1Zq4NAkoFwVmw4i3x4O2hiKUGl/sy/Kt5JArEaQ7egMHpSTBcCUkkGs3FHdX+EqNeBoElCuCtuLCTtrArGO4tgHfew2N+Cj0E4WsU7h4QUB6prC/RqzUgOJjg5SrorXBALWB31jKEKjPToo12+9PGNJwO/18MoPT6eqrmVG0Ty/j9pgmGjU4PEkWsFUKdUZrQkoV4XtaaBjVwcHQ1Eam61v9rHRQINzrSQQNYZRg3KYWjIofvzybdaCNPe8vrHfYlZqINEkoFwVjrRuDrJqAhFysrzxb/bOi8TaOrbUSghb9tX3caRKDUyaBJSrYs1BsSGiDc0RGpojrYaDxoaM5mR52x3/4/OPBGDEoOy+DlWpAUmTgHJVrDmoMNtq8vnTu1tYt7um1Qf+7KkjOWpkAd8647B2x/t9HvIDvvhVxpW1Qc781ets2FvbD9Erlf40CShXhezRQbHO3zW7alixvbpVTaAoP8DLPzidCUV5CZ8j4PPQHLFqC69/WsHWqgbufWNTH0eu1MCQVBIQkcEi8qSIfCoi60TkJBEZKiKLRWSDfTvEsf9NIrJRRNaLyAWO8hkistp+7E6JTQOpMlZsNbG2q4fl+ts3/XTE7/PEawLYr6hYE5JSqnPJ1gR+B7xsjDkKOA5YB9wILDHGTAKW2PcRkcnAXGAKMBu4V0Ri7+j7gPnAJPtndi/9HSpNxdYCaNv5m52g/b8jfp8nvsTkPz7eBbR0NCulOtdlEhCRQuB04I8AxphmY0w1MAd42N7tYeASe3sO8IQxJmiM2QJsBE4QkVFAoTHmPWOMAR5xHKMyVKwm4FwwBiCvGzWBgM8Tn056n30NQewKZKVU55KpCUwEKoE/ichHIvKAiOQBI4wxuwHs2+H2/iXADsfx5XZZib3dtrwdEZkvImUiUlZZWdmtP0ill5DdMez1CB//9/nx8uEFyY/28fs88ZlHY1cb6xoDSiUnmSTgA6YD9xljjgfqsZt+OpCond90Ut6+0JiFxpiZxpiZxcXFSYSo0lXY0Rw0KCeLi44ZBcDIbgz5DPi88Q/9WBLQ1caUSk4ySaAcKDfGfGDffxIrKey1m3iwbysc+49xHF8K7LLLSxOUqwwWaw7y2heG1Qatq4VHdSMJ+L0eguEIkaiJH69JQKnkdJkEjDF7gB0icqRddA6wFngOmGeXzQOetbefA+aKSEBEJmB1AC+zm4xqRWSWPSroKscxKkOF2vQJzDtpHEX5AY4tHZz0c/jtPgHnCmXNYR0dpFQyku09ux54TET8wGbgG1gJZJGIXANsBy4DMMasEZFFWIkiDFxnjIm9I68FHgJygJfsH5XBIvZ1Aj6P9X3knKNHUHbziG49R8DuEzjYZplKpVTXkkoCxpiVwMwED53Twf4LgAUJysuAqd2ITw1wzo7hQxWrCbRKAiFNAkolQ68YVq6KTRvR2SRxXQn4vATDUartJGDVDLQ5SKlkaBJQrootKuPz9qwm4GwOGlGYHb94TCnVOU0CylWxmoCvB81B1sViLSuSFeX7481By7ftp7FZawVKdUSTgHJV7Bu739eT5iBr2ohYZ/CgnCyC4SgbK+r40n3vccuzn/RKrEoNRJoElKticwf5e9AnEGsOil0wlp+dRTAcoarOWrB+za6angeq1AClSUC5KvbBndWDmoDf68EY4stSFmT7aA5Hqbfv9yC/KDXg6dtDuSrWhNOTmkAgyzq2NhjGI5CbZY0W+uuH1hRWXp2xXKkOaRJQruqV5iD72LqmMH6fh0CW1Tz0ypq9AAS6MS21UplGk4ByVXM4SpZX4ovKH4rYh3xdMEyW10PA5yUSNZxxhDX54LIt+9lYoctNKpWIJgHlKisJ9OxlGK8JBMMEfJ74SKPK2mB8nzl3v9uj36HUQKVJQLmqvjncbmnJ7op96Nc0hfF7PQTs+9UNzY7fo9cKKJWIJgHlqv31zQzN9ffoOWIf+nVNIfw+T3xpypqmcKv9yg809Oj3KDUQaRJQrjrQEGJwblaPniNWE6gLWh3DsUXq64Ktk8DKHdU9+j1KDUSaBJSr6oPhHi8KH/DZH/pNVsew8/nOPLJlZbr1e7RzWKm2NAkoVzU2R8jtpT6B+uaIXRNoeb4xQ3Lj2w3aL6BUO5oElKvqm8Pk+Xs2jj/guNpYgMKcliTg93k4tnQQoIvPK5WIJgHlqoZghJxeTAIrtlczZmjLt3+/z8Nz3z2VEYUBTQJKJaBJQLnGGGPXBHqnOSimMLuloznHHinkt2caVUq1pklAuSYYjhI1kBvoaU2g4+Nji9X4vR6tCSiVQFJJQES2ishqEVkpImV22VARWSwiG+zbIY79bxKRjSKyXkQucJTPsJ9no4jcKaIze2WyWEdtb9YEfnP5ca0eq6prtvfx6uLzSiXQnZrAWcaYacaY2ILzNwJLjDGTgCX2fURkMjAXmALMBu4VkdhXtfuA+cAk+2d2z/8Ela7q7XH8Pe0TcCaB48dY30Ve+9HpAJx79Ij4PtocpFR7PWkOmgM8bG8/DFziKH/CGBM0xmwBNgIniMgooNAY854xxgCPOI5RGagx1Ds1AWfHcOxq4cOHF7D1jos46bBh1j5eawnKRHbsb6CmKdSjGJRKV8kmAQO8KiLLRWS+XTbCGLMbwL4dbpeXADscx5bbZSX2dtvydkRkvoiUiUhZZWVlkiGqdLN82wGg530CzvWJs7MSv6T9Pg8hez3jtk775et88a53ehSDUukq2a9gpxhjdonIcGCxiHzayb6J2vlNJ+XtC41ZCCwEmDlzZuJ3rkprkajhpqdXA9YiMD3h7FrK7uC5srzCwcaOm4O2Vem8QiozJVUTMMbssm8rgGeAE4C9dhMP9m2FvXs5MMZxeCmwyy4vTVCuMtCemqb4dk9nEXUKdLBMpd9njQ56cfVutu6rj5dbLZNKZa4uk4CI5IlIQWwbOB/4BHgOmGfvNg941t5+DpgrIgERmYDVAbzMbjKqFZFZ9qigqxzHqAzjnOY5t4cdw04dDTjz+7w0R6J857EVfP53b8fLtbNYZbpkvoKNAJ6x31w+4C/GmJdF5ENgkYhcA2wHLgMwxqwRkUXAWiAMXGeMifXIXQs8BOQAL9k/KgM1OubxGdzDqaST4fd64rOKxjqkAZpCLUkgFOn5AjdKpZsuk4AxZjNwXILyKuCcDo5ZACxIUF4GTO1+mGqgcS7yMiinZ1NJJ8Pv83Cgvrld+bsb98W3t1XVc/jwgj6PRalUol97lCsaHHP9e3uwvnCyAj4P4WhL+38oEqW6oZlNFXXxsvV76hIdqtSA1ns9ckp1Q+xq4Tf/48xeeb7nrz+1076FtvML3fjUap5aYY1Y9nutC8n21QUTHarUgKY1AeWKhmarJpDbwwvFYqaWDGJicX6Hj/vbtPX/feXO+PYx9lTTzr4CpTKFJgHlilhNoDdHBnWmbU0gyyvttht10RmVgTQJKFfEOoZzenihWLLaJgHnqCBjrCuNtSagMpEmAeWKhmCYnCwvnn7oFIb2zUFOxljNUloTUJlIk4ByRUMoQl4P5wzqjrY1Aafzp4wgJ8urNQGVkXR0kHJFQzDca53CyYgmmB7i388/gitPHMfg3CweX7Zdk4DKSFoTUK5oaI70W6cwtKwr4DQ0L8CQPD8iQo7fq81BKiNpElCu6O8kMHpwDl6PtJp2emhey3QVuVnaJ6AykyYB5Yr65nCvzh6ajNW3ns8nP42vdsqw/JYkkO3XPgGVmTQJKFc0Nkf6bXhoTK7f12q9geL8QHy7INtHTaOuLqYyjyYB5Qo3agIxowdlAzB2aG68rCjPT6VOG6EykI4OUq5o7Oc+AaeHrj6BcMS0ukahKD9AbVOYplCkw9XJlBqINAkoV9QH3UsCR4xoP110cYHVNFRV30zJ4Jz+Dkkp12hzkOp30aihMRTp1+sEujKi0Goi2lih00mrzKJJQPW72Cgct2oCicyaOAyfR/hgc5XboSjVrzQJqH5XH5tG2qWO4URy/F7GDM1l+/4Gt0NRql9pElD9rj5o1QTyUqgmADAsz8/+BEtQKjWQaRJQ/e7DLfuBls7YVDEs38+HW/e7HYZS/SrpJCAiXhH5SESet+8PFZHFIrLBvh3i2PcmEdkoIutF5AJH+QwRWW0/dqeI9M88wiql3PDUKgDGD8tzOZLWlm6qIhQxvPlZpduhKNVvulMT+D6wznH/RmCJMWYSsMS+j4hMBuYCU4DZwL0iEqv33wfMBybZP7N7FL1KOwvf2gRAyeAcxjgu1koFEXsh+jW7DrociVL9J6kkICKlwEXAA47iOcDD9vbDwCWO8ieMMUFjzBZgI3CCiIwCCo0x7xljDPCI4xiVIW5/8VMALp422uVI2nvy2ycDkOXRVlKVOZJ9tf8WuAGIOspGGGN2A9i3w+3yEmCHY79yu6zE3m5b3o6IzBeRMhEpq6zUqvlAdNaRw7veqZ8dMcJaqF4nklOZpMskICJfACqMMcuTfM5E7fymk/L2hcYsNMbMNMbMLC4uTvLXqlRnjMHnEa45dQInTBjqdjjt+OwlKH+9+DOqG1pGCX26p4bNlXoRmRqYkqkJnAJcLCJbgSeAs0Xkz8Beu4kH+7bC3r8cGOM4vhTYZZeXJihXGaI2GCYcNYyyJ3BLZe9s3AfAtqp6Zv/2bc7+vzddjkipvtFlEjDG3GSMKTXGjMfq8P2nMearwHPAPHu3ecCz9vZzwFwRCYjIBKwO4GV2k1GtiMyyRwVd5ThGZYCDDdZUzYU5WS5H0rVI1BCORFnwwrqud1YqjfXkks07gEUicg2wHbgMwBizRkQWAWuBMHCdMSbWyHot8BCQA7xk/6gMEQxbL4P+XkfgUByob2bSzS/hXJrYGIOOalYDTbeSgDHmDeANe7sKOKeD/RYACxKUlwFTuxukGhiaQta4goAv9UfffLjtAG3Xpm8KRclJsaucleqp1H83qgEjVhNIh/n61++pbVdWG9SVx9TAo0lA9Zt0qgk4p5Q+rNi6snnrPp1cTg08qf9uVAPG6p3WlbiBNKgJOE0ePQiAXdWNLkeiVO/TJKD6zWd2E8vIwtQdIjqhqP18RjlZ1tvkQIPOMKoGHk0Cqt8MyfOTneVhZApfJ/DyD07j8W/OalU2sdi6kvin/1jrRkhK9SlNAqrfNIejKbWkZCIBn5fRg1uS1K+/fBzXnDqBMUOtdYdN2yFDSqU5TQKq3zSHo/i9qf+SG5zrB2Ds0FwunV5KltfDvJPGA1DTFHYxMqV6X2p/LVMDSjAcwZ8GI4MG5WRxzxXTOXFiy/xGQ+zEsL++mUFpcMWzUslK/XekGjCaI9G0SAIAFx07iqL8lpXPBudaH/w/eOIjt0JSqk+kxztSDQjp0hyUSNhecObjcl1wRg0s6fmOVGmpsq45/o063Zx6eBEAsyam3hTYSvWEJgHVb7ZV1TOxOLXWFU5WXsDHxKI8hjmaiJQaCDQJqH7T2BwhL8WHiHYmx++lsVlXHVMDiyYB1S+iUUMwnN6zcA7N87NlXz2ryqvjk+Eple40Cah+0ZRGawl05LjSwWzZV8/Fd7/LdY/pKCE1MGgSUP0i1oySzjWBSfZC9ADvbKx0MRKleo8mAdUvGkPps5ZAR44YURDfPuvI4S5GolTv0SSg+kVTKP2bg5wzjNYFdfoINTBoElD9oqE5/ZNAdpaX314+Db/PQ70mATVAdJkERCRbRJaJyMciskZEfmqXDxWRxSKywb4d4jjmJhHZKCLrReQCR/kMEVltP3an6KrdGWHpxn1869HlQHr3CQBccnwJZx1ZzIrt1fxo0UqdVVSlvWRqAkHgbGPMccA0YLaIzAJuBJYYYyYBS+z7iMhkYC4wBZgN3CsisXf+fcB8YJL9M7v3/hSVqq544AN2H2wC0rtPICYUsT74n16xk/31utCMSm9dJgFjiS24mmX/GGAO8LBd/jBwib09B3jCGBM0xmwBNgIniMgooNAY856xvj494jhGDWDO+l5eIP2TwBvrK+Lbu6qbXIxEqZ5Lqk9ARLwishKoABYbYz4ARhhjdgPYt7HhEiXADsfh5XZZib3dtjzR75svImUiUlZZqUPx0l1hdst8QUPz/C5G0juuPHFcfDs26kmpdJVUEjDGRIwx04BSrG/1UzvZPVE7v+mkPNHvW2iMmWmMmVlcXJxMiCpF3fT0Kg42huL3B+ekfxK49eIp/OnrnwPgy79/j2hU+wVU+urW6CBjTDXwBlZb/l67iQf7NlZHLgfGOA4rBXbZ5aUJytUAVR8M8/iylkrh56eOTJv1BDrj9QjFBS0TydU360ghlb6SGR1ULCKD7e0c4FzgU+A5YJ692zzgWXv7OWCuiAREZAJWB/Ayu8moVkRm2aOCrnIcowagAw0tnabXnDqB+746w8Voeld2Vstbpz6oTUIqfSXztWwU8LqIrAI+xOoTeB64AzhPRDYA59n3McasARYBa4GXgeuMMbF3ybXAA1idxZuAl3rxb1EpptaxHu8phw9zMZLeF/C1dHDf/+YmFyNRqme6nNfXGLMKOD5BeRVwTgfHLAAWJCgvAzrrT1ADyH1vWB+Ot3xhMmcfNcLlaHpXfqDlrfP8qt3cevEUF6NR6tClfwOtSlmf7LKWYvzicaNcjqT3ORebP3/KwEpwKrNoElB9JhI1XHTMKIYXZLsdSq/zeFoGux3QC8ZUGtMkoPpMdUOIYfnpPyS0I2/fcBZHjSygsjZITVOo6wOUSkGaBFSf2F/fzMHGUKsLxQaaMUNzmVicR9m2Axx766v85MlVvL+5yu2wlOoWTQKqT8x/pAwY+GPonXMg/rVsB3MXvu9iNEp1nyYB1SdCkSgA5x09sDtNs33pPxeSymyaBFSfGDcsj+KCACcfXuR2KH3KedGYUulIX8GqT1TVBxkzJMftMPrcQJgaW2U2TQKqT1TVNTMsP9D1jmnu6yePp6jN36kLzah0oklA9Yl9dc0UDeDhoTFjhuZSdvO5LL3xbGaOsxbXiy2go1Q60CSgel00athfH2RY3sCvCcSMHpzDN0+fCKCrjam0oklA9brqxhBRQ0bUBJxiC+ZoElDpRJOA6nVVdUGAjOgTcCrItiaVqwsO7Gsj1MCiSUD1un111jfhgTxlRCK5WVYSaGjW9QVU+tAkoHrdPrsm0HbUzECX7bfeTo0D/CppNbBoElC97s/vbwMyLwnk+rUmoNKPJgHV62LrCMc6SjNFjn3hWL0mAZVGNAmoXlUfDPP2hn2cOsCni0jE6xGK8v3sOdjodihKJU2TgOpVZdsOADBq0MBbSCYZk4YX8NLqPTpCSKWNLpOAiIwRkddFZJ2IrBGR79vlQ0VksYhssG+HOI65SUQ2ish6EbnAUT5DRFbbj90pznl41YBQUWNdLXv92ZNcjsQd159zOLXBMNc89CEPvrPF7XCU6lIyNYEw8GNjzNHALOA6EZkM3AgsMcZMApbY97EfmwtMAWYD94pIbJat+4D5wCT7Z3Yv/i0qBVTUWiODhhdmVqdwzHGlgwH4YMt+/uf5tSxeu9fdgJTqQpdJwBiz2xizwt6uBdYBJcAc4GF7t4eBS+ztOcATxpigMWYLsBE4QURGAYXGmPeMNcPWI45j1AAQiRp+9cp6IHNn18wL+Frdv/bPy12KRKnkdKtPQETGA8cDHwAjjDG7wUoUwHB7txJgh+OwcrusxN5uW64GiE92HnQ7hJRw3JjB8e1wVGcUVakt6SQgIvnAU8APjDE1ne2aoMx0Up7od80XkTIRKausrEw2ROWyAw3WlcI3X3S0y5G465lrT2bWxKFuh6FUUpJKAiKShZUAHjPGPG0X77WbeLBvK+zycmCM4/BSYJddXpqgvB1jzEJjzExjzMzi4uJk/xblsooaqz/g9CMy+3/m8QgLr5oJQMnggb+wjkpvyYwOEuCPwDpjzK8dDz0HzLO35wHPOsrnikhARCZgdQAvs5uMakVklv2cVzmOUWkuGjXc8NQqAAblZLkcjfsKs7P42qxx7KxuZFNlndvhKNWhZGoCpwBfA84WkZX2z4XAHcB5IrIBOM++jzFmDbAIWAu8DFxnjIldQnkt8ABWZ/Em4KXe/GOUe+oc8+WMKMzMawTayvJab6/P//ZtlyNRqmO+rnYwxrxD4vZ8gHM6OGYBsCBBeRkwtTsBqvRwsCEEwC//9ViXI0kdsVlUmyNRrv3zcn5z+bSMHTWlUpdeMax6xcFGKwkM1qaguH87bQJnH2UNmnvpkz18uHW/yxEp1Z4mAdVj26sa+MJd7wDaH+AU8Hn5zeXT4vd/+9oGXYRepRxNAmlqxfYDKbOM4e+WbIhvD8rVJODkTIrLtx2g/IBOLqdSiyaBNGSM4dJ7l3Lmr153OxRCkShPrWi5BnB4gXYKt3XvldPj25oEVKrRJJBCnl+1i0ff28qbn1USikQ73K8pZD1W0xRmy776/govoX+9b2mr+5m2hkAyLjxmFG/fcBYAX/nD+2yrcvd/ppRTl6ODVP/57l8+im9PLSnk+etPS7hfrBMW4Kz/fYOPbjmPIS59+H5cbk0Vcc2pE7j8c2O62DtzOafWPuNXb7D1jotcjEapFloTSFGf7Kzhi3e9w157aman2PKNMTur3Wli+GxvbXz7li9M5ogRBa7EkQ58Xg8vfi9xUlfKTZoEUtjqnQc58fYlzPzZYv7+0U7G3/gC33ykjLtf39hqv+/+ZQUASzfu45J73qWhnxY631ihV8J2x+TRhVx75mEAvL+5yuVolLJoc1CK6OyDe19dMz/460qAhPPTb61q4P89s5oXV+/mQEOIrfsamDy6sK9CjdtsT4dw1EitASQr355qeu7C97n6lAlsqqxj1sRh8eSgVH/TmkAKCEWiTP6vV1qV/f5rM7r1HI99sJ0D9lW71Y19P3Q0FInyv69+BsA/rj+1z3/fQLGvLhjffvDdLbz5WSW/ePlTFyNSmU6TQAr4+YstHwITi/O49szDuGDKSJ669uQOj3n0mhO4dHri5RheWLW71YdNb3pi2XYeeW8r029bHC+LzZGjujZ19KCE5a9/WtGqw19ltk/31FDVR+/htvTdmwL+VtayBs9dXzmen8w+CoAZ44aw9Y6LeOs/zmq1f1G+n9MmFfPrL0/jxAnt561/7IPtzPzZa30S641Pr+a/nl1DbZPVfPXna07sk98zUF06vYRffOmY+P3vn2OtxfyNhz7kx4tWuhTVwLW/vpnmcMfDrftTXTDMbc+vTarPbvZv3+bCO/tn4kHtE3DZ6b98ndpgy4viqJHt2/LHDsvlzf84E7/PQyhsKMhu+bc9MX8Wa3fX8P7m/dz2/FqG5GbFm4U2VdZxWHF+r8UaTbBK1vRxg3vt+TOBiHDp9FJW7zzI+GF5XP65MfErrt/6bB9vrK/gzCOH8/r6CkYNymbS8AK8no7mb0xP26rqWbe7htlTR/Xp74lGDdNvW8wXjh3F3VdM7/qAbth9sJHi/AC+NrXgT3Ye5NW1e/nReUfEy8KRKJNufolheX721TUzalA2/3baxFZxRo2JP1fEfp/tremfmoAmARd9uqeG7fsbWu7fNrvDN/y4YXkJy0WEKaMHMXlUIecePZzt+xv42h+XAfCdP6/glR+e3mr/1eUHmXPPOyz+0RndShCNzREWvLi2VdkNs48k168voe7K8nr42SXHtCtvjkT5+p8+5MgRBay3h9+eP3lEfIEaNyxZt5cH393Cn685EWsZkOSE7T6jb5wyvt3U4pfc8y4HGkJsuv3CVq/3YDhCY3OEwbmtr3kp27qfSSMKWk3BEY0aPJ0kx+qGZqrsaVWeX7Wbu6+A8Te+wNdPHs+tF0/p8LiFb21i9c4a7vrK8fEyYwy7Djbx0fYD5GR5yfX7+Mof3ueokQXkB3zce+V0htt/4xfvfgdj4OpTxsf/joeWbsUYa4AHwJufVfL+5iqmjRnMH97ewnmTR/Dk8nIWfm0GZx81nJqm/hndF6PvYBfNdswzf9ucKT2aZlhEGDcsjxx/y3NMLRnE717bQCgS5d8vOBKAJz7cTtTAi6t2c73dFNERYwyNoQjlBxo5/zdvtXvceQGUOnRfOHYUr63bG78SfL3j+otX7dFgwXCEZVv2c9qk1qu2rdxRzdihuTy3cierd9Yw7+RxHFs6uNPf1xSKsGZXDTPGDQGsD9SL7nqH7519OJ8/pvW382//eTmhiGF/fTPD8gOEItGEfUDbqxoYOyw3fn/Z1v3c/+Ym7n9zU/zCuOqGZv7+0c54TXVvTRNF+QHe3biP6eOG8K1Hy3h/83423X4hfyvbwdSSQSxeu5ffLdnA6UcU88jVJwCwq7qRk+/4J/dcMZ2LjrXi3VhRy2HF+YgI1Q3NTPufxa3iG3/jC4D1gXzrxVNYs+sgR40sJByNEooYbvvHWi6bWcrtdv/ccaWD+LfTJrJ00z6u+MMHCc/jp3us/9MJty/hb98+iZrGELH5AbdWNTDWwBfveqfddTxvb9gHwGvrrMUYn1xuTbsy/9HlXHHiWEb283ocmgT6iTEGEaH8QANDcv3kBVqf+kG5vXPF7/CCbJ7+zslcdv97reb0KR2Sw0fbqzH2ss5bqxo6eoq45z7exfefWNnh4yMLdenE3nD3FdN55qNyfvjXjxM+fsk977JyRzUAL3zvVKbYncvRqOGSe95tVXN4akU5/3fZcfzfq+v567dOorggwL1vbOKaUybw68XrmX/GYdz9zw08vmwHr/3odD7Ysp9JwwtYt7uGH//tY2ZPHdnqG3+u38fBxhA7qxtpCkc55Y5/8pvLjyPb56UgO4vCHB/76oJc/VAZQPwDv+1FjsaYdh/Mu6obeeDtLTz47pZW5Yf954vtzsFbn1XSFIrwuyUbuO+NTQD8feVO3vysgkVl1us8O8vD3M+NJdff+ZepWEJo66+OvrmfvbCOn72wrtPncbrs/vda3b/knneTPtbpLx9sj2/n9NPaE5oE+sGpv/hnq4nDZk0cyqOODtXsLA+zEnTwHqrpY4fE2xVjbnx6NQCxGvSOAw2EIlGC4Wh87Hp9MMzr6ys468jhPP3RTm75+yftnvu0SUX8ZPZRPPbBNo4bk3iki+q+yaNan8uHrz6BpZv28fs3N8cTAMCVD3zApceX0hSOcLpdK3DWHAB+/DcrmXznsRXsPtjEvrogn+2p5eU1e3j4vW34fdY3+XN/3bp219Ac4ZhbX+XaMw/ji8eOZuyw3HhzzcV3v8v5k0cAdJisAH7/5ia+dcZhbKpomR/pgbc3xxOX06ryg+0SQGeOuuXlVvfbXjPTFIry0NKtST9fbxk/LDepL1UAx48dzEfbq5PaNxyNxr889iVJ9fnNZ86cacrKytwOI2m7qhtpDkcZX5RHY3OEW579JF7dS+TeK6dz4TG930H2z0/3xr+ddWXmuCFU1AZb9U+09dEt5+HzCgXZOlV0X1m8di/HjRlEUV4Aj0eobQpxzK2vuhbPuUeP4LV17S9O7Ep+wMeoQdlsSHBFeXFBgMra/unw7E2/mzutVa34+etPja+hseXnF/K5Ba/F2/zPPXp4vKkH4MXvncazK3cyZmguBdm++PN887QJ/OHtliR475XTeXzZ9nhzEVj9hIfaTCwiy40xXXYoaU2gl518xz8B+MG5k9hQUccLq3Z3uv/sKSP7JI6zjxoR3x6W5493kgFMLMpjs2P20bJtB7p8PrcmqMsk500e0eq+M+F+58zDuNduBunIhKK8Xp1V9lASAFhDITdU1LV73QG885OzWL+nlovv7ry55MJjRvLi6j0JH7vyxLFs2VfP0k3W1BunHD6Mdzcmnobjg/88h+88toLlSbzGAZ777inx2P727ZO47P73+OJxo5kzrYQ500o48fbXKMjOYmrJID756QWA1R9XdvN5fOm+pSzfdoDp44awdFMVDc0RfvmlY5k8ujB+Bb8xhseXbefKE8fxxeNGM3vqSI4eVcj2/Q0cNbKQM44oZuFbm7lgykgaQxF8/TAyTGsCPfTJzoNs2VfPpso6TptUzJfaTK0cc88V07nj5XXs2N/SLFR287kU5Qf6LLYFL6zl2NLBRI2Jf/sYNSib339tRpdvQqei/ABlN5/bR1Gqzhz2ny8ydXQhz373VCJRk7C9HKAw28fbN5xNUzjCibcvafXYqYcXkRfw8sqalg/1ovwATaEIdcGuR6JcceJYDivO57bn1+L3ebhtzhSWbqri2ZW74vu8fcNZrCo/yHX2PFYAZxxRzJufVbZ6rlifwWd7aynOD3DXPzfaH4AFrebE2nrHRfzXs59QnB+gNhhm3snjefS9bWzdV8/99tX0F935Nmt21bD59gupDYYJ+Dx8bsFrYOAbp4znO2cdHv8W/cKq3Ty9opwln1bE4z3tl9Z6HF+aXspTK8p576azGTUoh5U7qvlgcxXfPG0ij76/jUunl8QTcuyag1iTmtOmyjruXLKBn17cMsjDzTWlk60JdJkERORB4AtAhTFmql02FPgrMB7YCnzZGHPAfuwm4BogAnzPGPOKXT4DeAjIAV4Evm+SyEBuJoGt++opzMlKOEf+ETe/xOUzx/Bomxk9O3yuOy7ip/9Yw5/e3cpdXzmeyaMLe3UMf2eaQhFue34t804ez/hhefEX8Ktr9vDRjmpGD85J2P6/4F+mcmzJYA4bnqdDQV3SFIrgEYn/zz7ZeZBgOEpFTRPXPraCq0+ZwDdOGc+YoS0jc575qJyheQHmPbiMkw8bxl++OQuA2b99i0/31HLD7CO58oRxDMrN4oG3N1PTFKY4388tz64B4LeXT8PnFY4eVcg/11Vw6fQSsrO8fPWPH/C1WeO4dHppu4S09n8uINvn5b43N/HEh9vZsb+R1350Buf++k0AfvWvx3LGEcXxoZSJbK9q4PRfvc7np47kvq92PW3KwYYQ+xuamVDUMnw6HIniEUk4fLQpFOGoW17mW6dP5KYLj6a2KcS7G6uYPbVvauNu680kcDpQBzziSAK/BPYbY+4QkRuBIcaYn4jIZOBx4ARgNPAacIQxJiIiy4DvA+9jJYE7jTEvdRVgT5NATVOIRR/u4GsnjSPga8nKxhjW7KrB5xWOGF7Q7kWzqryai+9+l/HDcnnDccXu0yvK+dGijjvGEvnd3GnMmVZCbVOIT/fUMnPckD7v7Omun7+4jt+/tZnzJ49g2tjBfOfMw90OSXUiGjU8uaKcS6aVJPxWCta1HT6vxId0Lt20j/ve2MTdV0xPuBZ0bDhk7BtxV5Zu2ocgrCqv5ltntJ8Ary4YZup/v8L1Zx/Oj88/ssvnM8awdFMVR4wooLigb2rIsQETA+0CvER6LQnYTzYeeN6RBNYDZxpjdovIKOANY8yRdi0AY8zP7f1eAW7Fqi28bow5yi7/in38t7r63YeaBGqaQnz5/vfiY3mzszxcMGVkqypszM8umcpXZ42juqEZn9fDH97a3Grd3GNLB7HKXjylIyWDcxLO6/+/lx3Hv84o7Xb8/a0pFOHZlTu5dHqpzgWkek1dMEye35tyX3oyQV93DI8wxuwGsBPBcLu8BOubfky5XRayt9uWJyQi84H5AGPHjj2kAB98Z0s8AYA1fCxRAgC4+e+fcHOC5pCYrhIAwJWzxnL6pGIOH57PVX9cRlGBn2+fcRjHlKTHMMrsLC+Xf+7QzrVSHckPaDNiquvt/1CidG86KU/IGLMQWAhWTeBQAumNRTtuvujohBeMZGd54ld3gtXc84VjR8ermIu+fVKPf7dSSvWHQ00Ce0VklKM5KDYothxwLjRbCuyyy0sTlPeJSNRw0sQixg7NjV9NGDNldCGnTSrmoaVbuP1fjuEfH+/i9fWV7Z5j9pSRzJ46kp+9sI7rzz6cxWv38sevf47CbB8F2VlEoobnV+1iUE4WZx45vN3xSimVDg61T+BXQJWjY3ioMeYGEZkC/IWWjuElwCS7Y/hD4HrgA6yO4buMMYnHuzn0pGN4x/4GTvvl6+QHfFx4zEgWlZWz5ecXtmqf3FXdyFUPLuNPX/9cfMjY1JJC7v/qDEqH5NLYHCE7y6NtmkqptNKbo4MeB84EioC9wH8DfwcWAWOB7cBlxpj99v7/D7gaCAM/iI0AEpGZtAwRfQm4vj+GiN5lTz51TMkgQtFoqxFCbR1sDOHzSLt5fZRSKt306uggN6X6xWJKKZWKkk0COhZQKaUymCYBpZTKYJoElFIqg2kSUEqpDKZJQCmlMpgmAaWUymCaBJRSKoNpElBKqQyW8heLiUgl0NnKLUXAvk4ed5vG1zMaX8+leowaX88kim8fgDFmdlcHp3wS6IqIlCVzVZxbNL6e0fh6LtVj1Ph6pqfxaXOQUkplME0CSimVwQZCEljodgBd0Ph6RuPruVSPUePrmR7Fl/Z9AkoppQ7dQKgJKKWUOkSaBJRSKoOlfBIQka0islpEVopImV12mYisEZGovWJZbN/xItJo77tSRO53Kb5ficinIrJKRJ4RkcGO/W8SkY0isl5ELkil+Nw4f53EeJsd30oReVVERjv2T4VzmDC+VHkNOh77dxExIlLkKHP9/HUUX6qcPxG5VUR2OuK40LG/6+evo/gO6fwZY1L6B9gKFLUpOxo4EngDmOkoHw98kgLxnQ/47O1fAL+wtycDHwMBYAKwCfCmUHz9fv46ibHQsf094P4UO4cdxZcSr0G7fAzwCtbFlkWpdP46iS8lzh9wK/DvCfZNifPXSXzdPn8pXxNIxBizzhiz3u04OmKMedUYE7bvvg+U2ttzgCeMMUFjzBZgI3BCCsWXMowxNY67eUBsBEOqnMOO4kslvwFuoHVsKXH+bIniS3WpdP56RTokAQO8KiLLRWR+EvtPEJGPRORNETmtr4Oj6/iuBl6yt0uAHY7Hyu2yVIkP+v/8QQcxisgCEdkBXAn8l12cMuewg/ggBV6DInIxsNMY83GbfVPi/HUSH6TA+bN9127ye1BEhthlKXH+OokPunv++rPadYhVodH27XCsatjpjsfeoHVzUAAYZm/PwPpnFboY3/8DnqFlKO49wFcdj/8R+FIKxdfv56+rGO3ym4CfpuI5TBBfSrwGgQ+AQXb5VlqaW1Li/HUSX6qcvxGAF+uL8gLgwRQ7fx3F1+3zl/I1AWPMLvu2AusDq8Oql7GqaFX29nKs9roj3IhPROYBXwCuNPZ/BOtbwxjH4aXArlSJz43z11mMDn8BvmRvp8w5TBRfirwGz8Bqr/5YRLZinaMVIjKS1Dh/HcaXIufvBGPMXmNMxBgTBf5Ay/88Fc5fh/Ed0vnrywzWCxkwDyhwbC8FZjsef4PWNYFi7E4aYCKwExja3/HZP2uB4jb7T6F1p9Jm+rBT6RDi69fz10WMkxz7XA88mWLnsKP4UuI12GafrbR8006J89dJfClx/oBRjn1+iNUPkDLnr5P4un3+fKS2EcAzIgLgA/5ijHlZRP4FuAvrD35BRFYaYy7Aqib9j4iEgQjwbWPMfhfi24j1IllsP/a+Mebbxpg1IrII6wM4DFxnjImkSnz0//nrLManRORIIIo1euTbACl0DhPGR4q8BjvaOVXOXyf7p8T5E5FHRWQaVnv8VuBbkDrnr6P4OITzp9NGKKVUBkv5PgGllFJ9R5OAUkplME0CSimVwTQJKKVUBtMkoJRSGUyTgFJKZTBNAkoplcH+PxO5hBak94WYAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(energy, vik[2])"
]
},
{
"cell_type": "code",
"id": "d0b70fef-5e27-4cb1-90e7-2653989cf48a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2b563ab51330>]"
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3wElEQVR4nO3dd3xc1bXo8d+aGXXLVpe75W7sADYIU0wzPZAESF4SIIUQAiGBG1Juckm4F5K8x7vcJJC85BIIXAiE3luAUE03xr13WZZl2erNatP2++MUzajYYxXrSFnfz0cfjc60fWZGa/ZZe+19xBiDUkqpkcU31A1QSik18DS4K6XUCKTBXSmlRiAN7kopNQJpcFdKqRFIg7tSSo1AhwzuIvKAiFSJyIaYbU+KyBr7p1RE1tjbi0SkLea6ewax7UoppXoRSOA2DwL/DfzN2WCM+apzWUTuABpjbr/TGDN/gNqnlFKqDw4Z3I0x74tIUU/XiYgAXwHOGuB2KaWU6odEeu4HcxpQaYzZHrNtqoisBpqAfzfGfHCoB8nLyzNFRUX9bIpSSv1zWblyZY0xJr+n6/ob3C8HHo/5ex8w2RhTKyLHAy+IyDxjTFPXO4rItcC1AJMnT2bFihX9bIpSSv1zEZHdvV3X52oZEQkAXwSedLYZYzqMMbX25ZXATmBWT/c3xtxrjCk2xhTn5/f4xaOUUqqP+lMKeQ6wxRhT7mwQkXwR8duXpwEzgZL+NVEppdThSqQU8nFgKTBbRMpF5Gr7qsuIT8kAnA6sE5G1wDPAdcaYuoFssFJKqUNLpFrm8l62f6uHbc8Cz/a/WUoppfpDZ6gqpdQIpMFdKaVGIA3uSik1AmlwVwkrrWnhw+01Q90MpVQC+juJSf0TOfN37wJQevtFQ9sQpdQhac9dKaVGIA3uSik1AmlwV4fNGDPUTVBKHYIGd3XYgpHoUDdBKXUIGtzVYQuGNbgr5XUa3NVh69DgrpTnaXBXh0177kp5nwZ3ddg0uCvlfRrc1WHTAVWlvE+Du0qYT6zfHSEN7kp5nQZ3lbCA3/q4BCORIW6JUupQNLirhCXZXXetllHK+zS4q4Q5PXcN7kp5nwZ3lbAkv9Vz12oZpbxPg7tKWMBn59w1uCvleYcM7iLygIhUiciGmG2/FJG9IrLG/rkw5rqfi8gOEdkqIucPVsPVkRfQnrtSw0YiPfcHgQt62P57Y8x8++dVABGZC1wGzLPv82cR8Q9UY9XQStacu1LDxiGDuzHmfaAuwce7GHjCGNNhjNkF7AAW9qN9ykM6e+5aCqmU1/Un536DiKyz0zbZ9rYJwJ6Y25Tb29QI4ObcdYaqUp7X1+B+NzAdmA/sA+6wt0sPt+3xzA4icq2IrBCRFdXV1X1shjqSnGoZnaGqlPf1KbgbYyqNMRFjTBS4j87USzkwKeamE4GKXh7jXmNMsTGmOD8/vy/NUEeYiJ2W0Z67Up7Xp+AuIuNi/rwUcCppXgIuE5EUEZkKzAQ+7V8TlVc4h2BaLaOU9wUOdQMReRw4E8gTkXLgVuBMEZmP9f9eCnwXwBizUUSeAjYBYeB6Y4yOvo0QzrlTtVpGKe87ZHA3xlzew+b7D3L724Db+tMo5U2RqAZ3pYYLnaGqEmbHdk3LKDUMaHBXCXPSMjqgqpT3aXBXCYs6OfeQDqMo5XUa3FXC3LSM9tyV8jwN7iphTs9dc+5KeZ8Gd5WwaFSDu1LDhQZ3lTAnLaOlkEp5nwZ3lTBNyyg1fGhwVwkzOqCq1LChwV0lTHvuSg0fGtxVwjqXH9A6d6W8ToO7SpguP6DU8KHBXSXMWX7A6cErpbxLg7tKmJNzD2lwV8rzNLirhDkxXXvuSnmfBneVMGeGaiRq3BSNUsqbNLirhEVjAnpYe+9KeZoGd5Ww2HiuqRmlvE2Du0pY1Bj8PgEgpLNUlfI0De4qYcZAkt8K7tpzV8rbDhncReQBEakSkQ0x234rIltEZJ2IPC8iWfb2IhFpE5E19s89g9h2dYRFjSHZb31kNOeulLcl0nN/ELigy7Y3gc8YY44BtgE/j7lupzFmvv1z3cA0U3lBxBiSA34AwhEN7kp52SGDuzHmfaCuy7Y3jDFh+89PgImD0DblIcYYjIGUgNNz15y7Ul42EDn3bwOvxfw9VURWi8h7InLaADy+8gCnCtLJuWvPXSlvC/TnziJyMxAGHrU37QMmG2NqReR44AURmWeMaerhvtcC1wJMnjy5P81QR4BT454c0Jy7UsNBn3vuInIl8Dnga8aermiM6TDG1NqXVwI7gVk93d8Yc68xptgYU5yfn9/XZqgjJOr23DUto9Rw0KfgLiIXAP8GfMEY0xqzPV9E/PblacBMoGQgGqqGVreeu6ZllPK0Q6ZlRORx4EwgT0TKgVuxqmNSgDdFBOATuzLmdODXIhIGIsB1xpi6Hh9YDStucLd77lrnrpS3HTK4G2Mu72Hz/b3c9lng2f42SnmPE8uTtVpGqWFBZ6iqhHTtuWtaRilv0+CuEmLsjnqSzlBValjQ4K4SoqWQSg0vGtxVQiJ2cHd77roqpFKepsFdJUR77koNLxrcVUKc5QectWW0FFIpb9PgrhISddMyerIOpYYDDe4qIV3r3LXnrpS3aXBXCYlGnTp3Xc9dqeFAg7tKiA6oKjW8aHBXCYl2Xc9dlx9QytM0uKuE6KqQSg0vGtxVQoyuCqnUsKLBXSWk68k6QpqWUcrTNLirhDg9dbcUUtMySnmaBneVkGiXtWVCmpZRytM0uKuEOMsP+H1CwCdENC2jlKdpcFcJcXruPrECvFbLKOVtGtxVQpwsjE+snrtOYlLK2zS4q4Q4A6oiEPD7tBRSKY87ZHAXkQdEpEpENsRsyxGRN0Vku/07O+a6n4vIDhHZKiLnD1bD1ZHl1Lk7OXddFVIpb0uk5/4gcEGXbTcBbxtjZgJv238jInOBy4B59n3+LCL+AWutGjJxaRm/aM9dKY87ZHA3xrwP1HXZfDHwkH35IeCSmO1PGGM6jDG7gB3AwoFpqhpKzoCqCAR8PkI6oKqUp/U1515ojNkHYP8usLdPAPbE3K7c3qaGuc5qGafnrmkZpbxsoAdUpYdtPXbxRORaEVkhIiuqq6sHuBlqoJmYtIzfJzqJSSmP62twrxSRcQD27yp7ezkwKeZ2E4GKnh7AGHOvMabYGFOcn5/fx2aoI8XJsfsEaxKTpmWU8rS+BveXgCvty1cCL8Zsv0xEUkRkKjAT+LR/TVRe4KZlfELA59M6d6U8LnCoG4jI48CZQJ6IlAO3ArcDT4nI1UAZ8GUAY8xGEXkK2ASEgeuNMZFBars6gkyXahk9WYdS3nbI4G6MubyXq87u5fa3Abf1p1HKe2KXH7DWltGeu1JepjNUVULilx/w6SQmpTxOg7tKSPzyA9pzV8rrNLirhMQuP+D3iU5iUsrjNLirhHRdFVJ77kp5mwZ3lZC4AVW/lkIq5XUa3FVCOteWsddz1wFVpTxNg7tKSPzaMrqeu1Jep8FdJcSZs+TUuYd0EpNSnqbBXSUkrueua8so5Xka3FVC3OUHfNbyA7oqpFLepsFdJSS2WsavpZBKeZ4Gd5WQrssPaLWMUt6mwV0lJBJ3mj3ROnelPE6Du0qIu/yAXQoZ1gFVpTxNg7tKSDTaWS2T5NdSSKW8ToO7SkjXnLsx6KCqUh6mwV0lxF1+wGct+Qvomu5KeZgGd5WQ2ElMSXZw10FVpbxLg7tKSGdaBgI+62Oj5ZBKeZcGd5WQnnruesIOpbzrkCfI7o2IzAaejNk0DbgFyAKuAart7b8wxrza1+dR3mBiB1T9ds9dK2aU8qw+B3djzFZgPoCI+IG9wPPAVcDvjTG/G4gGKm/oLIW0JjEBWuuulIcNVFrmbGCnMWb3AD2e8pjYUsgku+eu1TJKeddABffLgMdj/r5BRNaJyAMikj1Az6GGUNzyA1oto5Tn9Tu4i0gy8AXgaXvT3cB0rJTNPuCOXu53rYisEJEV1dXVPd1EeYgxBp84p9nTnrtSXjcQPffPAquMMZUAxphKY0zEGBMF7gMW9nQnY8y9xphiY0xxfn7+ADRDDaaoMfjE6rG7de6ac1fKswYiuF9OTEpGRMbFXHcpsGEAnkMNsajBDe5aLaOU9/W5WgZARNKBc4Hvxmz+jYjMBwxQ2uU6NUxFjcGO7ST5tM5dKa/rV3A3xrQCuV22faNfLVKeFI2a7j13De5KeZbOUFUJiRrr9HoQs3CYpmWU8iwN7ioh8WkZ7bkr5XUa3FVCTNyAqlMtoz13pbxKg7tKSNSuc4fOUsiQTmJSyrM0uKuExNa565K/SnmfBneVkEjUmp0KsWkZ7bkr5VUa3FVCjDHYFZCdC4dptYxSnqXBXSUkElvnrkv+KuV5GtxVQiLGxNS568JhSnmdBneVkHDEuD12PUG2Ut6nwV0lJBKN6blrtYxSnqfBXfXomZXl/PndHe7f4WjUHUjVE2Qr5X0a3FWPXlu/j+dX7XX/ju25iwh+n+iSv0p5mAZ31aNgJBo3YBqOdubcwaqY0WoZpbxLg7vqUTAcJRjuDO6xPXewat01LaOUd2lwVz0KRqIEY3vuEeMOpII1S1XTMkp5lwZ31aNQ5OA994BPe+5KeZkGd9WjYLhLzz0addeUAatiRkshlfIuDe6qR6GIieu5h7v23P2ik5iU8jAN7qpHwXCUqLHSMRA/QxWsszHp8gNKeVe/TpAtIqVAMxABwsaYYhHJAZ4EioBS4CvGmPr+NVMdaU5KJhiOkpbsJxLtYUBVc+5KedZA9NwXG2PmG2OK7b9vAt42xswE3rb/VsNMKCa4g5Vz9/vjB1S1WkYp7xqMtMzFwEP25YeASwbhOdQgc4K604OPdJnElOQXrZZRysP6G9wN8IaIrBSRa+1thcaYfQD274Ke7igi14rIChFZUV1d3c9mqIHm9twjTs+964Cq9tyV8rJ+5dyBRcaYChEpAN4UkS2J3tEYcy9wL0BxcbF2AT0kGjVurzwU7rnnHvBpz10pL+tXz90YU2H/rgKeBxYClSIyDsD+XdXfRqojK/b0efE9986PS5Lfp3XuSnlYn4O7iGSISKZzGTgP2AC8BFxp3+xK4MX+NlIdWbE98mBvPXetc1fK0/qTlikEnhfrvJoB4DFjzD9EZDnwlIhcDZQBX+5/M9WRFDt5ye25R6K6/IBSw0ifg7sxpgQ4tofttcDZ/WmUGlqxk5M6SyG7V8toWkYp79IZqqqbuJ57THCPq3P3+zQto5SHaXBX3cQuGBaKqXNPih1Q9YkuP6CUh2lwV9107bkbY7ov+avLDyjlaRrcVTdxOfdI1F08LKCTmJQaNjS4q266Dqg6ufXYnHuSTmJSytM0uKtuOsIJ9tw1566UZ2lwV910ncTk9txjBlRTAr64LwGllLdocFfdxA6ohnrpuacm+QlHjVbMKOVRGtxVN91y7vbfsdUyaUl+ANpDkSPbOKVUQjS4q27ilx8wblomrueebAX3Ng3u/WaMDkyrgafBXXUT7NJzd9My/s6Pi9Nz7whpWqY/WjrCTP35q/z1o11D3RQ1wmhwV930VgoZ6CEtoz33/qlq7gDgVy9vGuKWqJFGg7vqxknL+MQZUO2ec09Nsj46bUEN7v3R2BZyL3eE9bVUA0eDu+rG6blnJAe05z7IGlqD7uVlJXVD2BI10mhwV904PfeMlADBSNRdQ8afwIBqU3uIJVv05FuJiu25b6hojLvuw+01VNtpG6UOlwZ31U3QDubpKf74Gar+HkohgxHaQxF21bQAcP2jq7jqweXUHNCglIjY4F57oLMXH40avn7/Ms79/XtD0Sw1AmhwV90Ew1GS/T6S/b5eZ6i6wT0c4aGPS7nw/31ARzjiphZig5bqXWOr9TqNHZ1KbcwXYkswDEBDa4iorpuv+kCDu+omFImS5BdSAr74UsjYnLuTlglG2VXTQlsoQnVzh1tGqcE9MY1tIdKT/YzLSqUmpufe3B52L2+saBqKpqlhToO76iYUiZIc8JHk9xGK9DxDNTXQmXPf19gOdJb1gQb3RDW0hRiTlkRuRkpcKis2uL+3Tccw1OHT4K66CYajJPl9JAd8vVbLpCZbH532UIR9jW0A7Kw64F7vpBvUwTXawT0/M7lLz73z9dtV0zoUTVPDXJ+Du4hMEpElIrJZRDaKyI329l+KyF4RWWP/XDhwzVVHQjCm5x4/oNr5cUn2+/CJVefu9Nw/3dVZyqc998Q0xvTc61o63Px6bM99f1PbUDVPDWOBftw3DPzEGLNKRDKBlSLypn3d740xv+t/89RQcAdUD9JzFxHSkvzUtnS4gWiZBvfD1tgaYkpuOnmjkokaqG8NkjsqhSa75z67MNP98lTqcPS5526M2WeMWWVfbgY2AxMGqmFq6FgDqj7Skvy0BiM9zlAFa1DVKYEEKKtrJeATkvxCg6ZlEuL23EelAFDbYqVmnC/MmYWj2N/YrouLqcM2IDl3ESkCFgDL7E03iMg6EXlARLJ7uc+1IrJCRFZUV1cPRDPUAAmGrbRMTkYy9a3BHnvuACmBzuAu9lXzxo+mIDO1zz336uaOf6pA1tAWJCs9iTw7uNfYg9JOcJ9VmElrMEJTTJpGqUT0O7iLyCjgWeCHxpgm4G5gOjAf2Afc0dP9jDH3GmOKjTHF+fn5/W2GGkBtoQhpSX5yMpJpbg+768f01HOvbLKCUVFuBgALJmczOi2pT8F9Y0UjJ9z2Fs+sLO/nHgwPHeEI7aGoO6AKuCmY5vYQfp8wNc96XfdrakYdpn4FdxFJwgrsjxpjngMwxlQaYyLGmChwH7Cw/81UR1JbMEJasp/sDCvgOFUcAV/8x8WZyATWACvAgslZjEkL0NgW5HAtt3P2q8oa+tLsYcepKBqTlkT+qFQAfvL0Wp5dWU5ze5jM1ADjs6ztFY06qKoOT3+qZQS4H9hsjLkzZvu4mJtdCmzoe/PUUHB67rl2cK9qtnqNfn+Xnrsd3MeNSSUjxbo8f1IWWWnJcT33TRVNXHzXR2yvbD7o8zpfIvmjkgdmRzzOOeopGJ3KmPQk7rriOLLSk1haUktze4jM1ADjxqQB2nNXh68/PfdFwDeAs7qUPf5GRNaLyDpgMfCjgWioOnLaQnbPPd0J7lYQ6ppzdxYPK8rN4Pdfnc8tn5vL5Jx0xqQlxQ2ovr+9mrV7Grjkro9o6eg9d+x8iYhIr7cZTqqbO/jxU2uob4k/iukIR/j5c+tZsds6Uhk3xuqdX3TMOD4zfgxb9zdbPfeUJPIzU/AJ7GvQnrs6PH0uhTTGfAj09F/4at+bo7ygLRglLdlPrt2DrrZ7mN1y7vaa7lPzM5iSm8G3T50KQFZ6fM59T501CaclGGHL/maOnxI/xh6ORLnvg12s32tNsz9wkC+A4eTWlzbw6vr9nFCUw+ULJ7vbN+xt4vFPyyjKTQdgrB3cAWaPzeSRT3aTHPCRmRogye9jfFYaJTFVSUolQmeoqm7agmF3QBWg2p4Wn9Ql595un2Jvqj2Y6hidlkRHOOqePHtXTYubk+9ptciVu+v5r39sYfM+O7iPgMqQ1mCYd7daVWBlda28uanSXcah1A7UpbWtJPmFvIwU936zx2bSEY6ysaKRzNQkAOaMzWTr/oOntJTqSoO7imOMcXPuWWlWcHHWFO+ac69sstIoTkWHIz/TClYVdiphV00LxUVWbz12WVuHswKi43B67nsb2jx5NqjlpfW02u26+92dXPO3FTy3ei9A3NyAwtGp+GKOiOaMzQSsL87RqdaB9eyxmZTUtOiZmtRh0eCu4gQjUaLGKnMM+H1kpSe5wbZrzt0p2yvqEtyPmTgGgDV7GtzlCYrtVExPPfeuZZPNhxHcF93+Dl/5y9KEb3+kOMv3Hmu/FkDnkUxtZ3AfF5OSAZhZkElywPq3dMY0Zo8dTSRq2FnVeb9QzLIQSvVEg7uK0x60UgdOJUxOemflStec++xCq5c5OSc9bvvMgkxGpQRYXdZAqR3IZhZmMjo1ELdmucMZfH3phkWcOiOPA+2J1cg7wXL93kbPTXyqswdRT5qe625rsr/EdlV3BumxdjWMIy3Zz22XfAaADDu4O735rZWdS/9+6e6PufUlLURTvdPgruK0hqxes7Neu5N3B/B3qWK595vH8+L1i9yepns7n3DspDGs3lPPzmprpcipeRnkZabErXzocHruc8eNJjM1kHBapi6mCmXrIcosj7S6liABn7CwKMfdVnMgiDGG0toWd0Zq1547wJeLJ/HEtSfx/TNnANZrl+z3scle1720poV15Y28sm7fYfXeH/q4lBufWN2f3VLDiAZ3FcfJXzs9d2cik0+Iyw0DZKUnc+ykrB4fZ8GkbDbva+aNjZWMSgkwqzCTvC5rljsa20JkpgQI+H2MSgnErYh4MLHB/Z0hOG/r0p213PjE6h7LO+tagmRnJHP6rHxu+dxcxo9JpeZAB1XNHbQGIyyebc3KHju6e3AHOGlarvvaJ/l9zJ+cxQfba4DOfa1vDbFmT0PC7f1wR42e3/afiAZ3Fcc54XWqHdzH2z3LrimZQ1k8p4BI1PDS2gpOm5lHcsBHXmZyz8G9NcRoe/B2VGog4WqZ2ODu9GqfWrGH5aV1vd2l30prWvjT29vZUdXMNX9bwYtrKnh2VfflEupaguSkJ5Pk9/HtU6cyITuNmgMdbNhrnQT70gUTuGpREed/ZmxCz3vWnAK27G9mX2Mb72ypYkJWGn6f8M6WSvc2r6zbxwv2oG1Pag500NQedqt21MimwV3FcfLY6c4EJXuwNBQ5vJz2cZOz3F794jkFAORmpLirHoYiUZ5asYdgOEpjW4isdCu4Z6YEOBAME40aXlyzN+6kFV05wX1SThq7aloIRaL87Jl1fPmewRtgfXZVOXe8uY1fPL+BYCTKnLGZPPDhLlqDYZ5fXU5HOMKzK8upbQnGpbTyRlkpqdVlDfh9woLJ2dz6+XlMyEo7yLN1Ott+DR/6eDcf76zhkgXjOWV6Ls+u3EvIDtZ/emc7P3xyDS+vrejxMZxKJV2O+Z+DBncVxynfc3LuXcscEyUi3Hj2DApHp3CWHZjyRqXQ0BoiFInyxsZKfvbMOu54Y6u77C1YPXdjYN3eRm58Yg2PLitjeWkdb2zc363k0Qnux0/OZldNi1snH2t3bUuPU/f3N7a79eZdNbaG3LGCrpzJRJ/uquPkabl8e9FUSmtb+cNb2/nRk2u5/bUt/OTptazcXR8X3HNHJVN7oINVZfUcNS7TfX0TNaNgFLMLM7nnvZ34RPjGSUVctaiI/U3tvLp+H8YYyuvbEIGfPLWWZSW13R7DOWqq1+WY/ylocFdxuubc+xrcAc6aU8iyX5zjDh7m2Ssf1rUE3VPzPbF8D3Wtwc7gnmL9XmGnVl5eW8GX71nKtQ+v5NsPLicY7kwp1LcG8fuE+ZOyaA1GeH3jfgCSYurxf/DEGr7w3x9SXt9Ka7BzhcvvP7qSM3/3rpvOiXXdIys5+4733KOYWLGVLmfNKWDOOKuS5a3NlW57HV177vWtIVburue4yT2ugn1QIsLdXz+OnIxkvnjcBMaOSeXMWQVMzknnxTUVNLaFONAR5obFM5iQncYtL26Mu39rMOx+cfdlUTc1/GhwV3G65twTTRskwgny+xrb3Yk8jW0hSqpb3LTMKHvizorSegA22sH3B2fPZGlJLT97Zq1b9ljbEiQ7PYlp+aMAeG6VlW/2+8S9TVVTO1XNHXzrr8uZe8vrXPfISsBaAgDghsdXuae2cziDlLFnlgLcSpf0ZD8iVnB30lYldtCPrQbKjuu5W/veEY72KbgDTMsfxYf/tpj/e+nRgDXAfdzkLDbva2JPnfVlOW/8GL524mS2VjZTXt957tXYyWP1LSHCkajnykfVwNLgruI4PVsn5x573tT+mjtuNADryxvYVdPC9PzOowJnQDUzxQ7uu+vd66blZfDjc2fx0/Nn88KaCh77tAyA+pYg2enJ7tGFM6mqPRR1J0LVtwYpnpJNWa0V6N7bVm2fOjDKtLwMSqpbWLI1voJkZqH1ZdG1ssSpdPnxubN4+YZTmZSTzujUJPJ6WcUyNya4x650ec7cwkO/WL1ITw7EvSezx45mX2M7GyusgdpJOWnuGEds+2MHsn/7+lZm3PwaF9/1UdxjP7+6nLN+966bw1fDmwZ3Fcfpuceu1T5QJmankZ+ZwqqyBkprWjh2YhaTcqwjg9icO1jByAnaTrD6/pnTmVU4ir+v3QfgDlqOjzm6uGpREQBVTR20h6yTYSyeU8Bj15zIOUdZQXXL/iaiBq47czrjxqTy4Melce10qnW6Bn3naGNWYSafmdA587S31JVzNAKdX14Li3IYldKfUxfHcyY4vW0H8onZ6UzLy2BKbrpbMvnwJ7v5l8c769udOQHryhsJRaK8vbmSa/+2gieX76GkpiVueYSh9p+vbebhpaVD3YxhSYO7iuMG95gBv2euO5nff/XYfj+2iLBgUhYf76yhorGdorwMpuVZveTOnHtn4Lt0wQRuPHumG7BFhMVzClheWkdTe4h6O7j7fcKvvjCPR79zIufaveKq5nbqW61URHZ6MsVFOVy6wDrFr7Og16zCTM6cne8OxL6/rZr73i9xe7m7a1vdvPvaPQ3c9spmoHswd85CNcvu8Ts99o6Y8YHiKTl878zp3P314/r3InYx2wnumyvJTA0wJi0JEeGsOQV8vLOWtmCEx5eVUV7f85LBNQc6+OXLG3ljUyWflFhpqK4D0+X1rdz64oaEe/Qd4Qi3vLhhQNagf+LTPf80Z+YaaBrcVZz2YAQRSImZdWoFxokD8vjHTcl2T1IxNS/DDZTOEgRT8zI4Y1Y+x0/J5vx5Y/nRubOYmN25vMHZcwoJRw0/f3Y9exva3EHLK08pYtGMPAoyrbr86uYO9zGz7R6081xOj3ZqbgbjxqRRcyBIRzjCH97axm/f2EpTe5hpdsrICYr3f7iL7VXNXHT0uG7jEFPt215z2jQumDeWp647mQvmjeX8eZ017MkBH/92wRw39z5Qxo1JJTM1QNQQ9zqdNaeAjnCUtzZXsmV/Z7B20l5Oj7+qqYP0pPgjife31fDost3UHujgkU9284PHV/PQ0t09Dj73ZHVZA39butsd4DbG8Niysh7nOBxMfUuQxrYQ2yoPdBsXScSOqmZeXNN73f9IN3DHh2rILS+tY87YTHep2L5oDVorQg7WCTMWzy7gvvdL8PmEBZOzOHrCGF5Ys5cL7Mk8qUl+Hvp272dmPG5yFvPGj+bdrVX4RbqtDV8w2gqeVU0d7uqUWfb6OEV5VvBbs6eBnIxkxqQnuWupb9nXzOo9DThjjPMnZVFS3UJ5fStFuem8t62ai44ezx1f6X4Ec9qMfF4aW8F588by5eJJANzzjeP7+hIdFhHhgnljeXX9Ps6Y1Xku4oVTc0hP9vOHt7YRGxcLRqfQXB3mxKk57qSoXTUtFGSmMD4rjab2EM+uKufZVeVsrzwQl7Jq6KU+3hjDe9uqOX1mPj6fsMXu+TvpnV01Lfzi+fXUHujgX86emfC+OWWnbaEIZXWt3RaoO5Q/v7uT51bt5egJY9xB938m2nMfIRrbQnz1L0v50zs7Dnnbqub2HtdvOdARprK5Y1Dy7Y7ZYzNZ+R/nsvzmc5iYnU5RXgZrbjmP6Qn+8wX8Pl75wWls/PUFrP/V+XzxuPgjisyUAKlJPqqa2zt77hnWl116cmdfZt54a3B3vL1w1xPLy4gtHllgT8DaWd3Cc6v20tgWcuv1uzp64hj+8cPT3dTSkfbbLx/Lxl9fwE2fneNuSwn4OWtOATvtKp6jJ4whJyPZPbvWidOsBc2W7aojGIly02fn8ML1i+LWlu+6pENlUzt76loxxrgnYAF4d1s13/rrcv78rvXZc3L6TnB31qLfcpjr/8Tm/rfErGff2Bpyzz97MM7zdh1TCUeice2P1XXf+qKioc0Tg9Ia3EeIrfubiZrOeuuDufSuj/nMra/H/YNUNrVz/u/f5+W1FW4Z5HAkIkzKtgYTy+x/0qy0zkoVZ+lhp5zQ6bm/uKaC1KTOf4ejxo0myS/8779v4mfPriMl4OO0WXlHajcGxK++MA+wUjcvXL+I5Tef4x7FFBdlI2KNM0Bn7t5Zdx9wXz/Hk8v3cPpvl/DIJ7s57TdLWLOngUjUuKtdvrp+P+FI1A3Ezoqgzt9dTzgSiRq3HDMac9lRWtOC3yeIxN/3hsdXuSWtvQlHomyvOoDfJzy9opxGe/IcwB/f3s5Zd7zbYxB/c1Mlp/92SY/n+01kkbbGthBn3fEuD3X5QunNnrrWQVsOQoP7COHkVUuqW9hd23u1QzRq2GufROO2Vze5229+fj0V9sSivcP8fJ2//MI8dte2cvtrW4D4qpV7v1nM8pvPYVJO/CnuWoMRzpiV7x61FGSmurn146dk88oPTmN0P9JdQyF3VAprbzmPF65fhN8n+H1CwegUcjKSyR+VQm5GMjurrQDqHDndeM5M3vvpme6YS+yEsFVl9RgDDy3dDcAtL25g+i9e5RN7NuymfU3MvfV1Vpc1IGIFrmA46gbmXTEnHOkIRzjl9rf5y/slGGM4+873uOONbXHt31XTwqTsNIpyM9xSz1AkyvLSOlaW1R/05CWltdZzX3VKEW2hCIvveJdTbn+HAx1h/vbJbkIR02MAXlpSizHd5zhsq2xm/q/e4NFluw/6mq/Z00B7KOq+JgcTjRq+9ddPue6RVYe8bV8MWnAXkQtEZKuI7BCRmwbreWI1toX4/J8+ZH1544A95v/++ybueGNrt+2/f3MbP3xiNX9+dwffe2TlkE8I2bK/2T2V3VMr9vR6u+qYQa2PdlgfwEjUsHRnLV85ftLgNvIIWTQjj7OPslIoaUn+uCORnIxkNxcPVnVOpl1+efyUbKbY5zXNHZXs5qovOnocMwqGZ852THoShTErT/7grJk8eNUJiAj59uDz8ZOz3dcoJeBnSm7nQPf3zpjOX791AtPzM9y01Y4qa2mGdfb/2RsbO48WnRnEx03OJmpgT30rWyubSU3yEYkaNuxt4tI/f8SvXt5EZVMH971fwrbKA+yqaeHBj0vdtYTaghHW7W2gKC+Dk6blsHRnLaGI9UXRHooSDEfZvK/3NI/zhXLJggmcMj2XupYg1c0d3LVkBw2tIWYVjuLJ5Xu69d5XlTUA1lHKBX94nyr7bGOvrNtHc0eYm5/fwLryhl6fd3VZvf274ZAx4f3t1eysbuGiYxJbPO5wDUpwFxE/cBfwWWAucLmIzB2M54r16a461u9t5IMd1qFmY1uIG59Yzbpy64X+2TNreWtTfNri9te2dKtndkSjhqdWWKVYDy8t5cGPdvHMynJuf20L97y3kxfWVPCHt7bz2ob97qSbv6+r4L/+saVP7d+yv4nrH1sV94HbU9fKdQ+vdHvTbcEINz6xmhJ77ZNgOMrPn1vHY8vKmD8pi4vnj+euJTt7rRJwZi2eNjOPvQ1tVDW1s72qmZZghJOm5/DYd0486IDmcOHMAo0k8KXrrKm+YHI20/IzSEvyk5EScJfy7S3XPhyNHZPKMROzANzgs7iH/XOC+1HjRrN4ToFbheSIHW+vbQlSODqFWz8/lw//bTE/PX82/3KWtRb99x5ZSWltizvH4D9f3czqsgYeW1aGiHXfX71sLZVwoCPs9qZvem4d5fVtfOOkKSyeXUBzR5jlpXWsKuuc3LYqZqKb49X1+9zz8frEWpPntkuP5vKFVsfl0U92U5CZwj1fPx4R+OLdH/Pdh1fYcyIibLKPENbvbWTL/mY+2mkts7xkaxWzCkcxOjXAX94rcZ+vPRThB4+vdo+cnS+H2pYgV9y3LG6F0v/76maWbK3id69v5fWN+/nrR6UUZKZw0dHje3yv+muwqmUWAjuMMSUAIvIEcDGw6aD3Oky7alr43Rtb+Y+L5jJ2TKr7rbmruoVI1HDN31bw6a46RqcmkZmaxFMrynlhTQWPXH0iG/Y2MjU/g3ve28me+lYWz47/gL+w2hpEa24P09we5j9f20LAJzTFLEebmuSjPRQlNcnHvz+/gXnjR7vnybxi4WQm5aSzsaKRRz7ZzbgxaZw/bywf7ajhc8eM4+mV5Vx96lS3x1TR0MaVD3xKZVMHm/c18dINpwJwyV0fUdsSpLgom++cNo33tlXx4poKinIz+NG5s3hlfQWPf2r11Cdkp3H7l45mX2M7P316HR9ur+EbJ0/hmIlZPPFpGTMLM93Svs8fM54PttewqqzBXYBrwaTsw65I8KoFdnCPXYumN2PHpFFS3cLRE8ZwxcIp7gSle75xPEu2VI2Y16Qrpwfe05eXs8/Ob6cKyXHZCZMIhg0vrNlLJGoYn5XGVYumAnD94hl0hCN84djx1LUEGZ+Vxg1nzaC0toUVu+tJS/LTFrLSYPsb2/l4Zy2jUgKcPD2XO9/cxqScdF5eW8HVi6Zy9lGFtHSESfb7uP21LbQGIxRkphDwCY8s203uqGQunj+BZSW1VDS28T8f7GJjRRPZ6UkUT8khNcnP1LwMbv38PJ5cvoem9jCnTM9jWv4o/nrVQv7rH1t4fWMlS0tqyUgOEIoY5k/KcpegKKluYV9jG+vKG/nX82bR3BHmvvdLKK9vZWJ2Oh9ur+GltRW0hSL85evHs6as3r3/0pJafv3yJi5ZMIFpeRnc+34J68ob+HRXHVPzMiitbeW7p0/rdrKbgTJYwX0CEJsbKAdOHOgn8Yvw6vp9FOWm89Pz57jf6qW1Lby5qZJP7bxZWV2rG/hHpyZxxX2fEI4aN5+4q7qFZSW1FI5OpaKhjbc2V/HAR7vinqs1ZkXC3IxkPn/seMZnpbK98gBzx4/m3vdLWFpSy5TcdHbXtvLosjJyMpK4+92ddISjtAYj3PmmlVP8+7oKVpU1sLGikbuuOI6m9jDf+uuntHZE+PeLjuL/vLKZNzbup+ZAh7tErnMI7FQwWGV7hvs/3EVRbjoFmalcumACKQE/932jmO8/tpIX11TQ0Bbi5guP4ufPr+ekqbksmmFVSZw/byz//sIGHl22m7ZghJyMZDclMRIcHTOD9FDOn1fI5Jw0UpP8nDozj1NnWgOnJxTlcELMmZRGmj9evoDnV+91J1/FOntOAevLG916/wI7lZWfmUJ1cweLZuTxuWPGs6P6AGv3NLjXO1ICfv54+YK4bfdfeQI/enINV586lQc/LuVrJ06hvjXIz55Zx7GTxvD/LpvP5//0If/69FqiBi48ZhwAGSkBrjhxsls3/5XiSQT8wv0f7uKmZ9dzxqx87nxzGyt31xO2c2n1rSG+fWqR+9ypSX6KcjMoqWlhweQswErD/e3bC1nw6zd5ftVeNuxtZExaEv/xOet/cEflAdbsaeDDHTWkBHxcdMx4osbwl/dK+HB7DZctnMw79lH/W5srefDjUpraw1y1qIinVuwh2e9jydZq1u9tdGONM1HMqWI6+6i+L0VxKIMV3Hsqko47PhaRa4FrASZPntynJ5mcm855cwt5dFkZ3ztzhhsAd9W08MBHu5iQlUZxUTbLSqzDuVEpAZ657mS+9j/LyEwNuKP4u2pa+M7fVjApO53S2hZagxHmjM1ky/5mRqcGaA9bJyMWIBw1vPbD07odpjq9FoCjb32de97bCVhn2nnu+4t4YfVe7lqyg3DUuIdur6630jl3vrHNyjletZCTp+Vyz3slvLmpknXljZw0LYecjGRWldWzcncdS+zZlavL6tla2cyGvU38+uJ5fPPkIvf5x6Qn8eh3TuLfX1jPc6v22oNWVh18TkYyeaOsGu9FM3Ldx/vScRMHrbZ9KKQl+5mck96tDr4nXztxyhFokfdcePQ4Ljx6XI/XFRfl8Mh3Ovtjzuf98oWTeXhpqZv2mpidZgf3ns8oFatwdCqPXXMS0BnUOsIR7nl3J2fPKSQ9OcB1Z0znp8+sIycjmWPt9BFYg+S/tKt/HOfNHcuFf/yARz7ZzbryRjewn3NUIeX1rZw7Nz6XPXtsJiU1LRwX85lITfKzaEYuL62tIDng49HvnMjxU3J4/vuLuP6xVbyyzlrq4q4rjmNqXgbRqCE92c+W/c2sKK3jnc1VHD8lm00VTfz675sYOzqVC48ex8XzJ9AaDPO5P31Ist8XV8rpyMlIZn4vZzIbCIMV3MuB2NG5iUDcGQSMMfcC9wIUFxf3eTTymtOm8frGSr58z1JagxGOmTiGdeWN1Byo4+YLjyJqDC+uqeDdrdXMn5RFUV4GH/xsMa2hCKf/Zgk+sVfyC1mj/QDPf/8Ujp2YxYV//ICpeRluTbjfJ7R0hA/5Qf7mKVO4a8lOnv3eKRw7cQwBv48fnTuLG8+eyZfu+ZjVZQ38y1kzuGvJDn74xBr2NrRx51eOZdEMq8e4eHY+T9tTrn/5hXmU1rTw6vr9fOlu6yQUp8/Kt6fKW0cX583teUDmrDkFPPJJGY9/Wsbswky2Vjbzyvp97gfq/itPoD08eGvJDLX3f7Z4qJswYswoGEXAJ3z1hEn8+NxZ7vaJ2VZFUeHovs28TQn4efsnZ7gdiy/MH8+db27jzNn5hzz719zxozllei7/vWQH7aEouRnJjE5L4r5vHt9jR+X4Kdl8uKOGz4yPP6r73DHjeXtLFb//yvy4I7VZBZm8wj5mFY7iIvsowucTZhZm8ur6fW79/M8umM2YtCSufXgl3zltKkl2YUN6coC3f3wGBzrCnPabJcyflMW7W6uZlpdBxBhOnpZ72Gc4OxyDFdyXAzNFZCqwF7gMuGIwnqi4KIcbFs/gv5fs4KJjxvH5Y8Zx3SOryEj289WFk1hpD7qU17e5E158PmFUSoC3fnwGa/bU8+0HVwDWFPEFk7LcfO1T151MwCdETeehSDSBAbofnzub754xvVvpnM8nnHNUIavLGvjScRP5eGctK3fXs7AoJ24yzjlzC3l6ZTmXzB/POUcVsNrO/y2cmsOvL55Hkt/H2Xe8x7Orypk7brRbztfVKdM767Ifu+ZEzrnzPepbQxTZ6RefT+Im9ijVmzNn57P052fHVRpB55IHifTcexMbiFMCfl678bSE51pcfepUPn7Iqvp68rsnkT8qtdcj0G+dUsQXj5vY7UQplyyYwJmz8905AI7pBVZK6usnxR/ZzSnMZO0eq9zzmetOYcGkLHw+YcXN58SV3Tr7lpmaxDs/OZP0ZD8Lb3uLE4py+MWFR5GSNLiV6IPyn22MCYvIDcDrgB94wBiz8RB367OfnDeL02bmsWBytlvj/eXiSYxOTeKosaPd233rlKK4++VkJDOr0Jq8kZWexJPXnuyuQwL0ua7Z75Ne73v1qVM5eXouRXkZnDWngJW76+NygwDnzS3k+e+fwjETs9zFth675kSKp+S4gy/fOGkKD3+y282h9yQ1yc9bPz6d/FGpjElP4pHvnMj2ygOcPL33+yjVE6t0snvvfJLTc++lg9EXXYPswSyeXcDUvAya28NMzx910NRiwO+LO4HKoZ7zws+M44lrUzhxavy4izPh69iJWXFpv+xeHhs6T9zyzPdOIW9UCmPSB3/OhAx1fTZYaZkVK1YMyGMZY3h6RTnnzxvrvoDPrCzn5Om5PZ54Iho1zLnlHyyanstfrzqyJYBN7SFeWbePrxRPOuzDs0jU8MLqvZw7r3DYTa5RI0c4EuWZleX8r+MnDuja/4djw95GGttCblpzsH28o4Yr/mcZPz53Fj84jLVyBoOIrDTGFPd43UgL7n3x8NJSZo8dzcKpI7cyQik1MDrCEX73+lauOX1av9JRA0GDu1JKjUAHC+66toxSSo1AGtyVUmoE0uCulFIjkAZ3pZQagTS4K6XUCKTBXSmlRiAN7kopNQJpcFdKqRHIE5OYRKQaOPjJCQ8uD6gZoOYMpZGyH6D74lW6L97U132ZYozJ7+kKTwT3/hKRFb3N0hpORsp+gO6LV+m+eNNg7IumZZRSagTS4K6UUiPQSAnu9w51AwbISNkP0H3xKt0XbxrwfRkROXellFLxRkrPXSmlVIxhHdxF5AIR2SoiO0TkpqFuz+ESkVIRWS8ia0Rkhb0tR0TeFJHt9u/sQz3OUBCRB0SkSkQ2xGzrte0i8nP7fdoqIucPTat71su+/FJE9trvzRoRuTDmOk/ui4hMEpElIrJZRDaKyI329mH3vhxkX4bj+5IqIp+KyFp7X35lbx/c98UYMyx/sM7NuhOYBiQDa4G5Q92uw9yHUiCvy7bfADfZl28C/muo29lL208HjgM2HKrtwFz7/UkBptrvm3+o9+EQ+/JL4F97uK1n9wUYBxxnX84EttntHXbvy0H2ZTi+LwKMsi8nAcuAkwb7fRnOPfeFwA5jTIkxJgg8AVw8xG0aCBcDD9mXHwIuGbqm9M4Y8z5Q12Vzb22/GHjCGNNhjNkF7MB6/zyhl33pjWf3xRizzxizyr7cDGwGJjAM35eD7EtvvLwvxhhzwP4zyf4xDPL7MpyD+wRgT8zf5Rz8zfciA7whIitF5Fp7W6ExZh9YH3CgYMhad/h6a/twfa9uEJF1dtrGOWQeFvsiIkXAAqxe4rB+X7rsCwzD90VE/CKyBqgC3jTGDPr7MpyDu/SwbbiV/iwyxhwHfBa4XkROH+oGDZLh+F7dDUwH5gP7gDvs7Z7fFxEZBTwL/NAY03Swm/awzev7MizfF2NMxBgzH5gILBSRzxzk5gOyL8M5uJcDk2L+nghUDFFb+sQYU2H/rgKexzr0qhSRcQD276qha+Fh663tw+69MsZU2v+QUeA+Og+LPb0vIpKEFQwfNcY8Z28elu9LT/syXN8XhzGmAXgXuIBBfl+Gc3BfDswUkakikgxcBrw0xG1KmIhkiEimcxk4D9iAtQ9X2je7EnhxaFrYJ721/SXgMhFJEZGpwEzg0yFoX8KcfzrbpVjvDXh4X0REgPuBzcaYO2OuGnbvS2/7Mkzfl3wRybIvpwHnAFsY7PdlqEeS+zkKfSHWKPpO4Oahbs9htn0a1oj4WmCj034gF3gb2G7/zhnqtvbS/sexDotDWD2Nqw/WduBm+33aCnx2qNufwL48DKwH1tn/bOO8vi/AqViH7+uANfbPhcPxfTnIvgzH9+UYYLXd5g3ALfb2QX1fdIaqUkqNQMM5LaOUUqoXGtyVUmoE0uCulFIjkAZ3pZQagTS4K6XUCKTBXSmlRiAN7kopNQJpcFdKqRHo/wOQ7HX5jHuwtQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(-pes_data[\"channel_1_A\"][0,31400:31700])"
]
},
{
"cell_type": "markdown",
"id": "a6606c28-28c8-4d27-9f38-4a7ca88ee397",
"metadata": {},
"source": [
"Now, let's fit the model:"
]
},
{
"cell_type": "code",
"id": "5690cf09-4fed-497d-a09d-0f3cdceea04d",
"metadata": {},
"outputs": [],
"source": [
"n_test = 10 # exclude some trains to validate the training"
]
},
{
"cell_type": "code",
"id": "cb86aa32-dc1d-4684-bd62-25aa77a97245",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Checking data quality in high-resolution data.\n",
"Finding region-of-interest\n",
"Excluding outliers\n",
"Selected 585 of 650 samples.\n",
"Fitting PCA on low-resolution data.\n",
"Using 585 comp. for PES PCA.\n",
"Fitting PCA on high-resolution data.\n",
"Using 20 comp. for grating spec. PCA.\n",
"Fitting outlier detection\n",
"Fitting model.\n",
"Calculate PCA unc. on high-resolution data.\n",
"Calculate transfer function\n",
"Resolution = 0.21 eV, S/R = 31.65\n",
"Calculate PCA on channel_1_A\n",
"Calculate PCA on channel_1_B\n",
"Calculate PCA on channel_1_C\n",
"Calculate PCA on channel_1_D\n",
"Calculate PCA on channel_2_A\n",
"Calculate PCA on channel_2_B\n",
"Calculate PCA on channel_2_C\n",
"Calculate PCA on channel_2_D\n",
"Calculate PCA on channel_3_A\n",
"Calculate PCA on channel_3_B\n",
"Calculate PCA on channel_3_C\n",
"Calculate PCA on channel_3_D\n",
"Calculate PCA on channel_4_A\n",
"Calculate PCA on channel_4_B\n",
"Calculate PCA on channel_4_C\n",
"Calculate PCA on channel_4_D\n",
"End of fit.\n"
]
},
{
"data": {
"text/plain": [
"array([[[ 941.7556739 , 960.7466906 , 985.17017035, ...,\n",
" 1429.04684533, 1345.94695049, 1329.10718964]],\n",
" [[1078.21605126, 1053.65423777, 1074.17111375, ...,\n",
" 1328.01665665, 1424.27242218, 1363.57039719]],\n",
" [[ 935.14152295, 949.06555853, 981.37960431, ...,\n",
" 1409.16571326, 1329.469592 , 1194.42605757]],\n",
" [[1045.26133427, 1036.86744532, 1038.0833779 , ...,\n",
" 1217.20061892, 1229.75449766, 1324.46568021]],\n",
" [[ 963.99623994, 917.30989815, 951.01639677, ...,\n",
" 1184.09118495, 1213.19978068, 1246.6430387 ]],\n",
" [[ 971.19057956, 997.87876607, 1054.56073639, ...,\n",
" 1326.4308076 , 1305.95261086, 1344.42417077]]])"
"execution_count": 14,
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# exclude the last n_test train IDs so we can use them for validation later\n",
"pes_train = {ch: pes_data[ch][:-n_test, :] for ch in pes_data.keys()}\n",
"vik_train = vik[:-n_test, :]\n",
"xgm_train = xgm[:-n_test,:]\n",
"\n",
"model = Model(channels=channels)\n",
"model.fit(pes_train,\n",
" vik_train,\n",
" np.broadcast_to(energy, (vik_train.shape[0], vik_train.shape[-1])),\n",
" pulse_energy=xgm_train)"
]
},
{
"cell_type": "markdown",
"id": "52c038c5-d86e-4e5a-9214-5e1878dd77e8",
"metadata": {},
"source": [
"The resolution of the Virtual Spectrometer relative to the Viking has also been estimated (in eV):"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "a084b920-0006-4859-80f9-ff81f3c1f6b0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.resolution"
]
},
{
"cell_type": "markdown",
"id": "c1f47e6e-3b62-4c8a-8573-8eb4bd40f2ff",
"metadata": {},
"source": [
"We can look at the Virtual Spectrometer to Viking response function as well."
