Skip to content
Snippets Groups Projects
Virtual spectrometer SCS Viking.ipynb 423 KiB
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "6386344d-b7ac-440d-9926-f03af4ff9d6f",
   "metadata": {},
   "source": [
    "# Training the Virtual Spectrometer with Viking and PES data"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1711c3b9-5065-4a44-8b1b-a3e861b92bc5",
   "metadata": {},
   "source": [
    "The objective here is to use the Viking detector to train the Virtual Spectrometer. This means that we will fit (\"train\") a model, which maps the PES measurements with the Viking measurements and use their correlation to interpolate in cases where the Viking is not available.\n",
    "\n",
    "The following conditions must be satisfied for this to be possible:\n",
    "* The PES settings are the same in the \"training\" run and interesting run.\n",
    "* The photon energies of the beam in \"training\" and in the interesting run are similar.\n",
    "* The beam intensities are similar.\n",
    "* The sample between PES and Viking is transparent.\n",
    "* 1 pulse trains in \"training\".\n",
    "\n",
    "The following software implements:\n",
    "1. retrieve data and calibrate Viking using the SCS toolbox;\n",
    "2. the Virtual Spectrometer training excluding the last 10 trains avalable so that we can use them for validation;\n",
    "3. the Virtual Spectrometer resolution function plotting;\n",
    "4. comparison of the Virtual spectrometer results in a selected set in which the Viking data was available.\n",
    "\n",
    "Finally, the model is applied in data without the grating. This last part may be applied independently from the rest if the modal has been written in a `joblib` file."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "4a627555-522a-4c9d-b6b2-6ff77148eaab",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "# replace this \n",
    "sys.path.append('/home/danilo/scratch/karabo/devices/pes_to_spec')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "78bbc433-ac5e-44c3-8740-3e93800c4532",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Cupy is not installed in this environment, no access to the GPU\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "import dask.array as da\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "\n",
    "from pes_to_spec.model import Model\n",
    "\n",
    "import toolbox_scs as tb\n",
    "from euxfel_bunch_pattern import indices_at_sase\n",
    "\n",
    "from scipy.signal import fftconvolve"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c7609899-5bc0-4211-ae97-010b3edcf676",
   "metadata": {},
   "source": [
    "## Get data and calibrate Viking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "95da5231-e454-4f7f-a1ce-eef7e52fe457",
   "metadata": {},
   "outputs": [],
   "source": [
    "# pes channel names to be used for reference later\n",
    "pes_map = dict(channel_1_A=\"PES_S_raw\",\n",
    "                channel_1_B=\"PES_SSW_raw\",\n",
    "                channel_1_C=\"PES_SW_raw\",\n",
    "                channel_1_D=\"PES_WSW_raw\",\n",
    "                channel_2_A=\"PES_W_raw\",\n",
    "                channel_2_B=\"PES_WNW_raw\",\n",
    "                channel_2_C=\"PES_NW_raw\",\n",
    "                channel_2_D=\"PES_NNW_raw\",\n",
    "                channel_3_A=\"PES_E_raw\",\n",
    "                channel_3_B=\"PES_ESE_raw\",\n",
    "                channel_3_C=\"PES_SE_raw\",\n",
    "                channel_3_D=\"PES_SSE_raw\",\n",
    "                channel_4_A=\"PES_N_raw\",\n",
    "                channel_4_B=\"PES_NNE_raw\",\n",
    "                channel_4_C=\"PES_NE_raw\",\n",
    "                channel_4_D=\"PES_ENE_raw\",\n",
    "               )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "48bb4c8c-04ad-44d5-b123-643ce3253ceb",
   "metadata": {},
   "outputs": [],
   "source": [
    "proposal = 2953\n",
    "runTrain = 322  # run containing the data without sample\n",
    "darkNB = 375  # dark run"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "0a467b2f-5f99-4ed8-bb1d-cb429454d3ce",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "newton: only 50.0% of trains (629 out of 1259) contain data.\n"
     ]
    }
   ],
   "source": [
    "v = tb.Viking(proposal)\n",
    "fields = ['XTD10_SA3',\n",
    "          *list(pes_map.values()) # add PES\n",
    "         ]\n",
    "v.FIELDS += fields\n",
    "v.X_RANGE = slice(0, 1500) # define the dispersive axis range of interest (in pixels)\n",
    "v.Y_RANGE = slice(29, 82) # define the non-dispersive axis range of interest (in pixels)\n",
    "v.ENERGY_CALIB = [1.47802667e-06, 2.30600328e-02, 5.15884589e+02] # energy calibration, see further below\n",
    "v.BL_POLY_DEG = 1 # define the polynomial degree for baseline subtraction\n",
    "v.BL_SIGNAL_RANGE = [500, 545] # define the range containing the signal, to be excluded for baseline subtraction\n",
    "\n",
    "v.load_dark(darkNB)  # load a dark image (averaged over the dark run number)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
   "id": "4f6124d9-8c1b-44f8-a078-07475a9674fc",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "newton: only 50.0% of trains (661 out of 1323) contain data.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
       "<defs>\n",
       "<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
       "<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
       "</symbol>\n",
       "<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
       "<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
       "<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
       "</symbol>\n",
       "</defs>\n",
       "</svg>\n",
       "<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
       " *\n",
       " */\n",
       "\n",
       ":root {\n",
       "  --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
       "  --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
       "  --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
       "  --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
       "  --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
       "  --xr-background-color: var(--jp-layout-color0, white);\n",
       "  --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
       "  --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
       "}\n",
       "\n",
       "html[theme=dark],\n",
       "body[data-theme=dark],\n",
       "body.vscode-dark {\n",
       "  --xr-font-color0: rgba(255, 255, 255, 1);\n",
       "  --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
       "  --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
       "  --xr-border-color: #1F1F1F;\n",
       "  --xr-disabled-color: #515151;\n",
       "  --xr-background-color: #111111;\n",
       "  --xr-background-color-row-even: #111111;\n",
       "  --xr-background-color-row-odd: #313131;\n",
       "}\n",
       "\n",
       ".xr-wrap {\n",
       "  display: block !important;\n",
       "  min-width: 300px;\n",
       "  max-width: 700px;\n",
       "}\n",
       "\n",
       ".xr-text-repr-fallback {\n",
       "  /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-header {\n",
       "  padding-top: 6px;\n",
       "  padding-bottom: 6px;\n",
       "  margin-bottom: 4px;\n",
       "  border-bottom: solid 1px var(--xr-border-color);\n",
       "}\n",
       "\n",
       ".xr-header > div,\n",
       ".xr-header > ul {\n",
       "  display: inline;\n",
       "  margin-top: 0;\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-obj-type,\n",
       ".xr-array-name {\n",
       "  margin-left: 2px;\n",
       "  margin-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-obj-type {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-sections {\n",
       "  padding-left: 0 !important;\n",
       "  display: grid;\n",
       "  grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
       "}\n",
       "\n",
       ".xr-section-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-section-item input {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-item input + label {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label {\n",
       "  cursor: pointer;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-item input:enabled + label:hover {\n",
       "  color: var(--xr-font-color0);\n",
       "}\n",
       "\n",
       ".xr-section-summary {\n",
       "  grid-column: 1;\n",
       "  color: var(--xr-font-color2);\n",
       "  font-weight: 500;\n",
       "}\n",
       "\n",
       ".xr-section-summary > span {\n",
       "  display: inline-block;\n",
       "  padding-left: 0.5em;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label {\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in + label:before {\n",
       "  display: inline-block;\n",
       "  content: '►';\n",
       "  font-size: 11px;\n",
       "  width: 15px;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:disabled + label:before {\n",
       "  color: var(--xr-disabled-color);\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label:before {\n",
       "  content: '▼';\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked + label > span {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-section-summary,\n",
       ".xr-section-inline-details {\n",
       "  padding-top: 4px;\n",
       "  padding-bottom: 4px;\n",
       "}\n",
       "\n",
       ".xr-section-inline-details {\n",
       "  grid-column: 2 / -1;\n",
       "}\n",
       "\n",
       ".xr-section-details {\n",
       "  display: none;\n",
       "  grid-column: 1 / -1;\n",
       "  margin-bottom: 5px;\n",
       "}\n",
       "\n",
       ".xr-section-summary-in:checked ~ .xr-section-details {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-array-wrap {\n",
       "  grid-column: 1 / -1;\n",
       "  display: grid;\n",
       "  grid-template-columns: 20px auto;\n",
       "}\n",
       "\n",
       ".xr-array-wrap > label {\n",
       "  grid-column: 1;\n",
       "  vertical-align: top;\n",
       "}\n",
       "\n",
       ".xr-preview {\n",
       "  color: var(--xr-font-color3);\n",
       "}\n",
       "\n",
       ".xr-array-preview,\n",
       ".xr-array-data {\n",
       "  padding: 0 5px !important;\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-array-data,\n",
       ".xr-array-in:checked ~ .xr-array-preview {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       ".xr-array-in:checked ~ .xr-array-data,\n",
       ".xr-array-preview {\n",
       "  display: inline-block;\n",
       "}\n",
       "\n",
       ".xr-dim-list {\n",
       "  display: inline-block !important;\n",
       "  list-style: none;\n",
       "  padding: 0 !important;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list li {\n",
       "  display: inline-block;\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "}\n",
       "\n",
       ".xr-dim-list:before {\n",
       "  content: '(';\n",
       "}\n",
       "\n",
       ".xr-dim-list:after {\n",
       "  content: ')';\n",
       "}\n",
       "\n",
       ".xr-dim-list li:not(:last-child):after {\n",
       "  content: ',';\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-has-index {\n",
