Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"id": "6386344d-b7ac-440d-9926-f03af4ff9d6f",
"metadata": {},
"source": [
"# Training the Virtual Spectrometer with grating and PES data"
]
},
{
"cell_type": "markdown",
"id": "1711c3b9-5065-4a44-8b1b-a3e861b92bc5",
"metadata": {},
"source": [
"The objective here is to use the grating monochromator to train the Virtual Spectrometer. This means that we will fit (\"train\") a model, which maps the PES measurements with the Viking measurements and use their correlation to interpolate in cases where the grating is not available.\n",
"\n",
"The following conditions must be satisfied for this to be possible:\n",
"* The PES settings are the same in the \"training\" run and interesting run.\n",
"* The photon energies of the beam in \"training\" and in the interesting run are similar.\n",
"* The beam intensities are similar.\n",
"* 1 pulse trains in \"training\".\n",
"\n",
"The following software implements:\n",
"1. retrieve data;\n",
"2. the Virtual Spectrometer training excluding the last 10 trains avalable so that we can use them for validation;\n",
"3. the Virtual Spectrometer resolution function plotting;\n",
"4. comparison of the Virtual spectrometer results in a selected set in which the Viking data was available.\n",
"\n",
"Finally, the model is applied in data without the grating. This last part may be applied independently from the rest if the modal has been written in a `joblib` file."
]
},
{
"cell_type": "code",
"id": "4a627555-522a-4c9d-b6b2-6ff77148eaab",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"# replace this \n",
"sys.path.append('/home/danilo/scratch/karabo/devices/pes_to_spec')"
]
},
{
"cell_type": "code",
"id": "78bbc433-ac5e-44c3-8740-3e93800c4532",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cupy is not installed in this environment, no access to the GPU\n"
]
}
],
"source": [
"import numpy as np\n",
"import dask.array as da\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n",
"from pes_to_spec.model import Model\n",
"\n",
"import toolbox_scs as tb\n",
"from euxfel_bunch_pattern import indices_at_sase\n",
"\n",
"from scipy.signal import fftconvolve"
]
},
{
"cell_type": "markdown",
"id": "c7609899-5bc0-4211-ae97-010b3edcf676",
"metadata": {},
"source": [
"id": "95da5231-e454-4f7f-a1ce-eef7e52fe457",
"metadata": {},
"outputs": [],
"source": [
"# pes channel names to be used for reference later\n",
"pes_map = dict(channel_1_A=\"PES_S_raw\",\n",
" channel_1_B=\"PES_SSW_raw\",\n",
" channel_1_C=\"PES_SW_raw\",\n",
" channel_1_D=\"PES_WSW_raw\",\n",
" #channel_2_A=\"PES_W_raw\",\n",
" #channel_2_B=\"PES_WNW_raw\",\n",
" #channel_2_C=\"PES_NW_raw\",\n",
" #channel_2_D=\"PES_NNW_raw\",\n",
" channel_3_A=\"PES_E_raw\",\n",
" channel_3_B=\"PES_ESE_raw\",\n",
" channel_3_C=\"PES_SE_raw\",\n",
" channel_3_D=\"PES_SSE_raw\",\n",
" channel_4_A=\"PES_N_raw\",\n",
" channel_4_B=\"PES_NNE_raw\",\n",
" channel_4_C=\"PES_NE_raw\",\n",
" channel_4_D=\"PES_ENE_raw\",\n",
" )"
]
},
{
"cell_type": "code",
"id": "fd8dacae-c22e-4c20-9df9-8720a2814320",
"metadata": {},
"outputs": [],
"source": [
"proposal = 900331\n",
"runTrain = 69"
]
},
{
"cell_type": "code",
"id": "25000b87-246d-467b-b770-8cde527faec4",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"navitar: only 71.9% of trains (7176 out of 9974) contain data.\n",
"energy: only 71.9% of trains (7176 out of 9974) contain data.\n"
"fields = [\n",
" 'XTD10_SA3', # XGM\n",
" *list(pes_map.values()), # PES\n",
" # calibrated grating\n",
" {'navitar': {'source': 'SA3_XTD10_SPECT/MDL/SPECTROMETER_SCS_NAVITAR:output',\n",
" 'key': 'data.intensityDistribution',\n",
" 'dim': ['gratingEnergy'],\n",
" },\n",
" },\n",
" {'energy':\n",
" {'source': 'SA3_XTD10_SPECT/MDL/SPECTROMETER_SCS_NAVITAR:output',\n",
" 'key': 'data.photonEnergy',\n",
" 'dim': ['gratingEnergy'],\n",
" },\n",
" }\n",
" ]\n",
"_, data_train = tb.load(proposal, runTrain, fields)"
]
},
{
"cell_type": "code",
"id": "294b5f3a-1d59-444e-80ab-4834d26d62dc",
"metadata": {},
"outputs": [],
"source": [
"# transform PES data into the format expected\n",
"pes_data = {k: da.from_array(data_train[item].to_numpy())\n",
" for k, item in pes_map.items() if item in data_train}\n",
"xgm = data_train.XTD10_SA3.isel(sa3_pId=0).to_numpy()[:, np.newaxis]"
]
},
{
"cell_type": "code",
"id": "b477bf49-f5ca-4df0-b6ed-a270ee35cd28",
"metadata": {},
"outputs": [],
"source": [
"channels = tuple(pes_data.keys())"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "a843e981-e57e-4163-a4e0-310de7181aec",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n",
"Dimensions: (trainId: 7165, PESsampleId: 40000, gratingEnergy: 1800,\n",
" pulse_slot: 2700, sa3_pId: 1)\n",
"Coordinates:\n",
" * trainId (trainId) uint64 1724088331 1724088332 ... 1724098301\n",
" * sa3_pId (sa3_pId) int64 1326\n",
"Dimensions without coordinates: PESsampleId, gratingEnergy, pulse_slot\n",
"Data variables: (12/16)\n",
" PES_S_raw (trainId, PESsampleId) int16 -1 0 -2 0 -2 ... 4 -1 1 1 1\n",
" PES_SSW_raw (trainId, PESsampleId) int16 -4 -3 -4 -2 ... -3 -2 0 -4\n",
" PES_SW_raw (trainId, PESsampleId) int16 -3 -8 -5 -5 ... -7 -5 -8 -5\n",
" PES_WSW_raw (trainId, PESsampleId) int16 -4 -6 -4 -5 ... -5 -3 -4 0\n",
" PES_E_raw (trainId, PESsampleId) int16 -6 -3 -5 -8 ... -6 -2 -4 -6\n",
" PES_ESE_raw (trainId, PESsampleId) int16 -11 -13 -10 ... -10 -10 -12\n",
" ... ...\n",
" PES_NE_raw (trainId, PESsampleId) int16 -2 -5 -2 -4 -1 ... 0 -2 2 -3\n",
" PES_ENE_raw (trainId, PESsampleId) int16 -4 -3 -2 -3 ... -5 -2 -3 -5\n",
" navitar (trainId, gratingEnergy) float64 12.22 11.29 ... 12.46\n",
" energy (trainId, gratingEnergy) float64 981.0 981.0 ... 1.02e+03\n",
" bunchPatternTable (trainId, pulse_slot) uint32 2146089 0 ... 16777216\n",
" XTD10_SA3 (trainId, sa3_pId) float32 1.217e+03 ... 1.489e+03\n",
"Attributes:\n",
" runFolder: /gpfs/exfel/exp/SA3/202330/p900331/raw/r0069</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-0b7c564a-c8ac-49f2-8371-a3b66e4e7362' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-0b7c564a-c8ac-49f2-8371-a3b66e4e7362' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>trainId</span>: 7165</li><li><span>PESsampleId</span>: 40000</li><li><span>gratingEnergy</span>: 1800</li><li><span>pulse_slot</span>: 2700</li><li><span class='xr-has-index'>sa3_pId</span>: 1</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-99d8ee8f-922b-4296-ac08-f9d4d4c23d22' class='xr-section-summary-in' type='checkbox' checked><label for='section-99d8ee8f-922b-4296-ac08-f9d4d4c23d22' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>trainId</span></div><div class='xr-var-dims'>(trainId)</div><div class='xr-var-dtype'>uint64</div><div class='xr-var-preview xr-preview'>1724088331 ... 1724098301</div><input id='attrs-26337ad6-da4a-4fe7-9857-e8917bc5ca03' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-26337ad6-da4a-4fe7-9857-e8917bc5ca03' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-fb81e4b4-50f2-44bc-b9a9-515ca00ab730' class='xr-var-data-in' type='checkbox'><label for='data-fb81e4b4-50f2-44bc-b9a9-515ca00ab730' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1724088331, 1724088332, 1724088333, ..., 1724098299, 1724098300,\n",
" 1724098301], dtype=uint64)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>sa3_pId</span></div><div class='xr-var-dims'>(sa3_pId)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1326</div><input id='attrs-ba3ebda4-2a27-4332-9d41-6c26a3be0b02' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-ba3ebda4-2a27-4332-9d41-6c26a3be0b02' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-edc72482-3ff4-47fe-a649-a4ed63f57457' class='xr-var-data-in' type='checkbox'><label for='data-edc72482-3ff4-47fe-a649-a4ed63f57457' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1326])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-150a75b4-825e-42e9-a5d2-db83c8848a93' class='xr-section-summary-in' type='checkbox' ><label for='section-150a75b4-825e-42e9-a5d2-db83c8848a93' class='xr-section-summary' >Data variables: <span>(16)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>PES_S_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-1 0 -2 0 -2 2 -2 ... 2 4 -1 1 1 1</div><input id='attrs-cbcef525-b7a4-4bc2-ab6a-384f7eb0f86f' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-cbcef525-b7a4-4bc2-ab6a-384f7eb0f86f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-fbd0efa6-d334-4547-a256-6b96e26a41f8' class='xr-var-data-in' type='checkbox'><label for='data-fbd0efa6-d334-4547-a256-6b96e26a41f8' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-1, 0, -2, ..., 1, -4, -1],\n",
" [ 0, 4, 0, ..., 2, 1, 1],\n",
" [ 1, -1, -1, ..., 3, 1, 3],\n",
" ...,\n",
" [-2, 2, 0, ..., 1, 1, 4],\n",
" [ 0, 4, 0, ..., 3, -1, 3],\n",
" [-2, 4, 0, ..., 1, 1, 1]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SSW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-4 -3 -4 -2 -4 -2 ... -2 -3 -2 0 -4</div><input id='attrs-1ab5e4ea-5a6f-4a54-ae7a-61d3ae476984' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-1ab5e4ea-5a6f-4a54-ae7a-61d3ae476984' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2a40be4b-8c69-4ccf-a649-60a8a88caa0b' class='xr-var-data-in' type='checkbox'><label for='data-2a40be4b-8c69-4ccf-a649-60a8a88caa0b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-4, -3, -4, ..., -4, 0, -2],\n",
" [-7, -1, -2, ..., 0, -5, 0],\n",
" [-1, -3, -1, ..., -2, -4, -1],\n",
" ...,\n",
" [-5, -2, -4, ..., -2, -5, -3],\n",
" [-1, -3, -4, ..., 2, 0, -1],\n",
" [-3, -2, -5, ..., -2, 0, -4]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-3 -8 -5 -5 -7 ... -6 -7 -5 -8 -5</div><input id='attrs-5ed1ceb9-5974-4df4-b803-c251eea06bd5' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-5ed1ceb9-5974-4df4-b803-c251eea06bd5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-9024bfb6-7b6d-4ae9-9eac-eebc3e5400ad' class='xr-var-data-in' type='checkbox'><label for='data-9024bfb6-7b6d-4ae9-9eac-eebc3e5400ad' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -3, -8, -5, ..., -10, -5, -10],\n",
" [ -6, -4, -7, ..., -5, -8, -5],\n",
" [ -6, -7, -7, ..., -6, -7, -8],\n",
" ...,\n",
" [ -6, -7, -3, ..., -4, -4, -6],\n",
" [ -8, -5, -9, ..., -9, -6, -4],\n",
" [ -7, -5, -9, ..., -5, -8, -5]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_WSW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-4 -6 -4 -5 -5 -3 ... -5 -5 -3 -4 0</div><input id='attrs-877ecb9a-ea20-4714-a187-8bc22c57f883' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-877ecb9a-ea20-4714-a187-8bc22c57f883' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e918a451-58c7-41e1-afea-84067173464e' class='xr-var-data-in' type='checkbox'><label for='data-e918a451-58c7-41e1-afea-84067173464e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-4, -6, -4, ..., -7, -5, -7],\n",
" [-2, -4, -3, ..., -6, -3, -2],\n",
" [-3, -3, -3, ..., -4, -5, -3],\n",
" ...,\n",
" [-8, -5, -5, ..., -4, -5, -4],\n",
" [-5, -4, -3, ..., -3, -5, -3],\n",
" [-3, -5, -6, ..., -3, -4, 0]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_E_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-6 -3 -5 -8 -7 ... -4 -6 -2 -4 -6</div><input id='attrs-467b5b92-dc47-4d8d-aeaf-a51170fc2092' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-467b5b92-dc47-4d8d-aeaf-a51170fc2092' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7f315ebb-6e84-445e-af7a-189d0b36652c' class='xr-var-data-in' type='checkbox'><label for='data-7f315ebb-6e84-445e-af7a-189d0b36652c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-6, -3, -5, ..., -7, -8, -4],\n",
" [-8, -5, -8, ..., -7, -4, -5],\n",
" [-6, -4, -5, ..., -6, -7, -3],\n",
" ...,\n",
" [-6, -5, -9, ..., -5, -7, -5],\n",
" [-6, -5, -7, ..., -6, -9, -6],\n",
" [-5, -3, -7, ..., -2, -4, -6]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_ESE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-11 -13 -10 -11 ... -11 -10 -10 -12</div><input id='attrs-30b2a9c8-baf5-44b2-9331-210630fc5f32' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-30b2a9c8-baf5-44b2-9331-210630fc5f32' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-f0f93ad5-335d-42cc-937a-58a6fa14571b' class='xr-var-data-in' type='checkbox'><label for='data-f0f93ad5-335d-42cc-937a-58a6fa14571b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-11, -13, -10, ..., -12, -13, -9],\n",
" [ -8, -10, -13, ..., -12, -9, -9],\n",
" [-12, -12, -11, ..., -10, -9, -11],\n",
" ...,\n",