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "f752a9e0-8484-4381-8bb5-5eb27bd82670",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Intensity [a.u.]')"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAHgCAYAAABuGUHVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABNpElEQVR4nO3dd5ic5XX38d+Zul0raVddQhUkIUQTHUy1TTNyN8QVxyHYxj0Fx3kTt7x24jhuccxLbGJjO2BwcEw1Nhhs05EASQghJEC9rbQrbZ1+v3/MzGolbZnyzM5q5vu5Ll27O88zM7dgNfvbM+c5tznnBAAAAKB4vnIvAAAAAKgUhGsAAADAI4RrAAAAwCOEawAAAMAjhGsAAADAI4RrAAAAwCOBci/ASy0tLW727NnlXgYAAAAq2MqVK/c651oHO1ZR4Xr27NlasWJFuZcBAACACmZmm4c6RlsIAAAA4BHCNQAAAOARwjUAAADgEcI1AAAA4JGShmszu9TM1pvZRjO7cZDjC83sSTOLmtlf5XNfAAAAYKwpWbg2M7+k70u6TNJiSdeY2eLDTmuX9ElJ/1rAfQEAAIAxpZSV69MlbXTOveaci0m6XdLygSc45/Y4556VFM/3vgAAAMBYU8pwPV3S1gFfb8vcVur7AgAAAGVRynBtg9zmvL6vmV1nZivMbEVbW1vOiwMAAAC8VspwvU3SzAFfz5C0w+v7Oududs4tc84ta20ddBdKAAAAYFSUMlw/K2mBmc0xs5CkqyXdPQr3BQAAAMoiUKoHds4lzOwGSQ9K8ku6xTm31syuzxy/ycymSFohqUlSysw+LWmxc65zsPuWaq0AAACAF8y5XNugx75ly5a5FStWlHsZAAAAqGBmttI5t2ywY+zQCAAAAHiEcA0AAAB4hHANAAAAeIRwDQBVyjmnSDypZKpyrr0BgHIr2bQQAMDYdaA3rou++aj29cR08qxm/epj55R7SQBQEahcA0AVen1fj/b1xDSlqUYv7ehUJU2OAoByIlwDQBVq64pKkk6fM0HRREpd0USZVwQAlYFwDQBVKBuuF09rOuRrAEBxCNcAUIWyYXrRVMI1AHiJcA0AVaitO6LxdUFNG1eT/ppwDQCeIFwDQBXa2xVTa2NYrY1hSYRrAPAK4RoAqlBbd1StjWGNqw0q6De1dROuAcALhGsAqEJtXVG1NoRlZmptCGtPJ+EaALxAuAaAKuOcS4frTEtIa2OYyjUAeIRwDQBVpieWVF88eWi4pucaADxBuAaAKpMN0oRrAPAe4RoAqkw2SLc0ZMJ1Q1jtPVElU2yBDgDFIlwDQJUZrHKdctK+HqrXAFAswjUAVJm2roikdMVaklob2UgGALxCuAaAKtPWHZXfZxpfF5IkNpIBAA8RrgGgyuztiqmlISSfzyRJkzLheg/hGgCKRrgGgCrT3hvrr1pLUlNtUJLU2Rcv15IAoGIQrgGgyvTGEqoPB/q/rg/5JUk90WS5lgQAFYNwDQBVpjuaPCRcB/w+1QR96oklyrgqAKgMhGsAqDK90UR/tTqrPhRQT5RwDQDFIlwDQJXpiR7aFiJJ9WHCNQB4gXANAFWmO5pQwyDhupueawAoGuEaAKqIc069saTqjmgL8auXnmsAKBrhGgCqSDSRUiLlaAsBgBIhXANAFemNpVs/Dm8LaQgH1BOjLQQAikW4BoAqkq1OH94WUhfyU7kGAA8QrgGginRnAvTgFzQSrgGgWIRrAKgi2YsW6wZpC+mNJeWcK8eyAKBiEK4BoIpkx+01hA9rCwn7lUw5RROpciwLACoG4RoAqkhvpvXj8Gkh2TYRWkMAoDiEawCoItnwXB86rOc683UvG8kAQFEI1wBQRXqGqFzXZ9pEqFwDQHEI1wBQRbKzrOsP67nOhu0edmkEgKIQrgGgivREEwr4TCH/oS///eGayjUAFIVwDQBVpDeWVH04IDM75PZsz3UPPdcAUBTCNQBUke5oQvWH7c4oHWwToXINAMUhXANAFemJJo64mFE6OIqPnmsAKA7hGgCqSE+mLeRwdSF6rgHAC4RrAKgi6cr1kW0hoYBPIb+vfwdHAEBhCNcAUEV6ookjNpDJqg/71UtbCAAUhXANAFWkJ5bo768+XF0owCYyAFAkwjUAVJGeaFJ1g7SFSOmLGum5BoDiEK4BoIoMNS1EyraF0HMNAMUgXANAlUgkU4omUmoYsueathAAKBbhGgCqRHb3xbqhKtch2kIAoFiEawCoEtkNYhqG6LmuDwfY/hwAikS4BoAqka1K1w0zio8dGgGgOIRrAKgS2YsV60KDV65rQ371cUEjABSFcA0AVSISTwfn2uDg4bom4Fc0kZJzbjSXBQAVhXANAFUikkhJksJDhevM7dHMeQCA/BGuAaBKZFs+aoKDv/Rnb6c1BAAKR7gGgCoRTWTD9fCV60iCcA0AhSJcA0CVyPZcDx2ufZnzaAsBgEIRrgGgSmRDc01g8Jf+7IWO2RAOAMgf4RoAqkT/tJAhRvGFCdcAUDTCNQBUiYOV66FH8UlSH+EaAApGuAaAKtEXTyrk98nns0GPZ3uuo/RcA0DBCNcAUCUi8aTCQ4zhkwZMC6FyDQAFI1wDQJWIJpJDTgqRGMUHAF4gXANAlYjEU0NuICMNnBZCWwgAFIpwDQBVIhJP9gfowRycc03lGgAKVdJwbWaXmtl6M9toZjcOctzM7LuZ46vN7JQBxz5jZmvN7EUzu83Makq5VgCodJF4bm0hTAsBgMKVLFybmV/S9yVdJmmxpGvMbPFhp10maUHmz3WSfpC573RJn5S0zDm3RJJf0tWlWisAVIO+eHLIMXySFA6wQyMAFKuUlevTJW10zr3mnItJul3S8sPOWS7pVpf2lKRmM5uaORaQVGtmAUl1knaUcK0AUPEi8dSw00LMTOGAT1Eq1wBQsFKG6+mStg74elvmthHPcc5tl/SvkrZI2inpgHPut4M9iZldZ2YrzGxFW1ubZ4sHgEozUluIlG4NoecaAApXynA92C4FLpdzzGy80lXtOZKmSao3s/cN9iTOuZudc8ucc8taW1uLWjAAVLJoIjViuK4N+mkLAYAilDJcb5M0c8DXM3Rka8dQ51wi6XXnXJtzLi7pLklnl3CtAFDxIvGkagLDv+zXBH1c0AgARShluH5W0gIzm2NmIaUvSLz7sHPulvSBzNSQM5Vu/9ipdDvImWZWZ2Ym6WJJ60q4VgCoeJF4UrUh2kIAoJQCpXpg51zCzG6Q9KDS0z5ucc6tNbPrM8dvknS/pMslbZTUK+nazLGnzeyXkp6TlJD0vKSbS7VWAKgGfTn0XIeDfkUStIUAQKFKFq4lyTl3v9IBeuBtNw343En6+BD3/UdJ/1jK9QFAtXDOpXdoHKktJOCjcg0ARWCHRgCoAtFMNTqcw7QQRvEBQOEI1wBQBaKZCSC5TAvhgkYAKBzhGgCqQCSRDsw1w2wikz3OKD4AKBzhGgCqQLaPerjtzyWmhQBAsQjXAFAFsq0ejOIDgNIiXANAFYj091wP/7IfDvoYxQcARSBcA0AVyLktJOBXLJFSKuVGY1kAUHEI1wBQBbLheqRRfNm2kewFkACA/BCuAaAK5NoWkt1khokhAFAYwjUAVIFo/yi+kS9olMRFjQBQIMI1AFSBvlhmWgjhGgBKinANAFWg/4LGEcM1bSEAUAzCNQBUgex4vZFH8aXDN1ugA0BhCNcAUAVyHcWXbRuJEq4BoCCEawCoApF4SiG/Tz6fDXtef881o/gAoCCEawCoApF4UuERWkIkeq4BoFiEawCoApF4csSLGaWDbSNMCwGAwhCuAaAKROLJEcfwSQfbQrigEQAKQ7gGgCoQiadGnBQi0RYCAMUiXANAFYgkcmwLYRMZACgK4RoAqkA0nlI4MPJLfsifPieWoHINAIUgXANAFYglUwrlEK59PlPI71MsSbgGgEIQrgGgCkQTSYVH2EAmKxTwKUrPNQAUhHANAFUglsitLUSSwgGfomwiAwAFIVwDQBWIJnJrC5HSlWt6rgGgMIRrAKgC+VeuCdcAUAjCNQBUASrXADA6CNcAUAXSlevcLmgMB/z0XANAgQjXAFAFoolkfpVrRvEBQEEI1wBQ4VIpp3jS5ddzzSg+ACgI4RoAKly2Ck3lGgBKj3ANABUuO/kj955rKtcAUCjCNQBUuOzFiblXrv1UrgGgQIRrAKhw2Sp0fj3XTAsBgEIQrgGgwmWr0PmEayrXAFAYwjUAVLh8K9cheq4BoGCEawCocPlOCwkH/IpSuQaAghCuAaDCZfunc50Wkt3+3DlXymUBQEUiXANAhcu/cp0+LzvCDwCQO8I1AFS4QqaFSOKiRgAoAOEaACpcwZVrLmoEgLwRrgGgwmU3kcmn51qicg0AhSBcA0CFiyXynxYiiY1kAKAAhGsAqHDZCxPzmXMtUbkGgEIQrgGgwuVfuabnGgAKRbgGgApH5RoARg/hGgAqXDZch/z59lwTrgEgX4RrAKhw0URSoYBPZpbT+Qcr11zQCAD5IlwDQIWLJVIK51i1lui5BoBiEK4BoMJFEymFg/mHa3quASB/hGsAqHCxRCrnfmvpYFsIlWsAyB/hGgAqXLpyndvujNKACxqpXANA3gjXAFDhYolkgZVrLmgEgHwRrgGgwhXac50d4QcAyB3hGgAqXN4915lzY4RrAMgb4RoAKly+lWufzxTy+6hcA0ABCNcAUOFiiVT/RYq5CgV8VK4BoACEawCocNE8L2iU0n3X0QQXNAJAvgjXAFDhYnm2hUhUrgGgUIRrAKhw0TwvaJSylWvCNQDki3ANABWOyjUAjB7CNQBUuHTlOr8LGsMBPz3XAFAAwjUAVLiCK9dsfw4AeSNcA0AFS6WcYskCe67jhGsAyBfhGgAqWLb6nG/lOkzlGgAKUtJwbWaXmtl6M9toZjcOctzM7LuZ46vN7JQBx5rN7Jdm9rKZrTOzs0q5VgCoRNmJH/lWrkNUrgGgICUL12bml/R9SZdJWizpGjNbfNhpl0lakPlznaQfDDj2HUm/cc4tlHSipHWlWisAVKrsxI9wMP8LGqlcA0D+Slm5Pl3SRufca865mKTbJS0/7Jzlkm51aU9JajazqWbWJOkNkn4kSc65mHNufwnXCgAVKTvxI1xQ5ZppIQCQr1KG6+mStg74elvmtlzOmSupTdJ/mdnzZvZDM6sv4VoBoCJFE4X3XLOJDADkr5Th2ga5zeV4TkDSKZJ+4Jw7WVKPpCN6tiXJzK4zsxVmtqKtra2Y9QJAxYkV0XPNJjIAkL9ShuttkmYO+HqGpB05nrNN0jbn3NOZ23+pdNg+gnPuZufcMufcstbWVk8WDgCVovDKtZ/KNQAUoJTh+llJC8xsjpmFJF0t6e7Dzrlb0gcyU0POlHTAObfTObdL0lYzOy5z3sWSXirhWgGgIh2sXOd3QWN2ExnnDn/DEQAwnECpHtg5lzCzGyQ9KMkv6Rbn3Fozuz5z/CZJ90u6XNJGSb2Srh3wEJ+Q9PNMMH/tsGMAgBz0X9BYQM91+v4p1eQ5aQQAqlnJwrUkOefuVzpAD7ztpgGfO0kfH+K+L0haVsr1AUClK7TnOhuuY0nCNQDkgx0aAaCCFTMtRBIbyQBAngjXAFDBipkWIomNZAAgT4RrAKhgB3uu89+hURIbyQBAngjXAFDBqFwDwOgiXANABaPnGgBGF+EaACpYtOBpIem2ECrXAJAfwjUAVLD+ynWgsLYQKtcAkB/CNQBUsFgipZDfJzPL634H51xzQSMA5INwDQAVLJpI5l21lqhcA0ChCNcAUMFiiVR/UM7HwO3PAQC5I1wDQAWLJlJFVa5jhGsAyAvhGgAqWOGV68wmMgl6rgEgH4RrAKhg6Z7r/HZnlAb0XFO5BoC8EK4BoILRcw0Ao4twDQAVrOCeaz891wBQCMI1AFSwQivXPp8p5PdRuQaAPBGuAaCCFVq5ltJ911SuASA/hGsAqGCxRKqgCxqldN8100IAID+BoQ6Y2d053L/dOfch75YDAPBSNJEsqC1EonINAIUYMlxLWiTpI8McN0nf93Y5AAAvxYpoC0lXrgnXAJCP4cL1F5xzfxjuzmb2JY/XAwDwULTACxql9EYyVK4BID9DvuI65+4Y6c65nAMAKJ9ieq5D9FwDQN4KKmeY2XVeLwQA4L3iKtc+xZJUrgEgH4VOCzFPVwEA8JxzTrFkcaP4onHCNQDko6BXXOfc//N6IQAAb2UvRiymcs0FjQCQn+EuaJQkmdk/DHa7c+7L3i8HAOCVbEsHm8gAwOgZMVxL6hnweY2kKyWtK81yAABeybZ0FD6Kz88FjQCQpxHDtXPumwO/NrN/lZTLBjMAgDLKBuNipoVQuQaA/BRSzqiTNNfrhQAAvBWj5xoARl0uPddrJLnMl35JrZLotwaAMS4bjOm5BoDRk0vP9ZUDPk9I2u2cS5RoPQAAjxRfufZTuQaAPOXSc715NBYCAPDWwcp1ET3XyZScczJjewMAyEWhOzTe6/VCAADe8qLnWhLVawDIQ6E7NP6Fp6sAAHju4LSQ4sI1W6ADQO4K3aFxp9cLAQB4y7PKNVugA0DOcpkWskDS1yQtVnoTGUmSc45xfAAwhhU7LSTbq03lGgByl8sr7n9J+oHSk0IulHSrpJ+WclEAgOIVW7kO9Veu2aURAHKVyyturXPuYUnmnNvsnPuipItKuywAQLGK3aGRnmsAyF8uc64jZuaTtMHMbpC0XdKk0i4LAFCsqGeVa8I1AOQql1fcTyu95fknJZ0q6X2SPljCNQEAPEDPNQCMvlw2kXk282m3pGtLuxwAgFf6e679VK4BYLQM+YprZl8c6c65nAMAKI9oIqWQ3yefr7DdFQ9uIsMFjQCQq+Eq1x8xs85hjpukqyV90dMVAQA8EUukCu63lg5WrmPs0AgAORsuXP+npMYR7v+fHq4FAOChaCJZcL+1xPbnAFCIIcO1c+5Lo7kQAIC3qFwDwOgr/FUXADCmRROpIivX/szj0HMNALkiXANAhfKqck1bCADkbsRXXTObMBoLAQB4K91zXdjujBI91wBQiFxKGk+b2Z1mdrmZFTbPCQAw6mLJ4irXhGsAyF8ur7rHSrpZ0vslbTSz/2tmx5Z2WQCAYkXjxfVcm5lCfh8XNAJAHkZ81XVpv3POXSPpI0pvff6Mmf3BzM4q+QoBAAWJJYsL11K675pwDQC5G3H7czObKOl9Sleud0v6hKS7JZ0k6U5Jc0q4PgBAgaLx4tpCpHRrCNNCACB3I4ZrSU9K+qmktzrntg24fYWZ3VSaZQEAipWuXBd+QaNE5RoA8pVLSePvnXNfGRiszexdkuSc++eSrQwAUJRoPOlR5ZpwDQC5yuVV98ZBbvu81wsBAHiLnmsAGH1DtoWY2WWSLpc03cy+O+BQk6REqRcGACiONz3XfnquASAPw/Vc75C0QtJVklYOuL1L0mdKuSgAQPGiXvVcJ6lcA0CuhgzXzrlVklaZ2c+dc1SqAeAo4pwrevtzKdNzHSdcA0CuhmsLucM5925Jz5uZG3hI6fHXS0u+OgBAQbLVZi96rruj1FcAIFfDtYV8KvPxytFYCADAO9kJH8WGayrXAJCfIV91nXM7M5/ulbTVObdZUljSiUr3YwMAxqiYR+E6FPDTcw0AecjlVfePkmrMbLqkhyVdK+nHpVwUAKA42cq1Nz3XTAsBgFzl8qprzrleSW+X9D3n3NskLS7tsgAAxcgGYqaFAMDoyilcm9lZkt4r6b7Mbblsmw4AKJNsIGZaCACMrlxedT+l9I6Mv3LOrTWzuZIeKe2yAADFyAZiL6aFRKlcA0DORqxAO+f+qHTfdfbr1yR9spSLAgAUx7vKtV+xRErOOZmZF0sDgIo24quumR1rZjeb2W/N7PfZP7k8uJldambrzWyjmd04yHEzs+9mjq82s1MOO+43s+fN7N7c/0oAgIOV6+J6rrOVb/quASA3ufRO3ynpJkk/lJTzJeNm5pf0fUlvlLRN0rNmdrdz7qUBp10maUHmzxmSfpD5mPUpSeskNeX6vAAAKZZMv1x70XMtpUf7FRvUAaAa5BKuE865HxTw2KdL2phpI5GZ3S5puaSB4Xq5pFudc07SU2bWbGZTnXM7zWyGpCsk/ZOkzxbw/ABQtbzsuZbSo/0ai14VAFS+XF517zGzj5nZVDObkP2Tw/2mS9o64OttmdtyPefbkv5GEu9FAkCevJwWIh3clAYAMLxcKtcfzHz86wG3OUlzR7jfYFe+uFzOMbMrJe1xzq00swuGfRKz6yRdJ0mzZs0aYUkAUB1KUbkGAIwsl2khcwp87G2SZg74eoaO3DZ9qHPeKekqM7tcUo2kJjP7mXPufYOs72ZJN0vSsmXLDg/vAFCVoh5OC5GoXANArnKZFlJnZn9vZjdnvl6QqSyP5FlJC8xsjpmFJF0t6e7Dzrlb0gcyU0POlHTAObfTOfd559wM59zszP1+P1iwBgAMzrMdGv3ZyjVboANALnJpC/kvSSslnZ35epvSE0SGHY/nnEuY2Q2SHpTkl3RLZhOa6zPHb5J0v6TLJW2U1Cvp2kL+EgCAQ2V7rr1qC6FyDQC5ySVcz3POvcfMrpEk51yf5biTgHPufqUD9MDbbhrwuZP08REe41FJj+byfACAtGzPdbbyXKgwPdcAkJdcXnVjZlarzMWIZjZPUrSkqwIAFCWWTCnoN/l8xe2qSOUaAPKTS+X6i5J+I2mmmf1c0jmifQMAxrRo3JtNX7KPQc81AOQml2khvzWzlZLOVHp03qecc3tLvjIAQMFiyWTRk0IkRvEBQL5ymRbysHNun3PuPufcvc65vWb28GgsDgBQmHTluvhwTc81AORnyMq1mdVIqpPUYmbjdXDDlyZJ00ZhbQCAAsWSKU8q1+zQCAD5Ga4t5C8lfVrpIL1SB8N1p6Tvl3ZZAIBieFe5zvZcE64BIBdDhmvn3HckfcfMPuGc+94orgkAUCSvKtdMCwGA/ORyQeP3zOxsSbMHnu+cu7WE6wIAFCGaSHoyLeTgBY1MCwGAXIwYrs3sp5LmSXpBUvbV1UkiXAPAGBVLpIreQEaS/D5TwGdUrgEgR7nMuV4maXFmN0UAwFEgmkipvj6Xl/iRhQM+eq4BIEe5lDVelDSl1AsBAHgnlvDmgkYp3RpC5RoAcpNLWaNF0ktm9owGbHvunLuqZKsCABQlmkgp5EHPtZSeGELPNQDkJtftzwEARxEq1wBQHrlMC/nDaCwEAOCdaMKb7c8leq4BIB/D7dDYpfRUkCMOSXLOuaaSrQoAUJQolWsAKIvhNpFpHM2FAAC8k+659q5yHUsSrgEgF9688gIAxgznXKbn2psLGkMBn6JxwjUA5IJwDQAVJltl9qotJBzwK0rlGgByQrgGgAqT7Y/2suc6GmcUHwDkgnANABUmO9mDnmsAGH2EawCoMNGSVK4J1wCQC8I1AFSYmOeVaz+VawDIEeEaACpMdqtyr6aFhOm5BoCcEa4BoML0V679Hm4iQ+UaAHJCuAaACtPfcx30dvtz5wbbtBcAMBDhGgAqjOeVa79PzkmJFOEaAEZCuAaACpPtufbsgsZMBTxC3zUAjIhwDQAVJjs2rybo1QWN6cfJVsQBAEMjXANAhfF6znVNpnIdJVwDwIgI1wBQYbJtIV5XrmkLAYCREa4BoMJ4XbnOPg6VawAYGeEaACpMtsIc9qpyTVsIAOSMcA0AFSZ7QaNnPdeZthB2aQSAkRGuAaDCRBMp+X2moEdzrvtH8VG5BoAREa4BoMJEE0nPqtbSwQsaqVwDwMgI1wBQYSLxlMfhmp5rAMgV4RoAKky6cu3NxYzSwZF+hGsAGBnhGgAqTDSR6t/4xQvZyjVzrgFgZIRrAKgw0XjK08p1f881lWsAGBHhGgAqTCSR7J/w4YWDc66pXAPASAjXAFBhoqW6oDFO5RoARkK4BoAKE00k+y9C9IKZKRTwKULlGgBGRLgGgArj9Sg+KV29pnINACMjXANAhfF6FJ+UvqiRCxoBYGSEawCoMNGE95XrmqCPCxoBIAeEawCoMNFESmEPe64l2kIAIFeEawCoMJF4sgQ9134q1wCQA8I1AFSYdOXa43Ad9NFzDQA5IFwDQAVxzimW8HaHRkmqCfhpCwGAHBCuAaCCZKvLNSWpXNMWAgAjIVwDQAXJVpe9H8XnU4TKNQCMiHANABUkW13mgkYAKA/CNQBUkGxbSGnmXFO5BoCREK4BoIJkq8s1ns+5ZodGAMgF4RoAKkgkXprKdbrnmrYQABgJ4RoAKkh/z7XXlWvaQgAgJ4RrAKgg2WkhNV73XAf8SqacEkkCNgAMh3ANABWk/4LGElSuBz4+AGBwhGsAqCDZvuhSjOIb+PgAgMERrgGggpRqFF/28ahcA8DwCNcAUEFKNYov+3iEawAYHuEaACpI6SvXtIUAwHAI1wBQQfp7rkt0QWN2jjYAYHCEawCoINGSbSKTaQvhgkYAGBbhGgAqSDSRkt9nCvo9nnPNKD4AyElJw7WZXWpm681so5ndOMhxM7PvZo6vNrNTMrfPNLNHzGydma01s0+Vcp0AUCki8aTnVWtpQOWacA0AwypZuDYzv6TvS7pM0mJJ15jZ4sNOu0zSgsyf6yT9IHN7QtLnnHOLJJ0p6eOD3BcAcJhoIlWicJ3tuaYtBACGU8rK9emSNjrnXnPOxSTdLmn5Yecsl3SrS3tKUrOZTXXO7XTOPSdJzrkuSeskTS/hWgGgIkQTyf4qs5eoXANAbkoZrqdL2jrg6206MiCPeI6ZzZZ0sqSnvV8iAFSWaCLV3x/tpYM911SuAWA4pQzXNshtLp9zzKxB0v9I+rRzrnPQJzG7zsxWmNmKtra2ghcLAJUg3XNdwso1o/gAYFilDNfbJM0c8PUMSTtyPcfMgkoH65875+4a6kmcczc755Y555a1trZ6snAAOFpFE6n+mdRe6p9zTeUaAIZVynD9rKQFZjbHzEKSrpZ092Hn3C3pA5mpIWdKOuCc22lmJulHktY55/6thGsEgIoSjZfmgsZQZrQflWsAGF6gVA/snEuY2Q2SHpTkl3SLc26tmV2fOX6TpPslXS5po6ReSddm7n6OpPdLWmNmL2Ru+zvn3P2lWi8AVIJoIqn6sPcv7T6fKeT3cUEjAIygZOFakjJh+P7DbrtpwOdO0scHud9jGrwfGwAwjEg8pfF1pXlTMhz0MYoPAEbADo0AUEEiiaRqQt5f0ChJtUE/00IAYASEawCoIJFYUrXB0oTrmqBffTHCNQAMh3ANABWkL166cF0b9KuPthAAGBbhGgAqSF88qdoStYXUhPzqY1oIAAyLcA0AFSKVcorEU6opWeXapwhtIQAwLMI1AFSI7Jg82kIAoHwI1wBQIbJj8mpLsEOjJNWGCNcAMBLCNQBUiGzwLVnPNdNCAGBEhGsAqBDZcF26nms/m8gAwAgI1wBQIbJV5VL2XBOuAWB4hGsAqBCREreFZHuunXMleXwAqASEawCoEP091yXcoTHlpFiSWdcAMBTCNQBUiGxbSKl6rrOPG4kRrgFgKIRrAKgQo3FB48DnAQAciXANABWi9D3X6R8ZhGsAGBrhGgAqxGhMCxn4PACAIxGuAaBC9MVLu/15DW0hADAiwjUAVIhs6A0HSrT9efaCRsI1AAyJcA0AFSIST6om6JPPZyV5/GwvN20hADA0wjUAVIi+WLJkLSES00IAIBeEawCoEH3x0obrGtpCAGBEhGsAqBB98aRqSjSGTzrYFkK4BoChEa4BoEJES1y5pi0EAEZGuAaACjFabSF9bH8OAEMiXANAheiLJUu2O6Mk+X2mkN9H5RoAhkG4BoAK0RdP9VeXS6Um6KPnGgCGQbgGgAoRKXFbiJS+qJE51wAwNMI1AFSIvlh6E5lSqg36aQsBgGEQrgGgQpT6gkYpfVEj4RoAhka4BoAKUeo511K6LYSeawAYGuEaACpAMuUUS6RK33MdpOcaAIZDuAaACpCtJo9GuI4kCNcAMBTCNQBUgGwfdCnnXEtSDdNCAGBYhGsAqADZwFvqOde1Qb8icXZoBIChEK4BoAKMVltITZAdGgFgOIRrAKgAfaPYc01bCAAMjXANABUgG3hL3XOd3UTGOVfS5wGAoxXhGgAqQLZyXeqe6+wc7WiCvmsAGAzhGgAqQPYiw9FoC5GkXlpDAGBQhGsAqAC9sYSk0reF1IWy4TpR0ucBgKMV4RoAKkBPNB1268OlDdf14UDm+ahcA8BgCNcAUAG6M2G3IRN+SyUbrrujVK4BYDCEawCoAD3RhHxW+p7rhv7KNeEaAAZDuAaACtAdTag+FJCZlfR56kOEawAYDuEaACpATzShhprStoRIByvXtIUAwOAI1wBQAXpiif5+6FLKXjBJ5RoABke4BoAK0B1NjlK4zrSFMOcaAAZFuAaACtATTaihxGP4JCkc8CngM9pCAGAIhGsAqADdkUT/xYalZGZqqAnQFgIAQyBcA0AF6I4mSj7jOqs+FPCkcr2/N6Yd+/sUTdBiAqByjM4rMQDgEJv39eiTt7+gre29WjpjnP7f+09VOFB4W8doXdAopSeGFFu5Xrm5Xdf859OKJVKa3lyruz52tiY31Xi0QgAoHyrXADDKeqIJXXfrSm3a26MLjm3Vo+vb9LX7Xy76MUcrXNeH/UVtf36gL65P3vaCJjeF9ZXlx6ujN6brf7aSCjaAikDlGgBG2ZfveUkb9nTpJx8+XectaFVzXUi3PP66Llk0WecuaMn78aKJpOJJNyoXNErpiSFdkcIr19/87Xrt7ozozuvP0smzxqulIayP/vw53fyH1/SJixd4uFIAGH1UrgFgFG3r6NUvn9umD5w1W+ctaJUk3XjZQk2oD+n2Z7cU9JjZKvLR0BYSS6T06xd26IqlU3XyrPGSpMtOmKqLFk7Sj5/YpEic6jWAoxvhGgBG0Y8ee10m6bo3zO2/LRTw6YoTpuqhdbsLulAwG3RH7YLGIsL1YxvbdKAvrqtOnHbI7de9Ya729cT0y5XbvFgiAJQN4RoARsn+3phuf2arrjppmqY11x5ybPlJ0xSJp/S7l3bl/bjdoxyuG8KFTwu5Z9VOjasN9lfts86YM0EnzmzWD//0mlIp58UyAaAsCNcAMEruXb1TffGkPnzOnCOOnTJrvKY31+p/n9+R9+Nmq8ijekFjLCnn8gvBkXhSv127S5ctmaJQ4NAfP2amD519jDbt69XKLR1eLhcARhXhGgBGyT2rdmj+pAYdP63piGM+n+myJVP05Kv78u477h71cB1QMuUUTaTyut9zmzvUE0vqzcdPGfT4mxZPUW3Qr189v92LZQJAWRCuAWAU7O6M6JlN7bpy6VSZ2aDnnDZngmLJlF7cfiCvx85e0DiabSGS8m4NWbG5Q2bSKceMH/R4fTigNx0/Wfev2alYnsEdAMYKwjUAZDy8brc+f9dqfeYXL+iJV/d6+tj3rd4p56Qrl04b8pxTM6Fzxeb82iIOtoWM0ii+zDbr3XmO41u5uUPHTmrUuNrgkOe89aTp2t8b16Pr9xS1xsP9+oXt+vh/P6frf7pSv3tpt6ePDQADMecaQNWLJ1P6h1+/qNue2armuqBM0q+e366PnDtHX7hi0ZCV5nzcu3qHFk1t0vxJDUOe09IQ1tyWeq3Y1C6dPy/nx+4qw7QQKb/KdSrl9NyWDr3lxKF/uZCkcxe0aHxdUPet2ak3DdE+ko9EMqUv/OpF/WLFVk0bV6OUk36zdpeuWDpV33r3SUf0fgNAsQjXAKqac64/WF9//jx99o3HKply+sp9L+mHj72ueZMadM3ps4p6jm0dvXpuy3799ZuPG/HcU48Zr4fW7ZZzLudQP9oXNGZDfD7j+Dbs6VZXJKFTZw3eEpIV9Pv0xsWT9cCaXYomkkVtCS9J//Hoq/rFiq362AXz9Lk3HaeUc7rp0Vf1zd+9opDfp2++60T5fMX/8gQAWfzKDqCq/fiJTbrtma36+IXzdONlCxUK+FQb8uury5fovAUt+uLda7Vhd1dRz3Hf6p2SpLcM0xKStWz2eHX0xvVqW0/Oj98TTSgU8CnoH52X9Gz7SU8s93C9YnO7pPTfbySXLZmqrmhCj28srjVnzbYD+u7DG3TVidP0N5culN9nCvp9+sTFC/RXbzpWv3p+u77/yMaingMADke4BlC1Nuzu0tfuf1mXLJqsz73x0Kqyz2f6t3efpJqgX/90/7qinuee1Tt04oxxmjWxbsRzTz1mgqT0ZI1cdUcTahylqrU08ILG3KearNzcoZaGkGZNGPm/wdnzJ6oxHNADa/Kf+Z3lnNPf/+8aTWwI6SvLlxxx/OMXztdVJ07Ttx/eoOcZ/QfAQ4RrAFUpkUzpc3euUkNNQF9/xwmDtga0NoZ1/fnz9Oj6tnQfdAFe39ujF7d3jthrnDW3pV71Ib/W7sh9YkhPNDFqLSHSwfaTfNpCXt7ZpeOnjcup1SUc8OviRZP0u3W7FU8WNjXkkfV7tGrbAX32jcdqXN2RF1Camb7y1iWa0lSjT//ihYI3xQGAwxGuAfRLpZx2d0b0/JYOPbelQ5v29lTsbnk3/eFVrd52QF9ZvkQtDeEhz/vg2ceotTGsbzy4vqDnuXdVelOYy0+YmtP5Pp/puCmNWrcr91aU7mhyTIfrZMrp1bZuLRjmYs7DXbpkqvb3xvX0a/n/UuOc07cf2qAZ42v19lNmDHneuNqgvvWek7S1vVdfuntt3s9zNHDOadeBiNbt7NTLuzrV3hPLe/MfAPkp6auxmV0q6TuS/JJ+6Jz7+mHHLXP8ckm9kj7knHsul/sC8EZnJK7frt2t367dpWc2tWt/b/yQ4/Uhvy5cOEnvXjZT5y1o8WRyxmB6oglt7ehVNJ5SS2NY08bVlOy51u3s1Hce3qArl07VFUuHD711oYA+ev48ffnel/Tclg6dMsIFeYe7d/VOLTtm/BHbnQ9n0dQm3bNqR84XNfZEE2oYpTF8Uvp7Qsp9WsjW9l5FEykdO7kx5+c4/9hW1Qb9euDFnTp3QUte6/vThr1ave2Avv72E0bsQz99zgR9/ML5+t7vN+qC4yaN+P1QqI6emF5tS1/U2doY1tzWetWFSvcj+NlN7br9ma36wyt7tLc7dsixyU1hnTZ7gq44YaouXDhJNcHR+94BqkHJ/mWbmV/S9yW9UdI2Sc+a2d3OuZcGnHaZpAWZP2dI+oGkM3K8LzDmJJIp7TwQ0daOXm3r6NO2jj519MTUFYmrM5KQz6Rw0K/aoF+Tm8KaP6lB81sbtWByw6j/gHt5V6d+8sRm/e/z29UXT2rauBq9cdFkLZ0xTtPH18pnpj2dUT2/db9+8+LO/pD4j285XifMGOfJGlIpp3vX7NTtz2zRU6/t08AieUtDSOctaNW7ls3QWXMneha0I/GkPnvHKo2rDerLg/TiDuY9p83Utx56RT967HWd8me5h+tXdndp/e4ufemq4/Na48KpTfr501u080Akp1DeE0toQn0or+coRsDvU23Qn3Pl+pXMBaELJudeua4N+XXhwlY9uHa3vrx8ifx5TPS45fHX1dIQ1ttOmZ7T+Z+8eIH+uGGvPn/Xap08qzmvX4SGs+tARP/z3Dbds2qHXj7snYhQID0V5S/fMFdLZzR78nyStH5Xl75630v604a9aggH9MbFk3XyrGa1NoSVctLOA31as/2AHt+4V/eu3qn6kF9vXjJF7z3jGJ0yq7lkv9AOpjMS15ptB7R+V5f29US1rzumrkhCQb8pHPCrNuTX5KYaTWuu0dRxtZo5oVaTG2uY7oIxr5SV69MlbXTOvSZJZna7pOWSBgbk5ZJuden3qJ4ys2Yzmyppdg73PSqkUk4H+uLqiyflM5PfZwoFfGoIB/L6YZF9rM5IXO09MXX0xtXRE1N7b0wdPTF1RuLymSnk9ykU8GlcbVAT6kOH/GmqCY6pF6VoIqmOnuzfJ6Z9Pem/y8CvI7GknNJvbWZzV0M4oKbaoMZl/oyvC6q1MaxJjTWa1BjWhPqQAiWamtAXS2pvd1S7OiPa2t6rre192tbRq60d6c93dUaUHJAQfZZ+67mxJqjGmvQ/t754UpFYUru7ov3nhgM+nTF3ot6woEUXLpykea25h5B8JJIp/e6l3frxE5v09OvtCgd8Wn7SNF19+iydPHPwH6zvPm2mvnTV8bpjxVZ95+ENeut/PK6Pnj9Pn7pkQVHTKV7cfkB/+z+rtXZHp2ZPrNP158/ToqlNqgn6tacropWbOvTQut361fPbNaelXlefNlPvOW2mmuuKC5Fff+BlrdvZqVs+tCznQFofDujPTp+l//zTa9rW0asZ40e+KE9Kt4T4TLrshPzmNS+akq7wrtvZmVPQ644mNDOHCwW9VB8O5HxB44Y93ZKkBXlUrqV0a8j9a3Zp5eYOnT5nQk73ebWtW4+ub9OnL1mQ8xi/oN+n77znJF3+3T/pM794QT/7yBlFfW+v2rpftzz+uu5bvVOJlNNps8frr998nBZPa1JTTVBtXRE9+eo+/XrVDt23eqfedeoM/eNVxxc1p9w5p1uf3Kx/un+d6kJ+/Z8rF+vPTp+l2tDg/w0SyZSeeq1d96zaofvW7NRdz23X4qlN+sBZx+iqk6aVpKqeSjmt2Nyh+9fs1B83tOm1ARNx/D7L/JwKKJFyisZT6okm+me4Z4UDPs2cUKdjJtSlP05M/5k1oV4zJ9QWPboxF72xhHYdiGhXZ0R7OtM/D3YdiKitK6pIPKlYMqVE0imRSl8vUBP0qz4UUF3Ir7qwX001QY2vC2lcXfrj+LqgmuuCaq4Lqbk2WLKfX/lIJFNq741pb1dMe7uj/X86+xKKJVOKJVJKOafaoD/99wv71VwX6v/7jK9Pfz6uNphz1okmkuqKJNTZF1c86TITkEz1oYDG1Y6t/DKSUobr6ZK2Dvh6m9LV6ZHOmZ7jfceE/1m5Ta+2das7mlB3JKEDfXF19Ma0vzeu9t6YDvTFNVR7W0M4oMaa7J9g/0eTFEukFEum1DUgTO/vjWmo9le/z5RybsjnkqSAzzS+PqSJ9SFNbAhpQn1YzbXB/hFeQX96TFX6hS2ZDoHxpPriKUUyn8cSKUUzf+LJlHwmBXw+BfzpXxwCvvRHn5nMJFP6YzLl+l8ouyMJdUcT6o0N/YO5uS6oCXUh1QT98vnSj+MzyUnasq9XnZG4DmT+AR7OTJpYH84E7sM/1mh8XVDK/ht16ceMxJPqjMTVFUn0/+PujCTU0TPwhSU26Nvgk5vCmjm+TqfNHq+ZE+o0c3ydZoyv1YzxdZraXDPkD+lYIqUt7T3asLtbz2xq1x9fadNX71unr963TgunNOotJ07TFSdM1eyW+qH/p+ZoT2dEd6zY2l8NnTG+Vp+/bKHevWymxucQMEMBn9535jF6y9Jp+vK9L+nfH9moJ1/bp+9dc3LeVT7nnG55fJP++YGXNb4+qO9cfZLesnTaES+c7z3jGEXiSd2/Zqdue2aLvvbAy/r2Qxv0tlOm69qzZ+cd1CTp7lU79OMnNulDZ8/WRQsn53XfD549Wz987HX95IlN+sIVi0c83zmnX6/aoTPmTNSkxpq8nuvYTLh+eVeXLl408jo7+xJqqhndbQuaagPqjMRHPlHpyvW0cTV5h8eLFk5SKODT/Wt25hyuf/LEJoX8Pr33jGPyeq7ZLfX6yvIl+tydq/T5u9boG+9cmlcVN55M6aGXdutHj72uFZs71BAO6INnz9YHzjpGx0w88t/wpUum6q/efJz+/ZGN+s8/vqaVmzv0/feeokVTm/JatyS198T0N79cpYfW7dGFx7XqX991oiYOcx2BlH734dwFLTp3QYv+z1sW63+f366fPbVZN961Rv90/zq969SZet+ZszS3yF/0kymnZze16/41O/WbF3dpT1dUoYBP585v0dtPnq6lM5q1eFqTJtSFBg1PPdGEdh6IaPv+Pm1p79XW9l5t3tejzft69eRr+474OdJcF8z8jAurpSFdWJpYH1ZjTUAN4YDqwwc/1oX8CvhNqZT6f37GUynt742pvSeu9p6o2nviauuKandnOkzv7oyoa5CdSeszVfbakL//52nAl37t74oktLszop5oUr2xhDojiUOKMIdrDAfUXJ8uHvmz34NmA39spQtOTnLKfMw8XCDzczzk9ykY8CmU/br/53z6tuzX0URKB/ri2t8bV2dfXPv7YtrXnS7cDZYnfJb+eRDy+2RmisSTiiaGvujYTGqqSRf7mjO/TPhM6f8W8aS6M+/qdkXiisSHfhyfKRPe0481vi79/3Z8fUjnH9uqM+dOHPK+5VDKV+PBXpUO/1811Dm53Df9AGbXSbpOkmbNKm6jh0L87wvb9eSr+9L/cGsCagyn/8dPa64d8BtpSHUhv1JOSqbSwTQb4royga4zEte+7pg27U3/Jh8O+Psr3AunNGl8ffY33FD/59lvsPH1IdWH/DIzJZLpx9/fl65s7+uJqT3zdlt7piq8L/Nxzbb9/QE1lkyH5ew/ppqgTzVBv2oyb82FAz6Fg37VBHxqrAmoJeBXKJB+UUqknJKplBIp1//beiJTac5WnP2WDvYzJ9T1v7Blf7udeNg/lFx/c3fOKRJPaV9PVG1dUe3pGvgx0v/5K7u71NYVVSKPC/NCAZ+aagJqrguppSGkJdPHqbUxrJaGsFobwprUFNbMCXWa3lxbcDtHKODT/EmNmj+pUZdlLnbb1tGr367drXtX79A3Hlyvbzy4XkumN+nKpemgnU91MhJP6rENe3Xnyq16aN0eJVNO585v0ZeXL9FFCyfl/c6JJI2rC+qb7z5Rbzi2RX931xpd/t0/6V/feaIuWZxbUN3bHdVf37lKj6xv0yWLJutf3rl02OpxTdCvt58yQ28/ZYZe2tGpHz/xun65cpv+++ktOm9Biz58zhydf2xrThWNxzfu1efueEGnz56gGy9bmPPfOWtac60uP2Gqbn9mqz558QI11gy9hbckPbupQ5v39eoTFy3I+7maaoKaMb5W63Z2jniuc04dvbFRbQuRpAl1IXX0xEY+UdKG3d0F/TLUEA7ojYsm6+5VO/SFKxaNWE0+0BfXL1du01tOnKbWxuHD5WDeceoMbe3o1bcf2qCg36cvXXX8iDs4buvo1S+e3apfPLtVe7qimjmhVv9w5WK9a9mMEb9HGmuC+vxli3TRcZP0idue11u//7i+dNXxes9pM3MO9is2teuG/35e7T0x/cOVi3XtObPzbu1oCAf0vjOP0XvPmKUVmzt065Ob9dOnNumWx1/XeQta9M5TZ+iCYycNOnVlMJF4Uis2deg3a3fqNy/u1t7uqMIBny48bpIuXzpVFy2clPMvWvXhQLp9bpCLYZ1z2tsd05b2Xm1p79GWfX3a2x3Vvp50MeSV3d3a1x1VR29uvwQOJug3tTSENbmpRvNa63XOvImaPK5GU5pqNDnzZ0qevzg659QVTehAb7oYly2e7e9Nh9x0gS6mzkiiP/S7Afc9WLxKT71Jf0wfT6Sc4smU4gmnvr644pkqczyZ6v9Zn/06lkj1v9Od/TN7Yr2WzZ6Q+VkXUktDWC2Zn30tDSE1hANHfH+lUk49sUT/2tt7Yv2fZ99lzxYdd3dG5JxUF/KrqSagGc21aqxJvxvd1P8xqKDf17/G7mgi/QtP78Ecs3lfr57ful8dPTE11gSqKlxvkzRzwNczJO3I8ZxQDveVJDnnbpZ0syQtW7Zs1C+BvuVDpyngs1HtUxtOwO9TwO9TfTig6QX0DSaSKfnMjoq3X8xMtSG/ZoTqRnybPpVKB5C27qg6euKZ+2ceR+kQl/0H3lgTGJW3FgczY3ydPnzuHH343Dnavr9PD6zZqXtW79TXH3hZX3/gZZ04Y5zOW9Cqk2c1a8GkRk0eF1Y44M8ErLg27+vRi9sP6A+vtOmxjXsViac0sT6kj5w3R1efNktzPKiCS9Lyk9IVpxv++zl95NYV+vNz5+hvL104bBD5wytt+twdq9QZiesry4/X+848Jq9/N4unNelf3nmi/vbShbrtmS366VObde2Pn9XsiXV628kz9NaTpw1aIXTO6edPb9GX7lmruS0N+s8PLiv4F6I/P3eO7lm1Q3es2KY/P3fOsOfeuWKr6kN+XZ5nS0jWoqlNOYXrbBVsfJHtMvlqrgtpW0fviOdlJ4WcM7+wH35vP2W67luzU39Y3zbiL3F3rtiq3lhS154zu6DnkqRPXbxAsURK//Hoq1q3s1M3XrZQZ8yZ0P+96pzTlvZePbh2lx5cu1vPZWZkX3jcJF1z+qyCfnE9Y+5E3f+p8/SZX7ygG+9ao2deb9dX37Zk2NaMVMrp5j+9pm88uF4zxtfqro+drSXTi7sWwsx02uwJOm32BO3pWqQ7nk2/2/Wp21+Q32dadsx4nT2vRYunNWl6c63G1aXfae2MxLW9o08v7+rSU6/t0zOvtyuaSKk26NdFCyfpshOm6MLjJnk+0cbM1Jp5V/LUY4a+FiKRTKknllRPNKGeaPqd055oUt3RRP9Fwz5TunXTb+liT6aQNViY9GLdTTXpEDna7Vyl4PNZ5t330f/7OOfyKpyNllKG62clLTCzOZK2S7pa0p8dds7dkm7I9FSfIemAc26nmbXlcN8xYbR2RBstY6HXqxR8PtPEhvCIb5WOJdOba/WR8+bqI+fN1db2Xt2/ZqceeHGXfvCHVw95SzHoNyVSh7YETW+u1XuWzdRFiybrrLkTR6y+FWJOS73+56Nn62v3r9OPHntdj6zfoxsvXaiLF00+JFy82tatbz+0Qfes2qEFkxr0s4+croVT8n/rO2tiQ1g3XLRA171hnh54Md0y8u2HX9G3HnpFJ85s1jnzJmr+pAbVhQLa0t6ju57brpd3demC41r17fecpHG1uVXfBnPSzGadNnu8/uvx1/XBs44Z8t9LTzSh+9bs1JVLpxbcu7pwSqMeXrd7xC3A9/emq8ejHa4n1Af14vaRK4JbMpNCCqlcS9Ibjm3VxPqQ7np+27DhOply+vETm3T67AlFhUwz099culCLpzXpi3ev1dU3P6VJjWHNaalXIuW0eV9P//SN46c16bOXHKu3nzqjoGLGQC0NYf342tP1vd9v0Hce3qAVmzv0T29bovMWtB5x7sY9Xfri3S/psY17dcUJU/X1d5wwYpU8X5Maa3TDRQv0sQvm64Vt+/Xwut16eN0efeuhV4a937GTG3TN6bN0zvwWnTN/YkknouQq4PdpXK2vqH/7GJvMTEH/2CsGluy73jmXMLMbJD2o9Di9W5xza83s+szxmyTdr/QYvo1Kj+K7drj7lmqtwFg3c0Kd/vL8efrL8+epJ5rQup2d2rinW/t60n3gAV+62jJ9fK0WT23SjPG1o/JuSk3Qry8tX6ILFk7SV+55Sdf9dKUmN6WrSLXBgDbu6dKqbQcUCvj06UsW6Prz53k2FSUU8Gn5SdO1/KTp2rG/T3ev2qEH1+7SzX987ZBKxsIpjfqXdyzVO0+d4ck7Mte9YZ7+4tYVuuv57Xr3spmDnvO/L2xXbyypdw1xPBfzJzUo5dKb0Az3y0h7pjVjtNtCxteFMn2Zw48L7J8UkseM64GCfp/ecuI0/ffTW7SvOzrkL8gPvLhT2zr69IXLFxX0PIe7cuk0XbJosn71/HY9+3q7trT3KuT36YLjJumE6eN00cJJnlfp/D7Tpy85VmfOnajP37VG7//RMzpxZrMuXzJFsybUaW9PTI++vEePvtKmupBfX33rEr33jFkl/bfu85lOmTVep8war79+80J1RxN6ZXeXdh2IqCsSV8ql25imjAtrfmtjzq0jQCUr6a+Uzrn7lQ7QA2+7acDnTtLHc70vgHQP4rLZE7Rsdm4XeI2GC4+bpHPmteihdbt19ws7tH5Xl7qjCc2eWK+/fvNxeveymQX1wOZqWnOtrj9/nq4/f54i8aR2HoioJ5rIXPsQ9DR8XLIoHa6+9/sNetvJ04949yqeTOk/HnlVJ81s1rJh3qoeSbbHdOOe7mHDdUemct08yqFmfH1IsURKffHksNXJDf1j+AqrXEvS+848Rj95cpN+/MQmfe5Nxx1xPJVy+s5DGzR/UoPedHxhbTiDqQn6dc3ps3TN6aN7Pc+ZcyfqgU+dpztWbNWtT27W1x54uf/YlKYa/cV5c/UX580pyztxDeFA3rPegWpT/vdrAFSEUMCny0+YmvNOhKVSE/R71ls+GDPTZ964QB/+8Qrd/uxWvf/MQ6dS/Oq57dq+v09ffeuSokL9vNYGmaUvBhxO9hqCclzQKKUr58OG6z3dmt5cW9SYufmTGvSmxZP1kyc26bo3zD2iBeK+NTu1YU+3vnvNyQVdqDsW1QT9+sBZs/WBs2Zrf29M2zr61NKQnnx0NFwTA1SzymywBYASuvC4STpr7kR97f51/RN+JGlfd1TfeugVnTB9nC447she2XzUBP2aNaFOG9tGCNfZnutRDtfZSnk23A/lld3deW0eM5SPXTBfnZGEfvz4pkNu74rE9S8PvqwFkxp0RZl/sSuV5rr0xKIp49hABTgaEK4BIE9mpm+++0QF/T7dcNtz2rG/T32xpD768+fU3hPT/33bCZ60osxvbdDGESrX7T0xBXymRo8nMYwkWynPhvvBZCeF5LPt+VBOnNmsS4+fou88vEErN3f03/4Pv16r7R19+trbT6iYqjWAoxttIQBQgGnNtfrmu07UDbc9p4u++ahMpr54Ut9+z0mebQ8/f3KD/rihTYlkasjJJB29MTXXhUZ9HGh2p8zhwvXmfT2KJVKDziguxD+/Y6mu/Pc/6aM/W6mPXTBPKzZ36N7VO/WZS44dU9cgAKhuhGsAKNAliyfroc+er3///UYF/Ka3LJ2mMzzczGB+a4PiyfRc5aF2yuvoiWtC/ehPaOivXA+zkUx223MvKtdSehOj//e+ZfrsHS/oi/e8pJqgT5+6eIFuuGi+J48PAF4gXANAEWaMr9PX37G0JI+dnbCxYU/3kOG6vTc26jOuJWlcbVBmUvswu99tKHIM32AWT2vSbz79Bm3c06Wm2mDeW8sDQKnRcw0AY9TAcXxD6egpT7j2+0zjaoPDVq5f2Z2eFOL1znySNH9SI8EawJhEuAaAMaohHNDUcTXDh+ve+KhPCsmaUBcatuf6ld1dnkwKAYCjCeEaAMaw+ZMatGFP16DHnHPq6I2VpedaSo/jGypcJ5Ipvba3x7N+awA4WhCuAWAMWzCpUa/u6VFqwJbuWZ2RhJIpV5a2ECl9UeNQc663tPcqlkh52m8NAEcDwjUAjGHzJzWoL57U9v19RxzL9juXK1w3D9MW8spubyeFAMDRgnANAGNYtmd5sL7rbLAd7a3PsybUDx2us5NCvJpxDQBHC8I1AIxh81tHDtfZrchHW3NdUJF4Sn2x5BHHXtlTukkhADCWEa4BYAwbXx9SS0No0Isa2zP9zmXruc48776e6BHHNuzu0rFMCgFQhQjXADDGpSeGHFm53tbRKzNpyrjyzHue2lwrSdrecWg/eCKZ0mttTAoBUJ0I1wAwxs2f1KCNe7rl3KETQzbt7dG0cbWqCfrLsq7ZE+vS69jXc8jtm9t7FUum6LcGUJUI1wAwxi2c0qSuSEJb2w+tEL++t0dzWurLtCppenOtAj7T63t7D7l93c5OSel1A0C1IVwDwBh34oxmSdLq7fv7b3PO6fW9PZrdUleeRUkK+H2aNaFOm/YeWrleve2AQn6fjptCWwiA6kO4BoAx7rgpjQr5fVq97UD/bR29cXVGEpo9sXyVa0ma3VJ/RFvIqq37tWhqo0IBfsQAqD688gHAGBcK+LRoWpNWbd3ff9vre9MXOM5tLXO4npgO19l+8FTK6cXtB7Q0U20HgGpDuAaAo8CJM8bpxe0HlMxsg57tcy535XpOS50i8ZR2d6bH8b22t1s9saSWzhhX1nUBQLkQrgHgKHDC9HHqiSX7K9ab9vbI7zPNnFC+nmsp3RYipS+ulKRVW9OtKyfObC7XkgCgrAjXAHAUyIbVbHh9fW+PZo6vVdBf3pfxbOU823e9ett+1YX8mtfKGD4A1YlwDQBHgXmtDRpXG9TvX94jSZlJIeVtCZGkac21Cvl92rQ33Xf95Gv7dML0cfL7rNxLA4CyIFwDwFHA7zNdfdpM/WbtLj2yfo/W7+7S4qnlnyPt95nmT2rQH15p02Mb9+qV3d16+ynTy70sACgbwjUAHCXef9Yxcs7pultXqLEmoI+cN7fcS5IkffzC+Xp5V5c+edvzmlgf0vKTCNcAqhfhGgCOEjPG1+nSJVMUTzrdeOlCTagPlXtJkqTLT5iis+ZOVEdvXO8785iybccOAGNBoNwLAADk7m8vXagTpjfr3ctmlnsp/cxMX33bEv3zAy/rg2fPLvdyAKCsLDv4vxIsW7bMrVixotzLAAAAQAUzs5XOuWWDHaMtBAAAAPAI4RoAAADwCOEaAAAA8AjhGgAAAPAI4RoAAADwCOEaAAAA8AjhGgAAAPAI4RoAAADwCOEaAAAA8AjhGgAAAPAI4RoAAADwCOEaAAAA8AjhGgAAAPAI4RoAAADwCOEaAAAA8AjhGgAAAPAI4RoAAADwCOEaAAAA8Ig558q9Bs+YWZukzeVexxjUImlvuReBMYPvBwzE9wMG4vsBA/H9MLRjnHOtgx2oqHCNwZnZCufcsnKvA2MD3w8YiO8HDMT3Awbi+6EwtIUAAAAAHiFcAwAAAB4hXFeHm8u9AIwpfD9gIL4fMBDfDxiI74cC0HMNAAAAeITKNQAAAOARwnWVMbO/MjNnZi3lXgvKx8y+YWYvm9lqM/uVmTWXe00YfWZ2qZmtN7ONZnZjudeD8jGzmWb2iJmtM7O1Zvapcq8J5WdmfjN73szuLfdajiaE6ypiZjMlvVHSlnKvBWX3O0lLnHNLJb0i6fNlXg9GmZn5JX1f0mWSFku6xswWl3dVKKOEpM855xZJOlPSx/l+gKRPSVpX7kUcbQjX1eVbkv5GEo32Vc4591vnXCLz5VOSZpRzPSiL0yVtdM695pyLSbpd0vIyrwll4pzb6Zx7LvN5l9KBanp5V4VyMrMZkq6Q9MNyr+VoQ7iuEmZ2laTtzrlV5V4LxpwPS3qg3IvAqJsuaeuAr7eJMAVJZjZb0smSni7zUlBe31a6IJcq8zqOOoFyLwDeMbOHJE0Z5NAXJP2dpDeN7opQTsN9Pzjnfp055wtKvx3889FcG8YEG+Q23tWqcmbWIOl/JH3aOddZ7vWgPMzsSkl7nHMrzeyCMi/nqEO4riDOuUsGu93MTpA0R9IqM5PSLQDPmdnpzrldo7hEjKKhvh+yzOyDkq6UdLFjJmc12iZp5oCvZ0jaUaa1YAwws6DSwfrnzrm7yr0elNU5kq4ys8sl1UhqMrOfOefeV+Z1HRWYc12FzGyTpGXOub3lXgvKw8wulfRvks53zrWVez0YfWYWUPpi1oslbZf0rKQ/c86tLevCUBaWrrz8RFK7c+7TZV4OxpBM5fqvnHNXlnkpRw16roHq9O+SGiX9zsxeMLObyr0gjK7MBa03SHpQ6YvX7iBYV7VzJL1f0kWZ14QXMlVLAHmicg0AAAB4hMo1AAAA4BHCNQAAAOARwjUAAADgEcI1AAAA4BHCNQAAAOARwjUAjCFmlhwwCu0FM7ux3GuSDlnXtGHO+aKZfe2w204ys3WZzx8xs24zW1bq9QJAuTCKDwDGEDPrds41ePyYgcxc62IeY8R1mdlxkh5wzs0dcNvXJfU4576S+fpRpTekWFHMegBgrKJyDQBHATPbZGZfMrPnzGyNmS3M3F5vZreY2bNm9ryZLc/c/iEzu9PM7pH0WzOrM7M7zGy1mf3CzJ42s2Vm9udm9q0Bz/MXZvZvOaznTWb2ZGY9d5pZg3NuvaT9ZnbGgFPfLel2b/9rAMDYRbgGgLGl9rC2kPcMOLbXOXeKpB9I+qvMbV+Q9Hvn3GmSLpT0DTOrzxw7S9IHnXMXSfqYpA7n3FJJX5F0auac2yVdZWbBzNfXSvqv4RZoZi2S/l7SJZn1rJD02czh2yRdnTnvTEn7nHMb8v/PAABHp0C5FwAAOESfc+6kIY7dlfm4UtLbM5+/SelwnA3bNZJmZT7/nXOuPfP5uZK+I0nOuRfNbHXm8x4z+72kKzO90UHn3JoR1nimpMWSHjczSQpJejJz7HZJT5jZ55QO2beN8FgAUFEI1wBw9IhmPiZ18PXbJL0j05LRL9Oa0TPwpmEe94eS/k7Syxqhaj3gsX7nnLvm8APOua1mtknS+ZLeoXT1HACqBm0hAHB0e1DSJyxTQjazk4c47zGl+59lZoslnZA94Jx7WtJMSX+m3CrNT0k6x8zmZx6vzsyOHXD8NknfkvSqc25bfn8dADi6Ea4BYGw5vOf66yOc/xVJQUmrzezFzNeD+Q9JrZl2kL+VtFrSgQHH75D0uHOuY6QFOufaJH1I0m2Zx3tK0sIBp9wp6XhxISOAKsQoPgCoAmbmV7qfOmJm8yQ9LOlY51wsc/xeSd9yzj08xP09GRHIKD4AlY7KNQBUhzpJj5nZKkm/kvRR51zMzJrN7BWlL6QcNFhndI60icxIzOwRSXMlxQt9DAAY66hcAwAAAB6hcg0AAAB4hHANAAAAeIRwDQAAAHiEcA0AAAB4hHANAAAAeIRwDQAAAHjk/wMB+VLqWPOkOQAAAABJRU5ErkJggg==\n",
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
"text/plain": [
"<Figure size 864x576 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(12, 8))\n",
"plt.plot(model.impulse_axis, model.impulse_response)\n",
"plt.xlabel('Energy [eV]')\n",
"plt.ylabel('Intensity [a.u.]')"
]
},
{
"cell_type": "markdown",
"id": "3842cb23-a961-4a60-9e9e-d341256e1bb7",
"metadata": {},
"source": [
"## Save model"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "4e612338-401e-4fd5-bef7-a6579af0d3d3",
"metadata": {},
"outputs": [],
"source": [
"model.save(\"VS_p5576_viking.joblib\")"
]
},
{
"cell_type": "markdown",
"id": "4d7f95c2-e16d-43b2-a0c5-28a968490bb0",
"metadata": {},
"source": [
"## Apply model in data not used in training"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "dc56d30b-7db8-49ce-82ed-d01d8b6670d8",
"metadata": {},
"outputs": [],
"source": [
"pes_test = {ch: pes_data[ch][n_test:, :] for ch in pes_data.keys()}\n",
"vik_test = vik[n_test:, :]\n",
"xgm_test = xgm[n_test:,:]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "0d8054bb-8ad6-4ee4-8d0c-8ac4ee990179",
"metadata": {},
"outputs": [],
"source": [
"vs_test = model.predict(pes_test, pulse_energy=xgm_test)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "e087883a-43e3-4e19-9041-6740704d7df7",
"metadata": {},
"outputs": [],
"source": [
"vs_test[\"energy\"] = model.get_energy_values()"
]
},
{
"cell_type": "markdown",
"id": "c4f0861c-a124-4812-beb1-0b8cd56d89c1",
"metadata": {},
"source": [
"Add Viking in the same dictionary for convinience. In practice this would not be done in inference: it is done here to validate the results obtained."
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "a5bd5573-afc9-45b3-9f25-7c713e08dfa9",
"metadata": {},
"outputs": [],
"source": [
"vs_test[\"viking\"] = vik_test"
]
},
{
"cell_type": "markdown",
"id": "6e30cc51-41e0-4458-8867-f43605324fc6",
"metadata": {},
"source": [
"Now we can plot it:"
]
},
{
"cell_type": "code",
"execution_count": 22,
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
"id": "44e5df6a-dfc9-47ab-9f37-03fdd0687698",
"metadata": {},
"outputs": [],
"source": [
"def plot(data, i):\n",
" \"\"\"Plot prediction and expectation.\"\"\"\n",
" from matplotlib.gridspec import GridSpec\n",
" fig = plt.figure(figsize=(24, 8))\n",
" gs = GridSpec(1, 2)\n",
" ax = fig.add_subplot(gs[0, 0])\n",
" ax.plot(data[\"energy\"], data[\"viking\"][i], c='b', lw=3, label=\"Viking\")\n",
" ax.plot(data[\"energy\"], data[\"expected\"][i,0], c='r', ls='--', lw=3, label=\"Prediction\")\n",
" ax.fill_between(data[\"energy\"],\n",
" data[\"expected\"][i,0] - data[\"residual\"][i,0],\n",
" data[\"expected\"][i,0] + data[\"residual\"][i,0],\n",
" facecolor='gold', alpha=0.5, label=\"68% unc.\")\n",
" ax.legend(frameon=False, borderaxespad=0, loc='upper left')\n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['right'].set_visible(False)\n",
" ax.set(\n",
" xlabel=\"Photon energy [eV]\",\n",
" ylabel=\"Intensity [a.u.]\",\n",
" title=\"Comparing with the original Viking\",\n",
" )\n",
" ax = fig.add_subplot(gs[0, 1])\n",
" viking_smooth = fftconvolve(data[\"viking\"][i], model.impulse_response, mode=\"same\")\n",
" ax.plot(data[\"energy\"], viking_smooth, c='b', lw=3, label=\"Viking (convolved to VS resolution)\")\n",
" ax.plot(data[\"energy\"], data[\"expected\"][i,0], c='r', ls='--', lw=3, label=\"Prediction\")\n",
" ax.fill_between(data[\"energy\"],\n",
" data[\"expected\"][i,0] - data[\"residual\"][i,0],\n",
" data[\"expected\"][i,0] + data[\"residual\"][i,0],\n",
" facecolor='gold', alpha=0.5, label=\"68% unc.\")\n",
" ax.legend(frameon=False, borderaxespad=0, loc='upper left')\n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['right'].set_visible(False)\n",
" ax.set(\n",
" xlabel=\"Photon energy [eV]\",\n",
" ylabel=\"Intensity [a.u.]\",\n",
" title=\"Same, with smoothened Viking\",\n",
" )\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"id": "f9bb6495-51db-4775-ba91-c7b936dc0b33",
"metadata": {},
"source": [
"These are the last 10 train IDs, which were not used in training."
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "c8ffc289-c10a-48bb-b1e0-1ebeb61880dd",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAHwCAYAAAAcpweRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAD010lEQVR4nOzdd3yV5fnH8c+dvRcJIwlTQDaogDixahX3HjhQO6xaq63Vqq21atWqdVV/7jpw1L2tWvdAcSACKsqeIUBC9h7n/v3xnJyRk3EScnIyvu/XK6/czzzXSSJeuXI9922stYiIiIiIiIiIiIhI7xMR7gBEREREREREREREpHNU4BURERERERERERHppVTgFREREREREREREemlVOAVERERERERERER6aVU4BURERERERERERHppVTgFREREREREREREemlVOAVkV7HGHO6MeadMMdQYYwZ1cbx9caYg3fi/o8ZY67v7PU7wxjzZ2PMv7v63CDuZY0xozt57VvGmLPc47ONMQtaOS/sPzsiIiIifZExZj9jzIo2jo9w53tR3RlXVzLGHGCM2RzuOEC5s4j4U4FXpB8zxpxmjFnkLlbmu/9Hv2+442qPtfYpa+0hYY4hyVq7Fna+GNtWUhUO1tobrbW/6upzO8sY84Ax5vEW9k8xxtQaYzKstYdZa+e3d6+e8LMjIiIi0sQYs68x5nNjTKkxpsgY85kxZka44+oMa+2n1tpdm7Z3tuGhJ9iZImq4KHcW6Z9U4BXpp4wxlwB3AjcCg4BhwL3AMWEMq129+S/+vUEP/fo+BhxvjElstn8e8Ia1tqj7QxIRERHZOcaYFOAN4G4gA8gBrgVqwxmX9HqPodxZpN9RgVekHzLGpALXAb+11r5kra201tZba1+31l7mPifWGHOnMWaL++NOY0ys+9gBxpjNxpg/GWO2u7t/jzXGHG6MWenuPvizz+tdY4x5wRjzrDGm3Biz2Bgz1ef4FcaYNe5jy40xx/kcO9vdyXCHMaYIuKZ5x6v7L+vnGWNWGWOKjTH3GGOM+1ikMeY2Y0yhMWadMebC1h4NM8acY4x53Wd7tTHmOZ/tTcaYaT6vOdoYcy5wOvAndyf06z63nGaMWebuyHjWGBPXwmuOB+4H9nJfX+JzON0Y81/31+VLY8wuPteNM8a86/5arzDGnNzG9zvbGPOa+9zVxphft/C9edIYUwac7d73pM8584wxG4wxO4wxf/XtxvA913gfuzvLGLPR/TX/i899ZhpjFhpjStw/M/9njIlpLe4m1tqFQB5wgs+9IoHTgPnu7Y+MMS12Ehtj/mmMWWCMSQ3Vz46IiIhIJ4wFsNY+ba1ttNZWW2vfsdYuAzDG7GKM+cCdgxUaY54yxqQ1XezOyS5z55uVxpiHjTGDjPNUXrkx5j1jTLrP+bOM0y1cYoxZaow5IJggjTHzjTF/dI9z3PnQBe7t0e4c0xif6QuMMU/gNJC87s5x/+Rzy9NbyhVbeN3DjfO7QbkxJs8Yc6l7f0d/F2n19xr38V+7c+Qid86c7d7/ifuUpe73cIrPNX/0ee1zmr3Wre73t80Yc78xJr5Z3B2+1n38Mvc1W4wxv2jt66bcWaR/UoFXpH/aC4gDXm7jnL8As4BpwFRgJnCVz/HB7nvkAFcDDwFnAHsA+wFXG/85ao8BnsfpTvgP8IoxJtp9bI37mlScroUnjTFDfK7dE1gLDARuaCXeI4EZ7lhPBg517/81cJj7fewOHNvGe/4Y2M8YE+F+/WhgHwD3e0kClvleYK19EHgKuMU9bcNRPodPBuYAI4EpwNnNX9Ba+yNwHrDQfX2az+G5OF+PdGB103s3zl/j38X5Og50n3evMWZiK+/raWAzkA2cCNxojDnI5/gxwAtAmvu9eBhjJuB0dp8ODMH5HuW08jpN9gV2BQ7C+TkY797fCPwByMT5GTwIuKCdezV5HKfroMnBON+ft1q7wP19fAjna3+Itba0lVO74mdHREREpKNWAo3uAuphvsVYNwP8AyeHGw8MBa5pds4JwM9xisVH4eRGf8bJtyKAi8ApzAL/Ba7HyccvBV40xmQFEefHwAHu8WycvHy2e3t/4FNrrfW9wFp7JrAROMqd497ic7i1XLG5h4HfWGuTgUnABz7HOvK7SKu/1xhjDsT5Gp+Mk+tuAJ5xv4f93ddPdb+HZ31euykn/iVwj8/37mac78U0YLRPfOzMtcaYOTjfs58DY3By4bYodxbpZ1TgFemfBgCF1tqGNs45HbjOWrvdWluAU2g80+d4PXCDtbYeJwnKBP5lrS231v4A/ICTHDT5xlr7gvv823ESslkA1trnrbVbrLUud+K0CifxarLFWnu3tbbBWlvdSrw3WWtLrLUbgQ9xEgtwko5/WWs3W2uLgZtae8PuOXXL3dfOBv4H5Bljxrm3P7XWulr/kgW4y/2+ioDXfWIK1kvW2q/c36enfK4/ElhvrX3U/TVZDLyIU7z1Y4wZipNEX26trbHWLgH+jf/3cqG19hX317/51/dE4HVr7QJrbR1Okmlp27XuDpSlwFKc5A9r7TfW2i/cMa8HHsD7y0F7ngBmG2Ny3dvzgP+4f55aEo1T2M7A+cWiqo177/TPjoiIiEhHWWvLcPI0i1OgLHB3kA5yH19trX3XWlvrzsdvJzB3uttau81amwd8Cnxprf3WWluL08yxm/u8M4A3rbVvunO+d4FFwOFBhOppgsAp6N6CuwnCHc/HHXzrLeaKLagHJhhjUqy1xe6c1/dYsL+LtPV7zenAI9baxe6v2ZU4T9aNaCP+evf96q21bwIVwK7uTtZfA3+w1hZZa8txpsM7tQuuPRl41Fr7vbW2ksBCf3PKnUX6GRV4RfqnHUBmO4/LZOP8BbvJBvc+zz2stY3ucVNRcJvP8Wqcjtcmm5oG7iJpU0dp0xQAS4zzuFgJzl/oM1u6tg1bfcZVPq+d3ez69u7V1KGwv3v8EU7i2pnktbWYdvb64cCeTV8v99fsdJyOgOaygaYksckG/Ltw2/qa+H393Mnejs7EbYwZa4x5wxiz1TjTQdyI//e5Ve4E8hPgDGNMEk5HQFsLQ4zG6Uy+1l2Y7nC8dPxnR0RERKRDrLU/WmvPttbm4uTA2TjrZGCMGWiMecY40xOUAU8SmDs1z79by8eHAyc1yx/3xelabS/GNTiFyGk43bFvAFuMMbsS2hz5BJwC9AZjzMfGmL18jnXkd5G2fq/xO2atrcDJddt6Ym1Hs0aZpveQBSQA3/h8jd9279/Za5vnpb7vJ4ByZ5H+RwVekf5pIVBD24/NbMFJBJsMc+/rrKFNA/df/3NxEsPhOB0LFwID3FMUfI/zSFqT9jpG25Lvfq2AOFrRVODdzz3+mPYLvDsTX2eu3wR8bK1N8/lIstae38K5W4AMY0yyz75hOPNyBfP6fl8/9zxgAzoYb5P7gJ+AMdbaFJzHB03bl/iZj9N9cAKwrlkXR3M/AucAb7l/+eiMjv7siIiIiHSatfYnnAWyJrl3/QMnT5vizp3OoGO5k69NwBPN8sdEa22wXZYf4zzZFePuFv4YJy9LB5a0cs1O5cjW2q+ttcfgTEn2CvBc21e0qq3fa/yOuadCG4B/rhysQpzC8kSfr3GqtTaYJo/2rs3HPxcdFsQ9lTuL9CMq8Ir0Q9aZT+lqnDmfjjXGJBhjot1zfzXNj/U0cJUxJssYk+k+/8nW7hmEPYwxx7u7hn+PszrwF0AiTvJXAM5CZ3iT2q7wHHCxcRaESAMub+f8j4GfAfHW2s04j7rNwUn0vm3lmm3AqFaOBWMbkGuCWHDM7Q1grDHmTPf3LdoYM6Ol+custZuAz4F/GGPijDFTcOb7eqr5ua14ATjKGLO3O75r6fwvFslAGVDhnvaipYJ0W17ESRSvpe0OBMBZsASniPye8VmgrgM6+rMjIiIiEjTjLJr7x6bH6N1Ta83FyZHByZ0qgBL3HLqX7cTLPYmT0x3qXgwrzjiLfjW99jXGmI/auP5jnIaMpoXHPgJ+Byzw6aRtrtM5sjEmxhhzujEm1T2tQBnOeg6d0dbvNf8BzjHGTDPOwms34kxzsb6j78H9lOJDwB3GmIHu95FjjDm07SuDuvY5nMWQJxhjEoC/BRGScmeRfkQFXpF+ylp7O3AJzgIDBTh/1b8Q56/j4CzAsAhnUbHvgMXufZ31KnAKUIwz59Xx7rmnlgO34XQVbwMmA5/txOs09xDwDs77+BZ4E2iglQTRWrsSJ5H+1L1dhrOQxGdtJK8P48wPVmKMeaUTMX6AM0/YVmNMYXsnu6dbOARnTq4tOI9J3QzEtnLJXGCE+9yXgb+5511rl3sOs9/hzG2WjzNH8XacAn1HXYqzem85zvfl2bZPD4ilEm+iGlSB2lo7H7gO+KCdudRa0qGfHREREZEOKsdZTPhLY0wlTmH3e+CP7uPX4ixWVYqzQNpLnX0h9x/9j8Ep4DXl/pfhrQkMpe0c/GOcgnNTgXcBzpQCn7R6hdOBfJU7R760E2GfCax3T09xHk4Hc2e0+nuNtfZ94K84OWY+sAv+c+ZeA8x3v4eTg3ity3EWR/7CHfd7OAvKBaPVa621b+FM3fGB+5wPWrmHh3Jnkf7FWLuzTxaLiLTNGHMNMNpa29mkrCtjOQy431o7vN2TJYB7Dq8SnGkW1oU5nG6lnx0RERHpq4wxS4CDrLXtrbUgEhTlziLdSx28ItKnGWPijTGHG2Oi3I+2/Q2ni1WCZIw5yj2NRyJwK07nw/rwRhV6+tkRERGR/sJaO03FXdkZyp1FwksFXhHp6wzO423FOI8K/Ygz75YE7xic6R22AGOAU23/ePxDPzsiIiIiIsFR7iwSRpqiQURERERERERERKSXUgeviIiIiIiIiIiISC+lAq+IiIiIiIiIiIhILxUV7gBCZc6cOfbtt98OdxgiIiIi/YkJdwASesqzRURERMKi1Vy7z3bwFhYWhjsEEREREZE+R3m2iIiISM/SZwu8IiIiIiIiIiIiIn2dCrwiIiIiIiIiIiIivZQKvCFywAEH8L///c9v35133smoUaO46aabADj77LN54YUXAq791a9+xfLly7slThERERGR3qS1PPuCCy7gtdde69Zcu7q6mtmzZ9PY2Ngl9+uMxx57jAsvvLBL7pWUlBSwr6SkhHvvvbdD92nre+RyubjooouYNGkSkydPZsaMGaxbt26n4g7WNddcw6233trmOUuWLOHNN9/0bPv+THVUQUEBc+bM6dS1IiIiHaECb4jMnTuXZ555xm/fM888w/z587niiivavPbf//43EyZMCGV4IiIiIiK9Umt59ty5czn66KO7Ndd+5JFHOP7444mMjOyS+/VEnSnwtvU9evbZZ9myZQvLli3ju+++4+WXXyYtLa3N+3VnAb15gTeYn6nWZGVlMWTIED777LOuCk9ERKRFKvCGyIknnsgbb7xBbW0tAOvXr2fLli2sXr26xb+w//Wvf+Xss8/G5XJxwAEHsGjRIsD5K/pf/vIXpk6dyqxZs9i2bRsAa9asYdasWcyYMYOrr766xb+2i4iIiIj0Na3l2fvuu2+r3ayhyrWfeuopjjnmGM/2LbfcwuTJk5k6daqnKLhkyRJmzZrFlClTOO644yguLgacLtfLL7+cmTNnMnbsWD799FMA9txzT3744QfPPQ844AC++eYbioqKOPbYY5kyZQqzZs1i2bJlfrGUlpYyYsQIXC4XAFVVVQwdOpT6+nrWrFnDnDlz2GOPPdhvv/346aefAFi3bh177bUXM2bM4K9//WuL7/GKK65gzZo1TJs2jcsuuwxrLZdddpmnA/fZZ5/t0PcoPz+fIUOGEBHh/Cqam5tLenp6wD1GjBjBddddx7777svzzz/PO++8w1577cXuu+/OSSedREVFhSe+CRMmMGXKFC699FIANmzYwEEHHcSUKVM46KCD2LhxY8D9fX8OCgsLGTFiBHV1dVx99dU8++yzTJs2jWeffdbvZ6q1+5599tlcdNFF7L333owaNcqvc/zYY4/lqaeeavFrKyIi0lX6RYHXmNB9tGbAgAHMnDmTt99+G3D+Yn3KKadgWrjoT3/6E9u3b+fRRx/1JDpNKisrmTVrFkuXLmX//ffnoYceAuDiiy/m4osv5uuvvyY7O7vrvlgiIiIiIkHq6Xk2hC7XrqurY+3atYwYMQKAt956i1deeYUvv/ySpUuX8qc//QmAefPmcfPNN7Ns2TImT57Mtdde67lHQ0MDX331FXfeeadn/6mnnspzzz0HQH5+Plu2bGGPPfbgb3/7G7vtthvLli3jxhtvZN68eX7xpKamMnXqVD7++GMAXn/9dQ499FCio6M599xzufvuu/nmm2+49dZbueCCCzzv8/zzz+frr79m8ODBLb7Pm266iV122YUlS5bwz3/+k5deeoklS5awdOlS3nvvPS677DLy8/OD/h6dfPLJvP7660ybNo0//vGPfPvtty2+LkBcXBwLFizg4IMP5vrrr+e9995j8eLFTJ8+ndtvv52ioiJefvllfvjhB5YtW8ZVV10FwIUXXsi8efNYtmwZp59+OhdddFGrr+ErJiaG6667jlNOOYUlS5Zwyimn+B1v6775+fksWLCAN954w6/jd/r06Z7ivYiISKj0iwJvuPg+mtT0SFJzf//73ykpKeGBBx5oMSmNiYnhyCOPBGCPPfZg/fr1ACxcuJCTTjoJgNNOOy1E70BEREREpOcJJs+G0ObahYWFflMLvPfee5xzzjkkJCQAkJGRQWlpKSUlJcyePRuAs846i08++cRzzfHHHx/w2ieffDLPP/88AM8995wnjgULFnDmmWcCcOCBB7Jjxw5KS0v9YjrllFM8HbVNRdWKigo+//xzTjrpJKZNm8ZvfvMbT0H2s88+83ztmu7dngULFjB37lwiIyMZNGgQs2fP5uuvvw44r7XvUW5uLitWrOAf//gHERERHHTQQbz//vstvlZTgfWLL75g+fLl7LPPPkybNo358+ezYcMGUlJSiIuL41e/+hUvvfSS52u/cOFCz/ftzDPPZMGCBUG9t/a0dd9jjz2WiIgIJkyY4OkEBxg4cCBbtmzpktcXERFpjQq8IXTsscfy/vvvs3jxYqqrq9l9990DzpkxY4bnkauWREdHe5LRyMhIGhoaQhqziIiIiEhPF0yeDaHNtePj46mpqfFsW2tb7SJuTWxsbMBr5+TkMGDAAJYtW8azzz7Lqaee6rl/c81f7+ijj+att96iqKiIb775hgMPPBCXy0VaWhpLlizxfPz444+t3qM9LcXRkra+R7GxsRx22GH885//5M9//jOvvPJKi/dITEz0vObPf/5zT/zLly/n4YcfJioqiq+++ooTTjiBV155pdUFzVp6j1FRUZ7pLHy/jx3he9+m72VTvE1qamqIj4/v1P1FRESC1S8KvNaG7qMtSUlJHHDAAfziF79otatgzpw5XHHFFRxxxBGUl5cH/Z5mzZrFiy++CBCwgIGIiIiISHfoyXk2hDbXTk9Pp7Gx0VMcPOSQQ3jkkUeoqqoCoKioiNTUVNLT0z2P6D/xxBOebt62nHrqqdxyyy2UlpYyefJkAPbff3/PXK4fffQRmZmZpKSk+F2XlJTEzJkzufjiiznyyCOJjIwkJSWFkSNHerqCrbUsXboUgH322cfz/lqbJzY5Odnva7f//vvz7LPP0tjYSEFBAZ988gkzZ84MuK6179HixYs9Ha0ul4tly5YxfPjwNr8es2bN4rPPPmP16tWAM7/wypUrqaiooLS0lMMPP5w777yTJUuWALD33nv7va9999034J4jRozgm2++AfCbM7f5+/UVzH2bW7lyJZMmTWr3PBERkZ3RLwq84TR37lyWLl3q+ct7S0466SR+/etfc/TRR1NdXR3Ufe+8805uv/12Zs6cSX5+PqmpqV0VsoiIiIhIjxdMng2hzbUPOeQQz2P6c+bM4eijj2b69OlMmzaNW2+9FYD58+dz2WWXMWXKFJYsWcLVV1/d7uufeOKJPPPMM5x88smefddccw2LFi1iypQpXHHFFcyfP7/Fa0855RSefPJJv/ljn3rqKR5++GGmTp3KxIkTefXVVwH417/+xT333MOMGTMCpntoMmDAAPbZZx8mTZrEZZddxnHHHceUKVOYOnUqBx54ILfcckur8/e29D3avn07Rx11FJMmTWLKlClERUW1uDCer6ysLB577DHmzp3rWWTup59+ory8nCOPPJIpU6Ywe/Zs7rjjDgDuuusuHn30UaZMmcITTzzBv/71r4B7Xnrppdx3333svffeFBYWevb/7Gc/Y/ny5Z5F1nwFc9/mPvzwQ4444oh2zxMREdkZJthHbHqb6dOn26ZVUfuiqqoq4uPjMcbwzDPP8PTTT3sSNREREZEw6diz3tIr9fU8G4LPtb/99ltuv/12nnjiiTBEKb3B/vvvz6uvvkp6enq4QxERkd6v1Vw7qjujkK7zzTffcOGFF2KtJS0tjUceeSTcIYmIiIiI9AnB5tq77bYbP/vZz2hsbCQyMrKbo5SerqCggEsuuUTFXRERCTl18IqIiIhIV1EHbz+gPFtEREQkLFrNtTUHr4iIiIiIiIiIiEgvpQKviIiIiIiIiIiISC+lAq+IiIiIiIiIiIhIL6UCr4h0m5Ur4bjj4G9/gz46/beIiIiIiIiISLdSgTeEIiMjmTZtGpMmTeKkk06iqqqq0/c6++yzeeGFFwD41a9+xfLly1s996OPPuLzzz/3bN9///08/vjjnX5tka5y9tnwyitw3XXw9tvhjkZERER6K+XZ0m/ZxnBHICIiPZAKvCEUHx/PkiVL+P7774mJieH+++/3O97Y2Ln/Of/73/9mwoQJrR5vnnied955zJs3r1OvJdKVFi70jl98MXxxiIiISO+mPFv6JVcN1CwOdxQiItIDqcDbTfbbbz9Wr17NRx99xM9+9jNOO+00Jk+eTGNjI5dddhkzZsxgypQpPPDAAwBYa7nwwguZMGECRxxxBNu3b/fc64ADDmDRokUAvP322+y+++5MnTqVgw46iPXr13P//fdzxx13MG3aND799FOuueYabr31VgCWLFnCrFmzmDJlCscddxzFxcWee15++eXMnDmTsWPH8umnn3bzV0j6m+rqcEcgIiIifYHybOk3ahZD3YpwRyEiIj1Q/ynwXnMNGBPcx7nnBl5/7rn+51xzTdAv3dDQwFtvvcXkyZMB+Oqrr7jhhhtYvnw5Dz/8MKmpqXz99dd8/fXXPPTQQ6xbt46XX36ZFStW8N133/HQQw/5dQo0KSgo4Ne//jUvvvgiS5cu5fnnn2fEiBGcd955/OEPf2DJkiXst99+ftfMmzePm2++mWXLljF58mSuvfZavzi/+uor7rzzTr/9IqFQUxPuCERERKRLKM8GlGdLN3CVge38dCQiItJ3RYU7gL6surqaadOmAU5nwS9/+Us+//xzZs6cyciRIwF45513WLZsmWfer9LSUlatWsUnn3zC3LlziYyMJDs7mwMPPDDg/l988QX777+/514ZGRltxlNaWkpJSQmzZ88G4KyzzuKkk07yHD/++OMB2GOPPVi/fv1OvXeR9qjAKyIiIp2lPFv6JVsNrspwRyEiIj2QCrwh1DQ3WHOJiYmesbWWu+++m0MPPdTvnDfffBNjTJv3t9a2e05HxMbGAs6iFQ0NDV12X5GWaIoGERER6Szl2dIvuaqcDxERkWb61xQN1gb38eCDgdc/+KD/OR14dKwthx56KPfddx/19fUArFy5ksrKSvbff3+eeeYZGhsbyc/P58MPPwy4dq+99uLjjz9m3bp1ABQVFQGQnJxMeXl5wPmpqamkp6d75v164oknPF0GIt2tC39nEhERkXBSnq08W7qHrQFb73yIiIj4UAdvmP3qV79i/fr17L777lhrycrK4pVXXuG4447jgw8+YPLkyYwdO7bFBDErK4sHH3yQ448/HpfLxcCBA3n33Xc56qijOPHEE3n11Ve5++67/a6ZP38+5513HlVVVYwaNYpHH320u96qiJ/o6HBHICIiIn2Z8mzpc6z7EThbB0bJtIiIeBlrbbhjCInp06fbphVwRaQb1a2G6OEBSWdjI0T5/Enp8MPhv//t5thERCTU9HxGP6A8WyRMtt4MW7fCpKsgakC4oxERke7Xaq7df6ZoEJHuUfk2NGwN2N18UbV6PVkmIiIiIhKc/HwYcgXsdidcf1Pr57m00IWISH+kAq+IdB3bCA2FLa7uW9VsPQitLyIiIiIiEqTsbO/42luhuDjwnMZyqPqo20ISEZGeQwVeEek6nnnBAlf3rW7WTKAOXhERERGRTlq5MnBfw4YWn6QTEZG+TwVeEek6TY+EBdHBqwKviIiIiEgQms91BrBtW+C+hgJoLAp9PCIi0uOowCsiXcfduVtXEzj3lwq8IiIiIiKdUNRC0balAq+rFFzlzrRpIiLSr6jAKyJdx1XDDXfsR9Lggzn/fP9DmqJBRERERKQTsrOh5Ds4cYp3X4sF3jLns9VCayIi/Y0KvCFUUlLCiSeeyLhx4xg/fjwLFy4EYMmSJcyaNYtp06Yxffp0vvrqKwA+++wzpkyZwowZM1i9erXnHoceeijW2rC9D5Gg2Rqu+sdB1NdHcP/9sNVnCjB18IqIiEhXUZ4t/U4cbMncxbvd0iJrTdOkuQLXwxARkb4tKtwBdJuCa7r2flnt3+/iiy9mzpw5vPDCC9TV1VHlrnD96U9/4m9/+xuHHXYYb775Jn/605/46KOPuO2223jxxRdZv3499913H7fddht///vf+fOf/4wxpmvjFwmBpUv9/2a0cSMMHuyMVeAVERHpo5Rni4Tcs8/Fc8H9D5FubuH2uzdx9C/3CjzJ1jqfVeAVEel31MEbImVlZXzyySf88pe/BCAmJoa0tDQAjDGUlTmPz5SWlpKdnQ1AdHQ01dXVVFVVER0dzZo1a8jLy2P27Nmtvs6IESMoLCwEYNGiRRxwwAEAXHPNNfziF7/ggAMOYNSoUdx1112eax5//HGmTJnC1KlTOfPMM7v6rUs/9pvfDffb3rDBO9YUDSIiItIVlGdLf3TNDUMoYgBr7Gj+eMdMiIsLPMm6E2yrAq+ISH/Tfzp4u9natWvJysrinHPOYenSpeyxxx7861//IjExkTvvvJNDDz2USy+9FJfLxeeffw7AlVdeybnnnkt8fDxPPPEEl156KX//+987HcNPP/3Ehx9+SHl5Obvuuivnn38+K1eu5IYbbuCzzz4jMzOTopYm7BfpjJoaFn2d4LPDkpfn7YhRB6+IiIh0BeXZ0t/s+GErjSvKyCKNEtJYvSaR0lJITW12oq1zf9YcvCIi/Y06eEOkoaGBxYsXc/755/Ptt9+SmJjITTfdBMB9993HHXfcwaZNm7jjjjs83QfTpk3jiy++4MMPP2Tt2rVkZ2djreWUU07hjDPOYFtLE+m34YgjjiA2NpbMzEwGDhzItm3b+OCDDzjxxBPJzMwEICMjo2vfuPRfN99MA9FYDBbDEqZRWuo9rAKviIiIdAXl2dLflPzjPlayK9sZxJ+5EYAff2x20kcfwZYdztilAq+ISH+jAm+I5Obmkpuby5577gnAiSeeyOLFiwGYP38+xx9/PAAnnXSSZ/GHJtZarr/+ev76179y7bXXcu2113LGGWf4Pf7VJCoqCpfLBUBNTY3fsdjYWM84MjKShoYGrLWaZ0xCY8cOv81stvgVeGtr/U/3LfB+8w08/nhgEVhERESkOeXZ0t9UbC7xjC2GHDZT+PU6/5OOOw6m3gFTb4fNG5VYi4j0MyrwhsjgwYMZOnQoK1asAOD9999nwoQJAGRnZ/Pxxx8D8MEHHzBmzBi/a+fPn88RRxxBeno6VVVVREREEBER4Vk8wteIESP45ptvAHjxxRfbjeuggw7iueeeY4e7GKdHx6TLuOeoazKAHZQVNXi26+r8T28q8Oblwd57w1lnwXXXhTpIERER6e2UZ0t/U7OtxDO+lmvYzFD2vm6O94SKCihxn5NfDrueDk880a0xiohIeGkO3hC6++67Of3006mrq2PUqFE8+uijADz00ENcfPHFNDQ0EBcXx4MPPui5pqqqivnz5/POO+8AcMkll3DCCScQExPD008/HfAaf/vb3/jlL3/JjTfe6OliaMvEiRP5y1/+wuzZs4mMjGS33Xbjscce47XXXmPRokVcpwqbdFazDt4ILA2FJYDzmGJrHbx33ukt/t58M7ifsBQRERFplfJs6Veairc+IqvLvRstTTGSlxe6eEREpMcx1tpwxxAS06dPt4sWLQp3GCL9Ql0dVE2eSdrKr/32n77XWp76fCQAf/4z3PQPF3vzOesZQR65uFzwm9/AQw95r+mj/ySJiPQXej69H1CeLdK9FqfMZvfyT/z2VUcnE19X5mx89hnsu6//RRdcAPfc000RiohIN2k119YUDSKy037/e9i+siRgvy3zdhbU1sKfuZEF7MdyJpDLJhoaoNmUdiIiIiIi4iOupiRgX2x9hbczYvv2wIuaPV0nIiJ9mwq8IrLT7rsP0ikO2B9T6y3wNlbXcT1/BSCFcn7Fv9mxI3DqBhERERERcbhckFhfErA/AguVlc5GeXnAcRV4RUT6FxV4RaQLWNIoCdgbU1fhGQ/K/9bv2G58y/btsHZtsztpigYREREREcBZx9g3z64j2nuwwp1rNxV6fdTmFXg3GgrAukIUoYiI9AQq8IrITqmshEQqiaYh4FhsnbebICf/G79jw9jI1q2wdKn/NdXVIQlTRERERKTXyd/cSCrOXLsuDHnkeA82de62UOCty/fp4K1bAa7Ap+1ERKTvUIFXRHZKQQEtdu8CxNV7C7zJFfl+x0awng0boL7e/5qysq6OUERERESkdypYXeoZV0WlUEaKZ7uuqPUO3piKIu9GYxE0qsArItKXqcArIjtlx47gCrxP7Xod6XgTzTRK2bGpKuCaFvJTEREREZF+acfGSrYxkDqiqY5NoyY62XOsLK/1Dt7Yhirn0bjGMqhf4xR5RUSkz1KBV0R2SlkZ/MBEUihlOOuZw1vsyRdM4AeeijrLc15tnaGEdPLI9uyr3xq4+IMKvCIiIiIijlU1QxnMNmKp5c7f/ERDTILnWNk2d7OEy0W9iQ68eMcOqPkaGktV4BUR6eNU4BWRneJMqWAoJ4WNDOd/zOEr9uRHJrCjIdVzXl2d87mQTM++hq2FAfdTgVdERERExJHvmeXMMHBYHDYuHoBq4qgodq+Bceut7JJTSjR1rGCs59qGbTug0b3YWmNgY4WIiPQdKvCKyE5pa85c3/l1a2udz3N5mtGsIo1iljAt4JqqwFkbREREpBljzB+MMT8YY743xjxtjIkzxmQYY941xqxyf073Of9KY8xqY8wKY8yhPvv3MMZ85z52lzHGhOcdiUhLtmzxjocMgTv3fp4IGkmgmjXjjwTAWti2PYYGojmGVxnFGlIpYUvmFO/cu+rgFRHp01TgFZGd0rzA+9JL3nFT1y7AwNJVDGMD2xnIWkZRShpFxYG/Q6qDV0REpG3GmBzgImC6tXYSEAmcClwBvG+tHQO8797GGDPBfXwiMAe41xgT6b7dfcC5wBj3x5xufCsi0o58n3WKs7MhKSMG6/41vqTE2V9TA3V1zn/SKxjHOkZRRiobNxlwlUJ1PTSWOJVgERHpk1TgFZGdUlYGg8lnFGu49ryvOPaoRsASRzUJjWW4XM55D323JxsYQSFZpON0EhS10EigAq+IiEhQooB4Y0wUkABsAY4B5ruPzweOdY+PAZ6x1tZaa9cBq4GZxpghQIq1dqG11gKP+1wjIj1A6vqlHM5/mc7X5CYUkZbmPdZU4G363NzG1Wvg8c9h1D9gxh3w0+IQRysiIuGiAq+I7JSSEriMf7KG0Vx9/56Yo46knmiqSeAFTvRM05DgqvBcU0mi59rmNEWDiIhI26y1ecCtwEYgHyi11r4DDLLW5rvPyQcGui/JATb53GKze1+Oe9x8v4j0AC4XHFnwCP/lSL5mJjnvPtZigbfmk6+YxUIms4xYajzHN61ZC7UNVByyO7WuaLjzzu4MX0REupEKvCKyU5YuhTRKvDsGDyaKRgCSKXemaaivJ9o6ld4GIommnuGsJ7lkU8D91MErIiLSNvfcuscAI4FsINEYc0Zbl7Swz7axv6XXPNcYs8gYs6igoKCjIYtIJ+zYAZmu7Z7t6JyBDInczu58wz4sIHLDWgAG/2keC9mbZUxlF9aQQCWjWEPlT5UsLR/HA/87gIpNDaz9KL+1lxIRkV5OBV4R2SlLljQr8GZne4YJVDkdvD5V2ygaKSeF9Yzk6qrLA+6nDl4REZF2HQyss9YWWGvrgZeAvYFt7mkXcH9uqgxtBob6XJ+LM6XDZve4+f4A1toHrbXTrbXTs7KyuvTNiEjL8vNhIN4CLwMHMmPJQ3zDdBawH7t/85Czv8qbax/LK1SSxBpGc9CCf3P764fyR9dtDKCIxlUb1UwhItJHqcArIjuloqL1Am881U4HbyuZZCaFAftqa7s4QBERkb5nIzDLGJNgjDHAQcCPwGvAWe5zzgJedY9fA041xsQaY0biLKb2lXsah3JjzCz3feb5XCMiYbZlS2CBNzol3rPpqqoGIKLam2tXZY3wjGNKSnn1x7082yPsOj75oCF0AYuISNiEtMBrjPmDMeYHY8z3xpinjTFxxpgMY8y7xphV7s/pPudfaYxZbYxZYYw51Gf/HsaY79zH7nInoCISZtZCdTWeRdMAGDLEM2yvwDuAHQH7ampaOFFEREQ8rLVfAi8Ai4HvcHL6B4GbgJ8bY1YBP3dvY639AXgOWA68DfzWWtvovt35wL9xFl5bA7zVfe9ERNrSUgdvbJq3wIu7wBtV6821Y8bv4hnvVbMAGlzk4TRgRNPAuo83hjZoEREJi5AVeI0xOcBFwHRr7SQgEjgVuAJ431o7BnjfvY0xZoL7+ERgDnCvMSbSfbv7gHNxug3GuI+LSJjV1zuLP/h14uZ6n/SMp9qZoqHCu8BaKSmecdN1w1nPwbxLLDUq8IqIiATBWvs3a+04a+0ka+2Z1tpaa+0Oa+1B1tox7s9FPuffYK3dxVq7q7X2LZ/9i9z32MVae6G1tsU5eEWk++VvbvTPs7OyiEv3FnhNTTU0NBDZUAeAC0PCpFF+9yghnRyfmVdKFq0ObdAiIhIWoZ6iIQqIN8ZEAQk4c3odA8x3H58PHOseHwM8405O1+F0Ecx0zx+WYq1d6E44H/e5RkTCyCnGWv/OguHDPcOWOng3MswzHsAOBrKNH5jIuxzCBxxIbY1+rxQRERERKVtfRCQuAKoT0iE6mrgMnwJvXY1fnl1FArG5WRRFDGj1ntEbVOAVEemLQlbgtdbmAbfizBGWD5Raa98BBrnn+8L9eaD7khxgk88tNrv35bjHzfeLSJhVV0MqpcTidA2QlAQDvAllPNXU1VpshTfxzGcI9UQ5p1PJYbxFIs7KanuzkOSCtd33BkREREREeqiaDds84/o0Z3HDBJ8Cb2RdtV+Bt5JE0tINm5N3bfWeKdtV4BUR6YtCOUVDOk5X7kggG0g0xpzR1iUt7LNt7G/pNc81xiwyxiwqKCjoaMgi