       "  font-weight: bold;\n",
       "}\n",
       "\n",
       ".xr-var-list,\n",
       ".xr-var-item {\n",
       "  display: contents;\n",
       "}\n",
       "\n",
       ".xr-var-item > div,\n",
       ".xr-var-item label,\n",
       ".xr-var-item > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-even);\n",
       "  margin-bottom: 0;\n",
       "}\n",
       "\n",
       ".xr-var-item > .xr-var-name:hover span {\n",
       "  padding-right: 5px;\n",
       "}\n",
       "\n",
       ".xr-var-list > li:nth-child(odd) > div,\n",
       ".xr-var-list > li:nth-child(odd) > label,\n",
       ".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
       "  background-color: var(--xr-background-color-row-odd);\n",
       "}\n",
       "\n",
       ".xr-var-name {\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-var-dims {\n",
       "  grid-column: 2;\n",
       "}\n",
       "\n",
       ".xr-var-dtype {\n",
       "  grid-column: 3;\n",
       "  text-align: right;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-preview {\n",
       "  grid-column: 4;\n",
       "}\n",
       "\n",
       ".xr-index-preview {\n",
       "  grid-column: 2 / 5;\n",
       "  color: var(--xr-font-color2);\n",
       "}\n",
       "\n",
       ".xr-var-name,\n",
       ".xr-var-dims,\n",
       ".xr-var-dtype,\n",
       ".xr-preview,\n",
       ".xr-attrs dt {\n",
       "  white-space: nowrap;\n",
       "  overflow: hidden;\n",
       "  text-overflow: ellipsis;\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-var-name:hover,\n",
       ".xr-var-dims:hover,\n",
       ".xr-var-dtype:hover,\n",
       ".xr-attrs dt:hover {\n",
       "  overflow: visible;\n",
       "  width: auto;\n",
       "  z-index: 1;\n",
       "}\n",
       "\n",
       ".xr-var-attrs,\n",
       ".xr-var-data,\n",
       ".xr-index-data {\n",
       "  display: none;\n",
       "  background-color: var(--xr-background-color) !important;\n",
       "  padding-bottom: 5px !important;\n",
       "}\n",
       "\n",
       ".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
       ".xr-var-data-in:checked ~ .xr-var-data,\n",
       ".xr-index-data-in:checked ~ .xr-index-data {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       ".xr-var-data > table {\n",
       "  float: right;\n",
       "}\n",
       "\n",
       ".xr-var-name span,\n",
       ".xr-var-data,\n",
       ".xr-index-name div,\n",
       ".xr-index-data,\n",
       ".xr-attrs {\n",
       "  padding-left: 25px !important;\n",
       "}\n",
       "\n",
       ".xr-attrs,\n",
       ".xr-var-attrs,\n",
       ".xr-var-data,\n",
       ".xr-index-data {\n",
       "  grid-column: 1 / -1;\n",
       "}\n",
       "\n",
       "dl.xr-attrs {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  display: grid;\n",
       "  grid-template-columns: 125px auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt,\n",
       ".xr-attrs dd {\n",
       "  padding: 0;\n",
       "  margin: 0;\n",
       "  float: left;\n",
       "  padding-right: 10px;\n",
       "  width: auto;\n",
       "}\n",
       "\n",
       ".xr-attrs dt {\n",
       "  font-weight: normal;\n",
       "  grid-column: 1;\n",
       "}\n",
       "\n",
       ".xr-attrs dt:hover span {\n",
       "  display: inline-block;\n",
       "  background: var(--xr-background-color);\n",
       "  padding-right: 10px;\n",
       "}\n",
       "\n",
       ".xr-attrs dd {\n",
       "  grid-column: 2;\n",
       "  white-space: pre-wrap;\n",
       "  word-break: break-all;\n",
       "}\n",
       "\n",
       ".xr-icon-database,\n",
       ".xr-icon-file-text2,\n",
       ".xr-no-icon {\n",
       "  display: inline-block;\n",
       "  vertical-align: middle;\n",
       "  width: 1em;\n",
       "  height: 1.5em !important;\n",
       "  stroke-width: 0;\n",
       "  stroke: currentColor;\n",
       "  fill: currentColor;\n",
       "}\n",
       "</style><pre class='xr-text-repr-fallback'>&lt;xarray.Dataset&gt;\n",
       "Dimensions:            (trainId: 660, newt_y: 53, newt_x: 1500,\n",
       "                        PESsampleId: 700000, pulse_slot: 2700, sa3_pId: 43)\n",
       "Coordinates:\n",
       "  * trainId            (trainId) uint64 1473952798 1473952800 ... 1473954118\n",
       "  * sa3_pId            (sa3_pId) int64 1056 1088 1120 1152 ... 2336 2368 2400\n",
       "  * newt_x             (newt_x) float64 515.9 515.9 515.9 ... 553.7 553.7 553.8\n",
       "Dimensions without coordinates: newt_y, PESsampleId, pulse_slot\n",
       "Data variables: (12/21)\n",
       "    newton             (trainId, newt_y, newt_x) float64 943.0 800.0 ... 758.0\n",
       "    PES_S_raw          (trainId, PESsampleId) int16 -2 1 1 2 -1 ... 2 -1 3 -3 1\n",
       "    PES_SSW_raw        (trainId, PESsampleId) int16 -3 0 -3 -3 ... -3 -4 -4 -3\n",
       "    PES_SW_raw         (trainId, PESsampleId) int16 -5 -8 -7 -4 ... -9 -7 -6 -9\n",
       "    PES_WSW_raw        (trainId, PESsampleId) int16 -5 -6 -5 -5 ... 0 -3 -2 -7\n",
       "    PES_W_raw          (trainId, PESsampleId) int16 3 1 3 1 3 1 ... 4 2 3 0 3 1\n",
       "    ...                 ...\n",
       "    PES_NE_raw         (trainId, PESsampleId) int16 -4 -5 -1 -5 ... -2 -2 -2 -1\n",
       "    PES_ENE_raw        (trainId, PESsampleId) int16 -5 -2 -5 -2 ... -7 0 -4 -1\n",
       "    bunchPatternTable  (trainId, pulse_slot) uint32 2146089 2048 ... 16777216\n",
       "    XTD10_SA3          (trainId, sa3_pId) float32 1.674e+03 ... 1.465e+03\n",
       "    spectrum           (trainId, newt_x) float64 941.8 960.7 ... 1.319e+03\n",
       "    spectrum_nobl      (trainId, newt_x) float64 -25.84 -7.057 ... -41.9 -25.1\n",
       "Attributes:\n",
       "    runFolder:                 /gpfs/exfel/exp/SCS/202202/p002953/raw/r0322\n",
       "    vbin::                     4\n",
       "    hbin:                      1\n",
       "    startX:                    1\n",
       "    endX:                      2048\n",
       "    startY:                    1\n",
       "    endY:                      512\n",
       "    temperature:               -50.04199981689453\n",
       "    high_capacity:             0\n",
       "    exposure_s:                0.0004\n",
       "    gain:                      2\n",
       "    photoelectrons_per_count:  2.05</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-5c25c23a-638a-4d61-8679-07e9bad05d01' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-5c25c23a-638a-4d61-8679-07e9bad05d01' class='xr-section-summary'  title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>trainId</span>: 660</li><li><span>newt_y</span>: 53</li><li><span class='xr-has-index'>newt_x</span>: 1500</li><li><span>PESsampleId</span>: 700000</li><li><span>pulse_slot</span>: 2700</li><li><span class='xr-has-index'>sa3_pId</span>: 43</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-8c7bb192-4de6-4d39-9e05-db9bdf19c8cb' class='xr-section-summary-in' type='checkbox'  checked><label for='section-8c7bb192-4de6-4d39-9e05-db9bdf19c8cb' class='xr-section-summary' >Coordinates: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>trainId</span></div><div class='xr-var-dims'>(trainId)</div><div class='xr-var-dtype'>uint64</div><div class='xr-var-preview xr-preview'>1473952798 ... 1473954118</div><input id='attrs-44d63e58-96be-47df-bd46-729870bef781' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-44d63e58-96be-47df-bd46-729870bef781' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-956868a6-7982-4dd4-9f15-62de50bce54f' class='xr-var-data-in' type='checkbox'><label for='data-956868a6-7982-4dd4-9f15-62de50bce54f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1473952798, 1473952800, 1473952802, ..., 1473954114, 1473954116,\n",
       "       1473954118], dtype=uint64)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>sa3_pId</span></div><div class='xr-var-dims'>(sa3_pId)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1056 1088 1120 ... 2336 2368 2400</div><input id='attrs-2013517d-11c6-4a0f-bacf-fc75be67340f' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-2013517d-11c6-4a0f-bacf-fc75be67340f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-5982e0ca-a510-4eab-8cf1-24f8ed3f5bf7' class='xr-var-data-in' type='checkbox'><label for='data-5982e0ca-a510-4eab-8cf1-24f8ed3f5bf7' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1056, 1088, 1120, 1152, 1184, 1216, 1248, 1280, 1312, 1344, 1376, 1408,\n",
       "       1440, 1472, 1504, 1536, 1568, 1600, 1632, 1664, 1696, 1728, 1760, 1792,\n",
       "       1824, 1856, 1888, 1920, 1952, 1984, 2016, 2048, 2080, 2112, 2144, 2176,\n",
       "       2208, 2240, 2272, 2304, 2336, 2368, 2400])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>newt_x</span></div><div class='xr-var-dims'>(newt_x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>515.9 515.9 515.9 ... 553.7 553.8</div><input id='attrs-a1c4d87f-6ac1-4f0d-b02c-daecb9cebd58' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a1c4d87f-6ac1-4f0d-b02c-daecb9cebd58' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-68dda5fd-bbaf-49b3-a914-8709bc1c122f' class='xr-var-data-in' type='checkbox'><label for='data-68dda5fd-bbaf-49b3-a914-8709bc1c122f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([515.884589, 515.907651, 515.930715, ..., 553.717729, 553.745216,\n",
       "       553.772706])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-5fbdd184-b4c6-4a11-84e9-1cde45f68601' class='xr-section-summary-in' type='checkbox'  ><label for='section-5fbdd184-b4c6-4a11-84e9-1cde45f68601' class='xr-section-summary' >Data variables: <span>(21)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>newton</span></div><div class='xr-var-dims'>(trainId, newt_y, newt_x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>943.0 800.0 697.0 ... 805.0 758.0</div><input id='attrs-38bd3d1a-cab9-4b8e-94b4-b00810c2b3fc' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-38bd3d1a-cab9-4b8e-94b4-b00810c2b3fc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7f7281ec-9692-41e9-90e8-0f1b568813b1' class='xr-var-data-in' type='checkbox'><label for='data-7f7281ec-9692-41e9-90e8-0f1b568813b1' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[[ 943.,  800.,  697., ...,  985., 1057., 1038.],\n",
       "        [ 842.,  921.,  957., ..., 1037., 1041.,  978.],\n",
       "        [ 744.,  587.,  558., ..., 1094.,  925., 1030.],\n",
       "        ...,\n",
       "        [ 600.,  688.,  836., ...,  970., 1061., 1204.],\n",
       "        [ 681.,  625.,  675., ...,  921.,  938.,  887.],\n",
       "        [ 695.,  593.,  822., ...,  666.,  582.,  829.]],\n",
       "\n",
       "       [[ 918.,  949.,  901., ...,  892.,  976.,  905.],\n",
       "        [ 857.,  912., 1083., ...,  731.,  757.,  758.],\n",
       "        [ 630.,  575.,  599., ..., 1058.,  967.,  914.],\n",
       "        ...,\n",
       "        [ 741.,  776.,  874., ...,  784.,  961., 1391.],\n",
       "        [ 684.,  971.,  878., ...,  954., 1218., 1041.],\n",
       "        [ 831.,  647.,  744., ...,  643.,  690.,  733.]],\n",
       "\n",
       "       [[ 634.,  709.,  727., ...,  985.,  963.,  836.],\n",
       "        [ 553.,  612.,  787., ..., 1169.,  788.,  903.],\n",