" [-13, -12, -10, ..., -10, -13, -11],\n",
" [-11, -12, -9, ..., -9, -11, -10],\n",
" [-12, -10, -8, ..., -10, -10, -12]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-7 -3 -8 -2 -3 -2 ... 1 -6 -4 -4 -5</div><input id='attrs-f05e6f41-5689-4146-afa0-902864cbb700' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f05e6f41-5689-4146-afa0-902864cbb700' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7e3d9aa7-6d95-4d95-8920-4fe57c6e1824' class='xr-var-data-in' type='checkbox'><label for='data-7e3d9aa7-6d95-4d95-8920-4fe57c6e1824' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-7, -3, -8, ..., -3, -7, -2],\n",
" [-6, -4, -9, ..., -6, -5, -2],\n",
" [-7, -5, -6, ..., -1, -8, -5],\n",
" ...,\n",
" [-1, -2, -7, ..., -3, -3, -2],\n",
" [-5, -6, -6, ..., -4, -8, -4],\n",
" [-6, -2, -4, ..., -4, -4, -5]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SSE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-13 -14 -14 -13 ... -13 -15 -14 -11</div><input id='attrs-d3190eb4-d829-4c81-9229-39d5aa6aa3e6' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-d3190eb4-d829-4c81-9229-39d5aa6aa3e6' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-60c5011e-12b2-4606-996b-f4bb2b3627c0' class='xr-var-data-in' type='checkbox'><label for='data-60c5011e-12b2-4606-996b-f4bb2b3627c0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-13, -14, -14, ..., -14, -13, -16],\n",
" [-12, -15, -15, ..., -12, -15, -14],\n",
" [-14, -13, -14, ..., -14, -14, -15],\n",
" ...,\n",
" [-11, -10, -13, ..., -14, -10, -13],\n",
" [-12, -14, -11, ..., -9, -14, -13],\n",
" [-12, -15, -14, ..., -15, -14, -11]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_N_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-10 -9 -9 -10 -8 ... -11 -9 -9 -9</div><input id='attrs-205f537c-9ba4-46fa-8590-40ba07b48eef' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-205f537c-9ba4-46fa-8590-40ba07b48eef' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c9312925-7a1b-4e40-a683-b294418fcba4' class='xr-var-data-in' type='checkbox'><label for='data-c9312925-7a1b-4e40-a683-b294418fcba4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-10, -9, -9, ..., -11, -9, -12],\n",
" [ -9, -12, -10, ..., -10, -11, -10],\n",
" [ -9, -10, -8, ..., -11, -11, -10],\n",
" ...,\n",
" [-12, -11, -11, ..., -12, -12, -10],\n",
" [-10, -14, -10, ..., -8, -10, -11],\n",
" [-11, -9, -11, ..., -9, -9, -9]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_NNE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-8 -9 -7 -10 -9 ... -8 -8 -8 -7 -8</div><input id='attrs-4694138d-087e-4913-b2da-3322e6f1f47a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4694138d-087e-4913-b2da-3322e6f1f47a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-bc5372bf-ad21-46e3-bc8a-11e684104565' class='xr-var-data-in' type='checkbox'><label for='data-bc5372bf-ad21-46e3-bc8a-11e684104565' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -8, -9, -7, ..., -6, -6, -10],\n",
" [ -6, -6, -8, ..., -9, -6, -6],\n",
" [ -8, -10, -9, ..., -6, -7, -8],\n",
" ...,\n",
" [ -7, -8, -7, ..., -9, -7, -7],\n",
" [ -7, -9, -7, ..., -7, -6, -9],\n",
" [ -7, -9, -8, ..., -8, -7, -8]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_NE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-2 -5 -2 -4 -1 -2 ... 2 0 -2 2 -3</div><input id='attrs-8faa1bc5-58ee-445f-8a34-92d85402c33f' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8faa1bc5-58ee-445f-8a34-92d85402c33f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-862e54d0-e308-4d1d-b900-e76147988d99' class='xr-var-data-in' type='checkbox'><label for='data-862e54d0-e308-4d1d-b900-e76147988d99' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-2, -5, -2, ..., -3, -1, -5],\n",
" [-1, -2, -2, ..., -2, -2, -5],\n",
" [ 1, -2, -3, ..., -4, -5, -4],\n",
" ...,\n",
" [-2, -1, -1, ..., -4, -2, -6],\n",
" [ 0, -9, 0, ..., -1, 0, -4],\n",
" [-3, -3, -4, ..., -2, 2, -3]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_ENE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-4 -3 -2 -3 -3 ... -3 -5 -2 -3 -5</div><input id='attrs-7a1359d6-bcac-4112-8bb1-9c01bc0b0087' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-7a1359d6-bcac-4112-8bb1-9c01bc0b0087' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-324bef15-3a74-405a-a546-543bc665b7ae' class='xr-var-data-in' type='checkbox'><label for='data-324bef15-3a74-405a-a546-543bc665b7ae' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-4, -3, -2, ..., -4, -2, -3],\n",
" [-4, -5, -3, ..., -1, -3, 2],\n",
" [-1, -2, -5, ..., -4, -3, -1],\n",
" ...,\n",
" [-5, -2, -4, ..., -2, 0, -1],\n",
" [-2, -2, -4, ..., -6, -4, -2],\n",
" [-3, -3, -5, ..., -2, -3, -5]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>navitar</span></div><div class='xr-var-dims'>(trainId, gratingEnergy)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>12.22 11.29 10.78 ... 13.06 12.46</div><input id='attrs-cbce4d74-2386-44f0-b28d-99fb8579c29c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-cbce4d74-2386-44f0-b28d-99fb8579c29c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-2ffec1eb-9200-4e81-a7d6-a5af7a5cdc25' class='xr-var-data-in' type='checkbox'><label for='data-2ffec1eb-9200-4e81-a7d6-a5af7a5cdc25' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[12.22 , 11.2875, 10.78 , ..., 12.105 , 11.035 , 11.4475],\n",
" [10.555 , 12.405 , 11.015 , ..., 11.995 , 11.7325, 10.76 ],\n",
" [11.725 , 10.5325, 11.47 , ..., 13.3975, 11.4575, 12.4975],\n",
" ...,\n",
" [10.5275, 11.8375, 10.88 , ..., 11.4275, 11.635 , 11.5475],\n",
" [11.1775, 11. , 10.9025, ..., 11.6725, 12.195 , 10.955 ],\n",
" [11.59 , 12.0475, 12.6725, ..., 12.425 , 13.0575, 12.455 ]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>energy</span></div><div class='xr-var-dims'>(trainId, gratingEnergy)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>981.0 981.0 ... 1.02e+03 1.02e+03</div><input id='attrs-3dc06260-d843-4a8b-b792-e0b35fb50b0b' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3dc06260-d843-4a8b-b792-e0b35fb50b0b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-882f7217-4fe3-475e-bcfb-23d2210fe8b4' class='xr-var-data-in' type='checkbox'><label for='data-882f7217-4fe3-475e-bcfb-23d2210fe8b4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 981.00375578, 981.02558941, 981.04742304, ..., 1020.23878641,\n",
" 1020.26062003, 1020.28245366],\n",
" [ 980.99653477, 981.01836809, 981.04020142, ..., 1020.23101968,\n",
" 1020.252853 , 1020.27468633],\n",
" [ 981.00375578, 981.02558941, 981.04742304, ..., 1020.23878641,\n",
" 1020.26062003, 1020.28245366],\n",
" ...,\n",
" [ 981.00375578, 981.02558941, 981.04742304, ..., 1020.23878641,\n",
" 1020.26062003, 1020.28245366],\n",
" [ 981.00375578, 981.02558941, 981.04742304, ..., 1020.23878641,\n",
" 1020.26062003, 1020.28245366],\n",
" [ 981.02541948, 981.04725402, 981.06908856, ..., 1020.2620873 ,\n",
" 1020.28392184, 1020.30575638]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>bunchPatternTable</span></div><div class='xr-var-dims'>(trainId, pulse_slot)</div><div class='xr-var-dtype'>uint32</div><div class='xr-var-preview xr-preview'>2146089 0 ... 16777216 16777216</div><input id='attrs-4a6d7255-c0ce-4bd0-8b24-53fe81716551' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4a6d7255-c0ce-4bd0-8b24-53fe81716551' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a0601032-1a28-4b0e-88e7-0c1ad3e11f54' class='xr-var-data-in' type='checkbox'><label for='data-a0601032-1a28-4b0e-88e7-0c1ad3e11f54' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 2146089, 0, 2097193, ..., 16777216, 16777216, 16777216],\n",
" [ 2146089, 0, 2097193, ..., 16777216, 16777216, 16777216],\n",
" [ 2146089, 0, 2097193, ..., 16777216, 16777216, 16777216],\n",
" ...,\n",
" [ 2146089, 0, 2097193, ..., 16777216, 16777216, 16777216],\n",
" [ 2211625, 0, 2097193, ..., 16777216, 16777216, 16777216],\n",
" [ 2146089, 0, 2097193, ..., 16777216, 16777216, 16777216]],\n",
" dtype=uint32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>XTD10_SA3</span></div><div class='xr-var-dims'>(trainId, sa3_pId)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1.217e+03 1.376e+03 ... 1.489e+03</div><input id='attrs-fbb06019-2284-4894-bf5b-b27f38890f02' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-fbb06019-2284-4894-bf5b-b27f38890f02' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1e20b3c9-2ffc-4a95-9e66-7df8839d2068' class='xr-var-data-in' type='checkbox'><label for='data-1e20b3c9-2ffc-4a95-9e66-7df8839d2068' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[1217.2598],\n",
" [1375.6898],\n",
" [1362.0608],\n",
" ...,\n",
" [1517.0592],\n",
" [1555.7712],\n",
" [1489.4523]], dtype=float32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-bf9b5168-318a-4881-8149-9dfd3a4163ea' class='xr-section-summary-in' type='checkbox' ><label for='section-bf9b5168-318a-4881-8149-9dfd3a4163ea' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>trainId</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-5564b725-cc93-4373-8602-5f8a74e6a2bc' class='xr-index-data-in' type='checkbox'/><label for='index-5564b725-cc93-4373-8602-5f8a74e6a2bc' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([1724088331, 1724088332, 1724088333, 1724088334, 1724088335, 1724088336,\n",
" 1724088337, 1724088338, 1724088339, 1724088340,\n",
" ...\n",
" 1724098292, 1724098293, 1724098294, 1724098295, 1724098296, 1724098297,\n",
" 1724098298, 1724098299, 1724098300, 1724098301],\n",
" dtype='uint64', name='trainId', length=7165))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>sa3_pId</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-2c18ae71-a7b0-41f1-9828-66aadc4c2514' class='xr-index-data-in' type='checkbox'/><label for='index-2c18ae71-a7b0-41f1-9828-66aadc4c2514' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([1326], dtype='int64', name='sa3_pId'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-fd512070-9dfc-467b-bb39-f5e991eff335' class='xr-section-summary-in' type='checkbox' checked><label for='section-fd512070-9dfc-467b-bb39-f5e991eff335' class='xr-section-summary' >Attributes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>runFolder :</span></dt><dd>/gpfs/exfel/exp/SA3/202330/p900331/raw/r0069</dd></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (trainId: 7165, PESsampleId: 40000, gratingEnergy: 1800,\n",
" pulse_slot: 2700, sa3_pId: 1)\n",
"Coordinates:\n",
" * trainId (trainId) uint64 1724088331 1724088332 ... 1724098301\n",
" * sa3_pId (sa3_pId) int64 1326\n",
"Dimensions without coordinates: PESsampleId, gratingEnergy, pulse_slot\n",
"Data variables: (12/16)\n",
" PES_S_raw (trainId, PESsampleId) int16 -1 0 -2 0 -2 ... 4 -1 1 1 1\n",
" PES_SSW_raw (trainId, PESsampleId) int16 -4 -3 -4 -2 ... -3 -2 0 -4\n",
" PES_SW_raw (trainId, PESsampleId) int16 -3 -8 -5 -5 ... -7 -5 -8 -5\n",
" PES_WSW_raw (trainId, PESsampleId) int16 -4 -6 -4 -5 ... -5 -3 -4 0\n",
" PES_E_raw (trainId, PESsampleId) int16 -6 -3 -5 -8 ... -6 -2 -4 -6\n",
" PES_ESE_raw (trainId, PESsampleId) int16 -11 -13 -10 ... -10 -10 -12\n",
" ... ...\n",
" PES_NE_raw (trainId, PESsampleId) int16 -2 -5 -2 -4 -1 ... 0 -2 2 -3\n",
" PES_ENE_raw (trainId, PESsampleId) int16 -4 -3 -2 -3 ... -5 -2 -3 -5\n",
" navitar (trainId, gratingEnergy) float64 12.22 11.29 ... 12.46\n",
" energy (trainId, gratingEnergy) float64 981.0 981.0 ... 1.02e+03\n",
" bunchPatternTable (trainId, pulse_slot) uint32 2146089 0 ... 16777216\n",
" XTD10_SA3 (trainId, sa3_pId) float32 1.217e+03 ... 1.489e+03\n",
"Attributes:\n",
" runFolder: /gpfs/exfel/exp/SA3/202330/p900331/raw/r0069"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_train"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "8f154e38-d208-477e-9d9c-ef2a632514c8",
"metadata": {},
"outputs": [],
"source": [
"energy = data_train.energy.to_numpy()[0,:]"
]
},
{
"cell_type": "code",
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
"id": "0c5ff2a0-0737-417d-9f57-158d4fbd8090",
"metadata": {},
"outputs": [],
"source": [
"gs = data_train.navitar.to_numpy()"
]
},
{
"cell_type": "markdown",
"id": "995e2ac0-1898-46dd-b95f-f65a24496871",
"metadata": {},
"source": [
"## Train Virtual Spectrometer"
]
},
{
"cell_type": "markdown",
"id": "9cbf75c8-fbe0-42ec-af85-6194aede91f5",
"metadata": {},
"source": [
"So far we have only done pre-processing due to experimental problems with some data not being available in certain train IDs.\n",
"\n",
"Let's finally take a look at the data before training the model."