0kHV1YHzghEVRYO7gBuBpaGqjoYyb+JZQRKFZHq2D+dNv3um71DSKSIiIiLSsCXfM7ZZTl9UQkacZ190QzWNZc0KvGnw6T5/9LvPXXF/8IyzqtZTXR2igEVEJGxCOUXDwcA6a22BtbYeeAnYG9jmnnYB9+em6tBmYKjP9bk4Uzpsdo+b7w9grX3QWjvdWjs9KyurS9+MiASqroZBeDsLGDQIgNpIb2dBQ3k1jbWNVJCIC0MliWxlsOf4yTzvd88BRatCG7SIiIiISG+w3dtIETnEyZ8jEr15djzVVG4PLPAmnnAIP+cdXuI49uYzCqfv6TlnCPls3IizWrKIiPQZoSzwbgRmGWMSjDEGOAj4EXgNOMt9zlnAq+7xa8CpxphYY8xInMXUvnJP41BujJnlvs88n2tEJIyqqyGOGrYyiEYinA5eoDbCm3g2VlRTdeTJJFNBJI38gkf8CrzNZZapg1dERERE+jdr4ZPSacxnHqWkEDvMPbNhvH+Bt2JbYIH3yKNi+DxhNifwEgvZm4PmxlFvotnIULYymA1rd0C9pkUTEelLokJ1Y2vtl8aYF4DFQAPwLfAgkAQ8Z4z5JU4R+CT3+T8YY54DlrvP/621ttF9u/OBx4B44C33h4iEWXU1vMfPGcJW9p6+hc+eSgXg/D2/5YMF0VQTz8vJidTWNl1haCC61QJvLpsYNyKT47onfBERERGRHmnHDviuYSJnM5+ByaVs+2u5c6BZgbe8KpJ10WOIqa9kK4MZlwaZWTE88+Dz3PvINI497Cdmn53N2Z+uZP4zIwB48Ke3YXYSxOzS/W9MRERCImQFXgBr7d+AvzXbXYvTzdvS+TcAN7SwfxEwqcsDFJGd4jt/V1wCkJgIQHlyNoXu/XX1UFfnf11eC+skzuEt8shleG1NaIIVEREREekl8r3T7zIg2wW57lkLExMpih5IWX08eeQQOWwWp6b/yPbtkc51ac5pRx2+jaMOeQpid4X4aeQM3eq5X96WOHBVdNM7ERGR7hDSAq+I9G2+Bd74eO88XjEx3v319fh08Dr+jwu5m98xgB1MZSkT+YFv2c19T1coQxYRERER6fG2+Kw6M2SQT7fEiBH84vBtvOqetPDFYigp8c68mJbmHkQkA4UQMwFMNDm53l/987Ymg6sQERHpO1TgFZFO8y/wesfR0d5xXR2YH75nf3ZQSSLrzSi2WWeKhu0M4kcm+N2zqlILPoiIiIhI/5a/xQIGgOzsBr9jqane8datUFfnnBcbC3Fx7gMRyc7nKOfJuZxcb7K+ZWsyuMpDEreIiISHCrwi0mnV1XAI/wNg1xoDNQMgLo40ShhGKfFU4yrNIePVW/iYJwC4IPYR7qs5p4W7WVIoY2DJOigZ4dN+ICIiIiLSvzQsWsT9/JsfGc9o1wjwmeLMN01ev54W9xM5COJ2g8gBAIw02zmCBQwhn9J1o8BWhS54ERHpdirwikinVVfD3fyOsayCt4G1P8CECVzwxTwe4nUA3v/uFaj0ru7bGJ8ELUyz+x9OYy7PQAHw9tNw0uEQmdIt70NEREREpCdJ+mEhp/IgAD+uOg441nPMt5BrlyzhVH6kkkSqEyYC7oXT4vYAEwXG6e4d+d7DvMEtAHy+YR94YzScYT3HRUSkd1OBV0Q6r6CAUaz1bmdnA9AQ430EzFZVY3wKvDYhEYr9bxMT08COugGebdem1USUvwhpLXX6ioiIiIj0bUmbVnjG9aPH+h2bsu0djqeceKqZtuxb/sntANxffz3wF+ekiDi/axInjfKM9274DOZ9BtV7w7nnhuYNiIhIt4po/xQRkUA1NfDG1V8SRSMAG4fs4WknaPQp8FJdjan2FnhJTAy418DMWgqih3i2G1a9A/UbwNaHJHYRERERkZ4sc8dKzzhq4ji/Y0c8dRovciJPcibxJT6rsbWQZzeJGDs6cOf55+90nCIi0jOowCsinfLOO5DLZs924eDxnnFDTIJnbGqqiajyFnhNUmDimT4ggdL4bO/1W9znuyq6MmQRERERkV4ht8LbwZs4faLfMVest5kiubbQM24pz/aYOjVwn8sFVgsci4j0BSrwikin/PSTf4G3PGWoZ+zy6eA11VVE1LRd4M3IMJQlejt4Ny2O4LW3d1WBV0RERET6HVteQW7jJgAaiCRzryn+J8R7c+1MvAXeyNQ2CryZmaxLmRi4f8eOnYpVRER6BhV4RaRTEhJgOBs825vtMM/Yt6sgoraaSJ8Cb0RKUsC90tOhMsVb4G3Mr+SYeXP5bEFjV4ctIiIiItKjlX7tnZ5hbcQuJGbE+h03rRR4Y9LaKPACTx/yfzyAM+fu1uwxcOTBUFvbFSGLiEiYqcArIp1SUwPj+MmzvTbKOzeYjfPp4K3xL/DahESio/3vlZEBNQNyPNtD2QRYTjtrCCIiIiIi/Un5Vz96xhvjxwYcN4ktF3jjBrRd4DVTJ3IeD2Cw3Hbso/DCvyAnp81rRESkd1CBV0Q6ZUue9SvwHnmZdw5e3wJvRG01UbX+i6zFxPjfKzUVXOkDKCMZgGQqyKKAjZv8uxVERERERPq6+mXeAu/2jMACb2SSN9eOp8Y7zmy7wJs9JMozztuaAramjbNFRKQ3UYFXRDrM5YLn79xMMs4cuaWRaex26EDvCT6PjUVXlxHZWA84c4hFxMUEdPDGxUFyimENu3j2jWZ16N6AiIiIiEgPZTas9YzLBo8JOB7lU+D1lTgocCo0Xzm53i6LvPxkcKnAKyLSV6jAKyIdtn49jMfbWVCRMwKM8Wz7dvDGVpdQMGQyaxnJOkYSE2sCOnijoyE5GZYzAYB6otiNb0P5FkREREREeqSI7fmesR0yLOC4SWi5wJs0uJ0C79AEzzgvXx28IiJ9iQq8ItJhDQ1QSCYP8SsWsA9bh0/zO24S4nFhqCSBiqg0Hv7dUnZhLWNZRWwsAQXemBhISYGvmEkjEfyR21jKVHZjMSxf3n1vTEREREQkzD4dfzZXcy33cj6u0eMCT4hvucCbmtNeB6/TkLErP3F43tPYWx6H11/f6XhFRCT8oto/RUTEX0UFfMvunMtDAPzj0BL28Dmet/dJRD54MmA4fSaMqW0EIgGnmNtSgTc5Ge7idC7jn9zFxd6D154Mzz4b0vcjIiIiItJTfJB+FI+SAcBD41s4oVmBdwH7kEQFg9sp8KakQFJSPftUfMZd9RfCdcDZBo46qosiFxGRcFEHr4h0WEWF/3Z1bYLfdmx8BOB0CNTVQV1do/dYKx28qamwg0yGs4FjeMVzzObldWXoIiIiIiI92rZt3vHAgS2cMHo0y5P24CNmcywvsx8L2I0lZOS03NnrK3uIi2LSvTuKi3c+YBERCTt18IpIhwUUeGv8K7a+BdzaWqitcfkda77IWtMcvAAuIlmJd7Vgu70Ag4iIiIhI/7C9INIzbrHAe/nlXLngPF57I9WzKykpsImiJTm5sRSv8inwFhXtRKQiItJTqMArIh3WvMC7zz7+27Gx3nFa6QamLX2bExjAekYQEzO9xQ7ejAzvdhE+GzuUdIqIiIhI/7G9wPtr+qBBLZ+Tlmr9tgcMCO7eOTmwzDfXVgeviEifoAKviHTcunU8yVXkM4TvmcTRR5/tdziOGmawjHiqOXrNS5yw+S7OAF7gBApjX2i3wOv72JgpLQZrwaiPV0RERET6NvvkU7yw+U42k8sLnMjAgae3eF5mpstve9iw4O6fkwMfow5eEZG+RgVeEemw6I1rOJn/ALAyey+MOdvveFJ5Pl+xp7Ox2bu/gqRWF1nzLfDWE0MFiSRRiWlshPJyZ1UIEREREZE+rO67Fcywi5jBIn6KmkRiYsvn7TKqkWzyOJvHqCCJkRHDgWPbvX92NpqDV0SkD1KBV0Q6LHJ7vmdcnTI44HhUcssLPFSSSGorBd7MTP99RWSQRKV7o0gFXhERERHp82rW5tE021llak7LJ61Ywc9+epkcFnIMrwGwft1+BFPgzclxmi7qiSKaBqiudhbN8J1jTUREep2IcAcgIr1PbIG3LbcmIzDxjEpJaPG6CpKIjW15kTXfDl5QZ4GIiIiI9D+uTXmecc2AVgq8X33F+Puu9BR3AVKGtNLq20xODoChDJ/midLSTkQqIiI9iQq8ItJhSQVrPePqwbsEHI9OabmDt60pGppPseu30JrmBhMRERGRfiAi39tI4Rqc3fJJCYHNFOlDk4K6f467ZlxCmnenCrwiIr2eCrwi0mFpxes84/qcwAJvXHI0DUQG7G+rwNucOnhFREREpL+J2eGdCs3kttLB28LEvCYpuALv4MFOY0Upqd6dZWUdilFERHoeFXhFpMPSyjd5xq6hwwOOp6ZCNYFdvE1TNLRW4L37bu++IjIoJ4nStFYSWxERERGRvqS2lvhK58m1BiKJH5bV8nmpqYH7WluNrZnoaBg4EN7hEJ7mVCrmngFpaZ0MWEREegoVeEWkw9Krt3jGEcNyA46npLRe4G2pg7dpTt4LL4SffoJLL4VzeZAUyrntvC/gxBO7NH4RERERkR6nsNA7JJOBQwKfiANaLsgG2cELzjQNV3ITp/E0P1xwA+wS+ESeiIj0LirwikjHlJWR0FgBQDVxxA5ODzglMhJqTOsF3uaLrPlOI7brrs6jY9b9z1N5ue262EVEREREeqodO7xDBjBwYCvntdTBm5wc9Mvk+Dwgl5dnWj9RRER6DRV4RaRD7Gbvyr555DAgs+WksC6y9SkaIps1I4wY4b/tm5+Wl3c2UhERERGRXqR5B29rBd6WOnjTA5suWqMCr4hI36MCr4h0yMaF3gLvtqgcxo9v+bz6KG+Bt5g0vmBPCskkJgaqqvzPbf5EmV+Bt0JJp4iIiIj0A806eAcNauW8+HiIivLf14ECb3a2d5y3RSUBEZG+IKr9U0REvD7euiufcx855JE1cQj7tJITliYMYV1NCSWkcRbz+Y4pAMTGwnHHwWOPOee1NL1ucjKkUMpufMvENevgvaFw8MGheUMiIiIiIj3B/vtzctKrxFSUsZXBPN1aB68xkJUF+fnefR1YKC0nB2axkON5iemvbIWph8CZZ+5U6CIiEl4q8IpIh/xQNpQHOA+A609q/bzHT3mT++4L3B8bC0cfDR9+CCtWwNy5geckJ8NkvuMjfgZLgav3UoFXRERERPq0uvRBPF9xNAAREZCR0cbJw4Z5C7ypyc52kHJynFz7Mm6FNcDHsSrwioj0cirwikiH+E6vkJLS+nmtTd3QtKDaAQc4Hy1JToZSfBaPKC3tSIgiIiIiIr1OQYF3nJUVuG6FnwMPhKxayI6F394MEycG/To5Ocq1RUT6GhV4RaRDfAu8TcXalvjO7eWrrWuaBBR4S0qCik1EREREpLfavt07bnWBtSY33gglo6F+I2RM7tDrZGerwCsi0teowCsiHRJsgTcrC+Kp4q/8nWLS2cpgnoqYR0xM+6+hDl4RERER6W+2bfOOW11gzZeJ9f8cpPR0qItJhjpnu7GknLaahUVEpOdTgVdEOuS3H5/Mb9lCIZkklt0OjGrxvOz6DfyGl7iSmwDYRC5PuOZhTPuvkZwM5STjwhCBhcpKaGgIXC1YRERERKSP2O3i/chnFYVk8kTMM8Ckti/oZIHXGIgfmAybne2GYhV4RUR6O1VLRKRDdilexBDWAbAg9tZWzxv8w3vcwSWe7WLSg36NhAQwERGUuVJIw929W1bWzkoTIiIiIiK9V2zhFtLYxmC2kZoVxGNvEXFgopyPDkoa4i3wusorOny9iIj0LBHhDkBEepeU+kLPOGrQgFbPSxznv5JvRwq8xkBSkqZpEBEREZH+I7Zyh2ecMLT1PNvDxHa4e7dJak6SZxxRUd6pe4iISM+hAq+IBK+ujsRGJwFsIJLYgamtnmpGjvDb7kiBFzQPr4iIiIj0I/X1xNc6+W4jEaQOT2v/GhMLEfGdermM4cmecVSNCrwiIr2dCrwiErwd3q6CHQwgIamNf0KG+XfwlpDWoZcKKPCWlHToehERERGRXqOoyDMsJp2swUHMimsSwMR16uUGDYul3j1jY2RjPdTVdeo+IiLSM6jAKyLBK/ROz7CDASQltXFubCwkJXo2F7IXu+4a/EslJEAZKd4d5eosEBEREZE+qlkjxaBBQVwTmdLpAm9OrqECn2ReubaISK+mRdZEJGiN2wo9K+wWksmYge1c8OxjcMrpbIkfzdoxZ/Lkv4J/rbg4WMlYstnCqMmxpCYnt3+RiIiIiEhv5NNIUUgmue3l2QARaWA6N0VDTg7cxUVE0UBqbhIXxgSxqJuIiPRYKvCKSNDK1hV6ZtIti8kkOrqdC+YcAT/9iezUn/FuUkKHXis+Hi7hDgDeuWkzPz8gt+MBi4iIiIj0ArZwB8Y93sEAdg+mwBuZDlGZnXq9nBy4hmsByHa5uDBZD/eKiPRm+ldcRIJWsd776FhNYpAr+8ZEQmTHirvgFHibVFc1dPh6EREREZHeomqTN88ujcr0y4VbZaIhdlKnXi872zveutXQoHRbRKRXU4FXRILWsNX76FhNUhDdAibCSTw7MTeYX4G3urHD14uIiIiI9BZVG33y7GAaKZpEduBcHzExMNDdJexyGbZu7dRtRESkh1CBV0SCFlHkTTwr44J8HCyic6v7+nfwqsArIiIiIn1X9dYSz7gxJb31E7tQTo53nJfXLS8pIiIhojl4RSRoa+b8lgte+TmZFJKUPT24iyJSO1XgjYuDUazhAD5iyXnlPPruKuY9ewSRke1fKyIiIiLSm3z788s59D9nkUYJk8bntH9BF/hFw4MM4X8kU07D63+APQ/rltcVEZGupwKviAStaMAY3mQMAMcH+zRYZBpEdHx13/h4mMUXPMyvAHj6xVP58MMjOPjgDt9KRERERKRHy6tK5yf3csZTRnTPa05u/JbZvATARyuO6Z4XFRGRkNAUDSICgMsF778Pixe3fk5trXccGxvkjSMzITKjw/HEx0M5yZ7tJCp4++0O30ZEREREpMfbts07bpobN9Si0ry5dm1hefe8qIiIhIQKvCICwH/+AwcfDHvsAUuWtHxOXZ13HBMT5I1jJzsLrXVQfDxUkOTZTqackSM7fBsRERERkR7Pt8A7aFD3vGbUgFTPuLG4tHteVEREQkIFXhEB4MwzvePf/rblc2prvIudBd/B27lFIpKT/Tt4kyn3KzCLiIiIiPQVlRt3EEc1YBk8uHteM2ZgmmdsSkq650VFRCQkVOAVkQDFxS3sbGjgF79PZTM5fMckYmNsSGMYMiSwwFtTE9KXFBEREREJi1vfn0Y1CdQSy1A2dctrJmSnecaRFSXd8poiIhIaWmRNRALYlmq3ZWXE1FWSQyVJVBATa0IaQ2Zm4By8KvCKiIiISF+UUO9MkRBDPQNGJLdzdtdIyvFO0RBTpSkaRER6M3XwikgAl6uFnaXepK+EtOCnaOik9PTAOXhV4BURERGRPqexkWTrXeQsa1T3FHhThqV5xnG1Jd3ymiIiEhoq8IpIgBY7eH0KvKWkhrzAu9tuMHKSb4G3gtqqxjauEBERERHpfSq2lHnGZSSTkh7ZLa/r28Gb7CqlsrJbXlZEREJABV4RCdBiB6/PwgslpBETE9oYIiLgsy8iqYpO8e4sL2/9AhERERGRXmjHWm8jRUVkKia0M6F5mBT/9S4KCrrndUVEpOupwCsiAdqboqE7OngBEhPBleztLIgsLwn9i4qIiIiIhEJDPlR9HrC7eL03z66OSQ04HjLJ/gXe7du776VFRKRraZE1EQmYkqGnFHgBtk09hHc+LKKUVCrrorvnRUVEREREulrF/yAiPmB36UZvnl0bl9Z98aSkcO+Y21m8KpkS0vh1cfe9tIiIdC0VeEWE6mr/7aqqFk5qNkVDejc1F3x30b854UNnfLSeORARERGR3qpxO7gCGxYqt3gLvA1J3djBGx3NR9P+wPOrnM0TVeAVEem1VC4REcrK/Ld9mnVb3FlKKjk5oY2pSVycd1xT0z2vKSIiIiLSpWwjuKqgsRQaCv0O1Wzz5tk2pRsLvEB6undcVNStLy0iIl1IBV4RCVi7rK6uhWKqT4G3hDQVeEVEREREgmV9HplzlfgdqivwbkekdW+BNyPDOy5WB6+ISK+lAq+IBHTwQmAXry0u8R4jlSFDQhtTExV4RURERKTXc/kWeP27KxqKvNtRmergFRGRjlOBV0RaLPD6TLkLQNGfbmIi37MPC/go6SiSkrolNDK//4i/cxV3cjHTt7/ZPS8qIiIiItKVrE+ngss/+b4v7UriqGYQWyn+9eXdGtaRb13AYnZjFaNJXfl18BfWb4SSR0MXmIiIdIgWWRORgCkaILCDd3NNJsvJBGD80G4Iyi112adcxQ0A3FeWBBzefS8uIiIiItIVbDVU1sHmUpiwFhJmew5t2wa1xLGdOAaM7t6wBhStZhBLAHDt6EALb+0yqN/gzCsckRCa4EREJGgq8IpIi1MfNC/wbtrkHWdnhzYeX5FpyZ5xXF0LlWgRERERkZ5u/VrY519QWAXHTYIXzwTj/Dq+dav3tEGDujcsk+rNtV0lHci16zc6nxt3qMArItIDaIoGEaG2NnBf8wLvRx95x+PHhzQcP34F3gYVeEVERESkF/rHfU5xF+Dl76FsAwCVlc4HQEyMJbV7p+AlKtU775otCzLXdtVAY4EzbiwMQVQiItJRKvCKSFAF3vefLSQG58QDD+yGoNyi0r0F3gQVeEVERESktykpwfX4f/33LfkKcKZnmMj3jGc5UwZswjQ2dGto0RneXJuKiuAuasgDa51xU6FXRETCSgVeEWm3wHvbbbBwcy61xFFNHCMHVwdeECK+SWdCYwcLvK5KsI1dHJGIiIiISAf88AMRLv+ctPKNTwGnwPscJ7OciXydPxx++qlbQ4sd4O3gjagMMtduyPcZb+/iiEREpDNU4BWRFgu85WX1nvFfLq0hzt29G0kjQ0bGdVdoRKd7k85EW47L1YGLSx6Bqk+7PigRERERkWCtWOG3uZpdyFvl5Nb5+ZCKT2dFN8/R4NtMEddQ3uLaHAEqNsGDX8DNH8LSb0MXnIiIBE0FXhHxFHgzKeBybuIMnqC20juflm/SWUIaWQNNt8VmUrxJZzLlLRajm5s/Hy76XTV5m+s0L5iIiIiIhFXjeu9qxTdyJWNYzSt7XAJA3mZLJj75akZGt8bmm2snUUFxcRAXXfUAXPU/uO0TOOhOWPxVyOITEZHgqMArIp6/1P+H07iJK3mCeey67HkASkr8C7yupFQiuvNfjmT/Am97XQWrVsHZZ8Pd/xfPLy4+RgVeEREREQmr8k3equkOBgCwanUUAMWrComlDoCa2BRITOze4JK8T8slU95ugXfhB5U0Pr7Qu6PBBf99LUTBiYhIsFTgFRFqa2EvPufnvOfZN27t+wBs3w5plHj2Z41J697ggizwLlsGp54KZ57p3ffOR6NpqC3yLgIhIiIiItLNareWeMbFpAOwarUz5VnN2i2eYzUZOd0aF+CXaydRQVFR66feey9cetASImvr/A/88H2IghMRkWCpwCsi1NZCLpupJMGzb+h2J1ErL/fv4I1I7955wZonna1N0XDppfDss/Dll/77121IAldJ6OITEREREWnDgjPuJ5s8JvADr3IMACvXZEBjMY0b8zznNQ4Ob4G3rQ5elwuuuw725nP/AwOTICkmhAGKiEgwosIdgIiEX20tPM/J/JcjKCeZCCzZZWthwwbKy4f7dfB298IPxMXxbOq5bC5NopxkTq1y0dLfpt59t+XLN2xKY8y0bRCZHto4RURERERakLcjjnyyySebTAo4mleZvO07ah6NJ3Jbiue8yGHZ3R/c7rtz637P8eanA9jKYP5c2vJp330H27b5F3gXH3MGuz+0CyQd3k3BiohIa1TgFRFPV2wViXzGPuzHAmfHiu8oqwlzgdcY/jHiAZYudTaPrQs8JXAGBsud/J5/cTHrN6VB4zZgXGjjFBERERFpQWGBt0HhEN7hKc4AoGz+nsQXz/GcF79LGDp4Bw5kzYSj+fDTWABKWynwfvut83kaSzz7/us6nN1ZoaflRER6AE3RICJ+0x5sYqjPxmrKy2EI+d59gwd3X2BucXHecUtz8JaX+2/P5mMu5i7O4VE++mwENLaSqYqIiIiIhFhpaaNnvIJdPeOGtdsY1OCdgzd2ZBg6eIG0NG9ZoLUC7/ffQxLljGQ9APVE8X7+DOegcm0RkbBTgVdE/Aq8efh0DuStoawMcvDODUZO93cWtFfgLSjw3z6BFwE4h0ep+mI7uCpCGJ2IiIiISOviN/7EILYSQy07or3NElE7ShnNau+Jw4eHITpITY30jFsr8K5bB4PYxvdMpJ4oVrArS1bmOk/SuVTgFREJN03RICLElBXyd+6khDT2YqH3wOIllO8Nufi0yPbAAm/z1X6b5gbLJY+IsiqwKvCKiIiISBg0NHDTq1O4CXBh2H9aDa6vDRFYUmqL2cYg1jOcEWyACRPCEmKqp4PXUlJiWjwnLw/WMJrJfE80dQxkO5FllRS8lM/A+p9gl2w4XHPxioiEizp4RYSU0k1cxQ3cymXM4gvvgQ++obDAcjr/IZYa7v3DF3Dwwd0e30l5d/IUp/EaRxH33dcBx8vKvONEKpiKM2GvC8MHlfthG1XgFREREZEw8GmJLSWVSbvHsJ2Bnn1X8g9Gsp7zTlkDI0eGI0LOuGYXikmjgSgqi2pbPGfzZu94cE41eeRyAB8x8PwH4aJn4b77uilaERFpiQq8IkJsVbFn/Bn78Dhncm/WZfB/x1GwtR6AOmKJ23UYJCd3e3yTiz/mNJ7mKN4gasvGgOO+Bd7pLCIKZ56zYtI51vUydZe/DHff1V3hioiIiIg4ir15dglp7LYbLMfbqbs7iwEYMSkRIsLz63lsdQlplBKJi/qi8oDjDQ2Q77MkxwF7rwdgM7nenXmbQhyliIi0RQVeESG+xpt4FpPOWTzOncmXw2FjyN+yzXNs0ODIli4PufpYn6Jy8xXV8C/wTmGZ9zqieYRfEvvwAnjumVCGKCIiIiISqKTEMywmnd12g0VM9+ybgfN02q67hifPBnAlenPthqKygONbt4LL5YwHZVWw62jndwf/tTvyAq4TEZHuowKviBBXU+IZF5MOQHlFDAD5W6M9xwYNCs8/GfVxwRd4J/OdZ/w0c70HfliOswqEiIiIiEg38SnwlpDGyJHwQ/wenn1XchNgGTc+tvtja5Kc4hm6SgNz7c2b4Qye4DYu4YTk1xk91JnGYSuDaWwqKWwv9F+5WUREupUKvCJCQq3/o2MAZRWxVFVFU7eihCN5nVGsYdTI8PyT0ZjgLfDaDhR43+IwKklwNopL/R6RExER6c2MMWnGmBeMMT8ZY340xuxljMkwxrxrjFnl/pzuc/6VxpjVxpgVxphDffbvYYz5zn3sLmNMyyssiUin2CL/J+VSU6F411l+5yRGVLHLmITuDs3DpPg0U5QFdvDm5cFRvM4l3ME9a09jxqoPAGgkiqIo73zCfvM4iIhIt1KBV0RIqCvxjJs6eKuqYvjux4Ec3/gir3M0axhNxvV/DUt8URneroL6wsCksykPjaKeSXzv2b+MKWxiqPdEPTomIiJ9x7+At62144CpwI/AFcD71toxwPvubYwxE4BTgYnAHOBeY0zT8+D3AecCY9wfc7rzTYj0dXXbSzzj8sg0YmJg6N7D+YjZnv3PJJ1FTGz4pmiITPfm2qYisJlixw4Yx0+e7dT9J3vGG61ybRGRnkAFXhEhsd6/s2A463mEcxh+2o3cwFXeEydMCkN0kDjEm3TWtbDwQ3W183kWX5BEJQAbGco2BmluMBER6XOMMSnA/sDDANbaOmttCXAMMN992nzgWPf4GOAZa22ttXYdsBqYaYwZAqRYaxdaay3wuM81ItIFaraVeMbVsU4jxUEHwVnM5wnO4GWO5YtjLwxTdI7IdG8Hb0xtGfX1/seLdljGsMqznbH3VBLcDccbG5Vri4j0BCrwigjJ9f5TNNQRwzk8xuDi9f4nTpzYvYG5peR6C7y2JLCDt2m6rz34xrPvLQ4DjP/qvps3hypEERGR7jQKKAAeNcZ8a4z5tzEmERhkrc0HcH9uenY6B/Bd4n6ze1+Oe9x8fwBjzLnGmEXGmEUFBQVd+25E+rD6bd48uzYhDYAjjoCMKanM4wnOTHiWs37fEKboHCbFm2snUx4wS0P11lLiqQGgLjoOkzmaESOcY8q1RUR6BhV4RYSkxhLPuJh08skmj+zAE8NU4E0f5u0qMBWtF3j/xe85dc/PeOOIS6k55VhASaeIiPRJUcDuwH3W2t2AStzTMbSipXl1bRv7A3da+6C1drq1dnpWVlZH4xXptxp2lHrHCakAxMbCh28uY/7dL/Pl2w8xZlxiuMJzJHtz7RTKKC31P9y4ZZtnXJ2SDhHxjBzpbOtpORGRniGkBV4t/iDSO6S6vJ0Fex/u/Cf5FTP9zilLyIIBA7o1riYZI7xdBTG15QEL9PpuH3POFo58NJG4/fcBlHSKiEiftBnYbK390r39Ak7Bd5t72gXcn7f7nO8zUSa5wBb3/twW9otIF6mrcVFDLACu5FTP/rSMBOadspSJ4wogMjw5tkezDt7mBV6z3VvgrU/PBPAUeNVMISLSM4S6g1eLP4j0cC4XvGiP59/8khc5nj/e5nTu/pcj/M7bNGrPcIQH+C/8kEJZQO5YU+Mdx8Y0golk+kynE8Iv6dy4IZRhioiIdAtr7VZgkzFmV/eug4DlwGvAWe59ZwGvusevAacaY2KNMSNx8umv3NM4lBtjZrkbKOb5XCMiXWDhvPuIp4ZYavh211O9B6IGeccRGd0fmK9mHbwlJf6Ho4q8BV5X5hDAW+Bdwy6sz5wCh4+DWdNDHamIiLQiKlQ39ln84WxwFn8A6owxxwAHuE+bD3wEXI7P4g/AOmNM0+IP63Ev/uC+b9PiD2+FKnaR/qS+Hm7lMgCioy114wwnnABPvXg6Z/AkB/Ax37A7y0+9mvBM0AAMH85dg69nxdY0NpPLNc1mafDt4I2NbYDITEaPcf4+5FfgzdvM4sXw8MNwyimw//7dELuIiEho/A54yhgTA6wFzsFp3njOGPNLYCNwEoC19gdjzHM4ReAG4LfW2kb3fc4HHgPicfJr5dgiXaipWFpHLEm+ddyoIWDcv45HhrnAe8YZXPTaPrz+6WAKyeSJZh28scXeAq8Z4jwM0FTg/YK9OH+3D3nrsbsg/ZzuilhERJoJWYEX/8UfpgLfABfTbPEHY4zv4g9f+FzftMhDPUEu/iAiHee7Sm50tDMdX0IC1BDPz/gIgwtLBK+O3xG2GBk4kP8M/zNfbnVmZ7mixv9wbS3ksok4akhsLIeIAcQ6T8KxgeE8FXE6p1+4HiYexezZUFEB994LdXUQHd29b0VERKQrWGuXAC21yx3Uyvk3ADe0sH8RMKlLgxMRD9/pDlJTfQ6YKIgeCrYRTJiXxhk8mJJhiazH6eRtPkVDfMV2zzgq1/lVfJddvMdXr3XPIewqATJDGKiIiLQmlP8n6fbFH7S6r0jH+Rd4nc8JCd591v3PxJBc34y0+8XFef8pqGlW4K2pgb9wA6sYywHzzodHFhIT4xwrYgBnuJ7E/uVgXGccRkWF97riYkREREREQqbVAi9A4qGQclq3xtOa1FRvrt18iobkKm8Hb+xQpz9r9Gjv8XXrY6ivj4DGolCGKCIibQhlB29Liz9cgXvxB3f3bpcu/mCtfRB4EGD69OktFoFFxF9Dg3ccFeUkdr4F3iZDskP5z0X74uK845YWWRuEN/Fk8GgiIiAqyvv+GhoiqCiu8rvO972LiIiIiHS1Qd+/yyySKCOFtORxQKT3YNTgsMXVnG+B17co3dAA79YfQD1Ovn307hMA5/eFnBxnDePGRsP6TWmMSVH3hIhIuISsYmOt3WqM2WSM2dVauwLv4g/LcRZ9uInAxR/+Y4y5HcjGu/hDozGm3BgzC/gSZ/GHu0MVt0h/07gxjye4nDJS2F63C/BH4uMDzxsQ5sV9m6ZcgMAO3oACb7aTeMbEeIu4ZeWxZI6b5Xdd8/uIiIiIiHQZa7ngjSO4COeRuSeTqvEr8PYg6cku0igmjhpKS4d49peUwDPM5Rnmkp5eT9FB3vnNxoxxCrw/5x3sPz+B5NfhN6kwa1YLryAiIqEU6pY8Lf4g0sPZvC2cwVMALKvZA/hjix28vh204fDHpWdyBatJppw1eW/j29gfUOAd4swNFhMDVe6m3edfD5xeUAVeEREREQmZmhqiXE5xt5YYkrPCnFC3Zv16/vjnkfwRWMcIbihd5zlU5DPrQka6y++yMWPgo4/gJJ5n7IsvOjtnHKcCr4hIGIS0wKvFH0R6PlvifQarIjIFaHmKBtPSbNjdaJeSxeSwHIA1JSX4FnhramAwW70nDxoE4JmH9zDeZMSND/MRt/A0c3mA84DAqR5ERERERLpMWZl3SErgHLw9RVKSZ5hCmd8cvL5rVqSn+8+COH6883mzT15+56Wbee9N+M9/ICUlFMGKiEhLwrxcp4iEm6vEm3hWRjpZZ0sF3nCrjfVmiLa0zO9YZHUFiTitujY2xpNNNk3rMIZVzCl+mdl8whSWea5TB6+IiIiIhExvKfAmJ3uGKZRRWuIt5Pp28Kan+1+2557O5zxyPPsyqjfz3//ClVeGJFIREWmFCrwi/Z3PKgpVUa138IZbbZxPC0CZf4E3tcY7PYMra6Cn3bipg9e3qyCXzZ6xCrwiIiIiEjI+eXYpqT23wBsbS2N8IgDRNNBY5POE3+YSnuMk7uV8ztl2q99lu+0G0dH+uXYOeYDTwdvYiIiIdBMVeEX6O59iaWW0k3WOGROuYFpXH+ftLDAV5X7HUusKvMcGelcjVoFXRERERMKmWQdvWlr4QmlPw2BvvpxQ5M2Xazdu4yRe4Hzu56AN8/2uiY93irwt5dolJfDdd6GNWUREvFTgFenvfDoLqqOdLtnddvM/5fXXuzOgljXEezt4Tbk3WbYWkusKvccGZnnG7RV4NQeviIiIiISK71RoZaT07Dlpc7z5clKJN1+uz/fm2TVJAwIumzvXf4oGp4PXmeJhyZKuD1NERFqmAq9IPxdR7lvgdTp4Y2PhpZfgkEPg2WfhyCPDFZ1XQ6I3I96+2pss19dDJj4F3qxMz7hpDt6tDKaBSAAGUkAsTuvuG2+EMmIRERER6c9qt3vz7MrIVKJCusT5zokc7i3wpldu8oxdBTs84/rUTJq74AI48Lg0KnHmeEuiklSc960OXhGR7qMCr0g/59sNWx3jnRjsuOPgf/+Dk08OR1SBMkd6C7yblpexerUzrq2FSBopIBMXBjK9iWdTB6+LSLZFDPHsz2YLAA8/7HQAi4iIiIh0tept3jzbd8Hgnsi3wDuoIc87lVmht5GiMT2wwBsTAy++ZEgY07yLF9asCU2sIiISSAVekX7Ot4O3JyeeI3dL84wHsIMff3TGNTXwCL9kIAUMTq+AG2/0nLdsmff6ja6Wp2lYvz5UEYuIiIhIf1ZX6C3w1sX31BXWHCbXW6DNZbNnFreoYp+1LgYETtHgvT4w1964sYuDFBGRVqnAK9LPRVb4TNEQ03MTz9aSTt95dKPjIiAuzrNdV+c91to8vD5NCSIiIiIiXaYyKpUfGUce2VQnZbV/QTj5FGiHssmTa8eUeQu8kYPbeA8tFHg3bOjaEEVEpHUq8Ir0c+t//mv+zA3czJ/Ynjom3OG0buhQ79An6fQt8MbG+s+3cOml3nFrBd6Ski6NUkREREQEgJ8OvpAJ/Eguebw9/g/hDqdtI0YAUEMsjUR6cu2ECm+BNzpnYOvXH3YYnHcIrmvnsSRqBgBFRVBREaqARUTEVw+e5l1EusOmPU/kH+7xMT23gRfGj+f5Q+7ioXd2ZT0jOMf9xJtvgdeneReAq6+G6693xr4F3nFJm8GdbKrAKyIiIiKh4JtnpvbkPBtg3DhOmfU9z38xHksE77oLvEk13gJv3NA2OnjnzoWjUohoLKL08Sngnn930yYYPz6EcYuICKAOXpF+r77O5RlHR4cxkPakp7Nq33m8yyGsYqynq6CmBo7gDQ7iPSa7lkJ9veeS6Gg47zxn/C4/53zu5Whe5d1xF3nOUYFXREREREKh1DsTWs8v8EZHUz8wB+suETTlyGl13gJv4oh2ppmIzIDGYoYN8+7SNA0iIt1DHbwi/Vx9XT0QC/TwAi+QkhLpGftO0fA488igGFYCxdtgoPfxsZEjnc/fMYXvmALAvAnAImd/cXE3BC4iIiIi/Y5vgTctLWxhBC01zdv/VVoK1dUwwHoLvPHD2inwmkRwlTJ0qAUMAHl5oYhURESaU4FXpJ9raGigqcAb1cP/RUhJ9QZY5p6ioa6y3inuAi4MEc1W901PD7zP6F0aAadY/PXXIQlVRERERPq5EQuf5jRclJJKZvzPgMRwh9SmtDT/ZoriYvgrfyeHPIbHb+P8IYPbvkFEIthGBmXVAzEAFBS0fYmIiHSNHl7OEZGQKitjzvUH8yYDyGcIn0U/Eu6I2pSY5LQYx1ENZXVAKq6CHZ7jZdEDSIuM9Lvm4IMD7zPnkEqu/lsKAAsXhixcEREREenH5nxwGXNxWljnR22kpxd4sxLqmMZKhrOBlKUZFB+6P09yJgDjhjdwfmIb5YPGRjj3L7BxEZesfIV/8i1g2Late2IXEenvNAevSH9WXMygtV9zGG9zCO8QHx/ugNo29tNH2chQqkng8OX/dHZu3+45XhYb+NhY0xQNvkaPLMHgzD2slX1FREREJBTia0s847hBPX0SXth9w+t8y+68wnHsvvD//KYyS083bV8cGQmvvA0frmFw3lIG4DRh+KTqIiISQirwivRnPhODlZBGXFwYYwlCTFwEQ9kMwMDyVQCYQu9zXxVxLc8LlpnpfH6Ec1jLSNKGj2F3FjvXVIC1IQxaRERERPqfhgbiGioBZxqx5CFJYQ6ofa5hwz3j1OL1FBV5j6WnB1E6GDLEOyQfUIFXRKS7qMAr0p81LY9L7yjwukaN9oyHVK4BILLIW+AtTxgYcA14p2kYxDZGsh5TW8ewyC2A8zRZXV2IAhYRERGR/qlpwQiglFTSB/T8X73NiBGecXr5Rr8O3oyMdjp4AbKzvUOcXFsFXhGR7tHz/y8jIqHTyzp4I8Z6C7y5NWsBiNzhzRqrElru4L32WqehoDjOm3SOiN3iGWuaBhERERHpUj6NFKWktrjwb08TOyqHBvdCxBm128h+898sZjfe5DAO3fpY+zdQB6+ISNiowCvSnzVLPHt6gTdm+BCqcYJMcxVDSQnRJd4O3qqkljt4x46F9eth7iXepHNYVL5nXFkZmnhFREREpJ/yaaToLQXelIwo8sjxbA/57h12YwmH8Ta5tWvbv4FPgbepg7egAFyuLg9VRESaUYFXpD/rZVM0JCYZNuCdG4wNG4gp9bYF1CS33MELEBMDEbneDt4cow5eEREREQkNW1ziGZeQ1isKvGlpsJ4Rnu0JP77gGdeNGNv+DXK8xeFRMRsBZzo036keREQkNKJaO2CMeS2I64ustWd3XTgi0q2adRYM7OEF3oQEWMwIxrHC2bFhA3El3k7c2tSWO3g9fOYFG4IKvCIiEj7KtUX6tuqtpSS4xxWRqcTEhDWcoKSmwqeMYjafABCBdyXi2ml7tn+D4d5GjNFR68C9zsX27TBgQJeGKiIizbRa4AXGA79q47gB7unacESkWzXr4B3Wwwu88fH+XQV23XoK0kZRwkyGkE/1gNy2b+Dz2NigRm+B16fOLSIi0l2Ua4v0YVVbSjwF3prY1LDGEqzUVFjHyBaPJYwf3uJ+Pz4F3qF2g2e8fTuMH7/T4YmISBvaKvD+xVr7cVsXG2Ou7eJ4RKQ79bJF1iIjYaMZTlMzgWvdel7f52pu+SIDgH+MbuNi8Ovgzar3Fni1+IOIiISBcm2RPqxmuzfPro1PC18gHRATA5ujR0K9//4CMhkwJIgW5GHDPMMh9ZtxknajXFtEpBu0WuC11j7X3sXBnCMiPVgvW2QNIC96pOdxL7tmFbXDGzzHYmPbuXjQIDAGrCWltoAo6mkgmq1bQxeviIhIS5Rri/RtxYlDWcrhpFFCQVoQ89f2EIXJo6DIf18+Q8hqfakLrwEDICEeqqpJaKgkjRJKSGfbtpCEKiIiPjq1yJox5tyuDkREwuCyy7h+3P9xHvfxNTPaL5D2AFtiRnjGdkc+tTXeFoN2C9TR0TDIyU4jsJ7VfVXgFRGRnkS5tkjvt2ry8RzJf9mXz/hw0u/CHU7QitNHsYFhfvu2kE1mZhAXGwO3XQMPnMBDp95DJYkAFBR0fZwiIuKvUwVenDnBRKSXKxs3k7/+9Fse4DzWMSq4v8yH2aqEqUxhKcmUUfjQOdRU13iOBVWg9pkbbDjO3GB6bExERHoY5doivZxvUbM3LTBmBw9hBBv4NQ969hVGDQm+EeTc38Jxk6iZMoJ6nGkdVOAVEQm9tubgbZW19oGuDkREut8zz/hvDx0anjg6whUbz3dMASDyvSUc+uVyYpnMp+xHcvLE9m9w9z1Q/ihvLN+dT3+3HwDFxaGMWEREpGOUa4v0fr4NBIMGhS+OjsrJcT4PId+zryxxcPA3iEgEE03WgCrPLhV4RURCr90CrzHm6pb2W2uv6/pwRKQ73dNsbe6MjPDE0RG+3QMxn/zEqWsWcCpwEf9i2LAgCrwzZkDRpySVRdHUIKUCr4iIhItybZG+yXfe2d5U4M3NdT6vYFcqSCSJSqpSs9u+qLmIJLIGVHo2VeAVEQm9YDp4K33GccCRwI+hCUdEutPee8OyZd5t0wseCPUt8EZsL/eM8xniO/tC2yKSSU+t9myqwCsiImGkXFukD9rjs3/xF8opJZXcuLlAMJPYhl9TB+9znMIipvM488gfPqtjN4lIZmBiCcfyMvkMoaCgg9eLiEiHtVvgtdbe5rttjLkVeC1kEYlI96ip4ebHhvN70tjOQL645dNwRxSUmBiIoJFstpCyYKlnf1HMEAYODPImEWmkp232bKrAKyIi4aJcW6RvOnjFPZzDKgC+iDuE3lLgbergBVjLLuzHp/x2ageX7nnlOyZecA8vU8+znMzvCp7t2iBFRCRAZxZZSwBGdXUgItLNSkpIqdnOrqxkLCs9f63v6WJj4XzuY1Oz1X2TxmYTEey/aJFpZFRu4Q5+z0G8R0lJl4cpIiLSWcq1RfqAhLoSzzhteGr4Aumg5r8TWCIYNqzlc1s1YRwR1fUAHMF/KS+sxeXqmvhERKRlwczB+x1g3ZuRQBagOcFEerni9SWku8elpJKcHNZwghYTA2tb+L03fcKQ4G/y9Gcknncbv8disLxfdTB1dc69RUREupNybZG+Kamx1DPOGNl7Cry+HbxNRo7s4E0mTYPcVNhcShKV7GJXUVQ0icze0cQsItIrBTMH75E+4wZgm7W2IUTxiEg3uf7SUpqeCS0hjaSksIYTtNhYWMrUgP3JA+ODv0nKAEyj87v0OH4CnGkaetMCGCIi0mco1xbpY+rLa4ilDoBaYhiQExfmiIKXmwsJCVBV5d03eXIHbxKVCWOzYLNT5B7LSgoKVOAVEQmldh9ottZu8PnIU8Ip0jd8/1mJZ9ybOnhjY2ELObzHQZ59T3EaKSkduMl4b5a6O4uJoFHz8IqISFgo1xbpe7atKPGMy00qkVG9YCVjt8hI/4JuSopl9OgO3iR6FIz2tgI7Bd6uiU9ERFrWmTl4Mca80dWBiEj3aWyENEo8272pg7dpGoU5vM0DyRdxF7/jt9zTsQLvuCkwyHnDWRSyP5+owCsiIj2Gcm2R3m37Ku/0DFUxvWd6hiZXXQXGOE+7/fGPhsjIDt7AGBg3zbOpAq+ISOgFM0VDS37dpVGISLcqKYFUvIlnb+vgBWgkij82/pNKnIpvhwq8UWlw5AR4+CsAjuFViot/1rWBioiIdJ5ybZFerHB1iWdcl5AWtjg668gjYdEiQ976DRx53PDO3WTsJO+QlXyvAq+ISEh1qoPXWpvf1YGISPcpKgrs4O0tBV7fQm5llXdVtA7FbyLgZ1M8mxP5gR07uiA4ERGRLqBcW6R3K9ngbaRwJfW+Dl6A3XeHo44fjuns7BLjZ3iGY1ilDl4RkRBrt4PXGDMG+AcwAfDMDm+tDVzGXkR6haKiwA7exMQwBtQBaWkt7+9QBy/AuIme4a6sYOm2TockIiLSacq1Rfqe8k0lnrFJ650F3p02YhINUTFENdQxiO1UbC4B0sIclIhI3xVMB++jwH04q/r+DHgceCKUQYlIaG3ZEtjB2+G5tcKktQJvh+cQnnAiLuP8EziMTezYVNXOBSIiIiGhXFukj6ne5m2kiMpMC18g4RQRQfmgEZ7NqLU/hC8WEZF+IJgCb7y19n3AuFf3vQY4MLRhiUgorV3rX+Atpfd0FrRW4I2P7+CN4nMpzxzi2TSrV3U6JhERkZ2gXFukj/mmcjx3cyFPcAZ2773DHU7Y1OwynuWM5xWOYUdxbbjDERHp04JZZK3GGBMBrDLGXAjkAQNDG5aIhNKPP8Kd3MRdXEQqpfzAxPYv6iG6rMAL1A4bCgV5AMRu/AmY2um4REREOkm5tkgf83rxvjzGvgBs+W2Ygwmj/FufYI+ZzkIZU2q04IWISCgFU+D9PZAAXAT8HefRsbNCGJOIhFBZGbz0EhQzlM0MBeCQQ8IcVAe0VuCNi2t5f1sa9t6Tl78ZzErGsqxSUx2KiEhY/B7l2iJ9RlUVnsV7o6NdDBrUqXXN+4SsQd451AoKY9o4U0REdla7BV5r7dfuYQVwTmjDEZFQ+/BDKC72bp92ahl/vqqjK5SFT1d28EZecTXH350BQEZpfeeDEhER6STl2iJ9y6ZN3nFuTg0REQnhCybMsgYaz7iwKAHbWIOJ7ERXhoiItKvVPycaY65p7+JgzhGRnqWszDs++ZgfeOrxYib2nhkaurTAmzkog4gIFwBFRdHU1rg6H5iIiEgHKNcW6Zvy8rzjnOz+3UAQFwdJSc7XoL4+ktLi0nauEBGRzmqrg/dXxpiyNo4b4FTgmi6NSERCqqbG+RxPFcmJNWAywhtQB3XlFA2RkTBoYA35W53Oim1bdjBsVFbngxMREQmecm2RPigvD67lanLZzKCCWFh/OYwYEe6wwuboxPcYVrGEMayi9INjSDv5mHCHJCLSJ7VV4H0ISG7n+oe6MBYR6QY1NRBJA1Uk0vh0JLyXAflbIaJ3zA/WlR28AIMHNZC/1Rlv3VykAq+IiHQX5doifVBeHhzNa0xjKawCis/t1wXekxuf5RjmA7D5JQsq8IqIhESrBV5r7bXdGYiIdI+aGkjBaRiKtI1QW9drirvQeqdudHTn7ndwzKf8mjc4gI+ofv5M2P/PnQ9OREQkSMq1RfqmvDxIo8S7IzU1bLH0BN8PO4xjCp0C76DXnoeGhyAqmLXeRUSkI3pPVUdEukRNTbOks7WW2B5s7Niuu9e+dQs4n/sZz09ELF/ZdTcWERERkX5n82ZIxWeu2X5e4M3b4zi2MRCA6OpKWLEizBGJiPRNKvCK9DO1tb0/6bznnq67V/Ww8Z5xXN7GrruxiIiIiPQ7Wza7PE/LAb0y1+5KOcNj+JoZ3h1LF4cvGBGRPqzdAq8xvWwFJhFpU1/o4D34YDjzTO/28cd3/l4Nu0zwjAfm/QjW7kRkIiIiHaNcW6RvKdlcQSQuAFwJif1+OoLcXFiON99m5ffhC0ZEpA8LpoP3S2PM88aYw40xJuQRiUhIBRR4e2lXwYMPwmOPwQsvOB+d5Zo8lVJSAMio2ArvvdU1AYqIiARHubZIH9HQADXbvE/KmbTemWd3paFDYTWjvTtWaYoGEZFQCKbAOxZ4EDgTWG2MudEY04UzYIpId6qpaTZFQy/s4AVnsbWzzoITToCd+XV4wOBoXuBE745nn9z54ERERIKnXFukj9i2DVJsiWfb9NI8uyvl5jYr8K5ZE75gRET6sHYLvNbxrrV2LvAr4CzgK2PMx8aYvUIeoYh0qb4wRUNXysqCZznFu2PZ0vAFIyIi/Y5ybZG+Iz+/96910dVyc2ENu3i27RqteSEiEgrtTghkjBkAnIHTVbAN+B3wGjANeB4YGcL4RKSLFRXBLko8PTIzYSlTvTt+XOvMw6unZEVEpBso1xbpO3bs6BtToXWlhASoH5hD7fYYYqnDFJZBaam+NiIiXSyYKRoWAinAsdbaI6y1L1lrG6y1i4D7QxueiHSl+nr4+GN18PrKzITtDPTMw0tFDWzfHt6gRESkP1GuLdJHFBf3janQutrY8VGsYFfvjoXPhS8YEZE+KpglPa+y1vr9C2yMOcla+7y19uYQxSUiIVBUBFVV6izwlZQEMTGG1XWj2YPFzs5Vq2DQoPAGJiIi/YVybZE+oqgIFrM7l3AbB05dz5HH7RvukHqE8ePhXx9fTDzVzDw3gnl7ZoU7JBGRPieYDt4rWth3ZVcHIiKhV1bmfP4NDzBj6GpY9qKzSlk/ZozTxeu/uu/y8AUkIiL9jXJtkT6iuBh+Yjx3cAmfHXQRnHxyuEPqEcaPh0f4JfdwIR9XzIKIsnCHJCLS57TawWuMOQw4HMgxxtzlcygFaAh1YCLS9UrdT4zVE0NjehKMHQex6eENqgfIyoKbt1zO3fyOe5/7nClHzw53SCIi0scp1xbpe4qLveP0dFf4AulhJkzwjhcvGwIN74cvGBGRPqqtKRq2AIuAo4FvfPaXA38IZVAiEhplPn8sT0mqARMfvmB6kMxMeJ/dAch3rWNK3Q8Qu2s7V4mIiOwU5doifUxRkXecrh4Kj5kzITISGhth6Q+DKSywZKZsgejscIcmItJntFrgtdYuBZYaY56y1qqLQKQPKPVZ8yE1pRoi+vf8u00yM73jwqIEqFkGiYdBhArgIiISGsq1Rfoe3w7ejIzwxdHTpKQ4Rd6FC8Fa+OYpOPSXn8KIU8IdmohIn9HWFA3PWWtPBr41xljfQ4C11k4JeXQi0qWaOnjH8SPDIzZB5ThIsc5EtP2Yb4F385YUXC5DRGOxCrwiIhIyyrVF+p7iYniCMxjKJsbfEw8z/g9Gj27/wn7g5z+H6Qvv4k/cQu71efBiLixXgVdEpKu0NUXDxe7PR3ZHICISek4Hr+U7JhP1ZiOkAbW1EBMT3sDCzLfAe9P101n4cATz31lD6iQ9NiYiIiGjXFukjykuhpl8xVhWwWdAfX24Q+oxzjkHbv17JLk2DwDXqq1ENDY6czeIiMhOi2jtgLU23z0sBDZZazcAscBUnDnDRKSXKS2FVEqJotHZkZzc74u74CyyBvAoZ1NMBq/kH8x/f/d5eIMSEZE+Tbm2SN9TVASZFHp3+HYR9HMjRkDt3NM82xENDdSvXBi+gERE+phWC7w+PgHijDE5wPvAOcBjoQxKREKjrExJZ0uavgwrGevZl/rDYrDquhARkZBTri3SR5QVNZBGiXeHVlrzc83NaXwesbdne8ED74N1hTEiEZG+I5gCr7HWVgHHA3dba48DJoQ2LBEJhdJSFXhb0vRl+JjZnn1HFDzHQXtVsm5dmIISEZH+Qrm2SB9QVwcxVcVE4EypbdPTIKqtGRH7n5xcQ8zkQZ7tvBe2Q+O2MEYkItJ3BFXgNcbsBZwO/Ne9T/+nEumF1MHbsqYvw9fMoArvwmoTvnyCe+4JU1AiItJfKNcW6QOKi2EAOzzbZsCAMEbTc4361a6e8aF5z7F55aowRiMi0ncEU+C9GLgSeNla+4MxZhTwYWjDEpFQUAdvywYPdj7XE8MOvMn4FJbxzju2latERES6hHJtkT6guLh5np0VvmB6sIwzDqYyMhGALAr55Jn1YOvCG5SISB/QboHXWvuJtfZoa+3N7u211tqLQh+aiHS1gA5edRYAMGiQs/ADwK95yLN/DKuoqa4NT1AiItIvKNcW6Ruad/CqkaIViWOoGJTt2Vz730oo/j+o+iSMQYmI9H7tFniNMWONMQ8aY94xxnzQ9NEdwYlI1yovVwdvaw46yPm8Au9jY7uzGFtbE6aIRESkP1CuLdI3BHTwqpGiZVFDSRyT4dm8avEFNBQXQe2PYQxKRKT3C2Z+r+eB+4F/A42hDUdEQkkF3talpjqf1zOCDQxjOBtJoZwDS14BOw9MMDPaiIiIdJhybZE+oKhIHbxBMYbEqWPg4y+ZzzzeZg5//KmY6Xtuc6ZqMDHhjlBEpFcKpmLRYK29z1r7lbX2m6aPkEcmIl1OBd7WFRU1jQzPcKpn/6zyj6kpXRaWmEREpF9Qri3SB6iDN3jmgt+wcsA01jGSZzmF978YA9YF9RvCHZqISK8VTIH3dWPMBcaYIcaYjKaPkEcmIl2uvBzqiaaMZGeHCrweQ4d6x5+yn2eczRbW/LAYKt/RAhAiIhIKyrVF+oDiYvg3v+JoXuWlOf+AI44Id0g919hZfP6367iWa7BE8MGCkc7++s1QsxjqVoU3PhGRXiiYKRrOcn++zGefBUZ1fTgiEip1dc7HyTxPZKSL+sJvMEm7hTusHuN3v4N774UdO2ApU7mMW9hMLisZy9/WrmTi2M8hehTEjA53qCIi0rco1xbpA4qKYBVjWcVYZu8/HqaMCXdIPZeJ4mcHJXg2134RScND3xB1diLEWogZ43yIiEjQ2i3wWmtHdkcgIhJa5eXecXJSLSYhDaKC+RtP/5CVBRs2QEUFZGYOZfY+p/HZlzkAlJRudE6q36QCr4iIdCnl2iJ9Q3Gxd5yRYcIXSC8xfFQmu4woYs36DDJqthP51zfh45Xw5Fxo2O6cZC3UfAORAyAiDiKSwSSC0ddXRKS5dqs7xpgE4BJgmLX2XGPMGGBXa+0bIY9ORLqMf4G3zkmOxE9iovMBMHliBZ996YzLK9yLPdSvD0tcIiLSdynXFukbfAu86emR4Qukt4hI4Wf7rmPb+mhe4niMywXvrIT1xdgREZSXVJAQvYmoqjcgIhZMLJg4iJ0ICbPDHb2ISI8TzBy8jwJ1wN7u7c3A9SGLSERConkHLxEJrZ8sJKfEecbvXWtxvb8GGvLANvL914s54AD47W+hpgZWrACXK3yxiohIr6ZcW6QPUIG3gyJTOHj2JmKpJYctnt0f3hHJyD0uIjU9ifTBu/Dbyw+nqsIFjWVOZ2/tD05nr7VhDF5EpOcJpsC7i7X2FqAewFpbDeiZCJFeprwcUinhWF5mP/sJrM4Ld0g9WnJaJrls4k0O4+Wao4iY+yRsLKRsy5tMnrk7H3/szNkbHw/jxjnFXhERkU5Qri3SBxTtsJSQygaGMfPCI6ChIdwh9WwRGRx1yoHUJSXzV67z7P7Z03dw6aarSKSCiooY7n10JkeecRoul/ufxYbtUPEqNG4PU+AiIj1TMAXeOmNMPM5iDxhjdgFqQxqViHS58nIYz4+8zPHcv/IkOPOccIfUoyWnJlJJIgfygWdf/az72Su35TVv7r8f3n27srvCExGRvkO5tkgf0FhUSiplDGMTsXnrtdZFe4whITmF009axWfs43foQu7hdi7xbH+4YCT/fnJ37wk1S6BuRTcFKiLSOwRT4L0GeBsYaox5CngfuDyUQYlI1ysvh0wKvTsyM8MXTC+QnAzFZPAg53r2RdfXcgm3t3rNk4+ugvJXwNZ1Q4QiItJHXINybZFeL6J4h3djQEb4AullrrqyhNXpk2nAf1qLc3mIP5/zDudxH+fyAAtvq8UW+DRT1H7XzZGKiPRs7f5Z0Vr7jjHmG2AWzuNiF1trC9u5TER6mPJyGIBv4jkgfMH0AqmpzudLuJ1cNnMcrwCwP5+0ek1eforTURAzDmLHhT5IERHp9ZRri/R+1dWQVOfNs40aKYKWM2oy7/73cdYdNYkxO5b6Hbvh0UO9G/nAROBPB8Cls6GxEFxVWldERMSt3Q5eY8z71tod1tr/WmvfsNYWGmPe747gRKTrqMDbMbNnQ2qqpYFoTuUZqnEWXRvDat5iDruxOOCa/O1JzqD2B6jUP5MiItI+5doivV9xsX+ebZRnBy8ylV0n5TLm2b3gkLGw30j45Hz46DwYPzDw/Fs+gjs/dRZZq/m228MVEempWi3wGmPijDEZQKYxJt0Yk+H+GAFkd1uEItIlmieeKvC2LSsLVq82RERY6ojlK2Z6js3hf5SQFnBN/rZkZ1D7HdR8Dba+m6IVEZHeRrm2SN+hPHsnJR8He50JT86FF+fBuIEwYRC8d27L59/4AdQ0QE1gw4WISH/VVgfvb4BvgHHuz00frwL3hD40EelKP/6oOXg7KjMTZs92AbCAff2O7c3nAIxiDefwCLuxmKySjXy33N1p4KqBupXdGq+IiPQqO51rG2MijTHfGmPecG9nGGPeNcascn9O9zn3SmPMamPMCmPMoT779zDGfOc+dpcxxnThexTpF1Tg7QLRI1rYF0npyus5yTzHt0zzP/bFBnAVqaFCRMSt1QKvtfZf1tqRwKXW2lHW2pHuj6nW2v/rxhhFpAv89JMSz84YNMhZ8OFjZvvtzyOH03mSNYzmEX7JYvZgBeNI//nNUOheAKJ+Q3eHKyIivUQX5doXAz/6bF8BvG+tHYOzWNsVAMaYCcCpODNYzgHuNcY0rWh0H3AuMMb9MWdn35tIf1NUBBkUeXcoz+64qEFgYgJ2p6bVs3G3vdidb3mR452dCdHw4RpnmoaGgm4OVESkZ2p3Dl5r7d3GmL2NMacZY+Y1fXRHcCLSdUpKVODtjIHuhtz3OJj7+Q1fsCdz+Q8/MJEH+E3A+bn1G2HCrVBcDbXfq6tARETa1Nlc2xiTCxwB/Ntn9zHAfPd4PnCsz/5nrLW11tp1wGpgpjFmCJBirV1orbXA4z7XiEiQ1MHbBUwkxIyEqCyISPQ7tO/MjQA8zC+dHRMHw2G7OmM9MSciAgS3yNoTwK3AvsAM98f0EMclIl2sokKJZ2cMGuR8tkRwPvez8LprmPKXLP7vpIdY1NY/hY985azsW/tj6+eIiEi/txO59p3AnwCXz75B1tp8APfnphWKcoBNPudtdu/LcY+b7xeRDlCBt4tEDYf4/SF+T7/de81w/pl6mzm8l3k0bC6BslrnYP26bg5SRKRnigrinOnABPdf9TvM/fjXIiDPWnukezGJZ4ERwHrgZGttsfvcK4FfAo3ARdba/7n37wE8BsQDbwIXdzYekf6qslJz8HZGU4G3yXGH/8SIYSXgsnzxvJNY3sYl1BHDldzkPTHT3XnQkA9M6ZZYRUSkV+pwrm2MORLYbq39xhhzQDCXtLDPtrG/pdc8F2cqB4YNGxZcoCL9RFERTMJnqgDl2Z0Tv6fTyVu32rsvIo69Zzq/w1giOKbqeUpW3UR0tPtvWw1bwDaACaa0ISLSd7XbwQt8DwzeidfQ3GAiYdbYCDU1sJSpLGUKNmeIOguC1LzAm5lR5Qxe+4FZfMmbHMat6X/lz/yDIWzhEP7H9u9vhrPczVeNmhdMRETa1Jlcex/gaGPMeuAZ4EBjzJPANve0C7g/b3efvxkY6nN9LrDFvT+3hf0BrLUPWmunW2unZ2VldTBckb6tuBjm8jST+I4XznsBZswId0i9U9Ov/5HuBDwiHlJ/Qfb40xk21Jn2rKoqhp8+jIKbPoDj5sNJj0L1wjAFLCLScwRT4M0Elhtj/meMea3pI5iba24wkZ6h0r3m12G8zT4JX2M2roL4+PAG1UskJflvJybWQfRwOGYihZ9cxdobf8s7L/+HkcOK2coQ3uUQyirinJOtheIV4Krt/sBFRKS36HCuba290lqba60dgdMg8YG19gzgNeAs92lnAa+6x68BpxpjYo0xI3EaJr5yT+NQboyZZYwxwDyfa0QkSMXFUEgWPzCJqhn7Q0ZGuEPq3SKTIToHYqdC1ECITGXvfaI9h7/+Lhfu/gw+Ww8frYHPnlG+LSL9XjDPMVyzE/e/E2dusGSffX5zgxljfOcG+8LnvKY5wOrR3GAiO6WpwAuQlFgHJiF8wfQyzZ9CNTG5kHo6FN1B5rhqLhz3NQDJSd6ksmIH8PlieGwRDEmG1+bx/+3dd3gU1dvG8e8koffeFCkiiiBKUUHFCogNe0HFior+7L33gu21g4pdUbErSFPpIL036b2GUAKpu8/7xyS72SSbpSQ72eT+XNdczJxpzw6zm7PPnjmHsi2iGLWIiMSQZwrxWK8Agx3HuQlYA1wGYGYLHMcZDCwEMoE7zMyXtU9fgl2hDcuaRGQ/bN8enK9RU10FFIrK54V8Z+ncGb77zp0f9d9x3Hh+K/h5vlswZTl0HguVunkQqIhI8RDxr4+ZjT2QA6tvMJHiIzk5OF+pUgY4+9J4XwCaNYP77oNBg6BfP6DaDe7jY/F1wb/a3Si+BlUqpwf2yVi9B+77w11YuR1SVyrBKyIi+TrQunaO/ccAY7LmE4Ezw2z3IvBiPuXTgdYHE4NIaZeUFJyvUaNM+A1l3yU0CFns1Ck4P3n6oXBLo2CCd8kWyFiLiEhpFjbL4zjObsdxduUz7XYcZ9c+HFt9g4kUE6EteDO9CyRGvfEGbNgAvXsT7Bssu9JZoSPU+B9VqtcIbL+l6qFQP+vBhd1p8Pt34EtCREQkWyHUtUWkmEjenk5dNpNABjVrl/U6nBKpbdtgD3Or11ZnW/0jgivHrID0dWAZ3gQnIlIMhE3wmlkVM6uaz1TFzKpGOrD6BhMpPvbsgeOYyX28waV7v4XZs70OKeY4uZ8lKHeU2xK64qngxFOlWrAnml3J5Vnb6aTgtv3/gZQp0QlURERiwsHWtUWk+Gi0dTabqU8GZWl+c1evwymRypSB448PLo+NuwhqZGV81+2ExZvVildESjUvntN+BejqOM5SoGvWMma2AMjuG2w4efsGG4g78Npy1DeYyH5JTobTGc0bPMCTK++Gzz/3OqTYV+YwqHotxLmjsFXJ0dP44uWH0mXIgGDBjHWQPAn8yYiIiIhIyWEGZXZuCywnVC7vYTQlW85uGibObg2dmwQL3hgLGSujHpOISHERlR7g1TeYiLf27IHaBCueqAuTwlG2aWC2ao62Vs+9dgIAG2hAQzZCmg9WJUGNtW7LXxEREREpEfbsgRr+YD07vm5tD6Mp2Tp3Ds6P/KcWdm1TnKGL3ILfF8L04XBqvqkGEZESTyMtiZQCyclQh63BgtqqeBa2du3yls2hbXBhxBLIWBW1eERERESk6CUlqSFFtJx2GlSs6M4vWBDHrKN6hW5w+1fg35NnPxGR0kAJXpFSYM+eXAleVTwLXc+eect+4pLA/LhXfIwdkxbFiERERESkqG3froYU0VKlClx6aXD5wf+7EN9r5wcLFm6GTYuiH5iISDGgBK9IKZCniwZVPAtd1arw7LOhZX9xVmC+S+o/3H1BE/XDKyIiIlKC5GnBq3p2kbrnHojLymL8M6YSPYa8SVqXI+HxM+CPG6DiDi/DExHxjBK8IqVAni4a1IK3SBx2WOjyag5jMS0Dy/3sYUibH+WoRERERKSoqIuG6DruOHjooeDyqLGH03LlZNZcch6c0BhY41lsIiJeUoJXpBTYuVMtC6KhcuXcJQ6v4tZAv+dy3ucOJk1MjXpcIiIiIlI01II3+l56CZ54Iri8em11Lr7hCjIy4iBzLfh2eReciIhHlOAVKQVmTsmgJkkAmONAzZoeR1QyVaqUt+wzbqQxq7mS7/iDC3jng0bRD0xEREREioT64I0+x4Hnn4fff4cyZQyAGXMa8u7AE8AM0hd4HKGISPQpwStSCmxdnBiY91evAfHxHkZTcuVtwetaS2PAAcD8aeBPiV5QIiIiIlJkEhPVRYNXzj8fXnjeH1h++Z2T2b0uE1bN8DAqERFvKMErUgpU3BusdDp11KqgqOTXgjc3ny+ORXPXFn0wIiIiIlLkkhL9VCDHj/d6Ui6q7rk3niaHZdCDP/k38RiqtHsRnvkYMtZ7HZqISFQpwStSwpnB9rSKfMzN/EpPnDPO8DqkEmtfEryjh9Tj7OPKMXBg0ccjIiIiIkVr2/Y4KpNMJZL54605kJDgdUilStmycP8DZdhJNZqzAgCbvQGSh4BleBydiEj0KMErUsKlpsJKmnELH3NV+R9w+vf3OqQSK1wXDQCn8w9zOIZEatOfvvTpE724RERERKRoJCYCOOylEhWObOJxNKXTtdfC4vJt8WWnN5YmQtIqSJ3tZVgiIlGlBK9ICbd3b3C+Qnmfd4GUArVqhV+3kqYcwzwAzuIvypIWpahEREREpKhs326B+Vp1KngYSelVrRqccV5F5tEGAMcMJq+GjOUeRyYiEj1K8IqUcDkTvBUrZnoXSClQrhw88ED+61bRlKUcDkBZMmjLHPw+y39jEREREYkJiYnB+lzNWmU8jKR0u/DCOEbSLVjw11LI3OxdQCIiUaYEr0gJF5LgreAPv6EUipdfhl9/hR9/zLtuGh0D8x2ZxrY1f0cvMBEREREpdEdsnUgXxnIIa6lVXU/LeeXcc2FE3NmB5cwRy8GXBJbuYVQiItGjBK9ICZeSAi/yGP25jdv3/B9s2OB1SCVaQgL07AmXXAJXXhm6bjodAvMnMIXEjUvBnxrlCEVERESkMKSkwOPpzzCW01hLYypNGOF1SKVW9eqQ0OUEdlEFgISNSTBlDfgSvQ1MRCRKlOAVKeGSk+EyfuA2PuSeTc/A9u1eh1Rq/N//hS5P5KTAfDdGsm1rGchUwl1EREQkFiUmQlNWBpadZk09jEbOOqcSQzgvWPDyP7DrV/AnexaTiEi0KMErUsJNneyjCauCBU1V8YyWGjVCl6fTga3UBqA+m8mcuRl86htMREREJBYlbs6kMWuCBU2aeBaLQPfu8CxPBwsmrYZvRkD6Uu+CEhGJEiV4RUq4VRPWUQZ3cLXdlepApUoeR1R6lCsHffuC47jLfuIZRo/A+sqTF0LmFo+iExEREZGDsWfhchJw+93dVqY+VKjgcUSlW5s2sLt+Ez7m5mDhgH8heYj64hWREk8JXpESrvyG5YH5zEMO8zCS0umDD2DHDrfCCTCUcwPrWkwcBcnr1Q+viIiISAzK+G9xYH5r5cYeRiLgNqro3i2N+3iT0ZzG8NNvh2+uAvNBxprIBxARiWFK8IqUcFW3BR9Jymys7hm8ULUqxGV92v7JOYFuGqrsTYS5s2D3jx5GJyIiIiIHZEWwIcXOGk28i0MCup9diWSqcAajeW73I9ComrsiY7W3gYmIFDEleEVKuFo7VwTmneaHexhJ6eZzn94jmSq8ykMAPFn7TWjXyG1RkKHB1kRERERiSdnVywLzyXWbeRiJZOvaLR7HMQCmzGxE0o7y7oqMtR5GJSJS9JTgFSnh6u0Jjuxb5sgWHkZSuvn9wfl3uIvLGMyHvj5ugaVDymRvAhMRERGRA1JzzfzA/J5mbT2MRLLVqgUd2u0BoJV/ATuvHw6fTIX0dR5HJiJStBK8DkBEio7PB43Sg/1NVTi6uYfRlG45E7zplONHLsPZYfj9DnFxBhkrw+8sIiIiIsWLGQ22LAgs+tp28DAYyal793imzYBaJNJgyr8wKQ3KxMM9uyG+itfhiYgUCbXgFSnBNm2CZgT7Bit7pB4d80rOBG82M4edu8plbZAMvsToBiUiIiIiB2b9eqqmbQdgF1WocLTq2cVF9x4VAFhIK16o/Lxb+MAQd3BjEZESSglekRJs05zN1GEbAKlOBWjY0OOISq/8ErwA73/cHlYlQYYPMvTomIiIiEhMSE9naLVLWEArptOBuvX11bq4OPFEqFrVqEAKz+98KLhi0FfeBSUiUsT0V0ikBFu1vQI9+JPHeYEhzfpAnN7yXunXL2/ZR/Thide6wfHvwFWDwLc5+oGJiIiIyP5reig3lf2c1iygK6OoV8/rgCRbQgJceqnDGg4LXfHPGE/iERGJBmV7REqwbbschtODl3icEV2e8jqcUu3CC+Gdd+C556CC+9QY1dgZ3GDcClImzvIkNhERERHZP/6MHWxNrOjOE0+dOh4HJCFuv939tx0zgoVj5kDGRm8CEhEpYkrwipRgSUlpgfkaNcp6GInExcGdd8KTT0KlSm5Zf/qGbONc8IIHkYmIiIjI/krcuhu/3/06Xb26n3LlPA5IQrRvD2ecns5sjiWRmm7htj2wYJi3gYmIFBEleEVKsKTt6YH5GrVU6ywufD733zGcztM8Eygvk54CSZu8CUpERERE9tmWzamB+bp1PQxEwnrqqQSMOCbTKVg4aax3AYmIFCEleEVKKjOSEjMCi9XVgrfYyNnCox8PB+bjzceOH7/xICIRERER2WepqdR49HEe5wWu4Dvq1dPX6uLo1NPiOKXTembQPli4eDn4dobfSUQkRukvkUhJNXcu7359JAtoxQf0pUYNrwOSbAMHBufTKE8/gqP7Lnx/Cph5EJWIiIiI7JPVq2k48lde4Ele4RG14C3Gnno8mWUcHlhOX7oTdnys+raIlDhK8IqUULZiJeV8qbRiEU1YRePGXkck2c45B669Nrg8mtMD82XnrIDMDR5EJSIiIiL7ZNWq4CxNqFfPu1CkYGee05L45sER8PbO3QX+ZPBt8TAqEZHCpwSvSAm1Z8HKwPy6hMM4/ngPg5EQjgOPPhpc/pcTA/NtmQMpSzyISkRERET2ycpgPXslTdWCtxhzHDj6yrb8woU8yKu83vxFd8XuX9SKV0RKFCV4RUqozP+WB+a3VT6MhAQPg5E8mjYNzu+kOhtoAEAZMmHZP5ChVrwiIiIixVKOBK9a8BZ/Z1/RgIv5hdd5kA8XXuTmdTM3gX+316GJiBQaJXhFSihn5bLAfGLVJt4FIvkqXx5uvTW4/Cb3cT+v05Nf2VM2DlKnexeciIiIiIS3Mvi01Uqa0rChh7FIRK1bQ62a6QBsS6zEkmW13RX+Hd4FJSJSyJTgFSmh4tetDszvqtXMw0gknAEDIDkZ/JkpfF7zDt7kfn6nJ+8PPgXSl4Jvu9chioiIiEhuq1YEZ2lCo0YexiIROQ6cfFJ6YHn8v1mDk6QtUDcNIlJiKMErUhKZUX7jmsDinrqHF7CxeKlSJXDiK5C4vUKg7OHnu7qPjKVM8TAyEREREcnXyrXBWZoqwRsDTj6lTNacsWpEGnw1w61rZ67zNC4RkcKiBK9ISbRtGwlpewHYRRXiatf0OCCJ5OSTMvMWqgWviIiISPGyezds2wFAOmXYHNeQOnW8DUkiO/mUcpzFKNZyKC+OvBzuHwLzNkLmeq9DExEpFErwipREuUb2rVbd8TAY2RfvvR8cBe+Yyovg3zXgTwLzexiViIiIiIRYujQwu5zm1GsYT3y8h/HIPmnXDpaUO5oq5BhY7d2JkLE2/E4iIjFECV6Rkih3greah7HIPmnTBo5KWMIKmjInuRV25TeQuQ2Sf/M6NBERERHJtiQ4wNp/HKHuGWJE2bLQpH1Z7uD9YOGvC2DZDLAM7wITESkkSvCKlESrlwdmV9FECd4YEBcHHFqPemwGwNmbDq/8AxkrC95RRERERKLnuFbMvOw6+nMbQzlXCd4Y0unEdIZyLnsJjn3Bd/9C2nzvghIRKSRK8IqURPf05r6LR3AqY/iYPkrwxoiWbeIZyrnBgjfHQ2oS+HZ6F5SIiIiIBDWvwZjWV3E7/fmYW2jY0OuAZF91PrkWO6jB8zwZLFy4BdKXht9JRCRGKMErUhL5k1ib0YhxnMpCjlaCN0YcdVQ8ffiYFMoHC9+bCBmrPItJRERERHLwbWf9xiqBRbXgjR2dTioHwL+cGCwcughWzQIzj6ISESkcSvCKlES+RHbuCiYJleCNDfUbVGAn1RlEr2DhgH8heZJ3QYmIiIhIkH8n6zdVDSwqwRs76taF5s3SWcbhoSve/ht8m7wJSkSkkCjBK1IS+bayZVulwGKNGh7GIvusfgMHgCd4IViYlAIrF6ubBhEREZHiwLeLDZuCLXjVRUNs6dQpjnUcynTaBwsnrISMNd4FJSJSCJTgFSlptmzBP2UGG5eXCRS1aOFhPLLP6tVz/91EA8ZzcnDFZ9MgY3n+O4mIiIhIdIwbB21v5tk5fbiLtwG14I01nU9KAKAL4/A58W7hf9tgy2IPoxIROXhK8IqUNEOGENetH5tTa/Mht1C7NtSq5XVQsi+OOALisj6VV9AsuKL/ZNgyz5ugRERERMS1aBGs3MLpKaPowHRACd5Y06mT+28KFfmg0j3w4tkwqg9U2Kx+eEUkpinBK1LSLF4YmN1AQ1U6Y0iDBnDVVe78T1wSunLs6OgHJCIiIiJBi+cHZpfQkipVoEqVAraXYqd1a6iU1ZPdXcmvs6ZHN2jbEJy9kK5WvCISu5TgFSlpliwIztKSmjU9jEX220cfuf/+wQW8yGPsvKoLjLgZzjxU/fCKiIiIeGnxjMDsfxzBYYd5GIsckISEYCtegHGTc/wnpi+JfkAiIoVECV6RkmbJf8FZWmqAtRhTsSJUq+bOP8GLVP92LP3GXw5l4iFjpbfBiYiIiJRmS4N1sSW0VII3RnXpEpwfmzPBq4HWRCSGKcErUpJkZMCKYMXkP45QC94YVKdO6PIjL3R1uwRLne1FOCIiIiKSng6rtgQWl3G4Erwx6tRTg/NjJzVx+95dvAVGTYWM1Z7FJSJyMJTgFSlJVq6EjEwA1tGIPVRWgjcG5U7wAixdUQsyVoFvV9TjERERESn1ViwHnx+ANRzKXirRuLHHMckBOf54KFfOnc9YsQvfMW9Dl/7w4BDYo3EvRCQ2KcErUpIsDPYLtoSWAErwxqD69XOXGOsnpMPgOZCpR8dEREREom7xrMDsfxwBoBa8Map8eTjxRHd+HYdg2/e6C2t3wob/IG1B+J1FRIopJXhFSpIcFU8leGNXdoUTIA4fCzia0x98AP73K6z+F8zvWWwiIiIipdLkcYHZ7Hq2EryxK7ubhkzKsKpGq+CKEfMh+U+32wYRkRiiBK9ISbJkcXBWCd6Y1bp1cN5PPBtpECwYMUQDQIiIiIhEkxl880tgcRodAdRFQwzL2Q/vz/6LggsDJoMvGTI3RD8oEZGDoASvSEny34rArBK8satq1dDlfzgjuDBjHaTNAkuPblAiIiIipdWqVbBxGwA7qcogelGmDDRoUPBuUnydeCKUKePOv7LtTvwVyroL/22DldshY0X4nUVEiiEleEVKkkZVoHF1/DiBBG+NGh7HJPstd4L3X3L02TB6OeydDalzohqTiIiISKnVtClseIflg56gOyPIoCyHHgpx+jYdsypWdAdbA0iiJptaHhNcefGXkL7Um8BERA6Q/iSJlCT9LyFj8r3UKLOb1bidgqlvsNhTpUro8gROJrlMVtZ3zQ4YugjS/4t6XCIiIiKlkj8N4hNZGteSKVk/vKt7htiXs5uGiRVOCy5s2AVL5qkfXhGJKUrwipQU/j3gT2bpilrsyqiEEcchh6gFbyzK3YI3nXIMa3BFsGDIIshYDeaLbmAiIiIipVHmBjA/q9dWCxSpEUXsy5ng/SDxxtCVJ74FW78Ay4xqTCIiB0oJXpGSInMLAHMX1gsUHXNMuI2lOMvdghdgWPVLgwu/zIeVmyFjVdRiEhERESm1MjcCsHJNsOVEkyYexSKFpnNniI9358f8dxSpF7V3F+IdOLkJrJkFvq2exScisj+U4BUpKTLXADBvUTDB26aNV8HIwShbNm/ZvLiOULtSsOClvyFzffSCEhERESmNMjJg8E+wIpHlK4KjFx9+uIcxSaGoXBk6dAgujzmzDzSpARccDR9dCofVgMxN3gUoIrIflOAVKQm2b4cbH4fXx1J59NxAsVrwxq7rrw9dTk6pBM1rBQvW7HD74U35N5phiYiIiJQuCxfCDW/Cie/x0l+XBYqV4C0ZTj45OP/P4mNh6l3w4SXBhhUZ6zyJS0RkfynBK1ISzJwJ30+EV8dwzqLPAsVqwRu7Pv0Uhg8PLm/eUgb75ppgwf1d3Apn+rLoByciIiJSWswI/pi+OLNFYF4J3pLhlFOC8+OnHhW6cksybJoEvh1RjUlE5EAowStSEkyfFJidltkuMN+smRfBSGFwHOjSBcqXd5eTkhy+H3MGvNwDDq8FyxLdFXpsTERERKTozBwfmJ3mc+vZ1apBrVrhdpBY0rlzcH7GrCrs3VvGXXhjLLR+A459A+YN8yY4EZH9oASvSEkwM9iyYJrfHRygXDmoWNGrgKQwVKgAN9wQXH7w6ZOxG4+HSf+Dvp3cQn8y+JK8CVBERESkpJs1MzjLcQA0b+7+GC+xr04dOPJIdz4jw2Ha/PawbQ/8udgt3JsBgwZ7F6CIyD5SglekJJg9LzA7E7dlQa1aqniWBHfdFZxft74c23dWDxakZsLCzZA8OupxiYiIiJR4Ph/MXRFYzE7wqnuGkiWkm4YZJ8E2P8zL8ZTczIVgFv3ARET2gxK8IrFu1y5Y6nb+b/FxzMPteFePjZUMRx4Z+n+5MfFIt4L53kRo/CKcNgCufhLM512QIiIiIiXRzPGQnAbA7kq1WU8jwG3BKyVHly7B+RGjKkPnp+GFs4OFM9dC5uboByYish+U4BWJdTMnBGaTD2lOGm6nrUrwlhytWwfnN25vA/FV4Lm/goVDF8L2xdEPTERERKQk+/uPwOzsaqcA7uNxrVp5FI8UiW7dgk8+TprksH1nVeh7CVQt5xYmpcBPn3sWn4jIvlCCVyTWTQs+nv/T6uAoAQ0aeBGMFIWc/5c33toIyrWGK44L3WjqX4iIiIhIIRobbEgxIuOswHzOH98l9tWtC8cf7877/fDbb0D5I6HrEcGNPvjKk9hERPaVErwisW5cjpF96RiYP+QQL4KRolC3bnB+3TqYt6I7vPV06EaTJiAiIiIihSQzEyYGx7kYvNVN8MbFBQflkpLjkkuC8598ApRtCQ+fnt1oGyYugs3TvQhNRGSfKMErEst8Phg/N7D4D2cE5pXgLTlyd7cxabLD/I0nktnv/GDhR8MhPSW6gYmIiIiUVLNmwW63bpVeuyZLaQFAixZQvryXgUlR6N0bEhLc+YkTYdzE2tCiDRzb0C30G4z60bsARUQiUIJXJJbN/Bd2uhXPbWXqsZhgc4KTT/YqKClsub9E3HYbtGlXjwu+ehYrF+8WbkmG37+IfnAiIiIiJVHVTLijMxzbkDWHdya7Kae6ZyiZ6tWDq64KLt/W12F3XG84/ehg4V/j8+4oIlJMKMErEsvaNIC/b8X/TDfedO4nu+I5aBC0a+dtaFJ4/P78y4fNP46dl5wSLPhNCV4RERGRQtFoJzzdFUb24aMTBgSKleAtuZ5/HipUcOcXLYJLLytL+qk56tqjF0KaBjYWkeJJCV6RWGbboE19tl56Fi+nPwhA9epw5ZXehiWFq3r18OtuHPlYcOGfhZCxpcjjERERESnxMtcEZv+dUTsw37atF8FINBx2GPTvH1weORKu+6wP/mvaw0eXwIg+kL7EuwBFRAqgBK9ILMuqYGxNrBQoqlcPHCfcDhKLrr02/Lrft53ODqq5Cxt2wSI9OiYiIiJy0HyJAKRnlGfa9LKB4k6dvApIouG66+CZZ4LL3/1anwerfgwXtoZaFSFjBfi2exafiEg4SvCKxCp/slvBALZurxkorlPHq4CkqFSqBEOG5L/ORwLP8yRvHvEizLwHGq0EC9Ong4iIiIhE5k8GfxoAc5a0IzXVbT3RpAnUr+9hXBIVTz0Fd94ZXH7zg+P4Z3xTdyFzB+z5y5O4REQKogSvSKxaMd0dWAu4/+lugeIaNbwKSIpS06bh173J/QypexUcUs39QuLbGr3AREREREqaxx+BS76EZ0ay7HcLFKv1bungOPDWW3DuucGyG+7uye7kstDnR/j0R89iExEJRwlekVj17Gtw9OvQ9k2aLRoXKI7Tu7pEatq04OR9ampCcGHvWHbuyOCOO+CJJyAzs+jjExERESkR9uyBDz6H8Svhg8n8N00J3tIoLg4+/hhqZj0ouXZdVR577nSYtR6eG4IvbQd//OH22btypbexiogAJETeRESKpZkL3H837mYTwYEfbr3Vo3ikSFWoAOPGwahRYAb33x+6fvL0Q9mdXJYq5VNh+3Qe/b8e9P+wDABlyriJ3vh4DwIXERERiSWTJsGuPQD4m9Tl9VnBJ+XOOMOroMQLDRrA22+742EYDm0+/wzYCcAvzR/lsvXuiGzly7vdqZ15pofBikipp7Z+IrFo2TJY5I7sa3EOcwkO59u1q1dBSVFr3RruvRfOOivvOgc/A26uCf1Gw5Gv8c+H6wPrnnkGEhJg797oxSoiIiISkxYuDMyua9aJ5L3uV+YWLaBVK6+CEq9cfXV2Vw0ODdgYKL9w/cdUzUr2pqbCjTdCSoo3MYqIgBK8IrHpww/dZpxA2snHs5sqANSt6ybypGRr3RqaN89bfsc/98HbEwC4m7fzrK9UqagjExEREYlx82cEZifv7hCYv/BCt29WKV0cBwYMgBo1jCd5PlCegI/OTAosr1njdukgIuIVJXhFYtG40YHZtecE+2Ro0MCLYCTa4uLg229D+4Ez4viMGwLLfRnAqYzJs+/OnVEIUERERCRWLZwfmP35v3aB+Qsv9CAWKRYOOQRGjHDYXL81H3NzoHzAuZ/w7rvB7T77zIPgRESyKMErEmvMYNGiwOIpj/QIzDds6EVA4oWOHd0u4ubODZa9xGMh29zEJ3n2W768qCMTERERiVF+Pyz4L7A4eWdrAOrVgxNP9CooKQ46doTly+DYu+oEyg4b+hPXnp9E+fLu8uzZsGCBN/GJiCjBKxJr1q6F3W5nqonUZDP1AqvUgrf0adMGLr/cnd9AI97i7sC6LozLs70SvCIiIiJhzJoFO90B1nZVrMNaDgWgZ0/3CSop3SpWSqDjkz2gevlAWbWzT+C884LbDB3qQWAiIijBKxJ7cgz8sICjgWBnYPXrexCPeO7uYE6XB3mNZNzOdg9jDe2ZHrKtErwiIiIiYXz9ZWB2dFxXsuvZ6p5BAmq0hVvPCS6vXsO53TMDi8OHexCTiAhK8IrEnikTArNugjfohhtybyylQefO8OCD7iBqmZRhAicH1k2nI2//nz+w/OijkJzsRZQiIlJYHMc51HGc0Y7jLHIcZ4HjOHdnldd0HGeU4zhLs/6tkWOfRx3HWeY4zhLHcbrnKG/vOM68rHXvOI6GkZJSbEJwnIuPknsBULkynHGGVwFJsRNfFR7vF1xOSePcJsF+GSZMgN27PYhLREo9JXhFYs2ffwRmcybyvvkGDj/ci4CkOHj11WDi9v+4N2Rd58Q/QpYHDIhWVCIiUkQygfvN7CjgROAOx3FaAY8Af5tZC+DvrGWy1l0JHA2cDXzgOE581rH6A7cALbKms6P5QkSKDb8fkncEFv/F7XT3nHOgXDmPYpLiqXIzOP9oaFgVzj2KOpXn07atuyojA/75x9vwRKR0UoJXJJakpUH7w5hEJ3ZQjZF0C6xq08bDuKTYeOABQu4LgGM2hz4rNn58NCMSEZHCZmYbzWxm1vxuYBHQCOgJfJG12RfAhVnzPYHvzCzNzFYCy4DjHcdpAFQ1s8lmZsCXOfYRKV3i4mDSYzD1Lp49fADbqQXA+ed7HJcUP04cfPYmzL4XPrscmi/l7G4pgdXDhnkYm4iUWkWW4NWjYyJFoGxZeOE0TmISNdnONoKjuLZs6WFcUmy8+ipMneqQ+vpdbsEpTSnbvj5jxgS3mTHDk9BERKQIOI7TBDgOmALUM7ON4CaBgbpZmzUC1ubYbV1WWaOs+dzlIqWP+cG3lZ016/P8ylsAcBzo3j3CflI61TgZ4msGFnucMScwP3QomHkRlIiUZkXZglePjokUNt828O0CwHK8fYcPd3O/Io4DHTtC+b43w+an4KfecGl5Tmo/iwoV3G3Wr4fNm72NU0REDp7jOJWBn4B7zGxXQZvmU2YFlOd3rlscx5nuOM70rVu37n+wIsWdbzuYj78nHIXP57412rWDOnUi7CelU1xFqNAxsHjyhrdpUH0PAOvWwaxZXgUmIqVVkSV49eiYSBHI3JRvcefOUY5Dir8KraFsU3fen0JC5vRA32AA8+Z5E5aIiBQOx3HK4CZ3vzGzn7OKN2fVncn6d0tW+Trg0By7HwJsyCo/JJ/yPMzsIzPrYGYd6ijjJSVR5moAho8+JlB0tpoVSUHiG7j/DphM/E3f8dphLwZW/fabRzGJSKkVlT54o/XomFoWSIm2Zw+ku9+5atZICxTXrOmO7isSwnGg8jnuv7M3wK9/0axR8HNx40YPYxMRkYOS1V3ZJ8AiM3szx6rfgeuy5q8DfstRfqXjOOUcx2mK+0Tc1Ky6+G7HcU7MOmbvHPuIlB7TpkH/17EZ6xn9V61AsRK8UqAyjeCv5fDUSAB6bviUSrijHv/4o7ppEJHoKvIEbzQfHVPLAinR3nwTWl8Db4+nwp4dgeLRo90cnkgeCXUhsyrsTIV+o7l/zjWBVUrwiojEtJOAa4EzHMeZnTWdA7wCdHUcZynQNWsZM1sADAYWAsOBO8zMl3WsvsBA3KfnlgMaHkhKnx8GwX3f4fQYyA3r+wFQrRqceKLHcUnx5pSBE4+HimUAqLx1M+8m3AvAwoUwbpyXwYlIVFim1xEEFGmCN9qPjomUaP9OhLXb4MV/OCN9BOAmdtu08TguKd4qNYWJK2HxVtotG8nhLAXg4Yc9jktERA6YmU0wM8fMjjGzY7OmP80s0czONLMWWf9uz7HPi2bW3MxamtmwHOXTzax11rr/ZXWJJlJ6mMGwoYHFWRwHwJlnQkKCV0FJzKjbBl45J7B4Q+ZAjmMmAI89Bn6/V4GJSFT493gdQUCRJXj16JhIIZs5IzA7DbdDfzO13pUIkqrCWxMCiwO4DQe3pnneebBokVeBiYiIiBQDo0fDfPcHcJ8Tz0ROAqB7dy+DkphRtgX0vhy6HhEouizuJwAmTYJnn/UqMBGJCtvrdQQBRdmCV4+OiRSW9eth0zYA9lCR/zgiwg4iWRq1h8HBrhnO5B/60h+AoUOhfXvYlP/YfSJSEvhTvI5ARKR4+/m7wOwncX3YSEMAunb1KiCJKWUaQbVecE3wF4Fr6gXboz33HHz/vReBiUiRs3SwDK+jCCiyBK8eHRMpRAPeD8zOoS1+4gFQV9MSUXw1OOsEuPvkQNGjvEx2V+YpKTBqlEexiUjRK0aPjYmIFDt+Pwz/M7D4o+8iAFq0gKZNvQpKYlKP+wOPVh66cQH3dRgTWHX99TB7tidRiUhRKmb17CIfZE1EDpIZDPw4sDiQm4PzA70ISGJOpXPh6VegajkADmE9rVgYWN27Nzz9tFfBiUiRKkaPjYmIFDsjR8Ly9QCklq0U6J6hWzcvg5KYVOcw6NwusPj6/LPp1GwzAKmp8OijXgUmIkXGX7zq2UrwihR3CxcGumdIiq/Jl/QG4PXX4YILvAxMYkbZplCtA5x6VKCoR66ebp57Dvr2jXZgIlLkilnLAhGRYuWtVwKz31e6ib1UAtQ9gxygl4JDDzmpaXx/y8jAeCnDh8OCBR7FJSJFw4pXV2hK8IoUd59/Gpgda6fiwx3O9/rrPYpHYlNcOegR7Iv3dR7kNEaHbDJggPt7goiUIErwiojkLy0NRowNLD6XdBcAFSsqwSsHqEsXuPoMd75KOQ5tOJELe2YGVg8a5FFcIlI01IJXRPZZcjJ8/FFg8RP/DQA0bAi1ankVlMSsK2+EKhUDi8/zZJ5NVqyIZkAiUuSKWcsCEZFi4/nnA7Pbqx3KCpoDcP75bpJX5ID07Qu3ngBT74Kz69P7ssmBVT/84Pa+JyIlRDGrZyvBK1Kc/fwj7EwG4D9aMJRzAejUycugJGbVqAED3wosHltzKc2bhI76mZQU5ZhEpGgVs5YFIiLFRuVyUL08AKMzTgsUX3GFR/FIyXDSpfBWf6jl/kpw9iljqVzZB8DSpTB3rpfBiUih8ivBKyL7yr+VbfWb4COOr7kGy3rLnn22x3FJ7LrsJvjiWph2F5UX3caymZ9we19fYHX//h7GJiKFr5i1LBARKRb8e+G2Q2Hu/cy58Hbu3Ov2xVunDvTo4XFsEvvKtQEnHoDy5TO5oMe6wKoffvAqKBEpdMVsMGMleEWKs8s6UmfTSqqwm3e4K1DcsqWHMUlsc+Lg8vugaSNwHMjcRLm4pYHVkyfr0TGREkUteEVE8trzN2SsYmd6JXrO/D820hCA22+H8uU9jk1in5MA5du584u38NTeu/kUt6u9n3/2MC4RKVzFbKyLBK8DEDlQf/8Nq1e7U6dOJbBVq28XZKwETiOFiqQQ7AysRQvvwpISoPyxkLkBUqYCsGZpBufxB0M4H3C7fq5SxcP4RKRwmB8szesoRCRGbd7s1rdr1HAHHUsoKd8cNy+A+NlkZMRxWZ/rWL2mLAC1a8M993gbmpQgFc+CtTPh1P60NGgJ7KIqDy/qx6JF5TnqKK8DFJGDpgSvyMH74Qe4/PLgckICLFgARxzhXUyFynywtD9DpjXKd3X9+lGOR0qeskcEErwvlHuaZgzhcJaxlsYkJSnBK1IiFLNKp4gUM5nbIL6W+0SPpQNl3MYFafMZMfZYLr3qEJKT3Qc+O3aEoUPdLgxi2txp0PZ47NVzuXP+M4wa3TCw6r33oHp170KTEiauHBz5BJzyA4ybB8DdvEM50vjppwE88YTH8YnIwVMXDSIHb8iQ0OXMTPj+e29iKQopfW/krwfWcV/v4/OsyzHgr8iBK3s4lDsKRi+n5bDfKEsGb3A/8WRqoDWRksKU4BWRXDK3QdoSSFsEO96H5N8gbSHsHAQpk2Dnl6xcsoJLrqgfSO4CTJsGl14KPl8Bxy7u1q2D9p0BcB4aSrUv/w6seuYZDa4mRcBx4L7QL2+38SG/D05Vl2giJUExa0yhBK/EnvTl7N2Tt3Y5Y4YHsRSFIQOp8OGXtB76A+9yJ7cRHPXqxx/h0Uc9jE1KlsoXwK4GOJl+AC7jR+ZyDDs3FK8/VCJygIpZpVNEPJYyFXZ+AbsHw7B+8NQI+PNHGNoPPvgeNvyBGQy+OoPkveXYRi2OZn5g93Hj4PXXYrjbl7f+z20VkmUJ7qAWvXrBU095FZSUeBdcAPdeH1LUft5nTJ7sTTgiUkjMpxa8IgXZkeTDl2lgmdje6YwZOpZ/Ru3CUheDbzskj4DdP5CctDLPvr/95nbR4Pd7EHhhGT8ezu8DQH02052RLMLtoCkuDi65BOLjvQxQSpS4CtDrGagYHE2kFYtIef8TzCAjw7vQRKQQKMErJYHpj9FB8+2AXWPhyhug9gNQ5ym46AvoPxmu/AYu+RIeHw6XfMlHnx3HoP+6AVCL7cynDT+f/Qh12UwXxjLo2WVs2ODtyzkgq1fDG28GFr/jCn7jQo48Ej7+2G1oKVIkHAfe+AQe6RUo6s/tzLvmldj+3ipS2vl3FLvRyZXglWJj6BAf9Rs4NGuWwvblHzD+w7Hccl4DzuxWlb8+ngCbP+KVfvFUbXIv4/5pwGUMpjnLQo6xdCk8+KBHL+AAmLkDWgHg85F5VfAPfwrlqc9GxnIaEOOJaym+KlaEd98LKao99Avi44zKleG66zyKS0QOnrpokJLA0r2OIHb5Et1Wuzs+ggU/wO8LC9x8x2FNuP/Z7sTjYwMNAuUXDe/HZuozltOYkdqW3678CDJiKMu7cyec0DGwmER1buRTAD77zK0KiRQpJw4e7U96g+D4KreufJRPjn0rNn8wERHwFb9+DZXgLQwWy51RFROWwaN9N/FO2m2MWNsOp9VzdLnvAf6jJYZD17v64D/mRb7tV4/dyeV4mH4M5goWcyRvci8Q/OXkzTeLf3cN27fD3Xe7rXKrVHG7XuCv30hYvy6wzc0MZDPB0dSqVvUgUCkdbryJwb0GBhbbM5MhnIulp/Pll7B2rYexiciBK4YVT5H9pgTvgfH7YczX8N934N8LzWphZQseX/vmvx9mT0p51tCYLeUb5rtNAj76jL+dhb9/4yaP904oiugLxfr10L8/LLr9ddi8NVD+EK+SQkUuvhhOPNHDAKV0qVqVsl98GlJUft4MWh2RzsCBYfYRkeLLt93rCPJQgrcwqOJ54PypkDoLS3wT37od3MLHHMkSamQk5tl0YOJVVM3YAcCzPM0n3EgCPu7lLYw4DIcdVONlHmHM6OL9f/LMM/DOO8HlVy6bDmdfElj+imsYxNUh+7zySpSCk1Kp7KU38gk3BpbPYRiP8jIAxx7rjksiIjFGCV4pCcynxhQH4sV74Kx74LlRkJTC9p0V6dN4MFM4nl1U4WmeoWXcEm5lAF9yLb35gp/29gQguVwN4kbcBn/eDFXKhRx2N5V5nzv4++k0SP4T9vxVLLuDmTULWrWC6bd/wlGDXgiUf8/lDORm4uLghRcKOIBIUejajcx5/7Kl6mGczHh68xU795SlTx/47juvgxOR/eLLm7PymhK8hUEJ3gNjBmveYsfk72nV6QYasJGvuZpxnJLv5rfwMUfwX2DZn8/tW41dPEI/Zj04mNtu2kB66h7w7Sqyl3Cg3n03dPk9/heYT6MsL/FYyPqffoI+faIRmZRWXbs5vFTzDbZRK1D2DVcDxvbtcOON4fcVKSnS0mD0aEhJCb/Nn3+6SYGtW8NvU2wUw5YFIgdE/fBGZpmQtgRSpsPqQfBUVmVz2lq2/LGV03pexyfLLuJEplCNXVR/vgtzd1WhTb9jeLjuB3xFbwBq1vTzx+8Ox5x8LXR9CWY/AW9dAH/exPq+l1CFZGqynQcWPMikqYe650iZ4tGLzl9GBlx7Lfh37eY1gn23+YjjTt4FHK67Do46yrsYpfRKaH0CdRdN5OWvd3NE820ANGQ9f9z0M1tWFr8fS0RKKjPwHczvx0rwllBK8O4Xnw8GD8pka7su0PRRki//hcXL6jKTdhzPVLowHnBbsX5A35B9OzMJBz9+4nmOp/BVKJffKfiaa7n802v4/J1/INWtdG7blqO/Ww/l7oe7KStIpnJg+RY+YjHBGmeLFnDxxZBQ8FN1IgelUiVYsL46rZlPEtUBWMchgDvqyKhRbivygv4ImoUMTi3F3IIF8PffhTs2wLp1cMop0KMH7N4dfruD6VN8+nRYuTJ4nDVrDvxY2X7+Gf7v/6BbNzjjDPff/Cxb5g6G/eSTULcunH66mxQuSHr6gV/jOXPg/fdh+fID2Nn87uAPIiWB6toF86fBqC/h6sugxonQJMdTYGt3MvHhncxb7Hb75TjGh/0zuPfxLpSr1ID/PdSJFcvTGD7Mx++/prBqVRxdu8VBXDlIqAONb4MbesFpN9Ho7U/45cg7uYwfeIEneOG547FhS+Dex+CtOyB1Jvi9r2x//737N64s6QzhvED5O9zFVupSqxY8/7yHAYo0bMQpV/dgyrilNGuynSRq0HXv75RpfUTx+MIqUoL5/W5jjfr13T7Yr7oKNm6MtFM+rT8yNxdJfAfFzErk1L59e4ua9HXRO1esy9xmAz/aYxfxk5n7nde2UdOqs93ALIF0a8Raiycje3XY6ehWKZa5/D2za44zA5t31dUhG9zJ23bdFbNs3JAfbfD3mQZmtWubbd7s7SVITAx9HRVJthd51AzsN843MKtTx+zjj80uv9xs9mxv45XS5X//M6tBor3IoyH3aRnSrAJ77JNPQrcfM8Zs/Hiz+fPNGjQwa9TIbNmyg4/D73f/HT/e7JZbzCZODK6bNs3suOPMrrnGzOc7+HOVRosWmcXHu/+3AwYU3nGvvz54zzz+eN71O3eadejgfsaNH7//x//446zPzYpmU6eadeniLj/44IHHPG1a/n9jdu7Mu+2tt+bd7vXXwx/7xx/NKlQw69jRbO9etyz73g5n1y6zX391r0/58u45Klc227IldLvp082GDDHLzAxzoMxtZlueNkv6tOATFj7P64CaSlg9O2OrO0n+/H6z607L++GUNX3PZQZ+9295GbMvvzy40y1dvNvKxKcbmF3BtyHn8lcsa/boNQV8MBU9v9/spsNHW3OWGpg99/DfNqLfF9ar4k8GZrVquXUXkWLB77cxHy+2yZwQ+t596EGzRYvs00/N2rRx69eXX262cKHXAYvXUlPNFi82S0srunP4/Wbbtnn6Ub7v/H7bsW637dixz5vnW59v2tRs9YLdZu+8bvbl52bfDjJLSjL7Z6TZvVeY3XSi2ZR+Zv5Ms8xEs7EjzF4/z2zxg2bpq4v0JeYjbP3M8wpiUU1RrXimrYjeuWLZko/MBlxsr/BQnnfUAG4JKVowZ1uByd0//3Tfb+bPMNvxpVniW5a8ZZz14mszsJ1UsTMZle++99/v7WX44AM3jrpsMjC7hzcDwZ3DEAOzs8/2NkYpvfbuNfv6a7Nrr835vvHbSzxiBvbISWPN7zfbs8esX7/8358PPXRwMTz9tFnNmmavveYmjcGsYcNgMrdFi+C5cn9R3bPn4M69PzIzzZ54wqxvX/eHm1jSvXvo/9nBSksze/XV0GOWLZt3uzvuCK7v3t0t8/vdz8UbbjBbuzb8OXbtCv83Iedr2L7dbM0a94eGk082u+wytzLs87k/FKzOqoP99ZfZP/+YnXJK/sdbvz54zJQUNxHcrVve7S64IPg6li