       "        [ 668.,  618.,  621., ...,  785.,  863.,  835.],\n",
       "        ...,\n",
       "...\n",
       "        ...,\n",
       "        [ 920.,  815.,  759., ...,  844., 1050.,  839.],\n",
       "        [1080.,  956.,  661., ...,  968., 1001.,  915.],\n",
       "        [ 811.,  918.,  652., ...,  873.,  823., 1034.]],\n",
       "\n",
       "       [[ 733.,  606.,  582., ...,  880., 1039., 1139.],\n",
       "        [ 784.,  806.,  787., ..., 1075., 1125.,  827.],\n",
       "        [ 889.,  848.,  957., ...,  962., 1071.,  811.],\n",
       "        ...,\n",
       "        [ 860.,  649.,  578., ...,  962., 1151.,  985.],\n",
       "        [ 845.,  663.,  688., ...,  836.,  978., 1340.],\n",
       "        [ 732.,  784.,  586., ...,  734.,  872.,  829.]],\n",
       "\n",
       "       [[ 697.,  934.,  742., ...,  873.,  753.,  931.],\n",
       "        [ 694.,  730.,  774., ...,  802., 1020., 1206.],\n",
       "        [ 697.,  956.,  694., ...,  700.,  785.,  899.],\n",
       "        ...,\n",
       "        [ 799.,  717.,  918., ...,  898.,  951., 1050.],\n",
       "        [ 870.,  949.,  918., ...,  911., 1283., 1080.],\n",
       "        [ 894.,  627.,  652., ..., 1032.,  805.,  758.]]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_S_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-2 1 1 2 -1 1 0 ... -2 2 -1 3 -3 1</div><input id='attrs-c923b58a-8a04-43df-af4d-df322852e792' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c923b58a-8a04-43df-af4d-df322852e792' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-592aae53-4746-4663-b2c9-6d60457d6efd' class='xr-var-data-in' type='checkbox'><label for='data-592aae53-4746-4663-b2c9-6d60457d6efd' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-2,  1,  1, ...,  4, -3, -2],\n",
       "       [ 1,  0, -1, ...,  3, -2,  0],\n",
       "       [-1,  6,  0, ...,  1, -4,  1],\n",
       "       ...,\n",
       "       [-2,  1, -1, ..., -1,  3,  0],\n",
       "       [-1,  4,  0, ...,  0,  2,  1],\n",
       "       [-2,  1,  0, ...,  3, -3,  1]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SSW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-3 0 -3 -3 -1 0 ... 1 -3 -4 -4 -3</div><input id='attrs-4b9318e0-75df-431d-ba44-63b082d17d05' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4b9318e0-75df-431d-ba44-63b082d17d05' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bb55e6a3-96fc-475e-955a-6326b4a9f825' class='xr-var-data-in' type='checkbox'><label for='data-bb55e6a3-96fc-475e-955a-6326b4a9f825' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-3,  0, -3, ..., -3, -1, -2],\n",
       "       [-1,  1, -1, ...,  1,  1,  1],\n",
       "       [-3, -2,  0, ..., -3, -1,  0],\n",
       "       ...,\n",
       "       [-3, -1, -1, ..., -7,  2, -2],\n",
       "       [ 1, -3, -3, ..., -2, -4, -1],\n",
       "       [-4, -2, -3, ..., -4, -4, -3]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-5 -8 -7 -4 -7 ... -9 -9 -7 -6 -9</div><input id='attrs-e81e9f33-58cc-4738-b5e0-e5944ed30608' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-e81e9f33-58cc-4738-b5e0-e5944ed30608' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c9925ddb-fd09-4a0e-852e-d448820fcaad' class='xr-var-data-in' type='checkbox'><label for='data-c9925ddb-fd09-4a0e-852e-d448820fcaad' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -5,  -8,  -7, ...,  -7,  -8,  -5],\n",
       "       [ -5,  -6,  -9, ...,  -8,  -5,  -9],\n",
       "       [-10,  -8, -10, ...,  -8,  -6,  -8],\n",
       "       ...,\n",
       "       [ -7,  -6,  -7, ...,  -9,  -8,  -9],\n",
       "       [ -8,  -6,  -8, ...,  -7,  -9,  -9],\n",
       "       [ -8,  -7,  -8, ...,  -7,  -6,  -9]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_WSW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-5 -6 -5 -5 -5 -8 ... -7 0 -3 -2 -7</div><input id='attrs-d4307e12-0054-4826-8f67-f9a9a0512c73' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d4307e12-0054-4826-8f67-f9a9a0512c73' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-14cc428e-3848-43ef-a376-2509dd5610dd' class='xr-var-data-in' type='checkbox'><label for='data-14cc428e-3848-43ef-a376-2509dd5610dd' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-5, -6, -5, ..., -4, -5, -6],\n",
       "       [-5, -5, -4, ..., -6, -6, -4],\n",
       "       [-2, -6, -4, ..., -3, -3, -5],\n",
       "       ...,\n",
       "       [-2, -5, -4, ..., -2, -5, -5],\n",
       "       [-2, -4, -5, ..., -4, -4, -3],\n",
       "       [-1, -4, -4, ..., -3, -2, -7]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_W_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>3 1 3 1 3 1 3 2 ... 2 3 4 2 3 0 3 1</div><input id='attrs-56badc9c-94f3-4881-837c-d5f2a7773d66' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-56badc9c-94f3-4881-837c-d5f2a7773d66' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bc35f2d0-23b5-46aa-9bea-4d53b46b0061' class='xr-var-data-in' type='checkbox'><label for='data-bc35f2d0-23b5-46aa-9bea-4d53b46b0061' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 3,  1,  3, ...,  1,  3,  3],\n",
       "       [ 3,  5,  1, ...,  4,  4,  3],\n",
       "       [-1,  2, -1, ...,  1,  1,  5],\n",
       "       ...,\n",
       "       [ 3,  3,  2, ...,  3,  2,  3],\n",
       "       [ 2,  4,  3, ...,  1,  1,  0],\n",
       "       [ 2,  3,  2, ...,  0,  3,  1]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_WNW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-6 -3 -5 -6 -5 ... -2 -4 -5 -4 -7</div><input id='attrs-5ae2779a-4fd3-4d32-8cd1-299494cfa506' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5ae2779a-4fd3-4d32-8cd1-299494cfa506' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3daf0a40-8a50-4de7-a01c-064999adc1f2' class='xr-var-data-in' type='checkbox'><label for='data-3daf0a40-8a50-4de7-a01c-064999adc1f2' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-6, -3, -5, ..., -2, -1, -4],\n",
       "       [-7, -2, -2, ..., -2, -2, -5],\n",
       "       [-5, -4, -1, ..., -5, -3, -5],\n",
       "       ...,\n",
       "       [-1, -7, -6, ..., -6, -5, -7],\n",
       "       [-5, -4, -4, ..., -6, -3, -6],\n",
       "       [-6, -5, -7, ..., -5, -4, -7]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_NW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-9 -11 -11 -13 ... -10 -10 -10 -9</div><input id='attrs-607da0a0-d09d-4b2c-ac82-14ec87becfc9' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-607da0a0-d09d-4b2c-ac82-14ec87becfc9' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d6d0c51a-1651-4357-a0f4-ad4ad7a6ce11' class='xr-var-data-in' type='checkbox'><label for='data-d6d0c51a-1651-4357-a0f4-ad4ad7a6ce11' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -9, -11, -11, ..., -11,  -7, -11],\n",
       "       [-10, -10,  -9, ...,  -8, -12,  -9],\n",
       "       [-11, -11, -13, ..., -10, -10, -12],\n",
       "       ...,\n",
       "       [ -7, -11,  -8, ..., -11, -11,  -9],\n",
       "       [-12, -10, -10, ..., -12,  -8, -11],\n",
       "       [-11, -10,  -8, ..., -10, -10,  -9]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_NNW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-2 -5 -5 -4 -5 ... -5 -7 -7 -6 -7</div><input id='attrs-c69dec9d-70bc-42aa-99fc-0b91982ae181' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c69dec9d-70bc-42aa-99fc-0b91982ae181' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-58939b35-465c-4c46-a31d-d41a5f867c45' class='xr-var-data-in' type='checkbox'><label for='data-58939b35-465c-4c46-a31d-d41a5f867c45' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-2, -5, -5, ..., -3, -6, -5],\n",
       "       [-4, -5, -4, ..., -1, -6, -5],\n",
       "       [-4, -5, -6, ..., -3, -6, -7],\n",
       "       ...,\n",
       "       [-4, -7, -3, ..., -7, -5, -7],\n",
       "       [-4, -4, -5, ..., -6, -7, -8],\n",
       "       [-4, -4, -5, ..., -7, -6, -7]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_E_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-7 -1 -6 -4 -5 ... -1 -4 -2 -4 -2</div><input id='attrs-8d4a4770-07a1-47de-9477-f09b0e740c2e' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8d4a4770-07a1-47de-9477-f09b0e740c2e' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e4723261-f956-44b3-8f6c-13b4465b143e' class='xr-var-data-in' type='checkbox'><label for='data-e4723261-f956-44b3-8f6c-13b4465b143e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-7, -1, -6, ..., -6, -8, -4],\n",
       "       [-5, -4, -6, ..., -4, -5, -4],\n",
       "       [-6, -4, -3, ..., -5, -6, -2],\n",
       "       ...,\n",
       "       [-5, -4, -6, ..., -1, -5, -5],\n",
       "       [-3, -3, -7, ..., -6, -8, -6],\n",
       "       [-8, -1, -4, ..., -2, -4, -2]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_ESE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-11 -10 -12 -12 ... -11 -11 -13 -10</div><input id='attrs-6bbb9738-b814-4001-88e8-f6b61d814819' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6bbb9738-b814-4001-88e8-f6b61d814819' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1c714a94-e83b-45a9-9137-c96b4a05e12d' class='xr-var-data-in' type='checkbox'><label for='data-1c714a94-e83b-45a9-9137-c96b4a05e12d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-11, -10, -12, ...,  -8,  -9, -11],\n",
       "       [ -8, -13, -10, ..., -10,  -9, -12],\n",
       "       [ -9, -11, -11, ...,  -9, -10, -10],\n",
       "       ...,\n",
       "       [-11,  -7, -12, ...,  -9, -13, -10],\n",
       "       [ -9, -11, -11, ..., -10, -11,  -9],\n",
       "       [-12,  -9, -10, ..., -11, -13, -10]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>0 -7 -4 -3 -3 -4 ... -5 -2 -2 -4 -3</div><input id='attrs-909808f0-cc7d-4d9b-b650-9655154357da' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-909808f0-cc7d-4d9b-b650-9655154357da' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-962407ab-5a91-499e-abda-62f716a7c575' class='xr-var-data-in' type='checkbox'><label for='data-962407ab-5a91-499e-abda-62f716a7c575' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 0, -7, -4, ..., -1, -2, -5],\n",
       "       [-4, -3, -4, ..., -3,  0, -4],\n",
       "       [-2, -2, -7, ..., -2, -1, -4],\n",
       "       ...,\n",
       "       [-4, -4, -3, ..., -4, -3, -3],\n",
       "       [-3, -5, -3, ..., -4, -4, -5],\n",
       "       [-4, -3, -6, ..., -2, -4, -3]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SSE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-13 -13 -15 -12 ... -12 -12 -13 -14</div><input id='attrs-a432445a-c371-4de6-b733-fe1f6c1e600d' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a432445a-c371-4de6-b733-fe1f6c1e600d' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-29f92f24-7dbf-49fa-b8b3-435173d7e1a6' class='xr-var-data-in' type='checkbox'><label for='data-29f92f24-7dbf-49fa-b8b3-435173d7e1a6' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-13, -13, -15, ..., -14, -12, -14],\n",
       "       [-14, -15, -13, ..., -13,  -9, -15],\n",
       "       [-13, -14, -11, ..., -14, -11, -11],\n",
       "       ...,\n",
       "       [-13, -14, -13, ..., -13, -12, -14],\n",
       "       [-13, -14, -11, ..., -11, -13, -14],\n",