]
},
{
"cell_type": "code",
"id": "63b35dac-ad50-4124-b6f8-e1ceea667b4d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2afe24725480>]"
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzSklEQVR4nO2deZxkZXX3v6fW3mftGWaBWWBgQJABRhAFFIiouIAbwbijwTVRkzdvwLhFo1EMMeY1akhAUQGXKBE3EJFFEBhmWGfYZt+Z6Vl6eq31Pu8fd6lb1VVd1VXVVV23z/fz6U/ffu6tqsNl6lenfs95ziPGGBRFUZRgEWp2AIqiKEr9UXFXFEUJICruiqIoAUTFXVEUJYCouCuKogSQSLMDAJg7d65ZunRps8NQFEVpKdatW3fAGNNb7NyUEPelS5eydu3aZoehKIrSUojI9lLn1JZRFEUJICruiqIoAUTFXVEUJYCouCuKogSQsuIuIjeIyH4RWe8b+7GIPO78bBORx53xpSIy6jv3nUmMXVEURSlBJdUy3wO+CXzfHTDG/Ll7LCLXAkd81282xqyqU3yKoihKFZQVd2PMfSKytNg5ERHgMuCCOselKIqi1ECtnvu5wD5jzEbf2DIReUxE7hWRc0s9UESuFJG1IrK2r6+vxjAUJcf9Gw+w9cBws8NQlKZSq7i/HbjF9/de4BhjzGnA3wA3i0hPsQcaY64zxqw2xqzu7S26wEpRquKd1z/M+f9yT7PDUJSmUrW4i0gEeDPwY3fMGJM0xhx0jtcBm4Hjaw1SURRFmRi1ZO5/BjxrjNnlDohIr4iEnePlwApgS20hKoqiKBOlklLIW4AHgRNEZJeIvN85dTn5lgzAecCTIvIE8D/Ah4wxh+oZsKKMh24bqSg2lVTLvL3E+HuLjP0M+FntYSlKdaSzKu6KArpCVQkYqazV7BAUZUqg4q4EimQ62+wQFGVKoOKuBIpkJpe5q/+uTGdU3JVAkfKJe8ZScVemLyruSqDwZ+5p9d+VaYyKuxIokpmc566VM8p0RsVdCRR5toxm7so0RsVdCRR+n109d2U6o+KuBArLJ+j+LF5Rphsq7kqgyBrN3BUFVNyVgJFny6jnrkxjVNyVQJFny6i4K9MYFXclUORn7mrLKNMXFXclUFh51TKauSvTFxV3JVD4J1R1EZMynVFxVwJF1vKLu2buyvRFxV0JFFn13BUFUHFXAoZ/QjWrde7KNEbFXQkUlrYfUBRAxV0JGP4JVUs361CmMSruSqDIqi2jKEAF4i4iN4jIfhFZ7xv7vIjsFpHHnZ+LfeeuFpFNIvKciLx6sgJXlGKouCuKTSWZ+/eA1xQZ/7oxZpXz8xsAETkJuBx4kfOYb4lIuF7BKko5VNwVxaasuBtj7gMOVfh8lwA/MsYkjTFbgU3AmTXEpygTIk/c1XNXpjG1eO4fE5EnHdtmljO2CNjpu2aXMzYGEblSRNaKyNq+vr4awlCUHH5B18xdmc5UK+7fBo4FVgF7gWudcSlybdF3mDHmOmPMamPM6t7e3irDUJR8slkVd0WBKsXdGLPPGJM1xljAf5GzXnYBR/suXQzsqS1ERakczdwVxaYqcReRBb4/3wS4lTS3AZeLSFxElgErgDW1hagolaMTqopiEyl3gYjcArwSmCsiu4DPAa8UkVXYlss24IMAxpgNIvIT4GkgA3zUGJOdlMgVpQh+QddFTMp0pqy4G2PeXmT4+nGu/xLwpVqCUpRq0T1UFcVGV6gqgSKbNURC9ry+2jLKdEbFXQkUWWOIRex/1paKuzKNUXFXAkXWMkTD9j9rtWWU6YyKuxIobHEXRHRCVZneqLgrgcIyhpAIkZCo565Ma1TclUCRcSZUQ6LirkxvVNyVQJE1hlBICFeYuT+xs5+12yrti6corUPZOndFaSWylp25h0NSUVfIS/7jAQC2feV1kx2aojQUzdyVQJG1Jpa5K0pQUXFXAoVlDGERwhV47ir+SpBRcVcCRSZrCFeYuQ8m0t6x0bJJJWCouCuBwjKVi3sqY+WOs9Y4VypK66HirgSKzAQmVP2CnsyouCvBQsVdCRQTmVDNy9xV3JWAoeKuBArLOJl7BROqad+WfJq5K0FDxV0JFJms3X4gHJKyvWX82bp2kFSChoq7Eij8E6qZbOWeu3aQVIKGirsSKDKWLe4hsTP3p3Yd4V/vfL7otf7MPWupLaMECxV3JVBYjrhHwrbnfum3HuDf79pY1H/3Z+5aCakEDRV3JVBkTa4rZMYynqgn0mP3aU9n/LaMqrsSLFTclUBRakK1mLjnZ+7quSvBoqy4i8gNIrJfRNb7xr4mIs+KyJMicquIzHTGl4rIqIg87vx8ZxJjV5QxWMYQCefq3MXeK5tEkVLHtIq7EmAqydy/B7ymYOxO4GRjzIuB54Grfec2G2NWOT8fqk+YilIZGcvJ3J06d0fbGU2NzdyTGRV3JbiUFXdjzH3AoYKx3xljMs6fDwGLJyE2RZkw7oSqm7mHnNS9qOeupZBKgKmH534F8Fvf38tE5DERuVdEzi31IBG5UkTWisjavr6+OoShKPaEql/cwyFb3JOZIp67LmJSAkxN4i4i/wBkgJucob3AMcaY04C/AW4WkZ5ijzXGXGeMWW2MWd3b21tLGIrikc06/dydxmGuuI+mxvfcNXNXgkbV4i4i7wFeD7zDOM2wjTFJY8xB53gdsBk4vh6BKkolZPMmVPHEvWi1jHruSoCpStxF5DXA3wNvNMaM+MZ7RSTsHC8HVgBb6hGoolRCNm9C1SLiinsZW0bFXQkaZTfIFpFbgFcCc0VkF/A57OqYOHCn2BNWDzmVMecBXxCRDJAFPmSM0a3llYaRt0G2ZQiH7PwlkR5ry6R8vWfUllGCRllxN8a8vcjw9SWu/Rnws1qDUpRqyTiCbi9iwsvcR9WWUaYZukJVCRRZK+e5ZywrVy1TphSy3K5NitJqqLgrgcJdxBQSwfJNqBZbxOTvJ6NdIZWgoeKuBArXc484nrvBzsiLbYDt34mpXO93RWk1VNyVwGCM8RYuhUJ2V0hXtIvtkZrOWsTC9lug1K5NI6kMB4aSkxe0okwSKu5KYHDnRO1qGVuwXV+92B6pmawhHrXfAqWqZd5+3UOs/qffT07AijKJqLgrgcH10EMhIRIKkbWMZ70Ut2Us2qJhoHS1zBO7jnjXKkoroeKuBAZXoN3NOmxxt0W5lC3T5mTu5UohhxKZcc8rylSjbJ27orQKrkCHHVsmY1m4RTDFxD1jGdoi42fu/msVpZXQzF0JDP7MPRwKYVk5O6Z05m6Leznx1m34lFZDxV0JDBlf5h4JSZ7PXqoUslJbRksllVZDxV0JDDlbJuQtXnIpastUMKHqXau2jNJiqLgrgSHjs2UiFYh7OmuIR8YvhfSeW6tllBZDxV0JDJZ/QjWcL+7JEqWQ0bDTZKyMuKfVllFaDBV3JTAUeu5+SlXLRBxxL5a5+60a7RqptBoq7kpgcJt/hZ1qGT+pIpt12Jl7bmOPYue9Y62WUVoMFXclMPg9d78rU1g545LOWkRDIafJWOnnA62WUVoPFXclMLgCbHvuuX/anfFIUVsmlbGIRmx/vljmnsnbQFszd6W1UHFXAoPb2bHQc+8qIe7DqSyd8QhhKe65a0tgpZVRcVcCQyav/UBO3Dti4THins5apDIWXbGIsyXfWPH2Z+uauSuthoq7Ehhy7QdCeZl7ZzwyxnMfSdoTrB3xCJGQFM3MM5q5Ky2MirsSGPI89wJbJp01ebXsQ6mMcy5MyNm1qZB0nueu4q60FmXFXURuEJH9IrLeNzZbRO4UkY3O71m+c1eLyCYReU5EXj1ZgStKIfmeu39C1W4x4M/eR5K2uHfEnMy9iHj7x7Sfu9JqVJK5fw94TcHYVcBdxpgVwF3O34jIScDlwIucx3xLRMJ1i1ZRxqGU594Ztztb+8V9KOlm7rbnni3iufsFXRcxKa1GWXE3xtwHHCoYvgS40Tm+EbjUN/4jY0zSGLMV2AScWZ9QFWV83HLGwt4yXa64+yZVR1K2597pinsRT12rZZRWplrPfb4xZi+A83ueM74I2Om7bpczNgYRuVJE1orI2r6+virDUJQcpTz3ziLiPuTZMmHCoVBxW0ZXqCotTL0nVKXIWNGUxxhznTFmtTFmdW9vb53DUKYj2RK2TPHMPWfLREqUQvozd7VllFajWnHfJyILAJzf+53xXcDRvusWA3uqD09RKsf1zQttmc7Y2AnVIa8U0q6WKT6h6svc1ZZRWoxqxf024D3O8XuAX/jGLxeRuIgsA1YAa2oLUVEqo1TmXsyWGUnmZ+7F2w/4PXe1ZZTWouwG2SJyC/BKYK6I7AI+B3wF+ImIvB/YAbwNwBizQUR+AjwNZICPGmPGtuNTlEnAFeNIKEQkPNaWSTriblmGf/7tswC0R8P2hKrWuSsBo6y4G2PeXuLUhSWu/xLwpVqCUpRqcAU6FCKv5W9h5r7r8Kh3TkSc3jLF+717x2rLKC2GrlBVAkPOcy9sP5DvuRcKeSRcqnGY9pZRWhcVdyUwuL54KGSXOLrEwo64O5l7Im3//s47zwAouc1enueutozSYqi4K4HBrWiJhUOeFQMQczbB9sTd2ZWpLWqPl2r5m9cVUidUlRajrOeuKK2CK8aRcIiIb7MOT9yztqgn0q642xl96QlVU/RYUVoBFXclMKSzuTr3aDFx92yZfHGPhIuLe0Z7yygtjNoySmBwPfJoOJRX5x4Lu5m7fd713D1bJhQqLu7OWFs0pBOqSsuh4q4EhoxlERLyhB1KZ+7tri0jxSdM3br4zlhEbRml5VBxVwJDKmvlee0u8QJxHx3juRfP3F1xb4+F1ZZRWg4VdyUwZLKGaGhs7zrPlikohWyLOJ57iQnVZDpLPBIiFg7pZh1Ky6ETqkpgyBRk7n/8v+czms4SchqJFVbLxB3PvVTjsGTGoi0athc51WjLJNJZ75uCojQCzdyVwJC2DFFfT5mjZ3dw/PxuwJ5kdTP3ZDqLSM6uKdXyN+Fk7qX6vVfKj9bsYOVnbmdP/2j5ixWlTqi4K4Ehk7XySiD9xCKhPM+9LRJGxP4gCIek6CIlN3OPhov3nqmUGx7YCsC+gUTVz6EoE0XFXQkM6azJ6wbpJxYJeb1lEmnLK4OE0ouY3Mw9EqrNlnl+3xCQm8hVlEag4q4EhnTWIhoqkbmHQ171S6H/HSmxQbbnuYfqU+c+nFRxVxqHirsSGDLjZO7xAlum3SfuZTP3OkyoAgw7G4QoSiNQcVcCQ8ayiJTK3H3inkhbxAvEffxqmRDpOtS5D6q4Kw1ExV0JDKmsIRoZR9wdzz2ZyY7x3I1hTNtfv+debBu+iaKZu9JIVNyVwJDJWkUXMYHtufvbD7gLmABvY49C3z3nuVdvy/j3bR1KqLgrjUPFXQkM43nuflumMMMPueJeInOP1rBCdTCR9o6HNHNXGoiKuxIY0laZOnd3m72CDD9SQtyTGdubLzXhWglHRnPirraM0khU3JXAkMmavL1T/fhtmcIM391M2z+pmrUMiZTtzUfCUnVXSH/5o2buSiOpureMiJwA/Ng3tBz4LDAT+Eugzxn/lDHmN9W+jqJUSrrCFappK78HjavzbnY+lMxw8ufuAGDnoRHmdMarrnNP+ewcFXelkVQt7saY54BVACISBnYDtwLvA75ujPmXegSoKJVSTtzdRUxZKz/DDzuPccV924Fh79zAaIZ5PW1VT6h6m3aL2jJKY6mXLXMhsNkYs71Oz6coEyZjlVnElPXZMr56+ELPvX8k55Nfe9mpREvUwVeCa+fM7Ihp5q40lHqJ++XALb6/PyYiT4rIDSIyq9gDRORKEVkrImv7+vqKXaIoE6JQtP34PXc7w/dl7k4DMdd6OTyS8s4dPbuDSDhUtLFYJaSd5+yKR7xvDorSCGoWdxGJAW8EfuoMfRs4Ftuy2QtcW+xxxpjrjDGrjTGre3t7aw1DUcaIth+/516Y4bvHrvXS74j7jVec6Z2vdoWq+5yd8UhezbuiTDb1yNxfCzxqjNkHYIzZZ4zJGmMs4L+AM+vwGkqASaSz7Dw0UvPzlJ1Q9ZVC+jN8b49V57xbvnj28jkAREM1ZO5ZN3MPa+auNJR6iPvb8VkyIrLAd+5NwPo6vIYSYN733Uc495q7MUU6M06EcRcxhe19ULOWsTN334Rq4TZ8yYy90bYr+pGwYJmxdfCV4Iq7Zu5Ko6lpmz0R6QBeBXzQN3yNiKwCDLCt4JyijOHBLQcBu1tjR6z6f5LlFjGBLeD2h8DYzD3pE/e4rz2B+5zprEU4NLGt8tzn7G6Lksxoy1+lcdQk7saYEWBOwdi7aopImbYMJjI1ifu4i5h84m5/CEjRc+BsjB0dW01TTcXMiFMhM6sjSjprsCzjtTtQlMlEV6gqU4bBGhprGePYLWUy90QmizHkee7xAs/dztx94u48ZzW++4iz+9KsjljeayjKZKPirkwZ/E22JopbTx4rVefuCLS7kMjvzcfCttWSKmHLxAtsm4kwkswSEuhui1T9HIpSDSruypShlszdrVEvlblHI7aYj6TsTDpvQrXQlslk8zL3nvaoE1/pD59Sk8HDqQydsYi3OYj67kqjUHFXmoq/le6m/UM1PI8trqUbh9ni6ol7kQnVVNY+l0xbeZ57j5N1HxnNsH73EV7zb/cxUCD0y67+DZ+/bcOY1x1JZumIh71vDloxozQKFXelqfg3sDg4nKz6eVw/vFy1zHAq41w3Xuaeb8t0xm1xH0ll+MZdG3n2hUHuez63qvrwsL3o6Xt/2jbmdUfSWSdzr97aUZRqUHFXmoq/33kyXb3wuZUs423WAXYmDfbWet65gqw6lbG8McDbtSmRtlg0sx2APf2j3vlv37u5ZFwjyQwd8fCY11CUyUbFXWkq/mZaiRr8aFc0S2buzviIm7kXWaGa9HvuPlvG3W81kc4yw/Hf/d84rrtvCwCnHTNzzOsOpzJ0RDVzVxqPirvSVPwTjPXI3MfrLQN+zz13nTt56vr2haWQbVE3c896cwRJ31zBkjkdgL1QqZCRVNbJ3PMrchRlslFxV5qKX9ATNQif67mX6goZHyPuueuiRdoP5JVCupl7xvImUv292Y+ZbYv7aGpstc9IqtBz12oZpTGouCtNxZ8BJ9LVC5+bdZfP3J06d/9mHSEhHBJftUy2aOaeTGf53YZ99vP4ts8bdT4w3A8OPyPJDB0x9dyVxqPirjQVV+xi4VBNfrRX5z5OP3coXufuns/L3KPFJlSzXi2+f65gNF1a3IdTWTpiYfXclYaj4q40lVxjrUiNmbszoRopIe4FmXvhxKu/3/vYxmFCSOxqGWdfjzwhdzP3YtvojaaydMQjmrkrDUfFXWkqrtj1tEdrymo9W6ZM47Dh5NgJVfd8rrdMvi0jIrRFwwwlM56oV5K59w0mSWUtOqJhXaGqNBwVd6WpeOLeFiFZQ+bu7nhUrnFYznMvyNwdWyhrGdJZ413v0h4Nc2Aot8hqxDd5OuJ57pm8NgRb+uwVt7O7Ypq5Kw1HxV1pKm4mW3Pm7vWWKdV+YPzMPe7YMq74+m0ZgBntUXYdzi1cGvZPqDofSpbJ99Rdf/6URTPUc1cajoq70lRymXu0Js8949ky40+ouu0HYiU8d/fDJl6Quc/qjLHD2Qpwblfce56sZUhlLOZ22S19/b67a910t0W911NxVxqFirvSVHKee6RGz92dUC2euYdCQjQs9I/YdertsfzM3PXcvcw9mv/WWD63k0NOD5n5PXFPxN2sfU5nHMj33d0ukl3xSK5nvIq70iBU3JWmkszYFSgdsfpUy5QqhQT7NVyBbiuwXdxSyGQJW6a3O+4dz+9pI521M3bXe5/jZO554u5l7hFEpOZyT0WZCCruSlNJZe2l/m3RGuvcyyxiAjuDdq2StmhxW8b9gCm0Zbractv/ze+xhX44mSGRsmOe2+WM+SZaBxMZomHxnivuK7dUlMlGxV1pKm4HxrZI2KlUqU78ym3WAdAZz2XjbSVsGTfz7ig4726TB3C0025gKJlhJF2QufsmWocSGbrboohTHB+LhLQUUmkYKu5KU0lmLGKR2ldwlqtzB7uc0aXQlomEhCd3HfEy70JP/uJTFnjHy+d2AnZm7i5gcjP3kbzMPU1XPJfxxzRzVxpITeIuIttE5CkReVxE1jpjs0XkThHZ6PyeVZ9QlSDiLhjyd170k8lafOP3G9l7ZLTYwz3SZTbr8J8LO5Orfp7bNwjAt+62e7N3xiJ552e0Rzlr2Wze9dIlzGi3s/T+0ZQn7nM6x3ruQ8mMt3cq2LaMeu5Ko6hH5n6+MWaVMWa18/dVwF3GmBXAXc7filKUlNNe1/WlC8X9+w9u5+u/f54b7t867vMknO6ShRm3H7e2vS0S8qwSly+88WQA7t90ABhrywD86MqX8sVLT/Z6ug+Mpj0xn1PEcx9IZDRzV5rGZNgylwA3Osc3ApdOwmsoASGVsYj5MvfCzPYLv3oagMMjpTenBrvdrsjYiVA/buZe7APg/JXz8pqJFbvG/UCY2WGLe/9Imj3ON4rlvbZV89wLg971rufuEo+E1XNXGkat4m6A34nIOhG50hmbb4zZC+D8nlfsgSJypYisFZG1fX19xS5RpgHJMpm7y6yOsRth+BlNZ2mPhsdk5H5ccS8sc3R51UnzveNCW8aPm7n3j6Y5MGSXVi5xJlm//+B2z3cfTKbzbBl//xpFmWxqFfeXG2NOB14LfFREzqv0gcaY64wxq40xq3t7e2sMQ2lV3Mw9XiJzd9m0f2jc5xlNZ73svxSuz15YBunit1DGs3c6YmFE4HcbXiCRztIWDeVV6bjllnbmXuC517DblKJMhJrE3Rizx/m9H7gVOBPYJyILAJzf+2sNUgkuqawj7kUy90w212J33fbD4z5PMm3RNo4lA7kyyVLC3emIe6iMvSMiGAOP7ujnuvu2eH7/mctme7EYYxgs5rlr5q40iKrFXUQ6RaTbPQYuAtYDtwHvcS57D/CLWoNUgotdLRMu6rn3j6Zxmyz6RbIY7ofEeLj9XQrLIF3c1+iIRca1d0rxzpcuAez/hmTGImOZvMVPmrkrjWT8d8z4zAdudd4EEeBmY8ztIvII8BMReT+wA3hb7WEqQcW/iAnIa/u7tz8BwOzOGMNFdjka8zxlxN21Ywr7xri4mXsVum4/r6+tsNsRsjsvcw9r5q40jKrF3RizBTi1yPhB4MJaglKmDznPfewippse3g7A4lntPLX7CFnLEC6xSKkScb9lzU4AHtx8sOh5N8v2tWSviL88dxkA/SP25Op3H9jGxy9cAeQ+MMDN3CdeLTOYSOdV3ShKJegKVaWpJAtKIf2euzsZ+cZTF2IMHBktXQ6Zylpj2vgW8s9vPgWA4+d3Fz3f5bQnyFrl1f1nHz7bOz5uXhcA559gF4YdNaPNm1TtrNFzv+e5/Zzy+d/x8JbiH0iKUgoVd6WpFC5i8mfuA6MZ5nXHvb4ubgvdYiQz1rirUwH+fPXRvPvsJXzm9ScVPd/b1Qbk2viOx6mLZ3rHbuuB3u64V5HjinvXmMx9YuL+6I5+AK78wboJPU5RavHcFaVmChcx+TP3H6/dyTGzO7zs1/WxSz2Pv+ywGKGQ8IVLTi55/sQFxTP6YvhLH926eRGhuy3KYCLt9XsvzNyTE8zcZzo19eN9a1GUYmjmrjQV15bxMncns3X3H91xaMQT7eFkhk37B/nhQ9vHPI/7DaAW3BYClfL4Z1/Fxy9cwUuXz/bGetoiDIxmfJl7rjInHgmTylh5+6yWo98R9e4y1UKKUoj+i1GahjHG6eceJhoOEYuEvA0u9h5JeNe52e9wKsO7/30NyYzFyYtmsOromd41lZRCVsIvP3ZO2W8ALjM7YnzyVcfnjfW0RxlIpBlIuOKemwh1q3USaWvcRVJ+Bhxxd/eIVZRK0cxdaRru5KKbcc/tjHFwKIUxhnf898MAzOuOe9nvUDLrefL/56dP5D9XpvyEaiWcsngGS52WvtXQFY8wlMhwYDCJSK7Pu3sOcn58Jbh2TCJtYVUw0asoLiruStNwhdoV5TldcQ4OJ/P85Zs+cFYuc09mvOZefisEKiuFbASdzm5PfUNJZnfE8iZ53X41w1WIO8D/Pr67foEqgaf57wZl2lK4GfVsJ3O/8Np7Abhs9WJWzO/OZbyJjNeKV8ivd0/XyZapla54hOFUhr7BZN6+q5BvL1WKX9wPOk3KFKUSmv9uUKYtqTGZe4xDwykOOptYv+/l9uKgrniEcEg4PJLyLI3CckXblqnMx55MOuNhhpNZjoykvdbALl3eN5DKFzK9cCThPc5v8ShKOVTclabh2TKu594VZ3e/3R+9PRrmxAU9gF1iOLM9yu7+UVzbuXBnpuQUydw74xGGkxkGk5m8yVT7nP3hU6ktY4zhhYEEr3+xvcXfRLx6RWn+u0GZtni2jFMnflRPm3fuwhPztwGY2RFl+8ERADpjYf60+aDXN90YM3U891iEZMbiyEgqrwwSJj6hmsxYZC3DUTPs+zKgte7KBGj+u0GZtqQKMvdjnA0vAN5y+uK8a2d2xNiw5wgArzihF2Ng92E7e3c3x661zr0euAK+50giryMk2P8NkOtBUw73Q2B2Z8wuEx1nEZeiFNL8d4MybUllbe/ZFXf/as7zV+Zn7j1tEU/Ez1o2B8htRu2WVNajFLJW3D4zkP/fA/ZuUiJ4uzeVY8Tx5jtiEXtxlIq7MgGa/25Qpi3ualQ34y6cgPTjr/BeMsfO8N1WBYXfAJrJwpk5a6lwq75IOMSsjhgHh5MVPZd/lavb1kBRKqX57wZl2uL2WXFF+cQFPXzj8lV5HRddtvQNe8duRvyf922xnyeT/w2gmcz1tTBYMKNtzPlDwyl++NAO1mw9VPa53JLJzriduWt/GWUiNP/doExbCkshAS5ZtYgzlswec62/u6JbbfKHZ+0dHF3Rczeubib+GArnDfxc9p8Pln0u97+zIxZh6dxONpfZR1ZR/Ki4K03DLYUstWG1nx998KXe8SmLZuSdOzIydcRdRDh18Qz+/jUrCRXZWOQKp3YfKNtAzK2H74pHOKqnzav/V5RK0MZhStPIZe7lFx/1tEX51jtOZ+HMduZ0xbls9WLuea4PyHVOnAriDvCLj51T8py/rXDfYJJ5PWOtG5dc2+AwPe1RkhmL0VS24qZjyvRGM3elaQw5E4SFJYOluPiUBV4nyKNmtNM3lCSdtaaULVOOt56xmKtfuxKAXf2j417r7eYUi3iTyJvUmlEqRMVdaRiHh1N5k4JuaV+lLXb9HNXThjGwfzDJgSG7+mRW59Rfni8ivOKEXiBXp1+KAd+Hnzs5e6jCGnlFUXFXGsZpX7yTs778e+/vI6NpOmLhstvjFcMVu837h9jaN+y0Bm4Nl3HRzHYA9pTJ3PcNJJnTaXeW7HDKKke0BYFSIVWLu4gcLSJ3i8gzIrJBRD7ujH9eRHaLyOPOz8X1C1dpVdxe5Im0f4/UdNVWirsk/5o7nmUgkfb2WW0Futui9LRFvD46pTg8nGK2823E7Yb547U7Jz0+JRjUkupkgL81xjwqIt3AOhG50zn3dWPMv9QenhIUbnlkh3d8YCjJ3K44A4k0PW3VifvKo+yJyeN6u3hhIFGVtdNMFs5sL2vLDCUz3n+Xe5/cSWRFKUfVmbsxZq8x5lHneBB4BlhUr8CUYOHvhLj1gL0gaWA0Q097daIsIhw9u50jo2ke2nKItdsP1yXORrF4VnvZzH0wkabbEfVZnTHvA+3pPQOTHp/S+tTFcxeRpcBpwMPO0MdE5EkRuUFEZpV4zJUislZE1vb1aTYSdCKh3D+1BzYdAGzPvZYKl7ldce52Mtk3n9ZaecWimRWIezKTV0nkNlb7xl3PT2psSjCoWdxFpAv4GfAJY8wA8G3gWGAVsBe4ttjjjDHXGWNWG2NW9/b21hqGMsXZN5ggFg4xpzPG/kG7uqUWWwbyl/q/52VLaw2xoSya1c5gIuNVxBRjMJGh2zdJ/Nk3nATAHRv2TXp8SutTk7iLSBRb2G8yxvwcwBizzxiTNcZYwH8BZ9YeptLq7OlPcNSMNjriYUadbo4Do2l6asjcT3I28wDGbGk31Vnoq5i5ff1ePvO/68dcM5TI5M0lLJ6Va4msm2Ur5ailWkaA64FnjDH/6htf4LvsTcDYf7XKtGNv/ygLZ7ZxcCjFrY/tJpWxGExmahL3M5bkHL/546z0nIq45ZAb9w3xoR8+yg8e2s6jO3LzBumsxWg6O2Y3J/dx/dpETClDLZn7y4F3ARcUlD1eIyJPiciTwPnAJ+sRqNLa7OkfZeHMdq8H+/Gf/i3G2D3Oq+XsY+fwjrOO4YGrLiBcpI/LVGbJnE5CAv/72G5v7L03rPGO3Qnowiqgq5zVreUqbRSl6voxY8z9QLF31G+qD0cJIpmsxb7BJAtntPNXFxzH//vDJu/c6ccUnW+viGg4xJfedEo9Qmw4sztjHD+/m7uczpZA3mYc7q5Lha0ZXPvpBw9t45q3ntqASJVWRVeoKpPO/sEkWcuwYGYbf3vRCSzv7fTOner0ipmOuKWNLv774q5eLbSbzlxqt0N2d6Xy88zeAW57Yk/ZbpPK9KC1Vn4oLcm+gQSQaxkwv7stb/ON6cqSOTkx/9j5x/GtezaRzlo8sbPf24hk+dzOvMeEQsKZy2az49DImOd77Tf+CMD+gQQfOHf5JEautAKauSuTzr4Bu/RxXrct7p+6+MRmhjNluOIcu7f7V99yCvN74lgGPviDdbz1Ow96G5G4VTV+ju3t9BaCuWw/mPv7n379zCRGrbQKmrkrk86WA3abWtdiOGXxDD5wzjJOLth0Y7oxoz3Ktq+8DoBfPrEHyO0uBfYmJsUmiud1t3FoOMX9Gw9wzoq5AKwrWKGbzGSJR7Tv+3RGM3elbiTSWW/Tapc9/aNcc/tzLJrZzhxfS95Pv/4kLm2xVaWTyetOWTBm7KYPnFX02rizc9U7r3+Y0VSWOza8wNfueC7vmlsf3V3soco0QsVdqRsrP3M7Kz9zu/f3SCrDy77yB8DeKq7YtnOKjf/e/OMbX8S2r7yu6F6yABeddJR3/LU7nuODP1jH3iP2vIb7NDev2VHsoco0IpDift19m3lq1xHv75FUhpFUrsysfyTFcDLDrsNjJ6W2Hxwmk7XGjCul2bR/kKVX/dr7e+lVv2bpVb/mpM/e4Y0dN7+rGaG1FP962amctWx22VYKx83r4v2OX3/DA1vzzm3+8sWcuWw2T+464u0tq0xPAuG5G2NIZw07D4/wmf9dz582HwTs3XpecCo1SnHOcXPZdnCYXYdHOXfFXP648QDvPnsJ7z57CcfM7uTBLQeZ2xXjpAU97Do8ygObDnDu8b185KZH+fKbTmbZ3E7u33iAi150VMnXSGctfvjQdv7irGP4+aO7ecvpi4lFQliW4Xt/2sbbVi8mHBLao2FuengHF5+ygNmdMQ4Pp8gak9dDxbIMA4k0M6voX26MIZG2yu7BOZzM8M27N/HXF6wglbGY0RGlfyTFsy8MsnrJLCLhEMYY/rjxANsPjRRdOu9n5VHdfLlF69EbyZtPX8ybT19c0bUfeeWxXH9/vrBfumohIsJFJ81nzdZDvOTLv+c3f30Otz2+h8d29nPFy5cxpyvGixfPLPqcWw8Ms8xXnbNu+2Fue3w3n3/ji7AXpE8/fvH4bs4+do5XDDAeiXSWQ8MpBhJpVszr5pFthzhxQQ8z2qP84y83EIuEOP+EeVjG8LJj57K5b4gLr72Xmz9wFi87bm7dY5epUBO7evVqs3bt2qoeu6VviO8/uJ3v/WlbfYOqA59+3YmcfewcvvDLp3l466G8cx+/cAWRkHDtnc+zcEYbe47kfwh98y9O42M3PwbA61+8gGN7u5jXE+cfbrWF9FMXr6QjFuHTjrAeN6+LE+Z3k8pa3Pl0rrHU3736BHYcHGHxrHa+fe9mRlJZ3n/OMkZSWT518Uo+d9sGfl7Gn33P2Uu48cHtVd2DJXM6uPfvzq/qscr47Dw0wrnX3A3AJ/5sBX99wQpCIeHAUJLV//T7ko87Y8kszj+hl5+u28X2gyN86x2n0xEL897vPsLZy+fwD687kQNDSd773UcA+MkHz+bMZTmLaCiZYc3Wg1ywcj7bDw7z5K4jvOHUhXmv8YvHd3PBynley2LLMhXbcrsOj7Bp/xCvPGFe3vizLwywtz/B+SvnMZBI0z+cZk5XjHBIaItObPLYsgwi5H1ojaQy/Nm19/LFS0/mlMUzSKQszvuafX+f/PxF/ODB7XztjucQgf/4i9O5/v6tYyayq8WdWJ8oIrLOGLO66LlWFve12w7x1u88OAkRKdXwb3++iktPW5Rn0RQKg1JfRlNZ0pY1prvmV29/lm/fs7lur/O2MxYztzte9jlv+9jLEYQ3fPN+wK7f/+bduRXJbzh1ITsOjbB0TgdnLJnFZ3+xAbCTkMPDKW7f8AK7nNYKx/Z2cty8LtqiYZJpi9s3vADAr/7qHD5y06N5tf4vWtjDpasW8aXf5JeBvvdlS7np4e1FF32BnRRNhU3HVdwL2HV4hHO+enfRc6cdM5PHdvTnjZ13fC+PbD3EaEFFh1Ib7zjrmLw2AM/sHeBzt23g71+zMq+5l9JY/B+yytTl5x95WdVtOMYT95b23BfMyC3wePlxc/j+FWdhGUNYhFTW4r//uIUPnLu86Fe2vUdG2XpgGEF4+389BMBTn7+IrGVY9QV7t8Dzju/lzKWzSKQtQgId8Qhf+e2z3nM88dmL+PBN60ikszxa8EECsGJeFxt9WcGZy2azpsCeqRdnLZvNjPYov3t6HyuP6uaSVYv46u3Pln1cPBLiw688loe3HKIjFubFi2fyH/ds4oT53Ty1Ozcp/d33vYT9Awk27huipz3K21Yv5vBwmuFUhpcszc/MT1zQw08+eHbd/xuViXH7J85FEI6b18VtT+zmdacs5F/vfJ6n9w5w3/P2Jidf//NT+T8/fZKsthCuiredsZirLz6R9313DU/sOsKime3c+pGX8ftn9rNoVjv9Iyn2DyQ5edEMT2feffYSth8c4TvvPINQiElbj9DSmTvYkxh3P7uf1xapE66U4WQGEbwd5tdttydC3L/9/GnzATbvH+JdZy/NG1+/+wjX3PEcn7p4JSuPsvuMW5bhW/ds4rKXHO1NyAwnM9z44DZeefw8TlzQzaHhFBnL0NsV576NfczvaeO13/gjR/W0cdlLjuaTf7YCEWFP/yjff3A7x/Z2MprO8tLlc4hHQqzZeoi/+58neeJzF9EZC/PU7iOc5mQBtz2xh9OOnsnOwyMsn9vlbSr9xM5+5vXE6e2KIyIlOyq61RZ3PP0Cl60+uur7q0w9LMswnMrQ3RZl30CCe57bz/LeLn7yyE7eesZiTlzYw4s//zvm98T55V+dw8NbDvFXtzzGzR84i9ue2MNZy2fTP5Lm1S86ike2HeL8lfN47w1rvCTna299MX/3P096r/e5N5xEVzzCghntvHT5bDb3DTO3K0Y6a0hlLGZ1RvnsLzZwq69L5qdfdyL/9OtnOGF+N1ecs5S5XXG++KunefPpi7n8JUcTDgn3Pt/HcDLDZxx7x8U/T/S3rzqef//DRtJZw00fOIvv3LuZNVsPkcxYvGTpLF510nz2HkmwaGY7bzx1IaPpLItmtvPFXz3Na05ewA8f3s5fnrucUxfPQEQwxrDt4Ah7+0fzJkL3DyRoj4W9eYZC3FXE/rYTtRJYW0ZRlKmFW0YcCYdIZSxikYlXW9+yZgfH9nZVNVdzZCTN9fdv4a8vtJOirGWqiqFVUHFXFEUJIOOJe3A/0hRFUaYxKu6KoigBRMVdURQlgKi4K4qiBBAVd0VRlACi4q4oihJAVNwVRVECiIq7oihKAJkSi5hEpA8Yr6fsXOBAg8KZKFM1tqkaF2hs1TBV4wKNrVrqEdsSY0xvsRNTQtzLISJrS63CajZTNbapGhdobNUwVeMCja1aJjs2tWUURVECiIq7oihKAGkVcb+u2QGMw1SNbarGBRpbNUzVuEBjq5ZJja0lPHdFURRlYrRK5q4oiqJMABV3RVGUADIlxF1EPi4i60Vkg4h8whlbJSIPicjjIrJWRM70XX+1iGwSkedE5NVTJTYRWSoio8744yLynQbHdaqIPCgiT4nIL0Wkx3d9s+9Z0dgm+56JyA0isl9E1vvGZovInSKy0fk9y3eu6H0SkTOc2DeJyL+LSPG9CZsT2z3OmHsP5zUyNhGZIyJ3i8iQiHyz4Hnqet/qGFez79mrRGSdc2/WicgFvsfU554ZY5r6A5wMrAc6sDfs/j2wAvgd8FrnmouBe5zjk4AngDiwDNgMhKdIbEuB9U28Z48Ar3CuuQL44hS6Z6Vim9R7BpwHnO5/DeAa4Crn+Crgq+XuE7AGOBsQ4Lfu//8pEts9wOom3rdO4BzgQ8A3C56nrvetjnE1+56dBiz0vWd21/ueTYXM/UTgIWPMiDEmA9wLvAkwgJt5zgD2OMeXAD8yxiSNMVuBTcCZTA4Tja1RlIrrBOA+55o7gbc4x1PhnpWKbVIxxtwHHCoYvgS40Tm+EbjUNz7mPonIAqDHGPOgsd993/c9pqmx1RpDPWIzxgwbY+4HEv6LJ+O+1SOuyWKCsT1mjHF1YwPQJiLxet6zqSDu64HznK9QHdiZ8NHAJ4CvichO4F+Aq53rFwE7fY/f5YxNhdgAlonIYyJyr4ic2+C41gNvdK55mzMGU+OelYoNGnPP/Mw3xuwFcH67X8lL3adFznHh+FSIzeW7jr3wmXpYRhOMrRSNum8TjctlqtyztwCPGWOS1PGeNV3cjTHPAF/FzuZux/7qmQE+DHzSGHM08Engeuchxf4nTEo9ZxWx7QWOMcacBvwNcLP4fO8GxHUF8FERWQd0AynnIVPhnpWKrSH3rEJK3aeG3b9xGC+GdxhjTgHOdX7e1bCoxmcq3LdSTIl7JiIvwn6/fNAdKnJZVfes6eIOYIy53hhzujHmPOyvNRuB9wA/dy75KbmvoLvIz/oWM4m2yERic74yH3SO12H7osc3Ki5jzLPGmIuMMWcAtzivD1PgnpWKrZH3zMc+5+uvax3sd8ZL3addznHh+FSIDWPMbuf3IHAzk2fXlIqtFI26bxONa0rcMxFZDNwKvNsY43+v1uWeTQlxd2eqReQY4M3Yb/49wCucSy7AFlWA24DLHX9qGfZk3ZqpEJuI9IpI2Dle7sS2pVFx+cZCwKcBt/Kk6fesVGyNvGc+bsP+gMb5/Qvf+Jj75HydHhSRlzpf39/te0xTYxORiIjMBRCRKPB6bAuskbEVpYH3bUJxTYV7JiIzgV8DVxtjHnAvrus9q3WGuB4/wB+Bp7G/wl/ojJ0DrHPGHgbO8F3/D9gZ3nPUoWqhXrFhe2cbnPFHgTc0OK6PA887P1/BWYE8Re5Z0dgm+55hfxjvBdLYWdH7gTnAXdgfyncBs8vdJ2A1tgBsBr7pv7fNjA27ImQd8KRzH79BHSqhqohtG/a3tCHn+pMm477VI66pcM+wE5xh4HHfz7x63jNtP6AoihJApoQtoyiKotQXFXdFUZQAouKuKIoSQFTcFUVRAoiKu6IoSgBRcVcURQkgKu6KoigB5P8DTdA4LixcTdUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(energy, gs[2])"
]
},
{
"cell_type": "code",
"id": "d0b70fef-5e27-4cb1-90e7-2653989cf48a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2afe25a554b0>]"
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2k0lEQVR4nO3deXicZbn48e89M5msbfa2adI26Qpt6UYoS4GiIBRUyk7Vc+zPDRf0CAfPEQ5H5agoKosbyEHkiIqyiCgiqxUKAt33vematGmz78tsz++P953JpE2azGSSmSb357pyZfLmncmTN5N77rmfTYwxKKWUGl4c8W6AUkqp2NPgrpRSw5AGd6WUGoY0uCul1DCkwV0ppYYhV7wbAJCXl2eKi4vj3QyllDqtrF+/vsYYk9/T9xIiuBcXF7Nu3bp4N0MppU4rInKot+/1WZYRkRQRWSMim0Vku4j8j308R0TeEJG99ufssPvcJSJlIrJbRK6Iza+hlFKqv/pTc+8EPmiMmQvMA5aIyHnAncAKY8w0YIX9NSIyE1gGzAKWAI+IiHMQ2q6UUqoXfQZ3Y2mxv0yyPwywFHjSPv4kcI19eynwtDGm0xhzACgDFsay0UoppU6tX6NlRMQpIpuAKuANY8xqYKwxphLA/jzGPr0QKA+7e4V97MTHvEVE1onIuurq6gH8CkoppU7Ur+BujPEbY+YBRcBCEZl9itOlp4fo4TEfM8aUGmNK8/N77OxVSikVpYjGuRtjGoC3sGrpx0WkAMD+XGWfVgFMCLtbEXB0oA1VSinVf/0ZLZMvIln27VTgMmAX8CKw3D5tOfAX+/aLwDIRSRaREmAasCbG7VZKKXUK/RnnXgA8aY94cQDPGmNeEpH3gWdF5DPAYeBGAGPMdhF5FtgB+IBbjTH+wWm+ipeWTh9/33Gca+af1J2ilEoAfQZ3Y8wWYH4Px2uBS3u5z73AvQNunUpYr207xh3PbWZhSQ7js1Lj3Ryl1Al0bRkVFY8/YH32BeLcEqVUTzS4q6j4A9YAKF9Ad/JSKhFpcFdRCW7P6NfgrlRC0uCuotKVuWtZRqlEpMFdRSWYsPv8mrkrlYg0uKuoBIzW3JVKZBrcVVQCWnNXKqFpcFdRsUdCas1dqQSlwV1FRTN3pRKbBncVlUBwtIx2qCqVkDS4q6iERsto5q5UQtLgrqLiD5VltOauVCLS4K6iYnQopFIJTYO7ikqwI1U7VJVKTBrcVVSCMd2rHapKJSQN7ioqAa25K5XQNLirqOiSv0olNg3uKio6iUmpxKbBXUVFJzEpldg0uKuoBBN2zdyVSkwa3FVUgpOYvNqhqlRC0uCuohLaZk/LMkolJA3uKio6WkapxKbBXUVFa+5KJTYN7ioqAc3clUpofQZ3EZkgIm+KyE4R2S4iX7WP3yMiR0Rkk/1xVdh97hKRMhHZLSJXDOYvoOIjtIeqXztUlUpErn6c4wPuMMZsEJFRwHoRecP+3kPGmPvDTxaRmcAyYBYwHvi7iEw3xvhj2XAVX35dz12phNZn5m6MqTTGbLBvNwM7gcJT3GUp8LQxptMYcwAoAxbGorEqcegMVaUSW0Q1dxEpBuYDq+1DXxaRLSLyhIhk28cKgfKwu1XQw4uBiNwiIutEZF11dXXkLVdxpTV3pRJbv4O7iGQAzwO3GWOagF8AU4B5QCXwQPDUHu5+UgQwxjxmjCk1xpTm5+dH2m4VZ7oqpFKJrV/BXUSSsAL7U8aYPwEYY44bY/zGmADwS7pKLxXAhLC7FwFHY9dklQiC/ai6toxSiak/o2UE+BWw0xjzYNjxgrDTrgW22bdfBJaJSLKIlADTgDWxa7JKBAHdZk+phNaf0TKLgH8FtorIJvvYfwEfE5F5WCWXg8DnAYwx20XkWWAH1kibW3WkzPCjHapKJbY+g7sx5p/0XEd/+RT3uRe4dwDtUgmua/kBrbkrlYh0hqqKitHlB5RKaBrcVVR04TClEpsGdxWVruUHNLgrlYg0uKuodI2W0Zq7UolIg7uKii75q1Ri0+CuoqI1d6USmwZ3FRWj49yVSmga3FVUQhtka4eqUglJg7uKSrAfVRcOUyoxaXBXUdG1ZZRKbBrcVVR0bRmlEpsGdxWV0GgZrbkrlZA0uKuoBBN2ncSkVGLS4K6iomUZpRKbBncVFZ3EpFRi0+CuohJa8ldr7kolJA3uKiqauSeWh98sY3N5Q7yboRJIf7bZU+okWnNPHIGA4f7Xd1Pf6mHuhKx4N0clCM3cVVSCwd2ro2Xirs3rxxjo8OlWxaqLBncVlWDCboyVOar4aenwAdDh1Rda1UWDu4pKeDlG6+7x1dzhBaDDq5m76qLBXUUlWJYBrbvHW3Onlbl3+jRzV100uKuoBLpl7hpU4qk5VJbRzF110eCuohIw4HZaTx9dXya+gjX3Tq25qzAa3FVU/MbgdtnBXcsycdXSadfcdbSMCtNncBeRCSLypojsFJHtIvJV+3iOiLwhInvtz9lh97lLRMpEZLeIXDGYv4CKj0CgK7hrzT2+tCyjetKfzN0H3GGMORM4D7hVRGYCdwIrjDHTgBX219jfWwbMApYAj4iIczAar+InYExXWUZr7nHVrEMhVQ/6DO7GmEpjzAb7djOwEygElgJP2qc9CVxj314KPG2M6TTGHADKgIUxbreKI2MMAQNJLgE0c4+3ltBoGc3cVZeIau4iUgzMB1YDY40xlWC9AABj7NMKgfKwu1XYx058rFtEZJ2IrKuuro6i6SpegqMgg5m7bpIdX13j3DVzV136HdxFJAN4HrjNGNN0qlN7OHbSf78x5jFjTKkxpjQ/P7+/zVAJwG9H9ySn1twTQTBz15q7Ctev4C4iSViB/SljzJ/sw8dFpMD+fgFQZR+vACaE3b0IOBqb5qpEEJzAlOzSmnsiCNbcO30BjNEXWmXpz2gZAX4F7DTGPBj2rReB5fbt5cBfwo4vE5FkESkBpgFrYtdkFW/BWK6jZRJDMLiDzlJVXfqz5O8i4F+BrSKyyT72X8B9wLMi8hngMHAjgDFmu4g8C+zAGmlzqzFG3y8OI8HMXce5J4ZgWQas0kxKkg5OU/0I7saYf9JzHR3g0l7ucy9w7wDapRKY1twTS4tm7qoHOkNVRcwEyzKh0TIaUOKpucNLdloSoJ2qqosGdxUx/wllGc3c48cfMLR6/OSPSgZ0OKTqosFdRUxr7omj1WOVZPIygsFdM3dl0eCuIhZc7jc4FNKvk5jiJjhSJleDuzqBBncVsWCinuTUzD3egp2p+XZw1w5VFaTBXUUsVHPXhcPiLrjcb94oN6CZu+qiwV1FLFiW0Q7V+GvqOKHmrpm7smlwVxE7qUNVa+5xEyrLjNKau+pOg