4NVoZzx/vll2Y33mhWo4bZZ5+528yd6+5j5sb1zz/u+nCvsW1bs59+cn9QiYtzy957L++12rnTbPe2RUrwaiqyKeoJ3vQ10TtfrPn6sfw/MMB+5YJAI4pWrcwmTCicU956S5qBWSV22zqnUZ7z7uhzi/sjU7Rt2mTrz3UrMOfxu1WokG5b10w3y9hqycluo4lo1hNE9klqqm0t1zDf93A/HrSWLAoUlS9vNniw1wGLV0aPNqtb170X6tZ1lwuT32/2+edmhx7qnqNaNbMnnwyfTE5NzWdderpbUd3P7LDf797b55xj1rPxTLu3zUh78w2/m/PJR8reTPv87ZW2qHxbSyfBevO5dWyyxT68YIiNHb7bMpIXmGXuMps1y+zdt83uvd0MbH3t1nYik+wM/rIN1LcJdLZTGW1HsjDs31IDs46Hmq1+zGzH57brp3tD173+1H691kIQtn7meQWxqKaoVjxTF0fvXLEoM8ms10lh3yxP8mxIUXy8u1t6utmqVWbDhoXucuKJuY7v97m/pJhZpUpmjVhrpzLaHHwGbqvgV3jIfuASu5X+VpldtmSJu2s0fplauND9op8N/PY1vWwTdQ3c1pK3MMA6MTHwGvv0KdqYRCIZOTL7Pee3D+ljPpzAm/DDVm9aLbaG/ft36KH5H3P6dLP//iv4vDt3hv+7mp0Iy1l21VXBfW+5xS27557CuQaRfPVVMI6DTWpHi9/vJlGbNAm9jpE+czIzzXr1crdt1sxtPZuzJerAgfn/n+WulGUnJXMmZX/9Nbh80knhY+jdu+B6V3q62YIFbmvX3Os+/NDsnXfc+XLlzN5/v+Bjgds6IvuaZbcUDjf99pvZnXcGX4PfH/xxInvq0CF0+fvv3X8dx01uR4on59Sk4marwk5z8FktttrYe96yXU/1Mduw2N5+26xcOb9Vq5ZuSya/Y7dev8h+/32/b5WD4Um9T1MJrmdnbDVLXRS988WK3cPNEt8w2/yU2fsXhXxIfMk11pq5BmaXXur+TS/MJ142bnSfxACz0/jH0kmw3B9U23udYbZ0oVnm9sI7caSgypULnP8CfrVbb1AjHIkN86fttSW0yPM+MrBM4qwrIwJFx/OvfX3fDK9DljAWLnRbW9epY1a/vtl110X+/mPm1h2/+sqsRw+zrl3NPvoo9HN740a3AUzO26NyZbM5c/Iea+1a91gvv+w2brvhBvd70mefuUnZcJ56Kt9b0M46y2zXTn8goLVrza64wiwhwayNM8/+aXCVrbz/XbfFy1FHBnZMadLcvj3zY2vf3uzh+p/bglqdbUvT9u76Y9uYvfCC2eknWkqn06xf6y8sgXQ7lNX2KC/aLtwK/Q/xV9isJj1tzoWP26Tbv7JRV35kfXtvttq19tidvJ1vwMtpavWrbbf7rptkaYcekv+LyjENd7qbg8/O5s+Ct330dOv35EiLj8u0txPuDl33ww/7c5scrLD1M88riEU1RbXimZLPu0pcvhSzRa+bndrMrGHVPG+St7jLsh8by/lBlVt6uvvheOaZZisKqKstWGB2zDGZgWM1Yq1NoWPIOVfQxK6/OMm++MJNNhx6qNnzz5v17Gl22GFua6yrr3YTAPmZMMFthTZtWsEvfcoUs8aN3dPWrm3uYwO7dtlPuJVwH47FkZnvZ8fu3ft2eUWKys6dZtWru/fjG4e9le8fuUFcGWiJnnvK+f7Yvdvsk0+C6z780C33+83uvdfsvPOCyds5c8L/Tf35Z3ebnGU9e7plixeHlu/LF9mxY91Wpzlbapq5LT8HDjTbWsATwQMG5I2vKGzY4LbqPJgfopKT3Ypi+/Zmhx8e/vrOnOlun56e9xhffBG6bZMmbkvq2rXdz8RDwtSdhg4NPU7u9UcdlbdsdZinnCLUzaxq3j8xYSZ/nr87Bd3DM2fu63GD0zHHuP92ZIpNp519zE0WR6ZVJNmOZp69wkP2FVdbHTa7fyPYYg/xin3F1XYpgw381o3h9hxP2DC626O8aI1ZZWB2Ln/YXty+G3ZSJc/Jj+ffwOLh/GfX8KXVrpBsU6Yc+D20nw6o3qYptqaoJ3hTlMwwM7c1UuZ2s5SZZlufcVvpL3/E7KQmZmCr7r/XEhJ8gc+AJ58sulAmTQq2JGvHdHuH/1nuzyN/2QSzf++yaeOm2TW9Mqzpoal2zDF+e+21/P/WHLC//spz7gl0tqWT1bWHxI5nL56d5z42sKFNr7apTz9mRxy+3a7hy0D53x0espRlB9ZVpN/vNrIcPdpt8FTc+P1ut1w9eriNENbEwkMcqan2wdvplpD39y4rW9ZNnqak5Nh+/Xo3eZGYaLt2mV18cd79Lr7YLGPVOvMn77Gbu66y2/jA2jIrZJsjWvht99wVZl1Pt/RevW1Qp7ftZy6yu3jLEkgP2fZO3rb5ZY+1XSd0cbO/Z53urnj+aXvz9ZTAdl0YY1PoaEtoYT9wib3CQ7Ytoa5llitvwy7+yCpVcv/O1GJrvvdszukFHrNDWGMZxBe43RZqm4PP4si0S/gh7HZT6WCNWWVxZNoKmoTd7iuutlpstabOcptS74zw5764tf362dcWH5dpL/Nw2O02V29s8y+9MvAdojs5WiHef5ubgY+esPUzzyuIRTVFteK5d1L0zlWMzZtn9ssvWc30UxLNdvxptv1dsy1P2943Lg15g/zJ2YEvtrmnWrUOLg6fL/gDfkWSbREt85zkX463piyP+CU99y9iI0YE17Vokf/5N250E8a5j/XFTWPzFHZnmM2a5fYnmXOVSHGwYIH76HxSkln/ek+HfaP059bAH7s4Mq0+G6xWDZ+lp5t9803+u733nvt5kb185pnuOX/7Lfz78c033W1ylp11llv24Yeh5Tn7YfL7zX7/3f3+l12+bp1b2QI3OZld4UpNdX9tB7Nzz83/ukyYkH98Byo52ezff80yMkLLt20LtgK94AL3x61nn3WvWzgffeR2r5H9lIKZ2xdupM86cP+vOnZ0f2S75hq3tYHP58YWad8W+Tc6sbfecmPw+93uLPYljnPOydtPrd+/b/tGmk5mnK3kMEulrP3BufYa91tZUgPrG7DenuZpG0oP++ScH213v3dtZOcnrBvD7SgWWM7E8AlMtsd4wc5klF3LF9acpdaFMXYbH9gtDDAwu5GBtpymYQO6nfcMzGqyLWLwc2ltFUm2VMoWuN1H3ByI8zLcZsLD6Wb33B2h89/Cg6aSP0U9wbtnXPTOV1z9O9HsuKyWAy1qm316udn6J9wkb+LbtnfLSDsy2HDKOnXK+3elsO3Y4T5S+83Xfls6f77Nefoty/l59F35XnbL4T9YE1bYZuoEyi/iJ+vSJfQJNzO3Dj14sNtHbkE/bKammm0fPMp2XXODpdfL20WEgfU7dlDRvniRQpaUZNaunfujb0em2OvcZwbm73CY2dZnLXHhS/ZN/bydh84p094+KtPX/uYM+y6hl13deqrddWeKDRrk1n3//nazDft0g33/vdtA4ZZbgo/gg/u9+anHMsy3t4CmndlSUqIyAMZzz4W+zDp13O8lZub+OjRuXN4PkIL4/fl+IPr97hP8v/7itzFj3ESyLzOrr4BXXgg9x44dbqIjY0ueiqrvtz9sb7mqtpVaNpAb7Xsus+m0s578Eqwrs8RmJbS37Qm1LcUpH/IC55ZrH8iNtGGOfck19ggv2Zdck+/nW0ZCWWtZYYVdzI/5rs+e1tPAarLNEki3V3kg7HZbGzWzaiQZmFVlhyXH521AkD3dz2tWjmAy+AJ+DbvtdXxmFdhjjVmVt5/pXNPh/GeO47d7bple4HYGNpAbrR4b7fj6S8NuM5fWVoY0e4Hw3RgZmD10q1nKAhs7fKp1aLPNHuIV2+64/aVNrXWWXc53ln/DEL/14UNbdfE5Zpui3uAzbP3M8wpiUU1RrXgmj4reuYqplSuDg8G812emWfXKZs1rmW140lJ/7mM+J84yibPjmBHp/WrPPXfw8RxxRPB4h7DGPuO6sCf8kD5hk83PPBM85saNedenpbl/CAYPDra6PfnkvG/+q/kqz867qWS/fuL+ZPrRR8FVvXsf/OsXKWznnZ1hkzgx7PuoDXMM/PY9l5mB/cG5VpldBb7Xa9UKXS5TpuDPhnvvzZvo69zZje+FF0LLV60Kxp49MFfO4/yYqz40Ket3utwtiLMHxjJz64VpaXnPlT3lJznZ/cX+7beDdcHs+uWUKWbDhwc/r26+ObR/wEceCX8tOnd2W9XmtDBH11E9egTLsxPW+z9FbuWaPTVr5rYWdVsV+K0m2yyeDKtXz+1Wp2flv+w9brf2TLO+vG/38KbVY2PIOSqx257kWfuc3rbo6W/dfiB6XWa+c861Oc/9GtIK4SJ+sm+5wh7lRbuc7+x6PrXJnGCfcZ3dyxs2gFvsBCaHHHsceT6czcBe4aHA4vV8WuALfZB+gZibsCLsdj4ce4SX7E7etg3k/x+wgKMCi2VJzffHyOxpOu2sOUvtSgbt03/I/3jHwKwXX1sS1eyThk+YP72IMz1BaCr5U9QTvLv/jN75iqMFC8wqV8j7fr+/i9uYwpcS6KYI3C7LCmPA0wOxsM+TgUA2UdfaMMcOZbWt5tCQ2B/jBbv6mDm2a8Z/5veb9e/vDkqZvckJJ5htnLnB/YOenm7r+n1pr/X4yxo2NKvPhpCEcc5pKh0sIc6nQYolJiUnm/3f/7ldf02bZm4T29uvN0tbZbZ3kmVc0zHf+z57yiQukID7lQtC1r3CQ3Y2fwa6McyeGrLOVnOoZTgJlnF5L/vvkofsweY/WcWKfju2bZp9/uleN/k7ebJZrRpmdWqHPFK7bp3Z5El+W//vGjchunq1ZcxdaF994bMnu062V84cab/85AvJiS5Y4HZVNXOmmX9vipuJznqc749fE81xgj9UX8G31pvPbUyF0AEk0o9pZ4ldrzB/+awfvnv2cFs1tGhhVrWKbfp0qH3xhdkbz+629Q3b57lW6w473jYmNLSFHGm9+NrArBpJ9n38lQVe4wdbf2039t5kP3y7wVInDLLM9q3Dbjv93Zfs+HZrDSzwHSncNIRzDMzuumy07SxXvcBt7aLW9vUHP1oC6TaaU8Nu99dx19h3vfrZtLN7FXi8SZwY6K/91qN/Nn+lghsTnMfv1vqozTZ2yBBbNvaXsPfiW9xlF52zwCb0C/PlKWtaREu74LApNv7PH92/+WlpZoO/L3ifpwZZZnqK2cZcLW9uusn8Lz5tY3/aat27u/dRRZItjkxz8NmwNg+ar+3hZrdck+/gH9njdpi5PzReeGHB/xUvPT5Kg6xFY4pqxXPXb5GHxS7h7rzT7Gq+srHkGK3mg4vsmw9+sLJlM+woFlgNEgt8c3TrZnbXXYXzyFbXrnmPX4nd+bak+pGLrQxpdgSLbQC32FM8Y/FkGARHgV+5Mv+Y164NTZ5UyFX3rsoOm80x+e58BMG+m/fscbuFuPDC4vmYjEjv3mblSLGTGWd38K79Qk8z3H7+jmCxgdkpjLU1hD6rP5FOdhXf2M18ZI/zvF3Iz3neDmVIK/CzIXu69FL3vZKz7Mgj3fjuuSe0PPuLXbiWn7lb2Q8c6G6fu3Vu9oA0Gze6XbhUqhT8MSv3FKgM7Npj112+1ypUcAcnyF7/669mn34a0kVgvlPz5m695vzzs8v81oxlFhgFnTQ7k1FWh832889mV17pdnVwxhlmpzLaHuBVq0FioPVT+XJ+e4LnbC6t7Smesav4xm7nPXuTe6wDUwPnvYzvbTCX2of0sa0Es+8+HDuWmXniPIQ19g+n2VZq2UjOyvNCZtHWKrHb2jIrbJLzS64JLH7MTQVemHf4n4FZHTYH+uUKN/lwrD3TDMw6MLXAbROpYRVJtgd4NaSv6dzTyzxsZUgzB585+PLc67mn7AEfCtrmUFYH/lbk14dl9rSF2laJ3VabLfYfwX42ptDRujIi68ua3zoyxa5kkFVit4HZzXxk1/NpoPV7lKCp5E9RT/DujGrfdt7z+80WjjP781uz3ufm+UwwsJSjW5pt+tvMtzdPv+Iff+xt+L9+t8ReKfOYJVHNnudxK1Mm0z49LvzjJPNrnWSV2WVV2WF/craN5Cz7mvwTEtlP4B3GSuvL+7ad6oF1T/GMgTsIrEiJs3WL2VHud9nM+LytIjZQP1Cvu4V8+hILqU/5rVrVFGt62G77nfPy3S677ncoq/Ndvzuuqh1fc0mgrrqYI8Ke817esJM67bbBz/5ofzTta0M4x17gMRtKj5Dttvc636pWCbYOLagOZRCx7hhHpp3Nn/Y690Wstx3OfzacbraDgvv8Wk7TQKO12pV2hN/22IZmt51omQsesj/6vGgz448Lu+14TrKGFTbb1x/8aLb1WfO/eX6BMdj3fc22vm8393a7bQi7XetG7lhFi/9xB30o4JhnMdI6tM+09PPy/5uTc1rf/GRL37HBHQvJzGzIEEut09CWVWxjjVhrNSqn21VX+m3uXDNLW+IOlDpnttmsWZaS4n7vuvKkNXZ2o7l2+gl77O23s/oGzp1Ty8hw+25bvtzdYO1a99/crbHXrzf75mu3j8FcZs82e/11t1u+7O7o9seePaEDMleq5DbKyV6+9Pz5SvBGY4pugvdnM1/JGZJ19Wq3RelffwX7oPz5Z3f07tdey3+fgUe9lueNn9H+MDuc/8J+NpyVIx9www2F+xr69Ak9V8WK7qPCb10309YTHPlmFm3tAn61GiRaZybYTI51P7RoYA1Yb5XZZY8+6j4+nt9r+OR99w9QDRLtVEaHtDBLIN0+pI8NJ3TY9exHd+PiCvc1ixSl7AGkck9PPpFmjz+80Q5plGatmB+xQrCIllabLXYCkwP9Y6eTYBPpZDVItEaszbPbFXxry2hmv1e+yia8NskuZXAgKVylit9GjXRbItzPa7acpnYH79rYsW7cv/+eN4xqJFm5sn6LI9Mas8rKs9fAbb2btwW+2eAvU+yV+zYb+PMkoyuSbB2ZYqfxj6V2D1aQM4i3zkwwcFtGPMcT9kSd/tYjbrj9y/H2NncG+uA+lpk2mRNsAcEOaT/hBhvElTaV4Mhcd/GWtWRR4HPKcFuBppG3kv8qD7jnbpBuNxJmBDTcfpQbss4asi5i31g5n8BowPqQRGPuaRrt7SY+tgrssXgyCjxuDRKtIevyfR2BiiQN7FRGB4o6MdE2Ui/s9u9xe2DxOQruG8Jt6eu3fjxo26hZ4LbLaGbtmWZ12VRgVwmbqGvNWWpg9sfRD+RZ9wTPBX5IzDn15BfbSi3bSRXbfu1tZqmptm7RLsvdmjp3n2qRpoL6ri8CaCr5U9QTvEmfRe98Xlm/3uy/+e78wFz9DuWYfqGnXcOXVj4h3W691eymXPmNK64oHu1OEhPNfhi02gZ/n2mb1640W/22WcUwv5DiPnkwijAV7hxTXTZZXJzPjqi52n6q2MsyibMpFbrYUY122gknuN0NiZQG/p9+Nl+OVge+9m1s66jh9ucPc2xjnfBPBRnYf7dca+nT7jPfjceH3eYsRlo5Uuxd7gi7zfv0DdRnwtW3dlLFruULA7NjmG0phG/psLjMUVaRZAOzxockWVrHZgW+jq/pZTfxcdgB6k5mnIH75Fekz5ZpVU6yOjV22UO8UuB26STYRfxk4HZNV9ATjtats1nqPLO/RoSUZ5avaCt7PWrzOvexBYd2s5fvX2Cr/ltjlrHJbO9qs3v7moHtqBis665LaGxb3h7kNu1etszMt9vS082euGunnVB2pjVwNtqo+ldbWv2Gbl94t99udnrn4IjHL71kVq+27X74eTurU7JVYWdIqD16uJ/bZhaaQM3MdJtpT5zgPtq4fn2Bf2QyM4vH36DClJ5uNmiQ27p+1arQ7uuOabVRCd5oTFFP8GZsjt75ilB6uttKLfuGLVfObMuW0M+pzZvN/bUmbbPZlFFmd16d7wfaCzxW4Ofo0qVuX4vdumUdsxC99VbouYYNC66rWyfdTmGsJVHNMomzJ3jOarMlfKBga2lk5/F7oKg2W8J2+5D9uK+Dz84jNLt0JqNCNheJFRdckPd2//ff0G3+qNO7wPfRa9wfSKaG22YPFaw+GwJFZUnNd7s1HBJ4xKw5S+09bg9Zv5gj7DK+DxRVYWeBsfXlfQN3oJgXeMye4wk7j99tGu1DWlZ+wG3Bz0cnxe6p/UnYYw6ju8WTEZK4zT2dxUg7i5ERv9TuppI5+KwDUyMmYn/mQqvKjkBRL74Ou+0TPGdgFk9GxEfHbuODwOIVfBuxFe3X9DIwe4WHCtzuRR61zkzIMyBm7mkv5a08e61ChQyrSLLNJfwjcffxumUnRR+9bbvNp5UZ2DhOtg5MtY5MsaNYkDWgWd5DHM08e44n7BJ+sGokmYPPevKL3cG7gS8e4LYOvp337FIGW09+sfP5zToyJeSJlWeeyDB7vZ+93+rdPI9FFjTl7OIuXD/IP/2Us6V3/tO53aI+MgmaSv4U9QTv9nejd74i5vO5Yzq88orZt9+a7U5MMzs7R6uH7/uabXvbrFve1nCvcX+B7/fjj9+/bimjypfqPp5yb97B2How1MBvt188JvyLy5rG//GbZezN+lxLS3O/UBTqiG0iMWTXrmACL5svM+8vPzmnbl3NNo42mzC8wFadSRdfZG/fOqPA9+PNfGSVKqVbj5bT7Y+4/FsCG9gg56pAIvhu/q/AY/blfStfPtPm/PKb2Wl5u1YwsDt418Csef1tYeuvP3GRvd6ynz1413Jb0Nzt3mFduSZmYLuobL8c0tfG3PSl+Q4/3KxFM7PJ35tdcqoZ2Pqbn7TR32+2JV1vsbUtTrE5x/a2f7s/aePu+dFGfbLannwizZo3z7QK7LFbGGDvVnnYRt/9k9t/2gtPuQNm/DQ4q1lqltGjzQZ/5/bruC+jJ+/YYeb32/p1fps/Yp1lpIfPmqamhnYrF4nP54Z4111m991nNnJkyUvKFqWtOcaWq1QxzfxpSvCWrIrnrp/N0pZH73yFbPx4t4Xqyy+7Tdhzfz4+ltUvtdsvi9/mzDEbPTx8S70/ONcu5sf9+vJa2JKTQ881LsfYHDWzGmhVYWeOL+F+e6tmwSMRZT/2VZ8NBW73Mg8bmF3HZ4GyT7k+JGmVPYnEis8+C71327fP+3TMpIl+a8B6K89eq872PI9qvcb9lkC6lSOlwPfQLNpaRZKtGcvsZy4Mu10cmXYxP4ZNeM7mGDuG2YGi3I+B5ZzGc5KVJdWOY0aBLUnn0CaweNQh62x+1fCPWxluS9aC1l/Pp+6xWJCntX/2lEG8/cAlgcfuPqRPgcdcwyEh/Ypnd6cRbsoeKOFo5gXKkqmYZzCEYXS38SOX2JY5E22jk7fLhQUcZc83/cTs7v/Z7qdeCbR2bsV8u4Qf7GFethTK2Toa2lvcZQb2F2dYdbZbK+ZbIjVsF5WtO8PsTEZlteb2WwLp1pylVpFke/hh915bsMBs9iy/Pd/7P6vFVruJj60bw+14/g08Uli/vtmGDW4ipQxpBXYTFOGptX2exo7N+17JflQ4Odls6FCz7dvN7gjfGMbA7MYb874HhwzJu122V18NLT/iCLeP65uvmWn+7Z8WwSdCgdBU8qeoJ3i3vRy98xWRxYvdpG7L5hnWgiXWjGXWiYn2e3zPkDdw2ri73IHTfgr90fR8fjNwG0fk97RJjx6hA4wWaykpZlddbimHNrH+Fw63W/vssmE/TTL/jm/NLupkBpZZITgC8fdVb7ZRN3xtmWs3eB25SGzw+92Wnps2ufNJSe5j7mty/eg7dKjZOWeYnXe2ZTzxlG1+8DXb+/aH7jgIWUnIxBf7B96LqWUr2y8PTbK1p1xlBpZ8dld3s4zNtnfmIpv16HehH0xHtzI7/RTb9PgLdvWVe61VK7/1vjBvw6oxdLFjmG2NWGvlyrl1HvP7A5N/5Sr76pH51rXhfDuh0jy78EKz2RNGmN/vbtvmaJ8dyUK7li+sFQtsY+Xmltr4cLMVi3NfmYJt3+6OMryPl3jVKvc3piiMOyfFiN9vVjVHTx6b8unLt4iFrZ95XkEsqinqCd6UqI+cV2hOyPEd/rx8fni7o3twdMJRnGmjBw+1ypXS8jyukUK5kEdoC5puuqnoX9f777tf2jt2DP2R7N1388bTtKnPkran2+xnf7Gd5B01sjVzrQ1z7Hj+tVm0LfDF3cObgcXOTLBOTAws5xzs6dOof+cWOXB795pddJH7pXLIkNAfpHP67Td3oBRwk2odmGr12Jj1q73borIe+YxYmGN6mqcN/AUOGmBgXRhTYNJ2O9XtJj42B59dwbf2Pn3z3e5XLrCWLAoUFfRoVgbx1phVBmZfNLo/7HbLaWqvc589zMthH+V/lBetLpsMzNoyK6Q7hj1UsDe4N9Bv+DhOtrKkGriP52e3MF2FO6L6NNrbDI6zO3g3JJFZlR32HZfbR9xsLzZ419adfLH5+txi9tSj7rNGO3ZY48bBsBqyztoyy048PtjStAaJgUH0FmfVkxdOSrJ7T5kaiKUd0w3MrrvOXR+u72MHn51wgjso27HHBvsc37HDbOvqPdao2u4C/3a8+mro/RaugcphhwV/gFi0KPzx2rUzu+oq977N7wfORx911//+u9tAbMcOd9vs9Z984j6uVbas2496tvgcvznkfIIk5/tpUD7jpZ1yinuucK0wFi50u/cBsw8+CJbnHKgTcgwyuP09syQleDXFeD07Y6ub8PRHbaDAQuPzmX3Xb5Udf5T7KGwHpobtkzx7Oi1utJ3Qfq09/OBu+/rJKdai2sbA6tNPDz7+OmKE2f33mz3wQAlpfRXm/zfmX5dISbB3rzsy8L6M3uj3u48AF/TmXbbM7KG7zT54z3b+MdaefzzFzj3X7Lbb3HrbPvEFK0s+n9n06WZ//un2JhBIDosUkaOPDv7pnjU16j8+hq2feV5BLKop6gnePROjd75C8ttvod0xZE8JpFt59lodNlt7ptluKoVs4D7S6reHeTlQNoPj7GjmFfjFHMwaN3ZHlA/071LEkpLy/qKWmhps+XD33Wbz57sNCbJNnGh2JYNsD+6IaRnE2wQ6W1022S8vf2NJ1RqFvKi9lLexnGKf09vu5zX79L55+Q7CdM89biwffeQmn/U0mZRkH+boPvDBB/O+H1qyyG7gEzuKBdb3rP/smZ4zbe7j39kdpy+wo7J6NDiMlTa16aW2OaG+zeNo+4Qb7DfOt//jbutSaXrgODkPPI+j7WaC2a6VHGYnN11rVdhpd/FWvknj0Zxqp/N3oOhW+ufZ5i3usmv5IpDcBbNj2vht08RlVout1pvPrSNT7BYG2GGsDNm9GklWi632CC/Z/bxmn3CDGe6jY/l/VvotOxl+//1mSeuSLWcfrLn7GB83LnT53DBjI4wcmf//1a+/5t32xx/zll1/feh+OR9Pyp6y+z42Mzskn7Es2rd3PwfD1bs3bzbrEMxzW5s2ofvnHjjo9dfzf63Nmwe3yT0wX87p9ddDj5c7UZofv9/syy/dezz7czwtLXSbsWPNmjRxuzYp6Cm8kSNDz7cvg6HNnu1+x8p53HnBxtfWsGGOdUmfKcGrqUgmTxK8mUnRO+fBWLPG7OcfbNbQ9Tah+jlmEBiT4hmesrAfSGADuMVy97mdPdWv7w74KSIiIt4644zg3+dhf0S9u9aw9TPPK4hFNUU9wZs8InrniyAx0U0gzprl/op1001mM2aEbrNyZfYN6beWLMrqfsHsaZ62TOLCVjwziA8sNmC9XcrgwL77Mg0Y4MUV2X9+v9mksaGD2JQr53f7Hk5JsYu678l3kJvvvgseI3dSQ6S0Wb8+mADbudNNgg0b5n42Vcr63Si7xWdugwaZPfSQ+2U29yCHX37pludMiHZnmN3Exzn6nvXbjedttqG/ZdiKFaH7N2NZ4Mt2fv2XVqrgs6d4xr7nMnuN+7P6zs77hTs74Tlx4r59/uWcarHVwG/nnOM+VgtmCQluwvGNN9yk+PvvBxOhOfcdONB9zLdhQ7e/cbNg0rdcOcvzerOnghpdbNrkJhdPOsl9Wu+XX0L3DZeknDQpuE3uQTinTDE7+2y3het//7ktuzdt2rf75p57gk85/C+ru8YaNfJ2M7dnj9mRR7oDaR55ZDCWjz4K3S7na+nkPv1r9erlPV7uZHk0zJvnJoOPPnrfrk84kye742csXJijcOdgJXg1FcnkSYI3+oOY7JfM3Xvtv0sftvw+gNswxyqWT7VLesyz7Q0a51k/pdXVdnbXjHwbXoD7KOjUqV6/QhERETEz69Ur+Df684Hbon36sPUzzyuIRTVFPcG76yczc78sdu5sdtRRZkuWRC+EnK65xv2fjcuRp23UyE20PPyQ3+45ear17rLSTmJ8YIO9lLceDC1wVHAjexCEAjcpcBozxptrcqC+/daNOz4+9HGR1FQ3GZLztf39d2iLtIsvDq4bUXzy/yLFwpQp7gCvuRNs+bnyytD32u7dbnnPngV/3mTz+93HWnOvz+6rMGfZ0Ue7ycwBA/I/Zv/+biK2QgX3NWQfP/tzN3u69FK3FWffvqGP8ICbQP3f/9wf4LKlpAS7K8hPzpasgcfvc0hKcrufmTQp72sCtzVt7j6TC7Jjh1mVrN5q+vTZ9/2KQkqK2c8/u13H5cfncxO9SUnuo30PPJD3CYkrrnBfS/367o8Na9a4++Tm97tdLdSqZfb994X+UgpUJE8S7v5TCV5NRTJ5kuAtTt2h/fOP2dVXmY0dayl7/fbzAyNsVULzvB++WdPkY6+w3VM/d78z/PGc2RNPmK1ZbTbsZ7PRf4UcOjExOPjNGWe4fXbn97kvIiIi3rj33uCf+X4vbY/26cPWzxwzoyTq0KGDTZ8+PTon2/0L+HZC9ev56CO49Va3uFkzWL48OiHk5Dj5l7fgP37gMtoyN8+6a/iKX7mQcqRxN2/zFM+HrO/JrwyjBxmUDXve11+He+6BpCRo2RK2bw9d37ixez0SEvb3FXnHDGbPhho1oEmTvOvffhvGjIGnn4Zjjw1dt3IlvPYadO4M11xT9LGKlFS33w79+weX/X73c27tWvd96ffnv1/OP2/bt7vHGDgQqlaFAQOgUyd3Xb9+8Mgj7vygQXDVVZCRAT/84H6e3Xuvu1ynjnvOtDR3uVat0PNlZMDYsTBhAtxyCzRs6JavWAEnnghbt8Idd8B77+3/NRg3zo3z4ovhppsibz9iBLz4ovu5VKMGXHRR3s+oSJYuhenT4fzzoXLl/Y+5OElOhj/+gBNOcP82R2IW/m9pTNk7DtKXQ/UbonnWknDlJIKo1rMzt0HSe1DpDKjYJTrnDDl/JkycCGXKwHHHufNdu+KPi2do/au4IulTWqbMZxg9qM/m/I/x6/fQ8/Loxi0iIiJFIuf3x/vu2cUb/1c1mqcPW9dWgvcgbdkCj9y/mtef+ZOazfvSqxd8+21wfWYmxMcf2LHNYPJkOOII98tpcrKbyLj5ZjjySPjss7zH/vNPOP9cH4/xEmXI4HmexHB4hFd4gSfzPc9vXMDfnMm73AVApQqZnFp9LrWq+6m5aAK/0ZNVNI0Yb2Ii1Kzpzn/zTTCp2auXm2Do0wfatj2wayEipdfDD8OrrwaXc/7ZSkmBjh1hwYK8++3rn7f0dHjzTahQAe68E+LiQtfPng2jR0OPHu5n74FITXWTxQ0aHNj+IgckdQakzlWCVwqdJwne8sdAlYsL9dC7d8PwYUaVKX/RqkttGu9eAE89DpWrkvHLzySPn0ONGy7Ld9/RnMYwevA117CQVlRnZ2BdUutTqHxqG8r0vBC6di3UmEVERMRbn38ON2RVr6++ag9fD6oUzdOHrWvHUFvK4mf0aDd5uWnTYexIOo2f//DRsGFoxvWpp9yk5223QaUC/s9ztxby+eDyy+Hnn/Pffto0aN0aBg+GtTM2890zS2h1blN696zK7/TiXP4EwE8cL/Mov3MB7ZjJxfyS51hHxC3jZv9AAD5437jp5gTKlm0HwKJFHZh0HbSpD926ucmPcKpXD85ffjls3uwmpO++2230ICJyIHr2DCZ4c7ekr1AB5s2DPXvcH9QaN3a/sD/99L4fv2zZ4C+w+Tn22P1v/Zpb+fJK7ooHnKhWNkWKVmbe1rGTJ8MbryUzYVJlavq2clXzqVzWYSUtu9TDwdzHqbp3h2OPDTS6cDD49FO4+WaqAIH07ZvB4+5OqMaQlk9zle/bPOfMdjpj+Iwb2EhDnqrXn95HTqfV872o2P4oalSsWKgvXURERIqP+vWD85u3xIXfMMrUgvcg/PYbXHhhcHnJgu28+mZNPvkk8r6ffhrM+L/3XjBxetllbmu0Jk3cJClAPTZxAlOYQXte4AnOYwhvcD+fcQN38Q6P8XK+5/Dj0I6ZbKM2n3AT3RkZWDeOU5jCCbzOA4yaU49jjnGTIwV1n7BlCxx2mNsSLbeuXWHkyLzlIiKF4ZFH3B+0XnzR7UIhnPXrYfFiOO20A396QqTEyFgHe0apBa8UOk9a8K7bxYYv6lD58/cpk7aH4dUuo//mSxlFN2qSyBJaUpvEsIc5g7+ZV7sLZ5yYRJ9Z/+Os9YPDbtuf2xjO2dzHm5zKuDDb9CXxmXfpfUM8jRsf9KsUERGRGDFrFrRz20TSpnU6c+eF78q0CKiLhqI7D8yY4c4P+30VH3/eJEyrW+N4pnI4y6jDVmbSjr+fn0RCo/pUufFS9hDaweGRLGIRrcKedyjn0JANHMfssNus5RCasYJaJPIYL5EUX5unV9/EhrRaNGpeHoCjjoK5c/e9X9x//nH7gqxa1W2Z3KMHTJ0KZ54JaqwgIiJSjPiSYPevSvBKoYtagnfJEnjqERj8a9hN3uReXuUh2jKHEZwddrs5HMMLPMGPXAo43McbvMEDebZbyuGcylg20pAjE/7jo8ybqMNWBtGLKuxmDm35nisZ+HkC111XCK9RREREYsqGDdCokTtfp46PLVui2rJIXTQUlZYt3QRvRfbA2NE8/s/XDGICYziNbdTmPt5kC/W4mm/4mmtDd87qEjcZ94tXPJn4cW+MDAru0+Bt7mYrdbiC73mEfvlucz2fk0kZNlOfu3mHUzrD042gIe4jzOPHuwP/7M+gZ2ec4U45nX/+vu8vIiIiURKnLhokxv3wQ4HJXYA7Ej6k+yctoFlzFl9+CkduHJ/vdm2ZyyX8xI9cRmNWcyk/hqzPbNSY+Udeyt8dH+XNtrU5+WSoV+8IPvpoPE88ATt2uNvFx8OHH6LkroiISCmVc7DtpKS4YjNAsxK8ByMzk7N2/c43XOIuvxFcld0dwimM5xUeoT99OYa5PMRrYQ83jY7czdtM4BTu5f/Cbvcl1zKKriSQSSsWMoN2bKAhsziOCqTwBdexgNZ59rvgguB85cpu61sREREpoZyy4KiqJzHs7LPhybyDBPudOPZUqU3ZFg0o994Ajj7xRHfFylNZ9cc8hr08m1Wzd/Cp/zpuO2QoF7RZwdE3daJN87P4YDKkph5G+dMmQ1s//PEH1K9PwgkncCxwbK5z3XGH223at9/C3r1u92wHOuCmiIiIxL5y5dwn2PfuhcxMh+RkqFLF66jURcPB8ftJq1SDcqm7CtzsK66hN19F7HYhhfKcylimcTxP8hz38WbIiLzfciU/czE/kv9ovjndcQe8/747f9FF0Lkz3H67ulEQEREpVXb9BFUvieYZi0H7BSlqUe2Dd/BnTPl8DHcMu5MujMN3bk/eHtI84m7p6e5UuXLETUVERET2yyGHuOO/AKxeTTT741cXDUUiLo6kE86m/ti8gzTM4lgqsYefuZi2vz7H07Ng8+ajmHbeZu46bzknMZGJnMQqmvA/3mM1hzGMHqzjUACe5yme5ykOYS2LPppAvVsuYC/BRy3HjXO7VujcOf/QuneH226DtDS38+fi0FxcREREoixOv+xKjLv4fL4acTQz6MAMOvDyyfu2W9my7iQiIiJS2GrUCCZ4k5KimuANSwneg1T1y/d5uFkHZvuOIR4fVdjND1yGERfYJvks6NHTnd+zpy7/Upd/6RRY/wQvhj3+Og6lcp+ruGoKfPKJWzZhApx0kju/a5c74FluNWtC67y9NIiIiEhpogSvlADzF9cNzLdp42EgIiIiIrgJ3mxJSd7FkVNc5E2kIBUb1+a2Wccwku4M4xwGc0VIcrdbN6iUY4yTSpXg8MPd+fh4dzkhAb74Aszc6eOPg9t/+qn770svwWOPweDBweQuuP18vPBC3rjyS/qKiIhIKeMowSuxL2eCVw0YRERExGs1awbnt2/3Lo6c1IK3EDRtspdN81/j7GvuY+fOeIYOhTp1YMwYOOusvNt//73bGveqq9wuFnbsCL05brjB7VrB54NrrnHL6taFF8M09L37brePseeec5cbNICWLQvzFYqIiEhMcsp7HYHIQUlOhsTt7g8VZcsWj0cgRUREpHQrji14leAtJPXqpTJrZhxGsL/bSy/Nf9t27dwpW87kLrgte++4Y9/PXbkyPPss3H8/DB/utvBVn2MiIiJCnBK8Ets2bAg+GdewocaVEBEREe8pwVuSxVUFx/F06OiqVeHyyz0MQERERIoXteCVGLdhY3xgvlEjDwMRERERyVIcE7zqg7ewxFXzOgIRERGRUErwSoxbvz60Ba+IiIiI13ImeItLH7xK8BaWuCpeRyAiIiISSgleiXEbNga/rqgFr4iIiBQHObtaVQvekiZeCV4REREpZtQHr8S43H3wioiIiHhNXTSUZGrBKyIiIsWNU8brCEQOysZNwa8rDRp4GIiIiIhIluKY4NUga4XFqex1BCIiIiIiJcq2bcEhjOvU8TAQERERkSytW8OUKW6it1Ytr6NxKcFbWOIqeh2BiIiIiEiJkpgYbMFbXL5AiYiISOlWuTIcf7zXUYRSFw2FxangdQQiIiIiIiVK4vZgC14leEVERETypwRvYVELXhERERGRQqUWvCIiIiKRKcFbWJTgFREREREpNKmpsHev24I3IQGqaExjERERkXwpwVsYnDLglPU6ChERERGREiMxMThfqxY4TvhtRUREREozJXgLg/rfFREREREpVLkTvCIiIiKSPyV4C4O6ZxARERERKVRK8IqIiIjsGyV4C4OjBK+IiIiISGFSgldERERk3yjBWxjiKnkdgYiIiIhIiaIEr4iIiMi+UYK3MKgFr4iIiIhIoVKCV0RERGTfKMFbGNQHr4iIiIhIoVKCV0RERGTfKMFbGNRFg4iIiIhIoVKCV0RERGTfKMFbGJwyXkcgIiIiIlKiKMErIiIism8SvA5AREREREQkt2uvhWOPdRO9LVt6HY2IiIhI8aUEr4iIiIiIFDuXX+5OIiIiIlIwddEgIiIiIiIiIiIiEqOU4BURERERERERERGJUUrwioiIiIiIiIiIiMQoJXhFREREREREREREYpQSvCIiIiIiIiIiIiIxSgleERERERERERERkRilBK+IiIiIiIiIiIhIjFKCV0RERERERERERCRGKcErIiIiIiIiIiIiEqOU4BURERERERERERGJUUrwioiIiIiIiIiIiMQoJXhFREREREREREREYpQSvCIiIiIiIiIiIiIxSgleERERERERERERkRilBK+IiIiIiIiIiIhIjFKCV0RERERERERERCRGKcErIiIiIiIiIiIiEqMcM/M6hiLhOM5WYPUB7Fob2FbI4ZQ0ukb7RtcpMl2jyHSNItM1ikzXKDJdo8j25RptM7OzoxGMeOcg6tmg99q+0DWKTNcoMl2jyHSNItM1ikzXKDJdo8j29RqFrWuX2ATvgXIcZ7qZdfA6juJM12jf6DpFpmsUma5RZLpGkekaRaZrFJmukRQG3UeR6RpFpmsUma5RZLpGkekaRaZrFJmuUWSFcY3URYOIiIiIiIiIiIhIjFKCV0RERERERERERCRGKcGb10deBxADdI32ja5TZLpGkekaRaZrFJmuUWS6RpHpGklh0H0Uma5RZLpGkekaRaZrFJmuUWS6RpHpGkV20NdIffCKiIiIiIiIiIiIxCi14BURERERERERERGJUaUywes4zirHceY5jjPbcZzpWWWXOY6zwHEcv+M4HXJs28RxnJSsbWc7jjPAu8ijJ8w1es1xnMWO48x1HOcXx3Gq59j+UcdxljmOs8RxnO6eBR5F+3ONdB+FXKPns67PbMdxRjqO0zDH9rqPCH+NdB8Fr1GOdQ84jmOO49TOUab7KHRdyDXSfRTyXnvGcZz1Oa7FOTm2131E+GtUWu8jiUz17MhUz45M9ezIVM+OTPXsyFTPjkz17MhUz44sKvVsMyt1E7AKqJ2r7CigJTAG6JCjvAkw3+uYi8k16gYkZM33A/plzbcC5gDlgKbAciDe69dQzK6R7qNgWdUc83cBA3Qf7fM10n0UWn4oMAJYnb1e99E+XSPdR8GyZ4AH8tlW91Hka1Qq7yNNkacw95Hq2ZGvkerZB36NdB8Fy1TPPvBrpPsotFz17AO7RrqPgmXh6pC6jyJfowO6j0plC978mNkiM1vidRzFmZmNNLPMrMV/gUOy5nsC35lZmpmtBJYBx3sRo9cKuEaSxcx25VisBGR3BK77KEsB10hC/R/wEKHXR/dRqPyukUSm+0ikEKmeHZnq2ZGpnh2Z6tmRqZ69z1TPjkz17AOj+6iIlNYErwEjHceZ4TjOLfuwfVPHcWY5jjPWcZxTijq4YiLSNboRGJY13whYm2Pduqyykm5/rhHoPgpcI8dxXnQcZy1wNfBUVrHuo8jXCHQf3QLgOM4FwHozm5NrW91Hka8R6D7K+Zn9v6xHNT91HKdGVpnuo8jXCErnfSSRqZ4dmerZkameHZnq2ZGpnh2Z6tmRqZ4dmerZkRV5PTuhUMONHSeZ2QbHceoCoxzHWWxm48JsuxFobGaJjuO0B351HOfoXL/8lURhr5HjOI8DmcA3Wds6+exfGn7F2p9rpPsoxzUys8eBxx3HeRT4H/A0uo/25RrpPsq6RsDjuI9q5qb7KPI10n0UvEb9gedx75HngTdwkwa6jyJfo9J6H0lkqmdHpnp2ZKpnR6Z6dmSqZ0emenZkqmdHpnp2ZEVezy6VLXjNbEPWv1uAXyigOXhWs/HErPkZuP2DHBGNOL0U7ho5jnMdcB5wtWV1DoL7i8uhOXY/BNgQvWi9sT/XSPdR2PfaIOCSrHndRxGuke6jwDU6Fbe/pjmO46zCvVdmOo5TH91HEa+R7qPge83MNpuZz8z8wMcE33+6jyJco9J6H0lkqmdHpnp2ZKpnR6Z6dmSqZ0emenZkqmdHpnp2ZNGoZ5e6BK/jOJUcx6mSPY/7q8v8Arav4zhOfNZ8M6AFsCIasXol3DVyHOds4GHgAjPbm2OX34ErHccp5zhOU9xrNDXacUfT/l4j3Uch16hFjs0uABZnzes+inCNdB8FrtE0M6trZk3MrAluJaGdmW1C91HEa6T7KOS91iDHZhcRrA/oPopwjUrjfSSRqZ4dmerZkameHZnq2ZGpnh2Z6tmRqZ4dmerZkUWrnl0au2ioB/ziOA64r3+QmQ13HOci4F2gDjDUcZzZZtYd6AI85zhOJuADbjOz7R7FHi3hrtEy3JEOR2Wt+9fMbjOzBY7jDAYW4j4udYeZ+TyKPVr26xqh+yjnNfrJcZyWgB93xNHbAHQfRb5G6D4KXKNwG+s+inyN0H2U8732leM4x+I+FrUKuBV0H7EP14jSeR9JZKpnR6Z6dmSqZ0emenZkqmdHpnp2ZKpnR6Z6dmRRqWc7wad/RERERERERERERCSWlLouGkRERERERERERERKCiV4RURERERERERERGKUErwiIiIiIiIiIiIiMUoJXhEREREREREREZEYpQSviIiIiIiIiIiISIxSgldESiTHcXyO48x2HGe+4zg/OI5T0XGcJo7jzN/P41zvOE7DooqzOMh6jVsdxxkYYbuVjuO0zFX2luM4DzmOc4rjOAv39/qKiIiISGxRPXvfqZ4tItGiBK+IlFQpZnasmbUG0oHbDvA41wPFuuLpOE5CIRzmezO7OcI23wFX5jhvHHBp1r7jgXMKIQ4RERERKd5Uz94/qmeLSJFTgldESoPxwOFZ8/GO43zsOM4Cx3FGOo5TAcBxnGMdx/nXcZy5juP84jhODcdxLgU6AN9ktVKo4DjOmY7jzHIcZ57jOJ86jlMua/9VjuM86zjOzKx1R+YOwnGceMdxXnMcZ1rWeW7NKj/NcZwxjuP86DjOYsdxvnEcx8la195xnLGO48xwHGeE4zgNssrHOI7zkuM4Y4G7HcfpmHXMyVnnmJ+13XjHcY7NEcNEx3GOKehihYsT+JYcFU+gC7DKzFbv33+HiIiIiJQQqmcHY1A9W0Q8owSviJRoWb+69wDmZRW1AN43s6OBHcAlWeVfAg+b2TFZ2z5tZj8C04GrzexYwIDPgSvMrA2QAPTNcbptZtYO6A88kE84NwE7zawj0BHo4zhO06x1xwH3AK2AZsBJjuOUAd4FLjWz9sCnwIs5jlfdzE41szeAz4DbzKwT4MuxzUDc1hE4jnMEUM7M5ka4bPnGmbWf33GctlnbXYlbGRURERGRUkb1bNWzRaT4UIJXREqqCo7jzMatOK4BPskqX2lms7PmZwBNHMephluJG5tV/gXur+a5tcza/78w2/2c87j57N8N6J0V1xSgFm5FGGCqma0zMz8wO2v/lkBrYFTWPk8Ah+Q43vcAjuNUB6qY2aSs8kE5tvkBOC+rEnsjbsU5koLi/Ba4MqtC3zPr+CIiIiJSeqie7VI9W0SKjcLoT0ZEpDhKyWoNEJD1NFZajiIfUGE/julEWJ99bB/5f746wJ1mNiJXXKflE1dC1vYLsloL5GdPpLjMbK/jOKNwK4mX4z4KF0m+cWb5FhgJjAXmmtmWfTieiIiIiJQcqmejeraIFC9qwSsipZ6Z7QSSHMc5JavoWtyKFcBuoErW/GLclgiH57PdvhgB9M36lR/HcY5wHKdSAdsvAeo4jtMpa/syjuMcnU/8ScBux3FOzCq6MtcmA4F3gGlmtv1g4jSz5UAi8Ap6bExERERECqB69r7HqXq2iBwMteAVEXFdBwxwHKcisAK4Iav886zyFKBTVvkPWY9OTQMG7Mc5BuI+EjYza3CHrcCF4TY2s/SsASjeyXq8LQF4C1iQz+Y3AR87jrMHGAPszHGcGY7j7MLtP6ww4vwWeBn4ZR+PJyIiIiKll+rZ+x6n6tkickAcM/M6BhEROUiO41Q2s+Ss+UeABmZ2d9ZyQ9zK6JFZfY/l3vd6oIOZ/e8gY2gCDDGz1gdzHBERERGR4kL1bBGJBeqiQUSkZDjXcZzZjuPMB04BXgBwHKc37gAOj+dX6cySAvRwHGfggZ4867G7P4BtB3oMEREREZFiSPVsESn21IJXREREREREREREJEapBa+IiIiIiIiIiIhIjFKCV0RERERERERERCRGKcErIiIiIiIiIiIiEqOU4BURERERERERERGJUUrwioiIiIiIiIiIiMQoJXhFREREREREREREYtT/A0jjffX+SccrAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 1728x576 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot(vs_test, 0)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "8c61b6fe-111f-4c2f-91b6-2fb83c56c9d7",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABX4AAAHwCAYAAAARuXfWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADo80lEQVR4nOzdd3gc1dXH8e9V78WyXORusA3G2AYXTDc4BNNL6J1ASEgoCR0SgiFAgNBJ6M2Ulx5aAoReDKa4G4x777LVe9n7/jGrnV31tkXS7/M8ejRzZ2bnrCTM0dGZe421FhERERERERERERHpPqLCHYCIiIiIiIiIiIiIdC4VfkVERERERERERES6GRV+RURERERERERERLoZFX5FREREREREREREuhkVfkVERERERERERES6GRV+RURERERERERERLoZFX5FpNswxpxpjPkwzDGUGGOGN3N8rTHmFx14/WeNMbe29/qOMMbcYIx5srPPbcVrWWPMru289n1jzLne7fOMMbOaOC/sPzsiIiIi3ZEx5kBjzLJmjg/15nsxoYyrMxljphpjNoY7DlDuLCKBVPgVkQaMMWcYY+Z4i5hbvAnAAeGOqyXW2hettb8Mcwwp1trV0PEibXPJVjhYa2+31l7Y2ee2lzHmMWPMc42MjzXGVBpjellrj7DWzmzptSLhZ0dERESkjjHmAGPMN8aYQmNMnjHma2PMpHDH1R7W2q+staPq9jvaCBEJOlJcDRflziI9kwq/IhLAGHMFcD9wO9AXGAw8DBwXxrBa1JU7BLqCCP36PgucaIxJrjd+DvAfa21e6EMSERER6RhjTBrwH+AhoBcwALgZqAxnXNLlPYtyZ5EeR4VfEfExxqQDtwB/sNb+21pbaq2ttta+a6292ntOvDHmfmPMZu/H/caYeO+xqcaYjcaYa4wx273dwscbY440xiz3divc4He/GcaY140xrxhjio0x84wx4/yOX2eMWeU9tsQYc4LfsfO8nQ/3GWPygBn1O2S9f4n/nTFmhTEm3xjzL2OM8R6LNsbcY4zZYYxZY4y5pKlHzIwx5xtj3vXbX2mMedVvf4MxZrzfPXc1xlwEnAlc4+2cftfvJccbYxZ5OzheMcYkNHLP3YFHgX291xf4Hc40xvzX+3X5zhizi991uxljPvJ+rZcZY05p5vudY4x5x3vuSmPMbxr53rxgjCkCzvOOveB3zjnGmHXGmJ3GmBv9uzf8zzXu43vnGmPWe7/mf/Z7ncnGmNnGmALvz8w/jTFxTcVdx1o7G9gE/MrvtaKBM4CZ3v3PjTGNdh4bY/5hjJlljEkP1s+OiIiISDuMBLDWvmStrbXWlltrP7TWLgIwxuxijPnUm4PtMMa8aIzJqLvYm5Nd7c03S40xTxlj+hrnKb5iY8zHxphMv/OnGKe7uMAYs9AYM7U1QRpjZhpjrvRuD/DmQ7/37u/qzTGN8ZsGwRjzPE5jybveHPcav5c8s7FcsZH7Hmmc3w2KjTGbjDFXecfb+rtIk7/XeI//xpsj53lz5hzv+JfeUxZ638Opftdc6Xfv8+vd627v+9tmjHnUGJNYL+42X+s9frX3ms3GmF839XVT7izSM6nwKyL+9gUSgDebOefPwBRgPDAOmAz8xe94P+9rDAD+CjwBnAVMAA4E/moC58A9DngNp5vh/4C3jDGx3mOrvNek43Q5vGCM6e937T7AaqAPcFsT8R4NTPLGegpwuHf8N8AR3vexN3B8M+/5C+BAY0yU9/6xwP4A3veSAizyv8Ba+zjwInCXd/qHY/wOnwJMB4YBY4Hz6t/QWvsz8Dtgtvf6DL/Dp+N8PTKBlXXv3Th/vf8I5+vYx3vew8aYPZp4Xy8BG4Ec4CTgdmPMNL/jxwGvAxne9+JjjBmN0wl+JtAf53s0oIn71DkAGAVMw/k52N07Xgv8CeiN8zM4Dfh9C69V5zmcLoU6v8D5/rzf1AXe7+MTOF/7X1prC5s4tTN+dkRERETaajlQ6y2sHuFfpPUywN9xcrjdgUHAjHrn/Ao4DKeIfAxObnQDTr4VBVwGTsEW+C9wK04+fhXwhjEmuxVxfgFM9W4fjJOXH+zdPwj4ylpr/S+w1p4NrAeO8ea4d/kdbipXrO8p4LfW2lRgDPCp37G2/C7S5O81xphDcb7Gp+DkuuuAl73v4SDv9eO87+EVv3vX5cQXAP/y+97difO9GA/s6hcfHbnWGDMd53t2GDACJxdujnJnkR5GhV8R8ZcF7LDW1jRzzpnALdba7dbaXJwC5Nl+x6uB26y11TjJUW/gAWttsbX2J+AnnKShzlxr7eve8+/FSdSmAFhrX7PWbrbWerwJ1QqchKzOZmvtQ9baGmtteRPx3mGtLbDWrgc+w0k4wElGHrDWbrTW5gN3NPWGvXP2FnuvPRj4H7DJGLObd/8ra62n6S9ZAw9631ce8K5fTK31b2vt997v04t+1x8NrLXWPuP9mswD3sAp6gYwxgzCSa6vtdZWWGsXAE8S+L2cba19y/v1r//1PQl411o7y1pbhZN8Wpp3s7djZSGwECcpxFo711r7rTfmtcBjuL80tOR54GBjzEDv/jnA/3l/nhoTi1Pw7oXzC0dZM6/d4Z8dERERkbay1hbh5GkWp3CZ6+047es9vtJa+5G1ttKbj99Lw9zpIWvtNmvtJuAr4Dtr7XxrbSVOk8de3vPOAt6z1r7nzfk+AuYAR7YiVF9zBE6h9y68zRHeeL5o41tvNFdsRDUw2hiTZq3N9+a8/sda+7tIc7/XnAk8ba2d5/2aXY/zJN7QZuKv9r5etbX2PaAEGOXtfP0N8CdrbZ61thhnWr3TOuHaU4BnrLU/WmtLafgHgPqUO4v0MCr8ioi/nUDvFh67ycH5i3eddd4x32tYa2u923XFwm1+x8txOmTrbKjb8BZP6zpQ66YSWGCcx84KcP6i37uxa5ux1W+7zO/eOfWub+m16joaDvJuf46T0LYnqW0qpo5ePwTYp+7r5f2anYnTQVBfDlCXPNZZR2DXbnNfk4CvnzcJ3NmeuI0xI40x/zHGbDXOtBK3E/h9bpI3sfwSOMsYk4LTQdDcghS74nQy3+wtWLc5Xtr+syMiIiLSJtban62151lrB+LkwDk463BgjOljjHnZONMcFAEv0DB3qp9/N5WPDwFOrpc/HoDT5dpSjKtwCpTjcbpp/wNsNsaMIrg58q9wCtPrjDFfGGP29TvWlt9Fmvu9JuCYtbYEJ9dt7gm3nfUaaOreQzaQBMz1+xp/4B3v6LX181L/99OAcmeRnkeFXxHxNxuooPnHbzbjJIh1BnvH2mtQ3Ya3W2AgTsI4BKfD4RIgyzvVwY84j7bVaanDtDlbvPdqEEcT6gq/B3q3v6Dlwm9H4mvP9RuAL6y1GX4fKdbaixs5dzPQyxiT6jc2GGfer9bcP+Dr551nLKuN8dZ5BFgKjLDWpuE8hmiavyTATJxuhV8Ba+p1fdT3M3A+8L73l5L2aOvPjoiIiEi7WWuX4izMNcY79HecPG2sN3c6i7blTv42AM/Xyx+TrbWt7cr8AudJsDhvd/EXOHlZJrCgiWs6lCNba3+w1h6HM7XZW8CrzV/RpOZ+rwk45p1SLYvAXLm1duAUnPfw+xqnW2tb0/zR0rVbCMxFB7fiNZU7i/QgKvyKiI915mv6K86cUscbY5KMMbHeucXq5t96CfiLMSbbGNPbe/4LTb1mK0wwxpzo7TL+I85qxd8CyThJYS44C6zhJrud4VXgcuMsRJEBXNvC+V8AhwCJ1tqNOI/MTcdJAOc3cc02YHgTx1pjGzDQtGKhM6//ACONMWd7v2+xxphJjc2PZq3dAHwD/N0Yk2CMGYszn9iL9c9twuvAMcaY/bzx3Uz7f+FIBYqAEu/0GY0VqpvzBk4CeTPNdywAzkIpOMXlj43fwnht0NafHREREZFWM85ivVfWPY7vnaLrdJwcGZzcqQQo8M7Re3UHbvcCTk53uHcRrgTjLDZWd+8ZxpjPm7n+C5xGjboFzz4HLgVm+XXe1tfuHNkYE2eMOdMYk+6dnqAIZ72I9mju95r/A843xow3zoJvt+NMl7G2re/B+1TjE8B9xpg+3vcxwBhzePNXturaV3EWYR5tjEkCbmpFSMqdRXoQFX5FJIC19l7gCpyFDXJxugAuwflrOjgLP8zBWcxsMTDPO9ZebwOnAvk4c2qd6J3baglwD04X8jZgT+DrDtynvieAD3Hex3zgPaCGJhJHa+1ynAT7K+9+Ec4CFl83k9Q+hTP/WIEx5q12xPgpzjxkW40xO1o62Tttwy9x5vzajPO41Z1AfBOXnA4M9Z77JnCTd163FnnnSLsUZ+60LThzIG/HKdy31VU4qwkX43xfXmn+9AaxlOImsK0qXFtrZwK3AJ+2MFdbY9r0syMiIiLSRsU4ixh/Z4wpxSn4/ghc6T1+M84iWYU4C7P9u7038jYDHIdT2KvL/a/GrRUMovkc/AucQnRd4XcWztQEXzZ5hdOx/BdvjnxVO8I+G1jrnebidzgdz+3R5O811tpPgBtxcswtwC4Ezsk7A5jpfQ+ntOJe1+IsyvytN+6PcRaya40mr7XWvo8zBcin3nM+beI1fJQ7i/QsxtqOPoksItI+xpgZwK7W2vYma50ZyxHAo9baIS2eLA145wgrwJmuYU2Ywwkp/eyIiIhId2WMWQBMs9a2tJaDSKsodxYJLXX8ikiPZIxJNMYcaYyJ8T4idxNO16u0kjHmGO90IMnA3TidEmvDG1Xw6WdHREREegpr7XgVfaUjlDuLhJcKvyLSUxmcx+TycR45+hlnXi9pveNwponYDIwATrM94zES/eyIiIiIiLSOcmeRMNJUDyIiIiIiIiIiIiLdjDp+RURERERERERERLoZFX5FREREREREREREupmYcAcQatOnT7cffPBBuMMQERER6WlMuAOQ4FOuLSIiIhJyTebZPa7jd8eOHeEOQURERESkW1KuLSIiIhI5elzhV0RERERERERERKS7U+FXREREREREREREpJtR4TfEpk6dyv/+97+Asfvvv5/hw4dzxx13AHDeeefx+uuvN7j2wgsvZMmSJSGJU0RERESkq2kq1/7973/PO++8E9J8u7y8nIMPPpja2tpOeb32ePbZZ7nkkks65bVSUlIajBUUFPDwww+36XWa+x55PB4uu+wyxowZw5577smkSZNYs2ZNh+JurRkzZnD33Xc3e86CBQt47733fPv+P1NtlZuby/Tp09t1rYiISGup8Btip59+Oi+//HLA2Msvv8zMmTO57rrrmr32ySefZPTo0cEMT0RERESky2oq1z799NM59thjQ5pvP/3005x44olER0d3yutFovYUfpv7Hr3yyits3ryZRYsWsXjxYt58800yMjKafb1QFtbrF35b8zPVlOzsbPr378/XX3/dWeGJiIg0oMJviJ100kn85z//obKyEoC1a9eyefNmVq5c2ehf42+88UbOO+88PB4PU6dOZc6cOYDzF/c///nPjBs3jilTprBt2zYAVq1axZQpU5g0aRJ//etfG/3LvIiIiIhId9RUrn3AAQc02f0arHz7xRdf5LjjjvPt33XXXey5556MGzfOVyxcsGABU6ZMYezYsZxwwgnk5+cDTlfstddey+TJkxk5ciRfffUVAPvssw8//fST7zWnTp3K3LlzycvL4/jjj2fs2LFMmTKFRYsWBcRSWFjI0KFD8Xg8AJSVlTFo0CCqq6tZtWoV06dPZ8KECRx44IEsXboUgDVr1rDvvvsyadIkbrzxxkbf43XXXceqVasYP348V199NdZarr76al/H7iuvvNKm79GWLVvo378/UVHOr6kDBw4kMzOzwWsMHTqUW265hQMOOIDXXnuNDz/8kH333Ze9996bk08+mZKSEl98o0ePZuzYsVx11VUArFu3jmnTpjF27FimTZvG+vXrG7y+/8/Bjh07GDp0KFVVVfz1r3/llVdeYfz48bzyyisBP1NNve55553HZZddxn777cfw4cMDOs2PP/54XnzxxUa/tiIiIp2hRxd+jQneR1OysrKYPHkyH3zwAeD8dfvUU0/FNHLRNddcw/bt23nmmWd8yU+d0tJSpkyZwsKFCznooIN44oknALj88su5/PLL+eGHH8jJyem8L5aIiIiISBtEeq4Nwcu3q6qqWL16NUOHDgXg/fff56233uK7775j4cKFXHPNNQCcc8453HnnnSxatIg999yTm2++2fcaNTU1fP/999x///2+8dNOO41XX30VgC1btrB582YmTJjATTfdxF577cWiRYu4/fbbOeeccwLiSU9PZ9y4cXzxxRcAvPvuuxx++OHExsZy0UUX8dBDDzF37lzuvvtufv/73/ve58UXX8wPP/xAv379Gn2fd9xxB7vssgsLFizgH//4B//+979ZsGABCxcu5OOPP+bqq69my5Ytrf4enXLKKbz77ruMHz+eK6+8kvnz5zd6X4CEhARmzZrFL37xC2699VY+/vhj5s2bx8SJE7n33nvJy8vjzTff5KeffmLRokX85S9/AeCSSy7hnHPOYdGiRZx55plcdtllTd7DX1xcHLfccgunnnoqCxYs4NRTTw043tzrbtmyhVmzZvGf//wnoEN44sSJvqK+iIhIMPTowm+4+D/eVPdYU31/+9vfKCgo4LHHHms0UY2Li+Poo48GYMKECaxduxaA2bNnc/LJJwNwxhlnBOkdiIiIiIhEptbk2hDcfHvHjh0BUxR8/PHHnH/++SQlJQHQq1cvCgsLKSgo4OCDDwbg3HPP5csvv/Rdc+KJJza49ymnnMJrr70GwKuvvuqLY9asWZx99tkAHHrooezcuZPCwsKAmE499VRfB25dsbWkpIRvvvmGk08+mfHjx/Pb3/7WV6j9+uuvfV+7utduyaxZszj99NOJjo6mb9++HHzwwfzwww8NzmvqezRw4ECWLVvG3//+d6Kiopg2bRqffPJJo/eqK7x+++23LFmyhP3335/x48czc+ZM1q1bR1paGgkJCVx44YX8+9//9n3tZ8+e7fu+nX322cyaNatV760lzb3u8ccfT1RUFKNHj/Z1jgP06dOHzZs3d8r9RUREGqPCbxgcf/zxfPLJJ8ybN4/y8nL23nvvBudMmjTJ99hWY2JjY30JanR0NDU1NUGNWUREREQihzHmaWPMdmPMj35jvYwxHxljVng/Z/odu94Ys9IYs8wYc7jf+ARjzGLvsQeNN8E0xsQbY17xjn9njBka0jfYAa3JtSG4+XZiYiIVFRW+fWttk13HTYmPj29w7wEDBpCVlcWiRYt45ZVXOO2003yvX1/9+x177LG8//775OXlMXfuXA499FA8Hg8ZGRksWLDA9/Hzzz83+RotaSyOxjT3PYqPj+eII47gH//4BzfccANvvfVWo6+RnJzsu+dhhx3mi3/JkiU89dRTxMTE8P333/OrX/2Kt956q8mF1Bp7jzExMb5pMfy/j23h/7p138u6eOtUVFSQmJjYrtcXERFpjaAVfrtCMmpt8D6ak5KSwtSpU/n1r3/dZAfC9OnTue666zjqqKMoLi5u9XuaMmUKb7zxBkCDRRNEREREpNt4FqhfyboO+MRaOwL4xLuPMWY0cBqwh/eah40xdSuOPQJcBIzwftS95gVAvrV2V+A+4M62BhjJuTYEN9/OzMyktrbWVzT85S9/ydNPP01ZWRkAeXl5pKenk5mZ6XvU//nnn/d1/zbntNNO46677qKwsJA999wTgIMOOsg3V+znn39O7969SUtLC7guJSWFyZMnc/nll3P00UcTHR1NWloaw4YN83URW2tZuHAhAPvvv7/v/TU1D21qamrA1+6ggw7ilVdeoba2ltzcXL788ksmT57c4Lqmvkfz5s3zdcB6PB4WLVrEkCFDmv16TJkyha+//pqVK1cCzvzFy5cvp6SkhMLCQo488kjuv/9+FixYAMB+++0X8L4OOOCABq85dOhQ5s6dCxAwJ2/99+uvNa9b3/LlyxkzZkyL54mIiLRXMDt+nyXCk9FwOv3001m4cKHvr/SNOfnkk/nNb37DscceS3l5eate9/777+fee+9l8uTJbNmyhfT09M4KWUREREQihLX2S6B+q+pxwEzv9kzgeL/xl621ldbaNcBKYLIxpj+QZq2dbZ02xOfqXVP3Wq8D00xb2z/DqDW5NgQ33/7lL3/pe9x/+vTpHHvssUycOJHx48dz9913AzBz5kyuvvpqxo4dy4IFC/jrX//a4v1POukkXn75ZU455RTf2IwZM5gzZw5jx47luuuuY+bMmY1ee+qpp/LCCy8EzE/74osv8tRTTzFu3Dj22GMP3n77bQAeeOAB/vWvfzFp0qQG00bUycrKYv/992fMmDFcffXVnHDCCYwdO5Zx48Zx6KGHctdddzU5P3Bj36Pt27dzzDHHMGbMGMaOHUtMTEyjC/L5y87O5tlnn+X000/3LW63dOlSiouLOfrooxk7diwHH3ww9913HwAPPvggzzzzDGPHjuX555/ngQceaPCaV111FY888gj77bcfO3bs8I0fcsghLFmyxLe4m7/WvG59n332GUcddVSL54mIiLSXae3jOO16cacL9z/W2jHe/WXAVGvtFm+i+bm1dpQx5noAa+3fvef9D5gBrAU+s9bu5h0/3Xv9b+vOsdbONsbEAFuBbNvCG5o4caKtW6G1OyorKyMxMRFjDC+//DIvvfSSL3kTERERCaMuUzTsKhrJtQustRl+x/OttZnGmH8C31prX/COPwW8j5Nr32Gt/YV3/EDgWmvt0d6n9qZbazd6j60C9rHWulWwRnT3XBtan2/Pnz+fe++9l+effz4MUUpXcNBBB/H222+TmZnZ8skiIiJNazLPjgllFEBfa+0WAG/xt493fADwrd95G71j1d7t+uN112zwvlaNMaYQyAIaJKPGmItwuoYZPHhwp72ZSDR37lwuueQSrLVkZGTw9NNPhzskEREREQmvxn4ZsM2MN3dNwxfvQbk2tD7f3muvvTjkkEOora0lOjq60XOk58rNzeWKK65Q0VdERIIq1IXfpgQ1GbXWPg48Dk4XQnsC7CoOPPBA37xcIiIiItKjbDPG9Pd7um67d3wjMMjvvIHAZu/4wEbG/a/Z6H26Lp2GU0sAPSvXhrbl27/+9a+DHI10VdnZ2Rx//PHhDkNERLq5YM7x25ht3iSUTkxGaSkZFRERERHpAd4BzvVunwu87Td+mndx5GE462Z8730Sr9gYM8U7f+859a6pe62TgE9bmlJNRERERCJLqAu/SkZFRERERDrIGPMSMBsYZYzZaIy5ALgDOMwYswI4zLuPtfYn4FVgCfAB8Adrba33pS4GnsRZ8G0Vzty/AE8BWcaYlcAVeBdlFhEREZGuI2iLu3mT0alAb2AbcBPwFk7SORhYD5xsrc3znv9n4NdADfBHa+373vGJwLNAIk4ieqm11hpjEoDngb1wOn1Ps9aubimunrDghIiIiEgE0uJuPYBybREREZGQC/3ibtba05s4NK2J828DbmtkfA4wppHxCuDkjsQoIsGxaRNceSX06wf33ANaz0REREREREREJLRCPdWDANHR0YwfP54xY8Zw8sknU1ZW1u7XOu+883j99dcBuPDCC1myZEmT537++ed88803vv1HH32U5557rt33FmnKJZfAK6/AAw/A88+HOxoRERHpSZRrS4/gqQh3BCIi0gWo8BsGiYmJLFiwgB9//JG4uDgeffTRgOO1tbVNXNm8J598ktGjRzd5vH4y+rvf/Y5zzjmnXfcSac5bb7nbzz4brihERESkJ1KuLT1C8b9V/BURkRap8BtmBx54ICtXruTzzz/nkEMO4YwzzmDPPfektraWq6++mkmTJjF27Fgee+wxAKy1XHLJJYwePZqjjjqK7du3+15r6tSp1M2p9sEHH7D33nszbtw4pk2bxtq1a3n00Ue57777GD9+PF999RUzZszg7rvvBmDBggVMmTKFsWPHcsIJJ5Cfn+97zWuvvZbJkyczcuRIvvrqqxB/haSrW7oUtOyiiIiIhINybem2ajZDbW64oxARkQinwu+MGWBM6z4uuqjh9RddFHjOjBmtvnVNTQ3vv/8+e+65JwDff/89t912G0uWLOGpp54iPT2dH374gR9++IEnnniCNWvW8Oabb7Js2TIWL17ME088EdBVUCc3N5ff/OY3vPHGGyxcuJDXXnuNoUOH8rvf/Y4//elPLFiwgAMPPDDgmnPOOYc777yTRYsWseeee3LzzTcHxPn9999z//33B4yLtMa2bXDDDeGOQkRERMJCuTagXFs6ma0BTwnU7gx3JCIiEuFU+A2D8vJyxo8fz8SJExk8eDAXXHABAJMnT2bYsGEAfPjhhzz33HOMHz+effbZh507d7JixQq+/PJLTj/9dKKjo8nJyeHQQw9t8PrffvstBx10kO+1evXq1Ww8hYWFFBQUcPDBBwNw7rnn8uWXX/qOn3jiiQBMmDCBtWvXdvj9S89zxx3hjkBERER6CuXa0u15yr2fi8Mbh4iIRLyYcAfQE9XNO1ZfcnKyb9tay0MPPcThhx8ecM57772HMabZ17fWtnhOW8THxwPOQhk1NTWd9rrSPTU1rUNVFcTFhTYWERER6XmUa0u3Z71z+3rav3ChiIj0DOr4nTHDqVS15uPxxxte//jjgee04fGz5hx++OE88sgjVFdXA7B8+XJKS0s56KCDePnll6mtrWXLli189tlnDa7dd999+eKLL1izZg0AeXl5AKSmplJc3PCvwunp6WRmZvrmFHv++ed9HQkibVVe3vi4GlhERER6IOXayrWl89nywM8iIiJNUMdvhLrwwgtZu3Yte++9N9ZasrOzeeuttzjhhBP49NNP2XPPPRk5cmSjSWN2djaPP/44J554Ih6Phz59+vDRRx9xzDHHcNJJJ/H222/z0EMPBVwzc+ZMfve731FWVsbw4cN55plnQvVWpZvJy4O+bOUfXM12+jCDGZSQyvbtMHJkuKMTERERUa4tXZxHhV8REWkdY5t6Lrubmjhxoq1bjVdEOt+iRfDRuCu5knsBeJEzOIsXeestOO648MYmIiJh1XnPxkvEUq4tEgIVCyHvdXhtPex9IdRbTFBERHqcJvNsTfUgIp1q5064iZu5n8sBOJP/I5M8dmrRYRERERGRjvvme9jvX/DH5+D//i/c0YiISART4VdEOlVeHpSSwmF85BsbyXIVfkVEREREOoHduRPW5QPgWb4yzNGIiEgkU+FXRDqVd30TlrKbb2w4q33jIiIiIiLSfi/PGePbzp+7KoyRiIhIpNPibiLSqeo6e9cwzDc2hHWUlYUpIBERERGR7mLmTCr+Odu3m1y4GawFo2nURUSkIXX8ikinKsitphc7yaOXbyyLnVRWhjEoEREREZHu4K23OL/sMd9uApUUbCkPY0AiIhLJ1PErIp0qZeUCdjI5YKwXeSr8ioiIiIh0UPX2PGLrja2fv5OMnKSwxCMiIpFNHb9hUFBQwEknncRuu+3G7rvvzuzZzqM6CxYsYMqUKYwfP56JEyfy/fffA/D1118zduxYJk2axMqVK32vcfjhh2OtDdv7EGlM7Y78BmPq+BUREZFQUa4t3VnN9oYLZ+Qu1SrKIiLSOHX85s7o3NfLbvn1Lr/8cqZPn87rr79OVVUVZd7JT6+55hpuuukmjjjiCN577z2uueYaPv/8c+655x7eeOMN1q5dyyOPPMI999zD3/72N2644QaM5nKSCBNbosKviIiIeCnXFulcRUUNhso2qPArIiKNU8dviBUVFfHll19ywQUXABAXF0dGRgYAxhiKvP8jLywsJCcnB4DY2FjKy8spKysjNjaWVatWsWnTJg4++OAm7zN06FB27NgBwJw5c5g6dSoAM2bM4Ne//jVTp05l+PDhPPjgg75rnnvuOcaOHcu4ceM4++yzO/utSw8RVdlwFTdN9SAiIiKhoFxbujtT3jDXLt9aEPpARESkS1DHb4itXr2a7Oxszj//fBYuXMiECRN44IEHSE5O5v777+fwww/nqquuwuPx8M033wBw/fXXc9FFF5GYmMjzzz/PVVddxd/+9rd2x7B06VI+++wziouLGTVqFBdffDHLly/ntttu4+uvv6Z3797k5TV8hEikNWKqGiajcVSp8CsiIiJBp1xburvoioa5dtX2wjBEIiIiXYE6fkOspqaGefPmcfHFFzN//nySk5O54447AHjkkUe477772LBhA/fdd5+vU2H8+PF8++23fPbZZ6xevZqcnBystZx66qmcddZZbNu2rU0xHHXUUcTHx9O7d2/69OnDtm3b+PTTTznppJPo3bs3AL169ercNy49RkyVu6rwjxPOII5KRrBShV8REREJOuXa0q1ZS2y1W/j1YNhBFsXFmotaREQap8JviA0cOJCBAweyzz77AHDSSScxb948AGbOnMmJJ54IwMknn+xbcKKOtZZbb72VG2+8kZtvvpmbb76Zs846K+ARsjoxMTF4PB4AKioqAo7Fx8f7tqOjo6mpqcFaqznMpFP4d/xW9R1CNXHOdlW4IhIREZGeQrm2dGt+nRS1RBFNLdns4K1eF4QxKBERiWQq/IZYv379GDRoEMuWLQPgk08+YfTo0QDk5OTwxRdfAPDpp58yYsSIgGtnzpzJUUcdRWZmJmVlZURFRREVFeVbsMLf0KFDmTt3LgBvvPFGi3FNmzaNV199lZ07nYUB9PiZtJd/F0JMWqpvWx2/IiIiEmzKtaVb8/tZLCINcP6YUFAQnnBERCTyaY7fMHjooYc488wzqaqqYvjw4TzzzDMAPPHEE1x++eXU1NSQkJDA448/7rumrKyMmTNn8uGHHwJwxRVX8Ktf/Yq4uDheeumlBve46aabuOCCC7j99tt9HQ/N2WOPPfjzn//MwQcfTHR0NHvttRfPPvss77zzDnPmzOGWW27ppHcv3V1sjTvVQ0xakm9bhV8REREJBeXa0m35FX7LSfRtq/ArIiJNMdb2rPmAJk6caOfMmRPuMES6rRcSf8NZFU8CsP6CmznqqRNIp5DioWNZuCYtzNGJiEgY6Tn3HkC5tkgQ7dzJy2NvI39zOSWkcA3/AKBPH2jjVNQiItK9NJlnq+NXRDpVfK3biTD4qZtYzE0AnFjyJXBgmKISEREREenisrK4rdfd/Lg5imRKmMx3pFNIbV4CcFC4oxMRkQikOX5FpFNdGP0MGeSTwyYq9nET0LjywjBGJSIiIiLS9RV6U+ox/Mh3TOFDDufvNVdRb41BERERQIVfEelkJVVxFJLBFnKIHpTjG4+vUOFXRERERKQj6gq/haT7xtIp1Dy/IiLSKBV+RaTT1NSAx+NsR0VBTC83IU2uLaS6OkyBiYiIiIh0cR4PFBc70ziq8CsiIq2hOX5FpNNUVrrb8fFgMtyENI0iSkshIyP0cYmIiIiIdHVlH3/DC/aflJHEz3HjocoZT6eQtQXhjExERCKVCr8i0mkqK2FXVuAhitjYJEhJ8R3LoICSEhV+RURERETao/LHFZzBSwC8Hn02tSaaaFtLIhUUbq8E4sMboIiIRBxN9SAinaa0FP7H4axiV5YW5UBRke9YJvmUlIQxOBERERGRLqwir8y3XZuQRElcL/fYlvxwhCQiIhFOhV8R6TRlZZCEm5AycKBvM4udKvyKiIiIiLRTZUG5b9smJFGWkOUe27wzHCGJiEiEU+FXRDpNc4XfXuSp8CsiIiIi0k61xW6e7UlIoiLZ7fj15KrwKyIiDanwKyKdprQUEnE7Eep3/JaXN3KRiIiIiIi0yFPiFn5tQiJVKW7Hr2dHXjhCEhGRCKfF3USk05QXVRNLDYCz2ETfvlRGJ7K9Nout9KOiIswBioiIiIh0UZ5Sv6keEpOoiXYLvyZPHb8iItKQCr8i0mn8F5yojE4iacgQzjupkJdfiQXg/1T4FRERERFpF1vq5tomKZHKjMGsYFd2kkWeJz2MkYmISKTSVA8i0mmqCt0uhOroRDCGhMRo35g6fkVERERE2qnMr/CbnMTKs29mJCvYl2/5rNdJYQxMREQilQq/ItJpqgvdZLQ6NgmAhAT3nxkVfkVERERE2qnCbbKISkkiLc09VFQUhnhERCTiqfArIp3Gv+O3JjYRgIQE97gKvyIiIiIi7RNV7jZZRKckqvArIiIt0hy/ItJpaovdZLQm3un4HVK0mKNZSxY7idt6KDA4TNGJiIiIiHRdX476DU+vmUoi5ewyeFRA4be4OHxxiYhI5FLhV0Q6TWVpDflkkEQZnnin4/fIr67nj/wXgP9b9zYq/IqIiIiItN03fU9gpnf7qaGQbvM5k/+STClxW1OBM8IYnYiIRCIVfkWk0yzrtS+9yAfgnks8XAHUJia7J5SWhicwEREREZEuzj+VTk6G9OJNvMDZACwt2B0VfkVEpD7N8SsincZvoWGSUpx/XjwJbuHXlKnwKyIiIiLSHvULv8l93Dw70VOKxxOGoEREJKKp8CsinaZ+Mgpgk9yENKpchV8RERERkfaon2tHp6e4+5Tq4ToREWlAUz2ISKcJ6Ph11nYLLPxW+GWj1oKtgqj4EEUnIiIiItJ13Tn/l5RSSxlJpEa97HZa4BR+84ogNdU7UL0eYrW2hohIT6fCr4h0mpTcNUxjFWUk0atsMDAQT5LbiRBXWeKeXL3WKfzGjwp5nCIiIiIiXc3eJV8QRxUAS9JiIDEOD4YoLIlUUJRfy4AB0c7J5V+r8CsiIprqQUQ6z34bXuFjDuMb9meXD/4JgMdvcbfYKr+O39qtULsz1CGKiIiIiHQ9tbXEWafo68GQlBEHxlARleQ7pXS7N9e2VVC1ynnCTkREejQVfkWk08RUuXM9RCUnAoFTPcRW+xd+88BTGLLYRERERES6rPJy32YZSSSnGAAqo91cuyzXm2t7isHWgK0MaYgiIhJ5VPgVkU4TW+1f+PV2H/jNPRbnLfyuXAnHnjKeK6/fVY0IIiIiIiIt8VtMo4wkUryzqVXGutOqled6p1Xz1HX+VoQqOhERiVCa41dEOk1sjduJ0FjHb7y38HvFFfDu+wMAmHIQnHxyCIMUEREREeliaovL8M7eSzmJZCc429VxyeCtCVfm1XX8qvArIiIOdfyKSKeJq/Hr+E1xOn49vfswj734igNYmzQaa+Hdd91rnnkm1FGKiIiIiHQt5Xlug0WFScI4Mz1QE+82WQQUfq0Fjwq/IiI9nTp+RaTTxNX6FX5TncJv6bj9OIR5ABw0BLI+BoOH03mJIaxjYeHvgYwwRCsiIiIi0jWU55VRN6lDRbS7oNumIfvy87ZMSkkmrzbdGbz/Gbh3JhyzBJ5+LfTBiohIxFDhV0Q6TVyt24kQk+JM9RAb6x6vqYFHHoGLeJxHuRiAV9bkAveFMkwRERERkS6lMs9tsKiOTvRtf33ivVz3vbN9dSKwYgXc8LAz8MzrcOVPsMceIYxUREQiiaZ6EJFOk+DX8Rvt7fiN8fvzUnU1ZGfDbfwZgC85kC0Jw0Iao4iIiIhIV1NZ4DZYVMW6Hb9pae45RUXA118HXvjjj0GOTEREIpkKvyLSaRKsW/iNSW284zcuxkM8lQAcxFe8G39SSGMUEREREelqqgvdPLsm1u34bVD4Xbw48MJBg4IcmYiIRDJN9SAinSbe4zfVQ7rTiRAbVcuFPE0ypQzZXMHyLeeTgrPwRB6ZrCzrH5ZYRURERES6iu1DJvFXXiGRcvoOyeEg73iDwq9nkzvw5PWw336hDFNERCKMCr8i0ilqa2EdQ0iijETKGZTuLD8RE2t4jN8ShYVtcPm2X/iu2UyOk6CKiIiIiEiT8hIH8BqnAHDsYHc8Z/McruMjepFHwZr9IWuze7BvGiIi0rOp8CsinaK6Gk7gLQDi4qBylDMeGx9FARn0Ih+A3rk/+67ZQn+KisBaMCbUEYuIiIiIdA0lJe52crK73WflN/ydGwB4eVs5VG1xD/ZT4VdEpKfTHL8i0imqqtztuDh3OyYG8ujl2x9Y+JNv+zA+5inP+ZR9uygUIYqIiIiIdEmlpe62f+E3cYCbZyeU5cG2be7BbL8TRUSkR1LhV0Q6RVOF39hYyCfTt59TvjLguvOYSc3PK4IdnoiIiIhIl9VU4TdlsFv4TavYDsXF7sG7X4MZM4IfnIiIRCwVfkWkU7S647diVYNra3YUBDEyEREREZGuba//3spKdmERe7L/6ud84wn93QaLoXZ14EX//C88/XSoQhQRkQikOX5FpFNUlVbza56jnEQSalKBYwCn49e/8Du4ppHCb35xgzEREREREXHEF2xlF5zC7hZb6B7o5ebZFsPq2asYXnA7HPGUM+g/ObCIiPQ4KvyKSKeozivmKS4EoDAvA7yLucXEBE71kGqLqSKWOKp9Y7VFpYiIiIiISONMeZlvOyo50T3gV/jNoIAPlqVz4b+u5VO8hd9S5dkiIj2ZpnoQkU5RVeAmo5VRSb7t+h2/M6JuJp5KbuXPvjFPkToRRERERESaElVR7tuOTnVzbTLdBosMCjj7vEw++2FXaoh2BquqoNptuBARkZ5FhV8R6RSVBW4yWhntdiHUL/xmePIAw3b6+MZsiToRRERERESaElXpNlkEFH5jYiiPTXXG8ZBGEWAoIcU9R12/IiI9lgq/ItIpqgvdZLQqxk1Go6OhKMrtRMj0TgFRit9yxJp7TERERESkSdFVbpNFbFpiwLHyRLfJYjwLSKZEubaIiACa41dEOkl1kVv4rfYr/BoDm5JG8HbJseTRi1kcAFCvC0HJqIiIiIhIU2Kr3Fw7LiMp4Fh1ai8oWgfA5xzS8GIVfkVEeix1/IpIp6gpdrsQamIDuxB+yjyA43mbC3iKzeSwD9+Sw2bfcVOmx89ERERERJoSU+Pm2nGZgYXf/ENO5GEubvpiTfUgItJjqeNXRDpFbbHbhVATF5iMpnibezMo4H2ObHBtVJm6EEREREREmhJX4+baCRmBTRYxN/2FP7wAyZRyLs81vFgdvyIiPZYKvyLSKTwlbhdCbXzjhd/e7HDPx3APV1JKMvtO3oWckEQpIiIiItL1xNf6FX57Bebaw4fD4EGl9NmwvfGL1fErItJjqfArIp3CU+Imo7XxgV0IdYXffmz1jX3HPlzDPwD4+xg4PPghioiIiIh0SfEet8mifuE3Kgpuum4l/f+wxTf2DOdRSjIpfZM4b+jQUIUpIiIRRoVfEekUnlI3GfUkBCajqalwPbdzGQ/6xrbQ37ddXo6IiIiIiDTh+Lj3iaksIZFy3hiQ2eD4r8/NxXPTKuoesLuRv7GJgfSPquW80dEhjlZERCKFCr8i0inyEnL4gMNJoozyvqMCjqWkwG94gn5s841tpZ9vW4VfEREREZHGeTzwTeUE335iWr0TVqyAv91H1A5nLl9rDNtsXwC2bYuithaiVfsVEemRosIdgIh0D/MHHcsRfMDBfMnCQ/8UcCwlBVYzPGBsbZS7r8KviIiIiEjjytwZ1UhKcqZ2CFBYCM+/59s148aS1isWAI/HkJsbgiBFRCQiqfArIp3Cv3ibGDjFLykpsIpdAsYW50znOc7mHY7h928cClVVIYhSRERERKRrKSlxt+vWzggwahSkJrv7p51Of3dWNbZsaXiJiIj0DGEp/Bpj/mSM+ckY86Mx5iVjTIIxppcx5iNjzArv50y/8683xqw0xiwzxhzuNz7BGLPYe+xBY4wJx/sRkcDCb1LgFL+kpsKTXEit95+c/3AUGQeM4Rje5Rj+w+5bPtNqwyIiIp1EubZI91JSbAELNFH4TU2Fh26B3slwyEi49FKmx33K05zPK5xC3DOPhTReERGJHCEv/BpjBgCXAROttWOAaOA04DrgE2vtCOAT7z7GmNHe43sA04GHjTF1MxQ9AlwEjPB+TA/hWxERPy11/P7AZCYyh9/wOKfxMvvsAyX4Za7+rQwiIiLSLsq1RbqfmsU/U0s0xaTw2tYDGz/pzNNhyVXwxp8gKYlR0Ss5n2c5hdeIX/RDaAMWEZGIEa7F3WKARGNMNZAEbAauB6Z6j88EPgeuBY4DXrbWVgJrjDErgcnGmLVAmrV2NoAx5jngeOD9kL0LEfGZuOIlhrOaElLoXXg0+E3tUNeZsIC9WMBepKfXMmIElOL3SJo6fkVERDqLcm2RbqQyr5QoLCmUkmiaWBzDeB+5i3IS77hMN8+uKVKeLSLSU4W88Gut3WSMuRtYD5QDH1prPzTG9LXWbvGes8UY08d7yQDgW7+X2Ogdq/Zu1x8XkTA4YN0L7IOzqMTc7bvQWOG3zqiRtSQlRavjV0REpJMp1xbpfqry3Dy5Kq6xuR6AqMDCb3xv9zxbrDxbRKSnCsdUD5k4nQXDgBwg2RhzVnOXNDJmmxlv7J4XGWPmGGPm5GpJU5GgiKtyOwli0pMDjqWmBp7bt28UCQnq+BUREelsyrVFup/qfLdwW91U4dfEQlQ8RDmJd1K2e55Rni0i0mOFY3G3XwBrrLW51tpq4N/AfsA2Y0x/AO/n7d7zNwKD/K4fiPO42kbvdv3xBqy1j1trJ1prJ2ZnZ3fqmxERR3yNm5DGZAQmpPU7fnv3jiY+XnP8ioiIBIFybZFupqbQLdzWJCQ3fWJUL4hxGvNT+rrnRZcrzxYR6anCUfhdD0wxxiR5VwaeBvwMvAOc6z3nXOBt7/Y7wGnGmHhjzDCchSW+9z6qVmyMmeJ9nXP8rhGREIuvcRPS2IzAhLRB4TfbqPArIiISHMq1RbqZ2kI3T65NbKLjFyBuBMQ5062l9nfPi6lUx6+ISE8Vjjl+vzPGvA7MA2qA+cDjQArwqjHmApyE9WTv+T8ZY14FlnjP/4O1ttb7chcDzwKJOAtNaLEJkTBJrHUT0visljp+IS5OUz2IiIh0NuXaIt2P/xy9nuYKv8mH+jbTB7jnxVWrwUJEpKcKeeEXwFp7E3BTveFKnI6Exs6/DbitkfE5wJhOD1BE2iyx1i3cpuc0P8dvXeFXHb8iIiKdT7m2SPdiS/waJJKbmerBT+ZA9zz/Bg0REelZwjHVg4h0M9XVkIybUKbltNzxGx+vjl8RERERkRb5N0jUT6yb0Guwe16SLaWmprODEhGRriAsHb8i0r3kba2iL9UA1BBNTEJcwPH6+WlWltPx+w7HsoFBeJKSeOSYSaEKV0RERESkyzDlboOESW1d4Tc6OYFaoojGQwKVbNtWQ98B+vVfRKSn0b/8ItJhBZtK6evdLotKIc2YgONxgXVg0tKcjt/Z7Mds9iPRenhkjB5AEBERERGpL7rM7fiNTmvdVA8YwwO9b2XTjjhKSOGyXEvfAUEKUEREIpYKvyLSYYWb3GS0MrrlZDQnJ7AYXFVlmj5ZRERERKQHe2z3+zl79QxSKOHOA/u1+ro3d7ueWbOc7dMLghObiIhENhV+RaTD8soSeJiLSaGEXjmpHN3IOa++CrfdBued50z1YC0Y43yurTXU1kJ0dKgjFxERERGJbLmVaWwgDYD4/q2/Ljvb7zVyOzkoERHpElT4FZEO21KTzR94GICzD6LRwu/JJzsfdYxxun4rK539qipITAx+rCIiIiIiXUk71nYDVPgVERHQpJoi0mE7d7rbWVmtv25SzHxmM4VF7En0OWd2fmAiIiIiIl1cqbu2G8mtnOIXoHdvd3vHjs6LR0REug51/IpIh+Xludu9erX+uqSYKqbwHQDVK9XuKyIiIiJSX1r+OnqTRCHppKTEtXyB1zFz/sphfEkKJcxaeB9wYPCCFBGRiKTCr4h0mH8HQVs6fmvi/VoW/FsZREREREQEgLc2TaQ3TsK9vXwb0KdV1+Xk/8RgvgDgq63bghWeiIhEMBV+RaTDchZ/wFO8SiHpjNswjcZn+W2oJsFvkrLSkqZPFBERERHpoVJtkW87qX96q6+LSXdz7ep85doiIj2RCr8i0mF9Ns7n1zwDwIb18bS28Budpo5fEREREZGm1JZVEk8VAJXEkZQZ3+prYzPcXLumULm2iEhPpMXdRKTDTLHbhZDYN63V1/kno1Fl6kIQEREREfFXvrXQt11MGlFt+A0+Psvt+LXFyrVFRHoiFX5FpMNiyvweP+vX+sJvfEYiHgwA0dWVUFPT6bGJiIiIiHRV5dvcPLskqvV5NkBiduDTddY2clJtEY0fEBGR7kCFXxHpsJRatxMhJqv1CWl6hqGUFqZ7sB4o+6Yj4YmIiIiIdEn+hd/SmLYVfmMz3I7fRE8JeXmNnFT2CVQtbW94IiIS4VT4FZEOsRaSPW5CGp3Z+oQ0LQ1K8F/grZHCb/VqKPsUPHo8TURERER6lvJtboNFRVzbCr8kuw0WyZSyYUO947YWKn+G8q87EKGIiEQyFX5FpENqayENv8JvRtsKvwEdvyUlYKuhttgdq1oBtgYq5ndGuCIiIiIiXUZVrptnV8Snt+3iFLfBIoUS1q0j8Em6mk1gq6B6o5osRES6KRV+RaRDqqoCC7+ktz4hzcwM7Pj9yx9L8FRthqof3ZOqV3s/r+1gpCIiIiIiXUvVDjfPrk5oY8evX+E3nULWrbVQ8b3TVAFQtdw9t2ZLR8IUEZEIFRPuAESka2tQ+E1rfULauzfMYAYeotjAIJa8P5pdn13BeWdsc06oyXU+AGrzOzFqEREREZHIV5Pv5tk1SW0s/Pbv79scwCY+W5MHtQXeIm8UVCx0z1XHr4hIt6TCr4h0SEcLv29zfMDYe+9Hc95Jq5xCb+FM94CSURERERHpYaqLK6khmhhqqU1pY+F31CjmnHUnf3thFGsYxsg1Zc542edQsx1qiuDzVTAwHfYqbvalRESka9JUDyLSIVVVzqNjPm0o/GZlNRx754MR4CmG/IeduX7v/wqOfxa+XQmeyo4HLCIiIiLSRXw16QpiqSaRMmZNvbFtF2dkUHnhRbzDcSxmLCtWJTjjVaucfPvOz+C0F+Gwx2Gu1tMQEemO1PErIh1SVeHhev5OGkUMSivigoSEVl/bu3fDscrKGMrKYklKqoZv1sHtnwJQcvKbeJb8hbRhwzsrdBERERGRiFZUBGCoIJHERnLnlowZ6/7Kv2RZLyoqYkhIqIGyarjvK+dAeQ1c+gDMvwyM6ZS4RUQkMqjjV0Q6pKomivu4gpuZwT/639umZNG/8GvwkE4BAJ99PdQZ/Pdi3/GUigI+/8W9WNsJQYuIiIiIdAFF7ZtRzSc9I5ERw3cCUFMTzeKf+zgHvlsfeOLCNfDBB+2MUkREIpUKvyLSIVVV7nZcXNuuzciA4axiNcOoIIHZ7AvAex+PcE74ck3A+QetfoGnnvB0IFoRERERka6jo4VfTDR7j92KwcO5PMuA3z4It30CX6xqeO4XX7Q7ThERiUwq/IpIh/gXfuPj23ZtdDTk0YthrCWOagaxAbC8879RXHnuJFiXH3B+BoX847crOh60iIiIiEgX0Gf9HCbzHaNYSkZCRdtf4LHHeOyLw/AQzbOcT87an+CBWRTbFB5K+GPgufM1z6+ISHejwq+IdEhHOn4BCsighGQAUijlByZx8eY72ev9lxo9fxTL2hOmiIiIiEiX87t5v+E7prCU3em386e2v0BNDen5WxoM3/XD6VxWcR/jcYu9nk2bOhKqiIhEIBV+RaRDEn/4kk85hLc4jjO33dPm648/3rCBQb79iczlBv7Oj4zhBc6kgnjKSPQd70Vep8QtIiIiIhLpEqvcuR4S+rRjrofBgxsMPcZF3DrnfAC208c3XrN5e9tfX0REIlpMy6eIiDQtZvN6DuFzAD4rTW7z9f/4B1T+MBA2LfWNFZLGQ1xKGclcykOkU0g1seSSTXrvdrQVi4iIiIh0QUk1buE3qV87Cr+77NJg6F/8wbedS7ZvO6ZgJ9TWOvOxiYhIt6DCr4h0jN+KExVxbU9Gd90VOG1PuOdj39gt/JUy7/QPBWRSQKbv2M6dUF0NsbHtD1lEREREpCtI9ri5dnJOettfYLfdAnb/l3I0i0vGAnDmrxax+6gCpt7+GTvozTHnJPL3KD0ULCLSnehfdRHpEOtX+K1MaEcyCnDEUb7NWqJ4ml83OCWnn3Mfa2HDhvbdRkRERESky6isJB5nQY0qYknLbuNKygBRUXDrpb7dwx5L5+ev/8mq7x/ghUf+zR5js/mCqfzEGOZt6gvGdFb0IiISAdTxKyId41f4rUlqx+NnANOmwZVHsPaeJTzM7wM6fAH+9EcPP3xbyuatzuuvXg3Dh7c7YhERERGRiFe1o4i6Sc6KSCMruZ1F2asuhb3LwEDUhIHsxg7foSHDevm2N23WFA8iIt2NCr8i0iGm2C381ia3s/ALcONZDLvnjAbDV1yynJtv3pWrzytgJ/kkU8qGDZPafx8RERERkS6gdHOhr/BbEpVG7/Y240ZnwMSBDcdNLP0H9fbtbtmq8oCISHejqR5EpEOiiwt92x0q/EanM6B/UYPhe+4qIqV4C4+8OZol7MG7HENhYSPXi4iIiIh0I+Xb3Ny4NLojeXZG41M4xA0nu080UVEQTQ2xeTup3Lyz/fcREZGIo8KviHRIdJmbkNrUDiSkUZm8+ezLDcfjd4dsd7XhbHIpzPe0/z4iIiIiIl1A2VY3zy6P7UCebWIhKtXZTtzXya+TD4HE/YiOhluS76SGWLbSn4rb7+1g1CIiEklU+BWRDonxK/ya9I50ImQxaa/NHHJAvZXbopIhLo6KxAznNDzUbM9r/31ERERERLqAiu1+iyjHt3MR5TrRWc7n+NGQdiokHggxg4HAHL5yw/aO3UdERCKKCr8i0iFxFX7TM6R3ICGN6QPAP25d7ht6/XX3cEVaH3dn27b230dEREREpAsoLo9hOSPYSl/KUrJbvqA5MQMhcR+IyXH2TZRv+geb7ebZtVtV+BUR6U40e7uIdIh/4Tc6syMdv5mQOJEJB03lxx+htBQm+a3hVp3ZB7Y5ReGoHduBPdp/LxERERGRCLd0+JH8miMBOHsqHNaRF0vY23mSzkQ3OBSd0xfmO9smV4VfEZHuRIVfEemQ5/Z+gB8/zyWNIvbv179jL5Z8JJgo9mikpuvJcjsR4gvU8SsiIiIi3Vt+vrudmdnBF4tu+gUSBrndxHGFuR28kYiIRBIVfkWkQ14uOpJ53u2jBnXwxUzTs8/UZmb5thPK85s8T0RERESkOygocLc7XPhtRnwfd7q2uPLC4N1IRERCTnP8iki7VVfDggXOtjGw775BvFmam5AmVCohFREREZHuzb/jNyMjePdJ6l8vz7Y2eDcTEZGQUseviLRbURF4PM52enrH1nZrkd+LJ1Sp8CsiIiIi3Vu/nz/jVLZRRBr9oyYAfYNyn7Q+CVQSRzxVxHiqoaICEhODci8REQktdfyKSLsVF7vbqalBvplf4TdJhV8RERER6eamLb6flzmd9ziKYVtnB+0+mb0Mhfh1cBQq1xYR6S5U+BWRdqua9yNrGMpCxvJg0XlBvZfJTKeUJDbTnxKbFNR7iYiIiIiEW1yFW4BN6JMWtPtkZqLCr4hIN6WpHkSk3aq25jGSdQB4PMGc5wGqTjmblGvPAWBwGlwY1LuJiIiIiIRXQmWRbzupf3ALv9u9hd8qYokrKQnavUREJLRU+BWRdqva4SajlXHBS0YB4uKNe9+qoN5KRERERCTsEmvcXDs1J7iF3/F8SDmJmIR4yibowWARke5ChV8RabfqnW4yWp0Y3MJvfLy7XVkZ1FuJiIiIiIRdcq2ba6cMCN7TdSkpUBTdi9paoMLJtf1zbxER6br0pzwRabf8dW4yWpMU5I7fOHdbHb8iIiIi0p2Vl0MaflM99Aterm2M0/VbJz8/aLcSEZEQU8eviLTbhiVuMpo5NLhz/MZF17I/s0mnkPSKUuCUoN5PRERERCRc8rdWkoPzmFs1McQmJgT1fpmZsGOH99750K9fUG8nIiIhosKviLRbVLFb+M0aFtyO39hYmMWBAHhqDZ6ak4iK0UMLIiIiItL9FG9y8+zSqDQyjGnm7I4bmFZEFJtJp5DyxVmw+65BvZ+IiISGqiYi0m5xFYW+7ZhewS38mphoikkBIApLdV5xUO8nIiIiIhIuJZvdwm9ZbHDzbIBTS55iKbvzHVPIfOHBoN9PRERCQ4VfEWm3+Eo3IY3rHfyEtMi400lU5RY2c6aIiIiISNdVusXNsyvigp9nk+7m2Z585dkiIt2FpnoQkXZLrHIT0vjs4CekxVHpULsJgJqdSkhFREREpHsqKI/nAw4njSJqskYwPMj3Mxlu4dcUKs8WEekuVPgVkXbxeCC51k0KE/oEv/BbEpUOtc52bZ4SUhERERHpntYmjeZyPgDg90fCQUG+X0yWX+G3pKiZM0VEpCtR4VdE2qW0FC7icfqzhX5xebw2YXzQ71kSkw7VzrY6fkVERESkuyoocLczM4N/v7hst/AbU6o8W0Sku1DhV0TapbgYVrErq9iVvpkWegd3pWGA0hjNPSYiIiIi3V9+vrsdisJvfB83z44rV54tItJdaHE3EWkX/6m//NaCCKqyWL/Cb4EeQRMRERGR7sm/8JuREfz7JfZz8+yEShV+RUS6C3X8iki7FPnVXdPSgt/tC1Ae6zePsBadEBEREZFuatRP/+YGfiafTAaV/wIYGdT7pQxwC79J1YVgLZjQ5PgiIhI8KvyKSLsU5nuIpYZq4kLW8VsR53cjFX5FREREpJuavO41pvEyAEs2P0+wC79pfRKoJI54qoi11VBRAYmJQb2niIgEnwq/ItIunuUrqWIUJSSzfsFewFdBv2de8iB+ZA8KSad3r4FBv5+IiIiISDgklOf5tuP79wr6/TIzoZB0+pDrDBQVqfArItINqPArIu1Stc2ZeCyFUhKpCMk9Pxt8LtcvPReAD46AUSG5q4iIiIhIaCVXupP8Jg0I/upuGRmwgX54iKLYpDOisjLo9xQRkeBT4VdE2qUm101GK5NDsNQwEB/vbisXFREREZHuKqXGzbVTBge/4zc9HbLMIqwFLFTnqFggItIdRIU7ABHpmuxO9/Gz6pTgJ6MAcXHudlVVSG4pIiIiIhJS1dWQad1cO3lg8JssoqIgTesoi4h0Oyr8iki72Hy3C6E2PTQdvyr8ioiIiEh3V5DnIYMC335UVmhy7Uy/2xQUNHmaiIh0IXp6Q0TaJbrQ7UKwGaHp+E2NLuNsXiedQob/Fzjj0pDcV0REREQkVAo3FJGNB4ASk0JKbGxI7puR4W6r8Csi0j2o8Csi7RJT5Hb8hqoLITmqjMdwFnereCsTUOFXRERERLqXkg1unl0c24uUEN13dMJq+rOUdAqpnrsHTBgbojuLiEiwaKoHEWmX+FK34zeqd2gKv7XJ6b7tuIoinNUnRERERES6j7KNbp5dFheaPBvguPxneY+jeIkzSPv43yG7r4iIBI8KvyLSZh4PlG9xOxHi+oZmqofYpFjKSAQgylMLpaUhua+IiIiISKhU+OXZ5YmhybMBbJrbZFGbp9XdRES6A031ICJttmwZZOImpBnDQre4WyHpJFHuDBQWQkrTD79VVcG8eTB2LCQlhSREEREREZEO2RbVn3/yB3qRR8rQ0YwJ0X1Nhlv4pVCFXxGR7kAdvyLSZoWF0Av3EbS+u4emEyE+3in8+hQVNXv+BRfAvvvClClOl7KIiIiISKRbEbcHl/JPzuT/+O6wv4TsvtGZab5tU6zCr4hId6DCr4i0WUUFTOZ7BrCR8yfMhZEjQ3Lfuo5fn2Y6EdatgxdecLYXL3b2RUREREQiXZ7bX0FWVujuG9vbzbNjSlT4FRHpDlT4FZE2q6iAcpLYzAC2ZI2DhISQ3Lcthd958wL3/RNoEREREZFItXOnu90rdFP8Epft5tmxZSr8ioh0Byr8ikiblZe72wmJoftnpMFUD80UfjdsCNxX4VdEREREuoJwdfymDHDz7PgKFX5FRLoDLe4mIm1WUeFuJyaakN03Lg6KcOcea67w+/PPgfsq/IqIiIhIVzB98T84kaXk0YsBRb8Gdg/JfdOHuIXfxGoVfkVEugMVfkWkzaoKyhjJBvLJJDkuE4gNyX3j42FnKzt+33kncF+FXxERERHpCibueJ99+QyA9ZWHE6rCb9YwN89Oqml+EWUREekaVPgVkTZLXTGPZRwIwOr/7Qt8E5L7xsXBQsbxDseQ1C+RmK27MXo79OkTeF5lJWzeHDi2fXtIQhQRERER6ZCUKrdjIWVQZsju23twEjVEE0MtiVTgqagiKiEuZPcXEZHOp8KviLSZKcj3bVckhS4ZjYuD5ziX5zgXtgL3wKj/wNy5kJzsnldS0vDadetCFqaIiIiISLt4PJBW6+baaUNDt7pbXLzhu+h9qK21FJHGpK2VZA1V4VdEpCvT4m4i0mbRhW4XQmVS6JLR+PiGY8uWwd//HjhWXNzwvLVrgxKSiIiIiEinKSiAXri5dkx26JosAM7Z5Wv25xuO4AO2l6eG9N4iItL5wlL4NcZkGGNeN8YsNcb8bIzZ1xjTyxjzkTFmhfdzpt/51xtjVhpjlhljDvcbn2CMWew99qAxJnSrTIn0YDHFbhdCdUpoO34b8/nngfuNFX43ber0cERERCKScm2RritvWzWpOI+v1RIFaWktXNG5/KdQa2mqtOXL4b77lGeLiESycHX8PgB8YK3dDRgH/AxcB3xirR0BfOLdxxgzGjgN2AOYDjxsjIn2vs4jwEXACO/H9FC+CZGeKqbI7UKoSQtvxy/Azp2B+41N9VCk9SlERKTnUK4t0kUVrnUbLIqjMyAqtL+y+xd+t21r4qTKn1i7YiuTJsEVV8CkSZCf38S5IiISViEv/Bpj0oCDgKcArLVV1toC4Dhgpve0mcDx3u3jgJettZXW2jXASmCyMaY/kGatnW2ttcBzfteISBD5z/EblRXajt8+bOOv3My9/Im/cjPQsPBbXFDW4NrCwlBEKCIiEl7KtUW6tpINbp5dGh+6Bos6/fq520128pZ+ypOPbfM1VmzZAi+9FPTQRESkHZpc3M0Y804rrs+z1p7XxnsOB3KBZ4wx44C5wOVAX2vtFgBr7RZjTN3fGgcA3/pdv9E7Vu3drj8uIkHmP9VDXN/QFn7TKeRmZgCwkl24hZvIywNroe4B1JLCrTj/1LjKy6G6GmJjQxauiIhIk7pTrm2MuQinM5jBgwe3MVwR8Ve+2c2zyxNCO78vwP58jWE+6RRSM/uX8KdJgSd4KqB2J59+EViU/t//4Pe/D2GgIiLSKk0WfoHdgQubOW6Af7XznnsDl1prvzPGPID3UbNm7lOfbWa84QsoGRXpVPGl7lQPCTkhXGk4DgpJ9+1n4iTGtbVOR29GhjNeXNj4vA5FRZCVFewoRUREWqXb5NrW2seBxwEmTpzY6Dki0jqVW9w8uyol9B2/k9a9xhk8AMDTi+OAeoXfWmfi31VrA4vS8+aFIjoREWmr5gq/f7bWftHcxcaYm9txz43ARmvtd97913GS0W3GmP7eDoT+wHa/8wf5XT8Q2OwdH9jIeANKRkU6V2KF24mQPDB0nQixsZCHmwBnkk8UtXiIZudOt/BbUlTR6PUq/IqISATpNrm2iHSe6lw3z65JDX3Hb/KQbN+2J3dHwxNqd1JeHsP2HSkBwxs3QkGBm4+LiEhkaHKOX2vtqy1d3JpzGrlmK7DBGDPKOzQNWAK8A5zrHTsXeNu7/Q5wmjEm3hgzDGdhie+9j6oVG2OmeFcYPsfvGhEJkpISSKp0OxF67Rq6ToSYGKghljycJDgKSxbOBL/+8/wWF1c3en39uYBFRETCRbm2iDRmacJeXMnd3Mqf2TThuJDfP2OEW/iNK8jF1m+bWjyfshs+50ruJo3ARTRWrQpBgCIi0ibNdfw2yRhzkbeLtr0uBV40xsQBq4HzcYrQrxpjLgDWAycDWGt/Msa8ipOw1gB/sNbWel/nYuBZIBF43/shIkE0fz5kEksVscRRTerg0Hb8AuSSTS/vNA/Z5JJLH7eoW1LI0S/fyJHk8Q7HciN/o+5p1aVLYeLEkIUrIiLSLsq1RXquJYzmJUYD8NwvQn//JL+O38zaXDZvhgF1s3vX1sJJ15O1fjt38wlT+JaTed13/sqVMGFCiAMWEZFmtavwS+NzfrWatXYB0Fj5ZVoT598G3NbI+BxgTEdiEZG2yc+Hg/gRsPxqegmv90kO2b1jvP9i5ZLNKJYDTuEX/Lp57/8HY1Y4T872ZgevJZzOooo9APjxx5CFKiIi0hHKtUV6KP8n1MIyRVm2W/jNJpe5c/0Kv998A+u3+46fwJvswkpWsSugjl8RkUjU5FQPzbHWPtbZgYhI11BaWrdliElPhah2/TPSLv4dv3XqCr876qYg++97AHzJgZzLTNLHu/OPrV0biihFREQ6Rrm2SM+V586oFhGF3zlz/I7Nnx9w6lDWUpzhnq/Cr4hI5Gmx49cY89fGxq21t3R+OCIS6UpK3O2UlKbPC4a6jt8d9PaN9cap+G7dClgLP68A4CC+4if24LhRm/jq2yEArFtbQ/sfdBAREel8yrVFxJ9/x2+v0C2l4apX+P3hB79jy5cHnLqE0bw68DIuLHAeGFi1ykM7e8tERCRIWlMBKfXbTgCOBn4OTjgiEulK/f5FSA7dLA9A8x2/mzcDublQ6FSmi0mhmFQOj/mQPrzHLA7g0++mUVIS+oK1iIhIM5Rri4jP3zaeT3/WkU8m2fl/B0aGNoCMDGx0NKa2ljSKmTe7Eo8n3nnIb/lS32l3cyXb6cOoY3LAO53a+vUq/IqIRJoWC7/W2nv8940xd+Os/isiPdHWrUxnPnn0Iqc2BxgUslv7z/FbJ6Dwu2KFb3wFI/gj93P8U3/leOBRfsunTOMPf4CZM0MWsoiISLOUa4tInZoa2Kv6O0Z7//ZTGzcj9EFERUHv3rBtGwAxhTtYsmQAY8YAK91c+2l+zc+MZvGEuziOt1jMnmzYOIzaWoiODn3YIiLSuPb8OS4JGN7ZgYhI19B72de8z5F8xxSO//TSkN67rvA7h4n8kz9wEzN4l2MA2L6dgMfPljOSr9nft78/XwPw4482ZPGKiIi0g3JtkR4qPx8yyfftR/fODEscpt50D199BVRWwrqNAHgwrGY4d3AtY066lrc4gVN4lerqqLp6sYiIRIjWzPG7GKirlEQD2YDmHBPpoaKL3GS0JjW0E4/VFX5ncSCzODDgWEUFsHKlb38FI/iOfbDRUZhaD3vwE73JZfv2LDq4WLqIiEinUa4tInV25FqG+RV+wzPJL3DEESyN6s//Fu1OIenMmgUXT98MHg8Am8mhkgS2pA6FYueSc5nJHVzH+vWGnJzwhC0iIg21Zo7fo/22a4Bt1tqaIMUjIhEuushdatiTHtouBGOcR8dqaxseq6gANm707a9lKGUkUz16AHGLNxCF5QKe4t5t1+LxOE+xiYiIRADl2iICwM6N5exOJQBVJo64xMTwBHLXXZQc+T/+eMjhAHhmAXFx8Nvj2LFwAx9+Ow6An4YdACtioLyG3VjG9fyd9euuY8oUJdoiIpGixX+RrbXr/D42KREV6dniStwuBJsZ+i6Exoq+4C38bt7k29+M02rgOWUv39gdXM+k6m8oLg5mhCIiIq2nXFtE6hSudfPskrheTtdDmIwfV0l8vJN4r18P+UkD4K4zef/sv3ABTwOQOTwd9hniu+Z2/oz9+I2wxCsiIo1r15/ijDH/6exARKRriCt1E1LTKzzzjjWmshLYvMG3X1f4jTviFwHnvcTpFOwoD2VoIiIibaJcW6RnKluX69suT8oKYyQQE5fI6N3cbonFi4Garazb2Nc3NmTXwXDi5IDrcr55M1QhiohIK7T3GYzfdGoUItJlpJa5KzaYPr3DFse/+D1vcRxfciApFDsdv//6M2X3n8oV3MMahpGcDFFjpsP0Ub7rBrOB8rnfhC1uERGRVlCuLdIDVa/f4tsuT+8XxkgAk8Seu+/07S5aWAuePNZtcvP/IUOAc3/FssOO8o312/RjKKMUEZEWtKvwa63d0vJZItIdpVds9W1H5fQPWxzH8C7H8Q4HMossdlJVBZ4J/Sg4dBL3cQXFpJGaCsQOhJmnsjxpD9+19ofvwha3iIhIS5Rri/RMdrP7n351VvjybH78EW54jKuXXc4V3APAooUVYC3rNmT4Ths6FIjpT8mvD/WNDSxaCTV6uk5EJFK0WPg1xowwxrxujFlijFld9xGK4EQk8mRVuglp7ODwJaR5uPML98JZcK6yNI/ikjjfeEoKEJUIMRnM73egbzx6xfKQxSkiItIc5doiUic6122wsP3CWPhdvx4eeJ4x8//LYXwEwAEfzIAr3+WYhQ+Qg7OuxpAhQEw/csZ42IEzNUWiLYfVs8MUuIiI1Neajt9ngEdwVhk+BHgOeD6YQYlIhLKWrBo3IY0fGr6EdCfuvGe+wm95HiVlCb7x1FTvRkx/Vg/am/u5nN/xCEt23wdsVSjDFRERaYpybREBICbfneM3un+f8AXSy22wyMKZ7uGQLa/C8/O4NO92UnHm/h0yBIgdSN8+FSwxo33XlH/ySkjDFRGRprWm8Jtorf0EMN7VhmcAh7ZwjYh0RyUlJFAJQBmJJPdJDlso/h2/WewkgXIqiksoLknzjfsKv7G7kD9mNH/ifh7jdyyJGgkV80IcsYiISKOUa4sIADMTf8fxvMkFPIn95eHhCyQ727fZz2wjiVIGedYDUE0Mq9iFjAxISwNMHFFJ41mYtg8LGMc9XMGWpF5QWxSe2EVEJEBMK86pMMZEASuMMZcAm4Aw/vlRRMKldGcFC9ifLHZQSTyjwlf3ZbvfP0P92Mot/JU++zxIYt9B/Ipo3uAkZ6oHgITxDBzwhe/8jZvToHolJE4JcdQiIiINKNcWEQB+KBrFNpxFiW/ZL4yBDBjg2+zPFnZjqW9/NcOpIdbp9q0TN5o3x+zJZV//A4AxCc8zvOpnSNwnVBGLiEgTWtPx+0cgCbgMmACcBZwbxJhEJEJ99mM2BzCL3VnKGaMXkpDQ8jXBspGBvu2BbGQUy4iqqCJ93SqiqQX8On5NLAOHuJ0Lq9ZmQtVq8JSEMmQREZHG/BHl2iI9nscDO3a4+717hy8WEhJ8AcTYGg7GbaBYym4AgYXf2CEM3nWwb3f9pnSoXBSSUEVEpHktFn6ttT9Ya0ustRuttedba39lrf02FMGJSGRZtcrdPuig8MTwhz84n0vSAwu//p0Iy7ydEr6OX2D03uN82599NYTiZcVQ5feGREREwkC5togA5OdDrdO7QHp6LfHx4Y2HgW6u/Qs+9m3X5dm77up3rolm8GDj212/KR1qtoCnPOhhiohI85os/BpjZrR0cWvOEZHuY/16dzvgr/whdN998N//wo2Pu8nocFYzHHcB9OWMBPw6foHddoNdhlYxn/EU1aaScuBdULwkZHGLiIj4U64tIv5y3XXdyM624Qukjl/hdxqf+LbrOn532y3w9MFuwy+b1iXB7DVQpVxbRCTcmpvj90JjTHMzshvgNGBGp0YkIhHLv/A7aFB4YoiNhSOPBJa7yeg+fO/bXsdgykkCAjt+AXIGxZG2tshZoM4C338GR54GxiAiIhJiyrVFxCd3UxXF9GIHvSnd0gfsd+HNUf0Kv/FU+bbrOn5HjQo83Sn8Wk7jZW79z7Xw7maYfxCMnhCCYEVEpCnNFX6fAFKbOV53joj0EINXfcYf+Ikd9GZo7SRgl/AF47fohL+6LgQI7PgF6NMHZnEAw1njDNzzKRy+E2LCOYmaiIj0UMq1RcSnaM1OUiglhVIKqsvC35jgV/j19zO7A013/F7Gg+RUbnB2XnsTbjwVopKCFaWIiLSgycKvtfbmUAYiIpFvysbXOJlHAFi7+CHgkvAFk5wMd9zIvS+mMHXxy+zNfAAWMdZ3Sv2O3+xsuI0/cxYvEIWFL1bDjs+g38mhjFxERES5togEKF3nruxWltSbjPCF4mik8LuIPcmnF5mZTl7tz3ka0PAUF7Av3mnKP1wE162D+N2DHq6IiDSuxcXdRETqJJe7CWlcv6wwRuJ11Z+YPfSogKHPmerbbqzjdzmjWMyezoDHwptvBTdGEREREZEWVGx08+yqlAjIsydMgD/+Csb29w19xiEAHHhgw4bk5GTIynLPAeCbdbDke0REJHxU+BWRVkut3OnbThgQAQlpVCqDq1czngUA1BLFLA7wHW6s4xfgv/gVi1+arRWHRURERCSsqrbm+bZrMiIgzx4zBm67HD6+iNVPXsvHTOMDpgNw2mmNXzJ4MKxmF97jCHfw0y9DEKyIiDSlxcKvMaZXKAIRkciXVuMWfhMHRUBCamKYuuk/zrQNwKccShHpvsONdfwCPMZv3cEfNkDBumBHKiIi0ijl2iICULvdzbNN7wjIswGi0gAYfmwCeY9fRMl+07jhBjj11MZPr5vn9z2OdAdf+yLIQYqISHNa0/H7nTHmNWPMkcaEe4Z5EQmXykroZf06fnMiIyHd1mck13AnixnDE/wm4Fj9jt+6wu96hrA6caSzU1ED77wRgkhFREQapVxbRLA73Tw7tm9k5NlEucn0KSes4KtZsdx2G0Q1UUUYMsT5/CqnuIPfrYKqkiAGKSIizWlN4Xck8DhwNrDSGHO7MWZkcMMSkUhTVARZRF4nQkxcDDdxM/3Zwof8MuBY//6B5/ovQvFB4tHuzrOvdDiOHTsgP7/DLyMiIj2Pcm0RIaYgwqZUA4hKdrejezec2Leeuo7fXPqQn9zHPXDnTUEITkREWqPFwq91fGStPR24EDgX+N4Y84UxZt+gRygiEeHhe8pJwpkLt4rYhu20YbJ21MGcwf+xN/MorLf+cV3yWcd/6ocFdi9354vFbFtW0O4YvvsOcnKcjyVL2v0yIiLSAynXFhFrIa7EneM3ZUiEzABjktztmD5Nn+fln3uvTvD7+9VnmudXRCRcWjPHb5Yx5nJjzBzgKuBSoDdwJfB/QY5PRCLE43e6yWgevVr8i3+oRKck8w7HsQE304yPhyeeaBiif636k9ppMKI3b067it34mTH7p3HjjbD77vDSS22L4YwzoLoaKirgt79t+XwREZE6yrVFpLgY0mv91tKIxI7f2GEtnj5mjLt9PXe6O9//CB5PJwYmIiKtFdOKc2YDzwPHW2s3+o3PMcY8GpywRCTS+E/zsJMs+oUxFn+JidEB+9Onw9tvQ1xcw3OT/XLXDeX94JWzOH3vv1FJAuyEW291jp1xBvziF4FTQzTlyy9h9Wp3f9YsqKmBmNb86yoiIqJcW6TH27o1MqdUw0RDVCJ4yiF2lxZPHzkSkpKgrAw+2rkf5YeNJXF4Ioza3UmQG0vQRUQkqFozx+9frLV/809EjTEnA1hr72z6MhHpTuoXfiNFn76Bhd/U1KZzyrg4tyBbXW2ozBnnFH0bsXhxy/fesAEOPrjh+EcftXytiIiIl3JtkR5uyxY4idcZxwIuHf0+jBsX7pBc0dkQNwyiU1s+NRrGj3f3Pz3vOvjbdDYeNpUV6+KwNnhhiohI41pT+L2ukbHrOzsQEYlc1jrTOzzPWbzHEcwmcqYcHDAwOWA/tZmc1JjArt+5P41v8tzWPI328MONj1dUtHytiIiIl3JtkR5uyxbYRj8WMY7No6ZCRka4Q3IlTIKEya0+feJEd/t/X+zF5X+ezqA9z2XkSDjuOKisbHsIS5ZAeXnbrxMRkWamejDGHAEcCQwwxjzodygNqAl2YCISOSoqYBHjOIfnATj22DAH5CdnUGbAflpa8+cnJ0NhobP919v28I5aRrCCDQyigkQAXn8d7rgDTj8dLrig8dfKzW18vLq6lcGLiEiPpVxbROps3epu9+/fmt6sEErYk7a06h59NDzo/Rftocd3Czj27rtw5ZXwz3+2/va/+x089phTC//6axg9uvXXiohI8x2/m4E5QAUw1+/jHeDw4IcmIpGioCBw/8EHGz0tLPr1bzjVQ3MCFnj7NJb7+CO5ZLOcUezHN75jjz0Gn3wCF14I+flti6musCwiItIM5doiAjgdv3X69Ytu+sRwacOizoccAlmNzAoXTQ1geeQR+Omn1r3W4sVOTg7O7yMzZrQ6DBER8Wqy8GutXWitnQnsYq2d6ffxb2ttG8sgItKV+Rd+R+5aypAhYQulgfT0wP2Exqfs9fEv/AIkUEFv7/zF+zK70Wu2bWv8tTb6LcGzi996Fyr8iohIS5Rri0id3E1V9CaXaGronxOBhd82iIlxunrrXM/t/JQ9ieKodPqxFY8Hbrutda/1zjuB+++/D7W1nReriEhP0GTh1xjzqndzvjFmkd/HYmPMohDFJyIRwL+QmZ7eislvQyiq3r9iVVXNnz9gQOD+D0zybe/Oz41e09R8v/4LwE2Y4G6r8CsiIi1Rri0idZJWLCSXPtQQy/H3N7JycBdz7bVw333OnL5X5DzP6Nw5JHrKGMQGAF57DTZvbvl1vv02cL+kBJYvD0LAIiLdWJNz/AKXez8fHYpARCRyFRTApTzIENaRWZAMa86HYcPCHVajWir87rabM79YnXW47ct1yWh9paUNx3bscBPWxESYPBle9f4Kr8KviIi0gnJtEQGgeluebzs2OS6MkXSOqCj44x+dD47qB5uXAnD4yAX8sHwyNTXw6KNwyy31LrQ2YFqJefMavvaiRbD77sGKXESk+2luqoe6mYZ2ABusteuAeGAczpxkItJDFBTAKbzKldzLr1f9DdavD3dITUpObv64/0rDABsY5NsewrpGrykr89uxTmV5g1+NeJddAhdfLilpRaAiItKjKdcWEZ+dO32bsX16hTGQIBgy3Ld5fv9XfduPPgqVlfXOrfgWanYATv7dWFfwmjXBCFJEpPtqzZKhXwIJxpgBwCfA+cCzwQxKRCJLYSFk4Sakja7YEEa33+58Tk6Giy9u/twTTnC6futsYBC13n8Kh7CePWn4dK2v49dWQdHr4Klk8yZ3deP+/QPnDlbhV0RE2kC5tkgPVlUFcSVunh2fE1l5docdf6pvc9jS7xmY41R7c3Phv//1O89TDhVzoeAxKHq1yQLv6tVBjFVEpBtqTeHXWGvLgBOBh6y1JwCjgxuWiESSggLohfsIWqQVfq+9Fj7/3Jnzq1cLTRKxsfDGG+5+OUm8w7G+/el80OAaX8dv+WyoWg47/87m9Zt8x3NyVPgVEZF2U64t0oNt2hTYYBGVHVl5dodNmwZpiQCYbcX88Sh3MeWZM/3OK/vc6fa11VD1M6sWftLoy6njV0SkbVpV+DXG7AucCdT9Ta65uYFFpJvZucMGFn5bqq6GWFQUHHywU4BtjdGj3S5hgP9ylG97f75ucH5pKVBb7CSkXpvXrfVt5/SvUuFXRETaS7m2SA+2YUNkP1nXYdHRMHmsb/fM/q/7tt97z+n8BaDGbx41a1m1qtq3e9CB7iIe6vgVEWmb1hR+LweuB9601v5kjBkOfBbcsEQkkqycV0QsNQBUxydDfHyYI+q4zEx3exYH+LYP4ktiCVwhrqwMqN3iLDjhtWVrgm87J3OeCr8iItJeyrVFerANG4joBotOsf8+vs1+r77GAVOcXLumBl56CbAeqMkNuGT1OjdZ/8VUd7Lfdeuc60REpHVaLPxaa7+01h5rrb3Tu7/aWntZ8EMTkUhQWAgLPnW7EKrTukcXwjnnQJ8+zvYZM0ZBdioAmRRwGQ8GnFtSAtRsg09Xwo0fwMZCNm9L9R3P6bOelOSqwPNFRERaQbm2SM/W7Tt+Ac49G5Jine2l27l+zD99h95+G6jNdaZ4AKisgfu+JHH+SvbhW+KoZMzINWRnO4dra2H79tCGLyLSlbX4GJkxZiRwFTDU/3xr7aHBC0tEIsWHHwZ2IXgyukcXQlISLFvmzAs8aZKB2BPgvtd5ccfxrGBEwLlFRcCahXDuy1BZC09+zxmZRcQznRJSyOlTSErcWmAkoMKviIi0nnJtkZ5twwaY1t0Lv0NGw1l7w+PfAXBQ+VvAFQB8+aWlKG8LabUeeG0h3PsVrMvnLu+DD59yCL0HnET/fgeQm+sUj7dubf0UbyIiPV1r5g97DXgUeBKoDW44IhJp6nchxPbtPsloRgZMnuzdueRsuGAoZ/W7ucF5BQXAq+87RV+AWstpO57mNJ4GYOucs0ncIwYVfkVEpB2Ua4v0YOvX94CO36gkmHYgPPk97JJFSk4U48dsYcGP/ampMXz8URUnji2FWz+B3NKASw/lMyq+Tadf9vEswqn2bt0ajjchItI1tabwW2OtfSTokYhIRFq7NjAZjc/phskoQPJEqJzV6KHC/BK4Yix8sRS+aLiiRL+bnqfm4DTgfMAp/FoLxgQzYBER6SaUa4v0YBs2QCrF7kB3LPwCHHYErI7zTflwVM0KFvzYH4D33o/hxF+mwqe/hVNegJ8D53JIuOEtjtj/YD7kjwBs2RLSyEVEurTWLO72rjHm98aY/saYXnUfQY9MRCJCYWG9BSe6azIanQFRyY0eKtixCVLi4bWz4dtLGz0n5oznSYkvB5yib1lZsAIVEZFuRrm2SA+2YQP0YTupFJE7e5HzSFp3lDzMnecXOPyQlQD0Jpfcz4ugogb6psInv2XVWSexgHEBlx+x4WXftjp+RURarzWF33OBq4FvgLnejznBDEpEIkdxMcxhIrdwIyunnQgHHxzukIInZgAP3/mfBsOFRfHuzvBe1M6/giu4h204q8PZmCgY25/BSW77gaZ7EBGRVlKuLdJDlZVBXh6AoTI2iaxJu0FUa35F74JiB4CJdra3FbPfv+7msajfcjbP8/amQ7BDb4c/vw8xUXw+4Sz2YgGH8aHv8uFbFhBHJaDCr4hIW7Q41YO1dlgoAhGRyFRcDN8xhe+Ywj6XzGHX4yeGO6Tgqe7HxcW3c/64y0hYuIZK4riRv/GP2dewcXMaA3OKAChN6819XMF9XMGlcf/iwXlroE8K5RMzId95qZIS6Ns3jO9FRES6BOXaIj3Xar8ZxAYPKCQquhs3+5s4SNgbir+DS98m+vNVXMTP7mGPhV5JAKxa63wdPuYwdmbkkFWwmdLsPmRvzmUTAzXVg4hIG7T450RjTJIx5i/GmMe9+yOMMUcHPzQRiQTFflOOpabFNn1id5A2GR7/joSFawCIp4q7uJYHuZRTTjqK2lpn0t6S0jjfJa9lnAN9UgBISa7yjavjV0REWkO5tkjPtWyZuz1y18LwBRIqCfvAJytgTV7jxydOgNgcVq3r4xtaedhR8MCxLHzoJjYxEFDHr4hIW7TmOZJngCpgP+/+RuDWoEUkImFVUACnnw5nn+0UfXtU4TcuBS47ucHwpfyTb1buRt6J70LyLympHOo75l/sVeFXRETaQbm2SA+1fDmM5if2ZxZT+i2H6upwhxRcMb0hpy/sKG38+JRjIOMiVq7f1TdUffYUOH0v+vV3F9BQ4VdEpPVanOoB2MVae6ox5nQAa225MVqrXqS7uuEGeNm7dsKwYfUKv6nxjV/UnVz5J9j4Mzz6bYNDefEDyE7ajxK/P5mlpHjc7eQqEignmlpKSlJCEa2IiHR9yrVFeqhly+BSHuJ3PAYvAJMegMsuC3dYwTVhEixPhU1FMPlB3/AqhtMndTIpFlasiPaNj9jVKfj26+N2VWzZ4iymrH8pRURa1pqO3ypjTCJgAYwxu4B3VnUR6XYeecTdfvBBiMrfyRwm8G9OoM+/7gtfYKES0w9uORy238Rt3BBwaE1fZ2E7/27elNREJ+v8v/k8Nv9oiknlPJ6loCCEMYuISFemXFukh1q6FAaxwR0YPDh8wYRKTD+IjYahmXDRPr7hVziV735IJDfXbTxJTYU+Iy+AqBTSUitJTHQ6osvK9HSdiEhrtabwOwP4ABhkjHkR+AS4NphBiUhkqKyEXiXrmMA8TuAtEj/5ONwhBV90FhjnYYjH4y9mAeMA2EQOP/Q/FwhMNFPTUyDleCipZFjRUmKoZTLfs3NnqAMXEZEuagbKtUV6nKoqWLAABrPeHewJhd9od/5ebp3OzSe+xv7M4s/cxqxZsGKFe3jECDDRiRC/G+azlTwcfQmzmcJhfKgF3kREWqnFwq+19kPgROA84CVgorX2syDHJSIRoKIisAvBDB4SxmhCxERBdDYAA8d62Iv5DGEto1jGhtIsIHD6i5QUIG432HuQb2wy37NjRyiDFhGRrkq5tkjPtGCB02QRUPgdNKjJ87uN2JyA3ZG/hG/YHzANCr+71k31G7sLfLKC80oeZwrfsR/fsG1byCIWEenSWiz8GmM+sdbutNb+11r7H2vtDmPMJ6EITkTCLzAZ7QGFX4DYAQA8fs+7gGE9QyglhcWLobwcTjvNPTUlBYiKh/GTqI1y5iPbjWWUbu4BKzOLiEiHKdcW6Zm++QbSKCSdImcgIR569w5vUKEQnQVJ+0H8KIgfzQH7uL9rfPutUxCvM3KkdyNuN5i4p2/8IL5Ux6+ISCs1Wfg1xiQYY3oBvY0xmcaYXt6PoUBOU9eJSPcSUPgd0kMKv4kHQPwo9pg8lZ9mPe4b/v57+Oc/A09NqVvDrfdRFOS4j+f1+fmLEAQqIiJdlXJtkZ7tzTfrze87qH/PWa0saRqkngrJhzFoYAmDBpYCUFoKTz7pnjZhgnfDGDjsD3hwvj6H8hklSzeGOGgRka6puY7f3wJzgd28n+s+3gb+FfzQRCTUqqoajgUmpD3g8TOA6AxIPQ3i92D0+GEMGVQAgMcD//tf4Km+wm/sAAomTPWNT1rxQigiFRGRrku5tkgP9dFH8OWX9RosBvagv/eYaO/0apkQuwsH7OsuoFFa6p42aZLfNcP2Yv3gib7d+IXfhyBQEZGur8nCr7X2AWvtMOAqa+1wa+0w78c4a+0/m7pORLqu3NyGYz1uwYk6dR0XCXszfEi+b/iTeg/f+gq/QMERF/i2R+QpGRURkaYp1xbpmSoq4MILne2ABouelGf7S57GgQclNhju3x8GDAgcKxy5l287bdX8YEcmItItxLR0grX2IWPMfsBQ//Ottc8FMS4RCYPGCr89PiGNzmL0mBg+m9X44YwMdztqr8lUEkc8VfSvXAeFhZCeHpIwRUSka1KuLdKzPPwwrPf2VeyWuBbKvQcGDw1TRGEW048TToLL/gQ1Ne7wwQc3PNWOGAUfO9vJuWtDEp6ISFfXmsXdngfuBg4AJnk/JjZ7kYh0Sdu3B+5HU0MOm92B+n927yGuuDq9ySnXTj7Z3U7LimUtQ92BdeuCGpeIiHR9yrVFepaXXnK3j9j9J3dnyK6hDyZC9OsHxx8fOHbOOQ3PSxi9u287o3BtUGMSEekuWuz4xUk8R1trbbCDEZHwqt/xm8NmovEAUJ7em8T4+DBEFX7Dh8Pvfw//qjfj4ksvQXa2u5+WBvMZwiiWOwPr1sHYsaELVEREuiLl2iI9RH4+zJvnbEdFwdDJQHkf2FjUM5+s83PPPbBkCSxdCtddB9OnNzwnfdwI33bfcjVYiIi0RmsKvz8C/YAtQY5FRMKsfsev//y+MUP7hziayLLHHg3HDjsscD8tDdYxBIBcepNdUhSCyEREpItTri3SQ3z5pbNYMMDee0PCrQeCZ2+I2xXSfhHe4MJs8GBYvNiZ7iEurvFzssa7C03382yitqKa6ITYEEUoItI1tabw2xtYYoz5HqisG7TWHhu0qEQkLOoXfhezJ9P4mCn9fuK2a1rzz0X3NXBg4P4xx0BWVuBYfDz8JeYO/lhzP2UkU3Hsdnpmj7SIiLSBcm2RHmLxYnf7gP1rwFPq7ESl0uS8Yj1IVFTTRV+AuNR4tpr+9LNbiMZD7uJNZE8aGrL4RES6otZUcmYEOwgRiQxr1gTuF5HOp0xj6KGZcOqw8AQVIeoXfqdObfy82vQsynY620X5hWQn9wlqXCIi0uXNCHcAIhIaK1e626N2zXN3olJDH0wXdeeAB1i+MYl1DOFFM4Dsli8REenRWiz8Wmu/CEUgIhJ+333nbh9yCHz2GcTF1fDnP34FUT17rtr6hd/09MbPS0uDnXWF34Iisgc2fp6IiAgo1xbpSVascLd3HbrR3YlKC30wXdTiUSfzifdLtyW3mnHhDUdEJOI1Wfg1xhQDjS0yYQBrrdX/nUS6kfJyWLvW2Y6Kgn+/UcObz/+X0SO3M3x4BZiePdVD796B+9HRjZ+X5vcvY3FRWfACEhGRLk25tkjP49/xO3bFK/DZbBibA9MOBzULtEq/fu721s1lQBPdGCIiAjRT+LXW6nkTkR5knd/CuIMGQUbSVs4/+AvonwpRPXthN2g47VpJSePnpaVBDNVMZA7pjz4F1R44+ODgBygiIl2Kcm2RnqWoyF1PIy4Oen/5Ebw13xn4597wh33DF1wXElj4LUeFXxGR5kWFOwARiQz+hd9hw4AVC2D8fbDHPfC7F8IVVkQ56ih3+7jjGj8nNRX+wq3MZj+GPT8T3nknNMGJiIiISMTasMHdHjLEErXQL/meqKJva9UVfuOohCU/QmFheAMSEYlwKvyKCAB5futL9O0LzJ3j7OwohbzysMQUaR55BK66Ct54w+mKbkxaGixhtDuwdEloghMRERGRiLVtm7s9ovdOWONNvmOiYNyk8ATVBeXkwLOcSxlJXPfyYfDpp+EOSUQkovXsSTtFxMd/6oKUFGDeYndgrz1CHk8kGjQI/vGP5s9JS4PvGOUOLF8a3KBEREREJOJt3epu7xP7vbszOgcSEkIfUBc1ZAjMJZ1oPM7AsmXhDUhEJMKp41dEgMDCb2oqMN+vYLn3+FCH02X17w8rGOEOrNkAVVXhC0hEREREws6/8Duu2q/wO36X0AfThQ0ZAsv8myxU+BURaZYKvyICQHGxu52SbGHhGndg4j6hD6iLGjgQykhmPd65IGprYfXq8AYlIiIiImHlX/gdUTzX3dlrdMOTpUn9+8PKKLfwW7vk5zBGIyIS+VT4FREgsON3YOUqKPLO69srEYYqIW2turl/1YkgIiIiInX8C78Dty1ydyaMC30wXVh0NJQOdPNsqzxbRKRZKvyKCBBY+B228zt3Z2wORKeHPqAuqm6lYRV+RURERKROXeE3nQLSctc7OzFRsOde4Quqi4ofPoBSkgCIKSyAnTvDG5CISART4VdEgMCpHnK2zHZ3xg8Fo38qWisz0/mswq+IiIiI1Nm2zfm8F/Pdwd37QHL/8ATUhQ0dHsVyRroDyrVFRJqkao6IAIEdv302zHN39tot9MF0Yb16OZ/9C7+en5eEKRoREemJjDHRxpj5xpj/ePd7GWM+Msas8H7O9Dv3emPMSmPMMmPM4X7jE4wxi73HHjTGmHC8F5Huoq4pdSTL3cHd+0J07/AE1IXttpuaLEREWitshV8lpCKRxb/jN3W738Jue44NfTBdWHKy89m/C8EuXd7E2SIiIkFxOeC/4tF1wCfW2hHAJ959jDGjgdOAPYDpwMPGmGjvNY8AFwEjvB/TQxO6SPeUn+98/pr9qbzhCPjNZPjFGIhKDG9gXdDo0Sr8ioi0Vjg7fpWQikSQuo5fgwcTYyDa+3cULezWJnV/flrPYL5nEq9yMgsnnQ61teENTEREegRjzEDgKOBJv+HjgJne7ZnA8X7jL1trK621a4CVwGRjTH8gzVo721prgef8rhGRNqqshLIyZ3tZzB7EXT4ZbjsCTj0qvIF1UbvvXq/wu1RP14mINCUshV8lpCKRp67wa4li5Wv3woa/wPw/QsqwsMbVFY0b53wd9+F7TuVV7kq5zlmCWEREJPjuB64BPH5jfa21WwC8n/t4xwcAG/zO2+gdG+Ddrj8uIu1Q1+0LkJlR7WsUIGZIWOLp6oYMgbVxTuF3G32oiNWDvyIiTQlXx+/9KCEViSj+Uz2kJOY6qwwP6gMx/cIXVBf12GPulA8AGzcpGRURkeAzxhwNbLfWzm3tJY2M2WbGm7rvRcaYOcaYObm5ua28tUjPEVj4rXR3YoeGPJbuIDoaGDuWDPLpxzY+P/2acIckIhKxQl74DUdCqmRUpGX+i7ulJJU7GzEDwahTta322Qfm+y3YvGlLEtRsC19AIiLSU+wPHGuMWQu8DBxqjHkB2OZ9Wg7v5+3e8zcCg/yuHwhs9o4PbGS8Udbax621E621E7OzszvrvYh0G3l5dVuWXhneOR9MFMTov5f2mrhvLIVkAPDtd/p9RUSkKeHo+A15QqpkVKRlAYu7pXg7EWL6hieYbmCA3/MHm7ak4anc0PTJIiIincBae721dqC1dijOGhmfWmvPAt4BzvWedi7wtnf7HeA0Y0y8MWYYzpoZ33ufvis2xkzxLp58jt81ItJGdR2/Y1nE/xbuBqe9CE/8CCY2vIF1Yfvs425/+0Nv8FQ2fbKISA8W8sKvElKRyFNVBdXVzvbZUS8Q99GPsLkIojV7SnslJcGwjHz+zK08WX0+lXoETUREwucO4DBjzArgMO8+1tqfgFeBJcAHwB+stXWrkV6Msx7HSmAV8H6ogxbpLuoKvxOYS1p1AXy6EmZvCWtMXd1++7nbX303mIpSPdkrItKYmHAH4OcO4FVjzAXAeuBkcBJSY0xdQlpDw4T0WSARJxlVQirSDv7TPMxgBubXq5yduafB3uGJqTuIT4zi1oIbAah+Lw5qa7XIm4iIhIS19nPgc+/2TmBaE+fdBtzWyPgcYEzwIhTpOeqmehjJcndw3F7hCaabGDYMRuxqiV25hGlln7D2T9vY7ckG/5SJiPR4YS38KiEViQx10zzEUsUQzxpnxxgYPTZ8QXUDO2vS2Ux/cthCbG0V/PQTjNXXVERERKQnqev4HcEKd3DEnuEJphu5aPICrlrpdKkUvpQNT9zq/A4jIiI+4ZjjV0QiTF3H7zDWEI3H2RmQBQkJ4QuqGzjiCJjFAe7Ax/8LXzAiIiIiEhZ1hd9dWOUOjlTht6PGnT2WnfQCIL0sF/vjT2GOSEQk8qjwKyK+jt+AZHT4oMZPllb75z/hE78HGTwffRjGaEREREQkHJypHizDWe0O7rJLuMLpNg46JJpvog/07W9+d24YoxERiUwq/IqIr+M3MBkdFp5gupHUVPip91Tffu3cReELRkRERETCIj8fsthJGt5ui5QE6N07vEF1A/HxUL3rCN/+ug+XhTEaEZHIpMKviARM9eAzfNfwBNPNlPXfhSpiAYjN3c6s94rCHJGIiIiIhFJ+fr0Gi6H9NBdtJ+l38G6+7cpFS8MYiYhIZFLhV0R8Uz0Edvzu1vjJ0iZZfWNYiVtEv/aE5c2cLSIiIiLdTV5evTx7mKZU6yxjTnbnSs7OX87mzWEMRkQkAqnwKyLs3Ol8Diz87hGeYLqZ7GxYxijf/tCqZVRXhzEgEREREQmpBh2/w0eGL5huJm2Sm2fv+v/t3XeYE9XbxvHvbGPpvSNSpSPSBAVsIIgdCyj23rui4mvFgr3+VBRREUWsoHRFmiC9SO+9d1i253n/mN1kw5YAspkt9+e65mLmZDJ5cpgkZ585cw6r+H14qofRiIjkPUr8igibN4MmnMgdlSoFJ34bsJy1a3N4goiIiIgUGGZZJH7rNcv+CXJsSpcmvng5AGJJZMqwrR4HJCKStyjxKyJs3gwV2EVJ0gb7LVUMypXzNqgC4sILYbUTmHSiNmuZMMHDgEREREQkbOLjISkJHucNzoyeBp/1hm4Xeh1WgRJRKzB0xtaZ60hVp18RET8lfkWETZsghiQGcx37GtSDNk014cQJ0qULPPJrJ16q9jYXMIpneZF+/cDn8zoyEREREclte/a4/+6jLGvLNYUrO0M9TaJ8IsWcUse/XunwBhYs8DAYEZE8RolfEWH1athCdW5gMLu+uh9GDfE6pAKl0SX1eXRBGyYV7cw6arN5M2zf7nVUIiIiIpLb9u4NrJctEw9RFbwLpoByWrdmXuVO9KUfs2jDlCleRyQiknco8StSyMXH45/9NjLSx8kn7YPIip7GVBAVK1mO+rV3+7c3bfIwGBEREREJi6DEb+kEtbNzw9NPM+2xN3mFvqyiPlOmmNcRiYjkGUr8ihRyO3YE1qtUOkR0TBRElPIuoIIqshw1qh3wb7oT6omIiIhIQbZnD5RiPxXZQdnShyFS82jkho4dEvzr06ZpTDURkXRK/IoUcnFxgfUSxZPcxqjG9z3xIspSvepByrKH+qxQj18RERGRQmDvXriWb9lBZX74qyU8/7HXIRVITZpGUaxYEgBbt0ZqWDURkTRK/IoUcumJ3w+5lyf2vwDfzHXHf5ATa94iXh51BXsozwDuYPMm3YImIiIiUtDt3Qt1WANAbEo8FC3jbUAFVGR0aZo32k5p9tGN0cyf73VEIiJ5gxK/IoVcXBzEkMjdfMwtOz+EBz+HyEivwyp4qlal4u71ALRnOvtXbvQ4IBERERHJbXv2BBK/ANSt510wBZlTktuLf8UyGjKIm5k3a4/XEYmI5AlK/IoUcnFxcDLriSCtB2qNyhAT421QBVG1ahysWRuAIiTRYO5gjwMSERERkdyWsccvAHXqeBdMgVaS62a+ShW2U4XtbJm82OuARETyBCV+RQq5uLgjG6MnexdMAZdy3YX+9aobFnJonwYfExERESnI9u3xUY9VgQIlfnNHTBkONwv0po5ZsMTDYERE8g4lfkUKubg4qM/KQEEd3X6WW8pe3MG/3s43nbUrd3kYjYiIiIjktqjN6ynJIQASS5WFihU9jqjgKn5uE/96nR0LOHRA85aIiCjxK1LIxcVBUxYFChqf6l0wBd1pXTgcUQyAmmwkfsUKjwMSERERkdxUYVugnZ1Q5xRwHA+jKdiiO3Xyr7dnOv/OVycLERElfkUKuUyJ32bNvQumoCtSjpWlAvX7xnUppKYkexiQiIiIiOSmansC7ezUxk1y2FP+s3bn4UtLcZzGfJZNmgap+z0OSkTEW0r8ihRycYfsiMRvM++CKQTWVG7lX+/J90wYOcvDaEREREQkN9U4uNS/HnVqC+8CKQzK1mZXpVr+zdYDPoRETfImIoWbEr8ihVzkjq2U5gAACbGloGpVjyMq2JaXa+9fv5Kf2D1nOViqhxGJiIiISG4wg6pJ6/3bRZs29DCaQsCJ4lD7QFu74eYZsHuhhwGJiHhPiV+RQi52e6AxeqBCTY07lst+3tmNBIr4txtNGgHJGzyMSERERERyw/79kEoEicQAEF23pscRFXxFX7zfvx5tyfhm/QNJqz2MSETEW0r8ihRyxXcHko4JFap7GEnhcOND5XmGfnxDby5mBJNbXgPxU9TrV0RERKSA2b0bzuUvihJPm+qroG5dr0Mq8Ko0qs03RW70b++dvA8O/gzmg9Td4Ev0LjgREQ9EeR2AiHhrSdFW3MNH1GQD57avifoh5K7rroMy9z3m326U/DckjYeEWVC0HaTsgKhKHkYoIiIiIifCrl3uv0YEVqkiROnP79zmRFVg08nN+HPFucyhFe1KlKCTLw7ip0L8TCh2FhRt43WYIiJhox6/IoXcamrxMffwFK+x+8LbvA6nwCtdGj79YJV/e8++ou5K4lI4NBr2f+X2SBARERGRfG33rsAdXeXLazi1sHAi2NG5K535kz68zl9JHd3yuAngOwRJy72NT0QkzJT4FSnk4g4d9q8XLxnjYSSFR7kKpf3r+/bEwIRVsGkxxM8AXxykbPIwOhERERE5EXbvPORfr1BBvX3DpXnzQJpj4ZLKwQ8mr4XUPWGOSETEO0r8ihRycXGB3qXFi3sYSCFSrmI5AG5iEB//2QV6DYHv5wOwfmNphny1k717PQxQRERERP4zZ8EsLmE4LZhH9VIaWzZcTj2tjH99weIqcCABZqd1rLBU9w47X4I3wYmIhJkSvyKFXFxcYF2J3/AoVz4SgBSiqJi0zS0cMIOEQw6dLr2Z625vRe9e+7wLUERERET+szpTvmU4lzGPlnRZM8DrcAqNRs2rERlp1GUVL6y7H2vyFnQfCI/+Bt/MhaS9sH8gpO7zOlQRkVynxK9IYZaQwPh1pzGRs/iCmylezLyOqFAoW9b992d6cMgp4W7sOMTcOmPpuWkAtVnD6HFlSNo32bsgRUREROQ/Kbprs3/dV0NTKIdLbCw0bJjCQUrShfE4iSnuA4PnwiO/wTtTIGUnJK30NlARkTBQ4lekMFu3lJNT13EWkzmXCRQvoUknwqGcO9IDhynOO/aQv/wMpvM6fZhFG0qzjxWLVoEFkvHx8WEOVERERESOW/k9a/3rTt06HkZS+HTsEMUOKvMM/TI9lvjVv24bO3lVFs8UESlYlPgVKcyWz/WvrqW2hnoIkxIloGhRd/05XmAT1YMeL88eevAz69bHQsoWzODCC6FMGRiguwRFRERE8r5DB6l2KJD4jWra0MNgCp/OXdwOLSO4hMMRxYIeK7J9N6P6F4WkNWApXoQnIhI2SvyKFGIpc2f715c5DYmJ8TCYQsRxoFYtd92IYCi9Mu3Tk++5+LprWfbvZqZMgVGjICkJ7rwTXn0V9u0La8giIiIiciyGfUlUWlJxFXUpU7OUxwEVLuecAxERxnaq0M43nVsYyC9c5n884YM57NwRBYc1tJqIFGxK/IoUZsPG+FeXFTkNRyM9hE2dDHf7PccL3McH3M/7/rI2zKIoh3n62XJs3ng46LlPPw0vvxyuSEVERETkmM2a5l8dQm8qVPAwlkKoXDno3t394+ZfmjOIW/iIe/2Pt02eztgHE93E7+Fp2R1GRCTfU+JXpLCKiyNy+XoAUolgTOmeHgdUuJx/fmD9MMX5iPv4kPt5kf+jBz9Rnc3EU4xfRtbD4jL3RHjzzTAGKyIiIiLHxBYt9a/Pog3ly3sYTCH1/PMQFRWYL2ND7RasbdYegE+5k2f/vonde4rC4YmQtA5LTfQmUBGRXKTEr0hhtXgxTtrEYctpQGrJMt7GU8jcfz906JC5/Dle5Bd6kEBRf1nvO7uFMTIRERER+c+WrvOvroppTLFi2e8quaNVKxg3zuGyS+K568ZZTBrxJSd/35FdkRXpwFTWxtfkg89PZ+XqEpx1NsQWi6JnT+PQIa8jFxE5caK8DkBEPLIoMLHbYppoYrcwcxzo0wemTj3+Y6SkQJS+xUVERETyll27cHbvB+AwRYmvVEtDqnnknHPgnHOKwt7ZENsB4mcy7fnn+Or/qgDwwptn8+r7HUhKchvVw4a5EzEPHOhl1CIiJ456/IoUVkvmB1ZprMSvB0plMcdHsyYH/esOPk5jLuczNsvnb9mSW5GJiIiIyHFbGhjmYRkNqVJNf3Z7rswdULQdFGlC91t3s6DWOf6H0pO+6b76CtasCXeAIiK5Q79AIoXVskCDdCmNlPj1QFZ13rJ1MT55cyQNWcoWqjGXVkETUWR0/fW5HKCIiIiIHLsKpVh+/kWM4gL+4hyqVvU6IMGJdP+NrkNUlI/Xnx0PQDMWMpbzaVJ5HaVLJQCQmgoff+xVoCIiJ5YSvyKF1doN/lUlfr3RtGnmsho1Irnz1p20ujieErgDjNVjNT0ZmmnfyZnnfBMRERERr9Utydiz7uFCRvEYbynxm5dEnwyRZehx0VImv/YaU2PO5nzGsyCyJUPf/sa/2w8/gFkOxxERySeU+BUprKa+QC3W0p2RLKMhRYuGfoqcWEWKwLhxwWUnnQQUaUrl6gmM4BJ/+RB6s/+jG8IboIiIiIgcu5StbN1ewr+pxG8e4kRAyavAiaBjqZmUSt4LQOSWvXS77XYGxtwOwPr1MGeOl4GKiJwYSvyKFFLLlyexnlqMpjtJFGHbNq8jKpwaNw7erl8fiG3JmWck8TDvsIRGAETio9S9gzEcKuP+ZylZLyIiIpIHpWxm6/aS/k0lfvOY6OpQ7Dy4qiXc3T7ooVuSPqceKwEYMcKL4ERETiwlfkUKo9R9rFkXG1S0b583oRR2FStC2bLuesmS0LEj4ERwea9GnHXpQbownniC/6/60weAhATw+cIcsIiIiIjkLGW7evzmdcXOhOg68OhZEBWcFrmZQYASvyJSMCjxK1IYpWznUFxMUJESv96IiYHvvoMbboCxYyE62i13oisz5Nti3PrIKoa3uS/oOdczmFLsxwwOHvQgaBERERHJ2ry5cNFb3DyvH734DoDq1T2OSbIWUw9KFoHNz8A1LfzFN/ElkaSwYIE75IOISH6mxK9IYTRtEskLdxFDor/orLM8jKeQ69oVvvoK2gffaUZ00aq8+PRMeo0sDhPv8pdHYPTkewD27w9npCIiIiKSo/nTYfp6eu3/iiv4CYBatbwNSbIRU9/913HgzYugojvbdTW20o0xAPz2m1fBiYicGEr8ihRCKXe/yrXv38thitGCeQC8/LLHQUlmjuP2RABoXBn6dQVgXtE2bKEaAHv3aKwHERERkTxjUWBGsCU0pmRJKFPGu3AkB5Fl3fF+AaIjoeep/oce4l3AGDHCPAlNROREUeJXpLBJToaVmwF3wrA11OHxx6FaNY/jkqzFNAys92wBU+/hkZbfM5KLAPji873exCUiIiIimc0MJH4XcCq1arnX8iWPKn0jRNdw1689DQBfsSI4GJXZzsSJpjvsRCRfU+JXpLBZMJ8oXzIA6ziZA5SmVCmPY5LsFWkEJS5010vHwikVqVwxzv/w+x+V56KLfOzc6VF8IiIiIuJKToY5y/yb02mvYR7yOicGSlzqrterAH/eQcTqJ+hz6mC2U4Xk5AjG/rbO0xBFRP4LJX5FCpu///SvTscdVLZEiex2ljyhaBsoEuj5W65MfNDDI0dGcOutug1NRERExFMLFkB8EuB2sNhKNSV+84OoilD6JijSAJpVhcgILj5/uf/hERrnV0TyMSV+RQqbaX8HVjkDgJIlvQpGjlqxc6FYR4goTs0a7v1mUSRTkR0A/Pabw+7dXgYoIiIiUsj9O9+/Oos2ANSp41EscmxiakGJy9wewMAl3QKJ35Fjq5CcpHk1RCR/UuJXpLD5d5F/dSZtAY3vmy9EVYLi50FsC3q2m04/+rKRk/iM2/27bNzoYXwiIiIihd3i2f7VJTQGoFEjr4KRYxZRFIo0AaBF023UqLaf2qxh3/4iTJmocdVEJH9S4lekMElJgVWB7OBS3JboSSd5FZAcs9jW1C6xhb68QhW2cykjOBd3+I49ezyOTURERKQwmz/fv5rezlbiN5+JdrtoOwu3MCLmclZRj+6M4qcf40M8UUQkb1LiV6QwWbYMklMB2Ew1DuLO6qYev/lIZFlo1gh6NPMX9eVlAHbvTPAqKhEREZHCzeeDmQv9m//QjuLF1cEi34k5BSKKwJB5nLbuLyIwfuUy1v20Fp9GexCRfEiJX5HC5O8p/tUZnA5Au3ZQrpxXAclxKdIYnjoHIh0AzuUv3uVBdm/f7nFgIiIiIoXU5s1w0O0VuovyrOdkGjYEx/E4Ljk2EUWgeDe49wysSBQA0aTwxp57+WfKDo+DExE5dkr8ihQmi+b5V9MnnPjzT6+CkeNWtIM7U8jlgV6/D/I+056d6WFQIiIiIoVY1arw91OMu+FJHuUtwNEwD/lVkSZQqzzO173w4WbuG7OUKQMWhniiiEjeo8SvSGFStzIbap/KJqqzjIYAFCvmcUxy7CJi3V6/r17ArhqBqaK77f+FpYsTPQxMREREpJCKNDglllGxl/I1NwLQsKHHMcnxcWIgqgacU5cdbVv5i5NGzcRSNKmGiOQvSvyKFCZ3dGXAZe9zEpv4lcuoW9frgOS4RdeG0rHEftzdX3Q+4xg+bL2HQYmIiIgUUinbwHwsXVHBX6Qev/lYbGsAKlwRmAzlrH1jWPDPbK8iEhE5Lkr8ihQmKVvYuSu9i6/DI494Go38F9F1ILIMJdqWY3dMRQAqsJuRL25nxdK9HgcnIiIiUsgkrwVg6cqK/iIlfvOxIk0huhZR3euT4rhj/XZiCn9/uQ18usNORPIPJX5FCgszSN7Arj2BsR0qVMhhf8nbnAgo3hUch1X12vmLb+NzBnxyyMPARERERAqZpCRYNoN9u6PZuLk0ADExUK+ex3HJ8XMioNjZULkE205r6S8u8+tUSJzvWVgiIsdKiV+RwiJ1J/gOsXV7SX+REr/5XJFGEF2NJW27+osqsQMndRtYqoeBiYiIiBQiCxdCqyco1ex5hnMJAI0bQ3S0x3HJfxNTC2KbU/aBxv6iC3b/yMbFq72LSUTkGCnxK1JYvNoPe2o07Rb9QlW2ANCggccxyX9XrDOlO1XgCfrTkKV0ZzTRUQmQstnryEREREQKh8X/ABCRkkIqkQA0b+5lQHLClOxB8cuvZGtsDQCKEs+Mz7eBpXgcmIjI0YnyOgARCZMff8dZuJa3mclMWnK4dDWqVQv9NMnjYupw4dWluOKWQPftfftjIXkDRNf0MDARERGRQmLaRP/qQtyM76mnehSLnHhFm7H04it49Yc6DOZ6Wi/dw5VJy9xxgEVE8jj1+BUpDOLiYOkG/+YSGnPSSeA4HsYkJ0yR4hX45tPJ/u2Pv2wDSUs9jEhERESkEJk8I7BKJ0A9fguUqBo0eLYBH/AA+yjLxGm12Ld1RujniYjkAUr8ihQGf0+AZHfM139pyl7KaXzfAqZMhYpB22sX7oVDizyKRkRERKSQ2LEDlm0CIIloptMeUI/fAsWJoHqtOrRu4Q6llpISyagxZSB1n6dhiYgcDSV+RQqDiaP9q5M4C4CKFbPbWfKj1u3ccccaspT3eICyZ73CqLvGehyViIiISAE38U//6gxOJ55iVKmitnaBE9uKS7st928OG94EEmZ7GJCIyNFR4lekMJg01b86kbMB1OO3gKlcrSQA1/AdD/ABZdjPoSEzOLAv0ePIRERERAqwv373r6a3s9XbtwCKqsBVPfZQnl1cyxB6jHmFna98Ab54ryMTEcmREr8iBd3hwzBriX8zfdyxSpW8CkhyS/+XdzKMq/3bnfmDh+/b6WFEIiIiIgXclOn+1fQ76zS+b8HUoHljnm74GUO4jhsYTMT7EyFumddhiYjkSIlfkYLun3/84/tuLlWPnbgZ3xo1vAxKcsPd95VnMU3YQlUAyrGXspPHeRyViIiISAF18CAsWQdAKhH8QztAPX4LrCKNOa3P6cQTC0D5Q1vZMGCUx0GJiORMiV+Rgm76JP/q3OJn+terV/ciGMlNJUtFAA6/cbG/7MpNA0hOPOxdUCIiIiIF1dy5YAbAssjGxFECgFatvAxKctPZ17dneOXr/NsrXpudfgqIiORJSvyKFHQzA7efTYgLJH5POsmLYCS33XADvMLTpKZ9vbezGaybMM/jqEREREQKICcFzq5LasmiTE89HYCyZeGUUzyOS3KNE1mUlq+f7t/utGskP768wMOIRERypsSvSEE3O5D0G3+gPQDly0OjRl4FJLnp7behZJPqjON8f9nyBwZz2WXw44/exSUiIiJS4LSrCcOu49tXBvMQ77pF7SBCf2UXaKf0PJu1Vd2BnGNIJuGld9m2zeOgRESyoZ8kkYJuTF8YeBW/NbyDpbjZ3muvhchIj+OSXFG+PCxaFMXObl38ZV1XDWTG8K307g07NdebiIiIyImRvA6A6XPr+od5aN/ew3gkPGJqUvXttv7NDkkTeeUVD+MREcmBEr8iBZn5oOph4js35/qtH+HDzfb26uVxXJLrUi85n1m0BiCaFM5lAklJMHq0x4GJiIiIFBTJGwGYNL2Ov6hdO6+CkbBxYojtegkpRYoAUJt1jPx0Izt2eByXiEgWlPgVKchStzN7XgVadr6T/fujAChTBk47zduwJPedfmaVoEneOjEZgA0bvIpIREREpADxHYKUTazbUIYly0oBEBsLZ54Z4nlSMJQ+l8i21fybXZJG8tVXHsYjIpINJX5FCrCUw6u49IZeLFtZ0V92/fVQtKiHQUlYNG5egcgODdlDWUZwMdM4A4BduzwOTERERKQgePcFeGQ4K17bRCW2A3DOOVCsmMdxSXhEFMfpeoZ/8/94iS8/PYSZhzGJiGRBiV+Rgio1lQNjxrJzW2xQcceOHsUjYffcuFZUYBeXMoKvuRHQGL8iIgWd4zgnOY7zl+M4Sx3HWew4zoNp5eUcxxnvOM7KtH/LZnjOU47jrHIcZ7njOF0zlLdyHOfftMfedxzH8eI9ieRJP/0Gg+dy/o9v0ZEpAFxyiccxSXjd1x9fhRJsdGrwB53ZvfoQkyZ5HZSISLCwJ37VGBUJkwV/U67ny+ynNEPp6S9u2zaH50jBUrQuzz21NKho185Uj4IREZEwSQEeNbNGQDvgXsdxGgNPAn+aWX3gz7Rt0h7rBTQBugH/cxwnfQrYj4E7gPppS7dwvhGRPOvwVpiz2r85lQ4UKQI9e+bwHCl4SlcnYvb7vHrDT9zEV2ynCoMGeR2UiEgwL3r8qjEqEg4TfwKgKAk4BO45qlnTq4DEC0/2Lc/Dd073b+/YkexhNCIiktvMbKuZzU1bPwgsBaoDlwLpI1B+BVyWtn4pMNTMEs1sLbAKaOs4TlWglJlNNzMDvs7wHJHCbdpQSEwBYCX12E4VevaEsmVDPE8KnsrNuaX3fP/mDz+kcOCAd+GIiBwp7IlfNUZFwsBSYWrgPqOpdPCvq1984VKkWGUeu28eANXYTKeVgyBlu/9xM4iL8yo6ERHJTY7j1AJOA2YAlc1sK7jtcaBS2m7VgY0ZnrYprax62vqR5Vm9zh2O48x2HGf2To0pJIXBsF/9q5PphOPAU095F454KOpkWp26hWaN3PZ1fHwUw77b521MIiIZeDrGb7gaoyKFzoEV2J/L/ZsZE79SyDgOVaqVpW/kyyynAe8dvofJH43j3HPh9dfdmafLl4chQ7wOVERETiTHcUoAPwEPmVlO/c+yuiRsOZRnLjQbYGatzax1xYoVs9pFpOBI2gO/zvFvfsu1XHMNNGzoYUzinagKOLENufmaeTj4aMxivh+w1+uoRET8PEv8hrMxql4IUths+HQ4zoEEAFZRl3mcBsCjj3oZlXglokRrusRMpARu195/HvqXv/6CPn1g+nRITITrrvM4SBEROWEcx4nGbWcPMbOf04q3p90xR9q/O9LKNwEnZXh6DWBLWnmNLMpFCrcxg2Gn26baTiUmcjZ9+3ock3iraCdu833GMhqymKb8NrcRs/7YHvp5IiJh4EniN9yNUfVCkMJmx8cT/evfcQ3gcP758PTTnoUkXoqpz7RmvfybT/AGndCUwyIiBVHaZMcDgaVm9naGh0YAN6at3wgMz1Dey3GcIo7j1MadN2Nm2h14Bx3HaZd2zBsyPEek8Or3gX/1Z3pw4cWRNG7sYTzivaiqlExN5hRWAhBLIrNu+ZRkTa0hInlA2BO/aoyK5LJ/p9Fy3Tj/5k9cAcCYMVCunFdBidcqXdGGeGL9299yLVEEt0aTksIdlYiI5IIzgeuBcx3HmZ+2dAdeA7o4jrMS6JK2jZktBoYBS4AxwL1mlpp2rLuBz3Hn2FgNjA7rOxHJa1YshlmrAUgimv704ZFHPI5JvOc48NirpJYo6i86f+PXXHVJIvv3exiXiAje9PhVY1QkN33+ERFpo578ybks4FROOUWTuhV2Nz7chMd4079dnS1ccMRX5hbdwCsiku+Z2VQzc8ysuZm1SFtGmdluMzvPzOqn/bsnw3NeNrO6ZtbAzEZnKJ9tZk3THrsvbUJlkcLr14/9q2Pohu+kk+jUycN4JO8o1YTIZZ+RGFMMgHqspsKYwbRpAxs2eBybiISf5Z1eVWFP/KoxKpKLzPCN+tO/+SaP0aCBw6uvehiT5AlR0ZGk3HYjX3GDv6wfz5BxaPRNm7J4oogUXJbidQQiIvnLtjUkRrp3UI3kQq6+OpIIT6dLlzylYlti+pzh37yaYaxcCZde6s6pISKFiC/O6wj89DMlUpDM+YOIVe5EAocpykTOZtky6NHD47gkT7jw4hL0oT+HKA5Ac/7lNOb5H1fiV6SQ8R32OgIRkfzDUkh67ExqFdvM5fzMMK7m6qu9DkrylOjaOL3v8G92YCoxJDJ/Pnz2mXdhiYgHlPgVOTHM4NNPoU8f2LcvUF5oB9KvGUFv5xu+52oGcz0JFA39HCk0LroIbngYJpXq6i87j0AP8Y0bvYhKRDzhiwdSQ+4mIiJpklYw7q/abDtYjl+5nDK1StOmjddBSZ7iREGDq6BOZQCKEc+5TADglVcgRTfaiBQeSvyKnBizZsFdd8Hrr8P997tlX38NpUvDBReAz+dtfGFXZBsTK19ML77nLj6lSxevA5K8JCICXn+7Che+3spfljHxqx6/IoVIHmqMiojkeWZweCLDhjfxF119dYTm0JCsnd/Nv/p5xB3EEs/WrTB2rIcxiUh4Wd65s06JX8nXRo4MrH/zDWzeDDfeCPHxMGYMTJzoWWjhl7KVbZu2smVbKX+RbimSLHW9BoDxdOYT7vIXK/ErUojkocaoiOQP8+bB44/Diy/Czp1eRxNmCf+QcGgPv45u6C/q2dPDeCRvu/0B/2pkmWgaswSAwV/nncmeRCSX+Q55HYGfEr+Sr1WqFLxdo0bw9po14YvFU5ZK6v5xNO10j7+oRAmoVs3DmCTvqlWbN++ex/mMZziX+Yt//tldRKQQUI9fETkGX38NrVvDm2/Cc89B06awfLnXUYWJpcKDj7P3suH0PvQFldlG3bpw2mleByZ5VsuW0O82AKrsWUtdVtOVMRwaMZGEBI9jE5HwyENtbSV+JV8L9cO5eXN44vDcnnlMf+ZfkvcEBjd+6SWIjvYwJsnT1hK4VTGKZHoylEHcxJVX+DT+mEhhkIcaoyKSty1aBLfeGjyE2o4d7uTBhWJeja/egs/+purc2XzMPZzCCnr2RMM8SM4e7wMjbsZ+u5kNJzdnEDfze0JXFrw0wuvIRCS3WbK75BFK/Eq+Fhfi79bVq8MTh6fM4J6H6PDJW+ymPF9zPXXrGg8+6HVgkped39W9KlCGvayhDkO5hpv4it+5iG3bPA5ORHKfKfErIqH5fHDHHYFJqcqVg8hId33JEvjoI+9iC4vdu+H+5/ybI+nOFDpxzTUexiT5Q3RtOLMpTod29Owwi9d4kgSKEDX4U68jE5Hc5osDzOso/JT4lXwtVOJ38GA3L1qgff0ZDPsbgChS+YPOjBnjqBeC5Kh7d+h15XYatYmjaOkM5Yxmx98rvQtMRMJDPX5F5Ch8/DFMn+6uR0fDlCnw2muBx194Afbs8Sa2sHj/BTjk3mLow+FB3qNFC3eoC5EcOZFQ5m4odSPnnZ/KezxELIk03DiR5O1TvY5ORHJTHmtnK/ErecqePe6EZEuWZL/PgQNw0UXu7VWvvx76mF9+ecLCy3t8Puj3gn9zBm0ZzPXUqeNhTJIvREfDd8PKMm1qEmX7XBX0mPPrx+DTxE8iBVoea5CKSN6zejX06RPY7tMHGjeGBx6AevXcsn374OWXPQkv923bCu8EZkq+nw9YTT2uv97DmCR/iSgKEUVo1vsqVkXVB6A4h4mu0hH+HO5xcCKSa/LYnXVK/Eqecvfd7u1kHTvCoWwmQXz2WRg5MuvHRo0KHn8M4JZboF072L4d9u4tOL0SzMA36ENYtcVfdinDadY8ggh9suVoODEQU4fIp97mz+a3+YtPG/oOfPKUh4GJSK5T4ldEsmPJzJ0ymS6dk/131zVqsI++9w6GlJ3ERKfy2iuJ/t0//BDWrvUo1tz01O1w0O3tu5SGDOAOihWDG27wOC7Jd5zI4sw747bgws6XwapVnsQjIrksj7WzlR6SPMMMhg1z1/fscW8ly8p772Vd/vVnS7jg3KU4jpvozWjGDOjQwR2XrHp1WLjwxMXthZ07oW3jg2y/PXCv3cs8zXaqMHOmh4FJvrX04kc5SIlAwb3vs/3xV70LSERyVx7riSAieUDyFjg8iTGPDuSnc6ZSc93fnMMEYmOS+PK9H4iNXA0Hf4CDv9KjY3/atdoKQFKS2wv4yM4X+dqMX7GvAj1NHuYdUojmrrugQgUP45J8q/ILj/EDVwYXvvAoWJI3AYlI7lHiVyRru3YFbx/O4k7zLRsPANCERdRlFTEkkj5odtmi8+Hgz5C0glFDf8z03PQLqgkJ8MYbJzBwD7z4Ily6rD9VzW1wb6UKr/Ekp5wCRYp4HJzkSxWaNuQ2Pg8qK/lWP2x3AekiLyLB8liDVETCZ9Ysd5zeb79128UApGyHpR+zpvtLdHvnbl5O7ctEzmEC5zG3x420bbnZ3W/OfKjcC6fqc0yfU417+RCA3393h2KbN8+Tt3Ri7dpF0uW346TNEzKS7oylGyedBM89l/NTRbJzZscI7q3wHRM4J1D4zQg4oyUcPOhdYCJy4uWxdrYSv5JnrF8fvN2rF1x9ddo4vpYMSav4X//ZfMi9LKIZq6hPIrHM4zTKsJeypePd/b7uS9keD7GRGnzIvUST+SrqX3+F5z3lliWfTaEP/f3bT/EqhyhJ1aoeBiX5Wr16MIye3MiX/rJidpjDr9wB5nbh+f13GDgQEhOzOYiI5A/mA4v3OgqR/85SvY4g3+nXD9q2haeegt69odVpB1k/4V2oUQ9O7UedSX9mek6jnbNhe1piatIaSEjxP/Yh93MWEwEYPRpatoRrroH9+8PwZnLJ3quuJ2ar2yMlmSge4W2qVHGHmitVyuPgJN+KjIQrroziPP5kDF0DD/yzmP03P1jwJyQXKUx8eetijhK/uckK0v1OuSMxMdDT98ixd1NS4Icf3IkkZg8dQuKZ3en30Xncy/+C9tvISZTiAGXLJLiN0tt/hLmbqcFm7uV/vM0jmV5382Y30fXrr7n0xnLBoUPw88+wYdZ2vkm8mmjcRvcsWvM17mBjuvVMjlfLllCjBnzNjdzAVyQTxZO8Sqm3v+epJ3Zy++1w8cVw223wwQfu0Cxr1qBGqkh+5IvTh1cKBtOVyGMxfDj83/8Fl61cVoTpF86B7dlMrgGwfi9ERLjfGwu3Znp4IudgOFzJDxQjjqFD4eyz82cnxr07tnDTkidYQ20Abo34gu4PNWDRImjWzOPgJN978kmIjXW4jm/YifuH25fcSO2f3qRVy0RGj9bPs0iB4NvrdQRBlPjNTRqvJ0d790KtWlC1KowYkf2ka01YROtrb6bI7JVZPn4xv/M0r1CmdALsyjw+xH18hOHwAO/hEEjGr14Nl1+ef35cr7oKrrgC3m87mKpsA2AvZbiZQVjaRzklJacjiGQvIiLwB81gbuAUVtCfJ/ERyVdvprL28z8ohnvLSr9+7rlYty5ce62HQYvI8fHt8zoCkRNDbe2jtmkT3HFzApXYTlP+pVqVAxQpkkIyMQxIuDlo3xlOW1b0exTmPgTT7oXZQ6BqbUgoDevS/phtVT3Ta/zA1cRRgpsYxPz50LOnkZqPOmWbwS23JDJixzm0ZC53xH7BQzN78847UL6819FJQXDyyfDOO7CbCpzDX4zlfJKIIZ6izJtfhFu7b+HaThsKxpApIoVZ6j6vIwiixG9uUi+EHL32Gmzb5iYrL73UvS0sK4tpwh+cF1S2g4p8UuER3uEhrmMw9/GhO9TDT9nP2vYeD+Ejkpd5mkgCGdKPP4a//z4hbynXpKbCmDHu+ls8RgOW8RH30JPvWUxT/375JYkteVPduoH1dWk9XQCasog/6MJCmlOCg+zfD7/84j42dChs3Jj18bZu1cUICZac7HUEhUd8PPzxB8RlNcRYat7qhSBy3NTWPipbt6Tw6dlfsn1vUbZThX9pzuJBLzL2+8GUKh7PhAzt7JqsZ3b/tzjlqReh8W3Q+nEo3RXK3gM1H4G/v4C9A2HKzzD+PWhYMei1UqJiKIbbEWP0aIenngrrWz1+lsJ7b6zm15Fu+2c/ZbhgyHW0bKU/l+XEuusuGD8emvVqyisdh/N1u1dwikb5H/94anNebPkLLVrAq6/Chg3exSoix8GXqDF+CxX1QsjWE0+kjd2bwS0MxHAwHN7iEdInbbuH/9EZd7yxHVQklnguPG0lsf3u4hHeYQjXUbx0FLHVH4bXP4Nxt8PG92HpF9C6ZqbXvoQRVCVwm9q990KHDm6v40cegd9+y7W3fdy2bw/eXkED7uMj5lXoElR+551hDEoKnIyJ34z+oDO/cyF1WcNBSvEKT5H++QT47jtYsQJ27gw855NPoFo1aNrUne07P1+U2LULhg1z71KQ4/fdd1C2LHTvfvTnw/PPu0OMLFkSXO7zwdq1+fu8yk1xce5nr0sXuOCCzPX0ZN8yND/rbsaOjcr6ACL5hRK/2Vq40L2zrX6FXayr3pGXVgf36i3z69+c1X4dE374klsqDeNiRlAxZi8PvF6dex87AyKKQZEmEH1y8IGLd4VS10LRttD5AZj2Mbx3uf/hqPcupMxDgTER3ngD/veRL29/X69Ywepu19D3ySr+ovvvS+TyHtEeBiUFWefObrto0uRYpk6NYs2cgdx102z68jJl2M+PXEn7BR/z4dObaVA7iUcfzeZCrojkPam7vI4gMzMrVEurVq0sbJI2hu+18onDh83OOsvM/TPUXYpxyBbTKKhwxUmt7eCqlwzMLuFXm87p9gpPWnEOGpgtXpRiqalm99xjVrOm2UcfZXiRxLVmPl/aC86xpQ/f7j/uj/SwEhzwv1QEKUGxgFmRImabNnlQOVlYu9bs9tvNnrtyoZViX1CcVav6LDnZfas//GA2fHjgbYscj+HDLdPnAcy687t9wU1BhR9yj0WRFLRfqVJmy5eb3XBD8POvucasShWzyy83S0nx+l0eG5/PrEUL932cfbbX0eRvGc+JsWND7z9hQmD/008PlO/ZY3bqqW75VVeFPk5Cgvsb8e232e+Tmmr23ntmH3xglpwc+phHY80as0mTsv5eTkkxe/RRsx49zObODZT/8IPZXXe5n6Nj8eefZs2amT34oLs9aFBwfe/fH9h3/vxAeYUKqcf6tv4rz9uBWgpYWztxZfheKx+ZMMGseHGftWS2raOmZfnjfnV7s4TlZnFTLPXwUlu+eIft3XOcDcmU3Wb755j9dY/Z1hcsddvzdnHXZQZmt/KZ/U53O6lKol14odk775jt3Xsi3+1/c2jLfttWqo4Z2NdcZ+Cztq33WEKC15FJoeJLNdsxOsvP6l5KW19esnNrrwlqM4hIHhU/z2zHc2YHhof7lbNtm3neOAz3Et7G6Fr3S7wQSkkx693brG1bswULAuWvvRb8W9aNUZZCRNYN0uGP27NPrsjyoWNpjPmS91sMCXYzA60n3wUlq17g/2wWrawyW4OO//PPJ75OjtXQoW4sLZltiUT7G6PpMf7+u9cRSkEzb17w58znM/vf/8zAZw/wbpaf0zmcZhcz3Mqxy72Yks3HOX35/vvA623bZjZy5LF9nv+rQ4eObf9du4LjP1FJwaz4fG7CLzUXfzaSk82Skv77cXw+s82bj+05Gevxs89C7//AA8HP+fpr9/9j8ODg8oMHcz7Oe+8F9v3xR7dszRqz335zzz2fz6xMmcA+p59u1qCB+xsW6v/b5zN76imzLl2Cf+vWrDErUcI93htvZH7eF18EXq9SJfc3c/16s8hIt6xuXbP333eX994ze+EFsw0bAnEnJgYfr1SpwPEGDjTr2ze4jpYsCex75IWZ9etzfo8nmOftQC0FrK2d8G/4XiufGDHCrEP0dEsgxjL9CIPZG9earR1olnL4xL94arxZ4mqznc/b/tWv2GtV+wW18zsyycCsbNmcL8aFRXKyrX/1M9sTUTaofm6q8LNt2ayeFOKRlSvN6p6U5Wf3MLF2c8SXdvl5++2ee9zf+jffNPvlF7MDB7wOXCRv2LfP/XvzuefM+vVzO0dkbM/HxZmNH+92tpg92+2YaMnJtvffjfbnn2bvvmv26qtuW33t2rQn+XxmH3xgvpZNbNvld9qPT8+xMb8luR2afD6z1Diz5J22f7/ZnDlmyeu+MXvvErPPH3FfMHyybZt53jgM9xLexO8as9RcaFTlA598Evid6tjR7N9/zU4+OVDWmXEWR9Esf9SGR19mcT+9ZmbuH+Xffpt5t2OVlGT2Rv+D1uvqQ8EJXi7zb7Rhhr/88cfNNm50Fy960W7YYOaQahcw0nYTaJA+zFt27tlx+nGXXOHzuQksMHvxxUDZuHFmAwaYnXNGnP3JOVl+bpOJtG6MyjHpC2Y33+wed88es5PS2rVH02vzROjRw02svf760T9n1arg+Ldvz734evVyX+OSS8xuucWsTRs3GW/mJoPXrnX/P0aNMrv4YrehfywOHzZr2tQsOjrzxa1589wLc5s2mX31lVnLlm6DJys+n9mll7qx3nvv0b12QkLmc6Ffv+z3T03N+vxp1Misf//gsscec+Pu2NGsWjX3TpB169zv/bfeynyMXbsCSdknnjCbMiX787VfP7MhQ8xmzDCbNi2QKDZzk6mvvhrY97LLAvFfeGHwce6916xdO7chOm6cWf36wY/XqWN25pk5f3aOXCZNcn+ratQwiybR7uJ/1odXrST7M+37zeBUGzPGbPp0dzuaRGvAUosk2b788uj+D08Qz9uBWgpYW/vw9PC9Vh6XlOReKIqK8tmXHHGFB8zOamC2cUZ4gkneaRa301LrVsoUxy9caqXZa+De1RYfH56QgqSm2p5ed2aK7fv6D9uO7YWz047kIXFxZlddnPkznLb8yiWZiosVcxNdnnyeJN9KSnL/Lurc2W3HDhgQfBFh5UqzDz80u+kms3POcdvaPXu6ZUuWHEWeZM8efw+NhASz377cZYMfnGXffeuzVSt9OT8/MdHs88/N3njdTY4kJwclUffuNZszcqvNevpnW9HpFht72f/s+jNXW9ko9+7u05hjb/KIPcobdnKFg9a7t8+ePvU3m+ScZdNoZxPpZBPpZItoHPRhWkAz+56rrAYbDMx6tZ5l8SXLZft5PNCphdmsR23qyG+tXLlkA7NDEcXdxyMizGbOPO7/n+OQbdvM88ZhuJewJ36Td4bv9fKQI4dzyLicyx9ZPjCUq+3KC/fbnFnxZr7g+8HTkwxgdscdxx/XjBmB49Rgg22malAME+lkJ7M2KLSMf8yHy0dvJ9g02mWqoxv40lasCH88Unj4fG5iLCuff24WSbK9yDOZzs0EYuxZng+ZrDrzTPdY/foFl5u5Cc3//e/oL4xOnOgmc7/+2u0x+cYbbi/NGTPcRkvGxsTy5Zlf77ff3MTgrl1uD/tp04Lrwcxs1qzg5y1adGx1uXJl4Crz3r1mY8a4vY7nz3fX04e+SEnJur5atHCP07Wru33nnWYVK7rrkZHuMd991/1j/8hhNN55x02Cbt0aeL8Zj53e83fHDrPSpQP/P1ntk9G6dcH7pPciHj/evViWUXqi9MjnpC/pQxpMneoOVXDbbYHha44lCZrVctFFR7ffgAHHdtwuXdykeAwJdhpz/AkMcBPW6UODpC/RJFpjFlkMCaFjZoQ9w4t2Ld/Y2UywW/nMfuYy20IVG0sXa8Ri/76JROd4sC+5IcOmz0ZygRnYAUr495lMB7v+urBe3URLwV/C2tY+NC58r5UHJSa6F5R69ki0U0pu9H/mI0ixH4v38n/WbchrZin7Qx/whAe41az9EVe60pZ4ilgltlnLlu7dDGGzebP5atXIFM/cS5/SkGmSd/h8Zv/ONRv0RdB5+iM9rAx7/EXl2GX3855VZLuBWfPmZsuWeR285IqlS90/lrK5HW35crPnn3fb/p9+muEux+Rkt5H+8cfuWGtpfzDs3Wt23nlmldhmw7jS3uc+K8Yh61J0ij3UbrpdVvUfe5p+VoUt/vPtSV6xddS0n7jcYjlsp0fMtAmR59nCiOb2dYm7bETDR+33x0baprWbzFYsNqtf23/uLotqbIeJDT6fi11rF5y70668PN4m170xy9+KjEtSRIy9ccr/rFq1VGvFLIunSMjnvMgzln7X9GO8HrL9nL48TT8DszPJoYcI2CGK2Q/PfWrly8X5i2fRyl15+ppw9yLMtm3meeMw3EvYE7+J4WzJeC/9FuVmzXL6fPjsFZ70F+ynpNVjhRUr5sv2Nuz5891eTS1auBeO/kt8TZsG4ujP41kGOZquVpeV/qK5c93x0pKT3V536bcWH80t2YcOube0H2nJErMzzjC78srgx8e/OitTPMlE2gWMNMjdW81FQpkzJ+22l7/Gm10d6NbYgclBp+0mqtkgbrR6BA/XEhnp/oF3443Bp/nffwfW27Z1rzxXqhRIlJq5SdSlS80mTzZbvdrt3QBmUVFmDz8cfLyICLP27d2eD2PGuLfOZ3y8XebrKuY4bmJ3yxazhg3dXpgffBC8z8SJOdfP0KHu+LNXX2127bXuc1q3NrvggsAxTj45cEv/hx+6zztySImMy+rV2T9WsmRgfdCgQBx/ZLi+dt99bgK2bPDdrPbDD+6+L7yQ0/e1u9xwg9sj+JlngodOALMVK9yes7EctnJlfbZjh3vckSPNihd3v7fHjMn6uOm3+tYpusUcUg3cBHyVKoF9mvCvPcxb/j9qoknMdJyTWG99ecl+4VJ7j/utPssNzNrzt73Dg3Yf7/uP34mJ9jm32DTa2W7K2kGK22O8bg/xtm2nov3BuUFjwXdmnPXgRxvIzXaQ4raSuraGWkG3Uffjaf/+ZzLFvua6LN/wEhracC62B3nniESwL+R/QiLR1pz5/joItX8fXg0qGkfnTL8r7ZgWNH5yGKCl4C9hbWsf+Cl8r5XHTJ1qVq+eWV1W2mpq2wBu83/ET2uyyfY+39vsnIZmf/3gbaDxh83qVrPsvqs6MdHKlHHnGTjR9uxx77JYsMDMt2y5WfvWWcaw/O2hmihD8q6UFLObbjQDi2vT0ka8+bG99/Ioe/7xCbaycougczmFCLusyCjr398dGuuzz8zGjU1xh1Xz+cwWL067tz17qamZOxOkpLh/Awwa5A4pNWNGzvN2+Hxux4KMfzfnpv373TvhnnrK7O67zV56yWz06ODOJAcPmr38snv3WOnS7p11777rDg1g5lbLuHHuHAxnnOEm0Tt3Nrv/frNvvjFbuzo1x6+J5GT3Drpln0+21Mt7uN1kv/zS7P67zd5+2yxpr1tpfZ90b1/7/Xfzbdhoe0dPtxWfT7JFfb62OTd/YH9e/4V9fccU6/+az0b+nmIHdy1xxySIzZA0vfF690tz7lzbvW2T3X9fgkVGusnNU5ln39HTXi/5ou1o0SXzd955nWzzD6OsUQP3TuiX6GtbqJLtd7Sbg3CPfQWhe2YM5WorwQErUzrBhhbrneO+n3OLv137Av+X/RBFYAcpbu/ygL3PfeaQak1ZaC/zVMh4Hiz1cVDRmUyxOKdYjs8ZdOFr1q3zZisWEWfJRIZ8jXF09teRQ6rtI20Mts8ezr2TPmvZts08bxyGewl74jd+Qej98rnkZDch0Lat+0f+RRcFJ1nOZoLNoI1/YjZwe9sa2K4y1e37+/+ybt2Cx/7Myolqjx0+HNzz9wPuzfZDfGTv36go998KFdzkRI0aZrVqubeDm7k/HJMnB3rJbd9uVq6cm4T69Ve3LCnJvbXtyJfb9sNks8u7ZxlHetL3u+9OTB2InFBJSXbaqQeDTts9lAk6hwdysz3Cm3Y2E+zUUwOfpfSlY8ecf1OLFw/5m5vlUrlyIEF8tMvpp2f/2LBhZv/8415VT+/N6vO5V9gbNjy+GG+80axDh+N77pHLH3+436U57dOQJdaEf+2pJ31BPaHP5Q+rxRo7j/FWhHjLOKa4Q6qdzFp/8hR89iDvmIGtKdbYXuFJS8UxAxtR826bMGBlptecw2m2gGb2JTdYc+ZbVTbb8zzr3yn92G6y3WeP8br/mOnLXkqbgf1Od39ythLbMvUgMNyLihm308d378OrOVbQNNrZDXzpL3qJvjnub2Dt+dvArDGLbB01M732kcty6mfY9Nk7PBjyNfrzuH+zOfPtD87Ndt/DxNp5jPfXaWW22ms8EbTPophmtm7s3HDnOtBS8JewtrX3fRW+1/JYYqKb7B040Oz663x2C5/bDNr4P9PP86zVqLbPnnpwssVv+zbT3XOe2r3b7KsHzCoHbpdNii5iL0Q86x+e5nq+soGVHrfXH9ho06b9t3a/z2f2xUubrFqxQM/Irqevt929O1tqVPAf8SOuHnzi3qdIbtq/383KJiw2OzjabOdrZv26WnZtgX9pYl0Ya2BWsmSK/a9NoDfDAqe5TYjubG+2/9Gm3zLA4pq0sl1VG9sjp461mBifRUSYNa2x14bUf9bG1bzVTi2zzuqz3Gqz2poz387iL7u57C/2z2l32rb3h5ol77TUVLMpE1PsobsTrGnFbfYV19ubPGIlOGCXlp9iPTttsUfuTbC33nITszdel2I9Gy+09mWWWJ8yH9tvTZ6w9YMnZfnWDx0ye+tNnz1z2u/2TdXHbFXJZjarzlX22p1rrMd5+ywmm3xhTLTPBtR9zeKj3D8k+vKSfcrtNpCbbTC97RletCpF91rzZnEWG5tiJThgBraIxpZItKUQYXspHdRL9FBECbvojJ12fuc4u/qCPTah1k2W6GSfsDSwlNMb2/RBH9m7r821WY2zH8YjfRnPedaEfw3Mnoh8Pcd9X4wN3HEZy2H7ll457j+u6XVWrlTg77b6LM9x/59OvsXe7TfKRg8dYrPefM7+7NEnx/2TiLKvuN7KsCfk+0xP/IKbM1rLyTnuv4tydgruxKG3RH4R8vgGlvLdpzb5j/U24IOl9v3AP23PC2+Z1a9nVq6MWdFYS778CtszYJil/DnR7LbrzLp1NVv/l5kv1TZvPGRvPLXb+tb/3saU72VjznvdNm/ymY0fb6tf+Np6lxpuj/KG3cLnFkly0EsXcw7Z/k0jw/oVYTm0zTxrFHq1hD3xG/d3+F7PIxnH801fIkixHvxoP9LDDPcKTcYkQr26h2zLxoNmKXs9i/v++91YihBvK3s/mOlNzKCNf7M0e60LY60CO7L8TmnQwG3Tpveo69jRvcJ45H4JCW4P3/Q6ynhl6K+o8zI94TCxVpmt1rdvmG+DEzlGs2enn7Y+a878kImvM5jq36zGpqDHBnGjPcXL1plxBr5MP6TgM4dUiyDF6rIy0+SMR7PUYZXdzUdWnp0h940k2doxzZqxIOh7LH3p0cPSyn1Win3Wm8H2Gk/4e51mXnx2Fn/ZmUyxGBLsSV6xUXSztvxjbZhhl/NT0HvuwGRbjzsg8lCutve43x7gXXuTR+xrrrMhXGOj6Wrf0ivoYtVVfG/vcb89w4s2iY6ZruYPbPOGnXRS4HWOpuIu42cDs7b8E3Lf9ESrQ2rIK/KHic1Ut7+T9YUww+2tmrFH6+s8luPx91PSv9mS2TaG848q9vRzJad9V1LXYjnsL2rNTNtBhRyf8xzP+Teb8G+Ot53toIJ9xq3+CRTBrBGLbSxdbCuVbR6n2kxa2y7K2Q18adfyjQ3jSjuHP/37x5Bg/+Mu+4nL7XY+tYsYYQeG32eW8h9uoTk+aCn4S1jb2ns/M/Mlht4vnxsyxKxCeZ81YGngFtIjll1XnWO+LS+axU3Ku71X9+83++YZs5anmDWvZvMG9rOTqu8zMLuTj/3v5Qtuskfq/mpTX//bfMlHmcD2+cyWLjVfv5dtU8VTzcDe5YGg7/P2kdNskHOTJRFlH3G33dZkiu6kk/zr4EGzEjn3jMh4J0BJ9ue470GK2xX84L9o/Dj9c9w/fXmAd61F0612d6mvbSflc9x3Ip38d26VYl+WPU1HX/axJSekmA0caCl9HrYvX5pnVSodtOv4OmQsw7gyqD0Z6j2soJ41ZWFQ8dEMBVCJbQZmt/B5yH3/r/LbVs7Z5W+PncR6f0eG7Ja9lLbL+cnu4cOQx99KZWvMIgOzv8vl3L413CG/yrLbjScmxSbe+1Lo/+eNP7oTd+5f5yY+jng8uesFtvPi683AEiJi7Z6oTwzM2jDDBnKLbYytaymR0ZZ6+ulmZ3U0O72Vpbz3oS35YZGNGmU29NtE+/KjhfbzDT/bH6fcaYMrPWxvFH/WTq+xybqevtduvSbOvr5urG1qfJ4tuf1NW/bvFkvevtvtST1rVuAzsXmz2Yfvmz1yn9srJ5cnVlu1yh0uIyLCrZYJEzLeXW42bfzkXH39LGTbNjuqBlxBWsKe+D00Nnyv9x/9+qvb0y391uOjceTEOTXYYI/yRpZfZm4PMnfzpx+9b5Bu2+beAv3++2bmSzZL3m/2ZqBn15Yq9f0/fG0IdBEeTVerxqZM34fffRf6O7NzxwS7mOE2im72KbdbcKLDZ/fxvn/neZxqXaP/zHa8VZG8ZuFCd7iElsy2P53seyPO4bSgBOVpzMnxg3OQ4v7vj3Lssp+5LGiWcAPbTVnbROBW0u1UDBp7tT7LbSkNbDzn2Vdc7/+OOkSxoGFdIkm2sWRxW1Ta0peXMhU7pNpqauf4Hu7lA//nvTu/2xRynsnrXR4IimkinUJ+wSynvjVgqYF7m1eo/V/jCf9mDFnMvpbF0pZ/DMyKEmc9+DHb/VZSN6joaoaGPPb9vOffLMMeSyIq230TiLFPuMM/Kec1DMnx2H/T3r/ZmpkhxwS7nU/9m1cyLOg3bSuVbRGN7Q/OtRsZZD35zt9jrQFLLY6ilkykzaCN/ck5dgm/WgV22Fn8Zd/R0ybTwf7X+C3bsminDRtm/v+vl3nKHuUNK85Bq8h2iyHBihIYL+zvv93GZcZQj/wNrlXL7Iorjuq/0nzbn1PiV0uuLGFP/Ib/PA6rzz4zq8j2TBPQZFo++yhv9fINJfWw2YGfbefS/tb7igVWIXpXyGTI7tv7WL8XU619e7NatXx2XfWs5w3JuEyN7mhFIt2hdWqwwS5ihFVls5UsaZo3Q/K/uDh3/IVyWU8+dTiqmDWt5V5cqceKkJ+XN3jUv1mOHMYhS1uGcI09w4vmkGq386ltp2KO+3/DtUFFVzIsx/1XRdazwN/LPruAkZnuKsy4rK52qr370ki779Z/rHGDHXYxw0O+hx/p4b/T7cxaS0LubwTfFdybwTl/b1HWLuQ3A7MokuwHsm+oHY4sYQeKuP+XG8o3sUvq/xs00fsOKlgSUTaTwLA102hnDU4+bD8P226+jZvMLgoMxbeZqraKOvYEr1l1NlpTFtqbPGItmW116rh3kfjPo4EDzR5/1P3Reeghs4rl3AGDjxzT4+BBN3E0dao70crKlcGP+3yWmurmWtasCc9QH17LeK21Z88MP8sfzAt3KNm2zXKt0ZdXl7Anfg/8HHq/PCLj90524+hu3ux+F2ze7E4YlL7/+YyxSWR/r/Z+SlpTFlqRIj675JKcxwTynC/RbNu/Zrsn2qlNAj0J/6Fttu9vBfXs0+rP+W89jiHBrmSY3cLntoZatpK6WT5vEDf6e4qVZ6e9yDP2Kn2sNqsNzH4qvEPXST61cKF7tTM11cySk8330MNZnvvpF08iSLG/OCtkA+tFnrEIUqwt/2Q9W/kRy2B6+ze7MSrHfWfSOmgomq6MzpRYzqqRmD7eKphNJvuxGrZS2frwqtVijf/7IVSieAkNrTob/Y3ES/klxzGmtlAlaPKFBiwNWUcG/sTi0e6f3iuiMlttKZmv+KcvwTNO+2w+zXM87gfcG9SjtQx77AHetV+q3mX7Wp1ti6qeZxPpZPM41aZyhj8p3Itv/c+pWWqv7d90wOydd2wxjewrrrcB3BaU2E9fGrHYrmSYvydYGfak9ZbwpU2aEnxR7mqG2v28F9RzLLulPsuz7EneoYNZ48ZmLVua7cww72vfDCNJ3HCDWdGi7vpHH5ldf73ZAw8EhuNbsMC9uALuZItm7t0mVdPmKe3f3+zBB4Nft3LlrOO0Hc8p8aslV5awJ36TNoTv9cJh5Ur3w75nj/3+0xKLjPRle3HOV7qE2dmtzP73jtdRH5/UQ2a73zE7OMriPnkly/eYcZlNS//3cHU22lay+YJLWw5HFreEwUNt/tzDduqpgYdKlHDnSBIpcPbudXs6vveeO5HCe++Zb+s2mz3bvVg84fL3bV+TtuaLiLDU2KKZPjPJUUVs+8R/LOHgRls0Y2bIz6SB9XUCnSL6FutviZGZh99KX5KiitiDd2+zPo9ssI/eWmjz3vrBUsqUyvH4L/B/BmY1qh62+R1vsJQiISb0+uEVs6T1Zr4k2/lZ4Ar54bJVzVc5c2I6NTbWlrwzxnZsTzGbO8fskQfdmXyjo83KlHEbXL//bqn/+8R2X3OP7TrrEvtnwCwbNTLVfvkpwcb0m2A7G3e0/Xc8avboo5b85Tf2wfs+q1DBrCy7rTR7zXHcnqA332z20os++/7FZfbX8P22ZcqqwF0NGScPOnTIP7HPpmnr7fe7frM7r9lvF1/s3lnctKlZm2bx9liH6fblgESLjz/iPEgbqHnaNHcujyefdP997TWzN990J3xOSAjHCVn4ZJw75YmHwn51Mdu2meeNw3AvYU/87vs6fK/3H+zYEfwduCCLoYl9vuDZymvXDlx9G8jN2X75bqeiXcxwmzAh6xni87LvBk43MCvOwaCrbdkt6RNcnc70o/qhPEystWJWtruIFBjbttmDV26yIVxjBlaS/eY47vAItzHAZtAmxyv4OylvzZlv26h0VJ+tB3jXv/kLl4bcfyhX+zcbsNQfZ07Lx9xp6X98hmwUZ+gpfDufHtV7yHi72t18ZGuoZfspmSlp/CuX2Ns85O+NC2YXMSLT8fZRylZQzx6nv53MWivFvqBdmvCv9eQ7u4Ev7X7es1v43O7lAzuLv6wro602q9OGqHH3jyHB6rDK3uJhG8I1acn8zENhpO+bntiNItk6M86qs9Eqsj3DuMHBS/v2wadQ9wwjP1Rim9VnuV1wgTuRx1tvucONpDvrrMC+11/v/n4dRZXbVVcFb5co4f7t1KiR2V13mW3M5r/6scfcC3V33BEo++svd+x7MLvsMveCaVZ3X+/Y4U4EeNdd7mSEu3Zl7jyR0fz57ljOGf8+iI83W7/eXR83LkM9VXIb9nPnusnjU05xy595YpUSv1pybQl74jfh3/C9Xm5JTnbHc8jwxTK/27VWJma/v+hgRInA46VLmPV/IY/3pDgOPp/Z/z6ylCpZJ3TTf6sdUm0YV2a5j4G9Sh97v9tIS04KfOkmJrpV/O67ZhsK2LUCkePi87nfIfHxbrfM5GSzAwcy7xcX585atnOn2/iYPt3tJbZ7t9natbZls88mTDBbtGCfpS5fZHZ6G7NqFc1uvcXtFTpggNm//7rL5s3Bx06fOT052VK+zvruretLD7fXXz9iTrr4eLen87BhbgPsppvMunUze+QRdyKedKmpmWdGT0lxY09fz268l6Sk/zRsTlKS2zadOTPrapWCadCgwOnb++qN4X75bNtmjplRmLRu3dpmz54dnhdLWgtxo6DsveF5vWOUmgrx8VCiBEyZAp06BT8+ciR07+6uv/QSjH9lFpMT2gLwN2dwHx8yn9MA6Edf+vJK0POHNHuZq+c8zS8/GxUrOZxzTq6/pRMuNTmB2253mDS5CD3O3UfMkC/om/B/FOdwpn3jiaUkB0klirLsoRFLGcz11GFtpn3Hcj5/ch7jmz/GPfdF8OqrsDbzbhSyj6cUcCkpEB0d2G7RApKSYMmSQFkkKUSRguFwNhMpwSGKEs8ILuEgpWhy0gHanbyVSVMjqMQO9lCOLoynFAco2bYx0TOncoBSvMtD7KcMAKXYz8/04DwmBMUzm1YspDlRpNCfPiyhCQCNWML1DGYfZdhNeRKIZQ11mMRZRJMCwKfcwd18jBEBGOfxJ5cwAh8RDKUX7fiH7oyiCIm0ZSbLoppSZ/kwdqeU5Jbby1MidT/FNi4nccM29lOaaZxBLAnEksAHV05mTVxlnh7dAXD88RYvDnFx7vpFLTbx/t1L+WDhWVh0DLNnw9Spgfe2bBn06QPjh8cRSSoHKZXj/83ZZ8PEiVk/FhXl/t8dafp0aN8+x8NSuTIsXAiTJkFsLFx4IRw+DEOGwF135fzc++6DDz4IbCcnw3XXwZo18Pbb0KEDOE7Wzx06FG64ARo0gAkToGJFeOCBwPE++MB9vH9/eCXtp6tpU/j7b3j/fShSBG680a3z4sWDj23m1seqVfD993DoEDz/vPtbeugQDBoEp5wCXbvm/P5yixncey+MG+e+l/TfcYCEBLf+GtWahRM3Eso9CJFlwxleNv9jUpCEta2973OIaQTFzgzP6/0HZjBqFMybB80aJnPxwcFEvPkmLFma5f7v8BCP8A4AtWoeZN69n1Lm+t5QpUr2X34FRWoqRESwZeIKZj/5AzXmjqBlyizOKzqZkuc1oufVyXRZ/Bbl3n6fiORktnW4ktWnXMCagxVZXrc73S+O5IwzvH4TInI8di7cyr+f/k2phVM5fMk1nP7A6RQp4nVUIkfnjz+gSxd3vdOZu5g0tUI4Xz77xkFOWeGCuIS9x+/Ol0/oIVNT3Ytmb72V9cWphAR3eJbffsv6uZ995o5pu2OHWc2abm+mCROCbzUFd/KIDpHTbP7N71p89cy3JK/npKCeXb0ZbBtbdbUtb35ut1+52956K+/OK/Ff+Hxmo3+Jt86Msyv4IdOs6ul10oYZFkfw7TOrqW3P8rz/FrXu3YOP/fTTmS9yihQ0FTLMedWzp9nq1e7Y4jVrmo0ZYzZihFmfPmbr1gUmS8y4/PKL2ZQpge30u73KlDFbsiQwaeNllx35XJ+V4IBFkGLNWGBl2GM//+yOm/rQQ+4tn//8E7iNvn//QM/JqCizO+90exj15Dt7g0etGIeCjv/kk2b9+rnrR84s3LdvoGPBkT7/3Oz8881ef93tIZreC+nnnwPPv+IKt5fDvHlmxYu739vLlgUfZ8GCwOvedZdb9uuvwXEUK+b2aF22LHO93n138PYXX5idfLJ7LJ/P/c1Yvdod4mfQoECHjXHjzOrXN6td22zoUHc4g+hos1693F6wy5dn/b63bMkcw5HLW2/9p1PN4uKCO8Nt2GB26aVur9z03899+9zz8MIL3V6xhUbCMvX41ZJrS9h7/B78PXyvd5wSDqfaFT2C75gYVvWWrL/8jmhX1jzpsK1ZVbjvyU1NdTsYZvrbJ72XooiISB6wNMPoeXVqHQr3y2fbNvO8cRjuJeyJ3x3PmaVmnk3weO/MyjiRy2OPZX78zTcDj//9t1s2b5477uaP2c/DE7SUYt9R7diamf7Nfv2O7/3kVwMGBFeHO06mm/QtV879wNdijfXiW/+4vxmXzz/PPI5yfLzZRRcF9skqeS+S372UNnFsxYrubfM5SUpyE42jRrljo37wQeCC0l9/uRMqJiebTZ4cfNvmrl3ufs8/n/XX1wMPuAnkrEyYYPbNN+4toWZuAnrbNjchnfEY9esH1kuUcPdNSXFvwV+71o2vRg2zM844/kkNJk9276bLaP/+7CeoXbvWfV/p43z5fG5CuUsX9/cg4+/OuUfMvZdxiIJwXHTKauiFM85whzxIT+RrYstclLxViV8tubaEPfG7d1D4Xs/c7+DJk927iYOGMEtNteRDCfbTtwk2oc3jFl+klCVVqmq+0qVsR2w1a8Ri//ddTjPNj4m60M6