       "       [-16, -13, -15, ..., -12, -13, -14]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_N_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-10 -12 -10 -9 -8 ... -8 -8 -8 -10</div><input id='attrs-a715828f-1f78-430b-add5-f509446a1813' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a715828f-1f78-430b-add5-f509446a1813' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-73a7b7c2-cbfd-4521-add4-b991d51953ad' class='xr-var-data-in' type='checkbox'><label for='data-73a7b7c2-cbfd-4521-add4-b991d51953ad' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-10, -12, -10, ..., -10, -10, -11],\n",
       "       [ -8, -11,  -9, ...,  -9,  -7, -10],\n",
       "       [-11,  -8, -11, ..., -12, -11, -12],\n",
       "       ...,\n",
       "       [ -8, -10, -10, ...,  -7,  -9, -12],\n",
       "       [-11,  -9,  -8, ..., -11, -10,  -9],\n",
       "       [ -8,  -9, -10, ...,  -8,  -8, -10]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_NNE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-6 -8 -7 -9 -9 ... -9 -7 -8 -10 -9</div><input id='attrs-f1972a0e-05f9-4144-b637-bee2f304c5cc' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f1972a0e-05f9-4144-b637-bee2f304c5cc' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-d1b9f190-7131-4308-a5f7-dc0b4704e7df' class='xr-var-data-in' type='checkbox'><label for='data-d1b9f190-7131-4308-a5f7-dc0b4704e7df' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -6,  -8,  -7, ...,  -9,  -5, -10],\n",
       "       [ -5,  -7,  -9, ...,  -9,  -6, -10],\n",
       "       [-10,  -8,  -9, ...,  -8,  -8, -10],\n",
       "       ...,\n",
       "       [ -7,  -8, -10, ...,  -8,  -7, -10],\n",
       "       [ -5,  -7,  -5, ...,  -8,  -9, -11],\n",
       "       [ -7,  -7,  -7, ...,  -8, -10,  -9]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_NE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-4 -5 -1 -5 -2 ... -5 -2 -2 -2 -1</div><input id='attrs-493315df-dfff-4f85-9edb-edca2ce3ec44' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-493315df-dfff-4f85-9edb-edca2ce3ec44' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-673dc8a1-009b-4458-8a8e-743dbccf9d20' class='xr-var-data-in' type='checkbox'><label for='data-673dc8a1-009b-4458-8a8e-743dbccf9d20' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-4, -5, -1, ..., -5,  0, -5],\n",
       "       [-3, -4, -4, ..., -5, -1, -1],\n",
       "       [-2, -1, -1, ..., -3, -2, -5],\n",
       "       ...,\n",
       "       [-4, -3, -3, ..., -3, -1, -4],\n",
       "       [ 0, -3, -3, ...,  1, -2, -5],\n",
       "       [-1, -5, -6, ..., -2, -2, -1]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_ENE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-5 -2 -5 -2 -5 -1 ... -3 -7 0 -4 -1</div><input id='attrs-05020386-2993-4cfb-b615-bed6052bc600' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-05020386-2993-4cfb-b615-bed6052bc600' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c608bc72-5f42-470e-a290-b2521b7efc27' class='xr-var-data-in' type='checkbox'><label for='data-c608bc72-5f42-470e-a290-b2521b7efc27' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-5, -2, -5, ..., -4, -6, -1],\n",
       "       [-4,  2, -4, ..., -2, -6, -2],\n",
       "       [-2,  0, -5, ..., -1, -2, -3],\n",
       "       ...,\n",
       "       [-1, -4, -3, ...,  2, -4, -1],\n",
       "       [-9, -2, -5, ..., -2, -2, -3],\n",
       "       [-5,  0,  0, ...,  0, -4, -1]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>bunchPatternTable</span></div><div class='xr-var-dims'>(trainId, pulse_slot)</div><div class='xr-var-dtype'>uint32</div><div class='xr-var-preview xr-preview'>2146089 2048 ... 16777216 16777216</div><input id='attrs-a62a3040-56f4-4b0e-9330-026309882ce5' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-a62a3040-56f4-4b0e-9330-026309882ce5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-048aad8c-b895-40ce-ae86-50e70e4d7da9' class='xr-var-data-in' type='checkbox'><label for='data-048aad8c-b895-40ce-ae86-50e70e4d7da9' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 2146089,     2048,  2099241, ..., 16777216, 16777216, 16777216],\n",
       "       [ 2146089,     2048,  2099241, ..., 16777216, 16777216, 16777216],\n",
       "       [ 2211625,     2048,  2099241, ..., 16777216, 16777216, 16777216],\n",
       "       ...,\n",
       "       [ 2146089,     2048,  2099241, ..., 16777216, 16777216, 16777216],\n",
       "       [ 2146089,     2048,  2099241, ..., 16777216, 16777216, 16777216],\n",
       "       [ 2146089,     2048,  2099241, ..., 16777216, 16777216, 16777216]],\n",
       "      dtype=uint32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>XTD10_SA3</span></div><div class='xr-var-dims'>(trainId, sa3_pId)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1.674e+03 1.781e+03 ... 1.465e+03</div><input id='attrs-6ebe0c60-1349-48e9-be94-e828558f3453' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6ebe0c60-1349-48e9-be94-e828558f3453' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a7e7f684-e844-4f5e-adc7-162202f80191' class='xr-var-data-in' type='checkbox'><label for='data-a7e7f684-e844-4f5e-adc7-162202f80191' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[1673.9749, 1780.605 , 1452.1677, ..., 1836.0759, 1695.688 ,\n",
       "        1458.0745],\n",
       "       [2012.4326, 1767.7134, 1716.7632, ..., 1651.4255, 1813.9778,\n",
       "        1431.3564],\n",
       "       [1630.8784, 1645.9148, 1469.2832, ..., 1508.0568, 1385.6311,\n",
       "        1416.7161],\n",
       "       ...,\n",
       "       [1507.3145, 1752.1653, 1686.9208, ..., 1737.3125, 1577.063 ,\n",
       "        1616.5239],\n",
       "       [2101.6008, 1569.2412, 1855.7173, ..., 1483.9696, 1664.9822,\n",
       "        1348.7126],\n",
       "       [1564.1768, 1731.567 , 1535.6467, ..., 1721.9434, 1681.0325,\n",
       "        1465.4915]], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>spectrum</span></div><div class='xr-var-dims'>(trainId, newt_x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>941.8 960.7 ... 1.302e+03 1.319e+03</div><input id='attrs-48baa7bb-053f-4b03-b3ae-9436b60a23e0' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-48baa7bb-053f-4b03-b3ae-9436b60a23e0' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b6497bc4-e3ab-46cf-8192-e82d08659f44' class='xr-var-data-in' type='checkbox'><label for='data-b6497bc4-e3ab-46cf-8192-e82d08659f44' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 941.7556739 ,  960.7466906 ,  985.17017035, ..., 1429.04684533,\n",
       "        1345.94695049, 1329.10718964],\n",
       "       [1078.21605126, 1053.65423777, 1074.17111375, ..., 1328.01665665,\n",
       "        1424.27242218, 1363.57039719],\n",
       "       [ 935.14152295,  949.06555853,  981.37960431, ..., 1409.16571326,\n",
       "        1329.469592  , 1194.42605757],\n",
       "       ...,\n",
       "       [1025.26416446, 1002.32687928,  985.82771752, ..., 1286.78458118,\n",
       "        1334.07242218, 1294.76001983],\n",
       "       [1083.24435314, 1097.98065287, 1044.15601941, ..., 1231.7053359 ,\n",
       "        1391.47242218, 1360.74681228],\n",
       "       [1022.09246635, 1066.147634  , 1049.91922696, ..., 1362.59590193,\n",
       "        1302.00732785, 1319.01190662]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>spectrum_nobl</span></div><div class='xr-var-dims'>(trainId, newt_x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-25.84 -7.057 17.15 ... -41.9 -25.1</div><input id='attrs-dc5974f5-52db-46c1-97f6-88458417fb16' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-dc5974f5-52db-46c1-97f6-88458417fb16' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-46a92e7e-8342-4a63-bf31-e73134d55547' class='xr-var-data-in' type='checkbox'><label for='data-46a92e7e-8342-4a63-bf31-e73134d55547' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -25.83624416,   -7.0570592 ,   17.15456166, ...,  113.93823559,\n",
       "          30.58586118,   13.49359361],\n",
       "       [ 132.95311623,  108.13436457,  128.39426944, ...,  -38.76150904,\n",
       "          57.18801513,   -3.82028416],\n",
       "       [  -4.23122332,    9.49350667,   41.60822133, ...,  142.82583547,\n",
       "          62.89216441,  -72.38894537],\n",
       "       ...,\n",
       "       [  22.22432542,   -0.8607938 ,  -17.50780854, ...,   41.21831883,\n",
       "          88.32995832,   48.8413355 ],\n",
       "       [  80.40705362,   94.91392577,   40.85983533, ..., -147.51518149,\n",
       "          11.97845297,  -19.02063816],\n",
       "       [ -34.8527069 ,    9.02766964,   -7.37555092, ...,   18.90036362,\n",
       "         -41.89654178,  -25.10031672]])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-d49f9f59-de72-4395-b51c-20ba00881c51' class='xr-section-summary-in' type='checkbox'  ><label for='section-d49f9f59-de72-4395-b51c-20ba00881c51' class='xr-section-summary' >Indexes: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>trainId</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-b4d1f00c-1a1b-4d7e-940f-e13ba4c79909' class='xr-index-data-in' type='checkbox'/><label for='index-b4d1f00c-1a1b-4d7e-940f-e13ba4c79909' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([1473952798, 1473952800, 1473952802, 1473952804, 1473952806, 1473952808,\n",
       "       1473952810, 1473952812, 1473952814, 1473952816,\n",
       "       ...\n",
       "       1473954100, 1473954102, 1473954104, 1473954106, 1473954108, 1473954110,\n",
       "       1473954112, 1473954114, 1473954116, 1473954118],\n",
       "      dtype=&#x27;uint64&#x27;, name=&#x27;trainId&#x27;, length=660))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>sa3_pId</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-d1499bd9-c822-43c5-ad5d-2e37d90a46ae' class='xr-index-data-in' type='checkbox'/><label for='index-d1499bd9-c822-43c5-ad5d-2e37d90a46ae' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([1056, 1088, 1120, 1152, 1184, 1216, 1248, 1280, 1312, 1344, 1376, 1408,\n",
       "       1440, 1472, 1504, 1536, 1568, 1600, 1632, 1664, 1696, 1728, 1760, 1792,\n",
       "       1824, 1856, 1888, 1920, 1952, 1984, 2016, 2048, 2080, 2112, 2144, 2176,\n",
       "       2208, 2240, 2272, 2304, 2336, 2368, 2400],\n",
       "      dtype=&#x27;int64&#x27;, name=&#x27;sa3_pId&#x27;))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>newt_x</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-5111143b-1c38-4e7a-90b1-d7acf156d259' class='xr-index-data-in' type='checkbox'/><label for='index-5111143b-1c38-4e7a-90b1-d7acf156d259' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([       515.884589, 515.9076505108267, 515.9307149777067,\n",
       "       515.9537824006401, 515.9768527796267, 515.9999261146668,\n",
       "       516.0230024057602, 516.0460816529069, 516.0691638561069,\n",
       "       516.0922490153603,\n",
       "       ...\n",
       "        553.525404882067, 553.5528709123703, 553.5803398987268,\n",
       "       553.6078118411368, 553.6352867396001, 553.6627645941168,\n",
       "       553.6902454046867,   553.71772917131, 553.7452158939867,\n",
       "       553.7727055727166],\n",