7uKWDBT10lM8RecnRqquWtwVzYN7ipiwVierEMh4y643G/XUEgtyyiLBncVscAJyw9oh2r8NLZ7cTqE7HRrhqpu2KGCNLiriGnNPXHUNHvIy3DjdjpwiGbuqosGdxWxYI3drTX3uKtu6SQvIxkRISXJqR2qKkSDu4pYaJs9rbnHXXVzZ2ikTEqSkw4tyyibBncVsZNHy2gpIF6qmztDI2VSXA4ty6gQDe4qYl01d2uZf83c4yMQMNS0nJC5a1lG2TS4q4gFg7vTYXXiaYdqfDS0e/EFTCi4Jyc5dW0ZFaLBXUUsmKg7RXA5HJq5x0l1cydAWObu0MxdhWhwVxEL1twdAi6naM09TkLB3a65J7scdGrNXdk0uKuIBcsyDofgdIhm7nFS3dIBoKNlVI80uKuIBRN1p0NwOUTHucfJSWUZl3aoqi4a3FXEguu5O8TqVPVqh2pcVDd3kpLkICPZBQRr7lqWURYN7ipiobKMBDN3DSjxEJzAJGINSU1JcuraMipEg7uKWCAQFtydWnOPl+DSA0HWOHd9oVUWDe4qYqGhkHbNXce5x0f47FSAZB0KqcL0GdxF5AkRqRKRbWHH7hGRIyKyyf64Kux7d4lImYjsFpErBqvhKn6CHagi4HI6dMnfOAlfVwYg2WVNYjJGX2xV/zL3XwNLejj+kDFmnv3xMoCIzASWAbPs+zwiIs5YNVYlBhOaoSokObVDNR68/gD1bd4TyjLWv7POUlXQj+BujHkbqOvn4y0FnjbGdBpjDgBlwMIBtE8lIH9Yh2qSU/D6NZgMtbZOq/wyOjUpdCw1ycqjtDSjYGA19y+LyBa7bJNtHysEysPOqbCPnUREbhGRdSKyrrq6egDNUEMtWHO3grtDa+5x0Oqx9k5Nd3e9MQ4G93YN7orog/svgCnAPKASeMA+Lj2c2+N/vjHmMWNMqTGmND8/P8pmqHgIhC8/4BA8mrkPuTY7uKfZY9wBUu1A3+bR4K6iDO7GmOPGGL8xJgD8kq7SSwUwIezUIuDowJqoEk0grObudjnwaXAfcq12WabHzF2DuyLK4C4iBWFfXgsER9K8CCwTkWQRKQGmAWsG1kSVaPyB7pOYtEN16AXLMmnukzN3rbkrAFdfJ4jIH4BLgDwRqQC+BVwiIvOwSi4Hgc8DGGO2i8izwA7AB9xqjNFn2jATHGnnCI2W0cx9qAU7VNOTuzL3NC3LqDB9BndjzMd6OPyrU5x/L3DvQBqlElv42jIa3OOjp8w9RTtUVRidoaoiFqq520MhdfmBoRfMzrtn7lag15q7Ag3uKgqh0TIOweV04NVJM0OutbOHmrtm7iqMBncVsfAO1SSnA69m7kMumLmn9TBaRmvuCjS4qyiE76GqM1Tjo9Xjw+1ykOTs+hfW0TIqnAZ3FbFgzV0c6AzVOGnr9Hcb4w6Q5LS2PQxOcFIjmwZ3FbHwDlWXU2eoxkOrx9et3g4gIqQlOWn36N9DaXBXUQjGcocIbqfOUI2Htk5/t5EyQSluJ+1ezdyVBncVhdA2ew5wORwEDLpJ9hDrKXMHq4NVh0Iq0OCuohC+zV6Sy1orTjtVh1abp+fMPTXJqaNlFKDBXUUhfLSM2x6tocF9aLV29py5pyQ5dZy7AjS4qygElx8Qe8lfQBcPG2Lt3pNHy4BVltGhkAo0uKsoGGNwiDU6I8llPYW0U3VotXb6u63lHqRlGRWkwV1FzB8wOMTK2JMc1lNIh0MOrTaPr8fMPdWtZRll0eCuIhYw1royQKhDVScyDZ1AwNDm8fdYc09N0tEyyqLBXUUsYJdlwBoKCdqhOpSCmXlPo2XSNHNXNg3uKmKBgMEZLMuERsto5j5UelrLPSjF3b3m3tDm0eUIRigN7ipifhNWc3fqOPeh1tMuTEGpSU48vkBoUtm//Go13/3bziFtn0oMfe7EpNSJAgHTVXO3M3dfQIP7UAlm7qlJPc9QBat0k+JysKuymczUpCFtn0oMGtxVxAIGnHZwd9mZu8enZZmh0tMuTEGhDTs8fupaPPgChrpW75C2TyUGLcuoiPnDOlTdmrkPuZ52YQpKDdtq72BtKwB1rZ1D1ziVMDS4q4iZsJq7S5cfGHL9yty9fg7Zwb2+1Ysx+s5qpNHgriLWbRKTU5cfGGwnBuZg5p7ey6qQYE1yOljbBlgTzFo6dcTMSKPBXUUsvOaepJn7oKpv9TD7W69x46PvsWp/LdDz/qlBKT1k7tbjaN19pNHgriIWCBjsxL1rtIxm7oPiWFMHrR4/mysa+dxv1uH1B0KjZdJ7WlvG3dWherC2jZQk6+9Tq3X3EUeDu4pYwJiu0TL2Z11bZnAEs/TrFxTS3OFj4+EG2jr9OASSXSf/+waz+ZZOH4dr25hTlAVAfZtnyNqsEkOfwV1EnhCRKhHZFnYsR0TeEJG99ufssO/dJSJlIrJbRK4YrIar+PEbQjV3t0sz98EUXL730jPG4nQIK/dUsft4M7kZyUjw7VOYYIfqwZo2PP4A8ydmAVDbosF9pOlP5v5rYMkJx+4EVhhjpgEr7K8RkZnAMmCWfZ9HROTkwqA6rYWvLaM198EVzNzHjk7h7InZvLDhCH/feZybSot6PD9Yltl1rAmA+ROsvEsz95Gnz+BujHkbqDvh8FLgSfv2k8A1YcefNsZ0GmMOAGXAwtg0VSWKQCB8KKQuPzCYguvCpLqdLJ6Rz9HGDlwO4ZPnF/d4fjBzX3PA+pedOyETt9NBbasG95Em2pr7WGNMJYD9eYx9vBAoDzuvwj52EhG5RUTWici66urqKJuh4iG85u7WhcMGVbAsk+p2snh6PgBXzy1k7OiUHs8PBvfaVg8XT8+nIDOV7PQk6jW4jzixXn7g5CIg9Phfb4x5DHgMoLS0VCPDacQfIFTvDXao6k5MgyM07DHJyfjxo/nO0llcMWtcr+c7HEKyy0GnL8DnLioBICc9mToN7iNOtMH9uIgUGGMqRaQAqLKPVwATws4rAo4OpIEq8ViZu3Xb6RBEtCwzWNrDMncR4V97KceES3M7KclL58KpeQDkpCdpcB+Boi3LvAgst28vB/4SdnyZiCSLSAkwDVgzsCaqRBMIW35AREhyOPAG9M3XYGj3+JFehj325psfnckPb5gTenelmfvI1GfmLiJ/AC4B8kSkAvgWcB/wrIh8BjgM3AhgjNkuIs8COwAfcKsxRreFGWbClx8AawkCr08z98HQ5vGTluTscdhjb66d330kTU6aZu4jUZ/B3RjzsV6+dWkv598L3DuQRqnEZgyhoZBgLR6mZZnB0e71h4Y3RisnPZmmDh9efyA0dFUNf/qXVhHzB7pGy4A11l3LMoOj3ROL4G5t1qFj3UcWDe4qYuE1d9CyzGBq8/hI62HHpUjkpCcDaGlmhNHgriJ2cnB34NPMfVC0ewOkDDBzz81wA1DTrMF9JNHgriIWvuQvWLNUdeGwwdHu8ZGWNLDgnpdhZe41Lboy5EiiwV1FzB+25C9Ys1R1EtPgaPf6e1y3PRL5GtxHJA3uKmLGmJMyd11+YHC0efwDLsuMTnXhdjqo1uA+omhwVxHz91Bz16GQg6PdHuc+ECJCboZba+4jjAZ3FbFAgO7B3aHBfbDEoiwDVt1dyzIjiwZ3FbHw9dwBklyim3UMkliUZQDyMty61d4Io8FdRSxgepjEpJl7zPkDBo8vMOBx7mBn7lqWGVE0uKuInbi2jMvh0A7VQdC1IuTA/03zRiVT29qJMfp3Gik0uKuIBYy1bniQ2yWauQ+Crl2YYpO5e/2GxnbvgB9LnR40uKuInVhzdzl0hupg6PBYL5gDHS0DVs0ddKz7SKLBXUXMHzA4TxgK6dG1ZWKuzdu1f+pABScyVWvdfcTQ4K4iZgzd1hdPcgq+gAb3WAtusReL4J43SmepjjQa3FXErCV/u762RstoWSbWOsL2Tx0oXV9m5NHgriJ24qqQ1vIDmrnHWiwz96zUJJwO0eA+gmhwVxELGNN9tIyOcx8UbfZQyFjMUHU4hNx0XYJgJNHgriLS4fVT1+ohN90dOuZy6gzVwdARytwHPhQSdAmCkUaDu4rIvuoWAgZmjBsVOhbcrEMnyMRWaJx7DGruAPmjkqlq1uA+UmhwVxHZc7wZgBljuwd3QDtVY6zda49zj0FZBmDMqGSqmjti8lgq8WlwVxHZfayFJKdQnJceOpbktOrvWnePrXaPDxFIdsXm33TM6GRqWjz4dcLZiKDBXUVk97EmpuRnhLJ1sGaoggb3WGvz+ElNcnabUzAQY0al4A8Y3Sh7hNDgriKy53hLt3o7QJKdWf5xfQVv7q6KR7OGpVit5R40xp7IpKWZkUGDu+q35g4vRxramT62e3B322WZ7/5tJ4+t3B+Ppg1L7R4/KTHqTAWrLANop+oIMaAxViJyEGgG/IDPGFMqIjnAM0AxcBC4yRhTP7BmqkSw53gL0L0zFbrKMoC+5Y+hVo8vxpl7CgDVTRrcR4JYZO4fMMbMM8aU2l/fCawwxkwDVthfq2Fgrz1S5sTMPSmsw6+uTYN7rDS0eclKdfd9Yj/la1lmRBmMssxS4En79pPANYPwM1Qc1NpZ+djM5G7Hs9OSAFgwMYv6Vo+Od4+RxnYvWfa1jYWUJCejU1xalhkhBhrcDfC6iKwXkVvsY2ONMZUA9ucxPd1RRG4RkXUisq66unqAzVBDobXTh8shuJ3dnzaLpuTxjzsWc9VZBfgChqYOX5xaOLzUt3nITotd5g4wZnQKVVqWGREGGtwXGWMWAFcCt4rIxf29ozHmMWNMqTGmND8/f4DNUEOhtdNHerLrpKF5DocwOT+DHHtJAq27x0ZDW2wzd9CJTCPJgIK7Meao/bkKeAFYCBwXkQIA+7OOjRsmWj1+0k/RwZetwT1m2j1+On0BsmKcuY8dnaJlmREi6uAuIukiMip4G7gc2Aa8CCy3T1sO/GWgjVSJobXTR1py7wOscjW4x0xDu3UNBydz142yR4KBZO5jgX+KyGZgDfA3Y8yrwH3Ah0RkL/Ah+2s1DLR6/KSfIrgH68P1YcFdZ632T21LJ196aj219qqN9a3WRtbZMQ7u+aOS8fgCNLVrv8hwF3VwN8bsN8bMtT9mGWPutY/XGmMuNcZMsz/Xxa65Kp7aOn2nLMvk2pswB0fV7DnezKxvvcam8oahaN5pbc2BOl7eeozXdxwHoMEeUpoZw6GQYHWogg6HHAl0hqrqtxa7Q7U3qUlOkl0O6u3A9OKmo3h8ATZrcO/T0UYr2K7aXwtAQ7uduafHNnMvyLSCe0V9e0wfVyUeDe6q39r66FAVsXb7qW2xgvur248BcLC2dUjadzqrbLCC7er9dRhjQi+QsZzEBF3r8O+obMIYw3tlNbpK5DClwV31W2sfmTtAToab+jYPZVXNlFVZyxUcqm0biuad1irtzP1YUweHattoaLMy91h3qI5OSWJCTio7K5tYc6COjz++mtfsF2E1vGhwV/3W6uk7uGenualt9fDadqt2PG9CVr8y96rmDnYda4pJO09HlY3tjLdLJqv219LQ5iElyRHThcOCZhaMZkdlE+/us0pA2icyPGlwV/3i8wfo8AZI72M/z9x0N/WtHl7ddoz5E7M4d3IO5XVtvb71N8bwvZd3cuF9b7L05+/SYW8KPdJUNnZw/pQ88jKS7eDujfns1KCZBZkcqGnlzV3WFBTtExmeNLirfmmzg2568qkzyex0N0cb2tl6pJEls8ZRnJuO12842tBzB15Ni4fH3t5PQVYKnb4A+6sTvz7/0xV7uePZzTF7PJ8/wPGmDsZnpbCwJJsNhxuob/PGfAJT0MzxozEGth5pxCGw7UgjAa27Dzsa3FW/tHZa46L7Ksvkprvx2YHiilnjmJSbBsDhup7r7ofsks3HFk4EoKy6JSbtHUyv7zjGS1uO4ovRGP7qlk4CBgoyU5lTlMXhujYO1raSlRrbenvQzPGjQ7eXzB5Hq8fP/prEf1FVkdHgrvqltdPK3PtaXzy4BMEZ40ZRnJdOca6112pvdfeDdmfrB2aMwSGEOmETVSBg2FfVSqcvELNRQEcbrM7UgqwU5hRmAtZ1iPUwyKDxmSmMTnHhEPj0ohIAth5pGJSfpeJHg7vql2DmntGPzB2sjBBg3OgU3C5HryNmDtW24nQIJXnpTMxJY1+CB/ejje202yWq7Udj0wFc2WiVrAoyU5hlB3eI/QSmIBFhwaRs5k3IYt6ELFKTnGwub+zXfZ9dWx5a118lNg3uql9aPVZwT+ujQ3XW+Eymj83g2vmFgLVi5KScNA728rb/YG0bhVmpuF0Opo7JSPjMPbx9Oyqt4N7h9fMvj69m3cHoJmNXBjP3zFQyU5MoybPe7cR66YFwP755Hr/8ZCkup4NZ40ez7lBdn+vNvL+vlv98fgvf+Mu2QWuXih0N7qpfgmWZvjL3CTlpvH77YibZ5RiAyfnpbCpv6HEkzKHa1lBdfsqYDA7UtEZcy/YHDL9ffXhIRtoEg/v4zBR22Jn7zsom/llWwzNry6N6zMrGDtLc1kYaAHOKrOw91mPcw2WlucnNsDZd+cicArYdaeKt3b3vqxAIGL77tx2IwKr9dWw70r9MX8WPBnfVL23BzL2P0TI9+eT5xVQ1d/J/7x7sdtwYw4Ga1lBdfmp+Bh5/gPIIp8avPVjHf72wlec3VETctkjtq24hOy2JRVPz2FlplSeCGfzKPdVRrbZY2dhOQWZKaJ38swqDwX1wyjIn+vi5kyjJS+fel3eGXlibOrzdfpcXNx9l+9Emvr10NhnJLh5/J/Ybobd0+nTUTgxpcB+m1h2sY38MR5609LPm3pNFU/O49IwxPPxmGTUtXWuJN7R5ae7whTL3qWMygMg7VYMln7f3DP6OXmVVLUwdk8HM8aOpaemkqrkjlMFXNXey61jk9ejy+jbGZ6WGvl4wKRuw1l4fCm6XgzuvPIOyqhb+tOEI5XVtLLz37zy7ruudyFOrDzE5P51PLJzIsnMm8OdNR/nsk2s5EKNRNs0dXi74/gp+u+pQv++zpaJhRE9864sG92HqK3/YyHf/tjNmj9fWz9EyvbnrqjNo6fSFyidfe24zf1xvZdrBzH2KHdz3VkUWIA/ZwyzfLauNaonh77+8k1e39W8Kfii4F1jDCbcfaWJHZROT863foT8vMLUtnRxv6sAfMDR3eNlZ2cz8CVmh7y+YmM0fv3A+F03Ni/h3idblM8dyxrhR/PKd/Tzx7gE6vAH+vPEoYL14rj1Yz41nT8DhEO64fAb/9sGprN5fxzft+rvXHqvf3OGN6uf/Y1cVTR2+iF6gb3tmE1//45aoft5IEHkaphJea6ePysYOvP4AxpiTtsWLRjBz76tDtTdTx4zi/Mm5PL+hgtwMdyiwA6HMfXSK1Zm45kAdX7qk/48dHCvf0ulj4+EGFpbk9Pu+TR1eHntnP/MnZIVG+PSmtqWT+jYvU/IzOKsokzS3k5e3VrKrspllCyfgdjpYuaeazy+e0utjvLK1ki8+tQGAG84u4sNzCvAHDOdNzu12Xmlx/3+HWBARPnfRZO54bjP7qltIdjlYfaCWulYPz2+owCGEOslT3U7+/fIZIMLP/rGXw7VtfOF369lR2YTb5eBXy0u5aFpkW2cG17fZcLi+X8/Zpg4v+6tbcYiV9Y9KGbz+idOVZu7DUPCtck2LJ7Qg1UC1eXykJjlxOqJ/objh7CIO1bbxg1d2UZKXTkqSAxGrEzZo8fR8Vu2vjahz9GBNG6WTsnE6hJV7rCn1z6w9zC/e2tfnfTcdbsAYa32VxrZTZ51b7U7EM8aNJs3t4qqzCnhh4xHavX5mFoxm8fR81h6sCw0b7cmr24+Rm+7mg2eM4a+bj/LGjuMkOYX5E7P7/fsOlo/OHc/Y0ckEDHxn6WwCBv64vpw/rq/gwmn5jMvsXia6fkEhxsCnn1zLjsom/u3SaUzKSeO2pzfx21WH+PLvN1DV1Pfzr8Pr581d1WSnJVHf5u1XqSfYoRswsO5gfXS/8DCnwX0YCp9tuKUiNqMaWjpPvQtTfyyZPY40t5OmDh+3XTaNH988n88sKum2ONbi6fl0eAOs7eewQmMMh2pbmV2YydmTsvnt+4f43G/W8fXnt3L/67tPGWgB1h+yAkPAwD/Lak76fiBgWLmnmkDA8PaeGpJdDkqLrUB8w9lFodm4Z9rB3es3vG8vyHUif8Dw9p5qFk/P56uXTqPTF+DpNYetseZRlrtiye1y8M2PzOKLl0zhxtIiirJT+d7Lu6ht8fCFxZNPOn9SbjoLS3Ioq2rhoml53H7ZNB75xALaPH6+8edtvLSlkh+8ujt0fkV9G2sPnjzkcuWeatq9fr7ywWkAbDjc0Gdbg89rl0NYdaDn6z3SaXAfhg5UtyJiPfG3VDTE5DHbPL4+15XpS3qyi+sWFFKcm8ZVZxWwZPY4/vsjM7udc+7kHNwuBytPMSwvXE2Lh1aPn+LcNL537WzOKc7hjR3HObckB3/AsO7QyVldeHDZcLieaWMyGJXiCmX94V7cfJTlT6zhhY1HWLmnivMm54ZejBYW51CUnYrLIUwbm8HZxdmkuZ2s7KVuvO1II/VtXhbPyGdOUSbTxmQQMJxUkomnD88p4OtLzkBEuPHsCWSmJvGbzyzkgik91/8/ce5E3C4Hd3/4TESEaWNH8fvPnctTnz2Xz188mec3VLDtSCPGGL74uw3c+Oj7XPmTd/jj+go6fda7s3/srGJUiotPnDeRUSkuNhzuOxPfWtHIhJxU5k/MYtX+6Dd7e/CNPfzy7f00RdlXkMg0uA9D+2taGJ+Zyoxxo0KlhIFq7fT1uSJkf/zP1bN59baLSXL2/NRLc7s4tyQnFCA9vgAb7X/29/bVcPZ33mBP2AzJYL19Ul46U8eM4lf/7xy23nM5//epc6ysbn9XVufzB7j7ha0s+M4b3PfKLmpaOtlk1+gvmpbHyj3VJ3XIPrfeGjHy4Bt72FfdysXTu2rJDofwH1fM4DMXlpDscpLscnLBlNxQ233+AEt+/Db/9+4BwMpQReDCqXmICDecXQQkVnAP95UPTmXt3Zedsn1L5xWy8Rsf4oxxXevVzJ+YzaKpedz6wankpLv5xl+28W5ZLVuPNHKdXcr52nObWfbYKowxrDpQy7kluSS7nMyfmM26g3UEAoa6Vk+vE8O2HGlgTlEW503OZduRxh47cjccrqexvfegveNoEz9dsZd7X97JpQ+sPOW5pyMN7sPQgZpWJuenM6coky0VjTHZ6b610z/gzB3A6ZA+1yhfPD2fvVUtlNe18dtVh7j2kfdYuaean/+jjNpWT7dRQMFlDYrDJk2NSkkize1i7oSsUHAPBAxfemoDT60+zOT8DB57ex9LfvwOzZ0+FkzM5opZ4zje1MnFP3yTv2w6AsCRhnbe21fL9LEZHLFXtVw8vXtH4dJ5hdx11Znd2n64ri00wmTXsWaeePcAgYDhrd1VzCnMDE0e+uT5xfzohjmcn6DB3eEQ3K6+Q0Rv5brRKUncc/UsNh5u4Au/W09uupvvXXsWr952EV+7fDobDzewck81h2rbOG+y1YF88bQ89hxvYfH9b3L+91dww6Pvc98ru7qNf69v9VBe186cwkwWTc3DHzC8uPlot5+97Ugj1z3yHhd8fwUPv1kWOm6M4Rdv7WPH0Sae31BBklP4ybJ5VDd38tKW7o8R9KcNFbwewYYmGw7X82v7BT2ehlVw33WsacRPgjDGcKC6lcl56ZxVmEVju5fNMai792ejjli5fKY1auW17cd4ZWslAHc+v4X39tVyxrhRvL2nOpQdB9emKQwbJx503uQctlQ00trp48+bjvD6juP811Vn8PwXL+D5L15AwH7RWzApm6vnjudXy0sZOzqFrz69iftf280jb5ZhDDzyibPJy0imMCuVKfnpJ/2ccIunjwGsjtPgCJDyunZ+/mYZGw43cNVZBaFzU91Obiy1hhcOV1fPHc/HFk6gpdPHv5w3iZQkJyLCTaUTEIF77Rfq4LuDTy0q4acfm8/EnDSuW1DIzaUTeHTlPu54bjMen/WuKjjS6qyiTM4tyeGc4mweemMPf9l0hA/c/xabyht4eWslToewsCSHH722m/WHrHcAb++t4Qev7uIzT67lzxuPcNmZY7l67nhmjB3VbQTXgZpWjjV28NbuKv792c3c9swmjjd1cPszm/ji79aftD9BY7uXsqpmjja08+lfr+Wev+5gX5xXOB02QyE3lTdwzcPv8oPrz+LmcybGrR27jzWzck8Vn7tocq/Ducrr2nhuXTmfvrAk5rMQa1o8NHf6KMlL58rZ4/jJij3c/swm/vqVC6OagBTU2uljQnZa3yfGwMTcNGYWjObpteXsq25h/sQsNh5uIN3t5HefPZfrHnmP+1/bzcXT8jgQtjbNic6bnMvDb+7jD2sO86t/HmBOUSafvdDqGJw/MZs/f2kRG8vrQ2u5XHrmWC6als/Xn9/Cz+1sb9HUXKaOyeDhj88nYOhziN7E3DQWTc3l0ZX7cDsdXDQtj42HG3jwjT2Mz0xh+QXFsb1Yp4FvfXQWc4uyuHre+NCxMaNTOHtiNusO1TM6xcWZ9rwBp0O4eu54rp5rnWuMYWJuGj96bTcHalopyEzhlW3HuGRGPguLcxAR/vvDM1n68Lt89elNAPxsxV4O1LRy/uRcHv7EAj5w/1t8+6WdvPDFC3j8nf1kpyVR2+LB4w9ww9lFiAjXn13I917exVOrD/Hy1kreLavF6RCSXQ4m56dTXtfGDY++R3md9Q7uZ//Yy22XTQ/9Pnc8u5m/7zzO6BQX/oDB6RCeX1/B0nmFrNh1nM9eOLlf74Jiadhk7s/Zs+n+trX726eWTh/XPPwuL9sZYFBlYzvLHnufJ/7Z/e2TP2D4yh82cvszm/o9HO/xd/az/Ik1eP0Bvv3Sdr738i7e2HG82znGGDaVN/Da9mNc+8h7/PQfZdzw6Pvc8+J2Ln3grZM6PtcdrOOKh97uNkuwL0ca2kObUpfkZ5Cd7uany+ZzqLaVe17cftL5331pB5/6vzU0tHlobPOGNtRo6vCGVioMilVZpr+WzB5HWVULxsB9181h6bzxfOXSaeRlJPP5xZPZeqSRl7ZUsmLnceZPzOrxMUon5TB9bAbf/dtOKhs7+O8Pz+yWJU/MTWPpvMJu93G7HDx401xe+epFvPClC/jFv5wNwLmTczl/Sv/KJ3dfNZPGdi9VzZ1cO7+QD9vZ+n8smTEo2+YlupQkJ8sWTjxpjkRwXsHCkpxeh9iKCLd+YCr33ziXmpZONhyuZ/n5k0KLngHMnZDF5xdP5pp547nl4sms2FXF/ppWrpg9jjS3i69dPoPN5Q3c8tt1vLO3hs9eNJn7rj+Ly84cE+pDuWZeIU6HcPcL2yirauE/rpjBpxcVU5KXzi8/Wconzy+mvK6dJbPGcd38Qn78973M//brfPF369lzvJm/7zzORdPyKMpO44Gb5rJ4ej7Pb6jg079eyw9f3c2nfr2GVftr2WlvTN7p87P+UB2r99dSFuGkvf4aFpl7h9fPi5uP4nII75XV0NjuJdPe6OAXb5WxqbyBB17fzZJZ43A4hD3Hm1n+xBoqGzvYeLiBJbPHhaZ/P/xmGX+163eHalv57jVnddvc4ET/3FvDvS/vxBj4xp+3hV7xv//KLi6ZMSb0av3tl3aE1lYpzErlhzfM4Tsv7eB3qw6R5nZy6+838NJXLiIlycFz6yr4zks7MMB//nEL75XVkJNu1WnzRyVzY2kReRnJ+AOG375/kIKsVAIBw23PbKLTF0AEpo+1ZnueOzmXWy6ewqMr9/HJ8ycxpygLsN7aPm6/sF31k3eoa/PQ4Q2wsDiH7UetMs6bX7uEMaNTqGruoKnDG/UEpmgsmT2OB9/Yw+S8dKaPzeAny+aHvnf9giIeeN16RyICt4dlUOFS3U5e/reLeHX7MZo7fP2e3CQioUwyGjPHj+bm0gm8sPEIl54xloUlOUwbm8HSuYV933kEuWLWOO57ZVe/JjzdcHZRqAO6J3ddafV71LR08uv3DuL1B7hi5ljAer7srWrhd6sOkZHs4hPnTiQrzc11C7oeb8zoFB64cS4icOXsgpOy7Ns/NJ2CzBRuOmcCLodQlJNGeV0bL2w8wtqD9bhdDh66eR55dn+KP2DNuk1yCrd+YAr/u3I/75atAmB24WiON3VS3WwtxfGROQX8/OMLIrhy/SOx6GwbqNLSUrNu3bqI79fm8bG/upXVB+r4zks7+Nrl07n/9T08dPNcrp1fxJGGdj54/1vkj0qmor6dJ/5fKeluF5/7zTqSk5x879qzuPX3G/jwWQU8dPM83t9XyyceX8XVc8dz+axxfO25zbR5/NxUWsQPrp/DQ3/fy9GGdn54/Rwe/+d+nnzvELWtnRRlp5Gb7mb1gTrS3E7uvXY2tz+zmfxRyeRlJHNuSQ6/fu8gy86ZwNVzxzOrMJPM1CSON3UgQHl9Ozf/7/uMSnHhCxiaO3ycU5zNwx9fwEN/38tLYZ1FzZ0+3C4H1y8opL7VG8rUAeZPzOKOD80gN8PdLTg1d3i55EdvMTk/nW98ZCYrd1fzyFv7mFOUyVcvm8Z//Wkr55bkMi4zhb9uPsrM8aOtdxjzC5mSn8EDr+/BGwhw/w1zuf4U/2CxZIzhs0+u4+Lp+T2WMh58Yw8/XbGXTy8q4ZsfnXnyA8SZxxegsrG92+qY6mSHalspzEoNZeGx8ODruymvb+ehm+d1O97Y7qWl09dj/0y07nx+C0+vLedjCyfw/evmhI53eP0sf2IN184vZNnCiRysaeVoQzv7qlv4w5py8kcls+wca6hpbkYyM8aNiurni8h6Y0xpj98brOAuIkuAnwBO4HFjzH29nRttcN9c3sDSh98FrGx45X9cwoU/eJMpY9L5/rVz+PIfNrD7WDOv334xyx5bRZvHT2O7l8n56Tz5qYVMyEnjh6/u4pG39nHbZdP4/erDZKS4+OuXLyQ92UVjm5efrNjLE+8e4MrZ43jFXn/killjeW37cc4pzmba2FHcctFk2jx+PvKzd1h+QTHf/MhMnnj3IDsrm9hb1cLm8gbmFmXy3Bcu6LXu9tr2Y/ZsRQcfPquARVNze6zvllW18MS7B3h+fQWdvgB3X3Umhdmp7DjaxK0fmNrrZJinVh/i7he61uG+ZEY+P7x+DmN6WZzquy/tCGX2S2aN4+tXnhGqTSeCxnYv/7tyH59fPCX0Lk2podbh9fP4O/u56ZwJjBk1NAu9hRvy4C4iTmAP8CGgAlgLfMwYs6On86MN7o1tXtbY42Cnj81gUm46P1uxlwfe2ANASpKDhz++gEvPHMsf1hzm5/8o48bSIj51QQmZ9lrZHV4/tz+ziVe2HSPZ5eDPty7qlvUGAobP/mYd/9hVxfyJWRRmpfLSlkrOGDeKP9+6qFsNddexJopz00+qq+442kRhVmroZ8ZCXauHY40dpywZhTPGsPZgfejFbUp+xinPb2zzctP/vs8HzhjDf14xY1iP6FDqdBWP4H4+cI8x5gr767sAjDHf7+n8aIN7b9YfqueFjRXccPYE5oWtttcbf8Dw2Nv7mTomgw/Zdbpw9a0efrFyH59aVMyolCR+tmIvHz93or7lVkrFVTyC+w3AEmPMZ+2v/xU41xjz5bBzbgFuAZg4ceLZhw71fx1npZRSpw7ugzUUsqf38N1eRYwxjxljSo0xpfn5kS0PqpRS6tQGK7hXABPCvi4Cep7bq5RSKuYGK7ivBaaJSImIuIFlwIuD9LOUUkqdYFBmpRhjfCLyZeA1rKGQTxhjTp4iqZRSalAM2pRDY8zLwMuD9fhKKaV6N2zWllFKKdVFg7tSSg1DGtyVUmoYSoiFw0SkGhjILKY84OTdjeNP2xUZbVfkErVt2q7IRNuuScaYHicKJURwHygRWdfbLK140nZFRtsVuURtm7YrMoPRLi3LKKXUMKTBXSmlhqHhEtwfi3cDeqHtioy2K3KJ2jZtV2Ri3q5hUXNXSinV3XDJ3JVSSoXR4K6UUsPQaR3cRWSJiOwWkTIRuTOO7ZggIm+KyE4R2S4iX7WP3yMiR0Rkk/1xVRzadlBEtto/f519LEdE3hCRvfbn7Di0a0bYddkkIk0icls