st83ObbnXnn7aHbJTRERE8r4DBwI/6TExKeHuDJlt20xDPeSmpLWw/ysocytEn8SBA+6toH37wnvvweOPwwsvZH7a3r2wY4d7i+qRateGdevc9cjI4Ntvt2937/7K6Nln4cUXg8tKcoCr+IGK7KQIibRiDj9wFd9xDalEAdCRyfzFOUTiyxTDLsrzJTfxKXeyivoADBsGV111tBWT/w0YAHfemfVj06ZBu3bQsiXMn++WzZgBH30E5cvDG2+4/3fZSU11b+culfOd2SL5khnMnAk1a0LVqrn/eocOud+7V10FP/4IJ58MK1cGDzlxNBYscIemSLd6tXt7/7Jl8NlncOqpJzLq3Pfkk+4wB+keewzefDOwHY6mwRdfuL+De/a4wxG8+y5Urw7Dh7vfn1n9BsoJ4jsMu1/XUA+SK8I+1EPqXij/+Ak75JYt8Msv4PO5301167rlPh98+im89uQ+dh6IIZ5iVKwIt94K9zadRPn7e1F077Zsj7uWWtzBALY1OpUOS3/iHR4mlUiW0oi/OIevuYELb6zIC59W0W3NIiIi+VSZMrB/v7u+Y4c75FyYZNvOVuI3N6Unfktewo+/t+Taa91Ex4YNgV169oSnn3bHA4yNdZOG558fGMexShU46yw3UVy+PJQs6Y7Rl65FC9i61U1E9u7tJjmychm/8DDv4GB0ZGqmx2fTiid5jT/pTE3W8ywvcitf+B9fQ21GcAlD6cUM2mV6/u7dUK7c8VRS/jRpkjsmZrqDB+Gff9zxLtPHg9y2zU1ktGkDV1zhRZQiku7wYfjrLzj9dKhwHEMtJSVB/fru9/cVV7hJ5Pxs/Xr3/SQnu+/nnXfc5EZyspsAfvTR8MRhVvCHqsyzdr0MZe9R4ldOuLAnfpM3QbmHIbK0W7Z7NwmDh/DO/K588lcDSpWC+++H2y/fhbN0CcklyvL66GYMGgT79kG3ljt4vMV4Gl9zKh9ObMrzz6TQ8PAcVnAK7ZhB/0pvUqxhTf5cU5uumwZSi/UAtGM6M2hHLPGMpwtFSKQN2b/vXZRnyC1jeOCzVowa7XDttXDggPtYiRLw4Yfu2OIiIiKSfzVtCosXu+tz58Jpp4XtpZX4TedJ4rdoW5ySgdlVYkikBIfYQ/mg3e+6C+bMgVmzMh8qlngSKJqpvAvjqMU65tCKzVRnKh2ox+qgCSE6M57xnB8y3GU0oDkLSSaGYsSRSBF8RKRNXuT6+mt3Qpx0Z5wBjzxS+BKbZm49TJ3q9v44P3T1ikg+t3On23v/nHMyT/iVH40a5X6H3XMP1KjhTla2YYN7sTGnuxKkgNjzAZS+TolfOeHCnvjdvoIlL0ewbfwGqievo8Hu6YA76W4bZrGYplzFMIbR0/+0NdRmN+WDErVzOY3TmUEz/mUGp/sn88xKPEVpVHkD67e7VxLrsooxdKMeq4P2O0BJ3uUh/onuRJe+bXjo2dL+i127dsHvv7vr3btDpUonokJERETES926wdix7vqIEXDxxWF76Wzb2VFhC6EQG/VLCucwgSRi6Mn33M+HJBHNQ7zLx9xDNEk8zhu8+MmzROJjDbW5gp+4jF95DnechlQiuJZvGc6lPMpbvMwzOb5mIoF7xJbSiKv5ns+4ndIcyLTvHsoyiJvpTx+SiQHgMJmzGnfe6fYqnjbNvb35o4+gceP/UjP5l+PA4MFeRyEi4VSxIlx0kddRnDjdu7tLunr13EUKifTekSL51e7d0KUfzFtPY+DIJulX3MhSGgFgR/wtVIe11GGtf3sSnbiEEaQQjeEQSWqOL12UeFav2sLv46L56P1IXp16LdV8Wxl64Td0PzeBUlGH4aab8KWW5OK18FDdzEN4VagAN910nO9dRERE8qSMF3J37fIujoyU+M0lmzfDr19F0mTQv5y96nW6Ex/0uIORjDvIZBQptOMf/3i6dVjLPFoG7T+QW/mJK0glipIcDPn666jlX2/LTIbQm2hS+IfTSSaaubTkZfqyk9DdC5o2dXv6tmjhJjw//jjkU0RERCQviyjpdQQix2/jRqhTJ3iyiyNER6Xy7ovjKfnzQm6a3SfHwxWPiCfWl0BUueJ8Vv99ImYE3xG5vGRrihdJpEKNWGI7nA5vvEFkbCyX9oBLewAp0yAigl4REUHPK0NYb/EUERERj2Uc03fnTu/iyEiJ31wQFwfP1v6agcnZD9S1m/KsoQ7RJPEeD3Ixv2e77wFKMplOpBLJSWzgSfpnu2+6e/+6ik/Pcdd/5yKu5Efm04INnMynn8LNveChIzr71KnjTgaXsffBySe745Ic60RIIiIikodFFIDxSqTwqlHDXdJnPD7CurItOOuXJ6jXzofd0JyZtx7iiyn1+f3wOTxX7kOuKTeWEuwHnwO9e9PkoaeYvq8oJ50E0dGDIOlTdywcnw/OPJMGRTMPtxYkSn9SiYiISPB8MurxW4AVLw7tT94Kq7LfZzFNmMC5FOMwxTjMfE5lFfWoz0pOZWHQvn9xDj/TA3DYRhXOZyxnM5GL+J3fuJg3eQwfEZzVaCeNu57EK28VoVmEO15j//7w2WcxjOBSAD74AG65xW2fzpwJ334Ly5dDsWLuvnXrQuvWgYnLJkxQ0ldERKTAcZT4lXzMceDHH4l/8i6++6MZT/IazYqtYfyiqkTUPjnDfW/gVIe2Y16kZQq8vB/KlXsNx3kt6HBFgToZJymOiYFzzw3DGxEREZGCJGOP37yS+NXkbrnkx8/3UeP2brRjBt9yDf/QjstarOPfJtfw03eJ0LIVl19blEceyfr5Z9beQuv20ZSpX5EXXsj8+KefQkICrFwJ338PTz8NDz2UfTz79kHp0kc/e3pCgpvw1QQ/IiIiBVDCfIg+WZO7yQkXzsndRv8whu5XdwPgzDPdTroiIiIiXvn1V7j8cnf9oovgt9/C9tKa3C3crrytDJF3TsfnC9R99Lnw1ltw+wBIv2OsTRuoWtUd+6N9e7esalWYuKIaUVEwblzwcS+5xO2Ne8cdgbL33w+d0C1T5tjij409tv1FREQkH9FQD1IALFgU6KbbvLmHgYiIiIiQN4d6iAi9ixyviy88HLR9qTvaAsWKuYlax4EOHdzhFU4/HZ54Arp2hTFjAkOFde4M3bq5vW8//hiGD4eHHw5+naPtxSsiIiICgFPM6whE/rNlK8v415s18y4OEREREcibQz2ox28ueuHZfcyalcqWbaV4/HHo2DH7fR3HHWP3SBERMHo0xMcHegmLiIiI/CcRalRI/rdxc6Dneu3aHgYiIiIiQt7s8avEby46tXkSmxe+DWVuheiT/tOxlPQVERGRE8YpBhbvdRQi/8mGTSX86yf9t6a2iIiIyH9WtqzbgdPnc+faSk527+D3koZ6CIeI0l5HICIiIhIQEYuagZKfmcGmLYEev0r8ioiIiNciIqB8+cD27t3exZJOLf7c5kRARInQ+4mIiIiEU4TG+ZX8a9cuSEhwb14sVcpdRERERLyW14Z70FAPuc0p7iZ/RURERPISx+P7zkT+g40bA+s1a3oXh4iIiEhGgwZBVJQ70Vu1al5Ho8Rv7otU9wMRERERkRNpy5bAeo0a3sUhIiIiktHpp3sdQTB1Rc1tGuZBREREROSE2rEjsF65sndxiIiIiORlSvzmtoiSXkcgIiIiIlKgZEz8VqrkXRwiIiIieZkSv7nNUY9fEREREZETafv2wLoSvyIiIiJZU+I3t2moBxERERGRE0o9fkVERERCU+I3t0UU9zoCEREREZECRYlfERERkdCU+M1tSvyKiIiIiJxQSvyKiIiIhKbEb25T4ldERERE5IRS4ldEREQkNCV+c5ujxK+IiIiIyIni88HOnYHtihW9i0VEREQkL1PiNzc5URAR63UUIiIiIiIFxt69kJrqrpcuDUWKeBuPiIiISF6lxG9uiijhdQQiIiIiIgWKhnkQEREROTpK/OYmje8rIiIiInJCKfErIiIicnSU+M1NTozXEYiIiIiIFChK/IqIiIgcnSivAxARERERETlaTZrAyy+7CeBmzbyORkRERCTvUuJXRERERETyjcaN3UVEREREcqahHkREREREREREREQKGCV+RURERERERERERAoYJX5FREREREREREREChglfkVEREREREREREQKGCV+RURERERERERERAoYJX5FREREREREREREChglfkVEREREREREREQKGCV+RURERERERERERAoYJX5FREREREREREREChglfkVEREREREREREQKGCV+RURERERERERERAoYJX5FREREREREREREChglfkVEREREREREREQKGCV+RURERERERERERAoYJX5FREREREREREREChglfkVEREREREREREQKGCV+RURERERERERERAoYx8y8jiGsHMfZCaw/zqdXAHadwHAKItVRaKqj0FRHoamOQlMdhaY6Ck11FNrR1tEuM+uW28GIt/5DW1uftdBUR6GpjkJTHYWmOgpNdRSa6ujoqJ5CO5o6yradXegSv/+F4zizzay113HkZaqj0FRHoamOQlMdhaY6Ck11FJrqKDTVkZwIOo9CUx2FpjoKTXUUmuooNNVRaKqjo6N6Cu2/1pGGehAREREREREREREpYJT4FRERERERERERESlglPg9NgO8DiAfUB2FpjoKTXUUmuooNNVRaKqj0FRHoamO5ETQeRSa6ig01VFoqqPQVEehqY5CUx0dHdVTaP+pjjTGr4iIiIiIiIiIiEgBox6/IiIiIiIiIiIiIgWMEr8ZOI6zznGcfx3Hme84zuy0sqscx1nsOI7PcZzWGfat5ThOfNq+8x3H+cS7yMMnmzp6w3GcZY7jLHQc5xfHccpk2P8px3FWOY6z3HGcrp4FHkbHUkc6j4Lq6KW0+pnvOM44x3GqZdhf5xHZ15HOo0AdZXjsMcdxzHGcChnKdB4FPxZURzqPgj5rzzuOszlDXXTPsL/OI7Kvo8J6HsnRUVs7NLW1Q1NbOzS1tUNTWzs0tbVDU1s7NLW1Q8v1traZaUlbgHVAhSPKGgENgIlA6wzltYBFXsecR+rofCAqbb0/0D9tvTGwACgC1AZWA5Fev4c8Vkc6jwJlpTKsPwB8ovPoqOtI51Fw+UnAWGB9+uM6j46qjnQeBcqeBx7LYl+dR6HrqFCeR1qObsnmXFJbO3Qdqa19/HWk8yhQprb28deRzqPgcrW1j6+OdB4FyrJrR+o8Cl1Hx3weqcdvCGa21MyWex1HXmZm48wsJW3zH6BG2vqlwFAzSzSztcAqoK0XMXothzqSNGZ2IMNmcSB9AHKdR2lyqCMJ9g7wBMH1o/MoWFZ1JKHpPBI5wdTWDk1t7dDU1g5Nbe3Q1NY+amprh6a29vHReZQLlPgNZsA4x3HmOI5zx1HsX9txnHmO40xyHKdjbgeXR4Sqo1uA0Wnr1YGNGR7blFZW0B1LHYHOI38dOY7zsuM4G4HewLNpxTqPQtcR6Dy6A8BxnEuAzWa24Ih9dR6FriPQeZTxO/u+tNs9v3Acp2xamc6j0HUEhfM8kqOjtnZoamuHprZ2aGprh6a2dmhqa4emtnZoamuHlqtt7agTHm7+dqaZbXEcpxIw3nGcZWY2OZt9twI1zWy34zitgF8dx2lyxFXCgijbOnIcpy+QAgxJ29fJ4vmF4YrXsdSRzqMMdWRmfYG+juM8BdwHPIfOo6OpI51HaXUE9MW93fNIOo9C15HOo0AdfQy8hHuOvAS8hZtI0HkUuo4K63kkR0dt7dDU1g5Nbe3Q1NYOTW3t0NTWDk1t7dDU1g4tV9va6vGbgZltSft3B/ALOXQpT+t6vjttfQ7u2COnhCNOL2VXR47j3AhcBPS2tIFHcK/OnJTh6TWALeGL1hvHUkc6j7L9rH0LXJG2rvMoRB3pPPLX0Vm4Y0EtcBxnHe65MtdxnCroPApZRzqPAp81M9tuZqlm5gM+I/D503kUoo4K63kkR0dt7dDU1g5Nbe3Q1NYOTW3t0NTWDk1t7dDU1g4tt9vaSvymcRynuOM4JdPXca/QLMph/4qO40SmrdcB6gNrwhGrV7KrI8dxugF9gEvM7HCGp4wAejmOU8RxnNq4dTQz3HGH07HWkc6joDqqn2G3S4Blaes6j0LUkc4jfx3NMrNKZlbLzGrhNhxamtk2dB6FrCOdR0GftaoZdrucQHtA51GIOiqM55EcHbW1Q1NbOzS1tUNTWzs0tbVDU1s7NLW1Q1NbO7RwtLU11ENAZeAXx3HArZdvzWyM4ziXAx8AFYGRjuPMN7OuQCfgRcdxUoBU4C4z2+NR7OGSXR2twp11cXzaY/+Y2V1mtthxnGHAEtxbru41s1SPYg+XY6ojdB5lrKOfHMdpAPhwZz+9C0DnUeg6QueRv46y21nnUeg6QudRxs/aYMdxWuDeWrUOuBN0HnEUdUThPI/k6KitHZra2qGprR2a2tqhqa0dmtraoamtHZra2qHlelvbCdwpJCIiIiIiIiIiIiIFgYZ6EBERERERERERESlglPgVERERERERERERKWCU+BUREREREREREREpYJT4FRERERERERERESlglPgVERERERERERERKWCU+BWRQsVxnFTHceY7jrPIcZwfHMcp5jhOLcdxFh3jcW5yHKdabsWZF6S9x52O43weYr+1juM0OKLsXcdxnnAcp6PjOEuOtX5FREREJP9RW/voqa0tIuGgxK+IFDbxZtbCzJoCScBdx3mcm4A83Rh1HCfqBBzmezO7LcQ+Q4FeGV43Argy7blTgO4nIA4RERERyfvU1j42amuLSK5S4ldECrMpQL209UjHcT5zHGex4zjjHMcpCuA4TgvHcf5xHGeh4zi/OI5T1nGcK4HWwJC0Hg1FHcc5z3GceY7j/Os4zheO4xRJe/46x3FecBxnbtpjDY8MwnGcSMdx3nAcZ1ba69yZVn624zgTHcf50XGcZY7jDHEcx0l7rJXjOJMcx5njOM5Yx3GqppVPdBznFcdxJgEPOo7TJu2Y09NeY1HaflMcx2mRIYa/HcdpnlNlZRcn8B0ZGqNAJ2Cdma0/tv8OERERESlA1NYOxKC2toh4QolfESmU0q7QXwD8m1ZUH/jIzJoA+4Ar0sq/BvqYWfO0fZ8zsx+B2UBvM2sBGPAl0NPMmgFRwN0ZXm6XmbUEPgYeyyKcW4H9ZtYGaAPc7jhO7bTHTgMeAhoDdYAzHceJBj4ArjSzVsAXwMsZjlfGzM4ys7eAQcBdZtYeSM2wz+e4PSlwHOcUoIiZLQxRbVnGmfY8n+M4p6bt1wu3gSoiIiIihZDa2mpri0jeoMSviBQ2RR3HmY/bmNwADEwrX2tm89PW5wC1HMcpjduwm5RW/hXuFfYjNUh7/ops9vs543GzeP75wA1pcc0AyuM2jgFmmtkmM/MB89Oe3wBoCoxPe84zQI0Mx/sewHGcMkBJM5uWVv5thn1+AC5Ka9jegtuYDiWnOL8DeqU18i9NO76IiIiIFC5qa7vU1haRPOFEjEkjIpKfxKf1HPBLu6MrMUNRKlD0GI7phHg8/dipZP296wD3m9nYI+I6O4u4otL2X5zWsyArcaHiMrPDjuOMx204Xo17O10oWcaZ5jtgHDAJWGhmO47ieCIiIiJSsKitjdraIpJ3qMeviEg2zGw/sNdxnI5pRdfjNrYADgIl09aX4fZaqJfFfkdjLHB3Wo8AHMc5xXGc4jnsvxyo6DhO+7T9ox3HaZJF/HuBg47jtEsr6nXELp8D7wOzzGzPf4nTzFYDu4HX0K1nIiIiIhKC2tpHH6fa2iJyvNTjV0QkZzcCnziOUwxYA9ycVv5lWnk80D6t/Ie0269mAZ8cw2t8jntb2dy0CSV2Apdlt7OZJaVNevF+2i1yUcC7wOIsdr8V+MxxnDhgIrA/w3HmOI5zAHdsshMR53fAq8AvR3k8ERERESnc1NY++jjV1haRY+aYmdcxiIhILnEcp4SZHUpbfxKoamYPpm1Xw22gNkwb1+zI594EtDaz+/5jDLWA382s6X85joiIiIhIXqK2tojkdRrqQUSkYLvQcZz5juMsAjoC/QAcx7kBd9KIvlk1RNPEAxc4jvP58b542q17vwG7jvcYIiIiIiJ5lNraIpKnqceviIiIiIiIiIiISAGjHr8iIiIiIiIiIiIiBYwSvyIiIiIiIiIiIiIFjBK/IiIiIiIiIiIiIgWMEr8iIiIiIiIiIiIiBYwSvyIiIiIiIiIiIiIFjBK/IiIiIiIiIiIiIgXM/wOUng8Zp+mOqwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 1728x576 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot(vs_test, 1)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "373ca950-0378-4d7d-96ca-57ad951ebbf3",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABX4AAAHwCAYAAAARuXfWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAADq+0lEQVR4nOzdd3gc1dXH8e9Rl9Xde8UUd3DBVJuSYELvvSSUQCDhJQECpNBCAgmdUEI3hNA7AULvxRhcwAbjXnCVbcnq9b5/zGh3Va22u1rp93kePXvnzp3Zs5JDro7O3GvOOURERERERERERESk84iLdgAiIiIiIiIiIiIi0r6U+BURERERERERERHpZJT4FREREREREREREelklPgVERERERERERER6WSU+BURERERERERERHpZJT4FREREREREREREelklPgVkU7DzE4xszejHEOhmQ1v4vwKMzuwDfd/xMz+0trr28LMrjSzB9p7bDPu5cxsh1Ze+7qZneG3zzSzjxsZF/V/OyIiIiKdkZntY2aLmjg/1J/vJUQyrvZkZtPNbE204wDNnUWkNiV+RaQeMzvZzGb7Scx1/gRg72jHtT3Oucedcz+Ncgzpzrll0PYkbVOTrWhwzv3VOXd2e49tLTP7l5k92kD/ODMrM7PuzrmDnXMzt3evjvBvR0RERKSGme1tZp+aWb6ZbTGzT8xscrTjag3n3EfOuZ1qjttaCNERtCW5Gi2aO4t0TUr8ikgtZvZb4Dbgr0AfYDBwN3BEFMParliuEIgFHfT7+whwtJml1ek/HXjVObcl8iGJiIiItI2ZZQKvAncC3YEBwDVAWTTjkpj3CJo7i3Q5SvyKSICZZQHXAhc45553zhU55yqcc6845y71xySb2W1mttb/us3Mkv1z081sjZldZmYb/WrhI83sZ2b2g1+tcGXI+11tZs+a2VNmVmBmX5vZ+JDzl5vZUv/cQjM7KuTcmX7lw61mtgW4um6FrP+X+PPMbLGZbTWzu8zM/HPxZnazmeWa2XIzu7CxR8zM7Odm9krI8RIzezrkeLWZTQh5zx3M7FzgFOAyv3L6lZBbTjCz+X4Fx1NmltLAe+4C3Avs4V+fF3I6x8z+639fvjCzESHX7Wxmb/nf60VmdnwTP+/+ZvayP3aJmZ3TwM/m32a2DTjT7/t3yJjTzWylmW02sz+FVm+EjrXg43tnmNkq/3v+h5D7TDGzz8wsz/83808zS2os7hrOuc+AH4FjQu4VD5wMzPSP3zezBiuPzewfZvaxmWWF69+OiIiISCvsCOCce8I5V+WcK3HOvemcmw9gZiPM7F1/DpZrZo+bWXbNxf6c7FJ/vllkZg+aWR/znuIrMLO3zSwnZPxU86qL88xsnplNb06QZjbTzH7ntwf486Ff+cc7+HNMs5BlEMzsMbzCklf8Oe5lIbc8paG5YgPv+zPzfjcoMLMfzewSv7+lv4s0+nuNf/4cf468xZ8z9/f7P/SHzPM/wwkh1/wu5L1/Xue9bvI/3wYzu9fMUuvE3eJr/fOX+tesNbNfNPZ909xZpGtS4ldEQu0BpAAvNDHmD8BUYAIwHpgC/DHkfF//HgOAPwP3A6cCE4F9gD9b7TVwjwCewatm+A/wopkl+ueW+tdk4VU5/NvM+oVcuzuwDOgNXN9IvIcCk/1YjwcO8vvPAQ72P8duwJFNfOYPgH3MLM5//0RgLwD/s6QD80MvcM7dBzwO/N1f/uGwkNPHAzOAYcA44My6b+ic+w44D/jMvz475PRJeN+PHGBJzWc376/3b+F9H3v74+42s9GNfK4ngDVAf+BY4K9mdkDI+SOAZ4Fs/7MEmNkovErwU4B+eD+jAY28T429gZ2AA/D+Hezi91cBFwM98f4NHgD8ajv3qvEoXpVCjQPxfj6vN3aB/3O8H+97/1PnXH4jQ9vj346IiIhIS/0AVPmJ1YNDk7Q+A/6GN4fbBRgEXF1nzDHAT/CSyIfhzY2uxJtvxQG/AS9hC/wX+AvefPwS4Dkz69WMOD8ApvvtaXjz8mn+8b7AR845F3qBc+40YBVwmD/H/XvI6cbminU9CPzSOZcBjAHeDTnXkt9FGv29xsz2x/seH483110JPOl/hn3968f7n+GpkPeumROfBdwV8rO7Ee9nMQHYISQ+2nKtmc3A+5n9BBiJNxduiubOIl2MEr8iEqoHkOucq2xizCnAtc65jc65TXgJyNNCzlcA1zvnKvAmRz2B251zBc65BcACvElDja+cc8/642/Bm6hNBXDOPeOcW+ucq/YnVIvxJmQ11jrn7nTOVTrnShqJ9wbnXJ5zbhXwHt6EA7zJyO3OuTXOua3ADY19YH/N3gL/2mnA/4AfzWxn//gj51x149+yeu7wP9cW4JWQmJrreefcLP/n9HjI9YcCK5xzD/vfk6+B5/CSurWY2SC8yfXvnXOlzrm5wAPU/ll+5px70f/+1/3+Hgu84pz72DlXjjf5dDTtGr9iZR4wD29SiHPuK+fc537MK4B/EfylYXseA6aZ2UD/+HTgP/6/p4Yk4iW8u+P9wlHcxL3b/G9HREREpKWcc9vw5mkOL3G5ya847eOfX+Kce8s5V+bPx2+h/tzpTufcBufcj8BHwBfOuTnOuTK8Io9d/XGnAq85517z53xvAbOBnzUj1EBxBF6i9+/4xRF+PB+08KM3OFdsQAUwyswynXNb/Tlv6Lnm/i7S1O81pwAPOee+9r9nV+A9iTe0ifgr/PtVOOdeAwqBnfzK13OAi51zW5xzBXjL6p3YDtceDzzsnPvWOVdE/T8A1KW5s0gXo8SviITaDPTczmM3/fH+4l1jpd8XuIdzrspv1yQLN4ScL8GrkK2xuqbhJ09rKlBrlhKYa95jZ3l4f9Hv2dC1TVgf0i4Oee/+da7f3r1qKhr29dvv401oWzOpbSymtl4/BNi95vvlf89OwasgqKs/UDN5rLGS2lW7TX1Pan3//Eng5tbEbWY7mtmrZrbevGUl/krtn3Oj/Inlh8CpZpaOV0HQ1IYUO+BVMl/jJ6xbHC8t/7cjIiIi0iLOue+cc2c65wbizYH74+3DgZn1NrMnzVvmYBvwb+rPnerOvxubjw8Bjqszf9wbr8p1ezEuxUtQTsCrpn0VWGtmOxHeOfIxeInplWb2gZntEXKuJb+LNPV7Ta1zzrlCvLluU0+4ba5TQFPzGXoB3YCvQr7Hb/j9bb227rw09PPUo7mzSNejxK+IhPoMKKXpx2/W4k0Qawz2+1prUE3DrxYYiDdhHIJX4XAh0MNf6uBbvEfbamyvwrQp6/z3qhdHI2oSv/v47Q/YfuK3LfG15vrVwAfOueyQr3Tn3PkNjF0LdDezjJC+wXjrfjXn/Wt9//x1xnq0MN4a9wDfAyOdc5l4jyFa05fUMhOvWuEYYHmdqo+6vgN+Drzu/1LSGi39tyMiIiLSas657/E25hrjd/0Nb542zp87nUrL5k6hVgOP1Zk/pjnnmluV+QHek2BJfnXxB3jzshxgbiPXtGmO7Jz70jl3BN7SZi8CTzd9RaOa+r2m1jl/SbUe1J4rN1cuXsJ5dMj3OMs515zij+1du47ac9HBzbin5s4iXYgSvyIS4Lz1mv6Mt6bUkWbWzcwS/bXFatbfegL4o5n1MrOe/vh/N3bPZphoZkf7Vcb/h7db8edAGt6kcBN4G6wRnOy2h6eBi8zbiCIb+P12xn8A7AekOufW4D0yNwNvAjinkWs2AMMbOdccG4CB1oyNznyvAjua2Wn+zy3RzCY3tD6ac2418CnwNzNLMbNxeOuJPV53bCOeBQ4zsz39+K6h9b9wZADbgEJ/+YyGEtVNeQ5vAnkNTVcsAN5GKXjJ5bctZGO8Fmjpvx0RERGRZjNvs97f1TyO7y/RdRLeHBm8uVMhkOev0XtpG97u33hzuoP8TbhSzNtsrOa9rzaz95u4/gO8Qo2aDc/eB34NfBxSeVtXq+fIZpZkZqeYWZa/PME2vP0iWqOp32v+A/zczCaYt+HbX/GWy1jR0s/gP9V4P3CrmfX2P8cAMzuo6Subde3TeJswjzKzbsBVzQhJc2eRLkSJXxGpxTl3C/BbvI0NNuFVAVyI99d08DZ+mI23mdk3wNd+X2u9BJwAbMVbU+tof22rhcDNeFXIG4CxwCdteJ+67gfexPscc4DXgEoamTg6537Am2B/5B9vw9vA4pMmJrUP4q0/lmdmL7Yixnfx1iFbb2a52xvsL9vwU7w1v9biPW51I5DcyCUnAUP9sS8AV/nrum2Xv0bar/HWTluHtwbyRrzEfUtdgrebcAHez+WppofXi6WI4AS2WYlr59xM4Frg3e2s1daQFv3bEREREWmhArxNjL8wsyK8hO+3wO/889fgbZKVj7cx2/OtfSO/GOAIvMRezdz/UoK5gkE0PQf/AC8RXZP4/RhvaYIPG73Cq1j+oz9HvqQVYZ8GrPCXuTgPr+K5NRr9vcY59w7wJ7w55jpgBLXX5L0amOl/huOb8V6/x9uU+XM/7rfxNrJrjkavdc69jrcEyLv+mHcbuUeA5s4iXYs519YnkUVEWsfMrgZ2cM61drLWnrEcDNzrnBuy3cFSj79GWB7ecg3LoxxOROnfjoiIiHRWZjYXOMA5t729HESaRXNnkchSxa+IdElmlmpmPzOzBP8Ruavwql6lmczsMH85kDTgJrxKiRXRjSr89G9HREREugrn3AQlfaUtNHcWiS4lfkWkqzK8x+S24j1y9B3eul7SfEfgLROxFhgJnOi6xmMk+rcjIiIiItI8mjuLRJGWehARERERERERERHpZFTxKyIiIiIiIiIiItLJKPErIiIiIiIiIiIi0skkRDuASJsxY4Z74403oh2GiIiISFdj0Q5Awk9zbREREZGIa3Se3eUqfnNzc6MdgoiIiIhIp6S5toiIiEjH0eUSvyIiIiIiIiIiIiKdnRK/IiIiIiIiIiIiIp2MEr8RNn36dP73v//V6rvtttsYPnw4N9xwAwBnnnkmzz77bL1rzz77bBYuXBiROEVEREREYk1jc+1f/epXvPzyyxGdb5eUlDBt2jSqqqra5X6t8cgjj3DhhRe2y73S09Pr9eXl5XH33Xe36D5N/Yyqq6v5zW9+w5gxYxg7diyTJ09m+fLlbYq7ua6++mpuuummJsfMnTuX1157LXAc+m+qpTZt2sSMGTNada2IiEhzKfEbYSeddBJPPvlkrb4nn3ySmTNncvnllzd57QMPPMCoUaPCGZ6IiIiISMxqbK590kkncfjhh0d0vv3QQw9x9NFHEx8f3y7364hak/ht6mf01FNPsXbtWubPn88333zDCy+8QHZ2dpP3i2RivW7itzn/phrTq1cv+vXrxyeffNJe4YmIiNSjxG+EHXvssbz66quUlZUBsGLFCtauXcuSJUsa/Gv8n/70J84880yqq6uZPn06s2fPBry/uP/hD39g/PjxTJ06lQ0bNgCwdOlSpk6dyuTJk/nzn//c4F/mRURERCS2mdlDZrbRzL4N6etuZm+Z2WL/NSfk3BVmtsTMFpnZQSH9E83sG//cHWZmfn+ymT3l939hZkMj+gFbqbG59t57791o9Wu45tuPP/44RxxxROD473//O2PHjmX8+PGBZOHcuXOZOnUq48aN46ijjmLr1q2AVxX7+9//nilTprDjjjvy0UcfAbD77ruzYMGCwD2nT5/OV199xZYtWzjyyCMZN24cU6dOZf78+bViyc/PZ+jQoVRXVwNQXFzMoEGDqKioYOnSpcyYMYOJEyeyzz778P333wOwfPly9thjDyZPnsyf/vSnBj/j5ZdfztKlS5kwYQKXXnopzjkuvfTSQMXuU0891aKf0bp16+jXrx9xcd6vqQMHDiQnJ6fePYYOHcq1117L3nvvzTPPPMObb77JHnvswW677cZxxx1HYWFhIL5Ro0Yxbtw4LrnkEgBWrlzJAQccwLhx4zjggANYtWpVvfuH/jvIzc1l6NChlJeX8+c//5mnnnqKCRMm8NRTT9X6N9XYfc8880x+85vfsOeeezJ8+PBaleZHHnkkjz/+eIPfWxERkfbQpRO/ZuH7akyPHj2YMmUKb7zxBuD9dfuEE07AGrjosssuY+PGjTz88MOByU+NoqIipk6dyrx589h33325//77Abjooou46KKL+PLLL+nfv3/7fbNEREREpCN5BKj7nPjlwDvOuZHAO/4xZjYKOBEY7V9zt5nVlKHeA5wLjPS/au55FrDVObcDcCtwY0sD7OhzbQjffLu8vJxly5YxdOhQAF5//XVefPFFvvjiC+bNm8dll10GwOmnn86NN97I/PnzGTt2LNdcc03gHpWVlcyaNYvbbrst0H/iiSfy9NNPA7Bu3TrWrl3LxIkTueqqq9h1112ZP38+f/3rXzn99NNrxZOVlcX48eP54IMPAHjllVc46KCDSExM5Nxzz+XOO+/kq6++4qabbuJXv/pV4HOef/75fPnll/Tt27fBz3nDDTcwYsQI5s6dyz/+8Q+ef/555s6dy7x583j77be59NJLWbduXbN/RscffzyvvPIKEyZM4He/+x1z5sxp8H0BUlJS+PjjjznwwAP5y1/+wttvv83XX3/NpEmTuOWWW9iyZQsvvPACCxYsYP78+fzxj38E4MILL+T0009n/vz5nHLKKfzmN79p9D1CJSUlce2113LCCScwd+5cTjjhhFrnm7rvunXr+Pjjj3n11VdrVQhPmjQpkNQXEREJhy6d+I2W0Mebah5rquu6664jLy+Pf/3rXw1OVJOSkjj00EMBmDhxIitWrADgs88+47jjjgPg5JNPDtMnEBEREZFocs59CGyp030EMNNvzwSODOl/0jlX5pxbDiwBpphZPyDTOfeZc84Bj9a5puZezwIHWGPZ0w6mOXNtCO98Ozc3t9YSBW+//TY///nP6datGwDdu3cnPz+fvLw8pk2bBsAZZ5zBhx9+GLjm6KOPrvfexx9/PM888wwATz/9dCCOjz/+mNNOOw2A/fffn82bN5Ofn18rphNOOCFQgVuTbC0sLOTTTz/luOOOY8KECfzyl78MJGo/+eSTwPeu5t7b8/HHH3PSSScRHx9Pnz59mDZtGl9++WW9cY39jAYOHMiiRYv429/+RlxcHAcccADvvPNOg+9Vk3j9/PPPWbhwIXvttRcTJkxg5syZrFy5kszMTFJSUjj77LN5/vnnA9/7zz77LPBzO+200/j444+b9dm2p6n7HnnkkcTFxTFq1KhA5ThA7969Wbt2bbu8v4iISEOU+I2CI488knfeeYevv/6akpISdtttt3pjJk+eHHhsqyGJiYmBCWp8fDyVlZVhjVlEREREOrw+zrl1AP5rb79/ALA6ZNwav2+A367bX+sa51wlkA/0CFvk7ag5c20I73w7NTWV0tLSwLFzrtGq48YkJyfXe+8BAwbQo0cP5s+fz1NPPcWJJ54YuH9ddd/v8MMP5/XXX2fLli189dVX7L///lRXV5Odnc3cuXMDX999912j99iehuJoSFM/o+TkZA4++GD+8Y9/cOWVV/Liiy82eI+0tLTAe/7kJz8JxL9w4UIefPBBEhISmDVrFscccwwvvvhioxupNfQZExISAstihP4cWyL0vjU/y5p4a5SWlpKamtqq+4uIiDRHl078Ohe+r6akp6czffp0fvGLXzRagTBjxgwuv/xyDjnkEAoKCpr9maZOncpzzz0HUG/TBBERERHpkhrK3rkm+pu6pv7Nzc41s9lmNnvTpk3BwR14rg3hnW/n5ORQVVUVSBr+9Kc/5aGHHqK4uBiALVu2kJWVRU5OTuBR/8ceeyxQ/duUE088kb///e/k5+czduxYAPbdd9/AWrHvv/8+PXv2JDMzs9Z16enpTJkyhYsuuohDDz2U+Ph4MjMzGTZsWKCK2DnHvHnzANhrr70Cn6+xdWgzMjJqfe/23XdfnnrqKaqqqti0aRMffvghU6ZMqXddYz+jr7/+OlABW11dzfz58xkyZEiT34+pU6fyySefsGTJEsBbv/iHH36gsLCQ/Px8fvazn3Hbbbcxd+5cAPbcc89an2vvvfeud8+hQ4fy1VdfAdRak7fu5w3VnPvW9cMPPzBmzJjtjhMREWmtLp34jaaTTjqJefPmBf5K35DjjjuOc845h8MPP5ySkpJm3fe2227jlltuYcqUKaxbt46srKz2CllEREREOrYN/vIN+K8b/f41wKCQcQOBtX7/wAb6a11jZglAFvWXlgDAOXefc26Sc25Sr1692umjtE1z5toQ3vn2T3/608Dj/jNmzODwww9n0qRJTJgwgZtuugmAmTNncumllzJu3Djmzp3Ln//85+2+/7HHHsuTTz7J8ccfH+i7+uqrmT17NuPGjePyyy9n5syZDV57wgkn8O9//7vW+rSPP/44Dz74IOPHj2f06NG89NJLANx+++3cddddTJ48ud6yETV69OjBXnvtxZgxY7j00ks56qijGDduHOPHj2f//ffn73//e6PrAzf0M9q4cSOHHXYYY8aMYdy4cSQkJDS4IV+oXr168cgjj3DSSScFNrf7/vvvKSgo4NBDD2XcuHFMmzaNW2+9FYA77riDhx9+mHHjxvHYY49x++2317vnJZdcwj333MOee+5Jbm5uoH+//fZj4cKFgc3dQjXnvnW99957HHLIIdsdJyIi0lrW3MdxOotJkya5mh1aO6Pi4mJSU1MxM5588kmeeOKJwORNREREJIpiYn3YWGJmQ4FXnXNj/ON/AJudczeY2eVAd+fcZWY2GvgPMAXoj7fx20jnXJWZfQn8GvgCeA240zn3mpldAIx1zp1nZicCRzvnjq8XRB2dfa4NzZ9vz5kzh1tuuYXHHnssClFKLNh333156aWXyMnJiXYoIiIS2xqdZydEMgoJv6+++ooLL7wQ5xzZ2dk89NBD0Q5JRERERNqZmT0BTAd6mtka4CrgBuBpMzsLWAUcB+CcW2BmTwMLgUrgAudclX+r84FHgFTgdf8L4EHgMTNbglfp23TpbBfS3Pn2rrvuyn777UdVVRXx8fERjlI6uk2bNvHb3/5WSV8REQkrVfyKiIiISCSo4rcL0FxbREREJOIanWdrjV8RERERERERERGRTkaJXxEREREREREREZFORolfERERERERERERkU5GiV8RiTjn4Mor4aijYOnSaEcjIiIiIiIiItL5KPEbBfHx8UyYMIExY8Zw3HHHUVxc3Op7nXnmmTz77LMAnH322SxcuLDRse+//z6ffvpp4Pjee+/l0UcfbfV7i7TWCy/A3/4GL74Il10W7WhERESkM9FcW7o856BqW7SjEBGRDkCJ3yhITU1l7ty5fPvttyQlJXHvvffWOl9VVdWq+z7wwAOMGjWq0fN1J6PnnXcep59+eqveS6Qt7rsv2H7++ejFISIiIp2P5trS5VUXQuEr0Y5CREQ6gLAlfs3sITPbaGbfhvR1N7O3zGyx/5oTcu4KM1tiZovM7KCQ/olm9o1/7g4zM78/2cye8vu/MLOh4fos4bTPPvuwZMkS3n//ffbbbz9OPvlkxo4dS1VVFZdeeimTJ09m3Lhx/Otf/wLAOceFF17IqFGjOOSQQ9i4cWPgXtOnT2f27NkAvPHGG+y2226MHz+eAw44gBUrVnDvvfdy6623MmHCBD766COuvvpqbrrpJgDmzp3L1KlTGTduHEcddRRbt24N3PP3v/89U6ZMYccdd+Sjjz6K8HdIOqPNm6MdgYiIiHQFmmtLl+RKoXJ9tKMQEZEOIJwVv48AM+r0XQ6845wbCbzjH2Nmo4ATgdH+NXebWbx/zT3AucBI/6vmnmcBW51zOwC3Aje2Ksqrrwaz5n2de2796889t/aYq69u9ltXVlby+uuvM3bsWABmzZrF9ddfz8KFC3nwwQfJysriyy+/5Msvv+T+++9n+fLlvPDCCyxatIhvvvmG+++/v1ZVQY1NmzZxzjnn8NxzzzFv3jyeeeYZhg4dynnnncfFF1/M3Llz2WeffWpdc/rpp3PjjTcyf/58xo4dyzXXXFMrzlmzZnHbbbfV6hdprerqaEcgIiIiEaG5NqC5tkSYK4PqAqguiXYkIiISZWFL/DrnPgS21Ok+Apjpt2cCR4b0P+mcK3POLQeWAFPMrB+Q6Zz7zDnngEfrXFNzr2eBA2qqgTu6kpISJkyYwKRJkxg8eDBnnXUWAFOmTGHYsGEAvPnmmzz66KNMmDCB3Xffnc2bN7N48WI+/PBDTjrpJOLj4+nfvz/7779/vft//vnn7LvvvoF7de/evcl48vPzycvLY9q0aQCcccYZfPjhh4HzRx99NAATJ05kxYoVbf78IqmptY+di04cIiIi0vlori1dniv1Xqvq/jouIiJdTUKE36+Pc24dgHNunZn19vsHAJ+HjFvj91X47br9Ndes9u9VaWb5QA8gt+6bmtm5eFXDDB48uN0+TGvVrDtWV1paWqDtnOPOO+/koIMOqjXmtddeY3v5befcdse0RHJyMuBtlFFZWdlu95Wuq+4/o8JCyMiITiwiIiLSuWiuLV1eIPG7GRIHND1WREQ6tY6yuVtDMyfXRH9T19TvdO4+59wk59ykXr161T559dVeuWFzvkJ3pKpx3321x7Tg8bOmHHTQQdxzzz1UVFQA8MMPP1BUVMS+++7Lk08+SVVVFevWreO9996rd+0ee+zBBx98wPLlywHYssX7S29GRgYFBQX1xmdlZZGTkxNYU+yxxx4LVCSIhEPdzbX9f+YiIiLS2Wiurbm2RJ4r814rVkY3DhERibpIV/xuMLN+frVvP6Bmt4Q1wKCQcQOBtX7/wAb6Q69ZY2YJQBb1l5aIWWeffTYrVqxgt912wzlHr169ePHFFznqqKN49913GTt2LDvuuGODk8ZevXpx3333cfTRR1NdXU3v3r156623OOywwzj22GN56aWXuPPOO2tdM3PmTM477zyKi4sZPnw4Dz/8cKQ+qnRBRUW1j8vLoxOHiIiIdE2aa0un5Rw8/Cws/BAuTIWdDot2RCIiEkXmwri4ppkNBV51zo3xj/8BbHbO3WBmlwPdnXOXmdlo4D/AFKA/3sZvI51zVWb2JfBr4AvgNeBO59xrZnYBMNY5d56ZnQgc7Zw7fnsxTZo0ydXsxisi0dG3L2zYEDxetQoGDWp8vIiIdAoxsReDtI3m2iJRdt998Mtfeu3RfWDejxAf3/Q1IiIS6xqdZ4dtqQczewL4DNjJzNaY2VnADcBPzGwx8BP/GOfcAuBpYCHwBnCBc67Kv9X5wAN4G74tBV73+x8EepjZEuC3wOXh+iwi0r601IOIiIiISBh89VWwvWAD8x95D8q+i148IiISVWFb6sE5d1Ijpw5oZPz1wPUN9M8GxjTQXwoc15YYRSTynNNSDyIiIiIiYXHMMbXWy37s4oVce9B8UgfuEsWgREQkWjrK5m4i0kWUl0N1de0+VfyKiIiIiLSDn/6UR3cKPgw7uGAx737YB6q2RTEoERGJFiV+RSSiSkvr9ynxKyIiIiLSPj7YOD7Q3olFfDJrMFRtbOIKERHprJT4FZGIKiur36elHkRERERE2q6kBD7dGkz8jmYBn8waBFW5UYxKRESiRYlfEYmohpK8qvgVEREREWm7ZctgMSMpJA2AAaxl3ddVVJVvjnJkIiISDUr8RkFeXh7HHnssO++8M7vssgufffYZAHPnzmXq1KlMmDCBSZMmMWvWLAA++eQTxo0bx+TJk1myZEngHgcddBDOuah9DpHWaKjiV4lfERERaS+aa0uX5RwDTtiLVzmUdIK7Ke9ctoBlSxpYb01ERDq9hGgHEHWbrm7f+/Xa/v0uuugiZsyYwbPPPkt5eTnFxcUAXHbZZVx11VUcfPDBvPbaa1x22WW8//773HzzzTz33HOsWLGCe+65h5tvvpnrrruOK6+8EjNr3/hFwkxLPYiIiHQhmmuLRE5xMdkLPmVGne5RLOTbBSMZOTEqUYmISBSp4jfCtm3bxocffshZZ50FQFJSEtnZ2QCYGdu2ebut5ufn079/fwASExMpKSmhuLiYxMREli5dyo8//si0adMafZ+hQ4eSm+ut4zR79mymT58OwNVXX80vfvELpk+fzvDhw7njjjsC1zz66KOMGzeO8ePHc9ppp7X3RxcBtNSDiIiIhI/m2tKl5eXVOqzGeJOfMIspfLswB6qLoxOXiIhEjSp+I2zZsmX06tWLn//858ybN4+JEydy++23k5aWxm233cZBBx3EJZdcQnV1NZ9++ikAV1xxBeeeey6pqak89thjXHLJJVx33XWtjuH777/nvffeo6CggJ122onzzz+fH374geuvv55PPvmEnj17smXLlvb6yCK1aKkHERERCRfNtaVLC0n8bqQXB3X/iLlbdgKg53cLoHobxHWLUnAiIhINqviNsMrKSr7++mvOP/985syZQ1paGjfccAMA99xzD7feeiurV6/m1ltvDVQqTJgwgc8//5z33nuPZcuW0b9/f5xznHDCCZx66qls2LChRTEccsghJCcn07NnT3r37s2GDRt49913OfbYY+nZsycA3bt3b98PLuLTUg8iIiISLpprS5e2dWuguYQd2GnfKtIpYAavM/nTZ+Cfd0UxOBERiQYlfiNs4MCBDBw4kN133x2AY489lq+//hqAmTNncvTRRwNw3HHHBTacqOGc4y9/+Qt/+tOfuOaaa7jmmms49dRTaz1CViMhIYHq6moASktrL+SfnJwcaMfHx1NZWYlzTmuYSURoqQcREREJF821pUvLzw82yWLfvbYwksW8zs+4NPcaqu96NIrBiYhINCjxG2F9+/Zl0KBBLFq0CIB33nmHUaNGAdC/f38++OADAN59911GjhxZ69qZM2dyyCGHkJOTQ3FxMXFxccTFxQU2rAg1dOhQvvrqKwCee+657cZ1wAEH8PTTT7N582YAPX4mYVNWBkfwIp+yBw9zJimUUF4OixbVKlIQERERaTHNtaVLKyoKNAtJZ8iQeMoG9aYa748OtmwN1PlDhYiIdG5a4zcK7rzzTk455RTKy8sZPnw4Dz/8MAD3338/F110EZWVlaSkpHDfffcFrikuLmbmzJm8+eabAPz2t7/lmGOOISkpiSeeeKLee1x11VWcddZZ/PWvfw1UPDRl9OjR/OEPf2DatGnEx8ez66678sgjj/Dyyy8ze/Zsrr322nb69NLVlRdV8Cink0kBe/A5SxnBnXf+ibPPhpwcWLIE9PSjiIiItJbm2tJlhfyRophuDOqdwQ6jC1m+ehgjWIZVV3vVFuPHRzFIERGJJHPORTuGiJo0aZKbPXt2tMMQ6bKefMJx18kfsy8fsg8fkcNWpvJF4PwDD4C/5J6IiHQues69C9BcWySK7r4bLrjAa3I+P11wJQ/fv4zdb7uJw3nFG/P4v+HkU6IYpIiIhEGj82xV/IpIRJWVG9+xCx+xr3dMEglUUEkioPV+RURERERaJWSph2K60b13DmN32chCRgUTv9/NA5T4FRHpKrTGr4hEVGEhbKYnqxgEQDLljGBp4HzIfFVERERERJrJFQWXeigijYysNMaMKmQ5w4KDVq2IfGAiIhI1SvyKSET5+6DwHbsE+nbhu0D7kksiHZGIiIiISOwrO/QYTuZxzuE+/pd4GImJsOMu3VkbNzAwpnL56ihGKCIikaalHkQkotZ+l88ACljJkEDfRL7iRY4KHBcVQVpaNKITEREREYlN2waP4QnGANAj0+tLyt6PxOErYIl3XLFivZIAIiJdiP6bLyIRtf/af/MGF9bq25NPax0XFirxKyIiIiLSEoWFwXZGht+IzyBn3KBA4jdx/XpwDkz7bYqIdAVa6kFEIqpb+dZ6fWP5ptZx6KRVRERERES2r6Ag2E5PD7aH75pFAV5HQkUpbNkS4chERCRaVPErIhGV3kDitxe5DGU5K/yNJ5T4FRERERFpmQYrfoHRY4ynOZ44qkkcksWpqvYVEekylPgVkYhKr6id+C2iG7/gIXLpGegLrVYQEREREZHtG37lCXzPXIpI48Hq+4GJAIweDTvyIAD9Sgs4tXtGE3cREZHOREs9iEhEpVcGE7+PcSppFPMYp/F7bgz0q+JXRERERKRlkteuYCd+YDfmkJFaEegfPhySkx0A6zZksHWzJtsiIl2FEr8iElEZVXmB9iOcyXE8zYOcxb85NdCvxK+IiIiISMtYSVGgnZDRLdCOj4eddw4u77DgG39c+QqoLo1UeCIiEgVK/IpIRKVVBddxSMhO41mO41Yu5qe8yX2cw5k8rKUeRERERERaKK60ONBOyEqrdW706GB7wbeVXqPyR6jaFInQREQkSrTGr4hEVGp1sBIhMTsd8mAvPuEOLgIgi3w2l/48StGJiIiIiMSmhNKQeXZWt1rndt2hgN24msGsYpebtsKFb0P1VqhKg8RBkQ5VREQiRIlfEYmoFBesREjMTgfgW8YE+sbyDf8ri3hYIiIiIiIxLaEiOM9Oyqld8bvj2GQO5VbicFSvNKiogKrNEJcZ6TBFRCSCtNSDiESMc5BGsBIhubs3IV3IKKrx1h0byWLKC8ujEp+IiIiISExyjsTykHl2Tu2K31ETklhHPwDicPDjj17it1qba4iIdGZK/IpIxFRVQQKVgeOaSoRi0gIT0QSqSM79MSrxiYiIiIjEpLIyL6ELlJFEenbth3uHDYM1NjhwvG3e91C1DUKWYRMRkc5HiV8RiZjycsghj0TK6ZuSR2JmauDcKoIT0W65q6IRnoiIiIhIbCoKJnCL6UZa7ZUeiI+HLVnB+fbGt96Ar3+EzRsiFaGIiESBEr8iEjHl/goOlSRSmpzF4iUWOLeSIYF22uaVkQ5NRERERCR2FQfX9y0ijW7d6g/ZOmzXQHuHu26HGQ/AuEtg0aJIRCgiIlGgxK+IREx5yNK9SUnQt2/wOLTiN2PLisgFJSIiIiIS6+okflNTGxiz6+T6fYVlcOWV4YtLRESiSolfEYmYuonfiy+GhATv0bP+uwcTv5l5KyIfnIiIiIhIrBo0iHPHfMKBvMUv+VeDid8e+4xq+NqlS8Mbm4iIRE3C9oeIiLSPii0F7ME3FJFGuuWwxx6DWbrUS/wu+sdg+MIb133biqjGKSIiIiISU7p1Y1b8HszDag7r2WHvvuSRRTb5tU+s0v4aIiKdlRK/IhIxcd8t4FP2AmBe7hTgCwb7hb7zBo8MjBuQ910UohMRERERiV0lJcF2QxW/w4Ybs+N2Ykr1rNontm6FigpITAxvgCIiEnFK/IpIxFRtC+42XBpfe6vh8iE78gQn8i1jKB04nMTfO8aOM045JdJRioiIiIjEnpISB37Fb0OJ37g42Nx7B1g/q/7JzZtrb8AhIiKdghK/IhIx1QXBxG9ZncRvSlo8R/GEd7AE+LvXHDXiO3adukuEIhQRERERiU0h+7s1uNQDwNb9D+Fv/xnMY5zG21mH0j9/uXciN1eJXxGRTkibu4lIxNRK/CbWTvwmJzd8zV136+9TIiIiIiJNevBBVm9OYws53MLFDVb8Agw6+6dcyd/4jlGsKQ1J9G7aFJk4RUQkopT4FZGIcYXBxG95Qu3Eb1pa3dGe0pLycIYkIiIiIhLzXHEJqZSSQx5JlDea+N19z+6kp3nz69Vl/YIncnMjEKWIiESaEr8iEjGuKJj4rUis/fxZRkbD15SWGriKcIYlIiIiIhLTKgtLA+2KuBTi4xsel5Qcx377etW9V3M1T19wByx8HQ47LBJhiohIhCnxKyIRY6GJ36TaJb7p6TCBObzIEcxhAo9wBgDrN6ZDdREiIiIiItKwyqKyQLsqsZE11HwH/cRLEn/LWB5bchQM6wMpKWGNT0REokOLZ4pI5Gwn8ZtMGUfwMgCGA+Cz2QOpqlhLfHx2xMIUEREREYkloRW/VYlNJ3EPOihYDvzex30pL1tHkvK+IiKdkip+RSRirCS41XBFcv01fr9n58DxKBZyEbdxb/UvKZs9J2IxioiIiIjEmtCKX7edLO6InXoxbMhWAIqKEvh6TlJYYxMRkehR4ldEIsaKgxW/VXUSv0lJUJKUzffsBEAildzGxZzC4ySffD6UlSEiIiIiIvVVFQcrfl1S00s9WHwaUybmeW2qWTSnCgoKwhmeiIhEiRK/IhIxpUmZrGYgW8ihIjWz3vn0dJjH+MDxP7mAv3EFtnkrzJ8fyVBFRERERGJGdXGwSKI6efvrNowek86BvEU18Zzx24lwzDHhDE9ERKJEiV8RiZhPjrqJwaymB1uYs/NJ9c6np8NCRgWOL+QuruPPxBUXwzffRDJUEREREZGYUR1S8UszEr+jxvWijJDK4JKSMEQlIiLRpsSviERMeXmwndTAUmIZGbCA0Q1fvHJleIISEREREYlxriSY+LWUppd6ABg9GkpIDXYo8Ssi0ikp8SsiEVNREWw3lPitW/Fby6ZN4QlKRERERCTGudKQ/TBStl/xO2IElIYkfl2xEr8iIp2REr8iEjGhFb+JifXPp6fDYkZSSXz9k0r8ioiIiIg06JMz72cHFjOGb1g6eL/tjk9MhG49gonfqkIlfkVEOqOEaAcgIl3HoPn/5XAqKSOZjPh9gW61zqenQyWJ/JdDOIKXa1+sxK+IiIiISIPyEnuxlF4ATM1q3jXZ/VJhs9euVsWviEinpIpfEYmYQ/57Pi9xJG9wMD1d/URuerr3egV/o4Q6j6gp8SsiIiIi0qDQJXpTUxsfF6r7AK3xKyLS2SnxKyIRE18R3HQiKbP+2mM1id/vGMU45nMcTwdPbtwY7vBERERERGJScXGw3a1b4+NC9RgYTPzGlynxKyLSGWmpBxGJmMSqYOI3Oat+4jcjI9hewkhWMDTYsXkzVFVBfAPr/4qIiIiIdGWbN5NJAmUkk5qSDNh2L+kzOJlqjDgc8VXlmmuLiHRCqvgVkYhJqAwmflOyG6/4rVFJIlvJ9g6cgy1bwhidiIiIiEhsOuf+yeSTTSmp9CtZ1qxrBgw0SkOXVysrC1N0IiISLar4FZHIqK4m0VUEDlMyk+oNqZv4BfgnF7Lr6A0ces5oSE4OZ4QiIiIiIjEpIWRJtcSM+gUWDenTB0pIpRv+Mg8lJc1fJ0JERGKCEr8iEhkhFQQlpJCWXv/xs4YSv3/mOo4aupRDfzMMTA8piIiIiIjUFV8VnGsnpjevWKJ7dxjNAspIZtRuqXzSXUUWIiKdjRK/IhIZpcEqhFJSSEurP6ShxC/ArDl9qa6qIC5Bk1ERERERkbpCl1RraBPlhvToARvoC8C6rTRnWWAREYkxKp8TkchoQ+L3x7VprFxZGabARERERERiW61NlDObVyzRo0ewra00REQ6JyV+RSQy2pD4Bdi4oToMQYmIiIiIxLjKSuLx5spVxJGS3rwHe7Ozwfwq3/x8qFSdhYhIp6PEr4hERp3Eb0P7RmRk1D7u1g0u4J+8xOEMP/9wePPNMAcpIiIiIhJj6syzU7s1b82G+HgYnrWZYSxjFAvYuqogXBGKiEiUKPErIpGRmMgnthezmcgCRjdY8ZuTU/t4+nSYwFwO5xV6zX8fVq6MRKQiIiIiIrEjZBPlMpIbLLBozMNlJ7OMESxgDKVvfxyG4EREJJq0uZuIRETl0B3Y23mTybg4qGxg6bEddoDDDoPXXoNbboHNm6HktdTggOLiCEUrIiIiIhIj6lb8pjYxto7qlFQo8dqFuSXtHJiIiESbEr8iEhFFRcF2WlpwPbFQZvDSS8H2xx/Dp9eGzFxLNBkVEREREamlTsVvSxK/pAQHFyvxKyLS6WipBxGJiNBi3aYePzMLJoV33BGKCRmsxK+IiMh2mdnFZrbAzL41syfMLMXMupvZW2a22H/NCRl/hZktMbNFZnZQSP9EM/vGP3eHWUN/thWRqGvGXhqNsW7BxG/JVs21RUQ6GyV+RSQi6lb8NkdmJpSgil8REZHmMrMBwG+ASc65MUA8cCJwOfCOc24k8I5/jJmN8s+PBmYAd5tZvH+7e4BzgZH+14wIfhQRaa5ddqFHRjkZbGNPPm1RxW9o4reioLSJkSIiEou01IOIRETlN9/xG96klBTK3c7AtO1ek5wM5XGpUO0dVxWWEN/0JSIiIuLN8VPNrALoBqwFrgCm++dnAu8DvweOAJ50zpUBy81sCTDFzFYAmc65zwDM7FHgSOD1iH0KEWkeMwpKE6kgEaCFid+UQLtSiV8RkU5HiV8RiYjEr7/gdv4PgP9uO53mJH7NoDqlG/jLRJTnF9OSJctERES6Gufcj2Z2E7AKb8umN51zb5pZH+fcOn/MOjPr7V8yAPg85BZr/L4Kv123vx4zOxevMpjBgwe358cRkWaorISKCq8dFwdJSc2/Nj4tJPFbpMSviEhno6UeRCQiqkImklVJKU2MrC308bPKAi31ICIi0hR/7d4jgGFAfyDNzE5t6pIG+lwT/fU7nbvPOTfJOTepV69eLQ1ZRNoodDW01NSGN1FuTHx6cK5drcSviEino4pfEYmI0MRvdWLzE79xaamQ67UrtinxKyIish0HAsudc5sAzOx5YE9gg5n186t9+wEb/fFrgEEh1w/EWxpijd+u2y8iHUzpuq2MZTVlJBOXnAP03u41NRLTg/Py6mIlfkVEOhtV/IpIRIROJKtbUPGb2SdYhVCWp8SviIjIdqwCpppZNzMz4ADgO+Bl4Ax/zBnAS377ZeBEM0s2s2F4m7jN8peFKDCzqf59Tg+5RkQ6EPfmm8xnPIvYmb+X/rpF1yZlBuflrlSJXxGRzkYVvyISEdUlZcF2cguWehg7hgtm/ZMSUjlw4hBODkdwIiIinYRz7gszexb4GqgE5gD3AenA02Z2Fl5y+Dh//AIzexpY6I+/wDlX5d/ufOARIBVvUzdt7CbSAYVuylaV0Px5NniJ3zKSKCWFkorE9g5NRESiTIlfEYkIVxKckLoWJH67jx/E1VwAQJyhxK+IiMh2OOeuAq6q012GV/3b0Pjrgesb6J8NjGn3AEWkXVUUBQssqhKTW3RtyclnkfL3swEY3R1OaNfIREQk2rTUg4hERuijYy1I/I4YEWwvW9aO8YiIiIiIdAKVha3bSwMgKzu4E9y2be0WkoiIdBBK/IpIZIQmflNal/hdsqQd4xERERER6QSqQip+XVLLKn4zM4NtJX5FRDqfqCR+zexiM1tgZt+a2RNmlmJm3c3sLTNb7L/mhIy/wsyWmNkiMzsopH+imX3jn7vD33hCRDogK2td4nfYMEj256+rV0NubjsHJiIiIiISw2ptotyCJ+sAMjKC7W3boLq6vaISEZGOIOKJXzMbAPwGmOScGwPEAycClwPvOOdGAu/4x5jZKP/8aGAGcLeZxfu3uwc4F2/34ZH+eRHpiEITv6nNn5AmlRUwO2F35jKeL5nE/PlhiE1EREREJEZVFQcrfi25ZRW/CaWF7J/yKfvxLlPdpxQVtXd0IiISTdHa3C0BSDWzCqAbsBa4Apjun58JvA/8HjgCeNI5VwYsN7MlwBQzWwFkOuc+AzCzR4Ej0W7DIh3Syt5T+IFykimjtOeg5l+YkMCYolkAlJDCW4VhClBEREREJAa1dhNlABYt4p3SvQD4ml3Jz/+6VhWwiIjEtohX/DrnfgRuAlYB64B859ybQB/n3Dp/zDqgt3/JAGB1yC3W+H0D/HbdfhHpgN4ZdzHH8hyH8Sq5O+/d/AtDqhZSKaW0xIUhOhERERGR2BSa+G3Jk3VArSXYUiiloKCdghIRkQ4hGks95OBV8Q4D+gNpZnZqU5c00Oea6G/oPc81s9lmNnvTpk0tDVlE2kEr93aDuDjK44LJ34rCsiYGi4iIiIh0La40OD+OS2nZUg+kpgaaSvyKiHQ+0djc7UBguXNuk3OuAnge2BPYYGb9APzXjf74NUDoc+ED8ZaGWOO36/bX45y7zzk3yTk3qVevXu36YUSkeVqd+AUqE4IXVBWWtFNEIiIiIiKxr9RSyaUHhaQRl5a6/QtC1an4LdSyaiIinUo0Er+rgKlm1s3MDDgA+A54GTjDH3MG8JLffhk40cySzWwY3iZus/zlIArMbKp/n9NDrhGRDqYtid+KhOAEtrKwtImRIiIiIiJdywv73UEvcsmgkMW7N/UwbQO01IOISKcW8c3dnHNfmNmzwNdAJTAHuA9IB542s7PwksPH+eMXmNnTwEJ//AXOuSr/ducDjwCpeJu6aWM3kQ7q4Pk3MpZ8ykgms/wCoGezrw2t+K0uUsWviIiIiEiN4uJgO7WFBb+hid9USpT4FRHpZCKe+AVwzl0FXFWnuwyv+reh8dcD1zfQPxsY0+4Biki7+8nyf9GP5QB8UHUqLUn8ViUGZ7BVRar4FRERERGpEZr47dathRfXSvyWUrCtse10REQkFkVjqQcR6YISq4IJ24T0lq31UJUYUvFbrIpfEREREZEaJSHT4xYnfuPiqIxPChwW55W3T1AiItIhRKXiV0S6nqSQxG9iRgsTv8nBil9XrIpfEREREZEaQ1Z9xE8o8ZZUs92AjBZdX5mQQkKVl/AtzSsFkts/SBERiQpV/IpIRCS6skA7KbNlid/qpOB4p4pfEREREZGAs+ZcyJscxAdMp0fe0hZfH/p0nZf4FRGRzkIVvyISfs6RVB2cRCZltKyK4KvDr+W8m39HKSlMyJrQzsGJiIiIiMSu+KqQAosWzrMBCnqPYE1hNqWkUFxY3Z6hiYhIlCnxKyLhV1lJPN4ksoIEUtJb9p+evNF78brfHqK9JkREREREAkL30kjOatmTdQDv/eVTTj7Zax9f1V5RiYhIR6ClHkQk/EqDk9FSUkI3D26W0E0qCgraKSYRERERkU4gdC+N5MyWV/xmhCwJrLm2iEjnosSviIRfGxO/3bsH21u2tFNMIiIiIiKdQOheGinZLa/4TU8PtgsL2yMiERHpKJT4FZHwa2Pit0ePYFuJXxERERGRoNC9NFqT+FXFr4hI56XEr4iEnSsNViGUkkJyC59AG/bk31hPH/LJ5NgVN7VzdCIiIiIiMco5kgnOtbvltHyph16LP+VEnuBMHiZjy8r2jE5ERKJMm7uJSNhVpGRwJ78lhVLy47pzZXzLru8WV0oOG72D4qL2D1BEREREJAa58gricIC3iXJqegsn2kDvR/7OE7wEwJn5zwND2jNEERGJIiV+RSTsSrP6cAk3A5CRBle28PqkzOAjawkVJVRUQGJiOwYoIiIiIhKDygvKqKnxLSOZ9Fb8hh+fHpxru+LSJkaKiEis0VIPIhJ2IUv8tnh9XwDrlhq8nlJKStohKBERERGRGFeyNTjRLrNWTLSBhPTgXDuuopSqqjaHJSIiHYQqfkUk7EITvy1d3xeolS1OpYSSEsjMbHtcIiIiIiKxrKTYsZTdvOKIhCx6bP+Seiw1ONdOoZTCQsjKar8YRUQkepT4FZGwKwvuN9Gqil9SVfErIiIiIlJXUVpvJvEVACMGw5LW3CSlduK3oECJXxGRzkJLPYhI2MV98RmPczIP8gtOKb6/5TeoU/FbXFz79BNPwBFHwIcftjFQEREREZEYEjov7tatlTepM9cuKGhbTCIi0nGo4ldEws6WLeVkngDg9dJy4JyW3aCJit/Nm+Hkk732u++iiaqIiIiIdBntkvhNSws2KdJ8WkSkE1HFr4iEXWVRcJHfqsRWrPXQwBq/Nb75JtguLGxNdCIiIiIisaldEr/p6cEmhZpTi4h0Iqr4FZGwqw5J/FYntmJ3t+1U/IqIiIiIdEVuxUrO5Q1KSKVfyVBg35bfJCTx21DF71tvVjFnbjznngvZ2W2JVkREIk2JXxEJu8qi4O5u1Ultq/hNoZQtIZUNixfXHlpRAYmJLX8LEREREZFYk/zdXP7FeQDMXnkYrUr8hiz1kE5hrcTvf1+t4tDD4gHvSbvHHmtLtCIiEmla6kFEwq58W7Di17q1IvE7ahSXHzib0XzL0TwfqPgtL4dbb609NLQaWERERESkM6sqDE5+q5JSmxjZhP79WdJnD/7HT5nPuFqJ3zvvrAi0//1v6m2yLCIiHZsqfkUk7ELX+I1vTeI3LY31Ayay0D+sSe5+9x1s3Fh7aEkJZGa2Lk4RERERkVhSXRjMxFYntzLxO20a957yATff4j02d2NI4veHH2oPXbQIdt21dW8jIiKRp4pfEQm7qsKQxG9aKxK/QFJSsF3hFx40VN2rKgQRERER6Sqqi4ITYpfSysQvkJ4eTA3UbO5WVgbLV9Seuy9Z0uq3EBGRKFDiV0TCrro4mPhNTG/F5m40nPgtK6s/Tks9iIiIiEhXUSvxm9r6xG9GhgXaNUs9/Phj/XFLl7b6LUREJAqU+BWRsKsuCSZ+EzJaWfGb6EimlCzyKC/3+hpK/KriV0RERES6jNCqhzZU/GZkBlMDNYnfVatgXz7gDB4hHa9z06ZWv4WIiESBEr8iEn4hid/kzFYkfqurueW2OEpJJY8cyssc0HDit6HKBBERERGRzsgVBxO/cWmtTPyWlTHxkzu4gr/yJ64NJH4LP/+WD5jOI/yctzkQcEr8iojEGG3uJiJh91rOKby8chyplPDTcRNafoO4OCoSUkis9BLI3tIRqZSW1h/63HNwxBFtCldEREREJCa4kIrf+PTWV/xOfPQiJgLlJHJkwZ8BWJqyMxOZzb58yK38lgH8yKZNA9sasoiIRJASvyISdv+zGcxhBgCHTWrdPcqT0gOJXyssAFIbrPh98UVwDszqnxMRERER6UysNCTxm9GtdTdJSqI6PoG4qkqSqKAkvxxIYnNuKX/gen7GawDsyhzWKfErIhJTtNSDiITd5s3Bdo8erbtHRXJ6oG1F3lbDDSV+Cwq0wZuIiIiIdA1xIYnfhIxWVvyaUZ2aFjis2lYEQO6mCtbSnxS8SfeO/EBubutjFRGRyFPFr4iEXXskfitDEr9xxY0nfgG2bYNurSx4EBERERGJFd8njaOcg0mlhB6DWl+N69LSoTDfaxcUAjnk5jpWMiQwZggrtcaviEiMUeJXRMKqrAyKvKIBEhIgM7N196lMaVnit2/f1r2PiIiIiEiseCDrd8zjdwB8vV/r72Pp6bDBa7uCQigtJXH1Kn5kQGDMEFZSXAzFxSqyEBGJFUr8ikhYbd4MT3E8PcmlKi4VW3c/9O/f4vtUpgYTv/ElTSd+a3YiFhERERHpzAoLg+309MbHbY9lhhRZFBXAV1/x+Jd71xozhJUA5ObC4MGtfy8REYkcJX5FJKw2b4Y9+ZSB/AjlQGVlq+5TlZoRaNckfktLGx67bVur3kJEREREJKa0V+I3Licr0E4uy6dqyQbi64ypSfxu2qTEr4hIrNDmbiISVps3Qyohu6218rmw6m7BmWxCqSp+RURERETareI3OzvQziaP8kXL6o3JIY8MtpGf3/r3ERGRyFLFr4iE1ebN0I3iYEdq63YbDk38JpZ6md2yMhjIas7jXr5jFx7nFMBU8SsiIiIinV51NZxTdCsZFFBCKt1Kz4KM7q27WUjiN4t8yr9bRkOz9iGsZNu2sa17DxERiTglfkUkrPK2OlIJWZOhlYlflxaS+C0LVvzex7kczBsApFDKg5wd2ExORERERKSzKi6Gi7idof4SDBQeC73anvjNJo+qJfUrfsFL/ObnK/ErIhIrtNSDiIRVaV4w6VsRnwxxrfvPzoqTr6Qnm0ihhCcHXwZAVVFpIOkLcBQvACjxKyIiIiKdXkFBnSXVWllgAcDkybyeczx38SvmMZ64DWsDp57rcTafjDycP3EtS9hBT9eJiMQQVfyKSFiV5wWXeahMSCWxlfeJ657NZr9dVu699ty4sNaYlzkc8KofREREREQ6s8JC6NNeid8TT+TGuw/lg4+8p+yS8zcFTj0++gZ23m0Zf7ttMoDW+BURiSGq+BWRsCrPD05GK5NaPxlNTg62azZ1675lSaDvvYyDuI9fAqr4FREREZHOr7CwHSt+gYwMB0Ai5aSWe2W9lcST0i+HzKz4wDhV/IqIxA4lfkUkrCryg+W3VcndWn2flJRgu9RfPaJn/tJAX27GgEBbiV8RERER6ewK8ypJpBKAKuIgsbXP1nkyMrzXXgSrfXPpSfeecWRlBR8WVsWviEjs0FIPIhJWlQXBKoTq5NZXIaTElTOQDWRQQN9tCcCO9CoIJn7zu/cDfykyJX5FREREpLMryg3Os8vjU0k1a9P9MjK8urCBrAn0racvvXpBZlZSoE8VvyIisUOJXxEJq1qJ35TWV/xmL/iE1ewPwKw1+wAf0rcwmPgt6t0n0NYavyIiIiLS2RVuCs6zKxJSadNCD5s2cdKc65lEEXvxCbn0oCebWcoI+mSWsM9/ruIZqkikgn/lv9Tm2EVEJDKU+BWRsFoevwPH8TSplHDhidn0bOV94nvmBNoZlXkA9CsJJn73Wvsa9zGfj9mbrUVntCFiEREREZGOr3hzyF4aiW1b35fSUqZ/dTvTgTUMoBe5ZLOVbhRza59EBr/zNIOBaoyb8qvRqpEiIrFBiV8RCav1lT15l+MAOH166++T2Cs70M6s3gplZfQuDz6GNun7N5gEJFPGTCV+RURERKSTK9kSTPxWtWETZQB69Ag0+7CBOKrII4c8cujZF6rSMogvKiAOR9XWbUB2295PREQiQn+mE5GwqqgItpOSGh+3PYm9gxW/mdV5UFDA++k/41tG1xo3lBVa6kFEREREOr3Sre2zlwYA3bpRku49m5dIJf1YFzjVsye4zOzAseXnte29REQkYpT4FZGwKi8Pttuy0XBKrwyq8TasyKAQsrI4p+dTjOVbRvJDYNxQVmhzNxERERHp9DaU53A35/MwZ7J6wmFtvl9x76GB9giCS6r17AnkZAeO47dtbfN7iYhIZCjxKyJhFVrx25bEb2JyHHkhj5RVb82nzE8qr2Iwzt/FeCBrKC8sb+AOIiIiIiKdx7LqoVzA3fyCh/nh1OvafL+yEcEn6a7nD6TiPUbXsyfEZ2cGzllhAc61+e1ERCQClPgVkbA6fMP9LGU43zKa/v+5qdX3MYN8yw4cl6/fQlmZl+wtJ5mKXn0AiMORXbC6TTGLiIiIiHR0eXnBdnZ22+9XdvCRgfbefMKN/J7MTG+5NsvMCJxLp4DCwra/n4iIhJ8SvyISVpllmxjOckazkKRtuW26V35ccJ3f8vVrKCuLDxy7wUMD7V5FK9r0PiIiIiIiHV1+frCdldX2+6VOqr13xpdM9pZ5AMgIJn4zKGDbtra/n4iIhJ8SvyISVolVwU0nLK1bm+5VEJ8dvO99d3J+8e2cxqMMYA1xw4YFzvUqXa3Hz0RERESkUwtN/LZHxW/OrkNrHb/FT+jf3z+ok/gNfW8REem4EqIdgIh0bsmVxYF2XFrbdhsuSMgBf/ne1Ode5EZeBGA/3iWhb6/AuCy3lfJySE5u09uJiIiIiHRYk9a/ymU8SyHp9PlyBow+tE33S05P5KrUv/Lrkpv5Jxeynn7sN8g/qYpfEZGYpMSviIRVYmVIxW962yp+CxNyKKIbeWQzgLWB/pWJI7GQnYZz2EpRkRK/IiIiItJ5jSz8mjOZCUD5dzlA2xK/AK/u9GuunXs54G+cPNA/oYpfEZGYpKUeRCSskqqDid/4Nlb8/nXIv0iniKl8HugrIJ3Nyf0hJ7j+bw5bKSho01uJiIiIiHRYJSWQXBHcYS0xJ71d7jtkiKMm6Quwww5+4+CDeWTMXziH+3iJI1TxKyISI1TxKyJhlRyyxm9bl3pISvH+VjWZLwN9XzHR658yhYe6/x+Lt/RmFlOYrsmoiIiIiHRSubmQTjDxaxntk/gdNy6JF14KHu+6q9/Yc08+mjSah771dpFTxa+ISGxQ4ldEwiqlOrjGb3xG25Z6SEnxXkMTv7OY4i3psOee3L/DeD6flQagKgQRERER6bRycyGNomBHevskfg8/MplrrvPaI0bAhAnBc1lZwUpgJX5FRGKDlnoQkbBKdiFLPaS3reK3Zs3e0MTvl0wOJIRDJ6NK/IqIiIhIZ7VpU+2KX9LS2uW+u+0Gj9y3jAsugDfegMTE4LnMTCV+RURijSp+RSRsnIM0F5yQJmS3rRIhJQV2ZBEH8k6g70smk+YnhDOzgn/LUuJXRERERDqrTZugZ2jit50qfgHOOHsgZ1j9/izNtUVEYo4qfkUkbCoq2nftseRkeI5javWtZEigEjgzMz7QryoEEREREems6q7x256JXyypft/ixZx43wy+Yjee5yjNtUVEYoQqfkUkbCoq4ESepDtb6JFYwIvDh7fpfikp8AJHMYYFAHzBFMC8xG9BAb/+6OccSyHVxLFw22tt/wAiIiIiIh3Qpk111vhtp6UeGlVVRb8fPqYf3vs+psSviEhMUOJXRMKmogIWMhqAzFSgjYUIyclwN7/ieJ6mG8WczqOBfhISGL/4OcYDZSTxuR4/ExEREZFOKqwVvw0JuX8GBVrqQUQkRijxKyJhU1ERbIduDNGW+62nH7vwHQ4DvMXHkpOBlBSq4hKIr64kmXIKN5cByW1/UxERERGRDqbe5m7hTvxmZgabbNNSDyIiMUKJXxEJm7KyYDupgaXCWqq01Ht1dZYnT0kBzKhMySC+eCsAFVsKUOJXRERERDqjtWvhL/yR7mzhnJOKGJSdHd43TE/HmWHOkU4RhXmVKJ0gItLx6b/UIhI2+XkOw+GIIyur7ffbc0945pn6/TWbu1V2yyDZT/xWbi0Aerb9TUVEREREOpg1a+BzLgTg59cDqWF+w7g4XGYWlp8HQHXeNqB7mN9URETaKm77Q0REWqdkyY9UE08B6by0akKb7/erXzXcX5P4rU4PPoJWtVULj4mIiIhI51NZCevWBY/794/QG4dUcsRty4vQm4qISFso8SsiYVOyyVt3LJ0iUilp8/2SkuDJJ+v31yR+Sc8I9LltBW1+PxERERGRjmbDBqiq8tq9exUH58JhZtnBxG9KeT7l5ZF5XxERaT0lfkUkbGoSvwAVSe2z4UROTv2+msmuZQYTvxQo8SsiIiIinc+aNcH2wP7FEXtfC1lHOIt8bfAmIhIDlPgVkbAp2xxM/JanZDQxsvka2rciJcV7jc8JLvUQX6SlHkREpGsys2wze9bMvjez78xsDzPrbmZvmdli/zUnZPwVZrbEzBaZ2UEh/RPN7Bv/3B1mZtH5RCISas0aOJEn+IIp3LPuJHj00ci8cffgmr59Wc82TbdFRDo8JX5FJGwqtgarbqtSw1/xm5ATTC7HFaviV0REuqzbgTecczsD44HvgMuBd5xzI4F3/GPMbBRwIjAamAHcbWbx/n3uAc4FRvpfMyL5IUSkYatWwU4sYgpfMmXj2/DDD5F54+HDA80RLFXFr4hIDFDiV0TCpnJrsOLXdWufxG9DFb8NJX5TyrdRWdkubykiIhIzzCwT2Bd4EMA5V+6cywOOAGb6w2YCR/rtI4AnnXNlzrnlwBJgipn1AzKdc5855xzwaMg1IhJFixd7FbcBfftG5o1PPJHrRv6L3fmcu7hAiV8RkRigxK+IhE1VfkjiNz38iV877lj+L+UuTuBJXuEwLfMrIiJd0XBgE/Cwmc0xswfMLA3o45xbB+C/9vbHDwBWh1y/xu8b4Lfr9otIlC1eDP1YF+zo1y8ybzx5Ml+OPJZZ7E4+2Ur8iojEgIRoByAindP69bBsXjDzGpee1i73TUyEtDQoKgr2BXYy3mcfnu+5O6vXJAGQn9/w0hAiIiKdWAKwG/Br59wXZnY7/rIOjWho3V7XRH/9G5idi7ckBIMHD25ZtCLSYosXV0cn8QtkZQXb+VvLgaSIvbeIiLRco4lfM3u5Gddvcc6d2X7hiEhnkJcHO+0EV2zbGOzs1avd7p+TUzvxW7O5G0BmZvB30ry8dntLERGRdhXGufYaYI1z7gv/+Fm8xO8GM+vnnFvnL+OwMWT8oJDrBwJr/f6BDfTX45y7D7gPYNKkSQ0mh0WkfZSWwqpVFp2lHqhdVLF1ixK/IiIdXVMVv7sAZzdx3oC72jccEekM7r8ftm2D/qG/H7ZjJUJOjrebcY1AxS/Qt69jwUKvvW4dTJjQbm8rIiLSnsIy13bOrTez1Wa2k3NuEXAAsND/OgO4wX99yb/kZeA/ZnYL0B9vE7dZzrkqMysws6nAF8DpwJ0tjUdE2tf3C8twLql24jeCFb89ehjg6MFm8teWAe2znJuIiIRHU4nfPzjnPmjqYjO7pp3jEZFOoKbSNvQRtITB/dvt/nXX+U1NDbYHDggWGoUmh0VERDqYcM61fw08bmZJwDLg53h7ezxtZmcBq4DjAJxzC8zsabzEcCVwgXOuyr/P+cAjQCrwuv8lIlH0xaebGEkxSVR4HdmZtSfDYXbkB1dyEU+QTT73z30AOCti7y0iIi3X6OZuzrmnt3dxc8Y0xMyyzexZM/vezL4zsz3MrLuZvWVmi/3XnJDxV5jZEjNbZGYHhfRPNLNv/HN3mFlDa5GJSITFx3uvM3iDvqxjN74ibu892+3+ffrUPg48crZkCX95ex++ZyfeYX9Wr653qYiISIcQzrm2c26uc26Sc26cc+5I59xW59xm59wBzrmR/uuWkPHXO+dGOOd2cs69HtI/2zk3xj93oXNOyziIRNkXXzgO4n/Bjn32iOj7J2Znko23q9vY71+I6HuLiEjLNZr4bYq/gUNb3A684ZzbGRgPfIe39tg7zrmRwDv+MWY2CjgRGA3MAO42Mz+txD14G0mM9L9mtDEuEWkHxcXeazXxbKAvc9iN9AFZTV/UAnX3jQlUAGdlMXDdV+zED0zmS3I36fdTERGJPe0w1xaRzshV8fmsNKbyebDvgAMiGkLeYWcE2pPXvgHffx/R9xcRkZZpVeKXhnf5bd6FZpnAvsCDAM65cudcHnAEMNMfNhM40m8fATzpnCtzzi0HlgBT/E0pMp1zn/nVB4+GXCMiUfT22/X7stov78ugQbWPA4nfnj0p7+a9UQaF2Ib1iIiIxCA9xSYi9eRtWsl3P3RnIl8FO/eYFtEYUieO4kP2ASCeKnjuuYi+v4iItEyrEr/OuX+14T2HA5uAh81sjpk9YGZpQB/n3Dr//uuA3v74AUDoA9tr/L4Bfrtuv4hEUUUFzJtXv789lx4bMaL2cSDxa0Zx/5GB/rS1C9vvTUVERCKkjXNtEemkvvyiBIAJzOXMES/BX46I+E7GPXrAi6H1Vj/+GNH3FxGRlmlqczcAzOzPDfU7565tw3vuBvzaOfeFmd2Ov6xDYyE09PZN9Ne/gfe43LkAg+s+Iy4i7WrzZu81m60MZhVr6c9memDW2gcM6tt119rHoZu9lQ/dEZbMBiBn4wK8zcxFREQ6pjDMtUWkk/piljefLiOFbvv0gwsOg6SkiMbQsyesJbhps9vwox5REBHpwJqTiSkK+aoCDgaGtuE91wBrnHNf+MfP4iWCN/jLN+C/bgwZH/pg90Bgrd8/sIH+epxz9/kbXEzq1atXG0IXke3ZtMl7PZC3mccENtGbZ7yNw9vNgAGw++5ee/fdISUleM7tEKz47ZW/vF3fV0REJAzae64tIp3U51+mB9pTJ66BuIyIx9CtG2xNDP5OXf3juojHICIizbfdil/n3M2hx2Z2E/Bya9/QObfezFab2U7OuUV45XgL/a8zgBv815f8S14G/mNmtwD98TZxm+WcqzKzAjObCnwBnA7c2dq4RKR91CR++4f8HWYDfdr1Pczgv/+F99+HAw+sfS5hl2Did0Dx0nZ9XxERkfbW3nNtEemcnIMvZvcIHO8+cQ3E7RCVWMq794UNXrv6x/XENz1cRESiaLuJ3wZ0w1unty1+DTxuZknAMuDneNXHT5vZWcAq8EoEnXMLzOxpvMRwJXCBc67Kv8/5wCNAKvC6/yUiUVST+B3J4kBf6ONg7aVHDzjmmPr9KWODid8hZUr8iohIzGmPubaIdDIr5uXz8OZTmMOuLEwbz8jhWyAuMyqxuCHDqd5gxOFIWPsjlJVBcnJUYhERkaY1Z43fbwiunRsP9ALatOaYc24uMKmBUw0uxumcux64voH+2cCYtsQiIu1r08YqIJ4ZvBHo+4LdI/b+3XbdiSriiKeaUW4hFd98Q+LYsRF7fxERkZYIx1xbRDqfDf98kkP5L4fyX5bazsTFnQBJI7d/YRj0GZrKqlmDGcpKrLoali2DXXaJSiwiItK05lT8HhrSrgQ2OOcqwxSPiMS4TRu20ZdSdsCrti0hhcQDpkXs/S07izcSD+WQCu8p2arr/0Lik09F7P1FRERaSHNtEdmu9HdeCrQ37TiKEfE5kNA7KrEMHgzfsQvVxOF2GMSISv0nS0Sko2rOGr8rIxGIiHQOm9ZvZE++DRzPSZjMvQ9Fdrfh//S4kEPWv8xmupM+bz5UVUG8Vh8TEZGOR3NtEWmO9PXBJczckWMhcUjUYhk0CA7hvzji+OW+K7h37NCoxSIiIk2La81FZvZqewciIp3Dpo3VnM6jgePdfz2CwYMjG8PCvvuTTgE92cy39z+spK+IiMQUzbVFJFRZUSX9S5cHjnc8JA4SBkYtnsGDwfmphFWrGyjwcK5+n4iIREWrEr/AOe0ahYh0DtVFTF/wH44I2Yw8/pADIx5GdnY8RaQDkLelvMExeiJNREQ6MM21RSRgyXurSaICgI1xfegxfBCk7Bq1eEKLOlasSq0/oHwBVBdGLiAREWlUqxK/zrl17R2IiHQCpRs4bvX9gcMNh06HaftHPIyMjGC7oKC63vmLLvLG3HhjBIMSERFpJs21RSTUmvcWB9q52YMg80Sw6D3RNjJkT7nFSzMpLdpae0DJLChfjoiIRN92E79mNtLMnjWzhWa2rOYrEsGJSIx57VV6V2wAYD192PK7IyAuM+JhpKcH20VFVbXObd0Kd9wBpaVw+eURDkxERKQOzbVFZHvy5waTqOUDB0NcA1W2EZSRAWOHFXIiT3B+5V2sv+xPwZPOQeU6qPwxegGKiEjAdjd3Ax4GrgJuBfYDfg5YOIMSkRh1wDh+mv0hw/IWspUcbuu5DqxbxMNIT4c0ChnDt/R/9w3oXwKHepumF9Z56qyoCNLSIh6iiIhIDc21RaRJRcs2BNrdRvSNYiRB0yYWcufykwHYdn82z+59GYndBjNkYBE793akJKyPcoQiIgLNW+oh1Tn3DmDOuZXOuauByD+7LSIdX1I5H5dN5T5+yTMcT1aPIWCR/901LQ1m8Aafswf7PXUT3H134FxRUe2xGzYgIiISTZpri0iT4nKDE9acXYZEMZKgaUf3CLTTK/I54eQBHHkk7Dopnf7jfsezL2RHLTYREQlqTuK31MzigMVmdqGZHQX0DnNcIhIjKivhmGNg9Gj47LNkSkoSAYiPr6Zbzg5RiSk9Hb5n52DH998Fmh9+WHvsxo0RCkpERKRhmmuLSKPKyiCtMDTxO7iJ0ZFzxLGJ5MXlABCHoztbAEingGvyLmPR2bP5fv7Wpm4hIiIR0JzE7/8B3YDfABOBU4EzwhiTiMSQd9+F55+HhQthz59MC/RnZpRhidGpSEhLgyXsQJX/nzi3fCWXX1RCYSH88pe1x6riV0REouz/0FxbRBqxfDlcx584lmf4c/ebSdhzSrRDAiAxEdKG9gocn7Tv58w4qJK7ki/m1/yTP1Rfz8e/eTqKEYqICDRjjV/n3Jd+sxBvzTERkYAFC7zXnfieeKpYygjKSCEzowLiI7+xG3gVv2WksIaBDGEVhuOZO9by5kcj6o1V4ldERKJJc20RacrSpTCf8cxnPFvHboXhOdEOKSCxXy9Y9gMAd/z2Odg1E4Y8GDg/4tNnqa7+JXHNKTcTEZGwaPQ/wWZ29fYubs4YEencsrK81z9xHQsYQzHdOIn/kJUT+U3datRs1raBPoG+3mxkzpz6Y7XUg4iIRIPm2iLSHEuXBtsjRrjoBdKQgQOD7cfnwP9eqHV6h4rvWfBtB4tZRKSLaari92wz29bEeQNOBK5u14hEJKYUF3uvO+L9tT8OxxoGkpm53QcKwiY93XvdGLJEYm8azvCq4ldERKJEc20R2a41a4LtIUPioxdIQ444Ap56yms/Mx+enV/r9CDW8OW7qxk7rmOsSywi0hU19dDF/UBGE1/p/hgR6cJqEr+DWRXoW8bwQCVwNLQk8auKXxERiRLNtUVku9atC7b79U+JXiANOfZYGNQzeBxS3Psop9GdzXz2o5K+IiLR1GhJnnPumkgGIiKxqbgY4qiiJ7mBvg30iWrit2aph00EN5zoxaYGxxYURCIiERGR2jTXFpHmKF6VyyZ2Zis55Nw1FM5+K9ohBSUmwn9vhHFn1Tt1P+ewle7Mm1tN8/aUFxGRcNB/gUWkTYqLvaRqPNUA5NKDShLJjM6+bkDLKn4LCyMRkYiIiIhIy5Ws3UpPNjOSJWTkLot2OPWNGAEHjoRuibW61+Ct/7tgYVU0ohIREZ8SvyLSJsXF0Jf1geP19AWge/doRRSs+FXiV0RERERiWcXGrYF2XPecKEbSCEuD2w6HH34PPYKbO68373eCtWsTKSuLVnAiIrLd3ZfMrLtzbkskghGR2FNcTK1lHnLx1vnKieK8tKbidwVDmcVkNtKbr9mtwbFK/IqISDRpri0ijSkrA9uWFzhO6JkdtVgaFZcGvf3J94JL4IdN8H0ava8pZ+uPFQzgR1Yt35GRO3ewjelERLqI7SZ+gS/MbC7wMPC6c85tZ7yIdCHFxZBDsBJhC16pb0oU956oqfj9mH3YnVlNji0sdHgbp4uIiESF5toi0qD162vPs60jVvzGpYe0DXbuDXv+mk9+sysDWQ7Ah1+tYOTOQ6IUoIhI19acxO+OwIHAL4A7zewp4BHn3A9hjUxEYoK31ENwQroVb0JaXR2tiIKJ3/ocr3AYPzKAKuJZzEhKt2YC9TekEBERiRDNtUWkQevWQTZ5wY7s7GiF0riEfhCXDNX+eg6WCHHdqUzNgFKva+v8ZXCKEr8iItGw3cSvX3XwFvCWme0H/Bv4lZnNAy53zn0W5hhFpAOrW/Fbk/jNyopWRN4Gww3pxSYO5b+1+maVTsa5szAV/YqISBRori0ijVm3rvY8O6prqTXGEiD9CCj5GCrWQnwPMKOg346wdb435OvZwH7RjVNEpIva7uZuZtbDzC4ys9nAJcCvgZ7A74D/hDk+Eengiouhmjhy6UGVxbOF7vTtC8cfH924/vWv2sf9WMsf+Uu9cROYy5Z12nFCRESiQ3NtEWlM3aUeOmTFL0DyKEga47XjMgEoGrd34PSI+a9EIyoREaEZiV/gMyATONI5d4hz7nnnXKVzbjZwb3jDE5GOrrgYbuJSepHLvA+/5OjPLmPRIkhNjW5c55wDRx7ptffkE9YygN9wZ71xSVSw9IX5kQ1OREQkSHNtEWlQvaUeOmLFb42kHbzXeC/xW37IUVTibeg2euNH8N130YpMRKRLa07i94/Oueucc2tqOszsOADn3I1hi0xEYkJxcbCdlpnKpKkJZGZGL54aZvDCC3DHHdBjeg8qE5IaHVv0oZ6iFRGRqNFcW0QatGFDjFT8AiT0hvjuEOet99Zzt8G8xs+C5z/TfFtEJBqak/i9vIG+K9o7EBGJTaGJ325pKdELpBG//jW8/Pz7xO8zuFZ/eUKwJDluzbJIhyUiIlJDc20RadDGjTFU8QuQtKO32RswYAAsYHTglFu9prGrREQkjBrd3M3MDgZ+BgwwsztCTmUCleEOTERiQ+3Eb3L0AmlKXDr205Hw3pJA19Jdj2GXL/8NQGLuumhFJiIiXZTm2iKyPRs3wlk8SB828NDfVzNu8uRoh9S01CkQlw5AZiZsSuoP5d6psmVr6HglIiIinV9TFb9rgdlAKfBVyNfLwEHhD01EYkFxMRzCq/yEN0lbtAAqKqIdUn0JA+DQUdCzm3e802By9zkmcDp9qxK/IiIScZpri0iTNm6ENQziKyaRdMhB0KNHtENqWnx3MG95NTMo7dkvcKpi2epoRSUi0qU1WvHrnJsHzDOzx51zqjoQkXqqqqCsDB7jNHLIg+nApk3Qs2eUI6sjdQoM3gxvVsEPm+CAC0l4Nfio3OAtC8A5b4YqIiISAZpri8j2bNwYbPfuE3v1stUDhnh/4gLcGiV+RUSioamlHp52zh0PzDEzF3oKcM65cWGPTkQ6tC1bwKgmi/xgZ0fcdCIuDTKOgcFLYGAWZPVnxMGDyKUHPdlMdtUW8l/9iKzD9o12pCIi0kVori0iTSkrg23bvHZ8fDXZOc3ZnqdjSRg6hI1f9mI1g8jsM4IOsP+ziEiX02jiF7jIfz00EoGISOxZvx6yyCcO//fVzExIaOo/K1FkBok7QNm3EJdJ7z7GM9lHcFzeQwC4O+4AJX5FRCRyNNcWkUZt2uQVWKRRRHp3iIvLiHZILZY1sjd98MqWrzpwA1dHNxwRkS6pqaUeaha9zAVKnHPVZrYjsDPweiSCE5GObd06yGFrsKOj7zScvAuUL4Q4r97glREXs/mrRFYxmJP3HEZ2dKMTEZEuRHNtEWnKxo0wkDWsYgiVm+Jh7C7wzTfRDqtFBgwItn/8sTp6gYiIdGHNKc37ENjHzHKAd/A2oTgBOCWcgYlIx/fFF9CdLcGOjp74TdzB2+jNvEflCgaN4fyv7gVgt102MCaasYmISFelubaI1LNxY7DAIoEqqI69xGntxG/sLVUhItIZNOe/vuacKwaOBu50zh0FjApvWCISC95/P8YqfuOSIf2IwGH37sFTW3KLohCQiIiI5toiUt/GjXUKLEInrjFi4MBge82PidELRESkC2tW4tfM9sCrOviv39dBF/EUkUgqKIixxC9AQs9As0ePYPeGDVVRCEZERERzbRGpr17iN3TiGiMGDIB+rOV0ZnListvgoYcaH1y5HlzsVTWLiHR0zUn8XgRcAbzgnFtgZsOB98IblojEguLiGEz8hhg5Mth++72s6AUiIiJdmebaIhJUlQ94id8ebA72x2Dit3dvGB/3LTM5kytLr6Pq4UcaH1z0DlRtjFhsIiJdxXYTv865D51zhzvnbvSPlznnfhP+0ESkoysuju1H0GbMgCN4kRc5gjs//yncfnu0QxIRkS5Gc20RCXDVUOTt7dgZlnqIi4PyPoMCx9Urljc80JVDxXKoWBWhyEREuo7tPkbm7y58CTA0dLxzbv/whSUisaCkJLYrfgcMgKFxqzmi+mWogso539T7j2JZGbz6Kuy0E4zR7m8iItLONNcWkYCKZVCxBvASv6NjvOIXwAYPgnVeO379Bm+Turg69Welc8BVQtEbkDwG4rpFPlARkU6qOeuHPQPcCzwAaBFMEQkoLoa19GcWk5k4dD3x/ftHO6QWiYuDTT12hk3eceWc+fX+o/i3v8E110BiIqxYATH2EUVEpOPTXFtEPBWroLoQqovZuLFbzK/xC9B9cDpbvsihO1uJq6zwMtp9+wYHuCoo9le3cdWw7T+QcSzEZYI1Z2VKERFpSnMSv5XOuXvCHomIxJziYrid/+N2/o+ybxYTnz5y+xd1MFsHjw8kfhN/WADOgVng/DXXeK8VFXDPPXDddVEIUkREOjPNtUXEU+2t70vlBjZuHFZ7jd8YXOoBYOBAWMkQutc8Jbjka+j7M69dsRpKPoPq0uAFFWug+AOoLoLME5X8FRFpo+b8V/QVM/uVmfUzs+41X2GPTEQ6tIoKqKz02vHx1SQmJUc3oFaq7tmbfDIBiC8thtzcRsc6F6moRESkC9FcW0Q8/sZurjK3/hq/MVrxO2AALGVEsOOHjwJNVzqP559zXHr1T3jlfzsG59qlc6D8ByhbENlgRUQ6oeZU/J7hv14a0ueA4e0fjoh0ZEVF3rq+PXt61b41uqVWYnEp0QusDdLTYRWDGcu3XsfKldCrV4NjM1JWAYMjF5yIiHQFmmuLiKc6D4DNmwopK6uzl0YMV/zWSvx+8zmULYKk4fz+yh7845+HAnDv3eN4eZ//Y7/T8uFIf2ONgue89X6TRjRwZxERaY7tJn6dc8MiEYiIdGyrVnmbm5WVOf73WiE7jcoInOvWrQIsNhO/GRne42eBxO+qVTBpEgCFhbXHxrt1KPErIiLtSXNtEQG89W3vegM+W8nWA5KB/RjPPPbY8Qc+eWkbDNsp2hG2yoAB8CyTgh2vfQvXLeXzL5L4xz/34EDeYgJzWcoIJnz0PHyUBw99CS+cAfFx3nIQSvyKiLTadpd6MLNuZvZHM7vPPx5pZoeGPzQR6UguvBAKCqC83Dj2hFRKSgAcv+cGflFxHzz/WkyuhZCe7iV+A1YsCTTz82uPLSosg/KlEYpMRES6As21RQSAT96GP/8PXv+e4VdcRTZbccSRNSgedhwDybG5rNrAgfBfDqEUP/4fcmHFh1xzXSLg+CN/4R9cxvMcQw553pjPV0G/6+DtxVC1Llqhi4h0Cs1Z4/dhoBzY0z9eA/wlbBGJSIc0Z06wvXlzAsXFkEYRN3AFf936Wzj957U2RYsVNRW/ASuCa4l5ye2gq/++L+X5n0HVZkRERNqJ5toiAv9+LNCMr6hgAnMBGDwwP2afrAPo3x9K6Mangf/EwZZXVvPdO5WsZAjT+LDxi894EhbMj0CUIiKdV3MSvyOcc38HKgCccyVA7GV3RKRNSktrHxcXU3un4RjdcKJmjd8aVUuXMGeOV7wcuo4xQBJlHH3KFNj2LFRtCWzAISIi0gaaa4sIvPRGrcPReMUIgwcWgTXn1/aOKSnJ2z7jKU7gX5zL5htO5d+5R3GL+y2DWR0Y936vQ3iFOg87VFTDEXdCdVmEoxYR6Tya8/8g5WaWirfJBGY2AtB/eUW6mIYSvz3JDXb07BnZgNpJRgYsC9k/Z9m7W9ltN/jVr6C4yFu6IplSPmYv8shm+FtvsHljHuQ9AEVvRilqERHpRDTXFunqiopgfW6trh35gQnMYeduK73zMWzoULiPX3Ie/+Lr4T/hiRfHcgj/rT3od/tyOK9wHX+s3b+pCG65PmKxioh0Ns1J/F4NvAEMMrPHgXeA34czKBHpeMrq/ApaXFTVKSp+x42D79iFs3iAabzPtNK3Abj3XigpWAPAcTzDXnxKKqXcwUWsmhsP1cVQ/j0UfxrN8EVEJPZdjebaIl1awbcrax0P6b6BVziMOezG0X84Aw6N7WW/d9012P7Xo5OYtOxNkikPdt57NPv8IoUhg/L4M9eRQgkFPfsGzz/878gFKyLSyWw38eucexM4GjgTeAKY5Jx7L8xxiUgHV1xU3CkSv9OmQSEZPMRZfMg01tE/cG7b5lUAvMbPKCQt0L/riZfCtlJwVVDyQUxuaiciIh2D5toi8urdqwLtd9mPVVt6M5hgHwMHRiGq9jNxYrD93Kuj+BmvBTtu+BkcPZb4jL345ZmLASgjhZ/3fwZG94HLpsO1sZ34FhGJpu0mfs3sHefcZufcf51zrzrncs3snUgEJyIdR0JC7eOSwvxOkfgF7/Gzhhx58l4AbKEHj3Fa7ZM73AivLISqUm32JiIiraa5togs/yBY8Vuz98QwlgcHDBsW6ZDa1W67Bds381sOJmQ945+M9F4TR/CLc/uSmFgFwHPz92b+P6+CS6bBtB5a51dEpJUaTfyaWYqZdQd6mlmOmXX3v4ZCSEmciHQJ8fG1jwu3bqyd+I3RNX6h8Zz1GL7hbO6nB7ncy3n1B5z1DPzzU6jaEN4ARUSk09FcW0QASkqgYNUWqvxfzVcyBIChrAgOaqxKIUaMGweZmV47j+xAv9u5NwzKhoReEJ9Nn4GDOPrI4MYif7tjb3+gg8p1kQtYRKQTaari95fAV8DO/mvN10vAXeEPTUQ6ktRUyCSf/3AS8xnLsX86tPbmbjFc8Rsaei82cgJPshPf8zF7cz/ncgDvMJ/x/IIHa184IBMO2hEqlfgVEZEW01xbRFi8GG5wV5BMGUNYwaPdziKNQk7l8eCgGE/8JiXBqad67b9yJdfxR9btMg672V/CIXWfwNiLfxdcXu3JF8by9fx+3kHlmkiFKyLSqTSa+HXO3e6cGwZc4pwb7pwb5n+Nd879M4IxikgHUF7uKCSdI3mRsXxLr5J17MgPwQExnPjNyfFeH+ZMNtKHJzmJr9mNLLbxIfuwnr7++V9wEbcFrqtM7wbDe0Dl2ihELSIisUxzbREBWLTIe60igTEHlvPOy8vJS6gzr47xpR