       "      dtype=&#x27;float64&#x27;, name=&#x27;newt_x&#x27;, length=1500))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-027fcb0a-bc9c-4f33-9fe9-411021548132' class='xr-section-summary-in' type='checkbox'  ><label for='section-027fcb0a-bc9c-4f33-9fe9-411021548132' class='xr-section-summary' >Attributes: <span>(12)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>runFolder :</span></dt><dd>/gpfs/exfel/exp/SCS/202202/p002953/raw/r0322</dd><dt><span>vbin: :</span></dt><dd>4</dd><dt><span>hbin :</span></dt><dd>1</dd><dt><span>startX :</span></dt><dd>1</dd><dt><span>endX :</span></dt><dd>2048</dd><dt><span>startY :</span></dt><dd>1</dd><dt><span>endY :</span></dt><dd>512</dd><dt><span>temperature :</span></dt><dd>-50.04199981689453</dd><dt><span>high_capacity :</span></dt><dd>0</dd><dt><span>exposure_s :</span></dt><dd>0.0004</dd><dt><span>gain :</span></dt><dd>2</dd><dt><span>photoelectrons_per_count :</span></dt><dd>2.05</dd></dl></div></li></ul></div></div>"
      ],
      "text/plain": [
       "<xarray.Dataset>\n",
       "Dimensions:            (trainId: 660, newt_y: 53, newt_x: 1500,\n",
       "                        PESsampleId: 700000, pulse_slot: 2700, sa3_pId: 43)\n",
       "Coordinates:\n",
       "  * trainId            (trainId) uint64 1473952798 1473952800 ... 1473954118\n",
       "  * sa3_pId            (sa3_pId) int64 1056 1088 1120 1152 ... 2336 2368 2400\n",
       "  * newt_x             (newt_x) float64 515.9 515.9 515.9 ... 553.7 553.7 553.8\n",
       "Dimensions without coordinates: newt_y, PESsampleId, pulse_slot\n",
       "Data variables: (12/21)\n",
       "    newton             (trainId, newt_y, newt_x) float64 943.0 800.0 ... 758.0\n",
       "    PES_S_raw          (trainId, PESsampleId) int16 -2 1 1 2 -1 ... 2 -1 3 -3 1\n",
       "    PES_SSW_raw        (trainId, PESsampleId) int16 -3 0 -3 -3 ... -3 -4 -4 -3\n",
       "    PES_SW_raw         (trainId, PESsampleId) int16 -5 -8 -7 -4 ... -9 -7 -6 -9\n",
       "    PES_WSW_raw        (trainId, PESsampleId) int16 -5 -6 -5 -5 ... 0 -3 -2 -7\n",
       "    PES_W_raw          (trainId, PESsampleId) int16 3 1 3 1 3 1 ... 4 2 3 0 3 1\n",
       "    ...                 ...\n",
       "    PES_NE_raw         (trainId, PESsampleId) int16 -4 -5 -1 -5 ... -2 -2 -2 -1\n",
       "    PES_ENE_raw        (trainId, PESsampleId) int16 -5 -2 -5 -2 ... -7 0 -4 -1\n",
       "    bunchPatternTable  (trainId, pulse_slot) uint32 2146089 2048 ... 16777216\n",
       "    XTD10_SA3          (trainId, sa3_pId) float32 1.674e+03 ... 1.465e+03\n",
       "    spectrum           (trainId, newt_x) float64 941.8 960.7 ... 1.319e+03\n",
       "    spectrum_nobl      (trainId, newt_x) float64 -25.84 -7.057 ... -41.9 -25.1\n",
       "Attributes:\n",
       "    runFolder:                 /gpfs/exfel/exp/SCS/202202/p002953/raw/r0322\n",
       "    vbin::                     4\n",
       "    hbin:                      1\n",
       "    startX:                    1\n",
       "    endX:                      2048\n",
       "    startY:                    1\n",
       "    endY:                      512\n",
       "    temperature:               -50.04199981689453\n",
       "    high_capacity:             0\n",
       "    exposure_s:                0.0004\n",
       "    gain:                      2\n",
       "    photoelectrons_per_count:  2.05"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data_train = v.from_run(runTrain)  # load refNB. The `newton` variable contains the CCD images.\n",
    "v.integrate(data_train)  # integrate over the non-dispersive dimension \n",
    "v.removePolyBaseline(data_train)  # remove baseline\n",
    "data_train"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "294b5f3a-1d59-444e-80ab-4834d26d62dc",
   "metadata": {},
   "outputs": [],
   "source": [
    "# transform PES data into the format expected\n",
    "pes_data = {k: da.from_array(data_train[item].to_numpy())\n",
    "            for k, item in pes_map.items() if item in data_train}\n",
    "xgm = data_train.XTD10_SA3.isel(sa3_pId=0).to_numpy()[:, np.newaxis]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "b477bf49-f5ca-4df0-b6ed-a270ee35cd28",
   "metadata": {},
   "outputs": [],
   "source": [
    "channels = tuple(pes_data.keys())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "8f154e38-d208-477e-9d9c-ef2a632514c8",
   "metadata": {},
   "outputs": [],
   "source": [
    "energy = data_train.newt_x.to_numpy()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "0c5ff2a0-0737-417d-9f57-158d4fbd8090",
   "metadata": {},
   "outputs": [],
   "source": [
    "vik = data_train.spectrum.to_numpy()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "995e2ac0-1898-46dd-b95f-f65a24496871",
   "metadata": {},
   "source": [
    "## Train Virtual Spectrometer"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9cbf75c8-fbe0-42ec-af85-6194aede91f5",
   "metadata": {},
   "source": [
    "So far we have only done pre-processing due to experimental problems with some data not being available in certain train IDs.\n",
    "\n",
    "Let's finally take a look at the data before training the model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "63b35dac-ad50-4124-b6f8-e1ceea667b4d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x2b563aa392d0>]"
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD4CAYAAAAKA1qZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2JElEQVR4nO3deXhb1Zn48e8ryZL3bHY2OyuEJQkQkhTCvkMKLWHoUFJoSQvTtJTSdYbC/GCGDg2l7UwX9qaUspRCU5ZC2UPKHiA4ISQkIWRPnM2OE8e7rOX8/rhX8rUt23K8XMl6P8/jR1dH98qvryW9Oss9R4wxKKWUykwetwNQSinlHk0CSimVwTQJKKVUBtMkoJRSGUyTgFJKZTCf2wF0paioyIwfP97tMJRSKm0UFRXxyiuvvGKMmd3VvimfBMaPH09ZWZnbYSilVFoRkaJk9kuqOUhEfigia0TkExF5XESyRWSoiCwWkQ327RDH/jeJyEYRWS8iFzjKZ4jIavuxO0VEuv+nKaWU6i1dJgERKQG+B8w0xkwFvMBc4EZgiTFmErDEvo+ITLYfnwLMBu4VEa/9dPcB84FJ9k+XVRWllFJ9J9mOYR+QIyI+IBfYBcwBHrYffxi4xN6eAzxhjAkaY7YAG4ETRGQUUGiMec9Ylyk/4jhGKaWUC7pMAsaYncD/AtuB3cBBY8yrwAhjzG57n93AcPuQEmCH4ynK7bISe7tteTsiMl9EykSkrLKysnt/kVJKqaQl0xw0BOvb/QRgNJAnIl/t7JAEZaaT8vaFxiw0xsw0xswsLi7uKkSllFKHKJnmoHOBLcaYSmNMCHgaOBnYazfxYN9W2PuXA2Mcx5diNR+V29tty5VSSrkkmSSwHZglIrn2aJ5zgHXAc8A8e595wLP29nPAXBEJiMgErA7gZXaTUa2IzLKf5yrHMUoppVzQ5XUCxpgPRORJYAUQBj4CFgL5wCIRuQYrUVxm779GRBYBa+39rzPGROynuxZ4CMgBXrJ/lOq2jRW17Kpu4vQjtLlQqZ6QVF9PYObMmUYvFlNtjb/xBQC23nGRy5EolZpEZLkxZmZX++ncQSrtBMOR+Haqf4lRKtVpElBpp7G5JQk0hiKd7KmU6oomAZV2GhxJoLoh5GIkSqU/TQIq7Ti//R9s1CSgVE9oElBpx9kcdKCh2cVIlEp/mgRU2qmobYpvNwS1T0CpntAkoNLOzgON8e3mSNTFSJRKf5oEVNppCrV88DeHNQko1ROaBFTacX771ySgVM9oElBpozkcxRhD0DE6KKjNQUr1SMqvMawUQDRqOOLml/j6yeMJZLV8d9GagFI9ozUBlRZiTUAPLd1KcziK32u9dDUJKNUzmgRUWnD2AwTDUfKzrUqsJgGlekaTgEoLIceH/YH6ZrJ9HnweaTWZnFKq+zQJqLTgrAlU1TUTyPLi93m0JqBUD2kSUGkhFG6ZMrqmKYTf67GSgI4OUqpHNAmotOD8sK8LhvH7PAS0JqBUj2kSUGkh5EgCtU1hAj6PNgcp1Qs0Cai00DoJhPD7PPi9Hirrgi5GpVT66zIJiMiRIrLS8VMjIj8QkaEislhENti3QxzH3CQiG0VkvYhc4CifISKr7cfuFBHpqz9Mpbed1Y384ImPWPjWJowxrZJA1IDf58HrEdbvqXUxSqXSX5dJwBiz3hgzzRgzDZgBNADPADcCS4wxk4Al9n1EZDIwF5gCzAbuFRGv/XT3AfOBSfbP7F79a9SAccOTH/P3lbu4/cVP2VsTpDncei1hv9fDjHFDiOoaw0r1SHebg84BNhljtgFzgIft8oeBS+ztOcATxpigMWYLsBE4QURGAYXGmPeMtTr4I45jlGol6mjqD4Yj7UYBBbK8BHxegtonoFSPdDcJzAUet7dHGGN2A9i3w+3yEmCH45hyu6zE3m5b3o6IzBeRMhEpq6ys7GaIaiDI9Xvj25sq61pdLAbEh4iGdIioUj2SdBIQET9wMfC3rnZNUGY6KW9faMxCY8xMY8zM4uLiZENUA0huoGVuw6sfKuP9zVWtHo91DIci2hykVE90pybweWCFMWavfX+v3cSDfVthl5cDYxzHlQK77PLSBOVKtZPnqAkArN/bugM44POQ5fUQiRoiUU0ESh2q7iSBr9DSFATwHDDP3p4HPOsonysiARGZgNUBvMxuMqoVkVn2qKCrHMeoDLZjfwPjb3yBN9ZXdLhPU6j1HEEBn4csn1W51CYhpQ5dUklARHKB84CnHcV3AOeJyAb7sTsAjDFrgEXAWuBl4DpjTOwdfC3wAFZn8SbgpV74G1SaW7H9AAB/K2vpMmps86Ff3RBqdT/WHAS6zrBSPZHUojLGmAZgWJuyKqzRQon2XwAsSFBeBkztfphqIPN6rG/0zuGeTaEIY4bmsGO/taj8gbZJwGs1BwHtOo2VUsnTK4aV64L2wvHOJNAYijI0L8Cnt1mXklQ3NLc6JtueRRTQzmGlekCTgHJddaP1Ld/Zv9sUipCT5SE7y8uwPD/hNp2/gayWmoDOH6TUodMkoFx30E4CzlE+jc0RsrOsEUJ5gfatltboIKsZSfsElDp0mgSU62rsJBBLBgBVdUGG5QWAlgvHYn0HAAGfN94xrKODlDp0mgSU62Lt/QfsW2MMFbVBigusJBCw2/5jH/qxspY+AU0CSh0qTQLKdbEaQGwYaHMkSjhqKLAXk4+1/ceaf6B1n4AmAaUOXVJDRJXqS7Ek0NhsXRsQmxQuVgOIfdjHvvkDZPu8xGYi10nklDp0mgSU62KjgxpDEYwx8auDY0nAZ9cAspzNQVkt2zo6SKlDp0lAua7G0SEcDEfj1w0E7NFBsb6A2GghsDqGY/fbXk2slEqe9gko19U2heMf9E2hSIfNQQFf647hEYVWx/Hemqb+DFepAUWTgHJdKBKlMMeqlDaFoo7mIOubfpb94Z/jb10TyA/4yMnyUlGr6wwrdag0CShXRaOGqIH8QCwJROJDRYfm+YGWUUHZPkcSyPIgIowoDLCrurGfo1Zq4NAkoFwVmw4i3x4O2hiKUGl/sy/Kt5JArEaQ7egMHpSTBcCUkkGs3FHdX+EqNeBoElCuCtuLCTtrArGO4tgHfew2N+Cj0E4WsU7h4QUB6prC/RqzUgOJjg5SrorXBALWB31jKEKjPToo12+9PGNJwO/18MoPT6eqrmVG0Ty/j9pgmGjU4PEkWsFUKdUZrQkoV4XtaaBjVwcHQ1Eam61v9rHRQINzrSQQNYZRg3KYWjIofvzybdaCNPe8vrHfYlZqINEkoFwVjrRuDrJqAhFysrzxb/bOi8TaOrbUSghb9tX3caRKDUyaBJSrYs1BsSGiDc0RGpojrYaDxoaM5mR52x3/4/OPBGDEoOy+DlWpAUmTgHJVrDmoMNtq8vnTu1tYt7um1Qf+7KkjOWpkAd8647B2x/t9HvIDvvhVxpW1Qc781ets2FvbD9Erlf40CShXhezRQbHO3zW7alixvbpVTaAoP8DLPzidCUV5CZ8j4PPQHLFqC69/WsHWqgbufWNTH0eu1MCQVBIQkcEi8qSIfCoi60TkJBEZKiKLRWSDfTvEsf9NIrJRRNaLyAWO8hkistp+7E6JTQOpMlZsNbG2q4fl+ts3/XTE7/PEawLYr6hYE5JSqnPJ1gR+B7xsjDkKOA5YB9wILDHGTAKW2PcRkcnAXGAKMBu4V0Ri7+j7gPnAJPtndi/9HSpNxdYCaNv5m52g/b8jfp8nvsTkPz7eBbR0NCulOtdlEhCRQuB04I8AxphmY0w1MAd42N7tYeASe3sO8IQxJmiM2QJsBE4QkVFAoTHmPWOMAR5xHKMyVKwm4FwwBiCvGzWBgM8Tn056n30NQewKZKVU55KpCUwEKoE/ichHIvKAiOQBI4wxuwHs2+H2/iXADsfx5XZZib3dtrwdEZkvImUiUlZZWdmtP0ill5DdMez1CB//9/nx8uEFyY/28fs88ZlHY1cb6xoDSiUnmSTgA6YD9xljjgfqsZt+OpCond90Ut6+0JiFxpiZxpiZxcXFSYSo0lXY0Rw0KCeLi44ZBcDIbgz5DPi88Q/9WBLQ1caUSk4ySaAcKDfGfGDffxIrKey1m3iwbysc+49xHF8K7LLLSxOUqwwWaw7y2heG1Qatq4VHdSMJ+L0eguEIkaiJH69JQKnkdJkEjDF7gB0icqRddA6wFngOmGeXzQOetbefA+aKSEBEJmB1AC+zm4xqRWSWPSroKscxKkOF2vQJzDtpHEX5AY4tHZz0c/jtPgHnCmXNYR0dpFQyku09ux54TET8wGbgG1gJZJGIXANsBy4DMMasEZFFWIkiDFxnjIm9I68FHgJygJfsH5XBIvZ1Aj6P9X3knKNHUHbziG49R8DuEzjYZplKpVTXkkoCxpiVwMwED53Twf4LgAUJysuAqd2ITw1wzo7hQxWrCbRKAiFNAkolQ68YVq6KTRvR2SRxXQn4vATDUartJGDVDLQ5SKlkaBJQrootKuPz9qwm4GwOGlGYHb94TCnVOU0CylWxmoCvB81B1sViLSuSFeX7481By7ftp7FZawVKdUSTgHJV7Bu739eT5iBr2ohYZ/CgnCyC4SgbK+r40n3vccuzn/RKrEoNRJoElKticwf5e9AnEGsOil0wlp+dRTAcoarOWrB+za6angeq1AClSUC5KvbBndWDmoDf68EY4stSFmT7aA5Hqbfv9yC/KDXg6dtDuSrWhNOTmkAgyzq2NhjGI5CbZY0W+uuH1hRWXp2xXKkOaRJQruqV5iD72LqmMH6fh0CW1Tz0ypq9AAS6MS21UplGk4ByVXM4SpZX4ovKH4rYh3xdMEyW10PA5yUSNZxxhDX54LIt+9lYoctNKpWIJgHlKisJ9OxlGK8JBMMEfJ74SKPK2mB8nzl3v9uj36HUQKVJQLmqvjncbmnJ7op96Nc0hfF7PQTs+9UNzY7fo9cKKJWIJgHlqv31zQzN9ffoOWIf+nVNIfw+T3xpypqmcKv9yg809Oj3KDUQaRJQrjrQEGJwblaPniNWE6gLWh3DsUXq64Ktk8DKHdU9+j1KDUSaBJSr6oPhHi8KH/DZH/pNVsew8/nOPLJlZbr1e7RzWKm2NAkoVzU2R8jtpT6B+uaIXRNoeb4xQ3Lj2w3aL6BUO5oElKvqm8Pk+Xs2jj/guNpYgMKcliTg93k4tnQQoIvPK5WIJgHlqoZghJxeTAIrtlczZmjLt3+/z8Nz3z2VEYUBTQJKJaBJQLnGGGPXBHqnOSimMLuloznHHinkt2caVUq1pklAuSYYjhI1kBvoaU2g4+Nji9X4vR6tCSiVQFJJQES2ishqEVkpImV22VARWSwiG+zbIY79bxKRjSKyXkQucJTPsJ9no4jcKaIze2WyWEdtb9YEfnP5ca0eq6prtvfx6uLzSiXQnZrAWcaYacaY2ILzNwJLjDGTgCX2fURkMjAXmALMBu4VkdhXtfuA+cAk+2d2z/8Ela7q7XH8Pe0TcCaB48dY30Ve+9HpAJx79Ij4PtocpFR7PWkOmgM8bG8/DFziKH/CGBM0xmwBNgIniMgooNAY854xxgCPOI5RGagx1Ds1AWfHcOxq4cOHF7D1jos46bBh1j5eawnKRHbsb6CmKdSjGJRKV8kmAQO8KiLLRWS+XTbCGLMbwL4dbpeXADscx5bbZSX2dtvydkRkvoiUiUhZZWVlkiGqdLN82wGg530CzvWJs7MSv6T9Pg8hez3jtk775et88a53ehSDUukq2a9gpxhjdonIcGCxiHzayb6J2vlNJ+XtC41ZCCwEmDlzZuJ3rkprkajhpqdXA9YiMD3h7FrK7uC5srzCwcaOm4O2Vem8QiozJVUTMMbssm8rgGeAE4C9dhMP9m2FvXs5MMZxeCmwyy4vTVCuMtCemqb4dk9nEXUKdLBMpd9njQ56cfVutu6rj5dbLZNKZa4uk4CI5IlIQWwbOB/4BHgOmGfvNg941t5+DpgrIgERmYDVAbzMbjKqFZFZ9qigqxzHqAzjnOY5t4cdw04dDTjz+7w0R6J857EVfP53b8fLtbNYZbpkvoKNAJ6x31w+4C/GmJdF5ENgkYhcA2wHLgMwxqwRkUXAWiAMXGeMifXIXQs8BOQAL9k/KgM1OubxGdzDqaST4fd64rOKxjqkAZpCLUkgFOn5AjdKpZsuk4AxZjNwXILyKuCcDo5ZACxIUF4GTO1+mGqgcS7yMiinZ1NJJ8Pv83Cgvrld+bsb98W3t1XVc/jwgj6PRalUol97lCsaHHP9e3uwvnCyAj4P4WhL+38oEqW6oZlNFXXxsvV76hIdqtSA1ns9ckp1Q+xq4Tf/48xeeb7nrz+1076FtvML3fjUap5aYY1Y9nutC8n21QUTHarUgKY1AeWKhmarJpDbwwvFYqaWDGJicX6Hj/vbtPX/feXO+PYx9lTTzr4CpTKFJgHlilhNoDdHBnWmbU0gyyvttht10RmVgTQJKFfEOoZzenihWLLaJgHnqCBjrCuNtSagMpEmAeWKhmCYnCwvnn7oFIb2zUFOxljNUloTUJlIk4ByRUMoQl4P5wzqjrY1Aafzp4wgJ8urNQGVkXR0kHJFQzDca53CyYgmmB7i388/gitPHMfg3CweX7Zdk4DKSFoTUK5oaI70W6cwtKwr4DQ0L8CQPD8iQo7fq81BKiNpElCu6O8kMHpwDl6PtJp2emhey3QVuVnaJ6AykyYB5Yr65nCvzh6ajNW3ns8nP42vdsqw/JYkkO3XPgGVmTQJKFc0Nkf6bXhoTK7f12q9geL8QHy7INtHTaOuLqYyjyYB5Qo3agIxowdlAzB2aG68rCjPT6VOG6EykI4OUq5o7Oc+AaeHrj6BcMS0ukahKD9AbVOYplCkw9XJlBqINAkoV9QH3UsCR4xoP110cYHVNFRV30zJ4Jz+Dkkp12hzkOp30aihMRTp1+sEujKi0Goi2lih00mrzKJJQPW72Cgct2oCicyaOAyfR/hgc5XboSjVrzQJqH5XH5tG2qWO4URy/F7GDM1l+/4Gt0NRql9pElD9rj5o1QTyUqgmADAsz8/+BEtQKjWQaRJQ/e7DLfuBls7YVDEs38+HW/e7HYZS/SrpJCAiXhH5SESet+8PFZHFIrLBvh3i2PcmEdkoIutF5AJH+QwRWW0/dqeI9M88wiql3PDUKgDGD8tzOZLWlm6qIhQxvPlZpduhKNVvulMT+D6wznH/RmCJMWYSsMS+j4hMBuYCU4DZwL0iEqv33wfMBybZP7N7FL1KOwvf2gRAyeAcxjgu1koFEXsh+jW7DrociVL9J6kkICKlwEXAA47iOcDD9vbDwCWO8ieMMUFjzBZgI3CCiIwCCo0x7xljDPCI4xiVIW5/8VMALp422uVI2nvy2ycDkOXRVlKVOZJ9tf8WuAGIOspGGGN2A9i3w+3yEmCHY79yu6zE3m5b3o6IzBeRMhEpq6zUqvlAdNaRw7veqZ8dMcJaqF4nklOZpMskICJfACqMMcuTfM5E7fymk/L2hcYsNMbMNMbMLC4uTvLXqlRnjMHnEa45dQInTBjqdjjt+OwlKH+9+DOqG1pGCX26p4bNlXoRmRqYkqkJnAJcLCJbgSeAs0Xkz8Beu4kH+7bC3r8cGOM4vhTYZZeXJihXGaI2GCYcNYyyJ3BLZe9s3AfAtqp6Zv/2bc7+vzddjkipvtFlEjDG3GSMKTXGjMfq8P2nMearwHPAPHu3ecCz9vZzwFwRCYjIBKwO4GV2k1GtiMyyRwVd5ThGZYCDDdZUzYU5WS5H0rVI1BCORFnwwrqud1YqjfXkks07gEUicg2wHbgMwBizRkQWAWuBMHCdMSbWyHot8BCQA7xk/6gMEQxbL4P+XkfgUByob2bSzS/hXJrYGIOOalYDTbeSgDHmDeANe7sKOKeD/RYACxKUlwFTuxukGhiaQta4goAv9UfffLjtAG3Xpm8KRclJsaucleqp1H83qgEjVhNIh/n61++pbVdWG9SVx9TAo0lA9Zt0qgk4p5Q+rNi6snnrPp1cTg08qf9uVAPG6p3WlbiBNKgJOE0ePQiAXdWNLkeiVO/TJKD6zWd2E8vIwtQdIjqhqP18RjlZ1tvkQIPOMKoGHk0Cqt8MyfOTneVhZApfJ/DyD07j8W/OalU2sdi6kvin/1jrRkhK9SlNAqrfNIejKbWkZCIBn5fRg1uS1K+/fBzXnDqBMUOtdYdN2yFDSqU5TQKq3zSHo/i9qf+SG5zrB2Ds0FwunV5KltfDvJPGA1DTFHYxMqV6X2p/LVMDSjAcwZ8GI4MG5WRxzxXTOXFiy/xGQ+zEsL++mUFpcMWzUslK/XekGjCaI9G0SAIAFx07iqL8lpXPBudaH/w/eOIjt0JSqk+kxztSDQjp0hyUSNhecObjcl1wRg0s6fmOVGmpsq45/o063Zx6eBEAsyam3hTYSvWEJgHVb7ZV1TOxOLXWFU5WXsDHxKI8hjmaiJQaCDQJqH7T2BwhL8WHiHYmx++lsVlXHVMDiyYB1S+iUUMwnN6zcA7N87NlXz2ryqvjk+Eple40Cah+0ZRGawl05LjSwWzZV8/Fd7/LdY/pKCE1MGgSUP0i1oySzjWBSfZC9ADvbKx0MRKleo8mAdUvGkPps5ZAR44YURDfPuvI4S5GolTv0SSg+kVTKP2bg5wzjNYFdfoINTBoElD9oqE5/ZNAdpaX314+Db/PQ70mATVAdJkERCRbRJaJyMciskZEfmqXDxWRxSKywb4d4jjmJhHZKCLrReQCR/kMEVltP3an6KrdGWHpxn1869HlQHr3CQBccnwJZx1ZzIrt1fxo0UqdVVSlvWRqAkHgbGPMccA0YLaIzAJuBJYYYyYBS+z7iMhkYC4wBZgN3CsisXf+fcB8YJL9M7v3/hSVqq544AN2H2wC0rtPICYUsT74n16xk/31utCMSm9dJgFjiS24mmX/GGAO8LBd/jBwib09B3jCGBM0xmwBNgIniMgooNAY856xvj494jhGDWDO+l5eIP2TwBvrK+Lbu6qbXIxEqZ5Lqk9ARLwishKoABYbYz4ARhhjdgPYt7HhEiXADsfh5XZZib3dtjzR75svImUiUlZZqUPx0l1hdst8QUPz/C5G0juuPHFcfDs26kmpdJVUEjDGRIwx04BSrG/1UzvZPVE7v+mkPNHvW2iMmWmMmVlcXJxMiCpF3fT0Kg42huL3B+ekfxK49eIp/OnrnwPgy79/j2hU+wVU+urW6CBjTDXwBlZb/l67iQf7NlZHLgfGOA4rBXbZ5aUJytUAVR8M8/iylkrh56eOTJv1BDrj9QjFBS0TydU360ghlb6SGR1ULCKD7e0c4FzgU+A5YJ692zzgWXv7OWCuiAREZAJWB/Ayu8moVkRm2aOCrnIcowagAw0tnabXnDqB+746w8Voeld2Vstbpz6oTUIqfSXztWwU8LqIrAI+xOoTeB64AzhPRDYA59n3McasARYBa4GXgeuMMbF3ybXAA1idxZuAl3rxb1EpptaxHu8phw9zMZLeF/C1dHDf/+YmFyNRqme6nNfXGLMKOD5BeRVwTgfHLAAWJCgvAzrrT1ADyH1vWB+Ot3xhMmcfNcLlaHpXfqDlrfP8qt3cevEUF6NR6tClfwOtSlmf7LKWYvzicaNcjqT3ORebP3/KwEpwKrNoElB9JhI1XHTMKIYXZLsdSq/zeFoGux3QC8ZUGtMkoPpMdUOIYfnpPyS0I2/fcBZHjSygsjZITVOo6wOUSkGaBFSf2F/fzMHGUKsLxQaaMUNzmVicR9m2Axx766v85MlVvL+5yu2wlOoWTQKqT8x/pAwY+GPonXMg/rVsB3MXvu9iNEp1nyYB1SdCkSgA5x09sDtNs33pPxeSymyaBFSfGDcsj+KCACcfXuR2KH3KedGYUulIX8GqT1TVBxkzJMftMPrcQJgaW2U2TQKqT1TVNTMsP9D1jmnu6yePp6jN36kLzah0oklA9Yl9dc0UDeDhoTFjhuZSdvO5LL3xbGaOsxbXiy2go1Q60CSgel00athfH2RY3sCvCcSMHpzDN0+fCKCrjam0oklA9brqxhBRQ0bUBJxiC+ZoElDpRJOA6nVVdUGAjOgTcCrItiaVqwsO7Gsj1MCiSUD1un111jfhgTxlRCK5WVYSaGjW9QVU+tAkoHrdPrsm0HbUzECX7bfeTo0D/CppNbBoElC97s/vbwMyLwnk+rUmoNKPJgHV62LrCMc6SjNFjn3hWL0mAZVGNAmoXlUfDPP2hn2cOsCni0jE6xGK8v3sOdjodihKJU2TgOpVZdsOADBq0MBbSCYZk4YX8NLqPTpCSKWNLpOAiIwRkddFZJ2IrBGR79vlQ0VksYhssG+HOI65SUQ2ish6EbnAUT5DRFbbj90pznl41YBQUWNdLXv92ZNcjsQd159zOLXBMNc89CEPvrPF7XCU6lIyNYEw8GNjzNHALOA6EZkM3AgsMcZMApbY97EfmwtMAWYD94pIbJat+4D5wCT7Z3Yv/i0qBVTUWiODhhdmVqdwzHGlgwH4YMt+/uf5tSxeu9fdgJTqQpdJwBiz2xizwt6uBdYBJcAc4GF7t4eBS+ztOcATxpigMWYLsBE4QURGAYXGmPeMNcPWI45j1AAQiRp+9cp6IHNn18wL+Frdv/bPy12KRKnkdKtPQETGA8cDHwAjjDG7wUoUwHB7txJgh+OwcrusxN5uW64GiE92HnQ7hJRw3JjB8e1wVGcUVakt6SQgIvnAU8APjDE1ne2aoMx0Up7od80XkTIRKausrEw2ROWyAw3WlcI3X3S0y5G465lrT2bWxKFuh6FUUpJKAiKShZUAHjPGPG0X77WbeLBvK+zycmCM4/BSYJddXpqgvB1jzEJjzExjzMzi4uJk/xblsooaqz/g9CMy+3/m8QgLr5oJQMnggb+wjkpvyYwOEuCPwDpjzK8dDz0HzLO35wHPOsrnikhARCZgdQAvs5uMakVklv2cVzmOUWkuGjXc8NQqAAblZLkcjfsKs7P42qxx7KxuZFNlndvhKNWhZGoCpwBfA84WkZX2z4XAHcB5IrIBOM++jzFmDbAIWAu8DFxnjIldQnkt8ABWZ/Em4KXe/GOUe+oc8+WMKMzMawTayvJab6/P//ZtlyNRqmO+rnYwxrxD4vZ8gHM6OGYBsCBBeRkwtTsBqvRwsCEEwC//9ViXI0kdsVlUmyNRrv3zcn5z+bSMHTWlUpdeMax6xcFGKwkM1qaguH87bQJnH2UNmnvpkz18uHW/yxEp1Z4mAdVj26sa+MJd7wDaH+AU8Hn5zeXT4vd/+9oGXYRepRxNAmlqxfYDKbOM4e+WbIhvD8rVJODkTIrLtx2g/IBOLqdSiyaBNGSM4dJ7l3Lmr153OxRCkShPrWi5BnB4gXYKt3XvldPj25oEVKrRJJBCnl+1i0ff28qbn1USikQ73K8pZD1W0xRmy776/govoX+9b2mr+5m2hkAyLjxmFG/fcBYAX/nD+2yrcvd/ppRTl6ODVP/57l8+im9PLSnk+etPS7hfrBMW4Kz/fYOPbjmPIS59+H5cbk0Vcc2pE7j8c2O62DtzOafWPuNXb7D1jotcjEapFloTSFGf7Kzhi3e9w157aman2PKNMTur3Wli+GxvbXz7li9M5ogRBa7EkQ58Xg8vfi9xUlfKTZoEUtjqnQc58fYlzPzZYv7+0U7G3/gC33ykjLtf39hqv+/+ZQUASzfu45J73qWhnxY631ihV8J2x+TRhVx75mEAvL+5yuVolLJoc1CK6OyDe19dMz/460qAhPPTb61q4P89s5oXV+/mQEOIrfsamDy6sK9CjdtsT4dw1EitASQr355qeu7C97n6lAlsqqxj1sRh8eSgVH/TmkAKCEWiTP6vV1qV/f5rM7r1HI99sJ0D9lW71Y19P3Q0FInyv69+BsA/rj+1z3/fQLGvLhjffvDdLbz5WSW/ePlTFyNSmU6TQAr4+YstHwITi/O49szDuGDKSJ669uQOj3n0mhO4dHri5RheWLW71YdNb3pi2XYeeW8r029bHC+LzZGjujZ19KCE5a9/WtGqw19ltk/31FDVR+/htvTdmwL+VtayBs9dXzmen8w+CoAZ44aw9Y6LeOs/zmq1f1G+n9MmFfPrL0/jxAnt561/7IPtzPzZa30S641Pr+a/nl1DbZPVfPXna07sk98zUF06vYRffOmY+P3vn2OtxfyNhz7kx4tWuhTVwLW/vpnmcMfDrftTXTDMbc+vTarPbvZv3+bCO/tn4kHtE3DZ6b98ndpgy4viqJHt2/LHDsvlzf84E7/PQyhsKMhu+bc9MX8Wa3fX8P7m/dz2/FqG5GbFm4U2VdZxWHF+r8UaTbBK1vRxg3vt+TOBiHDp9FJW7zzI+GF5XP65MfErrt/6bB9vrK/gzCOH8/r6CkYNymbS8AK8no7mb0xP26rqWbe7htlTR/Xp74lGDdNvW8wXjh3F3VdM7/qAbth9sJHi/AC+NrXgT3Ye5NW1e/nReUfEy8KRKJNufolheX721TUzalA2/3baxFZxRo2JP1fEfp/tremfmoAmARd9uqeG7fsbWu7fNrvDN/y4YXkJy0WEKaMHMXlUIecePZzt+xv42h+XAfCdP6/glR+e3mr/1eUHmXPPOyz+0RndShCNzREWvLi2VdkNs48k168voe7K8nr42SXHtCtvjkT5+p8+5MgRBay3h9+eP3lEfIEaNyxZt5cH393Cn685EWsZkOSE7T6jb5wyvt3U4pfc8y4HGkJsuv3CVq/3YDhCY3OEwbmtr3kp27qfSSMKWk3BEY0aPJ0kx+qGZqrsaVWeX7Wbu6+A8Te+wNdPHs+tF0/p8LiFb21i9c4a7vrK8fEyYwy7Djbx0fYD5GR5yfX7+Mof3ueokQXkB3zce+V0htt/4xfvfgdj4OpTxsf/joeWbsUYa4AHwJufVfL+5iqmjRnMH97ewnmTR/Dk8nIWfm0GZx81nJqm/hndF6PvYBfNdswzf9ucKT2aZlhEGDcsjxx/y3NMLRnE717bQCgS5d8vOBKAJz7cTtTAi6t2c73dFNERYwyNoQjlBxo5/zdvtXvceQGUOnRfOHYUr63bG78SfL3j+otX7dFgwXCEZVv2c9qk1qu2rdxRzdihuTy3cierd9Yw7+RxHFs6uNPf1xSKsGZXDTPGDQGsD9SL7nqH7519OJ8/pvW382//eTmhiGF/fTPD8gOEItGEfUDbqxoYOyw3fn/Z1v3c/+Ym7n9zU/zCuOqGZv7+0c54TXVvTRNF+QHe3biP6eOG8K1Hy3h/83423X4hfyvbwdSSQSxeu5ffLdnA6UcU88jVJwCwq7qRk+/4J/dcMZ2LjrXi3VhRy2HF+YgI1Q3NTPufxa3iG3/jC4D1gXzrxVNYs+sgR40sJByNEooYbvvHWi6bWcrtdv/ccaWD+LfTJrJ00z6u+MMHCc/jp3us/9MJty/hb98+iZrGELH5AbdWNTDWwBfveqfddTxvb9gHwGvrrMUYn1xuTbsy/9HlXHHiWEb283ocmgT6iTEGEaH8QANDcv3kBVqf+kG5vXPF7/CCbJ7+zslcdv97reb0KR2Sw0fbqzH2ss5bqxo6eoq45z7exfefWNnh4yMLdenE3nD3FdN55qNyfvjXjxM+fsk977JyRzUAL3zvVKbYncvRqOGSe95tVXN4akU5/3fZcfzfq+v567dOorggwL1vbOKaUybw68XrmX/GYdz9zw08vmwHr/3odD7Ysp9JwwtYt7uGH//tY2ZPHdnqG3+u38fBxhA7qxtpCkc55Y5/8pvLjyPb56UgO4vCHB/76oJc/VAZQPwDv+1FjsaYdh/Mu6obeeDtLTz47pZW5Yf954vtzsFbn1XSFIrwuyUbuO+NTQD8feVO3vysgkVl1us8O8vD3M+NJdff+ZepWEJo66+OvrmfvbCOn72wrtPncbrs/vda3b/knneTPtbpLx9sj2/n9NPaE5oE+sGpv/hnq4nDZk0cyqOODtXsLA+zEnTwHqrpY4fE2xVjbnx6NQCxGvSOAw2EIlGC4Wh87Hp9MMzr6ys468jhPP3RTm75+yftnvu0SUX8ZPZRPPbBNo4bk3iki+q+yaNan8uHrz6BpZv28fs3N8cTAMCVD3zApceX0hSOcLpdK3DWHAB+/DcrmXznsRXsPtjEvrogn+2p5eU1e3j4vW34fdY3+XN/3bp219Ac4ZhbX+XaMw/ji8eOZuyw3HhzzcV3v8v5k0cAdJisAH7/5ia+dcZhbKpomR/pgbc3xxOX06ryg+0SQGeOuuXlVvfbXjPTFIry0NKtST9fbxk/LDepL1UAx48dzEfbq5PaNxyNxr889iVJ9fnNZ86cacrKytwOI2m7qhtpDkcZX5RHY3OEW579JF7dS+TeK6dz4TG930H2z0/3xr+ddWXmuCFU1AZb9U+09dEt5+HzCgXZOlV0X1m8di/HjRlEUV4Aj0eobQpxzK2vuhbPuUeP4LV17S9O7Ep+wMeoQdlsSHBFeXFBgMra/unw7E2/mzutVa34+etPja+hseXnF/K5Ba/F2/zPPXp4vKkH4MXvncazK3cyZmguBdm++PN887QJ/OHtliR475XTeXzZ9nhzEVj9hIfaTCwiy40xXXYoaU2gl518xz8B+MG5k9hQUccLq3Z3uv/sKSP7JI6zjxoR3x6W5493kgFMLMpjs2P20bJtB7p8PrcmqMsk500e0eq+M+F+58zDuNduBunIhKK8Xp1V9lASAFhDITdU1LV73QG885OzWL+nlovv7ry55MJjRvLi6j0JH7vyxLFs2VfP0k3W1BunHD6Mdzcmnobjg/88h+88toLlSbzGAZ777inx2P727ZO47P73+OJxo5kzrYQ500o48fbXKMjOYmrJID756QWA1R9XdvN5fOm+pSzfdoDp44awdFMVDc0RfvmlY5k8ujB+Bb8xhseXbefKE8fxxeNGM3vqSI4eVcj2/Q0cNbKQM44oZuFbm7lgykgaQxF8/TAyTGsCPfTJzoNs2VfPpso6TptUzJfaTK0cc88V07nj5XXs2N/SLFR287kU5Qf6LLYFL6zl2NLBRI2Jf/sYNSib339tRpdvQqei/ABlN5/bR1Gqzhz2ny8ydXQhz373VCJRk7C9HKAw28fbN5xNUzjCibcvafXYqYcXkRfw8sqalg/1ovwATaEIdcGuR6JcceJYDivO57bn1+L3ebhtzhSWbqri2ZW74vu8fcNZrCo/yHX2PFYAZxxRzJufVbZ6rlifwWd7aynOD3DXPzfaH4AFrebE2nrHRfzXs59QnB+gNhhm3snjefS9bWzdV8/99tX0F935Nmt21bD59gupDYYJ+Dx8bsFrYOAbp4znO2cdHv8W/cKq3Ty9opwln1bE4z3tl9Z6HF+aXspTK8p576azGTUoh5U7qvlgcxXfPG0ij76/jUunl8QTcuyag1iTmtOmyjruXLKBn17cMsjDzTWlk60JdJkERORB4AtAhTFmql02FPgrMB7YCnzZGHPAfuwm4BogAnzPGPOKXT4DeAjIAV4Evm+SyEBuJoGt++opzMlKOEf+ETe/xOUzx/Bomxk9O3yuOy7ip/9Yw5/e3cpdXzmeyaMLe3UMf2eaQhFue34t804ez/hhefEX8Ktr9vDRjmpGD85J2P6/4F+mcmzJYA4bnqdDQV3SFIrgEYn/zz7ZeZBgOEpFTRPXPraCq0+ZwDdOGc+YoS0jc575qJyheQHmPbiMkw8bxl++OQuA2b99i0/31HLD7CO58oRxDMrN4oG3N1PTFKY4388tz64B4LeXT8PnFY4eVcg/11Vw6fQSsrO8fPWPH/C1WeO4dHppu4S09n8uINvn5b43N/HEh9vZsb+R1350Buf++k0AfvWvx3LGEcXxoZSJbK9q4PRfvc7np47kvq92PW3KwYYQ+xuamVDUMnw6HIniEUk4fLQpFOGoW17mW6dP5KYLj6a2KcS7G6uYPbVvauNu680kcDpQBzziSAK/BPYbY+4QkRuBIcaYn4jIZOBx4ARgNPAacIQxJiIiy4DvA+9jJYE7jTEvdRVgT5NATVOIRR/u4GsnjSPga8nKxhjW7KrB5xWOGF7Q7kWzqryai+9+l/HDcnnDccXu0yvK+dGijjvGEvnd3GnMmVZCbVOIT/fUMnPckD7v7Omun7+4jt+/tZnzJ49g2tjBfOfMw90OSXUiGjU8uaKcS6aVJPxWCta1HT6vxId0Lt20j/ve2MTdV0xPuBZ0bDhk7BtxV5Zu2ocgrCqv5ltntJ8Ary4YZup/v8L1Zx/Oj88/ssvnM8awdFMVR4wooLigb2rIsQETA+0CvER6LQnYTzYeeN6RBNYDZxpjdovIKOANY8yRdi0AY8zP7f1eAW7Fqi28bow5yi7/in38t7r63YeaBGqaQnz5/vfiY3mzszxcMGVkqypszM8umcpXZ42juqEZn9fDH97a3Grd3GNLB7HKXjylIyWDcxLO6/+/lx3Hv84o7Xb8/a0pFOHZlTu5dHqpzgWkek1dMEye35tyX3oyQV93DI8wxuwGsBPBcLu8BOubfky5XRayt9uWJyQi84H5AGPHjj2kAB98Z0s8AYA1fCxRAgC4+e+fcHOC5pCYrhIAwJWzxnL6pGIOH57PVX9cRlGBn2+fcRjHlKTHMMrsLC+Xf+7QzrVSHckPaDNiquvt/1CidG86KU/IGLMQWAhWTeBQAumNRTtuvujohBeMZGd54ld3gtXc84VjR8ermIu+fVKPf7dSSvWHQ00Ce0VklKM5KDYothxwLjRbCuyyy0sTlPeJSNRw0sQixg7NjV9NGDNldCGnTSrmoaVbuP1fjuEfH+/i9fWV7Z5j9pSRzJ46kp+9sI7rzz6cxWv38sevf47CbB8F2VlEoobnV+1iUE4WZx45vN3xSimVDg61T+BXQJWjY3ioMeYGEZkC/IWWjuElwCS7Y/hD4HrgA6yO4buMMYnHuzn0pGN4x/4GTvvl6+QHfFx4zEgWlZWz5ecXtmqf3FXdyFUPLuNPX/9cfMjY1JJC7v/qDEqH5NLYHCE7y6NtmkqptNKbo4MeB84EioC9wH8DfwcWAWOB7cBlxpj99v7/D7gaCAM/iI0AEpGZtAwRfQm4vj+GiN5lTz51TMkgQtFoqxFCbR1sDOHzSLt5fZRSKt306uggN6X6xWJKKZWKkk0COhZQKaUymCYBpZTKYJoElFIqg2kSUEqpDKZJQCmlMpgmAaWUymCaBJRSKoNpElBKqQyW8heLiUgl0NnKLUXAvk4ed5vG1zMaX8+leowaX88kim8fgDFmdlcHp3wS6IqIlCVzVZxbNL6e0fh6LtVj1Ph6pqfxaXOQUkplME0CSimVwQZCEljodgBd0Ph6RuPruVSPUePrmR7Fl/Z9AkoppQ7dQKgJKKWUOkSaBJRSKoOlfBIQka0islpEVopImV12mYisEZGovWJZbN/xItJo77tSRO53Kb5ficinIrJKRJ4RkcGO/W8SkY0isl5ELkil+Nw4f53EeJsd30oReVVERjv2T4VzmDC+VHkNOh77dxExIlLkKHP9/HUUX6qcPxG5VUR2OuK40LG/6+evo/gO6fwZY1L6B9gKFLUpOxo4EngDmOkoHw98kgLxnQ/47O1fAL+wtycDHwMBYAKwCfCmUHz9fv46ibHQsf094P4UO4cdxZcSr0G7fAzwCtbFlkWpdP46iS8lzh9wK/DvCfZNifPXSXzdPn8pXxNIxBizzhiz3u04OmKMedUYE7bvvg+U2ttzgCeMMUFjzBZgI3BCCsWXMowxNY67eUBsBEOqnMOO4kslvwFuoHVsKXH+bIniS3WpdP56RTokAQO8KiLLRWR+EvtPEJGPRORNETmtr4Oj6/iuBl6yt0uAHY7Hyu2yVIkP+v/8QQcxisgCEdkBXAn8l12cMuewg/ggBV6DInIxsNMY83GbfVPi/HUSH6TA+bN9127ye1BEhthlKXH+OokPunv++rPadYhVodH27XCsatjpjsfeoHVzUAAYZm/PwPpnFboY3/8DnqFlKO49wFcdj/8R+FIKxdfv56+rGO3ym4CfpuI5TBBfSrwGgQ+AQXb5VlqaW1Li/HUSX6qcvxGAF+uL8gLgwRQ7fx3F1+3zl/I1AWPMLvu2AusDq8Oql7GqaFX29nKs9roj3IhPROYBXwCuNPZ/BOtbwxjH4aXArlSJz43z11mMDn8BvmRvp8w5TBRfirwGz8Bqr/5YRLZinaMVIjKS1Dh/HcaXIufvBGPMXmNMxBgTBf5Ay/88Fc5fh/Ed0vnrywzWCxkwDyhwbC8FZjsef4PWNYFi7E4aYCKwExja3/HZP2uB4jb7T6F1p9Jm+rBT6RDi69fz10WMkxz7XA88mWLnsKP4UuI12GafrbR8006J89dJfClx/oBRjn1+iNUPkDLnr5P4un3+fKS2EcAzIgLgA/5ijHlZRP4FuAvrD35BRFYaYy7Aqib9j4iEgQjwbWPMfhfi24j1IllsP/a+Mebbxpg1IrII6wM4DFxnjImkSnz0//nrLManRORIIIo1euTbACl0DhPGR4q8BjvaOVXOXyf7p8T5E5FHRWQaVnv8VuBbkDrnr6P4OITzp9NGKKVUBkv5PgGllFJ9R5OAUkplME0CSimVwTQJKKVUBtMkoJRSGUyTgFJKZTBNAkoplcH+PxO5hBak94WYAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(energy, vik[2])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "d0b70fef-5e27-4cb1-90e7-2653989cf48a",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x2b563ab51330>]"
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3wElEQVR4nO3dd3xc1bXo8d+aGXXLVpe75W7sADYIU0wzPZAESF4SIIUQAiGBG1Juckm4F5K8x7vcJJC85BIIXAiE3luAUE03xr13WZZl2erNatP2++MUzajYYxXrSFnfz0cfjc60fWZGa/ZZe+19xBiDUkqpkcU31A1QSik18DS4K6XUCKTBXSmlRiAN7kopNQJpcFdKqRFIg7tSSo1AhwzuIvKAiFSJyIaYbU+KyBr7p1RE1tjbi0SkLea6ewax7UoppXoRSOA2DwL/DfzN2WCM+apzWUTuABpjbr/TGDN/gNqnlFKqDw4Z3I0x74tIUU/XiYgAXwHOGuB2KaWU6odEeu4HcxpQaYzZHrNtqoisBpqAfzfGfHCoB8nLyzNFRUX9bIpSSv1zWblyZY0xJr+n6/ob3C8HHo/5ex8w2RhTKyLHAy+IyDxjTFPXO4rItcC1AJMnT2bFihX9bIpSSv1zEZHdvV3X52oZEQkAXwSedLYZYzqMMbX25ZXATmBWT/c3xtxrjCk2xhTn5/f4xaOUUqqP+lMKeQ6wxRhT7mwQkXwR8duXpwEzgZL+NVEppdThSqQU8nFgKTBbRMpF5Gr7qsuIT8kAnA6sE5G1wDPAdcaYuoFssFJKqUNLpFrm8l62f6uHbc8Cz/a/WUoppfpDZ6gqpdQIpMFdKaVGIA3uSik1AmlwVwkrrWnhw+01Q90MpVQC+juJSf0TOfN37wJQevtFQ9sQpdQhac9dKaVGIA3uSik1AmlwV4fNGDPUTVBKHYIGd3XYgpHoUDdBKXUIGtzVYQuGNbgr5XUa3NVh69DgrpTnaXBXh0177kp5nwZ3ddg0uCvlfRrc1WHTAVWlvE+Du0qYT6zfHSEN7kp5nQZ3lbCA3/q4BCORIW6JUupQNLirhCXZXXetllHK+zS4q4Q5PXcN7kp5nwZ3lbAkv9Vz12oZpbxPg7tKWMBn59w1uCvleYcM7iLygIhUiciGmG2/FJG9IrLG/rkw5rqfi8gOEdkqIucPVsPVkRfQnrtSw0YiPfcHgQt62P57Y8x8++dVABGZC1wGzLPv82cR8Q9UY9XQStacu1LDxiGDuzHmfaAuwce7GHjCGNNhjNkF7AAW9qN9ykM6e+5aCqmU1/Un536DiKyz0zbZ9rYJwJ6Y25Tb29QI4ObcdYaqUp7X1+B+NzAdmA/sA+6wt0sPt+3xzA4icq2IrBCRFdXV1X1shjqSnGoZnaGqlPf1KbgbYyqNMRFjTBS4j87USzkwKeamE4GKXh7jXmNMsTGmOD8/vy/NUEeYiJ2W0Z67Up7Xp+AuIuNi/rwUcCppXgIuE5EUEZkKzAQ+7V8TlVc4h2BaLaOU9wUOdQMReRw4E8gTkXLgVuBMEZmP9f9eCnwXwBizUUSeAjYBYeB6Y4yOvo0QzrlTtVpGKe87ZHA3xlzew+b7D3L724Db+tMo5U2RqAZ3pYYLnaGqEmbHdk3LKDUMaHBXCXPSMjqgqpT3aXBXCYs6OfeQDqMo5XUa3FXC3LSM9tyV8jwN7iphTs9dc+5KeZ8Gd5WwaFSDu1LDhQZ3lTAnLaOlkEp5nwZ3lTBNyyg1fGhwVwkzOqCq1LChwV0lTHvuSg0fGtxVwjqXH9A6d6W8ToO7SpguP6DU8KHBXSXMWX7A6cErpbxLg7tKmJNzD2lwV8rzNLirhDkxXXvuSnmfBneVMGeGaiRq3BSNUsqbNLirhEVjAnpYe+9KeZoGd5Ww2HiuqRmlvE2Du0pY1Bj8PgEgpLNUlfI0De4qYcZAkt8K7tpzV8rbDhncReQBEakSkQ0x234rIltEZJ2IPC8iWfb2IhFpE5E19s89g9h2dYRFjSHZb31kNOeulLcl0nN/ELigy7Y3gc8YY44BtgE/j7lupzFmvv1z3cA0U3lBxBiSA34AwhEN7kp52SGDuzHmfaCuy7Y3jDFh+89PgImD0DblIcYYjIGUgNNz15y7Ul42EDn3bwOvxfw9VURWi8h7InLaADy+8gCnCtLJuWvPXSlvC/TnziJyMxAGHrU37QMmG2NqReR44AURmWeMaerhvtcC1wJMnjy5P81QR4BT454c0Jy7UsNBn3vuInIl8Dnga8aermiM6TDG1NqXVwI7gVk93d8Yc68xptgYU5yfn9/XZqgjJOr23DUto9Rw0KfgLiIXAP8GfMEY0xqzPV9E/PblacBMoGQgGqqGVreeu6ZllPK0Q6ZlRORx4EwgT0TKgVuxqmNSgDdFBOATuzLmdODXIhIGIsB1xpi6Hh9YDStucLd77lrnrpS3HTK4G2Mu72Hz/b3c9lng2f42SnmPE8uTtVpGqWFBZ6iqhHTtuWtaRilv0+CuEmLsjnqSzlBValjQ4K4SoqWQSg0vGtxVQiJ2cHd77roqpFKepsFdJUR77koNLxrcVUKc5QectWW0FFIpb9PgrhISddMyerIOpYYDDe4qIV3r3LXnrpS3aXBXCYlGnTp3Xc9dqeFAg7tKiA6oKjW8aHBXCYl2Xc9dlx9QytM0uKuE6KqQSg0vGtxVQoyuCqnUsKLBXSWk68k6QpqWUcrTNLirhDg9dbcUUtMySnmaBneVkGiXtWVCmpZRytM0uKuEOMsP+H1CwCdENC2jlKdpcFcJcXruPrECvFbLKOVtGtxVQpwsjE+snrtOYlLK2zS4q4Q4A6oiEPD7tBRSKY87ZHAXkQdEpEpENsRsyxGRN0Vku/07O+a6n4vIDhHZKiLnD1bD1ZHl1Lk7OXddFVIpb0uk5/4gcEGXbTcBbxtjZgJv238jInOBy4B59n3+LCL+AWutGjJxaRm/aM9dKY87ZHA3xrwP1HXZfDHwkH35IeCSmO1PGGM6jDG7gB3AwoFpqhpKzoCqCAR8PkI6oKqUp/U1515ojNkHYP8usLdPAPbE3K7c3qaGuc5qGafnrmkZpbxsoAdUpYdtPXbxRORaEVkhIiuqq6sHuBlqoJmYtIzfJzqJSSmP62twrxSRcQD27yp7ezkwKeZ2E4GKnh7AGHOvMabYGFOcn5/fx2aoI8XJsfsEaxKTpmWU8rS+BveXgCvty1cCL8Zsv0xEUkRkKjAT+LR/TVRe4KZlfELA59M6d6U8LnCoG4jI48CZQJ6IlAO3ArcDT4nI1UAZ8GUAY8xGEXkK2ASEgeuNMZFBars6gkyXahk9WYdS3nbI4G6MubyXq87u5fa3Abf1p1HKe2KXH7DWltGeu1JepjNUVULilx/w6SQmpTxOg7tKSPzyA9pzV8rrNLirhMQuP+D3iU5iUsrjNLirhHRdFVJ77kp5mwZ3lZC4AVW/lkIq5XUa3FVCOteWsddz1wFVpTxNg7tKSPzaMrqeu1Jep8FdJcSZs+TUuYd0EpNSnqbBXSUkrueua8so5Xka3FVC3OUHfNbyA7oqpFLepsFdJSS2WsavpZBKeZ4Gd5WQrssPaLWMUt6mwV0lJBJ3mj3ROnelPE6Du0qIu/yAXQoZ1gFVpTxNg7tKSDTaWS2T5NdSSKW8ToO7SkjXnLsx6KCqUh6mwV0lxF1+wGct+Qvomu5KeZgGd5WQ2ElMSXZw10FVpbxLg7tKSGdaBgI+62Oj5ZBKeZcGd5WQnnruesIOpbzrkCfI7o2IzAaejNk0DbgFyAKuAart7b8wxrza1+dR3mBiB1T9ds9dK2aU8qw+B3djzFZgPoCI+IG9wPPAVcDvjTG/G4gGKm/oLIW0JjEBWuuulIcNVFrmbGCnMWb3AD2e8pjYUsgku+eu1TJKeddABffLgMdj/r5BRNaJyAMikj1Az6GGUNzyA1oto5Tn9Tu4i0gy8AXgaXvT3cB0rJTNPuCOXu53rYisEJEV1dXVPd1EeYgxBp84p9nTnrtSXjcQPffPAquMMZUAxphKY0zEGBMF7gMW9nQnY8y9xphiY0xxfn7+ADRDDaaoMfjE6rG7de6ac1fKswYiuF9OTEpGRMbFXHcpsGEAnkMNsajBDe5aLaOU9/W5WgZARNKBc4Hvxmz+jYjMBwxQ2uU6NUxFjcGO7ST5tM5dKa/rV3A3xrQCuV22faNfLVKeFI2a7j13De5KeZbOUFUJiRrr9HoQs3CYpmWU8iwN7ioh8WkZ7bkr5XUa3FVCTNyAqlMtoz13pbxKg7tKSNSuc4fOUsiQTmJSyrM0uKuExNa565K/SnmfBneVkEjUmp0KsWkZ7bkr5VUa3FVCjDHYFZCdC4dptYxSnqXBXSUkElvnrkv+KuV5GtxVQiLGxNS568JhSnmdBneVkHDEuD12PUG2Ut6nwV0lJBKN6blrtYxSnqfBXfXomZXl/PndHe7f4WjUHUjVE2Qr5X0a3FWPXlu/j+dX7XX/ju25iwh+n+iSv0p5mAZ31aNgJBo3YBqOdubcwaqY0WoZpbxLg7vqUTAcJRjuDO6xPXewat01LaOUd2lwVz0KRqIEY3vuEeMOpII1S1XTMkp5lwZ31aNQ5OA994BPe+5KeZkGd9WjYLhLzz0addeUAatiRkshlfIuDe6qR6GIieu5h7v23P2ik5iU8jAN7qpHwXCUqLHSMRA/QxWsszHp8gNKeVe/TpAtIqVAMxABwsaYYhHJAZ4EioBS4CvGmPr+NVMdaU5KJhiOkpbsJxLtYUBVc+5KedZA9NwXG2PmG2OK7b9vAt42xswE3rb/VsNMKCa4g5Vz9/vjB1S1WkYp7xqMtMzFwEP25YeASwbhOdQgc4K604OPdJnElOQXrZZRysP6G9wN8IaIrBSRa+1thcaYfQD274Ke7igi14rIChFZUV1d3c9mqIHm9twjTs+964Cq9tyV8rJ+5dyBRcaYChEpAN4UkS2J3tEYcy9wL0BxcbF2AT0kGjVurzwU7rnnHvBpz10pL+tXz90YU2H/rgKeBxYClSIyDsD+XdXfRqojK/b0efE9986PS5Lfp3XuSnlYn4O7iGSISKZzGTgP2AC8BFxp3+xK4MX+NlIdWbE98mBvPXetc1fK0/qTlikEnhfrvJoB4DFjzD9EZDnwlIhcDZQBX+5/M9WRFDt5ye25R6K6/IBSw0ifg7sxpgQ4tofttcDZ/WmUGlqxk5M6SyG7V8toWkYp79IZqqqbuJ57THCPq3P3+zQto5SHaXBX3cQuGBaKqXNPih1Q9YkuP6CUh2lwV9107bkbY7ov+avLDyjlaRrcVTdxOfdI1F08LKCTmJQaNjS4q266Dqg6ufXYnHuSTmJSytM0uKtuOsIJ9tw1566UZ2lwV910ncTk9txjBlRTAr64LwGllLdocFfdxA6ohnrpuacm+QlHjVbMKOVRGtxVN91y7vbfsdUyaUl+ANpDkSPbOKVUQjS4q27ilx8wblomrueebAX3Ng3u/WaMDkyrgafBXXUT7NJzd9My/s6Pi9Nz7whpWqY/WjrCTP35q/z1o11D3RQ1wmhwV930VgoZ6CEtoz33/qlq7gDgVy9vGuKWqJFGg7vqxknL+MQZUO2ec09Nsj46bUEN7v3R2BZyL3eE9bVUA0eDu+rG6blnJAe05z7IGlqD7uVlJXVD2BI10mhwV904PfeMlADBSNRdQ8afwIBqU3uIJVv05FuJiu25b6hojLvuw+01VNtpG6UOlwZ31U3QDubpKf74Gar+HkohgxHaQxF21bQAcP2jq7jqweXUHNCglIjY4F57oLMXH40avn7/Ms79/XtD0Sw1AmhwV90Ew1GS/T6S/b5eZ6i6wT0c4aGPS7nw/31ARzjiphZig5bqXWOr9TqNHZ1KbcwXYkswDEBDa4iorpuv+kCDu+omFImS5BdSAr74UsjYnLuTlglG2VXTQlsoQnVzh1tGqcE9MY1tIdKT/YzLSqUmpufe3B52L2+saBqKpqlhToO76iYUiZIc8JHk9xGK9DxDNTXQmXPf19gOdJb1gQb3RDW0hRiTlkRuRkpcKis2uL+3Tccw1OHT4K66CYajJPl9JAd8vVbLpCZbH532UIR9jW0A7Kw64F7vpBvUwTXawT0/M7lLz73z9dtV0zoUTVPDXJ+Du4hMEpElIrJZRDaKyI329l+KyF4RWWP/XDhwzVVHQjCm5x4/oNr5cUn2+/CJVefu9Nw/3dVZyqc998Q0xvTc61o63Px6bM99f1PbUDVPDWOBftw3DPzEGLNKRDKBlSLypn3d740xv+t/89RQcAdUD9JzFxHSkvzUtnS4gWiZBvfD1tgaYkpuOnmjkokaqG8NkjsqhSa75z67MNP98lTqcPS5526M2WeMWWVfbgY2AxMGqmFq6FgDqj7Skvy0BiM9zlAFa1DVKYEEKKtrJeATkvxCg6ZlEuL23EelAFDbYqVmnC/MmYWj2N/YrouLqcM2IDl3ESkCFgDL7E03iMg6EXlARLJ7uc+1IrJCRFZUV1cPRDPUAAmGrbRMTkYy9a3BHnvuACmBzuAu9lXzxo+mIDO1zz336uaOf6pA1tAWJCs9iTw7uNfYg9JOcJ9VmElrMEJTTJpGqUT0O7iLyCjgWeCHxpgm4G5gOjAf2Afc0dP9jDH3GmOKjTHF+fn5/W2GGkBtoQhpSX5yMpJpbg+768f01HOvbLKCUVFuBgALJmczOi2pT8F9Y0UjJ9z2Fs+sLO/nHgwPHeEI7aGoO6AKuCmY5vYQfp8wNc96XfdrakYdpn4FdxFJwgrsjxpjngMwxlQaYyLGmChwH7Cw/81UR1JbMEJasp/sDCvgOFUcAV/8x8WZyATWACvAgslZjEkL0NgW5HAtt3P2q8oa+tLsYcepKBqTlkT+qFQAfvL0Wp5dWU5ze5jM1ADjs6ztFY06qKoOT3+qZQS4H9hsjLkzZvu4mJtdCmzoe/PUUHB67rl2cK9qtnqNfn+Xnrsd3MeNSSUjxbo8f1IWWWnJcT33TRVNXHzXR2yvbD7o8zpfIvmjkgdmRzzOOeopGJ3KmPQk7rriOLLSk1haUktze4jM1ADjxqQB2nNXh68/PfdFwDeAs7qUPf5GRNaLyDpgMfCjgWioOnLaQnbPPd0J7lYQ6ppzdxYPK8rN4Pdfnc8tn5vL5Jx0xqQlxQ2ovr+9mrV7Grjkro9o6eg9d+x8iYhIr7cZTqqbO/jxU2uob4k/iukIR/j5c+tZsds6Uhk3xuqdX3TMOD4zfgxb9zdbPfeUJPIzU/AJ7GvQnrs6PH0uhTTGfAj09F/4at+bo7ygLRglLdlPrt2DrrZ7mN1y7vaa7lPzM5iSm8G3T50KQFZ6fM59T501CaclGGHL/maOnxI/xh6ORLnvg12s32tNsz9wkC+A4eTWlzbw6vr9nFCUw+ULJ7vbN+xt4vFPyyjKTQdgrB3cAWaPzeSRT3aTHPCRmRogye9jfFYaJTFVSUolQmeoqm7agmF3QBWg2p4Wn9Ql595un2Jvqj2Y6hidlkRHOOqePHtXTYubk+9ptciVu+v5r39sYfM+O7iPgMqQ1mCYd7daVWBlda28uanSXcah1A7UpbWtJPmFvIwU936zx2bSEY6ysaKRzNQkAOaMzWTr/oOntJTqSoO7imOMcXPuWWlWcHHWFO+ac69sstIoTkWHIz/TClYVdiphV00LxUVWbz12WVuHswKi43B67nsb2jx5NqjlpfW02u26+92dXPO3FTy3ei9A3NyAwtGp+GKOiOaMzQSsL87RqdaB9eyxmZTUtOiZmtRh0eCu4gQjUaLGKnMM+H1kpSe5wbZrzt0p2yvqEtyPmTgGgDV7GtzlCYrtVExPPfeuZZPNhxHcF93+Dl/5y9KEb3+kOMv3Hmu/FkDnkUxtZ3AfF5OSAZhZkElywPq3dMY0Zo8dTSRq2FnVeb9QzLIQSvVEg7uK0x60UgdOJUxOemflStec++xCq5c5OSc9bvvMgkxGpQRYXdZAqR3IZhZmMjo1ELdmucMZfH3phkWcOiOPA+2J1cg7wXL93kbPTXyqswdRT5qe625rsr/EdlV3BumxdjWMIy3Zz22XfAaADDu4O735rZWdS/9+6e6PufUlLURTvdPgruK0hqxes7Neu5N3B/B3qWK595vH8+L1i9yepns7n3DspDGs3lPPzmprpcipeRnkZabErXzocHruc8eNJjM1kHBapi6mCmXrIcosj7S6liABn7CwKMfdVnMgiDGG0toWd0Zq1547wJeLJ/HEtSfx/TNnANZrl+z3scle1720poV15Y28sm7fYfXeH/q4lBufWN2f3VLDiAZ3FcfJXzs9d2cik0+Iyw0DZKUnc+ykrB4fZ8GkbDbva+aNjZWMSgkwqzCTvC5rljsa20JkpgQI+H2MSgnErYh4MLHB/Z0hOG/r0p213PjE6h7LO+tagmRnJHP6rHxu+dxcxo9JpeZAB1XNHbQGIyyebc3KHju6e3AHOGlarvvaJ/l9zJ+cxQfba4DOfa1vDbFmT0PC7f1wR42e3/afiAZ3Fcc54XWqHdzH2z3LrimZQ1k8p4BI1PDS2gpOm5lHcsBHXmZyz8G9NcRoe/B2VGog4WqZ2ODu9GqfWrGH5aV1vd2l30prWvjT29vZUdXMNX9bwYtrKnh2VfflEupaguSkJ5Pk9/HtU6cyITuNmgMdbNhrnQT70gUTuGpREed/ZmxCz3vWnAK27G9mX2Mb72ypYkJWGn6f8M6WSvc2r6zbxwv2oG1Pag500NQedqt21MimwV3FcfLY6c4EJXuwNBQ5vJz2cZOz3F794jkFAORmpLirHoYiUZ5asYdgOEpjW4isdCu4Z6YEOBAME40aXlyzN+6kFV05wX1SThq7aloIRaL87Jl1fPmewRtgfXZVOXe8uY1fPL+BYCTKnLGZPPDhLlqDYZ5fXU5HOMKzK8upbQnGpbTyRlkpqdVlDfh9woLJ2dz6+XlMyEo7yLN1Ott+DR/6eDcf76zhkgXjOWV6Ls+u3EvIDtZ/emc7P3xyDS+vrejxMZxKJV2O+Z+DBncVxynfc3LuXcscEyUi3Hj2DApHp3CWHZjyRqXQ0BoiFInyxsZKfvbMOu54Y6u77C1YPXdjYN3eRm58Yg2PLitjeWkdb2zc363k0Qnux0/OZldNi1snH2t3bUuPU/f3N7a79eZdNbaG3LGCrpzJRJ/uquPkabl8e9FUSmtb+cNb2/nRk2u5/bUt/OTptazcXR8X3HNHJVN7oINVZfUcNS7TfX0TNaNgFLMLM7nnvZ34RPjGSUVctaiI/U3tvLp+H8YYyuvbEIGfPLWWZSW13R7DOWqq1+WY/ylocFdxuubc+xrcAc6aU8iyX5zjDh7m2Ssf1rUE3VPzPbF8D3Wtwc7gnmL9XmGnVl5eW8GX71nKtQ+v5NsPLicY7kwp1LcG8fuE+ZOyaA1GeH3jfgCSYurxf/DEGr7w3x9SXt9Ka7BzhcvvP7qSM3/3rpvOiXXdIys5+4733KOYWLGVLmfNKWDOOKuS5a3NlW57HV177vWtIVburue4yT2ugn1QIsLdXz+OnIxkvnjcBMaOSeXMWQVMzknnxTUVNLaFONAR5obFM5iQncYtL26Mu39rMOx+cfdlUTc1/GhwV3G65twTTRskwgny+xrb3Yk8jW0hSqpb3LTMKHvizorSegA22sH3B2fPZGlJLT97Zq1b9ljbEiQ7PYlp+aMAeG6