4Arr8eZsxwZOVUUHjhQfR9/yjYc09I2hGSxwbG7b47HHlk8LpfXHQExcWJsOULFVuIiLRCwvYGOOfuNLM9gaGh451zj4YxLhHpYH5XcDW7MZtUgo9fTeOD4IAYTvym+YUFNWuqAXSjBIB9+Yhd+I6NI0fx/eJe3MFFvMJh7MJ3/PbKtRyQ8KNXgeAqwbb7n1QREZFaNNcW6dpqEr8AO+0EQ6eNg/Q4yAsZFOObuwFkZ8PrrxtsewXKFnqdKVMgZWy9sX/7G7z+OpSVwc8X/I21o95kRNkP2A87wvDDIhu4iEiMa87mbo8BNwF7A5P9r0lhjktEOpCHH4Y9qj/hkNAdePHWIPsPJ7Fh2EQYPLiRqzu+9HTv9RmOq3euiG48zimcceK3gb7lDOc1DmHFlt5eR3UpVCyLRKgiItLJaK4t0rWFJn533DEOEnLgkDHBzt49IDEx8oGFS/JoiEuFuBRIHtXgkJ13hltv9dq78TU7FH+PVVXz6S0LIhioiEjn0JzytEnAKOecC3cwItLxfPwx/OIXsDh0gwnfu+zPr7iHp6/fwnFjukc+uHZSU/H7LWNZR1/6sT5w7m0OpJAMMrIy6l139sWHc/MVu3Dz4Q9x8OTb4RItySgiIi2mubZIF7b+h23M4BNWMoSdB/r/Gbj8VHjlG9hWBjf/NboBtrekUZC8Bqq3gcU3Ouz88yE/Hz64Yhr78DEAc+9axdLd4bTTIhWsiEjs227FL/At+AtcikiXs88+YFQzmFX1z/ERAFnZSZEOq12lBfeQYDzzKCA9cPwK3uNke+6VxlNP1b6uP2tZWLoTBz99I1V/eggqKyMRroiIdC6aa4t0Ydmr5vM6P2Mho5l6lb8D2rBR8PX/wVcXwylnRzW+dmcGKRMgaeR2h15+ORx+88TA8a+4h1+e6/jxxzDGJyLSyTQn8dsTWGhm/zOzl2u+wh2YiHQc/VhHEhUAlJBCMakAjGEBo/mW7O7J0QyvzdKDeV420ZsjeZEvmcSzHMNXOx7EtVd8xq5ThnP88XDnncGxaxnAarw11+JLS+Hb+RGOXEREOgHNtUW6KOeg26aVgeOEEUO9RnxPyEyBYcPBmvMre4xJ6OMlf5th3HkH4OKD34NLS6/l2mvDFJeISCfUnKUerg53ECLSMZWXe69DQ5Z5WMBoljKCE3gagBN4iuyc66IQXfsJrfgFeJcDmMKXAFTPehZLHg5xXnJ7yJDaYz9nKoN4FoCv7niB0rN2IzERJk/2ChpERES24+poByAi0bFlCwyv+iFwnLCjXwWbOMybSMZlRSmyDqRbJja8FyzeAMBhvML0x6/i5ptrF2+IiEjDtvvnQ+fcBw19RSI4EYmuggLvdQjBSoQVDOVJTgwc/4m/kFO4OtKhtau6id8a117xGZZ5DKTsFug78MDaYz5naqD9zcOr2Xtv2H13uOeecEQqIiKdjebaIl3Xjz/Cznwf7NhlF+81PhuSdlbit8bVZwaa45lHWVEFL7wQvXBERGJJo4lfMysws20NfBWY2bZIBiki0bHN/196aMXvCobyOgfXGpe1MraXOMiov28bf/3D21x5RVW9st3UVLjyyuDxZ+wRaE/nfcDblOOCC8IQqIiIdBqaa4vI2rW1CyzYYYdgO2kHiM+JfFAd0bHnQj9vwp5IJYNZxauvRjkmEZEY0Wji1zmX4ZzLbOArwzmXGckgRSQ6Gkr8rmQIZaRwJdcD8DW7knTIT6IQXfvp06d+369+MYf41B0bHH/55cH2l0wObAY3lJUMZ1k4QhQRkU5Gc20RWbsW+rI+2NGvX7CdOAISh0c+qI4ocTAM7h44HMZy3noLqqqiGJOISIzohCvFi0h7qUn81l3qAeBvXElf1jGZLyEpKQrRtZ+GEr/pvfeBhN4Njs/I8B7NS0iAShJ5n+mBcxdza5iiFBEREZHOZP06Vzvx27dvsB2fDYkDIh5Th2QJMMRLipeSTDJlbN0KX38d5bhERGKAEr8i0qiaxG9oFetKgrubbaAv1cRHOqx217tOfjctDeLTpzY82Ne/P7zyitd+m+DCvxdyF73YCKgKQUREREQaV7AmnxTKAChPStNuZU2ZMQ1+sxcX/+x1XuMQAD7/PMoxiYjEACV+RaRR+fne63E8w50Tb4DLTqOo7w61xlxwfkEUImtfKSm1jysrm3fdjBlQUgLbpuxbq/9A3gYgL68dghMRERGRTqnqx2C1b2lWryhGEgNOvwKuOYNd9ioNdCnxKyKyfQnRDkBEOq6ait95TOCbUVVwzQzu2q8b99wDhxxcxqDs5zjwyEOjG2QYlJU1f2xKCjz82S5U90knLreQTfSkhFTAS/z26BGeGEVEREQktrkNGwPtyh5K/DYpPgsShzF14vJA1xdfVEEnePpQRCSclPgVkUZtC9lTPDO9DOJ6MGOGV+kKyZBXDskZ0Qqv44hLIW7pQ1C2gJ/u/0vmfuutQfbkk/CHP0Q5NhERERHpkLbkx/Elk+jDBtIGDI52OB1ffE/Gj/6MpKRKcspzWbq0L7m50LNntAMTEem4tNSDiDSqVuI3o8z7S3uo9EPALLJBRUBGa3LZSd6uy9lZwcfP/vhHWLOmnYISERERkU7lndK9mcKXDGEVefc+E+1wOr74HJKTqzh3yDMsYziH8CqzPi/d/nUiIl2YEr8i0igv8esAP/Ebl1l7QELneSTtgguC7d//vhU3SBgIQFZG7XUiZs5sQ1AiIiIi0mnl5gbbvXp3vmKKdhfXHeb8yE3Lz6IbJfyDS5n92apoRyUi0qEp8Ssijdq2DW7j/8ilB2fcdR4890K0QwqbP/wBDj8cTjsNLrmkFTeI7w0JPWtV/AKsW9c+8YmIiIhI51FSAkVFXjsxsap1T5x1NfEZMGQ85i9YuQvfU/m/j6FqW9PXiYh0YUr8ikijioqgH+vowRZy1q+E8vJohxQ2/frBSy/Bo49CcnIrbmAGHMbRS+7jFQ7lY/YC4M03obq6XUMVERFpkpnFm9kcM3vVP+5uZm+Z2WL/NSdk7BVmtsTMFpnZQSH9E83sG//cHWadcG0nkSgKrfbt2aO8M66eFh5Dp1M0Y2LgsNv3K3Clc6IYkIhIx6bEr4g0qrQU+rI+2NG3b/SCiQUpvfnZnPs5lP+yF5/Sg1wWL4aHHop2YCIi0sVcBHwXcnw58I5zbiTwjn+MmY0CTgRGAzOAu80s3r/mHuBcYKT/NSMyoYt0Dbm5cAaPcBYPcGzSK1BQEO2QYkPCALL2Cvztip2L5rN2+aIoBiQi0rEp8SsijSothT5sCHb06RO9YGJBairr++4cOLyYWwE455xoBSQiIl2NmQ0EDgEeCOk+AqhZdX4mcGRI/5POuTLn3HJgCTDFzPoBmc65z5xzDng05BoRaQebNsGfuZYHOIc7Vp2g9cGaKz6HuF2HBQ6P5CWWPrVOyz2IiDRCiV8RaZQqfluuatpugfbl3MBovo1iNCIi0gXdBlwGhC401Mc5tw7Af+3t9w8AVoeMW+P3DfDbdfsbZGbnmtlsM5u9adOmNn8Aka4gNxd6szHY0bt344Oltkl7sTmjf+Bwx3sfg4JXohiQiEjHpcSviDTKFZeQhffX8+r4BMjJ2c4VMuS2s1me4VX9xlPNH7g+yhGJiEhXYWaHAhudc18195IG+lwT/Q1yzt3nnJvknJvUq1evZr61SNeW92MR6Xi7u1XEJUFWVpQjiiGZR/L1r35Htf+fqr65S+H1N6C6JMqBiYh0PFFL/GrTCZGOL70ouMxDZY9eEKe/FW1Xrz0Z8FRwGcSf8RrgqKps9PdlERGR9rIXcLiZrQCeBPY3s38DG/zlG/Bfa8oM1wCDQq4fCKz1+wc20C8i7aR0ZXCeXZzeG+3u1gKWxLDTDuZezgt0uX99CuXfRzEoEZGOKZpZHG06IdLBpRcHJ6TVPbW+b7NYPEl7TqUqoxsAWWxjMKsoyV8c5cBERKSzc85d4Zwb6Jwbijd/ftc5dyrwMnCGP+wM4CW//TJwopklm9kwvPn0LH85iAIzm+oXVpweco2ItIPKtcFlHsqyVCnfUiN2GcHd6f8XqPrlw+Ww5KPoBiUi0gFFJfGrTSdEYkNWSXB93+o+/aIYSYxJHEj8uOA6bdfyZ0q2rWniAhERkbC6AfiJmS0GfuIf45xbADwNLATeAC5wzlX515yPN1dfAiwFXo900CKdmdsQ+mSd9tFoKYtLYsDkZJ7lWN5hf76ZfgSUrgRXEe3QREQ6lIQove9teJtOZIT01dp0wsxCN534PGRczeYSFbRg0wkRabns0uCE1Poq8dtsiYPhgB3gkxUAnMGjrP+wFwzeFeK1TrKIiISfc+594H2/vRk4oJFx10P9Bemdc7OBMeGLUKRrS8gNzrPpoyfrWuMnBxRywntPA3B85rc8NeRZKF8EyfpPl4hIjYhX/EZj0wntNCzSOt3LgxW/1k8T0mZLGAhnn8PKhKEA3iNo366BsvnRjUtEREREOoTEvOBSDwn9Nc9ujZ8eMjLQ/t97O1BSkgBli/6/vfsOc6J62zj+nW303nvviggo2LBgQQUBe3nF3vvPjr13xV6wdxARxIaIKEiv0lF6bwsssH2T5/1jssmGLQHczWy5P9c1FzNnTiZPhkly9smZczyMSESk+PFiqIeoTzqhmYZFDs7z/rtoxXKO4S+cq670OpySw3Gg8QDuav4h8zmUY/mLTaefQPKOJZEfKyIiIiKlXsU9ocRvuSZ1C6gp+Tn0sARaNM8AIGl3eb77qQNkLAF/iseRiYgUH1FP/GrSCZGSISsLdmdVZCWtmMIxJHRo7XVIJYuTwPqah9OFeUzlaE4ceDlVm13LIw8lex2ZiIiIiHjIDCqlbQ9uV2ymzkkHw3Hgqqvig9tPvHAsqTM3Q+Zq74ISESlmPJncLR+adEKkGNm1K7RevXoGTl6Dq0iBKlaMxQIfs0m7y+P3x/DykHLkmMuDrCxYs8ajAEVEREQk6nbtgil2FN9wLpNiexHftoXXIZVYV1/jULVKBm9xA3+s7Ey5M97ih/fXsHOn15GJiBQPniZ+zewPM+sbWE80s95m1ibw744c9Z4ys1Zm1s7Mfs5RPsvMDgnsu9nM8hzjV0QOXM7GUs0avvwrSr4qVCyfq2zv3jjq14c334TMTDjiCGjeHB5/PPrxiYiIiEj0bd8Ob3AL5/MNlzf9GY491uuQSqx69eDF51PoxCLqsZUYjFE3b6BmTWjf3s9HH3kdoYiIt4pTj18RKUZ27ICWrKASe6lZw+91OCVShYqhW8/asZQHeJJHeQSAm2+GUaNg3jx3/yOPRD8+EREREYm+nPON166ldvZ/dc11VeCMDsHtgXwHwLJlMVx5JXzwgVeRiYh4T4lfEclT0sZkVtCavVRh/IIm7mBkckAqV3b/7cgiltKBJ3mIO3iFBNIBmDHDw+BERERExBNhid/aamP/Z04svZ5uF9w8xfmNGrGh2xfvuQdSNN+biJRRSvyKSJ6SV4dapJlxFdAgvweuWjX338V0ZAUtAajKHk5hHABDh4bXT0+PZnQiIiIi4oWcid86ddTGLhQd+kGnegAkWAbrX7mR5k2TAPdOxi++8DI4ERHvKPErInlKXBZqkaZVru1hJCVXduIXHEZwbrD8XEYAkJQUXn/7dkRERESklEtZuZl3uI4neYDTt3zudTilQ3xzOLNTcLPihIXcevXU4LYSvyJSVinxKyJ52v3v1uC6v3Y9DyMpuUKJX8ISv/0ZTTwZuepv2hSNqERERETES/5Va7iO93iApzl+0dDID5DInHjo1zu0/d1CLu0wNrg5eXLuThciImWBEr8ikqeMDaEev7ENlfg9GFWrhtZn0Z01NAWgBrs4kQm56k+aFK3IRERERMQzOX7tz6qpdnah6dobmlYPbtY+bwjPN3wCgKwsGD/eo7hERDykxK+I5CluZyjxm9CwjoeRlFw7duTccviWc4Jb2cM95LRkSdHHJCIiIiLeStiyLrjua9TEw0hKmXKt4cIuYUVX73kruK5OFiJSFinxKyJ5Kr8nNNRDuSZ1PYyk5OrZM3w753APAxhFLFlh+3X7mYiIiEjpV2lHKPEb20yJ30ITWwvu6AfXBxrh7eqw7KYrAANg6tT8HyoiUlop8Ssiufh8UDk11OO3QjP1+D0Yxx0H114b2p5GTzbQEIA6bKcXE+nfZ2lwvxK/IiIiIqVf9b2hxG+5Vo09jKQUqtwJHj8NNj0EE2+g9WXVAYcE0pkzx0hL8zpAEZHoUuJXRHLZtg3qEurxG1dfid+D4Tjw7ruQkQGrVsGSRSn8Ub1PcH9PptGqeWg8iN27vYhSRERERKLFDGqnrg9uV+6gHr+FKqGN+29sDDgOtSvv5qlaT7KGZlTNTGTOHG/DExGJNiV+RSSX5cuhMaEGKQ0behdMKRAfD82bQ7uOlTn+Ofdc7qUSL3IXndqHelarx6+IiIhI6ZacDI0s1OO3fBslfgtVfAuIzTHD8rXfMjjxIeqzhTP4ScM9iEiZo8SviOTy778QRxZ+HLegaVNvAypF6p1zHJPjjyOJanTrtoXTq07gPp6hNttISjKvwxMRERGRIrRts49GbAhuO0001EOhchw3+ZutW6Pg6ll8z9TJezwISkTEO0r8ikguGzdCJxZTnjSevXoW1NFQD4UlvmonGv41gCkPPMTYV9+k/vVv8AyD+YU+7ErMwpT7FRERESm1di3bQnxggt9dsTWgYkWPIyqFyh0KsdXc9VPbBot7M57pU03tbREpU5T4FZFcdgSGnc0kgdiWzd1fzqVwxDWkRSs/5922mapty8N17qzD3ZjDwLSvefppj+MTERERkSKTsiw0zENiBfX2LRIJraHGTVC+C7Srg9WtDEANdlFn83LW/bu04MeLiJQiSvyKSC47QvONUbNWnHeBlEaOA+U6hjYTYoPrl/EJDz4Ie/d6EZiIiIiIFLUNTmNuYwgvcBczW5/ndTill5MQGO+3Ms6xzYPFZ/ATU/9cApbpXWwiIlGkxK+I5JKYGFqvWSveu0BKq3KHhtYHdQuunsAf1GAHGzd6EJOIiIiIFLk1WY14jdu4hxeYcfxdXodTuiW0gSrnwGnHB4tu4XVmTasBmesKeKCISOmhxK+I5FJh0SxOZSztWUKdKn6vwyl94hpCTAV3vUFVtjZzxx6Lw0cffmHLxsQCHiwiIiIiJdW2raEBZuvUVQeLIhVTERJawkU3kVqrFgD12Er9XydCxr8eByciEh1K/IpImHnz4MyVrzGWPiyhIy1nDPc6pNLHiYVqg6Di0QDUPr9hcFdvxrNl/VqvIhMRERGRIrRtW1ZwvU5dDakWFZXbwTldgpt3rn+EvdvmK/krImWCEr8iEua++6ApocRjjc5NPIymFItrAJVOhZiKxBzfMlh8CuO46PJDsbSFHgYnIiIiIkVh61ZfcL1OHQ8DKUucGCpcdFJY0bxPU2DPSPDt9igoEZHoUOJXRML89lt44rdCu6YeRlMGlOsIx11BWkIlAJqyjjN8PzJ+7BaPAxMRERGRwvb4xFP4jd58xOU0qrTL63DKjh4nsqlmKwC+5CJ+X9gR/Kmw+0uPAxMRKVpK/IpImFN7+2jM+lBBE/X4LVKVToeqx7K05xnBoqcZzKgx1cGy8n+ciIiIiJQsWVl0SZ5Cb37ncj6hbrMKXkdUdsQ3Z+Xj19OYdVzCl3w+J9ADOGszZG3yNjYRkSKkxK+IhGlWfgsJZAKQXKEmVKzocUSlnBMLwMJTbw4WdWIxTVfNhtQZYJpcT0RERKQ08K3fRCxu224LdanfrJzHEZUhcQ3oNrAiOyvWBeDflbX4d2VNd1/GSg8DExEpWkr8ikiYionrguuZ9et7GEnZUqltJ8ZyKk9zPz2YxkSnFyT/CulzvQ5NRERERArBrgWh4dQ2xTYmIcHDYMqg8jV7cHIvN8lbgRQmflYJsvyQtT7CI0VESi4lfkUkTNVdoQZpRr3GHkZStvTtX4O7eJHhnM8MerBpW1V3x96fIXONt8GJiIiIyH+2e8Gy4HpixUYeRlJGJXRgwOnu/0EWcZT7dhZc8iVkqK0tIqWXEr8iEqbGnlDDx9dIE7tFS3xCDCNnr+JvugCwZVtld4dluUM+iIiIiEiJlvbviuD6nmpK/EZdTEX6nRVLdWcnb3Az/7f5HZiwAh7/HlKneR2diEiRUOJXRMLU3BtK/FqT5t4FUgY1bhFKtG/dXgmzwEbmckIbIiIiIlIS+daE7qxLq6MJlL1Qu1FXjjpiPdcyNFT45hRY+q3a2yJSKinxKyJh6qSFEr8xzVt6GEnZU6H6oVSpnE4sWRyZOZWFfWfAJ7PAnw6+rV6HJyIiIiL/QeymzcF1f6Pm3gVSlsU35LSBe6jNtlCZ3+CLGZC10bu4RESKiBK/IhLmH2vLdI5kE/WJb93C63DKFieWGjX8XMmH/MVxHDrzZ7j7R5i+VuP8ioiIiJRwVbeE2nOxLZp5GEnZ1v+8DiRSm4v4MlT4/WJIHge+RO8CExEpAkr8ikiY+2OeoSfTacgm4o/r6XU4ZU5qWjnG0I80yoUK+30EK34F3x7vAhMRERGRg7dnD/V3umP8+nGIPbyzxwGVXc1b1eDwzlsZxQAyiXML/90OW5fAjtchZaK3AYqIFCIlfkUkyPw+UlLigtuVKnkYTBl1zTUxbKYBt/B6+I5HhkP6HG+CEhEREZH/ZvYEYvEDsJiO1GlZxeOAyrYB/XaSRgXmcniocPZ699/0BWCZ3gQmIlLIlPgVkaC05ETMHADKlfMRG+txQGXQo4/CM0/u4H2uYTBPhXaMWQQb/vYsLhERERH5D45sQK+Gc7iAr3mCh2jQwOuAyrZ+Z7k9XKZyVKjw+T8gwwdZ2yBjpTeBiYgUMiV+RSQoefeu4HqlSprV1gvx8XDfAzUZ9skcnmEw8zjM3ZHphx9+g9Rp4NvhbZAiIiIickDMt52ZOw5hOBcwnAuU+PVY526NqVbNxxj6hQrnbYTx/7rrmau8CUxEpJAp8SsiQc7QD3mF2zmfYTQuv93rcMq0o46pAcCXXBwssxnrYO8vsPMN8Kd6FZqIiIiIHKCkHbtJS4sHoGJFo3JljwMq42Jj4dhjYxnPyfxNjvGWs4d7yFgK5vcmOBGRQqTEr4gEOd+O5XZeZRgXclTGJK/DKdMaNGkIwGSOCRVOCcwEbX5Im+FBVCIiIiJyMNav9wXXGzYEx/EwGAGgVy/338d5mM2Vm8CTp8Etx7qFvl2QrmHWRKTkU+JXRFw+H+UX/xvc/GH7UQVUlqIWl1AOgNl0I50EAJy1O+G1v9wKaZroTURERKRESEpi+4xtxOAmf5s1U9a3OMhO/I6mP0dVnwfX9oRq5UMVkseBb48nsYmIFBYlfkXEtWgOFf3JAGykARto5HFAApBOeb5jIAD+8gmwYLO7w5cEWRqOQ0RERKTY++l7Tvjf7SRTide4haZNvQ5IALp1g4oVwUccq9fXZM26auEV/CmQrs4WIlKyKfErIq7Zk4OrMzmC995TTwSvPfus++/1vMMFfM3Sn1+AoeeGKqTP8yQuERERETkAC2YDUJ50UqhIs2YexyOAO6ny0UeHtidNC/zHrE+Cz+fA0OmQudqT2ERECosSvyICgC2YH1yfT2fOOcfDYASAe++FcuUgieoM5wL2plcIr5A63R1/TERERESKr4kTg6tzOVyJ32Ike7gHgInTmsHSrdB1CPxvDLw8EdLXgGV5Fp+IyH+lxK+IAJA6+5/g+toq7alZ08NgJKhHj9B6ckp8+M7kFNjzXXQDEhEREZH9ZwZzFwc3/+AEDfVQjIQlfqc2g7Z1oHYltyAxBeaug4wV3gQnIlIIlPgVEQCcJaEGTXrrDh5GIjlVrhxa37q9EmzaDU+NhxPfgR6vwd4V4NvtXYAiIiIikr+tWyElHYAkqrKFeurxW4wceSQkuPMos2x5bbZsrwwntApVeGwcJE/yJjgRkUKgxK+IwNatVNjmThqWQTwx7Tt6HJBky5n4vfDa81i9rjq8PRUWbYEte2HiSshc6Vl8IiIiIlKAVauCqytpieM4NG7sYTwSpkKF8DvsJk5rBjf0hNjAfCdT18DQ78Cf7k2AIiL/kRK/IgITJgRXp9GTGvXKexiM5FSjRvj28yNOh/M7hwrGL4eM5dENSkRERET2z8pQO20VLahf353DQYqPsOEeph8CnZvArceGCl/7CzI3RD8wEZFCoMSviMCSucHVafSkdm0PY5Ew+461vGBJXRhwSKjg+8WwZR74U6Ial4iIiIjshxVLg6sraUnz5t6FInkLT/x2hIonwv96QfVAZ5iNu2Her94EJyLyHynxKyIw4Gg+PvJBnuZ+fuVU6tTxOiDJVqVK+HbTRknQsxnUC4wBsT0Z7hsNabOjH5yIiIiIFGzFsuDqKlrQvr2HsUiejjoKYmPd9fnzYfPOw6BCdTg+x1i/P44keU8aGRmehCgictCU+BURaFeH72tfzAM8zXhOztXLVLyTmhq+nZxaCRJi4YW+ocKRC1n98V8ceih06wYLFkQ3RhERERHJx4KFwdWltKeD5lAudqpUgWNzjOzw/Y+VIaEV9G4dLFv59iaqVi9HnTrw8cfRj1FE5GAp8Ssi4Etib3JCcDPnhGLirYoVw7d37G0O1QbB6R3g3NBYv38/vpiFC2HOHDj7bPD7oxuniIiIiOShUhx74qoCMJ/O6vFbTJ19dmh95EggvjWcFEr8tty+kKP8k9m9G666CmbMiH6MIiIHQ4lfEQH/LpJT4oObSvwWH9dcE749aVIsvtiWkNAGLu0aLO+65Q/AAFi+HG6+GXbtilqYIiIiIpIHG30rbWusow5b2U4dJX6LqQEDQuvjx0Pi3vbQoAkpJx4KwDLaUpetgNvB4u67PQhSROQgKPErUtZlZkLmxrAev5UqeRiPhKlVK/fQDR99hDvpxBFNoJo76UQT1nM4oUn63n4bBg6MYqAiIiIiksua1Vls3laV7dShShVo2dLriCQvTZvCkUe661lZ8OFH8VD5LB6t/hwN2Eh7lvFnjT44jtvRYuJEmDXLw4BFRPaTEr8iZd1HQ6HFYIauOIdBfAKox29x06lT+PY118DV19Uj3WqEjT12Jy+F1fvjD/D5ohCgiIiIiOTm28PkaXWDmzknEZPi57rrQutDhsCMeS14+fvT2EwDAL55/xsuPS/UI+Ptt6McoIjIQVDiV6SsWzwX9qRzZPoUmrAOUI/f4sZxcpd98KHDsB9PJfmsIxhR/3L68T038lauejt3RiFAEREREcnNt4U/pzYPbh59tHehSGQXXQT167vrGzdCjx7g87kpk97HreSk41Zxw+WhwX2/+kptbREp/pT4FSnrli4Jri7BnWZYid/i59VXc5dddm0nKl/+Iedv/oAf6MduquWqs317FIITERERkVxS3/qYuJFzOJLplCONk07yOiIpSIUK8OyzuctjY/289NhYAHp0XEX3TlsASE2FTz+NZoQiIgdOiV+Rsm7ZiuDqUtzZJpT4LX5uvTX/fVbAR/nWrZCcXAQBiYiIiEi+srJg9/2f8FbytUynJ8c0XMUxx3gdlUQyaBDccEN42VsvzeSw6v/Ak7/hHP4Kjxz9XnDf0KFgFuUgRUQOgBK/ImVQVhbceCMc2y0V/2r3F2sfMSynNRUqQFycxwFKnq666sAfc/zx0LAhzJgRua6IiIiIFI7H7kulTtoGwG1nX/10K2L013ex5zjw5pswZgw8+SRMmQLX3tQcXp0Er02Gnan0+ftDKlfMAGDRIpg2zduYRUQKoq8ekTLojTfcyQh2z/mXGNyfqFfSkgzK0a6dx8FJvg49tOD9t50/gTkD/o9LCb/nbPdueOihIgxMRERERII2boSfXgu1s3dVb8JFlyV4HJXsL8eBvn3hgQfcCfmIqwenHhbcHzdjNS8dPiS4/d57uY8hIlJcKPErUgY984z7b3uWBsuyh3no3NmLiGR/XHMNdOqU975jmcQrY07j8FFf8ETd53PtHzeuiIMTEREREQA++ghaZP4T3K7Zs5mH0Uih6NsXejYNbp4bMyy4PmwYJCV5EZSISGRK/IqUQeXKuf/mlfg95xwvIpL9UbEiLFgAI0bk3tf4hBo4qZkANNu6iDP4MWx/9+7RiFBERERExo2DTiwKbjvtOnoYjRSKSifA8/2DmzUnzWFQy98Bd5K3L7/0KC4RkQiU+BUpg7Inb8sr8avZhos3x4FmeXQaueeZBDiySXD7bW4AQjNNzJwJU6dGIUARERGRMiwlxW1zdWFeqPDwIzyLRwpJbA3ofAx0rBcseiH9xuD6e+9pkjcRKZ6U+BUpg9LT3X87sCRYtpT2dOsGlSt7FJTst7p1w7fvuQcOP7IhvDYgWNaUdRxJ+Ixud90VheBEREREyrA5cyAjY9/Er269KhUqHAFvDgxu1t2wjBbl3An85s2D2bM9iktEpABK/IqUQatWgYOfpqwNli2lPZ9+WsCDpNho1Ch8u2pVIKYyHHIWXBCaeOI9riWejOD2lCmwZ0+UghQREREpgxYuhGrsogWr3YKEOGjf3tOYpJDEN4FDGsFRodvvbu3xZ3B96FAvghIRKZgSvyJlzJ+BtokRQ1220oHFfHzam6xPqUVHDT9WIsTGwlVXueuOk2Nc5vJHwEWHB+sdxnwu4Yuwx27dGqUgRURERMqgRYvgMP4OFXRoAgkJ3gUkhceJh+pXQZeGwaJzGoVmUB42DDIzvQhMRCR/SvyKlDGjRoXW/cTyyLuLuGxkVypU8CwkOQgvvABPPeX+fwY7kcRWgxNPhUHdgvVuaTEiLKGfmBjVMEVERETKlIUL9xnmobN6VpQqcQ2gR6ijReMlE4LzbyQlwaRJHsUlIpIPJX5FypgFC0LrA05fwoUDF+LEVvMuIDkoNWrA4MFw1ln77EhoB5eFEr9ds6bSJDTnG9u3Ryc+ERERkbJoyRKYwZE8z92k9GgHxx3jdUhS2PqcD+3qwIO9cT47l7P6Jgd3jR7tYVwiInlQ4lekjNmyJbT+yF2BcR/iGngTjBS+8l2h63lQLtbdXreT9uX+Ce5W4ldERESkaKSkuG3taRzFA3HPUG7URXDFNV6HJYWt3vEwcyjceizUq8xZp4V61nz/PZh5GJuIyD6U+BUpY3bsgBh8nM8w6u1ZA5SD2OpehyWFqcrhcGwLqF4eBnWjRrWk4K4tW8Dn8zA2ERERkVJqzZrQetNGScTGxUBsDe8CkqKT0C642qv7FKpUcbO9q1fDv/96FJOISB6U+BUpQ8zcMV7b8C/DuJAGA56Fo1/1OiwpbLG14I37YMGd8GJfKrbKCO665x6oWtX9V0REREQKz+rVofXmTXe5bTIn1qtwpCjFNQquJsTt5oRe6cHt33/3IiARkbwp8StShqSkQHo6HM2UUGGLRvk/QEqudpdBhUoANGmwKWxXSoo7OVxSUl4PFBEREZGDEZb4bbILYut5FYoUtdgqod7cs9ZzZb0vg7vGj/coJhGRPMR5HYCIRM+OHe6/vcnRGjmhpzfBSNFy4iC+OaQvo3GD3XlW2bYNqmlePxEREZFCsWYNXM/bnMO31J4fB3/2gX5eRyVFZlNNuOYVmLqGMxr8QCyD8BHHhAng90OMutmJSDGgjyKRMiQx0f23FStChT0003CpFbgF7ciuG3Dw59q9bVu0AxIREREpvVavhh5M52TG02XhWFiV94/vUko0ORmWuQ3qhE1b6FdtIuD+zTV/vpeBiYiEKPErUoZkJ36bkWPmiZZdPIlFoiCuFXw5l4TrvyK9clU6sTBs99atHsUlIiIiUgqtXg0dWBIq6HikZ7FIFFRtAOccFdy8tvZnwXUN9yAixYUSvyJlyI4dUI40GrDZLYhxoElbb4OSopPQCH5dAz8sIX5vMnfwSthuJX5FRERECs/6VZl0YlGooNNh3gUj0dG/b3D12B0/AgYo8SsixYcSvyJlSGIitOWfUEGzuhCnob5LtbvuCK4O5DviyAxub9niRUAiIiIipU9qKjTeOpvKJANgTepAgwYeRyVF7qTzoUo5AKrs3EZ7lgIwcSJkZHgZmIiIS4lfkTJkxw44JOft/h1aexeMREevc6FRVQBqspMTmRDcpR6/IiKlj+M4TRzHmeA4zhLHcRY5jnNboLym4zjjHMf5N/BvjRyPud9xnOWO4yxzHOe0HOXdHMdZENj3muM4jhevSaQkWLsWjmRGcNs5toeH0UjUVGgIJ4R6ds+jCwDJyTBjRj6PERGJIiV+RcqQxEQ4nj9DBV26eheMREdsJTgrNL7cWXwfXFfiV0SkVMoC7jSzDkBP4CbHcToC9wHjzawNMD6wTWDfhUAnoA/wluM4sYFjvQ1cC7QJLH2i+UJESpLVq6E7s0IFR2h83zLjzHODq+XIoAfTAPjtN68CEhEJiXriV70QRLyTmAjHMDlUcHJ/74KR6Ol3QXD1Zt6kGrsADfUgIlIamdkmM5sTWN8DLAEaAf2BTwLVPgEGBNb7A1+bWbqZrQKWA0c6jtMAqGpmU83MgE9zPEZE9rF6ldGN2aGC7sd4F4xE1xW3hW3exquAxvkVkeLBix6/6oUg4pEdiX5+4gwmchyZFSrCkT29DkmiofcgqFw+uDmE2wFYv96jeEREJCocx2kOHA5MB+qZ2SZwk8NA3UC1RsC6HA9bHyhrFFjft1xE8rB10So6sAQAvxMDXTXUQ5mRkABT3gDAX7UChzOXKuxm2jTYu9fj2ESkzIt64le9EES8k5iYwb08z/FMZOqIH6FSJa9DkmhISIBzTwluXsRX1GMza9aAz+dhXCIiUmQcx6kMfAvcbma7C6qaR5kVUJ7Xc13rOM4sx3Fmbdu27cCDFSkFqs4cS0zgLbK9eXu1s8uarr2hQ11iqsTzTPPn2UNVsrLgzz8jP1REpCh5OsaveiGIRNfWLVnB9Vp1KngYiUTdux9BpQTAHXvsUj4jMxOefx6ysiI8VkREShTHceJxk75fmNnIQPGWQMcJAv9mj/S+HmiS4+GNgY2B8sZ5lOdiZu+ZWXcz616nTp3CeyEiJUjDlTOD6ylHqbdvmZPQCp46D3ak8O6GC2nGagC+/dbbsEREPEv8qheCSHT5fVmsXR+63b9pc/VCKFMSasHT7sQTX9S8ig+5EoDBg+G557wMTEREClNgzosPgCVm9nKOXd8DlwXWLwNG5yi/0HGcco7jtMAdPm1GoCPGHsdxegaOOSjHY0Qkp7Q53GKv0pxVnMs3JFxxQeTHSOnixEP/52DWnSz++HHW0ByA776DtDRvQxORss2TxK96IYhE3+Z1a8nIiAOgZo0UqtTQe6HMuehiaF2LS3Z8wCvcESyeMMHDmEREpLAdA1wKnOQ4zrzAcgbwLHCK4zj/AqcEtjGzRcBwYDHwC3CTmWUPBHQD8D7uUGsrgJ+j+kpESojUXYvZsr0Ka2jO6LiB1O11nNchiRdiKkGTHhx+8l6aN90JwK5d8MUX3oYlImVbXLSfcD96ITxL7l4IXzqO8zLQkFAvBJ/jOHscx+mJO1TEIOD1KL0MkRJn5/CvmMTPzOQIllfvAbHqiVDm1D4DfnuVl05fz4tLBgWLp071MCYRESlUZvYXed8ZB9A7n8c8BTyVR/ks4JDCi06kFMpcw5pVScHNJo2SiUuo6mFA4qkKR+OMn883Da6kwtp/uIxPePLJ7lx4oYZ9FhFveNHjV70QRKItawv8OZdjmcwdDKGv/QJOfn8TSqnlONC4D9Pb9GUzDYLFtWqFV1u+HFJToxybiIiISEnj2wFJH7NqTbVgUfNm6R4GJJ6LqwdDp9N9+ig6sZjvOYtKqxdy0UWQrktDpOwwv9cRBEU98Wtmf5mZY2adzaxLYPnJzBLNrLeZtQn8uyPHY54ys1Zm1s7Mfs5RPsvMDgnsu9nM8hzjV8omnw9uugn69YPVq72OxkP+VNgzi6aT/ggWbW2v28/KrNhalK9Uh3ps5v/4jME8xbp18MQTsHkzvP46tGnjLikpXgcrIiIiUkyZQeo0mLGWBm+NpBuzAKN5M3WuKPP+dyfEuNdBQzbxJRczZowxcKDG+xUpM/zJXkcQFPWhHkSi5fPP4a233PX0dPj1V2/j8UzKePjhC6rsSQRgE/VJPnmAtzGJpyqv38pmDg1uN2ATtzz8Op984rBihVu2YQN8+CHcfLNHQYpI0TM/OJ7N8ysiUrKlToXUGfDM73T5azWz+I43uIm97V/0OjLxWu/e8O3j2MWP4aRm0ZkFHMckfv65F5deCsOH6+ZLkVLPUoAqXkcBeDS5m0g0fPllaH3cOO/i8JRvF6QvhKHTg0Ufczk9T6jpXUziub92dGQCJwS3b+ZNLubLYNI328Y8p8sUkVLD1K1fROSgmM9N/E5bA3+tDhZ/xqV0OrS8d3FJ8dGnL87A0BDp33MW3ZjFiBFuByURKeWKUY9fJX6l1IrZ5+r+5htv4vCMZcKu92HKMpi0Klg8POYCDu2sn5jLsnvui6EfYxjJwGDZXbxIDL6wej7fvo8UkVLDn+5+T4iIyIFLnw+r18FZHweLxnMSM+hBp07ehSXFSHxLuObE4JAP1UniDdxb6QYP1pAPIqWeEr8iRW/fxO/558Pu3d7E4om0ubBnR1iDdDJHs7d5B+LjvQtLvHfeeXDHg5W5gbfJDIz4czjzGMtpxBFKBGUqJyRSelnxaYyKSMlkBu+/DwMGwKOPlqFElmVC8q/w+l9hxZ8yiAoV/DRv7k1YUszEVoUTXobPHwgW9WQ6nfmb9evhgw88jE1Eil4xamsr8Sul1r6JX4CpU6Mfhycsw7397L6fworv5Tlat9HQ3mVduXLuZG5rd65nR59jg+UnM57zGR7c3rnTi+hEJCqKUS8EESmZ3nkHrrkGRo+Gxx5z18uEzA3w/kT4ZHawaAnt+YxL6dw5Js+/QaQMO+82OLN9cPN1bgGMF1+ErCzvwhKRIubf63UEQfpaklLL789dNmdO9OPwwvZ1M9mzdjv8+k+w7B/aMJljaNM21sPIpDgpV70b9b4bA2eG7km8nSE4uG+evcXnu0pECpsSvyLyH+zaBQ8+GF72+ecwbZon4UTXlgnw1Pjg5uZqzTiEhRgxnHiih3FJ8RRXG+66LzibW+OYjdRmO6tXl8GhCEXKCvODP9XrKIKU+JUSbc4cuP12GDEi9761a3OXDR4MH31U5GF56pdfoG7zo2l2/H3seOSCYHk/xgAOrVt7F5sUQ+Urw8v343fcr4MjmMXVvA8o8StSqvn3eB2BiJRgTz8NO3bkLn/99ejHElW+nfDGp7AnPVjUJ/Mn/LgdK046yavApFg74TK4sh/EOoy/6H9spw4Azz3nDpkiIqWMfy9QfN7cSvxKieXzwdlnw6uvumOWzp/vlu/ZA3//DStW5P24K6+MXoxeOP10MHPYubsSHZ96nWmnDuJUxvIP7QBo08bjAKX4aXMB//a+OLjZn9GAEr8ipVoxuv1MREqW1avd9ne2++8PrY8aVcrbD1O+x//ixODm5XzE3ykdAahWDY45xqvApNh74mV4ph8DH9xLxYoZgPs369ixHsclIoWvGI3vC0r8Sgm2cSOsWRPanjvXbWgecQR06QKpBfSsT0oq8vCKhS3bKnPUr58wjlODZerxK7k4cTT67G22OnUBuJ9nAEjO8X1llvfwKSJSQinxKyIFyMyEL7/wc/fd7li+wQmS/WkMHgwZbt6KHj3gqaegU2DUqJQUN/lbKmVtZ+72FC6yL3mXa/mZPnzBJcHdt94KFSt6GJ8Ubw1awS2PUbtWCreeM4HhnMd4TuKdwavw+bwOTkQKVTFrZyvxKyWGzweJie76sGHQtGn4/q1b4c03YdmyyMfanzolUXpq5OmUNdOw5KVy/cqUHzOEpSecwQI6A0by3GUsn5/C6tXQqhW0bw8zZ3odqYgUCiteDVIRKT42rV7GMT13csn/xfDii3DDDdC2TSrDP1/Lj99O56uvQnVffORHHEvhkotDs1R9+aUHQUeBpfzFdU+cxXC7gOt5l6tqfUW3bonUrQvXXQcPPeR1hFLslTsMKhzFLWf+Rl9+4CQmMGpuS645awszZ2rYB5FSo5jNpaHEr5QI6elw6KFQt657a9mFF+au8/ffxn335S4/8kg/V10VXrZ8edHE6bW/XvyE97mK8xhODXIPvPbMMxAf70FgUiJUPfMiqrx9PQA38SbLaE/qYT249bp0Vq2Cf/+F88/3OEgRKRzFrCeCiBQDWdtYOGs5D3Wdzctz+mE4wWX41tMod+ktXHZ+9oSwxsi213LsrZfBYxdzSY8XicHttjhuHGzf7t3LKBL+ZMb+vJeZcxsBUL58JpPGjmTalD1s2eL2ilYbWyJyHKh8Gg27NqQCoQ47H/5Un1OP3MnRR8PSpR7GJyKFQ4lfkQP3+eewZIl7q/ntt+fcY4DRiPV8+YXRnFX0ZxRxZAZrXHfpVJ59clvY8VatikbU0fXxexup9PBHXMWHDOcC3uPaXHXySpiL5FSp3mkAfMalPMTjHMpC3vm1BRVIAdxx/USkFFDiV0SymR+S/2DGhB+57cRNvL/zEo5lcliVXkyiP9+znTqUJ5WhFW9i4D9DYXkiPD6apiffj484XuVWLCuLb7/16LUUEVs/lide6hXcvub/5tDq0OMhQZNnyEFocRH+czuHFf3Fscyblsoxx7h/94pICVbM2tlK/EqJ8M8/4dsOfj7gSowYjBjW0wQ/sayiJaMYyDR60oS1AFx58mhq9+vK5OMvpT3ut2h2L4QlS+DBB93xgUu66deNpifTAcgilid5MFed+vWjHZWUNJWrJABwDUN5mMcBaMgm1tKUOmwF3LH79udWNI1XJlKMFbOeCCIHxbIi15GCmcGuKcyduJCTz76I3/cex0mML/AhP1c/m0G1RuS571Ze512u4+svS9H/zZoJOM3OYcjMc7iG96gat4e7b98ICa28jkxKqrj6xHz8OsTHBYs6sZjfOYnMHbs5++yC56sRkWLOvztynShS4rcoaZCe/bJ6deTJ1vbs2MQVfMjjPEQdtlKeNFaQf2OrJSt5lEfpyVTo+TrMWs/Rf37OEjryFjewZVM6ixbBuee6E1KcdBJcdpk7Ptc337jr06cX7ussSnt+G8Xb3BjcHk1//qYLP/4IFSq4ZW3bQvnyHgUoJUZcHFxwAbzKbcQT+qOtNokM4XYABg6EDz4o+DijRkGtWtCnjyaFEyl2/KlKmEnpYOleR1Dy/fUV1DyOpy5tyZ695UggnXPLjyrwISfcZSR8MACaVMtz/1V8yCMTT+bvyVsLP95o86djLz0GwBHM4iXu5PJz/qZJx34eByYlXqVesHFDWPL3KKaxm2rsWLqFBx7wMDYR+W98iV5HEMaxMpac7N69u82aNSs6T+ZPh5hy0XmuEmr4cDfJVLWqO35o3bpueUpKaFbcXaM/pPoAd5DeZbSlLz/QlLWM5+R8jzuXLjzJg7xS8wGa7sg9k9u3nM01DGUnNfM9Rps2uXsaFxe//+6eozPOAMvcypwaAzgidWpw/9FMJuaYnvz1VwyTJrmT4V15JXTt6mHQUmKYwckn+5jxewrz6EIrVgb3ZRBPC1axkUbcfz9cfDEcckjuYzhOaP2772DAgKKPWySakpJgwwbo2NHrSA5C5kbY9R7UvA1ia0TzmZ3IVaSki2pb27cDYvNvy0kB0pfA379Dj5sBOIcRjGIAVapm8tcPH3FIx93u54NvBzgVYU8afDMJqjWFAU0hNh7KHQrpwHcfQJYD138d9hTv1rydtAceIdNfnSZN4LDDoGVLSEjw4PUerOduh/teDW4+GfMggxafSdN2Pb2LSUqXxfOhSzfIDP0gm0hNDmUhwyY24LjjPIxNRA5O4jOQ0AmqnBXNZ82/nW1mZWrp1q2bRU1WUvSeq4RyU0zuctddbtn775vFx5v16pVlmX/+FKzwJ8dZNXZaDFkGZj89+ILZE6fZj+0vswv5MlhvK7VtS0J925FQ23YMv93s9A7hTxRY1tHIapCY167gsmFDeLyZmWZpadE/TzlNmBCKb0B/v73NdWFB38kL1q1rqs2b522cUrJlZZlNnWq2d0d6nm+Ojiw0MGvVyszvN5s/32zYsND7I2f1F1/09rXIwdm502zLlv2v7/e7n5HRsH692cKF0XmuvGzfbtaokXt9P/OMW+b3m82ZUzTfERkZ7veR3//fjrNhg9kPP5ilJy0w2/qIWdaOQonvAHjeDtRSytramRuj91ylxLZtZr/f/qHt+73+J8fZYc5c+/nrz8zSFrl/x/h9Zv50M3+GmS/NLPVvs8wtZlk7zVLnuPvNzDI2uPXmjLaMOjXMwH7mNGvBilxNiNhYs+bNzW64wWxjMf/vy5g4wvxOTDD45bS0O66Y7nVYUhr9+GPYG+VRHrbypFjLlj7bs8fr4ETkgPj2uu3s3aOj/cz5ts001ENR0u1nB+TFF+HTT+Hqq6Fz5iyum3gpccefEdzfi0k8wUNY4IeM0x4YCHc+ytLLHuFrLsLBiMHH1O9WUnfDw9TYPZ0aA+6A0WMhaTgrf/qODTQMHq8xG9hBLc5nWL4xPf54aH3ZMmjVCmrXhkmTCv/1F2TrVrjlFrjiCjjxxFB59dEfcz3vBrd/5RSqPtCPWbPLc9hh0Y1RSpfYWOjZEyrVSIDffsu1fwz9iCOTFStgzBg48ki393758m4P35xKVM+eMiwrCz75xB3uZvlyaNjQXSZOjPzYpCQ49FC3/owZ/y0OM5g61b0LJC8rVrg9xg45xJ34My979kByEQ5hO2SI29sX4P773X9vucW9q6J8eVi8eP+PlZFR8P6sLOjeHRo1gqefLrhuaqr7f5c9vMratXDnnTBypHtOW7aEvn3h9rui2stXpOhYhDeQBJnfeOfNTJ5v9BInDrky1/5/aMsVz9ehz9knQbmOEFsVnBhwEsCJd+9iLN8Z4upCbHUof7i7HyC+oVvv8LOIXz2Bn697gTP4iVW0BKAPPzOFo/iEQZT37WX1anj7bejSpfjNs7F7N7z+Opx1SjLxvc7FsdB4VbfU/YRHnqvrYXRSap1xhvuF/9qzbPnxZV6pej9pVGDlyhjO6ZvG96ONp56CU0+FTp3grLPcOzo1nJpI8TF3LkybBpa1w+tQcisoK1wal6j2QshYF73nKoFWrcrV2cDA7CZez3PH21xn4Dcw++yz0HFSUszatTNLSDD7ZliKW+j3hXohBKSnm1Vjp82hS9hxF9LRypOSZyzHHBN6fI8eofLLLy/685PTddfljq0CybadmmGFfTvOMH9mYnSDk7Jh62qzVo2D19otvFpgb/mcy2uv5T7cf+25KIXH73eXoUPz/v+rVSvyMR5+OFS/WbOC6y5fnvtuipw++ijUK2zp0tz7H3wwPL6333bLrr7a7NNPzebONatY0axyZbMlS0Kvcc4cs927zWbONLvqqryvy33Nn282blzu6/Wss8Jj2LUr73MXH2/2zTd5H9vnc49Trpz7GnLKfr4tW8wGDAg/ZmLgI37ECLO33nK/28zcf9u3D9W7+GKzfv3yjqtpk2T1+NVSZEtU29rpy6L3XCXYin+T7bSTttlm6ub5ofA+V9rg+32RD7S//D6b9ftwu+/WiTb4vO8tOaFy8Lm2Ujus3V2jhtns2aGHrllT8HdEURo+3KxmTTMHn/3JcWHn6PhqU+3vueneBCZli99nn73zZ/Dye4RHbCP17QK+snKkhr19jzjC7N9/vQ5YSiOfz2zUKLPrr3fbzR995OZdxH3PjR9vljx9ntkPH5jNnmzPX7kg+L68+ort5t/ySLHq8et54zDaS3Qbo6vM/FnRe74SYuVK94/5jz/O3fa8i+fzbJB+xGUWQ5Y9/rjZyy+7H0Q5+XzuH96RgFkCabaFOmZgS2hnsWQGn6o5K60KSWFPP2yY2ZFH5g5r8eKiOT/5xb3vcjYjwgrastR+/UUNUilaOz/61r6JPz/4I0z2UpVd+SZ+n3wy/BhPPGFWrZrZo4968hIKxc6dZn/84d6CfyA++MDsttvCb29NS3OHC3jpJXeIjWhKTDTr2dOsfPm8/++yl0hOOCH/+rNnuwlUMzcJ6jhmMTFmn3yS97FyHueMM9wyv98d3sHvN7vyyoJjzbmccIL7+Iceynv/mDGh4+/7f7lokRsrmD33nPtdcPPNZitWmPXuHX6cyZMLjiMpMPLTuHFmjRubDRzoNhhz1rnnHvdHzJyJkAsuyH2s3383+/PP0PbTT7vH/uuv/T8vYLZ18XNK/GopkiWqbe3UedF7rhJoxgyz60+ZYzExPjuSaebDyfVh8PWhd9mvPxRB+zFzm1nKNLNDGuR6TgO7oNKoYFuiWjWzW28169w5VGXgQPfHumhISjIbNCj7uf32OyeExfpP/e62cdU/0QlGxMzMl2ZPPPi3gdkvnBq8FhfQyeqyOeztVKWK+2OwSGHZutXstNNyf3Q3aGA2ZIhZcnLej0tLM/vwQ7e9/PjjeXfg2F979ph9/rk7ZODYsaGODn6/2YIFbiL644/dIczmzHGHgPv7b7cDyJw5ZmvXmmWkun9Ypa/bYhvWZtnff5tNmey3Vavcdr/PZ/bPP27nl8suzrCbO/1u7zR8xB5v/7l9dfQr9veHs8J6f2Smp9r11+4xMLuAr8JOThYx9n98Gvrb4Os3zHZ9d/An4ODk2zbzvHEY7SW6id+V7vgeEjR7dugP6eylK7Psat4zB581Y5WN4cywCq9zkzn4zHH++/O/8YZ72Dgy7CgmWyXcN24T1tg7XBt8zov4Ildia9+laVN3PMui6Lm4ZYsb65IlZg88kH8MRzDdPuX/7CZeNziw8ThFDtb0KZlh12FNtpuBbaCBHcH0XNfpcce57xOfz2zv3vB9bduaXXtt6Et8587CiTElxU2OpRfF37KZZocd5sZ/9tn795isLLNffgm97px3DbzzTqj8jjvc3k6RpKe7DZqD/fyZPNltuF14Yf6fLzmXvGza5B4nK8usT5/w+ied5Pa+Pf74UNnEiWannx7arlw59Fpyynmc7N7Dt9zibp96au7etgUtMTG5j7nv8vnnZocfblapktt4zPb003nX79fPrEuX/Y8B3B87LrkkvKxatYIf07p19ro/OLY9mH3xhdnVp6y22mwN+/8Z9fIK+5rz7SEeC6v/GA/ZLqraS9yR43vN/feF5/JpuRed/9yO01L8l6i2tZP/it5zlSCZmWZvnv+TzeZwS6RG8D0/gJEW/HD44C6ztAVmmZuKNpjvhpjVq2r5fdg9zKP53nl3yim5O3sUtgkT3DGHs5+zPhttZsI+PT7WLC/aIETy8fuv2y01tmKuN8eGuofYdOdIu5Avg8V33x3+I3Z6utumjNYPKBJZUpLZs8+ade3q3qV14437N9Z5errZK6+4f39UrOjOMzFokPuj/8FKTHQTs6mp4eWLF7ufifGkWxwZuT6X40m3trW22wMPuJ0kbMUKS504w15/zR+c/yJnO/yGG9y5MSwjw210f/GF+6JTU23jRrO33/LZUzdvtK/u/9tmzXKTzj9f/Kkti21vGcTZVHrYHbxkdWr5rO/p261pU589yz22nZq2kI52Oj/aAEZaG5aZgy/43P/jRUsjId/vngokW3y8W78qu/KtZ2BZbw02S/rKbrpyhp3L8HzrfcM5FkeG1WKb7Slf3axxbTcTHT35ts08bxxGe4l64jdzc/SerwQ44wz3qnPwWV0223SOCL5Rsn+97FTlHxvKVdaf78LeS7/8UjgxJCW5X4Ddu5s1aOCzt1/4yb46cXCeb957eNZqsr3AP87r1ze74orCic3MjW3f52jCGhvJADOwDOJsKFflGYtItDz1ZPYXq98G82TYhTiafvY8dwV+kAj9gFK7tpvkLej9VLOm2brAKDn/+5/ZIYeY/fqr21b48Ue35+iVV7rHyW7IjhtnduaZZk2auAnV7Pc3mPXv79ZZt85Nvk0PzMmycaPZpEkH18N21KjwmD/6yH2+Tz/Nu35GRngvppzv108+yfs8fPut+0t7//5uYylngjctLXRLf3Zvz30tXGjWq5fbOPzss/DHz59f8P9BXkvO85SYGJ4UjZTAzF6aNrVcDcKLL3aHQ3j+effYX36Z+3HbtoVvV80/f5DnckTXrLCGYH5LAmnWgUXBk3XzzWYV2WvtWRx2a2UMWXY179nL3G738KydyHhrz2KbwPG2kI65vrviyLDq7MhV9hJ32LcMtPpstOt4237kdBvB2baD6pZMBTOwFMrbZuraTqpZZ+YZmD3OgxFf9N08Z2BWjlR7kMcti9DkRKmUC65fyfsH/gb4b9BS+peotrX3/By95yoh/MvmWWLF+pbzM+Ew5trJx/5jU34carb6RbPkv3MNiVak0leZrVvg/hGcx2fWGM7M9yPtlVeKJqQtW8wuvdR9jrt43l7mdqvIXht0/lzbM/JGs2qBW2Emfxb5YCJFacQIs9ZN836DgKWRYCcy3sCsYUO/Hd0l2drXTQx2toqJce/ueuaZ/9YDs7jz+91OHw884PY2/fPPUPs1u91f2MPI+HyRO2Hs2OFOmH3PPWbVq+f+L6xd22zatBwP2LjRbLObQ8rKMhs50qxDYK56B58dwnx7lnusK7MM3E4Vc+a4D83IMBv5ebI92ONXG1h/ip3XZq6tqdfV9vTsHewx8u8vy+3R48db1cBdzgkJfrvgxC027H/T7MP7llnfSr/bu1wTbC+mx5a3D6+bYg0a+Kwem2whHc1wh+3J+UJGMsBu4xVrw7JQm51dNpIBtiS2Y64XnhRXwxqywboyy3YRatxvpH6e1/lr3Gxg9gz35vte6MfowKo/mDvJb7mKocHNm3kt33rbqWl3HvmVPTX4t4ht8F78Edy8pfmnZq0bWpRnZ8y3beZ54zDaS9QTv+llb9CdrKz8PwDbtzdrxxJLIfy+4kkcExxywZ/4js2esih463Dt2vknN/4rv9/cWYoTP8/V03jfJfsLNb9lxoz9Pw8FuXefz7JYMi2RGmGF1/OWgVmHtqEeX//3f4VySkT2S/Y4q7XZaovoUOB750kGR/wB5WCWt95y32P1824fBJfUVHcMNHCTlJMnu+PHZu/v08cdY/XOO0NJ54I88kj+z5WWFqqXmuo2CHPelp9zufrqA3u95cq5Y2ztmyzOebvV8uWhOxv2Xb780h0SJ7/9BS2vvOL2xs7IMGvfruC7Ibozw07g97CyJqyxJqzJ9zHlSbHDD3d7AbtJVr91Z4b15zu7kTesAsnBurXYZkO5yubR2eZymN3Ma/YO19o/tLb3udJOYWzw2vyESy2TWJtCTzuMuWE/UozllGCjuS6bbSltw4K6m+dsE/XMwH7kdMv+EaM34wo8WVnE2BV8YGB2Oj8WWPc3TjIHn13CZ7aY9vnW8+HYID4Ovq6/ObTA466hiVVnR9iPq3ktb3NdtHsCoaX0L1FtayflM4h2WbR7t9lVA/N8r6e2aGi24SWzXZ+b+Q9wjKLClLXH7Mc3zA5vEowt6YZT7e2rP7Bbr55mf13xjGUM7GNf9/0sGH7Fiu68IIXF53O/86tXd3+E+5T/C8bii401u+cEdwz0eXeYrf+98J5Y5L969dU8398G1pTVwfbWHiqZgS2ig53BD1aHLdaDqVaZ3QZuEvHii7Ls3gtX2xenfmzP3rLennsq0365erhNu+IdmzJ2d55DmU2YYHbeeWZHHWV2zTXunXoFSUpyO3g++aQ71Fm+Sde1a3PtzMhwh3c87jizE0902/wFddZITja77LLw01KVXfZE+cdtUK0fwsrPOCM0BNny5e48Facdu9d69vDbhReaPfZghn32aqKNHm02ZUrgjtopU8w6ue20Pfc+bl/cOs1ubfqdPc6DNi3uaHvtlFHu59SmTWbPPGN7zjzPfjryEbul5ud2De/aBXxlV/BB2BCT5zLctlHLDOz72P425ZN/zE53b6HzJyTY1HNfsLat3R63CaTZwzxqmcSGvcjHedA+ZpD9Q2sb3ORtq1vHZ2M5Jd/rJOcykG+D7cpx9C64fvkESxt/m31zw0v2YtW8O8wZ2E/0sQuqjbL7bv7TTu613F7kfwUe905esHP4Jtjezm8ZVvFiq8ZOO5+vC6w3o+JRdlinTda54yZrX2t1gXXbs9jArHGNRNtWrmHE83UMk+wKPshV/mNcX1tFMzOwFX8ODxT77YLYYZa2fmTBb5LCl2/bzPPGYbSXqCd+U+dE7/k8tHu3++G+datZmzbu+ISTJ7tjGL75ZuAWgn/+sanVTirww+e0k7eY+TM9eQ1gdjK/2iSOKTDGgj4TTjvNvT23QQN3QqRGjUK/rG7Z4t7+3KdP+O3sGRnuLdevv557jMaq7LJfOTnXE/VrM9nSNzxj5ku2UaPcJNxmdS6XKMrZ67U8Kfbn3WPMKlfK982xnZp2GHODRWcyxjqwyCqxxyqxJ89biVqy3Jqz0sCdzLA346wBG4L7Bw1yfxSP1Lb59NPw7RNPLLj+qae6P6S8+mpgGILM8M+kfRuWOZfsX+zHj3eTmG3buknTvOq24l8bwMgcr91vkYaYyWv57Tf3M+XXweNtsPOk1WardWCR1WOTPcED9hUX2HkMs4rsDXtcHBl2IuOtEeusN+Pscj60hXS0VMrZbbyS63ku7b7Y5lQ/wbZT0z7iMvuQy205LW0ene18vrYYsuww5gYbpTPobo1YZxnEhR3oDW60WmwLFrVjScQXOYqzgufmKoYGG8r7LlPpYV9yoVVnh1Ug2d6j4Oz6bipbLbbZ6fyY7zGTqWBT6GkdWGTgNr4LOmZ2krYW22wH1QusewcvWUuW2y28GjFWA7uVIQbuePTpxOdbr1X5lRZLpt3KkLBeFPsutdgW7AUfJWgp/UtU29o7P4recxVXfr/b2Czo82PaiOj28I3E7zebO9qsTVOz2Bizsw81m3aL2fJ7zepXMQObXOlk68bM4PdyYQytNmeOO29HRfbaR1yW97n6+lqzHW+bZawtXudMxMxt8M2c6Y41Frhm/bUq2UuP/WK1aiYb+O0fWhf4edCJBVaeFFtP/smuTTEN7c9B71hWpt+Sdu6xR8/52x7nQVtIR1tEBxvB2baNWrazUkPbs2hNYKZgt/vr1q1mDz/kt9sqvGufc3GwzdiRRXZdr8X2+/BtofdzzvHOXnvN7LXXLO3r7+ykfVIGJ/Orfd7kHtv1wQi3F8Pnn5sddojZGX3sn2/mWY9DQm3c45mQ52u6nA+DbcnjnT9sQ3z+vaiTqGIJpBm4vWzXJzTPt64Px4ZylcXH+2zIUbkTg9nLh1xu7VhibVput/de/sHmn13weGuD+DjsjrMjKswpsP6dvGCV2W012b5fbcrOzLP6dXdbRfbaY+QzGUb20rWR2fz7zEbeUGC9zLgES1nwhNmOz83/xbW29the+db9nIutJtstJSb3UCa5zvGwx23ybzNtwuCfzB8bm3/d+rXMlg012/m+2fYXLevJx8xfIUeHw4ruHXVWp7Zl/vaH7d0TGLczKcmdzOPpp80G9Dc7+XjzLfvX3rlkog3nXLuS9w38FkeGja15ofkO7eT+orF6tWVmBjrhBHr/NGvmJvcTSLNFM8ZH+xMi37bZATXkSsMS9cRv8sToPZ9HFiwwq1Ch4PdrbbbaroSa+VbI7gn2+afe9UJ49VV3/OGePX2W9dMXNozzwmJ8gTutEntszh/D7JUXtoT9Yhdp2XfioyeeCDVgP8jj+6E5K20J7fI82J6jOlva6vfc2+ZEPOLzmZ1/vvtDx8Tsj7l168zuusvsovNyXbfDOM8as9bA7RGab4OBWKvJduvL98FJaPbtUbwat6H2W41z7NWH3ARiOVLtfp6yn+hjd/G8vcs1NoqzbAAjbVC/HXYRX9jZjAgmHCuz2+7kBbuRN+xhHrWT+dViyNpntmS/reoywP1gOOMMs+XLLfOLYWG9T8Ed66ofo+0CvrJ7b0iyzZv8dg3v2jDOs36MthiyrB1L7HgmWDzp9hT3h72evVS00fSzDTSwJKrYQzxm2Q3TZqyyEZxtq2lqP9HH9lLRUihv26hlU+lhj/OgnRY/3mpWzbAZdC/wg2g5LYM9QsDsba7Lt+7lfBgcA70Se+x+nirw2Nk9XB181oefbB2N8q37Iv8Lvr4zGWO7qVzgsXdSzS7jI8tOjN9I/l2Wd1LN+vK9gdnVvBfxw3kPlewkfjMwu5wP8633Hf1zjJvrD/amyWupQaKBWUcWRux1MZ4TLZZMO4ZJef7//c4JditD7E5esOe4O/geArPetefZRI4Nvo57eNbu5jkzsIVHDjIwa9XKbN6cFHe8jCeftO3UtNkcbm9wY7AR++GHUf3oQEvpX6Kb+B1q5kuNXK+UyErLtAk/7bV778qygQOy7JTeSXbKCWvslfbP5Dlxm79CgtnrQ7wOO38pKWYP32F2x0Vmmz83ez93+2HfZf6Rl9v5x26wLl3coRomTjTz+/xuD4t8ugTu2mX2xKULIh7bRg0zy0pUwldKhhkz3B5Ws2ebJU+2jD2LbO70Vbar6+EFXufDOde6MdOe5Z586/zF0fY159thzdZa1xqLgkNQ5bd8OugLe+COiXZir+2WkOC3WxmSb10fjt3V4CMb+tR081fLuw2YfRv+EUyP/L7FvXvYbaf5LdOJy7PO2vjmwblI2rO4wOO9z5XBzeOZYL+Rf+e1cfTOcYu/P996O8vVsjnXXmdZ2z4y2/6s2XXHFhhDBnH2GZfYUZVm2uDbZ5m/XP4/+GcvPZliDevvtudummupLVsVWPfvEePMdv9kqd175F3nsMPMDunkrs9838y3x+zzj3PVS3xuqKVcMChUdsUl7h+Kh4bfnTanwan2W61z7a8aZ9r0RgPso8f/tI3L/zIbPdLs8kFmP/3kTrbxzjtuV+z8jB9v9uB9bm+b+wN/Ux1ySGgW6GxZuwrlbfbBB+7dpQkJbsegSCM3nJKj6T/662kFVy58+bbN8t1RWpeoJ373/Bi954ui1avd91xKSmgszewPO3D/+D+FsXYsEw3cnmXX8G6uXxZTKB/8AM6eAMpLOcfS/O678MTBw5f9aN99/JXZ1kfsu4+/stt5OdcH3ydcGrjNeN9ee/5cY0yWL597sh9we0/mmWRpXs9s0jdm/iwzX9Qn5BE5IP55f9s3Na+xVTSzu1p8ZSM//cnA7bm7kuYFNkQu4yMrR6r14Sd7nysLrNubccH3TUGNsuxlFc2sInutC3PCxjrdd1lAJ6vHJmvLUpva5NSwfTPpZp9xiV3DuxZLpr3GzRGf18BO5lerQLJ9R/+IdR/l4eD5mkXXAus+yz3uRwQrCxwu4DreDm52Y2aBx/yDXmFFd/F8xJhrs9ViyLI/OS5i3c+52MBteBfUI9Vwk7nZCflICWjDTXBXZ4e9yQ32M6fZz5yW5//1L5xq1dgZVvw6N+V5zFGclWu4kppst5N77LYjmG5P8IA9wBNWk+3WsqXPvvs2zTa/PyZYeVuDQyzjm1FmDzxgWeeebymUt/GcaHXZbI884k7IctVVZtOm+u2waquCt2OCO/EcmF1/vTu+dYsWZt9/735XnXNO7nBHf7jdzOezTZtyT5yX13jMd94Z1Y8GtJT+JeqJ38xt0Xs+j/j9Zn8+M9lWxYX+kP+evmGfS9mf04voYKd2Xmu7d6WUrPai32f24n2W12fwvsvvnGAxZNn39LXN1A3bl+XE2rxWA23+xU/avLHz7dmntlmtWr6CJ+8Z2NudfVakNFi2rMD3z+IrrrbPPtpok/sW3MbeQAO7BHfYlWOZWGDdNBICPyi7cyEso02+dR/hEatAsvVgqq1ymudZZw+VrBypdteNc+ynYwvuZTqeE60W26xcuUxbcdgJ+deNcWxHv742sNffFmkM2DmNTrEzTv7XunbeYFVjk+wJ8p9tPbHbida7Z/ZcDn77kMvzj6FpI3doi8xtbs/tl3PnEz7iMnuF22yvU8m21etge38f5/Ym/ewzd1a45o3dMez69TVrUMcMzFe1ms1+8XebNSPNsjICn/vbt7u3OaSn29ZZa2xOn/ts0oAXbcn4DeGzZi5fbvbcs+5kKmvWuJ0Fli0rODEzaZI7AVNBddavd8fVGTEifCy8Esjv3/881Q05LteXno4wHkrhy7dt5nnjMNpL1BO/ScOi93z/wWefuWPLrlvn/li+KZ8JfidNyntGdQef3UfuKdBf5ZawovpstLt5Lmw28m7d3MkOi+PnwYoV7mefmbkf0HsnmO36ybZfFDnBtJqm1op/7Vgm2nZCvZ1H088e5HFbTkubQk+bzeF2JNPCHn4Tr4cf77F71PtASpzNm91hFjZtMstID/0YknM8vbyWsxlh4P7CvoIWBdbNvg00hizrwdQCk8qL6GDHM8HArB6b8vzMyq53Ar9bY9ZaI9YVOHvrYtpbPTbZID62fyn4l/Vt1LKT+dUe50FbTst8662lsTVhjVVmt02hZ4HH/JyLgz8qXcQXET+XXuIOc/DZAjoVWO8Pelk86QZmZzMibN8cuuQadzyJKrZu5DS7+cYUe+7Of+xzLs7Vk3cDDYLr2T/4gdujeARn2xjOtCHcar0ZZ8e32WBn8IM9xf3WnsV2xunuHRZV2WUX8JX1ZIrNm2fm27HLsu4fbPbOO7Zmtd9aBC6XmTN89lSOHHFldtt3Ly53P9B9PktLc8eny+8UzHh6nN0R+6odxlw75RR3kpC86j32mDv+ZPB5Ku/zJtizJ88vt+zhQuLj3e+ZnJKT3eMOGRJ6aEHj8NbeZ66kXbvyr/vnn2Zdupg1ahjqtd6nz369nQsLWkr/EvXEb2m+Ayo52TY99ppNrZN7Hors+R6yFwefdWCRXTbIH+2xuwvfDz+Ytcv7O/VNbggOA9WTKXnWMbAp9NxnGCl/WHvcwKzfiWZrlnj9akWKxtq1bkMiLc29jT37ur//fnf/4/eZ9T/L7MMP3V+Zr77KbMECS3tuiO2tWNuWOu2Cw1wdUm+jrTzmfPfxLZvn+Z77gossu/PTtW2+yfe9WbWyO4TCSfxWYCeM988aYta1S777s5dPuNSu7jbRlixINHvh2fD9n39udtFFoe0bbjDLTLGNYz61lMaBz5i64T8e2RmnuzOy+X1mGestKXGzJbZpbxlx5W3k00ts3cSV7lhzI0a4yZGAadPMXnjeby+9ZLbkp5XuLb69epl1aOcOY5GcnG/CY+e81Tb0isnW79Q0+7//cw+dnrYfmUa/v+CGn0Td8zn6ytx+YwE9l4tGvm0zzxuH0V6invjd+UH0nu8gzZsXuji7dHF7yoPZSy+5yeDbbnM/p/adWR3cW1lv4VVbQ5PcO8G6MyPfz+kVK9xJhvZnMqViZe9e8/cteCK47C8h8FttttqjPFxg3X9pFdZwX53Q0vyOY3br/5nt2uj1KxYpFB984A4LU7eu2cv3brb+jWbai1cvsazfJoS9H3IOG3AmY2wKPW0rte1p7rNLCZ/ZLHv8LXB/MCmox+tHXBZMZtYgMVcvoX2X7FvGCurB+hN9DPxWnR32FRcUeLzt1LSHeCzYMzeF8vYW1wf3ZxBna2hq7Vhi4A5fkddteCMZYEOcWy01rpK9yzVhPb7ascQu4Cu7hM/sk8b32bfPL7f37/3HDme2PcIjdgyTDMwasMGGcpUZ2N8camczwrozI8dwBu5SrZrbs/UyPrJz+Mbqs9HA7WHtjrfsNvBPPjn8//qww8zAb4cwPzj0QfaSlmb21FNmzZu7k3XkNWbyc8+ZNQ0Mvda+vTsW+t694XV27Mh9jfn9oU4Mfr9Z797ubNb5zQrv97sdLgYPNvv66/Bf83/5xe2Ju3Klu71woZuoBbOqVd2esklJZpdfHorp0Uf3772wc6f7Hft7Icwb1DVHh/D4+P17zLK50+y4nqvt+uvS7NNP/3sMB8DzdqCWUtbW3jnULHVe9J4vGvzplpKcZXM/nGrbKje3XB+QOZYZjz5nv4xZZT+OXGY//5RlG0tTk9HvN/vpJ0t75mWbduhV9le5E21K/HF2Za8ZNvTl0Tbxlz/tqT6f2muxt+Z7fqbQMzjE0bENF1lis0PNX6WS2eD/5ejZISJ5SUoyGzvW/dE4V77S7zdLT7ekP+faX6c+Zh+e9Kndf0+Wffml2fqVK82SvjJ763WzF180u+B8d9i0Ro3MNm2y3bvduW3atnXvVmvNP3Y179kwzgu7y80/oJ+bYD3/fLPbb7VFP6+xE45Ks3jSLYYsa9PG7P57fbZsTo7e+j6fO07rvXcHJhkqQGqqe/uymdtLZdGi/Lt1fvdd4c4yKaXWZ5+FvoYuOHt9tJ8+37aZ543DaC9RT/wmvvyfDlHQ7JUHy+dzf4m45x73l6kI+ct8l3YsiTjez7kMt7wmK7rwwsJ/XdF24wmL7FEetk/5P0ukhmURE3yBG2gQlvQ+ngkFJo+yiAn+ohpDln3/xGzLczpVkRIuMzPXXGlBI0eGvzWuv97soTzmGoghK3ArfO7PlnfecZNfDVlvjVlrD/OovcX1wYRnzuW4qvNsfo/QbW4/c5pdyJf2OyfY21wXHAagJcvtV07ONUTDkkpdrTo7wuLqyEJrwQqrQpKB26C9hM+sLUsNzL75xiw+PhT3ddeZ1ajms/Kk2NtvZFmjfYbG/fRTM0tLM9+o7y1r8TLz+82mT3eH2/H7/HZIp9Cxxo9326tDh7rnbu1a97z69xlurHt39w6ufcce33epV8/sq6/cca0KqnfrrYEZj3OYOdNt44OFTdDRvHnu/3efz/0u6tvXrXPMMW5Sd/lyd+z19TnaTA8/bBYX53bY2B+F3RFi1So3AZxTerp7ziPNOF1U3n7bPW+OY/brr/v5oNQ57qz1WXlkz4uW5+1ALaWsrb1zaImYT8Pvdzs8LFwYGoJl726f/X7em7Yn1h3uZrNTzy6tPNxq1Uw2x/HnOXzRzor1bPcHw8yGvmj287Dw23XLCl+aWXqgF9WuXeZr0zbXeTKwbQkN7N26g+2ikzfbB+9tK5Z3FoqUGXncK+/zmf38sztsVUKC+9ZtXWmjrWvcw/xdO7tjGOdh506zxMQoxCxyEH77LfRV1OuYqP/AmG/bzPPGYbSXqCd+tz12ULfo+/1m/fu7vYq+/jpUnpTk9pLNnjn+YPz4Y57tozwTu9M5IqywDlsCq367jVdyPWgkA+xenrHxnW+0QUcusmbN3Jl427Z1Ex79+5sNHFg6fmTftMms1j6TwJ/HMJtJNxvLKXYI80MJFDblurV7HL1tLKfYeE60rzk/0HvOvdNm33EZRcqKxYvd4aVWrgy1D6+9Nvx9Fh8f6nmZvdx3nzuUlZmb/Mq+c6GgJSMj9EPY4DvTbMwY91b9gh5zF8/bFurYmJqX2t/TU+2jj9xEZPnyuet++23uz4jUVHcIjOxYzdwkZ3Yysck+N0/8+2/kc7Z0qdk//xRc58kn3eP16BH6fMnZMMleTj/drGNHszp1wr9nNm8Oxda8uTsrOriN9fysXu0mb3ftMmvXzv0+mzCh4Dj357NPn4/hfD6zMWPMJk8+gAelL1fiV0uRLVFP/O7+PnrPdxDWrHHnsQj+AFZpq93XabSNjj/b9v0QPo9hBu5dFQ8SPsbMzl4n79+XQlnj9wfGlMpwf4Vcvtwd17IsJsVFSqi9e90fx/QDjZR0ixaFvrrbtIowE1zhy7dt5pgZZUn37t1t1qxZ0XmyjFWQ9AnUvA1ia+z3w9LT4e674fXXQ2XZl0/LlrB6NSQkwLp1ULdu7sdnZcH06dClC1SqFL7v3nvh+efzf+54MujDL3RgCc9xX679tzGE17gVcIgngwzKBfcN5imuXXEfCeVjaNhwv19uiXf11fDBB7nL09PhxRfhgQfc7a/e28OFvbfx9gPref7rJqymRbDuVVfBo49C9eru/5njRCV0kRJhyxb3fVahAtx4I7Ru7b6/3ngDGjeG//0v7/fMd9/B2We769n1/vc/d/uWW+C11/J+vhkzYM4c6NkTunUDvz+075JL4PPPw+vv2QOVK0NMTHh5VhZceCGMGOFuX389vP12wa+1Tx8YO9Zdd5zw5/6vtm6F2rXD4/zxR9i1C049FebNg+OPh/h4N/b4+NzHWLkSGjaE2FhYtAg6dnS/jyIxg4wMKFcucl2JgqxtsPPNA26fFAJ9u5UBUW1r73ofnHiodll0nm9/mcH27fw2rzYXXuSQmAhNWcO7XEcfxub5kFe4nft5hnTKU9FJJtkqA5Besz4JC+bgNGwQzVcgIiIiB2jnTqhZ012vVCmLvXvjovn0+bazlfgtStmJ32qXQkKriNV37oRx4+CCC3Lv8/ncZMAZZ4TKxoyBvn1z173wQhg2DLp2hS+/hHfegdNOg7ZtoV2rTGqznVh8DGAUYzmN5bQB3KTvfTzL4zxSYJxnMZoxnEU9NrOZBjzGwzzKY1Su7CZAyiK/HzZsgA4dIDkZnn3WTbIDrF8Pu3e7CZJsX3wBP/wA5cvDNdfA0Ud7E7dIWWIG778Pa9e678/KlffvcT4fTJ4Mq1a5n6/5JS8ffhieeMLdv3y5m2xesgTuv9/9Ie7BByEuwnf/X3/Bcce568OGwfnn7/fLE9l//nRIfEaJXykSUU/8+ndDzf8d0MP27IFJkyA11f18btnS/bEtJcX94atq1f04yNq1MHo0LFzoNrqvvBLefBN78EGc5GQA/sdLvMIdgEMFUpgcdxyHZ83J83BZXbqQ9Nlo/PWaUrUqlMtKhhmToXM3qFXrgF6fiIiIRJ8ZVKwIaWnu9u7dUKVK1J4+33Z2VNPPZc0PP1Zg4PkP0aZ1OqNGu4nX/EyaBL165b//yy/h0kvDy1JTYfZsuPmKZFp0rMD9gx3eG+owbJi7f84ceK7bcE5K/p6Rb57MSY8cx2p60YiNwWP8S2u6Moe9VCGTeFqyMt8YVtOMa3mPcZwKQBLVOJT5LOQQwO2xWlbFxECTJjB/vtsj+4QTQvsaN85d/5JL3EVEosdx3B9aDlRsrPv5XNBnNLiJ3a5d3c/67Pd9hw4watT+P9exx7qf6ykp7rpIkYgp5y4ipYFvN2Rthbg8boPLw8hvjfcv/4v+ez+nBju5nFtYWvs4ypeHbevTuZRPad02lrM+PpsOY4fAY4+FPX78Q39Q+dTWHDHhQ2IezrHv+uuB8L+6UqgIQIM6SSxscRo1Z4Qnfa1VC5yx46BlS+Ich7D0brlKcOKp+3kSRERExGuOAw0auB2GADZtimriN1/q8VtEfvsNTjkltH399XDTTfDtCOPCUxKZvrwWr7/hcPnl7q8Ct9+ShS+Qh+/KbO7gFf6PL/iN3pzHN+zC7ZFzGr9wAcP4lVO54ZI99PriulzPXZ9NbKE+cWTSgE2spVm+cT7MYzzBwwCcx3CGE+punEY5nqz0LNUfvZ0FC+CPP6B/f9i7F8aPdzs6ZLvxRnjpJbcHq4iIiBRzO9+Eqherx68Uuqj3+B33J8yOgQvvcH99H3QpHNYJPv8U6u6EpMZw9jnY6jU4mzbnOsR6GtGUtRgxXMwXnM1IzmFknk93L8+yi+q8x3U0briHT5rfyklTPi4wxGuOncnjX7agweJZ8Nkn0H8gDBgAy5a5vxTuz3g5IiIiUiIccwxMmeKuT5gQ3imwiGmoh2zRaIz6fO4tYikp0Jp/eY57iSeT3+LP4NXMGwEYyUDOZQSGO9jiZI7maKbmebyPuYwr+BiAl7mDOxhS4PO3YCWraUEcmUynB12Zm2/dvVSiCnupUgUO65hJxvQ5LKKTG+PoOE49K/9M7o4d7jjDnTtrTFoREZESJekzqNxXiV8pdFFL/KakwFk9YPzCPHeP7nADF68ZQkZGLN+XP4fT947Os94Pcf24KOsL9lKF+mziB/rSjbyHYwBowz8spw0Ofq7iA4Zyba46mxOakNS4I3uffoNuF7Q+uNcnIiIiJc4558DIwO/HUR66T0M9RNP27e5tvj3++ZRPCU020S/zh+B6TXZwCAtZQOfgdn5W5ZgE7AsuCdyW9km+9bdQD4B2LKMSybn2T+EoFtGJr7mQv3DvJR4+HHr0iKdmzR7Bek3aFPw6a9YMDVwtIiIiJUjMfg5yLVIcbd8O/frBtLyTvgC3LLmPFNzetJfufZ/t5J34PbPBJGaP+JbYSl1ofvetxP6cf9IX4IZuM3l6dRsSE2N4n2v4gKs4nj/pn/ALh/UoT+e3b6B+p/rUP/hXJyIiIiVUzmH5ExO9iyMnJX6LQL16sPSix3AeezTfOifwZzDpW41dbKUu7VmWZ90mrAuuGw6nMC5s/0+cznZqU48txJFFBVJJpSKLOCRwTKMN/9KRxUykFzsJZWsnTIDu3UOTHL3yCtx3nzvBXIcOB/f6RUREpJiLqeR1BCIHr1YtSEoqsMpOQr3Zu+7Tg9f/0svE1K4Fn32GU70qbdsNhGrV4JufYe5c0l55k0kzy3PXutuZz2F06+aO496/P/zPgZsz3HndfvkF0tNjOOaYE7n44hOpVq1IXq2IiIiUEMUx8auhHorKnDnQo4c7NXAeZnAEPZgR2DJu5C3e5GYAnuVeXuQuWrGCm9r+xj/Vj+TYx05hyRJ3dsBvB8/iFMYxnPNZSav9Cqd2bXjgAejd2x2aIVte//0ZGRpuTEREpFRL+QvKddJQD1LootbWXr6cpf97mLfH9KA+mzmFcdzOEP7mMKqym11xdXj/0wT69oWlS2HnTjjySKheff+fYscOt11cX913RUREZD+89BLcdZe7ftttMGRI1J5aQz1EXdeusHA8zB/KDcPvInPETJbQgSkck0dlh7e4ibe4Kaz019m16do1NPRCnz6wfj0MHtyd2XQPlp9yCrzxBtx5JzRvDhdfDGvWwEUXhY7VujXcfru7/vzz8Omnbs+FvCjpKyIiUsqpx6+UdK1b81mbe3iNLgCM7P4M//wDe3dD1YZVGP0JnHyyW/WIIw7uKTSkmYiIiByI4tjjV4nfotSiCdRsxVG7YrhsxNXB4iuugGuvhWnT4I478n94o0a5yxo3hrvvdhO3Tz4JV10VmlhtzJhQvaOOcoc/u+UWd/uee0L77r7bXURERKSMcip6HYHIf/bPiqrB9VtvdYdi+PdfOOQQKFfOw8BERESkTFLit4w675wMLssx4W/jxtCzJ3TrBuPHw+LF8PHH0K6dO/vfAw/A5Ze7YwXn5fnn3SWS6693R5qoUAHOOqswXomIiIiUCjFK/ErJt3ptleB6ixZQtarbvhYRERHxQu3aoXUlfsuQCpWrc9tt8OqrEBsLl17qlsfHh/fSBTdZe911oV68/0VcXGh4BxEREZEgDfUgpcCadZWD682bexeHiIiICIT3+N2+3bs4clLiNxpia/LUU9Chg7u0aVNw9cJI+oqIiIjky6kIlup1FCIHLTkZtm2vALidKRo08DggERERKfM01ENZ5DgQU5VKldyevCIiIiKeiykPvnSvoxA5aGvWhNabNHHvqhMRERHxUvXqbhrQDJKSIDPT/YHaSzHePn0Z4FQERy1RERERKWY0zq+UYOvWhdabNfMuDhEREZFssbFQs2Zoe8cO72LJpsRvUYupGrmOiIiISLQ5Hnc/EPkPtm4Nrdev710cIiIiIjkVt+EeNNRDUYtV4ldEREREpDDlTPzWretdHCIiIiI5vfIK+P1uArg4TD6rxG9RcypHriMiIiIiIvtt27bQep063sUhIiIiktMZZ3gdQTgN9VDUYqp4HYGIiIiISKmiHr8iIiIikSnxW9Ri1ONXRERERKQwqceviIiISGRK/BY1JX5FRERERAqVevyKiIiIRKbEb1GLqeR1BCIiIiIipYp6/IqIiIhEpsRvUVOPXxERERGRQqXEr4iIiEhkSvwWNfX4FREREREpNKmpsHevux4fD9WqeRuPiIiISHGlxG9RchLcRURERERECsW+vX0dx7tYRERERIozJX6LUkxFryMQERERESlVNLGbiIiIyP5R4rcoaZgHEREREZFCpfF9RURERPaPEr9FScM8iIiIiIgUqqQkiAn8FaMevyIiIiL5i/M6ABERERERkf114YVw/vmwYwf4/V5HIyIiIlJ8KfErIiIiIiIlSkwM1K7tdRQiIiIixZuGehAREREREREREREpZZT4FRERERERERERESlllPgVERERERERERERKWWU+BUREREREREREREpZZT4FRERERERERERESlllPgVERERERERERERKWWU+BUREREREREREREpZZT4FRERERERERERESlllPgVERERERERERERKWWU+BUREREREREREREpZZT4FRERERERERERESlllPgVERERERERERERKWWU+BUREREREREREREpZZT4FRERERERERERESlllPgVERERERERERERKWWU+BUREREREREREREpZZT4FRERERERERERESllHDPzOoaochxnG7DmIB9eG9heiOGURjpHkekcRaZzFJnOUWQ6R5HpHEWmcxTZ/p6j7WbWp6iDEW/9h7a23muR6RxFpnMUmc5RZDpHkekcRaZztH90niLbn3OUbzu7zCV+/wvHcWaZWXev4yjOdI4i0zmKTOcoMp2jyHSOItM5ikznKDKdIykMuo4i0zmKTOcoMp2jyHSOItM5ikznaP/oPEX2X8+RhnoQERERERERERERKWWU+BUREREREREREREpZZT4PTDveR1ACaBzFJnOUWQ6R5HpHEWmcxSZzlFkOkeR6RxJYdB1FJnOUWQ6R5HpHEWmcxSZzlFkOkf7R+cpsv90jjTGr4iIiIiIiIiIiEgpox6/IiIiIiIiIiIiIqWMEr85OI6z2nGcBY7jzHMcZ1ag7DzHcRY5juN3HKd7jrrNHcdJDdSd5zjOO95FHj35nKMXHMdZ6jjOfMdxvnMcp3qO+vc7jrPccZxljuOc5lngUXQg50jXUdg5eiJwfuY5jvOr4zgNc9TXdUT+50jXUegc5dh3l+M45jhO7Rxluo7C94WdI11HYe+1Rx3H2ZDjXJyRo76uI/I/R2X1OpL9o7Z2ZGprR6a2dmRqa0emtnZkamtHprZ2ZGprR1bkbW0z0xJYgNVA7X3KOgDtgD+A7jnKmwMLvY65mJyjU4G4wPpzwHOB9Y7A30A5oAWwAoj1+jUUs3Ok6yhUVjXH+q3AO7qO9vsc6ToKL28CjAXWZO/XdbRf50jXUajsUeCuPOrqOop8jsrkdaRl/5Z8riW1tSOfI7W1D/4c6ToKlamtffDnSNdReLna2gd3jnQdhcrya0fqOop8jg74OlKP3wjMbImZLfM6juLMzH41s6zA5jSgcWC9P/C1maWb2SpgOXCkFzF6rYBzJAFmtjvHZiUgewByXUcBBZwjCfcKcA/h50fXUbi8zpFEputIpJCprR2Z2tqRqa0dmdrakamtvd/U1o5Mbe2Do+uoCCjxG86AXx3Hme04zrX7Ub+F4zhzHcf503Gc44o6uGIi0jm6Evg5sN4IWJdj3/pAWWl3IOcIdB0Fz5HjOE85jrMOuAR4OFCs6yjyOQJdR9cCOI5zFrDBzP7ep66uo8jnCHQd5fzMvjlwu+eHjuPUCJTpOop8jqBsXkeyf9TWjkxt7cjU1o5Mbe3I1NaOTG3tyNTWjkxt7ciKtK0dV+jhlmzHmNlGx3HqAuMcx1lqZhPzqbsJaGpmiY7jdANGOY7TaZ9fCUujfM+R4zgPAFnAF4G6Th6PLwu/eB3IOdJ1lOMcmdkDwAOO49wP3Aw8gq6j/TlHuo4C5wh4APd2z33pOop8jnQdhc7R28ATuNfIE8BLuIkEXUeRz1FZvY5k/6itHZna2pGprR2Z2tqRqa0dmdrakamtHZna2pEVaVtbPX5zMLONgX+3At9RQJfyQNfzxMD6bNyxR9pGI04v5XeOHMe5DOgLXGKBgUdwf51pkuPhjYGN0YvWGwdyjnQd5fte+xI4J7Cu6yjCOdJ1FDxHx+OOBfW34zirca+VOY7j1EfXUcRzpOso9F4zsy1m5jMzPzCU0PtP11GEc1RWryPZP2prR6a2dmRqa0emtnZkamtHprZ2ZGprR6a2dmRF3dZW4jfAcZxKjuNUyV7H/YVmYQH16ziOExtYbwm0AVZGI1av5HeOHMfpA9wLnGVmKTke8j1woeM45RzHaYF7jmZEO+5oOtBzpOso7By1yVHtLGBpYF3XUYRzpOsoeI5mmlldM2tuZs1xGw5dzWwzuo4iniNdR2HvtQY5qg0k1B7QdRThHJXF60j2j9rakamtHZna2pGprR2Z2tqRqa0dmdrakamtHVk02toa6iGkHvCd4zjgnpcvzewXx3EGAq8DdYAfHceZZ2anAb2Axx3HyQJ8wPVmtsOj2KMlv3O0HHfWxXGBfdPM7HozW+Q4znBgMe4tVzeZmc+j2KPlgM4Ruo5ynqNvHcdpB/hxZz+9HkDXUeRzhK6j4DnKr7Kuo8jnCF1HOd9rnzmO0wX31qrVwHWg64j9OEeUzetI9o/a2pGprR2Z2tqRqa0dmdrakamtHZna2pGprR1Zkbe1ndCdQiIiIiIiIiIiIiJSGmioBxEREREREREREZFSRolfERERERERERERkVJGiV8RERERERERERGRUkaJXxEREREREREREZFSRolfERERERERERERkVJGiV8RKVMcx/E5jjPPcZyFjuN84zhORcdxmjuOs/AAj3O54zgNiyrO4iDwGrc5jvN+hHqrHMdpt0/ZEMdx7nEc5zjHcRYf6PkVERERkZJHbe39p7a2iESDEr8iUtakmlkXMzsEyACuP8jjXA4U68ao4zhxhXCYYWZ2dYQ6XwMX5njeGODcwGMnAWcUQhwiIiIiUvyprX1g1NYWkSKlxK+IlGWTgNaB9VjHcYY6jrPIcZxfHcepAOA4ThfHcaY5jjPfcZzvHMep4TjOuUB34ItAj4YKjuP0dhxnruM4CxzH+dBxnHKBx692HOcxx3HmBPa13zcIx3FiHcd5wXGcmYHnuS5QfoLjOH84jjPCcZyljuN84TiOE9jXzXGcPx3Hme04zljHcRoEyv9wHOdpx3H+BG5zHOeIwDGnBp5jYaDeJMdxuuSIYbLjOJ0LOln5xQl8RY7GKNALWG1maw7sv0NEREREShG1tUMxqK0tIp5Q4ldEyqTAL/SnAwsCRW2AN82sE7ALOCdQ/ilwr5l1DtR9xMxGALOAS8ysC2DAx8AFZnYoEAfckOPptptZV+Bt4K48wrkKSDKzI4AjgGscx2kR2Hc4cDvQEWgJHOM4TjzwOnCumXUDPgSeynG86mZ2vJm9BHwEXG9mRwG+HHXex+1JgeM4bYFyZjY/wmnLM87A4/yO4xwWqHchbgNVRERERMogtbXV1haR4kGJXxEpayo4jjMPtzG5FvggUL7KzOYF1mcDzR3HqYbbsPszUP4J7i/s+2oXePw/+dQbmfO4eTz+VGBQIK7pQC3cxjHADDNbb2Z+YF7g8e2AQ4Bxgcc8CDTOcbxhAI7jVAeqmNmUQPmXOep8A/QNNGyvxG1MR1JQnF8BFwYa+f0DxxcRERGRskVtbZfa2iJSLBTGmDQiIiVJaqDnQFDgjq70HEU+oMIBHNOJsD/72D7y/tx1gFvMbOw+cZ2QR1xxgfqLAj0L8pIcKS4zS3EcZxxuw/F83NvpIskzzoCvgF+BP4H5ZrZ1P44nIiIiIqWL2tqorS0ixYd6/IqI5MPMkoCdjuMcFyi6FLexBbAHqBJYX4rba6F1HvX2x1jghkCPABzHaes4TqUC6i8D6jiOc1SgfrzjOJ3yiH8nsMdxnJ6Bogv3qfI+8Bow08x2/Jc4zWwFkAg8i249ExEREZEI1Nbe/zjV1haRg6UevyIiBbsMeMdxnIrASuCKQPnHgfJU4KhA+TeB269mAu8cwHO8j3tb2ZzAhBLbgAH5VTazjMCkF68FbpGLA4YAi/KofhUw1HGcZOAPICnHcWY7jrMbd2yywojzK+AZ4Lv9PJ6IiIiIlG1qa+9/nGpri8gBc8zM6xhERKSIOI5T2cz2BtbvAxqY2W2B7Ya4DdT2gXHN9n3s5UB3M7v5P8bQHPjBzA75L8cRERERESlO1NYWkeJOQz2IiJRuZzqOM89xnIXAccCTAI7jDMKdNOKBvBqiAanA6Y7jvH+wTx64dW8MsP1gjyEiIiIiUkyprS0ixZp6/IqIiIiIiIiIiIiUMurxKyIiIiIiIiIiIlLKKPErIiIiIiIiIiIiUsoo8SsiIiIiIiIiIiJSyijxKyIiIiIiIiIiIlLKKPErIiIiIiIiIiIiUsoo8SsiIiIiIiIiIiJSyvw/LH8j1puYQ/wAAAAASUVORK5CYII=\n",
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
"text/plain": [
"<Figure size 1728x576 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot(vs_test, 2)"
]
},
{
"cell_type": "markdown",
"id": "1f0f3f20-060a-488a-9f61-6b4cb3cf1614",
"metadata": {},
"source": [
"## Apply it in new data without Viking"
]
},
{
"cell_type": "markdown",
"id": "d99852b3-ec27-44e7-bd63-056fa3804810",
"metadata": {},
"source": [
"Retrieve PES and XGM data into the expected format.\n"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "371f7583-5d0d-44d0-b41b-20cf4279da45",
"metadata": {},
"outputs": [],
"source": [
"runTest = 321\n",
"\n",
"# bunch pattern table\n",
"field_bpt = [\n",
" {'bunchPatternTable': {'source': 'SA3_BR_UTC/TSYS/TIMESERVER:outputBunchPattern',\n",
" 'key': 'data.bunchPatternTable',\n",
" 'dim': ['pulses'],\n",
" },\n",
" },\n",
" ]"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "83fe11bc-aa8b-4037-aa15-4a36e3104bf5",
"metadata": {},
"outputs": [],
"source": [
"from pes_to_spec.model import Model\n",
"model = Model.load(\"VS_p5576_viking.joblib\")"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "6115d454-d695-441e-b70f-40ac4a336355",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Source SA3_BR_UTC/TSYS/TIMESERVER:outputBunchPattern not found in run. Skipping!\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Source SA3_BR_UTC/TSYS/TIMESERVER:outputBunchPattern not found in run. Skipping!\n"
]
}
],
"_, data_inf = tb.load(proposal, runTest, fields + field_bpt)\n",
"\n",
"# transform PES data into the format expected\n",
"pes_data_inf = {k: da.from_array(data_inf[item].to_numpy())\n",
" for k, item in pes_map.items() if item in data_inf}\n",
"xgm_inf = data_inf.XTD10_SA3.to_numpy()\n",
"\n",
"# assume it does not change:\n",
"bpt_inf = data_inf.bunchPatternTable.isel(trainId=0).to_numpy()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "056c231d-49cf-4280-b7b2-8884b50e710e",
"metadata": {},
"outputs": [],
"source": [
"# assume the same bunch pattern structure throughout the run!\n",
"fel_pos = indices_at_sase(bpt_inf, sase=3)\n",
"fel_pos -= fel_pos[0]\n",
"freq_ratio = {ch: 220 for ch in channels}\n",
"sample_pos = {ch: fel_pos * 2 * freq for ch, freq in freq_ratio.items()}\n",
"pulse_spacing = sample_pos"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "938f91a8-ab92-407e-a679-c5ce2c8589e5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
"{'channel_1_A': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_1_B': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_1_C': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_1_D': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_2_A': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_2_B': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_2_C': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_2_D': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_3_A': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_3_B': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_3_C': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_3_D': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_4_A': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_4_B': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_4_C': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360]),\n",
" 'channel_4_D': array([ 0, 14080, 28160, 42240, 56320, 70400, 84480, 98560,\n",
" 112640, 126720, 140800, 154880, 168960, 183040, 197120, 211200,\n",
" 225280, 239360, 253440, 267520, 281600, 295680, 309760, 323840,\n",
" 337920, 352000, 366080, 380160, 394240, 408320, 422400, 436480,\n",
" 450560, 464640, 478720, 492800, 506880, 520960, 535040, 549120,\n",
" 563200, 577280, 591360])}"
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pulse_spacing"
]
},
{
"cell_type": "markdown",
"id": "cec450da-e557-4b39-a00c-39b55eb6b28b",
"metadata": {},
"source": [
"If there are multiple pulses in a train, the pulse spacing above tells us about how many samples there are between them. The first item in the list above is always zero, as the task of identifying the position of the first pulse is taken care through the Virtual Spectrometer itself.\n",
"\n",
"Now we can do the prediction itself. To get each pulse in a train, the `pulse_spacing` should be specified as the one above."