VlW/2+8S9TVVTO1XNHXzrr8uZe8vrXPfISsBaAgDghsdXuae2cziDlLFnlgLcSpf0ZD8iVnB30lYldtCPrQbKjuu5W/veEY72KbgDTMsfxYf/tpj/e+nRgDXAfdzkLDbva2JPnfVlOW/8GL524mS2VjZTXt957tXYyWP1LSHCkajnykfVwNLgruI4PVsn5x573tT+mjtuNADryxvYVdPC9PzOowJnQDUzxQ7uu+vd66blZfDjc2fx0/Nn88KaCh77tAyA+pYg2enJ7tGFM6mqPRR1J0LVtwYpnpJNWa0V6N7bVm2fOjDKtLwMSqpbWLI1voJkZqH1ZdG1ssSpdPnxubN4+YZTmZSTzujUJPJ6WcUyNya4x650ec7cwkO/WL1ITw7EvSezx45mX2M7GyusgdpJOWnuGEds+2MHsn/7+lZm3PwaF9/1UdxjP7+6nLN+966bw1fDmwZ3Fcfpuceu1T5QJmankZ+ZwqqyBkprWjh2YhaTcqwjg9icO1jByAnaTrD6/pnTmVU4ir+v3QfgDlqOjzm6uGpREQBVTR20h6yTYSyeU8Bj15zIOUdZQXXL/iaiBq47czrjxqTy4Melce10qnW6Bn3naGNWYSafmdA587S31JVzNAKdX14Li3IYldKfUxfHcyY4vW0H8onZ6UzLy2BKbrpbMvnwJ7v5l8c769udOQHryhsJRaK8vbmSa/+2gieX76GkpiVueYSh9p+vbebhpaVD3YxhSYO7iuMG95gBv2euO5nff/XYfj+2iLBgUhYf76yhorGdorwMpuVZveTOnHtn4Lt0wQRuPHumG7BFhMVzClheWkdTe4h6O7j7fcKvvjCPR79zIufaveKq5nbqW61URHZ6MsVFOVy6wDrFr7Og16zCTM6cne8OxL6/rZr73i9xe7m7a1vdvPvaPQ3c9spmoHswd85CNcvu8Ts99o6Y8YHiKTl878zp3P314/r3InYx2wnumyvJTA0wJi0JEeGsOQV8vLOWtmCEx5eVUV7f85LBNQc6+OXLG3ljUyWflFhpqK4D0+X1rdz64oaEe/Qd4Qi3vLhhQNagf+LTPf80Z+YaaBrcVZz2YAQRSImZdWoFxokD8vjHTcl2T1IxNS/DDZTOEgRT8zI4Y1Y+x0/J5vx5Y/nRubOYmN25vMHZcwoJRw0/f3Y9exva3EHLK08pYtGMPAoyrbr86uYO9zGz7R6081xOj3ZqbgbjxqRRcyBIRzjCH97axm/f2EpTe5hpdsrICYr3f7iL7VXNXHT0uG7jEFPt215z2jQumDeWp647mQvmjeX8eZ017MkBH/92wRw39z5Qxo1JJTM1QNQQ9zqdNaeAjnCUtzZXsmV/Z7B20l5Oj7+qqYP0pPgjife31fDost3UHujgkU9284PHV/PQ0t09Dj73ZHVZA39butsd4DbG8Niysh7nOBxMfUuQxrYQ2yoPdBsXScSOqmZeXNN73f9IN3DHh2rILS+tY87YTHep2L5oDVorQg7WCTMWzy7gvvdL8PmEBZOzOHrCGF5Ys5cL7Mk8qUl+Hvp272dmPG5yFvPGj+bdrVX4RbqtDV8w2gqeVU0d7uqUWfb6OEV5VvBbs6eBnIxkxqQnuWupb9nXzOo9DThjjPMnZVFS3UJ5fStFuem8t62ai44ezx1f6X4Ec9qMfF4aW8F588by5eJJANzzjeP7+hIdFhHhgnljeXX9Ps6Y1Xku4oVTc0hP9vOHt7YRGxcLRqfQXB3mxKk57qSoXTUtFGSmMD4rjab2EM+uKufZVeVsrzwQl7Jq6KU+3hjDe9uqOX1mPj6fsMXu+TvpnV01Lfzi+fXUHujgX86emfC+OWWnbaEIZXWt3RaoO5Q/v7uT51bt5egJY9xB938m2nMfIRrbQnz1L0v50zs7Dnnbqub2HtdvOdARprK5Y1Dy7Y7ZYzNZ+R/nsvzmc5iYnU5RXgZrbjmP6Qn+8wX8Pl75wWls/PUFrP/V+XzxuPgjisyUAKlJPqqa2zt77hnWl116cmdfZt54a3B3vL1w1xPLy4gtHllgT8DaWd3Cc6v20tgWcuv1uzp64hj+8cPT3dTSkfbbLx/Lxl9fwE2fneNuSwn4OWtOATvtKp6jJ4whJyPZPbvWidOsBc2W7aojGIly02fn8ML1i+LWlu+6pENlUzt76loxxrgnYAF4d1s13/rrcv78rvXZc3L6TnB31qLfcpjr/8Tm/rfErGff2Bpyzz97MM7zdh1TCUeice2P1XXf+qKioc0Tg9Ia3EeIrfubiZrOeuuDufSuj/nMra/H/YNUNrVz/u/f5+W1FW4Z5HAkIkzKtgYTy+x/0qy0zkoVZ+lhp5zQ6bm/uKaC1KTOf4ejxo0myS/8779v4mfPriMl4OO0WXlHajcGxK++MA+wUjcvXL+I5Tef4x7FFBdlI2KNM0Bn7t5Zdx9wXz/Hk8v3cPpvl/DIJ7s57TdLWLOngUjUuKtdvrp+P+FI1A3Ezoqgzt9dTzgSiRq3HDMac9lRWtOC3yeIxN/3hsdXuSWtvQlHomyvOoDfJzy9opxGe/IcwB/f3s5Zd7zbYxB/c1Mlp/92SY/n+01kkbbGthBn3fEuD3X5QunNnrrWQVsOQoP7COHkVUuqW9hd23u1QzRq2GufROO2Vze5229+fj0V9sSivcP8fJ2//MI8dte2cvtrW4D4qpV7v1nM8pvPYVJO/CnuWoMRzpiV7x61FGSmurn146dk88oPTmN0P9JdQyF3VAprbzmPF65fhN8n+H1CwegUcjKSyR+VQm5GMjurrQDqHDndeM5M3vvpme6YS+yEsFVl9RgDDy3dDcAtL25g+i9e5RN7NuymfU3MvfV1Vpc1IGIFrmA46gbmXTEnHOkIRzjl9rf5y/slGGM4+873uOONbXHt31XTwqTsNIpyM9xSz1AkyvLSOlaW1R/05CWltdZzX3VKEW2hCIvveJdTbn+HAx1h/vbJbkIR02MAXlpSizHd5zhsq2xm/q/e4NFluw/6mq/Z00B7KOq+JgcTjRq+9ddPue6RVYe8bV8MWnAXkQtEZKuI7BCRmwbreWI1toX4/J8+ZH1544A95v/++ybueGNrt+2/f3MbP3xiNX9+dwffe2TlkE8I2bK/2T2V3VMr9vR6u+qYQa2PdlgfwEjUsHRnLV85ftLgNvIIWTQjj7OPslIoaUn+uCORnIxkNxcPVnVOpl1+efyUbKbY5zXNHZXs5qovOnocMwqGZ852THoShTErT/7grJk8eNUJiAj59uDz8ZOz3dcoJeBnSm7nQPf3zpjOX791AtPzM9y01Y4qa2mGdfb/2RsbO48WnRnEx03OJmpgT30rWyubSU3yEYkaNuxt4tI/f8SvXt5EZVMH971fwrbKA+yqaeHBj0vdtYTaghHW7W2gKC+Dk6blsHRnLaGI9UXRHooSDEfZvK/3NI/zhXLJggmcMj2XupYg1c0d3LVkBw2tIWYVjuLJ5Xu69d5XlTUA1lHKBX94nyr7bGOvrNtHc0eYm5/fwLryhl6fd3VZvf274ZAx4f3t1eysbuGiYxJbPO5wDUpwFxE/cBfwWWAucLmIzB2M54r16a461u9t5IMd1qFmY1uIG59Yzbpy64X+2TNreWtTfNri9te2dKtndkSjhqdWWKVYDy8t5cGPdvHMynJuf20L97y3kxfWVPCHt7bz2ob97qSbv6+r4L/+saVP7d+yv4nrH1sV94HbU9fKdQ+vdHvTbcEINz6xmhJ77ZNgOMrPn1vHY8vKmD8pi4vnj+euJTt7rRJwZi2eNjOPvQ1tVDW1s72qmZZghJOm5/DYd0486IDmcOHMAo0k8KXrrKm+YHI20/IzSEvyk5EScJfy7S3XPhyNHZPKMROzANzgs7iH/XOC+1HjRrN4ToFbheSIHW+vbQlSODqFWz8/lw//bTE/PX82/3KWtRb99x5ZSWltizvH4D9f3czqsgYeW1aGiHXfX71sLZVwoCPs9qZvem4d5fVtfOOkKSyeXUBzR5jlpXWsKuuc3LYqZqKb49X1+9zz8frEWpPntkuP5vKFVsfl0U92U5CZwj1fPx4R+OLdH/Pdh1fYcyIibLKPENbvbWTL/mY+2mkts7xkaxWzCkcxOjXAX94rcZ+vPRThB4+vdo+cnS+H2pYgV9y3LG6F0v/76maWbK3id69v5fWN+/nrR6UUZKZw0dHje3yv+muwqmUWAjuMMSUAIvIEcDGw6aD3Oky7alr43Rtb+Y+L5jJ2TKr7rbmruoVI1HDN31bw6a46RqcmkZmaxFMrynlhTQWPXH0iG/Y2MjU/g3ve28me+lYWz47/gL+w2hpEa24P09we5j9f20LAJzTFLEebmuSjPRQlNcnHvz+/gXnjR7vnybxi4WQm5aSzsaKRRz7ZzbgxaZw/bywf7ajhc8eM4+mV5Vx96lS3x1TR0MaVD3xKZVMHm/c18dINpwJwyV0fUdsSpLgom++cNo33tlXx4poKinIz+NG5s3hlfQWPf2r11Cdkp3H7l45mX2M7P316HR9ur+EbJ0/hmIlZPPFpGTMLM93Svs8fM54PttewqqzBXYBrwaTsw65I8KoFdnCPXYumN2PHpFFS3cLRE8ZwxcIp7gSle75xPEu2VI2Y16Qrpwfe05eXs8/Ob6cKyXHZCZMIhg0vrNlLJGoYn5XGVYumAnD94hl0hCN84djx1LUEGZ+Vxg1nzaC0toUVu+tJS/LTFrLSYPsb2/l4Zy2jUgKcPD2XO9/cxqScdF5eW8HVi6Zy9lGFtHSESfb7uP21LbQGIxRkphDwCY8s203uqGQunj+BZSW1VDS28T8f7GJjRRPZ6UkUT8khNcnP1LwMbv38PJ5cvoem9jCnTM9jWv4o/nrVQv7rH1t4fWMlS0tqyUgOEIoY5k/KcpegKKluYV9jG+vKG/nX82bR3BHmvvdLKK9vZWJ2Oh9ur+GltRW0hSL85evHs6as3r3/0pJafv3yJi5ZMIFpeRnc+34J68ob+HRXHVPzMiitbeW7p0/rdrKbgTJYwX0CEJsbKAdOHOgn8Yvw6vp9FOWm89Pz57jf6qW1Lby5qZJP7bxZWV2rG/hHpyZxxX2fEI4aN5+4q7qFZSW1FI5OpaKhjbc2V/HAR7vinqs1ZkXC3IxkPn/seMZnpbK98gBzx4/m3vdLWFpSy5TcdHbXtvLosjJyMpK4+92ddISjtAYj3PmmlVP8+7oKVpU1sLGikbuuOI6m9jDf+uuntHZE+PeLjuL/vLKZNzbup+ZAh7tErnMI7FQwWGV7hvs/3EVRbjoFmalcumACKQE/932jmO8/tpIX11TQ0Bbi5guP4ufPr+ekqbksmmFVSZw/byz//sIGHl22m7ZghJyMZDclMRIcHTOD9FDOn1fI5Jw0UpP8nDozj1NnWgOnJxTlcELMmZRGmj9evoDnV+91J1/FOntOAevLG916/wI7lZWfmUJ1cweLZuTxuWPGs6P6AGv3NLjXO1ICfv54+YK4bfdfeQI/enINV586lQc/LuVrJ06hvjXIz55Zx7GTxvD/LpvP5//0If/69FqiBi48ZhwAGSkBrjhxsls3/5XiSQT8wv0f7uKmZ9dzxqx87nxzGyt31xO2c2n1rSG+fWqR+9ypSX6KcjMoqWlhweQswErD/e3bC1nw6zd5ftVeNuxtZExaEv/xOet/cEflAdbsaeDDHTWkBHxcdMx4osbwl/dK+HB7DZctnMw79lH/W5srefDjUpraw1y1qIinVuwh2e9jydZq1u9tdGONM1HMqWI6+6i+L0VxKIMV3Hsqko47PhaRa4FrASZPntynJ5mcm855cwt5dFkZ3ztzhhsAd9W08MBHu5iQlUZxUTbLSqzDuVEpAZ657mS+9j/LyEwNuKP4u2pa+M7fVjApO53S2hZagxHmjM1ky/5mRqcGaA9bJyMWIBw1vPbD07odpjq9FoCjb32de97bCVhn2nnu+4t4YfVe7lqyg3DUuIdur6630jl3vrHNyjletZCTp+Vyz3slvLmpknXljZw0LYecjGRWldWzcncdS+zZlavL6tla2cyGvU38+uJ5fPPkIvf5x6Qn8eh3TuLfX1jPc6v22oNWVh18TkYyeaOsGu9FM3Ldx/vScRMHrbZ9KKQl+5mck96tDr4nXztxyhFokfdcePQ4Ljx6XI/XFRfl8Mh3Ovtjzuf98oWTeXhpqZv2mpidZgf3ns8oFatwdCqPXXMS0BnUOsIR7nl3J2fPKSQ9OcB1Z0znp8+sIycjmWPt9BFYg+S/tKt/HOfNHcuFf/yARz7ZzbryRjewn3NUIeX1rZw7Nz6XPXtsJiU1LRwX85lITfKzaEYuL62tIDng49HvnMjxU3J4/vuLuP6xVbyyzlrq4q4rjmNqXgbRqCE92c+W/c2sKK3jnc1VHD8lm00VTfz675sYOzqVC48ex8XzJ9AaDPO5P31Ist8XV8rpyMlIZn4vZzIbCIMV3MuB2NG5iUDcGQSMMfcC9wIUFxf3eTTymtOm8frGSr58z1JagxGOmTiGdeWN1Byo4+YLjyJqDC+uqeDdrdXMn5RFUV4GH/xsMa2hCKf/Zgk+sVfyC1mj/QDPf/8Ujp2YxYV//ICpeRluTbjfJ7R0hA/5Qf7mKVO4a8lOnv3eKRw7cQwBv48fnTuLG8+eyZfu+ZjVZQ38y1kzuGvJDn74xBr2NrRx51eOZdEMq8e4eHY+T9tTrn/5hXmU1rTw6vr9fOlu6yQUp8/Kt6fKW0cX583teUDmrDkFPPJJGY9/Wsbswky2Vjbzyvp97gfq/itPoD08eGvJDLX3f7Z4qJswYswoGEXAJ3z1hEn8+NxZ7vaJ2VZFUeHovs28TQn4efsnZ7gdiy/MH8+db27jzNn5hzz719zxozllei7/vWQH7aEouRnJjE5L4r5vHt9jR+X4Kdl8uKOGz4yPP6r73DHjeXtLFb//yvy4I7VZBZm8wj5mFY7iIvsowucTZhZm8ur6fW79/M8umM2YtCSufXgl3zltKkl2YUN6coC3f3wGBzrCnPabJcyflMW7W6uZlpdBxBhOnpZ72Gc4OxyDFdyXAzNFZCqwF7gMuGIwnqi4KIcbFs/gv5fs4KJjxvH5Y8Zx3SOryEj289WFk1hpD7qU17e5E158PmFUSoC3fnwGa/bU8+0HVwDWFPEFk7LcfO1T151MwCdETeehSDSBAbofnzub754xvVvpnM8nnHNUIavLGvjScRP5eGctK3fXs7AoJ24yzjlzC3l6ZTmXzB/POUcVsNrO/y2cmsOvL55Hkt/H2Xe8x7Orypk7brRbztfVKdM767Ifu+ZEzrnzPepbQxTZ6RefT+Im9ijVmzNn57P052fHVRpB55IHifTcexMbiFMCfl678bSE51pcfepUPn7Iqvp68rsnkT8qtdcj0G+dUsQXj5vY7UQplyyYwJmz8905AI7pBVZK6usnxR/ZzSnMZO0eq9zzmetOYcGkLHw+YcXN58SV3Tr7lpmaxDs/OZP0ZD8Lb3uLE4py+MWFR5GSNLiV6IPyn22MCYvIDcDrgB94wBiz8RB367OfnDeL02bmsWBytlvj/eXiSYxOTeKosaPd233rlKK4++VkJDOr0Jq8kZWexJPXnuyuQwL0ua7Z75Ne73v1qVM5eXouRXkZnDWngJW76+NygwDnzS3k+e+fwjETs9zFth675kSKp+S4gy/fOGkKD3+y282h9yQ1yc9bPz6d/FGpjElP4pHvnMj2ygOcPL33+yjVE6t0snvvfJLTc++lg9EXXYPswSyeXcDUvAya28NMzx910NRiwO+LO4HKoZ7zws+M44lrUzhxavy4izPh69iJWXFpv+xeHhs6T9zyzPdOIW9UCmPSB3/OhAx1fTZYaZkVK1YMyGMZY3h6RTnnzxvrvoDPrCzn5Om5PZ54Iho1zLnlHyyanstfrzqyJYBN7SFeWbePrxRPOuzDs0jU8MLqvZw7r3DYTa5RI0c4EuWZleX8r+MnDuja/4djw95GGttCblpzsH28o4Yr/mcZPz53Fj84jLVyBoOIrDTGFPd43UgL7n3x8NJSZo8dzcKpI7cyQik1MDrCEX73+lauOX1av9JRA0GDu1JKjUAHC+66toxSSo1AGtyVUmoE0uCulFIjkAZ3pZQagTS4K6XUCKTBXSmlRiAN7kopNQJpcFdKqRHIE5OYRKQaOPjJCQ8uD6gZoOYMpZGyH6D74lW6L97U132ZYozJ7+kKTwT3/hKRFb3N0hpORsp+gO6LV+m+eNNg7IumZZRSagTS4K6UUiPQSAnu9w51AwbISNkP0H3xKt0XbxrwfRkROXellFLxRkrPXSmlVIxhHdxF5AIR2SoiO0TkpqFuz+ESkVIRWS8ia0Rkhb0tR0TeFJHt9u/sQz3OUBCRB0SkSkQ2xGzrte0i8nP7fdoqIucPTat71su+/FJE9trvzRoRuTDmOk/ui4hMEpElIrJZRDaKyI329mH3vhxkX4bj+5IqIp+KyFp7X35lbx/c98UYMyx/sM7NuhOYBiQDa4G5Q92uw9yHUiCvy7bfADfZl28C/muo29lL208HjgM2HKrtwFz7/UkBptrvm3+o9+EQ+/JL4F97uK1n9wUYBxxnX84EttntHXbvy0H2ZTi+LwKMsi8nAcuAkwb7fRnOPfeFwA5jTIkxJgg8AVw8xG0aCBcDD9mXHwIuGbqm9M4Y8z5Q12Vzb22/GHjCGNNhjNkF7MB6/zyhl33pjWf3xRizzxizyr7cDGwGJjAM35eD7EtvvLwvxhhzwP4zyf4xDPL7MpyD+wRgT8zf5Rz8zfciA7whIitF5Fp7W6ExZh9YH3CgYMhad/h6a/twfa9uEJF1dtrGOWQeFvsiIkXAAqxe4rB+X7rsCwzD90VE/CKyBqgC3jTGDPr7MpyDu/SwbbiV/iwyxhwHfBa4XkROH+oGDZLh+F7dDUwH5gP7gDvs7Z7fFxEZBTwL/NAY03Swm/awzev7MizfF2NMxBgzH5gILBSRzxzk5gOyL8M5uJcDk2L+nghUDFFb+sQYU2H/rgKexzr0qhSRcQD276qha+Fh663tw+69MsZU2v+QUeA+Og+LPb0vIpKEFQwfNcY8Z28elu9LT/syXN8XhzGmAXgXuIBBfl+Gc3BfDswUkakikgxcBrw0xG1KmIhkiEimcxk4D9iAtQ9X2je7EnhxaFrYJ721/SXgMhFJEZGpwEzg0yFoX8KcfzrbpVjvDXh4X0REgPuBzcaYO2OuGnbvS2/7Mkzfl3wRybIvpwHnAFsY7PdlqEeS+zkKfSHWKPpO4Oahbs9htn0a1oj4WmCj034gF3gb2G7/zhnqtvbS/sexDotDWD2Nqw/WduBm+33aCnx2qNufwL48DKwH1tn/bOO8vi/AqViH7+uANfbPhcPxfTnIvgzH9+UYYLXd5g3ALfb2QX1fdIaqUkqNQMM5LaOUUqoXGtyVUmoE0uCulFIjkAZ3pZQagTS4K6XUCKTBXSmlRiAN7kopNQJpcFdKqRHo/wOQ7HX5jHuwtQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(-pes_data[\"channel_1_A\"][0,31400:31700])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a6606c28-28c8-4d27-9f38-4a7ca88ee397",
   "metadata": {},
   "source": [
    "Now, let's fit the model:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "5690cf09-4fed-497d-a09d-0f3cdceea04d",
   "metadata": {},
   "outputs": [],
   "source": [
    "n_test = 10 # exclude some trains to validate the training"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "cb86aa32-dc1d-4684-bd62-25aa77a97245",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Checking data quality in high-resolution data.\n",
      "Finding region-of-interest\n",
      "Excluding outliers\n",
      "Selected 585 of 650 samples.\n",
      "Fitting PCA on low-resolution data.\n",
      "Using 585 comp. for PES PCA.\n",
      "Fitting PCA on high-resolution data.\n",
      "Using 20 comp. for grating spec. PCA.\n",
      "Fitting outlier detection\n",
      "Fitting model.\n",
      "Calculate PCA unc. on high-resolution data.\n",
      "Calculate transfer function\n",
      "Resolution = 0.21 eV, S/R = 31.65\n",
      "Calculate PCA on channel_1_A\n",
      "Calculate PCA on channel_1_B\n",
      "Calculate PCA on channel_1_C\n",
      "Calculate PCA on channel_1_D\n",
      "Calculate PCA on channel_2_A\n",
      "Calculate PCA on channel_2_B\n",
      "Calculate PCA on channel_2_C\n",
      "Calculate PCA on channel_2_D\n",
      "Calculate PCA on channel_3_A\n",
      "Calculate PCA on channel_3_B\n",
      "Calculate PCA on channel_3_C\n",
      "Calculate PCA on channel_3_D\n",
      "Calculate PCA on channel_4_A\n",
      "Calculate PCA on channel_4_B\n",
      "Calculate PCA on channel_4_C\n",