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "d9f267f7-3e0d-4101-97f0-019c837b5e5e",
"metadata": {},
"outputs": [],
"source": [
"vs_inf = model.predict(pes_data_inf, pulse_energy=xgm_inf, pulse_spacing=pulse_spacing)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"id": "2be3b1ac-5e21-4503-b763-ba7723b808c2",
"metadata": {},
"outputs": [],
"source": [
"vs_inf[\"energy\"] = model.get_energy_values()"
]
},
{
"cell_type": "markdown",
"id": "cdd39379-bb88-4717-bcf5-beb4440daf78",
"metadata": {},
"source": [
"Now we can plot it:"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "c9ea5c57-cdf3-4268-856f-44b48cd3fb69",
"metadata": {},
"outputs": [],
"source": [
"def plot_new(data, i, pulse=0):\n",
" \"\"\"Plot prediction and expectation.\"\"\"\n",
" from matplotlib.gridspec import GridSpec\n",
" fig = plt.figure(figsize=(12, 8))\n",
" gs = GridSpec(1, 1)\n",
" ax = fig.add_subplot(gs[0, 0])\n",
" ax.plot(data[\"energy\"], data[\"expected\"][i,pulse], c='r', ls='--', lw=3, label=\"Prediction\")\n",
" ax.fill_between(data[\"energy\"],\n",
" data[\"expected\"][i,pulse] - data[\"residual\"][i,pulse],\n",
" data[\"expected\"][i,pulse] + data[\"residual\"][i,pulse],\n",
" facecolor='gold', alpha=0.5, label=\"68% unc.\")\n",
" ax.legend(frameon=False, borderaxespad=0, loc='upper left')\n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['right'].set_visible(False)\n",
" ax.set(\n",
" xlabel=\"Photon energy [eV]\",\n",
" ylabel=\"Intensity [a.u.]\",\n",
" title=\"\",\n",
" )\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "99256b0f-780d-4a20-bc70-6e0b894c584c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtoAAAHgCAYAAACb58plAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABk4klEQVR4nO3dd3gc1bnH8e/ZVW/uvSD33o0xxsaAAdO7Cd0EE2oCJBcSSANC4AYSLi10CBgCONTQq8E0N9y7jXvvtmRbstqe+8eMmJWtLu3OSvp9nmefPXNmZvfVeC29OnrnHGOtRUREREREalfA7wBEREREROojJdoiIiIiIhGgRFtEREREJAKUaIuIiIiIRIASbRERERGRCFCiLSIiIiISAXF+BxApp5xyiv3kk0/8DkNERERE6jdT1o56O6K9c+dOv0MQERERkQas3ibaIiIiIiJ+UqItIiIiIhIBSrQjKBgMMnDgQPr27cu4cePIycmp9mtdeeWVvPnmmwBcffXVLFmypMxjp0yZwtSpU3/afuqpp3jppZeq/d4iIiIiUnVKtCMoOTmZefPmsWjRIhISEnjqqadK7C8qKqrW6z733HP07t27zP2HJtrXXXcdV1xxRbXeS0RERESqR4l2lIwaNYqVK1cyZcoUjj/+eC655BL69etHUVERt912G0ceeST9+/fn6aefBsBayy9/+Ut69+7N6aefzvbt2396reOOO45Zs2YB8MknnzB48GAGDBjAmDFjWLt2LU899RQPPfQQAwcO5Ntvv+Wuu+7iH//4BwDz5s1j+PDh9O/fn3PPPZc9e/b89Jq/+93vGDZsGN27d+fbb7+N8hUSERERqV8aTqJ9111gTOUe11xz+PnXXFPymLvuqvRbFxYW8vHHH9OvXz8AZs6cyb333suSJUt4/vnnadSoET/88AM//PADzz77LGvWrOGdd95h+fLlLFy4kGeffbbECHWxHTt28Itf/IK33nqL+fPn88Ybb5CZmcl1113Hr3/9a+bNm8eoUaNKnHPFFVdw//33s2DBAvr168fdd99dIs6ZM2fy8MMPl+gXERERkaqrt/Nox4Lc3FwGDhwIOCPaEyZMYOrUqQwbNoxOnToB8Nlnn7FgwYKf6q+zsrL48ccf+eabb7j44osJBoO0bduWE0444bDXnz59Oscee+xPr9W0adNy48nKymLv3r2MHj0agPHjxzNu3Lif9p933nkADBkyhLVr19boaxcRERFp6JRoR1BxjfahUlNTf2pba3nssccYO3ZsiWM++ugjjClz/vOfzq3omKpITEwEnJs4CwsLa+11RURERBqihlU6Ym3lHs88c/j5zzxT8pgqlI6UZ+zYsTz55JMUFBQAsGLFCg4cOMCxxx7LpEmTKCoqYsuWLXz11VeHnXv00Ufz9ddfs2bNGgB2794NQHp6Ovv27Tvs+EaNGtGkSZOf6q9ffvnln0a3RURERKR2aUTbZ1dffTVr165l8ODBWGtp0aIF//3vfzn33HP58ssv6devH927dy81IW7RogXPPPMM5513HqFQiJYtW/L5559z5plncsEFF/Duu+/y2GOPlThn4sSJXHfddeTk5NC5c2deeOGFaH2pIiIiIg2Ksdb6HUNEDB061BbPzCEiIiIiEiFl1vE2nNIREREREZEoUqItIiIiIhIBSrRFRERERCJAibaIiIiISAQo0RYRERERiQAl2iIiIiIiEaBEO4L27t3LBRdcQM+ePenVqxfTpk0DYN68eQwfPpyBAwcydOhQZs6cCcD3339P//79OfLII1m5cuVPrzF27Fjq6zSMIuWyFqxWKRURkbqp4SxYs+Ou2n29FhW/3s0338wpp5zCm2++SX5+Pjk5OQD89re/5c477+TUU0/lo48+4re//S1TpkzhwQcf5K233mLt2rU8+eSTPPjgg9xzzz38/ve/r9Wl1kXqjIIfgQAkdC37mFAOBFKiFpKIiEhlaUQ7QrKzs/nmm2+YMGECAAkJCTRu3BgAYwzZ2dkAZGVl0bZtWwDi4+PJzc0lJyeH+Ph4Vq1axaZNm8pdJj0zM5OdO3cCMGvWLI477jgA7rrrLq666iqOO+44OnfuzKOPPvrTOS+99BL9+/dnwIABXH755bX9pYvUnoJNULC2/GMOamEqERGJTQ1nRDvKVq9eTYsWLfj5z3/O/PnzGTJkCI888gipqak8/PDDjB07lltvvZVQKMTUqVMBuOOOO7jmmmtITk7m5Zdf5tZbb+Wee+6pdgzLli3jq6++Yt++ffTo0YPrr7+eFStWcO+99/L999/TvHlzdu/eXVtfskjtK9oB9mD5xxRshNABCKRGJyYREZFK0oh2hBQWFjJnzhyuv/565s6dS2pqKn/7298AePLJJ3nooYfYsGEDDz300E+j3gMHDmT69Ol89dVXrF69mrZt22Kt5Wc/+xmXXXYZ27Ztq1IMp59+OomJiTRv3pyWLVuybds2vvzySy644AKaN28OQNOmTWv3CxepTaFsKNwEtqjsY4p2QdHeqIUkIiJSWUq0I6R9+/a0b9+eo446CoALLriAOXPmADBx4kTOO+88AMaNG/fTzZDFrLX89a9/5U9/+hN33303d999N5dddlmJ8o9icXFxhEIhAA4eLDnyl5iY+FM7GAxSWFiItVb13lJ3hHIglAcF60vfby2E9kJof1TDEhERqQwl2hHSunVrOnTowPLlywGYPHkyvXv3BqBt27Z8/fXXAHz55Zd069atxLkTJ07k9NNPp0mTJuTk5BAIBAgEAj/dTBkuMzOT2bNnA/DWW29VGNeYMWN4/fXX2bVrF4BKRyS22QPOc+GWMvbnOKPdVom2iIjEHtVoR9Bjjz3GpZdeSn5+Pp07d+aFF14A4Nlnn+Xmm2+msLCQpKQknnnmmZ/OycnJYeLEiXz22WcA/OY3v+H8888nISGB11577bD3uPPOO5kwYQL33XffT6Pn5enTpw9/+MMfGD16NMFgkEGDBvHiiy/y3nvvMWvWLP7yl7/U0lcvUkO2yBnNBigqo2yqeCQ7dCA6MYmIiFSBqa/zMw8dOtTOmqXZCETqrKJ9sPtBp53QGRpdcfgx+asg62VIHgZpp0U3PhEREUeZNbkqHRGR2BRedx06vGyqxDFl7RcREfGRSkdEJDaddiH0M3DNcGhRRmnIlo0wfy1s2AhjeoN7H4SIiEgsUKItIrGnoAC+mQFfFMDT02HZ7dCslOP+9hw881+n/aASbRERiS0qHRGR2LNsGeQXOO1mKZAUgFApC9cc0cJrr14dndhEREQqSYm2iMSejRu9dofGsHArzC/l5ubMsGHuNWsiHpaIiEhVKNEWkdizfbvXnroOxjwN995/+HEtUrz2zp2Rj0tERKQKlGiLSOwJT7SLzZpbcvuBB+DCsOR7lxJtERGJLUq0RST2lJZor9sEO3Z428uXw96w2Ug0oi0iIjFGibaIxJ7SEm2Adeu89p49JfdlZUNhYeRiEhERqSIl2iISe8pKtMNHtA9NtAF2745MPCIiItWgRFtEYk94ot25Ren9e/cefp7KR0REJIYo0RaR2BOeUPfu7rUrGtHetStyMYmIiFSRVoYUkdjz85/Dqg9gbzr07Q0ffO/0l5Vod20OXXpASgoiIiKxQom2iMSeu/8IOwPQeAI8947XX1yDXVQE2dlO2xiYfhck94OUIVEPVUREpCwqHRGR2GPznedAGjRr7fUXJ9pZWV5fRgbEZYAtZYl2ERERH2lEW0Rij81zngNp0KQJxMdB4yRIS3P6w8tGmjSBQCqEcqMfp4iISDmUaItI7LH5EEgEEw9jxsCeyXBwKjS73dl/aKJtUiC015dQRUREyqJEW0Riy+zZ8H/3QvJOGNUWxo+HuKYQOgi2CEwQunWDdx+H7fPhQG949lPYtQ56FcGll/r9FYiIiABKtEUk1qxYAa+6N0Dua+Mk2sYtGQnlQDAdGjWCk4ZAQTP4Lh1Ov8XZf0quEm0REYkZuhlSRGLLoTc6AgTcafvsAW+fzXNKRho39vpKW8RGRETEJ0q0RSS27N/vtdPTned5P8KXK+HVSZCT4/TZPAgkOaPbxZRoi4hIDFHpiIjElgNho9bFs4z87ApYvRp4BY4+3anRtnkQaFRyRDt8NFxERMRnGtEWkdgSPqKdmuo8N2ni9e3ZAzfdBJ0vg0GXw+TJ3j6NaIuISAzRiLaIxJbSRrQPTbS3bYMdWc4jLg6CQWe1yNxcyM+HhIToxiwiIlKKiI5oG2N+bYxZbIxZZIx5zRiTZIxpaoz53Bjzo/vcJOz4O4wxK40xy40xY8P6hxhjFrr7HjXGmEjGLSI+Km1Eu2lTr2/37pIj102aqHxERERiUsQSbWNMO+AmYKi1ti8QBC4CbgcmW2u7AZPdbYwxvd39fYBTgCeMMUH35Z4ErgG6uY9TIhW3iPgsPNEuHtFu1szr27nz8AVrNPOIiIjEoEjXaMcBycaYOCAF2AycDUx0908EznHbZwOTrLV51to1wEpgmDGmDZBhrZ1mrbXAS2HniEh9E146Ujyi3aKF17djhxJtERGpEyKWaFtrNwH/ANYDW4Asa+1nQCtr7Rb3mC1AS/eUdsCGsJfY6Pa1c9uH9otIfVTaiPahiXZ4Mt24cckp/lQ6IiIiMSJiN0O6tddnA52AvcAbxpjLyjullD5bTn9p73kNTokJHTt2rEq4IhIrrr8ejmsJhZ0gM9Ppq2hEe8wYaJYDTTtC69ZRDVdERKQskZx15ERgjbV2B4Ax5m1gBLDNGNPGWrvFLQvZ7h6/EegQdn57nFKTjW770P7DWGufAZ4BGDp0aKnJuIjEuMsugz37ofEEMPFOX3iivWaNM8MIQEqKM8PI738PWZmQ0AWS+0Y9ZBERkdJEskZ7PTDcGJPizhIyBlgKvAeMd48ZD7zrtt8DLjLGJBpjOuHc9DjTLS/ZZ4wZ7r7OFWHniEi9VOQl2VAy0V6xwmuH12YHkpxFbERERGJExEa0rbUzjDFvAnOAQmAuzmhzGvC6MWYCTjI+zj1+sTHmdWCJe/yN1lp32IrrgReBZOBj9yEi9dYhFWOtWkHnDtDEQkEjWLDY6Q+fX9skK9EWEZGYEtEFa6y1dwJ3HtKdhzO6Xdrx9wL3ltI/C9Dfg0UajEMS7ZYtYenXkDUR5nWCk690+sMT7UAKhPZFLUIREZGKaGVIEYkdubkwdiwk7obWU+Hll719gRTneXArmP047NoCTc9x+hYsgH89A7u3wtDVzhLtIiIiPlOiLSKxY/9++PZbp91sa8l9JtltLIAjLHTtAxlDnK41a+CRV532nhQl2iIiEhOUaItI7ChtDu1ixSPaoRzn+afEGy1YIyIiMUmJtojEjvIS7ek/wHdzYOc+GNsdhh3t7QtfsEaJtoiIxAgl2iISO0pbfr3YCy/As+877cQ4OCrJ2xc+oq2VIUVEJEZEch5tEZGqKW9EO3wu7Xu+gBZj4WN3pk+VjoiISAxSoi0isaO8Ee22bUtu5+ZBRobTTk/3+vft81aOFBER8ZESbRGJHeWNaPfocfjxrVs7z8Ggl3QDZGfXfmwiIiJVpERbRGJHeSPavXsffnxmptdW+YiIiMQYJdoiEjvKG9Fu0wZ6ZXrbo49xRrKLKdEWEZEYo0RbRGJHeSPaxsBffgWJQWieAnf9qeT+8Cn+NPOIiIjEAE3vJyKx47zzoF0h5MbB0JMP33/mabBsJyTHQ8uTSu679FIY3hyadYFOnaITr4iISDmUaItI7OjTBzqNgfgjnMehAumQmuCsEmkO+YPctdfCvpYQ1wGSSzlXREQkylQ6IiKxxeYD8aXvC7gziwRSS99vEiG0v/R9IiIiUaZEW0Riiy0Ak1D6vkCaM5IdSCt9v0kEq0RbRERigxJtEYkt5SXaxkCwGZhyEm2NaIuISIxQoi0isWPcOBh6Aww/HubPL/2YYGuIa3V4/zffwMV/gjPugrvv9voL1oMtjEi4IiIi5dHNkCISO1atghWbgE1QWEZynNSv9BHt7dvhvSlOu3lYkp77A4R2QeNrajtaERGRcinRFpHYUd482sUSupfeX2LBmj1eu2gnFG6BUI4zW4mIiEiUqHRERGJHeStDVqREor3ba4fcdtFuREREokmJtojEjsqMaJclfGXIPcXJ9R4I5bltJdoiIhJdSrRFJDZYW3JEu6qJdtOmXnu3WzpSsNHrK9pR/dhERESqQYm2iMSGvDwoKnLa8fGQUMYUf2Vp0sQ5DyD7AOTkQNE2b3/R9tqJU0REpJKUaItIbAgvG6lqfTZAIACtwqb92zgP8rfDB0th6XYo3FnjEEVERKpCs46ISGyoyY2QxVq3ho1uucjat+EvX8MrsyA+AN/8Eo6yzqI3IiIiUaARbRGJDTW5EbJY69Zee+5SJ8kGuOME6NwYQlnVDk9ERKSqlGiLSGyorRHtYp8u99ofLnVGsgu3HX6OiIhIhKh0RERiQ+/e8M3HsHsWNDm2eq9x6aXQtxCaHXRqs4sN6+g8F26BxB41j1VERKQSlGiLSGxIS4OjB0FeEFKrmWgfdxwM3gp5y+BfP3j9A9s6z0VbaxymiIhIZal0RERih80HU8Vp/Q5lkp3nhWFJ9YA2zvPWVRAK1ez1RUREKkkj2iISO2wBEF+z1wgkQ/ZB2OneXJkYhHsmw4x1sDMHVl8InbrVOFQREZGKaERbRGKDtbU0op0Cq8OWW89sCntynCQbYOH0mr2+iIhIJSnRFpHYcO+90GgAtD8R7r+/+q/zywfh5Ge97a7NoUcLb3vhnOq/toiISBUo0RaR2HDgAOTlw+4sKCys/usM6l9y+8ze0KOlt71kKSIiItGgGm0RiQ01XYK92LVXwd7p8PYiOKoDXHEXfPka8JGzf+mqmkQpIiJSaUq0RSQ2hC9YU92VIQGCaXDd0c7DGEjsCkMuA+5z9i/f4Mw8EtAf9EREJLL0k0ZEYkNtjWibsCQ92BICSdC6F7RwXzMnD1ZpVFtERCJPibaIxIbaGtEOJIFx/1gX38Hr79fZa8+eVv3XFxERqSQl2iISG2prRBsgkOI8B5t5fQN7e+35M2r2+iIiIpWgRFtEYkNtjWgDBNLd5yZeX48+XvvH5TV7fRERkUpQoi0isWHfPq+dnl6z1wo0dZ7DR7R7DHT3GTiQXbPXFxERqQTNOiIisaE2E+1gU6dWO9jc6ztyNEy9ETo0hrTMmr2+iIhIJSjRFpHYEJ5oZ2TU7LUSegDWmd6vWEo69OgMRdlQuN1Z8j18v4iISC1Toi0iseHHH2HjExA4p+Y3Q8a3dR6HCrZ2Em2bD0XbIK51zd5HRESkHKrRFpHY0KoVdGkJgwdHbjGZ+I5eu2BDZN5DRETEpURbRGKDzQfiI/wmrWDNbpj8I3z7WYTfS0REGjqVjohIbLB5YCKcaP93Olz6mNMe2xtO/kNk309ERBo0jWiLiP8OHoSNq2FfEYRCkXufvgO89pJNULQ3cu8lIiINnhJtEfHf999D5iDoeA2ceGLk3qdnT4hzv+1tyILdKyL3XiIi0uAp0RYR/4VP7VfTGUfKk5AA3cJmI1mgpdhFRCRylGiLiP9qc7GaivTp4rXnz4rse4mISIOmRFtE/JcdtiR6pBPtgX289vT5YCNYEy4iIg2aEm0R8V80R7SPG+W1v13tLGAjIiISAUq0RcR/tbn8ekUGHwUZiU576z5YOjuy7yciIg2WEm0R8V80R7STOsDRnbztKZMj+34iItJgKdEWEf/t3eu1GzeO7HuZOBg9yNue8l1k309ERBosrQwpIv7bvdtrN20a+fc7biT0+AKGdYCT+1R8vIiISDUo0RYR/4Un2k2aRP79Bh0D397gbRdlQzDCteEiItLgqHRERPxXUOC1ozGiHWxRcrtwc+TfU0REGhwl2iLivx9+gC33wZbl0KNH5N8vrgWYoLddtD3y7ykiIg2OEm0R8Z+1EFcALdtBXBQq2kw8xHf2tgu3Rf49RUSkwVGNtoj4z+Y5KzSaxOi9584MuP9j2JAFaWnwxrjovbeIiDQISrRFxH821ynlMFH8lhTXHp6d6bTTEqBgL8Q3jt77i4hIvafSERHx1969zqIxS3bD1q3Re9+OA6F5qtPenw/LpkTvvUVEpEFQoi0i/po7F04cB6Mfhp/9LHrvawwM7O5tz5oevfcWEZEGQYm2iPhrzx6vHY05tMMNGeK15yyI7nuLiEi9p0RbRPwV7VUhwx052mvPXQY2P7rvLyIi9ZoSbRHxl6+J9rFee8FmyJkb3fcXEZF6TYm2iPgrvHQk2ol2hw7QLM1p78uDpR87c3qLiIjUAiXaIuKv8BHtaNdoGwMDwxaumbMIcr8FWxjdOEREpF5Soi0i/vKzdARgUG+vPX8z5HwNex6HA19GPxYREalXlGiLiL/8TrSHHuW1F24FWwRFe5yR7cIozustIiL1jlaGFBF/+Tm9H8Cxp8D9n8PAttCrlddvLeROh/Rzoh+TiIjUC0q0RcRffo9ot+4BE0ZCKO/wfYUbox+PiIjUGyodERF/tW8P7RpBWqo/I9rGQLBF6fuKdoEtiG48IiJSbyjRFhF/ffMFzL0F9qzxJ9EGCDYrvd9aKNpd+j4REZEKqHRERPxlc53nQLJ/MQTdkpXN2fD8TMgvhLvHQsBA0U6Ia1X++SIiIqVQoi0i/rIHnWeT5F8MwRYwayOc+S8ocheseXoGTL4WjtoOiX38i01EROoslY6IiL9CuWDiwfj4e39cKxjSDkZ2Ktl/6auwbok/MYmISJ2nRFtE/LNmDbz4GnyyChYu9C+OQFMIZsDdJ0NyWMK/dR9c/oCWZRcRkWpRoi0i/pk6Fa79I1z+Atx3n39xGAMJ3aF3K/j2RvjjGIh3vz3OWQ+LFvkXm4iI1FlKtEXEP37PoR0urqXz3LEx3DQSTu7h7fv6c19CEhGRuk2Jtoj4J5YS7WDLkttD23vt+bOiG4uIiNQLSrRFxD9+L78eLv4IiGvubfcKS7wXLY5+PCIiUucp0RYR/8TSiLYJQPoFTr02lEy0l6zUDZEiIlJlmkdbRPwTS4k2QFxrSOwPB+dD63S4cih0bgr9BzqJdnESLiIiUglKtEXEP7FUOlIs6UjIWwwUwgOnO32BdAjoD4AiIlI1Ef3JYYxpbIx50xizzBiz1BhztDGmqTHmc2PMj+5zk7Dj7zDGrDTGLDfGjA3rH2KMWejue9QYDSuJ1AuxNqINEN8emv0WUk/yRrBD+yB0wN+4RESkzon0EM0jwCfW2p7AAGApcDsw2VrbDZjsbmOM6Q1cBPQBTgGeMMYE3dd5ErgG6OY+Tolw3CISDbGYaAOYBEg5BlJO9PoKN/sXj4iI1EkRS7SNMRnAscDzANbafGvtXuBsYKJ72ETgHLd9NjDJWptnrV0DrASGGWPaABnW2mnWWgu8FHaOiNRV1sZm6Ui4xP5ee/9a38IQEZG6KZI12p2BHcALxpgBwGzgZqCVtXYLgLV2izGm+Nb+dsD0sPM3un0FbvvQfhGpywoK4PSxsH0hFDSHpCS/IzpcKAmueBOWbILt98G+HIjTrS0iIlI5kSwdiQMGA09aawcBB3DLRMpQWt21Laf/8Bcw5hpjzCxjzKwdO3ZUNV4RiaaEBHjjefjvlTBjpt/RlC4+HhZugfV74WABrFjud0QiIlKHRDLR3ghstNbOcLffxEm8t7nlILjP28OO7xB2fntgs9vfvpT+w1hrn7HWDrXWDm3RokWtfSEiEiE2FwJJzhzWsap3V689f4pvYYiISN0TsZ9u1tqtwAZjTA+3awywBHgPGO/2jQfeddvvARcZYxKNMZ1wbnqc6ZaZ7DPGDHdnG7ki7BwRqctCuWCS/Y6ifP3C6rQXlDHyXrTbeRTqL2kiIuKJdLHhr4BXjDEJwGrg5zjJ/evGmAnAemAcgLV2sTHmdZxkvBC40Vpb5L7O9cCLQDLwsfsQkbrO5kAg1hPtIcBzTru0pdhD+2HvM0AQAqnQ5IZoRiciIjEsoom2tXYeMLSUXWPKOP5e4N5S+mcBfWs1OBHx19Sp8N4zkFEAo/vAMcf4HVHp+h/ptRevPXyFyLxlEDrotG0O5C2CRH27EhERrQwpIn757ju4353p83/axG6i3bsPBAyELKzdBfs3QXrYbSMF67y2tXBwgRJtEREBIr9gjYhI6WJ9Du1iSUnQpbXTtsDCaSX3F246ZHsd/FT1JiIiDZkSbRHxR6yuClmaPl289sIfvHZRNoT2lDw2lFdylFtERBosJdoi4o86lWj38toLFzjP1sKBT5xngC3Z8NA3MG8z5P8Y/RhFRCTmKNEWEX+EJ9qxXDoC0H+w82yA3dugcCvkToW8Jd4xr8+H//0Kxr0Me1b6EqaIiMQW3QwpIv7YudNrN2/uXxyVccIZ8MZUGNQWMpIga6IzB3i4A/kwqhN8uwb+/THcfkPJ2UlERKTB0Yi2iPhjR9jiLrG+kmvz9nB8fyfJhsOTbIBdOU6SDfCHD6EoK3rxiYhITFKiLSLRZ23JEe1YT7QB4lqW3M4pgGOfgJvehX/PgXPDpvSzwLI5UQ1PRERijxJtEYm+rCwoKHDaaWnOFHqxLnjILwPzNsGyHTBpHjw9HUZ2gnYZ3v4vPotqeCIiEnuUaItI9IWXjcR6fXaxYDPYkwvfrYE3F8BnK7x9R7oL2Nw4wuv74svoxiciIjFHN0OKSPSlpsKvx8PWRdBqlN/RVM7eIPR4oPR9ozo7z8eFzbf9zQIoLIQ4fZsVEWmo9BNARKKvbVv46y/g4Bxo+iu/o6mcVr2hTTps2Veyv0MjGNvDaXdp5pSPbMqGfXkw7SsYdVL0YxURkZig0hER8UdoHwRS/I6i8gLJMLhTyT4DPH4epMQ728F0GN3Z2//lB1ELT0REYo8SbRHxR11LtAFu/lnJ7QnDYER3yLgI0s+F9PNhcHtv//KF0Y1PRERiihJtEfFHaB+YOpZojxwDfzrRGcG+cADcewok9IbEnpA0AOKPgG79veOzdpb9WiIiUu+pRltEou/vf4cZk6BlR7g2EwYM8DuiyolrD786xnkUi8/02iYAx14B3+2Fjk0gKQ6K9jklJSIi0uBoRFtEou/LyfDWHHjyv7Bhg9/RVF5cazDBQ/ralNxu1B16dnKSbICCtVEJTUREYo8SbRGJvh3bvHZdWBWymAlCsIm3HUh25tcucYxxSkmKFW6OTmwiIhJzlGiLSPSFL1hTlxJtKLlCZPLRTrnIoeK7ee2i7ZGPSUREYpISbRGJLmthW1ii3bKlf7FUR7CV+9wIkkeWfkz8EbBtP3yyHP7vVedrFhGRBkc3Q4pIdO3YAXn5TrtxI0hL8zeeqopv55SHpJ5c+mg2QCgOjnwEDhY621fPgw6DohaiiIjEBo1oi0h0rV/vtTt08C+O6orvAqljIbFP2cfExcGgsIVrvvsk8nGJiEjMUaItItEVPstIxyP8i6O6TACSh1d83IiwKQu//S5y8YiISMxSoi0i0VXXR7Qra9QYrz1VK0SKiDRESrRFJLrWr/Pa9TrRPstrL94E+Qf8i0VERHxR5s2Qxpj3KnH+bmvtlbUXjojUe+tXeu2OHf2LI9KatoF2jWHTXigMwdLvYcDJfkclIiJRVN6sI72Aq8vZb4DHazccEan3fjkOhlvYlgRDhvgdTWT16ugk2gDzlGiLiDQ05SXaf7DWfl3eycaYu2s5HhGp7wYlQu8hkHIMpPbyO5rIGjwAvljgtKfNgvH+hiMiItFVZo22tfb1ik6uzDEiIj8J5UH+CqcdqGPzZ1eHbogUEWnQqnUzpDHmmtoOREQagIKVYN1FXALp/sYSDaPOgIBx2os2wM6l/sYjIiJRVd2VIU2tRiEiDUPBGq9tGsCIdqNmcO5QSCyAfm0g9wec219ERKQhqFaiba19urYDEZEG4D/vw58nQdsMuDgefvMHvyOKvBf+BAdnO22zDkIHIJDqb0wiIhIVFSbaxpg/l9Zvrf1L7YcjIvXauvWwOdt5jNzhdzTREdfCa9siODgXUkb6F4+IiERNZWq0D4Q9ioBTgcwIxiQi9VHoAKzZ5m136uxfLNEUbF5yu/hmUBERqfcqHNG21j4Yvm2M+QdQmcVsREQ8RTvhx13edo8e/sUSTcFWJbcL1kPRbgg29SceERGJmurMOpICNJChKBGpNXnbYNl2b7vBJNrpMHEJXP4aDPg/mL4e8ldWfJ6IiNR5lanRXghYdzMItABUny0iVfPNFMg66LTbNYcjjvA1nKiavR0+dUtGnp0Bo0+H5GH+xiQiIhFXmVlHzghrFwLbrC2eCFdEpJLe/9JrnzEaTAOaJfTay2GSu9Du+0uc5dhHndewroGISANUYemItXZd2GOTkmwRqTJr4cOZ3vaZp/oXix+OGQtnhM2f/dzXzpzioTznJlEREamXqrsy5Ae1HYiI1GOrF8KGPU47PRGOO8HfeKItrhVce7S3/dZC2Pkq7JsEWS+rZltEpJ6qVqIN/KJWoxCR+m3R9167b2tIal72sfWRiYdjhkMnd6aRnAKYugLy10DhVshb5G98IiISEdVKtK21W2o7EBGpx7avhZR4p92jBQQawPLrh0roBGO6etuTf/TaBeuiH4+IiERchYm2MaabMeZNY8wSY8zq4kc0ghOReuJnA2H1HTDrZrjl9IZ5E2CwRclE+8uwcpGiPc7c2iIiUq9UZkT7BeBJnBlHjgdeAl6OZFAiUs8U7oSAgY6NIbNrhYfXS3EtYUQmJLmTPa3YCRv2evsPfOVHVCIiEkGVSbSTrbWTAePOPHIX0MDuZBKRarP5ENrjbR+6JHlDEdcGGg+AYzK9vskrnbnFF22FvMUQyvEtPBERqX2VSbQPGmMCwI/GmF8aY84FWkY4LhGpLwrWgQ152/Gd/IvFb6knwZhu0CQZzu0LXZo582qf8DT85VPIW+h3hCIiUosqs2DNLTjLrt8E3INTPjI+gjGJSH2y4HuYtRB6t4JuLZ2bAhuqYBOYcBH8fCgEA3CwENo1cm4QfWUu3DUTkoaCCfodqYiI1IIKE21r7Q9ucz/w88iGIyL1zjsfw31vO+3rx8ITCf7G47eM/rDPvZ88MQjnvAg5+ZCdB/MWwchlkNjH1xBFRKR2lFk6Yoy5q6KTK3OMiDRwi8KmsRswzL84YkV8Z2/WFWOcGySz85ztj5fBwVm+hSYiIrWrvBHtq40x2eXsN8BFwF21GpGI1B+2EFZu9rb7KdEmmAFxbaFgk7N9XGd4263Nfno63DAC0vZCsLFfEYqISC0p72bIZ4H0ch5p7jEiIqUr2AGrd3nbPZVoAxDXwWuf09dbMXJ/PkyaB/lLfQlLRERqV5kj2tbau6MZiIjUQ2sXOzf8ATRPg6aasAhwRrSLJcXB9UfDbz90tp+bCdctheSj/YlNRERqTbWWYBcRqZTli7x2t7ZlH9fQxB9Rcntcf2iU5LTX7IZPvoDC7dGPS0REapUSbRGJnBXLvHbXTN/CiDnBRhDXAgKpkDISmg6ASwd5+5+dCblT/YtPRERqRYWJtjGmaTQCEZF6aO4Sr927t39xxKK0MyDtVEg9EZKGwFXDnGXqAaasggWfQ1GWvzGKiEiNVGZEe4Yx5g1jzGnGFM9JJSJSCXNWeu2jRvoXRyyKPwIS+3rtI5rB2B7e/o+WQcEqf2ITEZFaUZmVIbsDJwJXAY8ZY/4DvGitXRHRyESkbivMg1VhdcaDjvUvllhn4iH5KLhmFfRsAWf0gr6toXAzMNjv6EREpJoqszKkBT4HPjfGHA/8G7jBGDMfuN1aOy3CMYpIXXRgE1w00Lm5L6sAGrfwO6LYlnwMjJwJx2R6fQUbfQtHRERqrsJE2xjTDLgMuBzYBvwKeA8YCLwBdIpgfCJSVyUegH+c4bZ7lH+sODdGJvaBg/O9vsKtULgT4pr7F5eIiFRbZWq0pwEZwDnW2tOttW9bawuttbOApyIbnojUWaE9XjvYzL846pLk4WDCvi1bC9n/hdAB30ISEZHqq0yi/Udr7T3W2p/+hmmMGQdgrb0/YpGJSN1WtNdrBzR5UaXEtYEEd3aWXTlw1Rvw7/ch51t/4xIRkWqpTKJ9eyl9d9R2ICJSz4T2eu1gY7+iqHuShsDCrTD6SfhwKXyyAgrW+h2ViIhUQ5k12saYU4HTgHbGmEfDdmUAhZEOTETquN88A/GF0KkZ/OIK0KB25cRnQko6bN/vbE9bC4U7nDISzbAqIlKnlHcz5GZgFnAWMDusfx/w60gGJSJ1XFEBvDoDDrq/k//iX/7GU5cYA72OgsZJsPeg81izA5rugaB+WxERqUvKTLSttfOB+caYV6y1GsEWkcrbsMxLspumQtNW/sZT1yR2hkHt4Ct3wZqPl8GArUq0RUTqmDJrtI0xr7vNucaYBWGPhcaYBVGKT0TqohVh3yK6tPEvjroqoQecFrZk/T1fwOuv+hePiIhUS3k3Q97sPp8BnBn2KN4WESndj0u9dpeO/sVRVwVS4ZLzoUMjZ7vIwq8fhsJ8X8MSEZGqKTPRttZucZs7gQ3W2nVAIjAAp35bRKR0K1d67a5d/IujLms+Gt643NvedQBmfelfPCIiUmWVmd7vGyDJGNMOmAz8HHgxkkGJSB23aq3X7tbTtzDqtIRM6NYNzu3r9c36zrdwRESk6iqTaBtrbQ5wHvCYtfZcoHcF54hIQ7Zqo9fu1s+/OOq6+E7QJ+xG0gW6PUZEpC6pVKJtjDkauBT40O0rb1pAEWnIQiFYs93b7jHYv1jquvj2XqKdFAd5+/yNR0REqqQyCfPNOCtBvmOtXWyM6Qx8FdmwRKTO2rwRcgucdpMUaNrM33jqsvhOMPwImHojdGoKCY39jkhERKqgwkTbWvsNTp128fZq4KZIBiUiddiKhV5bU/vVTLAxNBsGqfOc7aJsCO2HQJqfUYmISCVVmGgbY7oDtwKZ4cdba0+IXFgiUmd1awOPng1rd0Mb3QhZY+nngImD3FnOduFWSOjqa0giIlI5lSkdeQN4CngOKIpsOCJS57VMhosGOu2U4/yMpP5I6B2WaG9Xoi0iUkdUJtEutNY+GfFIRKR+CB3w2sEm/sVRnwRbwZJtsHArrJgLD78Dgcrcyy4iIn6qTKL9vjHmBuAdIK+401q7O2JRiUjdZXO8thLt2hFIgfNfdhatAbhpNXTVqLaISKyrzJDIeOA2YCow233MimRQIlKHhY9oB5Ro1wpjYECmtz37B99CERGRyqsw0bbWdirl0TkawYlIHbN5M3S8EE59Dn73CQTT/Y6o/hjYx2vPmepfHCIiUmkVJtrGmBRjzB+NMc+4292MMWdEPjQRqXNWroQ9+2H2Jpi3ze9o6pchx3jtObP9i0NERCqtMqUjLwD5wAh3eyPw14hFJCJ118qVXrtLB//iqI+GnuK15y0Ba/2LRUREKqUyiXYXa+0DQAGAtTYXMBGNSkTqpk2bvPYRHf2Loz7q2hXSk5z2ziynTEdERGJaZRLtfGNMMmABjDFdCJt9RETkJ+HJX5v2/sVRHwUC0K+Ltz1b96SLiMS6yiTadwGfAB2MMa8Ak4HfRTIoEamjtmzw2m0yfQuj3hrUz2vP+c6/OEREpFIqnEfbWvuZMWY2MBynZORma+3OiEcmInXPlrAR7Xbd/Iujvho0FJjktDXFn4hIzKvMrCOTrbW7rLUfWms/sNbuNMZMjkZwIlLHbA2baaTdEf7FUV8NPc5rz1/iWxgiIlI5ZY5oG2OSgBSguTGmCd4NkBlA2yjEJiJ1ibWwdYe33bq1f7HUV737w+ge0KsJDOzhXHOje9NFRGJVeaUj1wK34CTVs/ES7Wzg8cq+gTEmiLOS5CZr7RnGmKbAf4BMYC1wobV2j3vsHcAEoAi4yVr7qds/BHgRSAY+wilf0dxWIrFkzx7IL3DaaUmQluZvPPVRfDy8dw/kLXYSbJsHJsnvqEREpAxllo5Yax+x1nYCbrXWdg5bFXKAtfafVXiPm4GlYdu3A5Ottd1wbqy8HcAY0xu4COgDnAI84SbpAE8C1wDd3EfYhLIiEhO2bvXarZv7F0d9F+f+pcBaKFjnbywiIlKuytwM+ZgxZgTOCHRcWP9LFZ1rjGkPnA7cC/zG7T4bOM5tTwSm4MxicjYwyVqbB6wxxqwEhhlj1gIZ1tpp7mu+BJwDfFzR+4tIFHXtCtPuhvU/QuKIio+X6okLK8nJXw6JPfyLRUREylVhom2MeRnoAszDKekAZ07tChNt4GHgt0B6WF8ra+0WAGvtFmNMS7e/HTA97LiNbl+B2z60X0RiSUICdE+HLl2gybl+R1N/xbXx2nmLIe0MMJWZqVVERKKtwkQbGAr0rmpNtDHmDGC7tXa2Mea4ypxSSp8tp7+097wGp8SEjh21Kp1IVFkLof1OO9jU31jqM5MKd02BuWthyTZYdSY06+t3VCIiUorKDIMsAqozfcAxwFlu6cck4ARjzL+BbcaYNgDu83b3+I1Ah7Dz2wOb3f72pfQfxlr7jLV2qLV2aIsWLaoRsohUmz0AtggCyWAS/I6m/jIGpqyGaesg6yBMf9fviEREpAyVSbSbA0uMMZ8aY94rflR0krX2Dmtte2ttJs5Njl9aay8D3gPGu4eNB4p/SrwHXGSMSTTGdMK56XGmW2ayzxgz3BhjgCvCzhGRWLF9LRQUQaCR35HUf8MHeO3vv/cvDhERKVdlSkfuquX3/BvwujFmArAeGAdgrV1sjHkdWAIUAjdaa4trwq/Hm97vY3QjpEjsGTsOFi6DVo3hi1HQp4/fEdVfI0fBvz5w2tNWQFE2BDP8jUlERA5j6ut01EOHDrWzZs3yOwyRhqN5Y9iV5bQ3b4Y2bco9XGpg9WLo4tZlpybApq+h0XB/YxIRabjKXDmszNIRY8w+Y0x2KY99xpjsyMQpInVSbq6XZMcFoWXL8o+XmunUGzKbOe0D+fDlh/7GIyIipSpvwZp0a21GKY90a63+Rikink2bvHabFhAMln2s1JwxcFrYXOUfTHZmfRERkZiiyVdFpObCE+121ZmkSKrszNO89seLoGBj2ceKiIgvlGiLSM1tDEvy2mk9qag47nRonOS0t+yD2e/7G4+IiBxGibaI1Fx4ot1ei0VFRWI7OLart/3NZ2AL/YtHREQOo0RbRGpuw1qv3aGTb2E0KCYAx7jzaTdOggMHnCXZRUQkZlRmHm0RkfJtWu+1OxzhXxwNzYUXwtEZ0L0FBAwcnANJAyo+T0REokIj2iJScyVKR9r7F0dD034E9GzpJNkAheudxWtERCQmKNEWkZrLyvLauhkyeuKaQzBsyXtrIX+Zf/GIiEgJKh0RkZqb9wps+wB2d1KiHW3xnaForredvxySh/kXj4iI/EQj2iJSc6FsSEuEXn0hTr+/R1VCF9h5AF6bC1e9DtkroHCb31GJiAga0RaR2hBy64LDyxgkOuLawbkTYfkOZ/vc5XDeh9D4Kn/jEhERjWiLSC0I7XOeAxn+xtEQBZvAmf297TcWQMF6KNrlX0wiIgIo0RaRmlq+HKbOg/V7oTDZ72gapovDlmOf/CPszoG85f7FIyIigBJtEampp5+C0x+HoY/AI8/5HU3D1PMoGOzehFoQgveWOFP9iYiIr5Roi0jNbFzrtTWHtj/i2sEF/bztNxc4s4/kr/UtJBERUaItIjW1SYvV+C6+HZzTH4LuwjUzN8DGvXBwlq9hiYg0dEq0RaRmNm7y2kq0/WHioW1vGNnJ6/vbV1CwCmzIv7hERBo4JdoiUn2hEGze7m1rsRr/JPSE8/p62/+ZD6s2QeHGss8REZGIUqItItW3fTsUFjntZo0gWbOO+CahF/xsIPRs4fW9MgcOzvMrIhGRBk+JtohU36awspG2rf2LQyCYAUld4PdjnO0OjaDIQt5CCOX5G5uISAOllSFFpPo26kbImJLYD05cCXNugfbuKp22APLmQfJRfkYmItIgaURbRKpv7Wqv3SHTtzDEldAL4uO9JLtY3gJ/4hERaeCUaItI9a1a5rU7d/MvDnEEkiD+iMP7CzdD3rLD+0VEJKKUaItI9bVIg14tIS0ROnWq+HiJvIQeJbethaxcyJ4E+972JyYRkQZKNdoiUn23XQLXpUN8JqSf73c0ApDQG8ynsDUbHv8ePl0BjZPg019A3iJIOQmC6X5HKSLSIGhEW0SqryjLeQ42gmDQ31jEEUyHtDMhIQjPz4Q1u2HuZpizyVm8RqtFiohEjRJtEam+0F7nOZDhaxhyiMQB0Lw1nNvP63tqmvN8cBaEcv2JS0SkgVGiLSLVVzyirUQ7tpiAU0Jy7XCv7/0lsPMAhA7Avnf8i01EpAFRoi0i1TNrFjz4FryzCFbu8jsaOVRCD+jfHoa685sXWbh8EhQUQf4KKNzub3wiIg2AEm0RqZ4vvoC/fgjXvgXPajaLmJOQCckj4JSwWUhmb4STn3WS7dzvwBb6Fp6ISEOgRFtEqmftSq/dSXNox6SkATB+qLMce7HF2+Dr1XBwAWS/4l9sIiINgBJtEameDeu89hFd/ItDyhZsBs06wlfXlex/a6HznL8GCndEPy4RkQZCibaIVM+G9V67Qwf/4pDyJQ2GjCSYfK3X9/EyyD7otHMmO9P+iYhIrVOiLSLVs2Gz1+7Y0b84pHxJgyGQCH1bOat4Nk+B+051VvMEZ2n2vPn+xigiUk9pZUgRqbr9+2HvfqedEActWvgbj5TNJEDSEMiZCg+dBV2aQaOkksfkTHHm3jYaexERqU36rioiVbd+lddu1woC+lYS0xLdhWsGtzs8yQZnPnStGCkiUuv001FEqm5NWKlBx3b+xSGVE2wNiT0O77fWmfIPnFHtvKVRDUtEpL5Toi0iVbdumddun+lbGFJJxkDGxZBybMn+Z2fAmS/Aql0QyoF9b0DB+tJfQ0REqkyJtohU3fo1XltT+9UdySPABJ32Zyvgz59BYQiemOr02RDs/xBskX8xiojUI0q0RaTqBrSAywfDiT1h0GC/o5HKCiRBvPuLkQFC1mm/PAfmbHLahdugcKsv4YmI1DdKtEWk6k5uCw+eCW/cBhdc4Hc0UhVJg5zn47tCuwyv/8+fOjXbAIUqHxERqQ1KtEWkaor2Qchd7CTY2NdQpBoSekBcS4gLwD/P9fpnboAvVzrt/NX+xCYiUs8o0RaRqikKW7I70Mi/OKR6TABST3Pax2TCz4d6+y5+FfbnQ8EqKNzpS3giIvWJEm0RqZqibV5biXbdlJAJce4iQ78+FpLC1i4b+yzk5kPut76EJiJSnyjRFpGque1vcNYLcMdHsHSL39FIdSW5N7G2TocJw7z+H3fCA19BwVpfwhIRqU+UaItI1UydD9PXw/M/wM48v6OR6ko+GtJOddp3nABD23v7npkBS1ZC0R5/YhMRqSeUaItI5RUWwtJN3vbAo/yLRWou6UgIpENCED68Cvq2hk5NYVx/OJAPeYv8jlBEpE6Lq/gQERHXsrlwsNBpt06Hlh38jUdqxgQgZQTs/9RZPfLdKyE90duftxCSRzr7RESkyjSiLSKVN3+a1+7TvuzjpO5IPhoSezrt8CQboHA7HJwe/ZhEROoJJdoiUnkL5njtfp39i0NqV8qJZe/L+c5Zml1ERKpMibaIVN7CJV67b0//4pDaFdccErof3l9QBPn7oEArRYqIVIcSbRGpvEWrvHb/Qf7FIbUvdYxzYyTAczOcKRy7/g2mr4O8Bf7GJiJSRynRFpHK2bsXNux22vEB6FtOuYHUPXGtoPGVYBJg6XZnCsfcQpixHvLmQdFuvyMUEalzlGiLSOUsmOG1u7WC5Fb+xSKREWwGycNhRKbX994Sp0Y7d1qZp4mISOmUaItI5Sz4wWv37epfHBJZKaPhlIGQ7M7+Wjy6nbfU17BEROoizaMtIpVzxRgYsNlJvDJH+x2NRIoJQpMucEpPeMddsObGt+HbNtBom1NiIiIilaIRbRGpnEA29GwJ5/aF0Sf7HY1EUnwm/PY4b17tDVnw3mLIX+ZnVCIidY4SbRGpnKJtXjuuhX9xSOQl9oCuzeHmkV7fK3O1JLuISBUp0RaRyinc6jybBAg08TcWiaxgM0gcBD8bCHHuj4kZ62HpUija42toIiJ1iRJtEanY5lWwaiOErDOabYzfEUmkJQ2CVmlwUthCNo9/D/k/+heTiEgdo0RbRCr2r6fgqMeg8//CP6f6HY1EQ1wbMPFw3XCv7/UFsOZ7/2ISEaljNOuIiFRs/lznOacAmrT1NxaJDhPnLMt+dAFcPhjaZMDYHtAiC4p2OeUlIiJSLiXaIlKxRWGzTQw40r84JLqSBkDeYnjwzJL9uT9A2in+xCQiUoeodEREypeXBz9u8bb7j/IvFomu+G5Osn2ogzOhaG/UwxERqWuUaItI+RbPh6KQ0+7UHDJUMtBgGAOpJ4M55EeFDcHBuf7EJCJShyjRFpHyzZ/mtft08i8O8UcgFeLD/t03ZcG7iyFvoX8xiYjUEarRFpHyLZjttfv19S8O8U/yUXBgBZz9IszaCAYYfgQ02gNBzakuIlIWjWiLSPkWLvbaA4b5F4f4J6E7pPaA+KCzbYF/z1b5iIhIBZRoi0jZCgpg5hJve6BuhGywkkfCFUO87WdnwPopYAt9C0lEJNYp0RaRsv0wDfYddNrtm0D33v7GI/6J7wjnDIX2jZzt3bnwyGdwcJ6vYYmIxDIl2iJSttyNMKQ9pCbA8F5aer0hMwFI6w9/Gev1vTYP9qh8RESkLLoZUkTKNrwVfDwBrAWrhWoavKShcNpM6NQU1uyG7Dz46HO46mIIpPkdnYhIzNGItoiUrWCd82wMNO7sbyziv7hWkNAGzgubfeaz5ZC3yL+YRERimBJtESld6AAUbvC24zv6F4vEjsR+cFJ3b/vdxbD6G//iERGJYUq0RaR0hVudkhGAYIZKA8SRNBiGdIEjOzjb+UXw6Ntakl1EpBRKtEWkdC++AH/42Bmx3JvudzQSKwLJkDISfh021ePczZC/2r+YRERilG6GFJHSvfERfDEXnp0Jz/UHlWhLseRjYOwi+OM2OLEb9G7llhkN9jsyEZGYokRbRA5XVAQzl3nbo07zLxaJPcZAygi4aavXV7jRv3hERGKUSkdE5HAzP4fsXKfdIg26DvI3Hok9iT3BBL3twh1QtMe/eEREYpASbRE53H9e8tpj+kNA3yrkECYB4ruU7DvwhT+xiIjEKP30FJHDzVngtc88wb84JLaljHRmplm1C56bAX98BIqy/I5KRCRmqEZbREqyFhaGzSAxeKR/sUhsi+8I+9vA0X9xtoMG/jAPWo32NSwRkVihEW0RKWntXNjr1menJ0K3UeUfLw1b+xNgQBunXWThszf8jUdEJIYo0RaRkqZ+6LX7dIRgin+xSOyL7won9PG2X/gE8pb4F4+ISAxRoi0iJb34ptc+SvMiSwVMAE49x9v+ahVMecW3cEREYokSbRHx5O2HqUu97etv8S0UqUNOuBJGZHrbEz+GUI5f0YiIxIyIJdrGmA7GmK+MMUuNMYuNMTe7/U2NMZ8bY350n5uEnXOHMWalMWa5MWZsWP8QY8xCd9+jxhgTqbhFGjS7En64GZ4fB/9zMvQY7ndEUhcEU+HuK73tz1dA9hTnxloRkQYskiPahcD/WGt7AcOBG40xvYHbgcnW2m7AZHcbd99FQB/gFOAJY35aDeFJ4Bqgm/s4JYJxizRceYugRSqc2Rv+PMHvaKQuOfok57MDsPMA3PcA5KtWW0Qatogl2tbaLdbaOW57H7AUaAecDUx0D5sInOO2zwYmWWvzrLVrgJXAMGNMGyDDWjvNWmuBl8LOEZHaEjoABWu97bhWvoUidVBiJ7jqSG/7n9/Dlqn+xSMiEgOiUqNtjMkEBgEzgFbW2i3gJONAS/ewdsCGsNM2un3t3Pah/aW9zzXGmFnGmFk7duyo1a9BpN7L/QFsobcd18a/WKTuCbaGm8+Ebs2d7dxC+O8HULjV37hERHwU8UTbGJMGvAXcYq3NLu/QUvpsOf2Hd1r7jLV2qLV2aIsWLaoerEhDtmImzFgP+UXO8tpxHfyOSOoSY6DlBLhsiLN9Ri84thPkLSj/PBGReiyiK0MaY+JxkuxXrLVvu93bjDFtrLVb3LKQ7W7/RiD8J3t7YLPb376UfhGpLUX74IHXYNI8SImHu8fDrcl+RyV1TbARXHgm9G4Jozs7ffmrINXfsERE/BLJWUcM8Dyw1Fr7f2G73gPGu+3xwLth/RcZYxKNMZ1wbnqc6ZaX7DPGDHdf84qwc0SkNmTNhvfdG9dyCmDYMf7GI3VX5rFekg1QtB1Cuf7FIyLio0iWjhwDXA6cYIyZ5z5OA/4GnGSM+RE4yd3GWrsYeB1YAnwC3GitLXJf63rgOZwbJFcBH0cwbpGG582X4UC+0+7SDI4+1d94pO5K7OM8ilkL+T/6F4+IiI+MrafznA4dOtTOmjXL7zBEYl/RPujZCVbucrZ/dzL87VN/Y5K6rWg37H4UQhZmboB318Lf34QmTf2OTEQkEspc3yWiNdoiUges+NZLspPi4PorfQ1H6oFgU4jPhAvvg8/d0ewx98O4X0Nca19DExGJJi3BLtLQ/ftlrz2yE7Qe5F8sUn80Gg+9e3vbU76G7DfAFvgXk4jUXz9VG8cWJdoiDVlBPvzrI2/7wiGQ0Lns40UqyxgYc663/f4S2LwWcmf4FpKI1GOhHL8jKJUSbZGG7Iv/wFZ3evvmqXD+xc4c2iK14fjzIcGtUNyyD/r9Hzz0D7Ahf+MSkfrHKtEWkVgz6RWvfW4fyBjmXyxS/6SlwVUXluz707vw4aP+xCMi9ZdGtEUkphRkwSffe9vjTtONalL7HnwMLg2r+7fALX91Pn8iIrVFI9oiElNyP4XvboBHzoLz+8GoC/yOSOqjlKbw2NUw5xbISHT6Vu2CN5/wNSwRqWc0oi0iMaNoN+QtgcbJcPEgeHo8JPbwOyqpr+K7QPtGMH6o1/ePpyGkGUhEpJaEDvgdQamUaIs0RAXrSm6nHANG0+pLhCSPgLRT4de3QfMUGHEE/Hsc5H7ld2QiUl/Y2Ey09ZNVpKEpLIRtcyHF3Q4kQdIQX0OSei6YDslHQSfg43uh7S6ID0LOVGe0O6GL3xGKSF2nEW0RiQmPPwjDb4Ev3BX7ErqDifc1JGlABl7iTfkHsO9NCOX6F4+I1A9KtEUkJrw5Ebbug0tehY+WQeJAvyOShiSuJaSc6G2HcmHe42CtfzGJSN0Xo6UjSrSl/rKFzsIYoYN+RxI7Vi+AGcu97WEDtRKkRF/KMRDXCvbmwo3vwNDb4POn/Y5KROqqUG7MLsGuGm2pP/JXQ2gvEA+FmyFvHmDAFkCj8WCS4MDHkNANkof7G6tf7rwVCtxV+Y7qCJ1O8zceabiShsC1D8JXq5zty38L3wyBHkf6G5eI1D2h/X5HUCYl2lK3hXKhaBfkL4H934MBjIHt++HzFXBid2iVBlnPQ24BrNwJTedCzwxI7O139NG18Ad49Qtv+69/gaT+/sUjDVvSEHjoRhh1B+zLg+37YNzZMGMRJDf1OzoRqUuUaItEQME6OPApFGyGNxfAnz+FnYdMWL/+D87zxr1w6vNObTLAjTPg7vMg4yKIbxfVsH3z+xsh5NbBntgPThzvbzzSsJkg9P8VvJ4FZ/8V8otg4RY4dgR8PQdSUip+DRERiNn6bFCNttRFNgRZr8KP/4Sbn4GWd8MN7xyeZAcMJAaddlI8jMj09j0+FS54Ej75I2RNdMpL6rOvn4cPfvC27/mdf7GIFDNxMPbP8JcLvb5Zy+GaMyAU8i8uEalbYnhEW4l2bbP5fkdQf4UOQu4MJ8n+x79gzNPw0uxyjrde8t0sBZ48F4LG2z9lFZz1Ilz1D5h3r7NSYvH71CfZW+HGP3rb5w2Doy72Lx6RcCYAt70IPx/t9b3yFVx2kWYiEZHKCe3zO4IyqXSktoXyIJjgdxT10/7/Qt4yp7052ysDKdY8BX42EDISoX8bOK4LBMN+lzQGVt4OZ78IC7Z4/W8vgs9WwK+/h5uuBLMF0s6AxJ6R/XqiwVq46mJYvNXZTgjCvU85yY1IrAgkwNPvwJwBMH+D0/faG3DqMLj8Vn9jE5HYV5TldwRlUqJd22wekO53FPVP0R7IX+Ft/3EMfLocNmXD2O5w3dEwPBPi051arWALSB7mHGvSYN9bQBG0HAsfdoF/vwVPTIUN7n/O/flwzxcwbR08Nw4CXznT3pk6/kvTknfhq5ne9kO/gp6D/ItHpCzxTeDjqXDMYFizw+n7/V/h/FHO/2Vjyj9fRBquULbfEZRJiXZts3l+R1C/HJwHe6YD2RAXVrOZlghvXgEt0qFxY4jvBGlnAdap+zSHfLTjrgMCEGwMyaPghlT4+Uh4fy7c9gHsdctFJrhTixVug6wXIf0iCGZE+IuMkIIN0GoxzLoJnpsJWYVw3f/6HZVI2dq0h/ffgWFjICcP7jjBmZKzcC2kj9NfYkSkdKFsnGnHYo8S7dqmRLt2FO2F1W/BYxNh0hzYcQCuOQquGALdWzg/cHsOgJTjIb5zxaNdwbDpwkzAmW0kA7h0OgwfApc9CvO3OCUkY7o5xxVshmVPQpcLIKlLpL7SyMidCfs/ctppifDr4yD9Aggk+RmVSMX6HAOTv4BHbobz+jp9eUsh+z3Y1Rj6j9botoh4bJGTaAca+R1JqTQ8UNuUaNdc9qdwx3nQ/Wp47FsnyQZ4ZgZMWw+BVGh8PTS+GhK61OyHbvJw6PM/8M1j8Pi50Dqs7GfxNhh1N2T0gNVvQiin7NeJJa/9HTa+XbIv/VxI7OVPPCJVNXwkvPINZJwCgUSn79NXYODxMLQ3bNzob3wiEjuKdjuzkcUoJdq1zdazGSuixVrnZoZ/3Q6NToG/f3X4MYO7wo3PQpObIK5F7b23iYeM8+GaZ+COm6HJdTAzD05/HvbkQkERdBkHD1wMB5fH7kwIRUXw64vhkt/Cac/B2j1Of2IfSOzrb2wiVRVIhZQR0PhGSBoAJ3R1buadswwG9YVJL8fu/0URiZ6iXX5HUC4l2rUthqeYiVm2AJY+ALefDRPuP3z/uP7wn8thyneQ3Nob4aptcc0h/WyIaw0n3AAjO5fcf8d7MHIMvPorKIyxX6j27IQTB8LDk5ztlbvgF29AQl9I0zLrUocFM9y/yHSFTs2cvp1ZcPEVMO58WDDf3/hEpHYVFMCWsJnBin+hLtwNBZtg51zYsibs+DXEMiXatS2GJ02PSaGDkPUytMiFVYf8VtoqDV67DSY+C2f/DtJbRS+u5A7w7mS4YEjJ/tmb4LLHIT4Znr8zNhbV+OFL6NcDpizy+nq2gv88ARnnOSODInVdm6vgyVeheVgd5lvvwICB0CQd7vgNrFvnW3giDU4oBLNmwfbt3naxor3OIJq1kJUFjz0GZ54AJ4+A/0yCyZ/DrTfDKSOdxyevQP4q2L0ZuneGtm2dslBjIBCAhHiIbwYJ7aHFYOjYDd54wrkfKW+B856FRTH5Vy5jYzCo2jB06FA7a9as6L9x9n8g42fRf9+66OBCyPnSmbpv/V446lEostAyDV65HkZd5dZgx/sXY+FOmPVvuO4BWLjVW8K8WMdWMHMetGwOBKI7K4K1cO3P4dmJJfvHj4an34PEOjpbikh5tmyB006EeUsO35eWBAv/CR0vgUBy9GOThikUcpLByioqcs7Ztw+aNj18/549kJMD7do521lZ8P77sGkjnHMudMv0/rK7bRvc/XvYvRVadoaBA2HYUZCYCHffCRkpcOKpcMYICCbDnjy4+8+waD4sXQnbdsH5p8JbH8OAPnDbHbBhHbz+Epx2Evz5dgimQv5qZ3XhDz6H3gPhhxnw1gcl405JhHNOgmd+Bblu/mUMtL8TDlaw+vLVR8F9pzjtyT/CbR/Cxgrmxp7/a2gT9nPu79PhgU/KPydyyrxZTLOO1DaNaJdv2zZ47BYIZMMvh3o3Mk5dC8OPcB433QUdj/MvxnBxzeGom2HmGTDvv3Dfi/DuYm//5h3w4tXOtIBxHaDReDDByMa0fj385hqYMh12hX0jChi4/yb4zf9V7Zu+SF3Spg1Mmw1/vA0mvgQ7w+bP3X8Q/v0G3JANCd1hVgj++hB0bAd33+eMkgWDcOCA84tqWpp/X4dExu7dMHMmDBkCzZqV/F74+ecw9wc45wLIzHSS3aRSZmIKHXAGeGwB2HhYvhJefx12boSdeyCzEyTHQ7vOsGw5PP0EPPlnuORmyHP/sjh1Ldz+N0hNgIGDYcRo+P5LCMbBC/+Gve737itOg/873lkk7f3v4K6/w9IfDx/UKTZvCjx6LqT2hoMpMPpCWL66/GtiV0C7KdClOWQHYdanMD3srz9vfew8z18Ml13m9Z/eHrKeddqFIZj0X3h7IfBW6e+TkwdzZkBO2F+Cl+2oOMke0AbuPsnbPuoIuPYk+NOb5Z8XnmQv2w6vz4IHyj/FDxrRrm27H4MmN2q+19Ic2AtDh8Cy1ZAUB7NudkavAZKPdKbgi+sA8e19DbNcBevgzX/BX56EFmnwyNnQPuxP2bntYeISmHCr80O9toUOwPtPweV/gH2HzHDzzWcw6qTSzxOpr3btgmcfd+bfnrkQMpJg9k1OgvPXyfDod96xSYlOkrRjO+zeA8ePgL594ZLL4MjBEEgp+3327nWS8yZNIv4l1aq9e6FRo+rNzmQtrFzpPHfv7vXPnOkktGPHlnzdzZud0diePWHpUuja1fn3mT4NmjWHlcuhSTM4+xyIi4Ply+H5J6BtJ7jkEifx/eh9+OgdyA9An56QnQ2t2sLNYyExxfk58fJH8NjDMM9dKbh5YzjtFEhNhSef9+Jp1wq+fwWaZsM30+CMv5f9tcbHQXICZLaHj6+CxDjn8/DcN/DbSeVfp36t4dNfQHyiVy4x9jmYt7n88zo3hYfPcgaYACbNg5veLf+cI5rAV9c607buyoFr34JvKki0j2gCk69x/m8AHCyEkY87f0kuy7j+8MDpzv8jgOvfhbfmlf8+AKf1hJdvgJRjIbQXnn8HfvNPSIqHkSMhEISPPi15zmtPw7mjIZAOhZud+zJWh2DRIpjxNWzc7Hy9B7aC3Q+DjoQBo2F0FyAO8uY7I+4FadDWt5Vky/wPpkS7tu1+BBpPgIBGSgDnG+fTd8PnH8E7h/x73HQM/GkspI71VnGsK0J5MHki9N0JcflO395c589dxSPe7VtB1y5w0aUw4RpnJK2yP+yshbffhjv/BNu3woUnwt8mwMHpUBSC9xbDNe6owhnHw3/egZTYnENUJGoOHnRGMAtnwsFZkL0dOlVikabnL4ZzR0B8Jmw5AM99BQ88XfbxwSA8+RBccYpz8/R3c+DfL8BzYWVcA/o7SWJKMhQWOKOiE5+Fyy527pv44gu4dgK0aQe3/x5++B6KDLTvCHl5kJ8PPXrA6SdDMMmpec2ZCve8DRmZTmJ6xBHO95QX/wVrl0CvoXD2COd7UrAZvPUaXHSTE0NGOmRlwzEj4IZfwvDh8Omn8MHb0Ksr3HqMO8jRGsae7yQ3uXmwNezemfg4KCh02glxMPnP0Ke5k5Dubgadz6zcv9OdN8BvjoXX34dfvFK5c7b92fv++eQ0uPOzis8ZPwT+fobTLgrBhf+Gbyu4ce7CAfDPc5z2lmw45nFn5eDy/GoMnNkVBrZ2/m0/mA1X/qfi+N78Hzi+AyQNgpyvYekWOPbJis+7/FR45CwodMsZ/7kZ/vpc2cfHx8Gj98BV5zuLsQXawhcL4Z9PQLcO0KoVvPcxzFngzOyTmw9XXgb/vB3iE5x5qhfsgv++CznZsGoZLPgRunSG3/4RvvscEtKdX7CaJsHxp5SctCA3FxISnP83ADNmwA9T4YoJkJ5etV8CbcHh5aS502D/pxBsAk1vrvxr1S4l2lGz+xGnRjuudfTfO1YUHIAZH8GLr8F302D51sOPaZMBf7saLrmtbl+rvGXO0vBxbWHUFTB7afnHD+wGj98HR58PhJybQT+ZAl98Ag//0zuuaQbsDvuT+Gk94cWw2v9p8fDlfDj+LDjrUi3gIVKaffNhyNnwYwU3SS74Tck59J+fCXd8XP45Z/eBZy9wphr9ai2c/4+K45l5M3RqAgVt4NSHYX4F3y8GHwF/HgOj+jtliVNXwtkvevuPGw2NGsO77ijosV3gjUu9m8hy8mHEP2FTBctTTzgS/jdsdqKLXoEvV5Z/TtdmMPWXJfuGPepNK1qaJslwyyj4+ZHOXzWzD8KoJ2BLBbN1ndgNJl3NT98z84uchHR1BdO6rb/HqRuOz3R+zqxbAr2vK/+c738Ng69wErq3Podf3A0H3UT71DGQlgzxQdi7H2bNhe27oXUrmDETWuVA/BEwdxHcfw8sXAKDh8KOLfDddKcee/gQyEiFk8+FC893/63inLmg8/bCfY8439fbt4cZ02HuHEhJgzPOgEGDnL8mdOni1G+HcpwphYNNnXKoBQucGu1QyNlu2dKJ29rK/4zIyoJNm6B378odHwvy1zorOcdooq0a7UhoqHXaNuT8hr3rbRj1q7KPm3ApPP0vCCZEL7ZISezpPADe/Aie/zvc/4w36nOoeT/CB09A793O3J95B+FfH8Dbc0oet/uQH4zr9kKegcbDIb4jnNULzqr1r0akfkkfACvWwrJlsGEDfP01fPIuDB0KRx8HB/fDglnQ7TInaclfCm9MrzjJBvjVMW6CtBNGpUJKPOSUU4v6m2OheYqT9AQ3wW/6w/gKEu2NuyAl6NwwXgjc+H7J/VO+Lrn9zSqvbS0EA9CmefmJdkIQbhrpJKOhLOfn1zmDK060V+6CxAEQSHCSxIINkJwCHJJoG+PNBNEpE845FVKNMzjRsjU0/S9sWe4d37o5tGsPaQnOaG3uQRg4DBrd7MyTFsqCwi1wZyf47FNo1Bz2Z8Pmdc5fENu1g8EjnLIWDjh/XS4u5ew1CtaMhbffhGC8M5qamOiU1rRtCy1aQLs2EHBTo8uOhAt+40w3lx72i1ixUAhWrHCS4vB6/yFHwuvvlTy2omQ32BRSmsJfH/H6evSAK8aXPO7YY712IAVwy51SU+Hoo719qWGzTVVlIKZRI+dRl8Q19zuCcmlEu7btfgRSRkPSwOi/tx+shTVLoMlesDOdRWcA+j0I28J+4WieDuNPhRPGwmlX+RJq1CxYAG88Bys3wpvvQ+EhSfdZveG5cd72Le/Cq/NKf63+veCoY2BgP7jickirY/WhInXN5MnwzpswZw6sWgO//JWT3OzeDfPmOsvDH8yFd1+ANr2c5LxoB/x3HVxxLQwZ5Nzo1iTNmZEIYEBfGDIAxp8ORx/jlLUcXAADnoQt7tRo7dpCRrJz09mBA7DZ7b/1WrjnBme0bvEuOOss55eG0hw7BCa9CC1aOclvXHNn2tQ7fwfLVsGmzbAjbBS4URoM7Q9PPQxdhjijo7YA9gOzZzv16B06wAP/C7u2QFozaN3GKUU55zyndAXcRDoEeQXw3DNQlAfjLnXqtTt3dm44nD7dSeB69QKbAyalZAK4cyesXeuM2haXGIhU1q6/gUmOyRFtJdq1bfcjkDQYUkZF/72j5e034PwLS/Z9dR30cee5NgYumQQLN8PAXvDPZ6BL/+jHGSvmz4d1ayAvH/ZuAnMQxrWF+M7OiMTv/w4PhdXz3fALOPM8GDECMjRFn0i9Y4ucRTYSusKqVc4Ni4MHl0w8rXVqtQ+dFaOoyKmtvvNOZw7jYjNnwpFHVvze+flO7XhenjdXsUhdt+dp5xdFJdrR42uindAd0k6N/ntHys6d8H9/hcefh+wyymLapMMzF8DRPSB9HCR0dkpJNPuKiEjtC4VgwVwIxEP/BjyQIQLOGiaFW2My0VaNdiSE9vodQfXt3u2MdnRo5vx50yTAx8/A/75U/nlb9sGeAdAs7EOuJFtEJDICARg4pOLjRBqCQCOglIkXYoAS7UgoquBO6FiQkwPJyc50WPPnw9Sp8NiDsNad93P6b6Cze/PHyHaQGIS8osNf56pxcPlVMHqs/gQpIiIi0ReM3Rs4lWhHQtGe2CmbOPRO5//9I9z9D6c+rzyrt0LX5kACNG0N5x4P/5kMxx/jzN962VXO3doiIiIifgqUMitMjFCiHQm2yJnyKa5lBN/DwldfOWUexx8P69Y5d2zPnQs7dsD8ufDdVMhsB8u/BpvvLA2bO6PiJBvgu4Pws1uclQjjmsNrl8JrkftyRERERKpFiXYDVLi5ZKJtLezaDs1aHl5iMXeu89yrl7OE7bRpzrRIBw/Cl186S9VedBGcNhSS852bLd9+CS74RcVx3HokZL3sbZ8/EO75ouQxLZrAwJ4w8Cj4n9vdvhZODWAgucpfuoiIiEjUKNFuIHJy4OEv4LVp0HoSfLf88GNuvRLuvMS5YTKhC2z7EgbfVvFrn5QIBSugAKckZUShszLXynLqwdOSoPcwZ2GAYIrzfhkZcNUWaN4OOnZ05iw98kiIjy/7dURERERiVSCdcib+8JUS7dqSlQXXXw+vfeBsl5UAL5gKue4k/3mL4Z05pR93qP95Gzq3hpFHQ8GPkJAK54yFf7x6+LEtmzurQp14MrQ7H5p09/Z1Ap7/d6W/LBEREZGYZuKdRwxSol1bQiF4++2Kj/tsBezrDe36Q/5yWP5jyf3NGkEgCDt2O9vGwBEdndXGtg6ERpdAUbbz29vfDfzlOSfJb9wYPvgAunaFgQNr+YsTERERiWGBFL8jKJUWrKlNr70Gf74FdmbD2SMh2AH27oGunWDTEjjzCmjXEYYNg4QE7zxrnfmrCwqgdevoxiwiIiJS12W/ARnj/Hp3LVgTFRdfDGO3O9P7pZ8NSYMqd54x0KxZZGMTERERqa9idEQ7BiZ6rqfi2vgdgYiIiEjDYFL9jqBUSrQjwQQg2MLvKEREREQaBo1oNyCBDDBBv6MQERERaRiUaDcggcZ+RyAiIiLScBgl2g1HsLHfEYiIiIg0HBrRbkACjfyOQERERKTh0Ih2AxLM8DsCERERkYZDI9oNiEa0RURERKLHxObSMEq0IyGQ7ncEIiIiIuIzJdqREEjzOwIRERER8ZkS7VoXiNmCfBERERGJHiXatS2QCsb4HYWIiIiI+EyJdm0LpPodgYiIiIjEACXatU1lIyIiIiKCEu3apxFtEREREUGJdu2L0QnTRURERCS6lGjXNpWOiIiIiAhKtGufRrRFREREBCXatU812iIiIiKCEu3ap9IREREREUGJdu1T6YiIiIiIoES79pl4vyMQERERkRigRFtEREREJAKUaIuIiIiIRIASbRERERGRCFCiLSIiIiISAUq0RUREREQiQIm2iIiIiEgEKNEWEREREYkAJdoiIiIiIhGgRFtEREREJAKUaIuIiIiIRIASbRERERGRCFCiLSIiIiISAUq0RUREREQiQIm2iIiIiEgEKNEWEREREYkAJdoiIiIiIhGgRFtEREREJAKUaIuIiIiIRIASbRERERGRCDDWWr9jiAhjzA5gXQ1eojmws5bCaYh0/WpO17BmdP1qRtev5nQNa0bXr2Z0/Wqustdwp7X2lNJ21NtEu6aMMbOstUP9jqOu0vWrOV3DmtH1qxldv5rTNawZXb+a0fWrudq4hiodERERERGJACXaIiIiIiIRoES7bM/4HUAdp+tXc7qGNaPrVzO6fjWna1gzun41o+tXczW+hqrRFhERERGJAI1oi4iIiIhEQINNtI0xa40xC40x84wxs9y+ccaYxcaYkDFmaNixmcaYXPfYecaYp/yLPHaUcQ3/boxZZoxZYIx5xxjTOOz4O4wxK40xy40xY30LPEZU5frpM3i4Mq7fPe61m2eM+cwY0zbseH3+DlGVa6jP4OFKu35h+241xlhjTPOwPn0Gw1Tl+unzd7gy/v/eZYzZFHadTgs7Xp+/Q1TlGlb7M2itbZAPYC3Q/JC+XkAPYAowNKw/E1jkd8yx9ijjGp4MxLnt+4H73XZvYD6QCHQCVgFBv7+GOnT99Bms3PXLCGvfBDzltvX5q/k11GewEtfP7e8AfIqzlkNzt0+fwZpdP33+KnH9gLuAW0s5Vp+/ml/Dan0GG+yIdmmstUuttcv9jqMus9Z+Zq0tdDenA+3d9tnAJGttnrV2DbASGOZHjLGsnOsnlWCtzQ7bTAWKb0LR56+SyrmGUnkPAb+l5LXTZ7DySrt+UjP6/PmkISfaFvjMGDPbGHNNJY7vZIyZa4z52hgzKtLB1REVXcOrgI/ddjtgQ9i+jW5fQ1aV6wf6DB6q1OtnjLnXGLMBuBT4s9utz1/pqnINQZ/BQx12/YwxZwGbrLXzDzlWn8HDVeX6gT5/hyrrZ8gv3fKvfxljmrh9+vyVrirXEKrxGYyr1XDrlmOstZuNMS2Bz40xy6y135Rx7Bago7V2lzFmCPBfY0yfQ0Z+GqIyr6Ex5g9AIfCKe6wp5fyGPlpRleunz+DhSr1+1to/AH8wxtwB/BK4E33+ylKVa6jP4OEOu37AH3BKwA6lz+DhqnL99Pk7XGnX70ngHpzP1j3AgziDNvr8la4q17Ban8EGO6Jtrd3sPm8H3qGcP6G4f2rZ5bZn49Q2dY9GnLGsrGtojBkPnAFcat3CJpzfnjuEnd4e2By9aGNPVa6fPoOHq8T/4VeB8922Pn+lqMo11GfwcKVcv9E49a/zjTFrcT5nc4wxrdFn8DBVuX76/B2utP+/1tpt1toia20IeBbv/7Q+f6WoyjWs7mewQSbaxphUY0x6cRvnt+dF5RzfwhgTdNudgW7A6mjEGqvKuobGmFOA3wFnWWtzwk55D7jIGJNojOmEcw1nRjvuWFHV66fPYEnlXL9uYYedBSxz2/r8HaKq11CfwZLKuH4/WGtbWmszrbWZOMnNYGvtVvQZLKGq10+fv5LK+f/bJuywc/FyG33+DlHVa1jdz2BDLR1pBbxjjAHnGrxqrf3EGHMu8BjQAvjQGDPPWjsWOBb4izGmECgCrrPW7vYp9lhR1jVciXNX8+fuvunW2uustYuNMa8DS3BKIm601hb5FHssqNL1Q5/BQ5V1/d4yxvQAQjgzFlwHoM9fqap0DdFn8FClXr+yDtZn8DBVun7o83eosv7/vmyMGYhT9rAWuBb0+StDla4h1fwMamVIEREREZEIaJClIyIiIiIikaZEW0REREQkApRoi4iIiIhEgBJtEREREZEIUKItIiIiIhIBSrRFRGqRMabIGDPPGLPIGPOGMSbFGJNpjClzrv4yXudKY0zbSMUZC9yvcYcx5rkKjlvjTjkY3vewMea3xphRxpglVb2+IiLRoERbRKR25VprB1pr+wL5ePNQV9WVQEwn2saY2liL4T/W2qsrOGYScFHY+waAC9xzvwVOq4U4RERqnRJtEZHI+Rbo6raDxphnjTGLjTGfGWOSAYwxA40x040xC4wx7xhjmhhjLgCGAq+4o+PJxpgxxpi5xpiFxph/GWMS3fPXGmPuNsbMcff1PDQIY0zQGPN3Y8wP7vtc6/YfZ4yZYox50xizzBjzinFXbzDGDDHGfG2MmW2M+bR4tTT3+PuMMV8DNxtjjnRfc5r7HsWrqH3rLvpQHMP3xpj+5V2ssuIEXiMs0cZZOGKttXZd1f45RESiS4m2iEgEuKO9pwIL3a5uwOPW2j7AXuB8t/8l4HfW2v7usXdaa98EZgGXWmsH4qxQ9iLwM2ttP5xVzK4Pe7ud1trBwJPAraWEMwHIstYeCRwJ/MJdhhlgEHAL0BvoDBxjjInHWSX3AmvtEOBfwL1hr9fYWjvaWvsg8ALOCmlH46yWVuw5nFF5jDHdgURr7YIKLlupcbrnhYwxA9zjLsJJvkVEYpoSbRGR2pVsjJmHkyivB553+9dYa+e57dlApjGmEU7S+rXbPxFntPZQPdzzV5Rx3Nvhr1vK+ScDV7hxzQCa4ST+ADOttRuttSFgnnt+D6Av8Ll7zh+B9mGv9x8AY0xjIN1aO9XtfzXsmDeAM9yk/SqcXxQqUl6crwEXub/AnO2+vohITKuN+joREfHkuqPQP3GrMfLCuoqA5Cq8pqlgf/FrF1H693UD/Mpa++khcR1XSlxx7vGL3VHq0hyoKC5rbY4x5nOcpPhCnFKYipQap+s14DPga2CBtXZ7JV5PRMRXGtEWEfGJtTYL2GOMGeV2XY6TSALsA9Ld9jKcEfCupRxXGZ8C17ujyxhjuhtjUss5fjnQwhhztHt8vDGmTynx7wH2GWOGu10XHXLIc8CjwA/W2t01idNauwrYBfwNlY2ISB2hEW0REX+NB54yxqQAq4Gfu/0vuv25wNFu/xtu6cQPwFNVeI/ncEpC5rg3O+4AzinrYGttvntD5qNueUsc8DCwuJTDJwDPGmMOAFOArLDXmW2Mycap466NOF8D/hd4p5KvJyLiK2Ot9TsGERGpo4wxadba/W77dqCNtfZmd7stTvLd060BP/TcK4Gh1tpf1jCGTOADd0pFEZGYodIRERGpidOLF+gBRgF/BTDGXIFzQ+MfSkuyXbnAqRUtWFMet+zmfWBndV9DRCRSNKItIiIiIhIBGtEWEREREYkAJdoiIiIiIhGgRFtEREREJAKUaIuIiIiIRIASbRERERGRCFCiLSIiIiISAf8PWU/7NPscXOgAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 864x576 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot_new(vs_inf, 0, pulse=2)"
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2ae94611-5d71-4c11-806c-04905607be1d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "SCS Toolbox (p005576)",
"language": "python",
"name": "toolbox_p005576"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}