8rpmIPCEiVSKyLexYr9dIRO6yn3O7ReSKIW7Xj0Rkl4hsEZEXRCTLPl4sIu1h1+3RwWrXKdrW698uztfsmbA2HRSRTfbxIbtmp4gRg/c8M8aclh9Yq03uAyYDbmAzMDNObSkAFti3R2HtHzsTuAf4Wpyv00Eg74RjPwTutG/fCfwgAf6Wx4BJ8bhmwMXAAmBbX9fI/rtuBpKBEvs56BzCdl0OuOzbPwhrV3H4eXG6Zj3+7eJ9zU74/gPAN4f6mp0iRgza8+x0ztwXAmXGmP3GGA/wNLA0Hg0xxlQaYzbYt5uBnUBhPNrST0uBJ+3bTwLXxK8pAFwK7DPGxGWvRWPM20DdCYd7u0ZLgaeNMZ3GmANAGdZzcUjaZYx53Rjjs79chbURzpDr5Zr1Jq7XLEhEBLgJ+MNg/OxTOUWMGLTn2ekc3AuB8rCvK0iAgCoixcB8YLV96Mv2W+gn4lH+wNre8HURWW/vWwsw1hhTCdaTDhgTh3aFW0b3f7h4XzPo/Rol0vPu08ArYV+XiMhGEVkpIhfFqU09/e0S5ZpdBBw3xuwNOzbk1+yEGDFoz7PTObj3uU/rUBORDOB54DZjTBPwC2AKMA+oxHpLONQWGWMWAFcCt4rIxXFoQ6/E2qnrauA5+1AiXLNTSYjnnYjcDfiAp+xDlcBEY8x84N+B34vI6CFuVm9/u4S4ZsDH6J5EDPk16yFG9HpqD8ciumanc3BPqH1aRSQJ64/2lDHmTwDGmOPGGL8xJgD8kkF6K3oqxpij9ucq4AW7DcdFpMBudwFQNdTtCnMlsMEYcxwS45rZertGcX/eichy4CPAJ4xdoLXfvtfat9dj1WinD2W7TvG3S4Rr5gKuA54JHhvqa9ZTjGAQn2enc3BPmH1a7Vrer4CdxpgHw44XhJ12LbDtxPsOcrvSRWRU8DZWZ9w2rOu03D5tOfCXoWzXCbplU/G+ZmF6u0YvAstEJFlESoBpwJqhapSILAG+DlxtjGkLO54vIk779mS7XfuHql32z+3tbxfXa2a7DNhljKkIHhjKa9ZbjGAwn2dD0VM8iD3QV2H1Ou8D7o5jOy7Eesu0Bdhkf1wF/BbYah9/ESgY4nZNxupx3wxsD14jIBdYAey1P+fE6bqlAbVAZtixIb9mWC8ulYAXK2P6zKmuEXC3/ZzbDVw5xO0qw6rFBp9nj9rnXm//jTcDG4CPxuGa9fq3i+c1s4//GvjCCecO2TU7RYwYtOeZLj+glFLD0OlcllFKKdULDe5KKTUMaXBXSqlhSIO7UkoNQxrclVJqGNLgrpRSw5AGd6WUGob+P29bzk0hAa4lAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(-pes_data[\"channel_3_A\"][0,2600:2800])"
]
},
{
"cell_type": "markdown",
"id": "a6606c28-28c8-4d27-9f38-4a7ca88ee397",
"metadata": {},
"source": [
"Now, let's fit the model:"
]
},
{
"cell_type": "code",
"id": "5690cf09-4fed-497d-a09d-0f3cdceea04d",
"metadata": {},
"outputs": [],
"source": [
"n_test = 10 # exclude some trains to validate the training"
]
},
{
"cell_type": "code",
"id": "cb86aa32-dc1d-4684-bd62-25aa77a97245",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Checking data quality in high-resolution data.\n",
"Finding region-of-interest\n",
"Excluding outliers\n",
"Selected 6439 of 7155 samples.\n",
"Fitting PCA on low-resolution data.\n",
"Using 600 comp. for PES PCA.\n",
"Fitting PCA on high-resolution data.\n",
"Using 24 comp. for grating spec. PCA.\n",
"Fitting outlier detection\n",
"Fitting model.\n",
"Calculate PCA unc. on high-resolution data.\n",
"Calculate transfer function\n",
"Resolution = 0.77 eV, S/R = 5.69\n",
"Calculate PCA on channel_1_A\n",
"Calculate PCA on channel_1_B\n",
"Calculate PCA on channel_1_C\n",
"Calculate PCA on channel_1_D\n",
"Calculate PCA on channel_3_A\n",
"Calculate PCA on channel_3_B\n",
"Calculate PCA on channel_3_C\n",
"Calculate PCA on channel_3_D\n",
"Calculate PCA on channel_4_A\n",
"Calculate PCA on channel_4_B\n",
"Calculate PCA on channel_4_C\n",
"Calculate PCA on channel_4_D\n",
"End of fit.\n"
]
},
{
"data": {
"text/plain": [
"array([[[12.22 , 11.2875, 10.78 , ..., 12.105 , 11.035 , 11.4475]],\n",
" [[10.555 , 12.405 , 11.015 , ..., 11.995 , 11.7325, 10.76 ]],\n",
" [[11.725 , 10.5325, 11.47 , ..., 13.3975, 11.4575, 12.4975]],\n",
" [[11.2575, 12.1375, 10.1275, ..., 10.4625, 11.55 , 12.4175]],\n",
" [[10.2325, 11.135 , 11.3725, ..., 13.3375, 12.365 , 11.015 ]],\n",
" [[12.3775, 10.4575, 11.6425, ..., 11.6075, 11.1875, 12.3825]]])"
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# exclude the last n_test train IDs so we can use them for validation later\n",
"pes_train = {ch: pes_data[ch][:-n_test, :] for ch in pes_data.keys()}\n",
"gs_train = gs[:-n_test, :]\n",
"xgm_train = xgm[:-n_test,:]\n",
"\n",
"model = Model(channels=channels)\n",
"model.fit(pes_train,\n",
" gs_train,\n",
" np.broadcast_to(energy, (gs_train.shape[0], gs_train.shape[-1])),\n",
" pulse_energy=xgm_train)"
]
},
{
"cell_type": "markdown",
"id": "52c038c5-d86e-4e5a-9214-5e1878dd77e8",
"metadata": {},
"source": [
"The resolution of the Virtual Spectrometer relative to the Viking has also been estimated (in eV):"
]
},
{
"cell_type": "code",
"id": "a084b920-0006-4859-80f9-ff81f3c1f6b0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.resolution"
]
},
{
"cell_type": "markdown",
"id": "c1f47e6e-3b62-4c8a-8573-8eb4bd40f2ff",
"metadata": {},
"source": [
"We can look at the Virtual Spectrometer to Viking response function as well."
]
},
{
"cell_type": "code",
"id": "f752a9e0-8484-4381-8bb5-5eb27bd82670",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Intensity [a.u.]')"
]
},
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAHgCAYAAAB5O9EcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABOSUlEQVR4nO3deXycZ3nv/+81MxqN9sWSbUmWdzuO4yQmcUJCKLQEaJIGQqCFhMNOG3JIKJzS06Z0ObT0tBz4AYVCEwKlEA4lhLIkQEpKcwIp2Z3FiZ3E+6LN1r5vs9y/P2ZGVhzZkuV55pnl83699NIsz8xcchTpq3uu57rNOScAAAAA3gn4XQAAAABQ6AjdAAAAgMcI3QAAAIDHCN0AAACAxwjdAAAAgMcI3QAAAIDHQn4XkA0NDQ1u9erVfpcBAACAAvfkk0/2OucaT7y9KEL36tWrtX37dr/LAAAAQIEzs8Nz3U57CQAAAOAxQjcAAADgMUI3AAAA4DFCNwAAAOAxQjcAAADgMUI3AAAA4DFCNwAAAOAxQjcAAADgMUI3AAAA4DFCNwAAAOAxQjcAAADgMUI3AAAA4DFCNwAAAOAxQjcAAADgMUI3AAAA4DFCNwAAAOAxQjcA4GWcc4rGE36XAQAFI+R3AQCA3OGc01//5Hn925PtisYT+tzbz9fV5zX7XRYA5D1WugEAM+7Z0alvPnxIr17foLOWV+njd+3Qs+2DfpcFAHmP0A0AkCR1D0/qL3+8UxeuqtNX/tsF+sb7LlJDZak+ftcOOef8Lg8A8hqhGwAgSbrziTYNT8b0md89T8GAqaGyVB99/Qbt7R7VE4cG/C4PAPIaoRsAIOecfvhUuy5du0TrGitnbr/6vCZVlYb03ceP+FgdAOQ/QjcAQE+3DepQ37iuvaDlJbeXh0O69oIW/ey5Lg2MTftUHQDkP0I3AEA/fKpdkZKArtyy/GX3vX1bq6ZjCf3H80d9qAwACgOhGwCKnHNO/7HrmC7ftExVkZKX3X9Oc7WWVpXq1/v6fKgOAAoDoRsAityB3jF1j0zp1Rsa5rzfzPTq9Q16aF+vEgmmmADAYhC6AaDIPbI/uYJ96dolJz3msvUN6h+b1vNdw9kqCwAKCqEbAIrcI/v71FQT0aol5Sc9Jr0K/tC+3myVBQAFhdANAEXMOadHD/Tp0rVLZGYnPW5ZdUQbl1Xq14RuAFgUQjcAFLE9x0bVNzatS9advLUk7ZVrluipwwP0dQPAIhC6AaCIbT/cL0m6ZM38ofu8FTUam47rQO+o12UBQMEhdANAEdvZMaSashK11pfNe+z5rbWSpB1tQx5XBQCFh9ANAEXsuY4hndtSc8p+7rR1jZUqDwf1XAehGwBOF6EbAIrUdCyh3UdHtKWlZkHHBwOmLc012tE+6G1hAFCACN0AUKT2HBtRNO507gJDt5Ts636+c1jReMLDygCg8BC6AaBIpdtETit0t9ZqKpbQnmMjXpUFAAWJ0A0AReq5jiFVR0ILOoky7bxUQN9JXzcAnBZCNwAUqV0dQ9qywJMo01bWlytSEtDuo4wNBIDTQegGgCKUSDjtPjais5uqT+txgYBp47Iq7e2mvQQATgehGwCKUNvAuCajCW1cVnnaj92wtEq7jxK6AeB0ELoBoAjtOZZsD9mwrOq0H3vW8kp1j0xpYGw602UBQMEidANAEUq3h2xYevor3RtTQZ0JJgCwcIRuAChCe4+NqqkmoqpIyWk/diZ0d3MyJQAsFKEbAIrQnmMji2otkZQM66Uh7aGvGwAWjNANAEUmnnDa1z26qNYSSTIzbVxepd20lwDAghG6AaDItA+Mayq2uMklaRuWVmovoRsAFozQDQBF5kwml6StbazQwHhUg+NMMAGAhSB0A0CR2d+TDN3rGhe/0r22IfnYg71jGakJAAodoRsAiszBnjEtqQirpuz0J5ekrWmskCQd6CF0A8BCeBq6zewKM9ttZvvM7JY57jcz+1Lq/mfN7ILU7a1m9oCZvWBmu8zso7Me80kz6zCzZ1IfV3n5NQBAoTnYN6Y1DRVn9BytdeUKBoyVbgBYIM9Ct5kFJX1F0pWSNku63sw2n3DYlZI2pD5ukHRr6vaYpI87586WdImkm0547Becc1tTH/d69TUAQCE62HvmoTscCqi1rozQDQAL5OVK98WS9jnnDjjnpiXdKemaE465RtIdLulRSbVm1uSc63LOPSVJzrkRSS9IavGwVgAoCqNTMfWMTGn1GYZuSVrTUKEDhG4AWBAvQ3eLpLZZ19v18uA87zFmtlrSKyQ9Nuvmm1PtKN8ws7qMVQwABe5QKiSvzUDoXttYqUO9Y0ok3Bk/FwAUOi9Dt81x24k/mU95jJlVSvqBpI8554ZTN98qaZ2krZK6JH1uzhc3u8HMtpvZ9p6entMsHQAKU7odJFMr3RPRuI6NTJ7xcwFAofMydLdLap11fYWkzoUeY2YlSgbu7zjnfpg+wDl3zDkXd84lJH1NyTaWl3HO3e6c2+ac29bY2HjGXwwAFIKZ0L0kAyvdqeB+kAkmADAvL0P3E5I2mNkaMwtLuk7SPSccc4+k96SmmFwiacg512VmJumfJb3gnPv87AeYWdOsq9dK2undlwAAheVQ75iaaiIqCwfP+LnSYwP309cNAPMKefXEzrmYmd0s6T5JQUnfcM7tMrMbU/ffJuleSVdJ2idpXNL7Uw+/TNK7JT1nZs+kbvtEalLJZ8xsq5JtKIckfcirrwEACs2BDEwuSVtWFVE4FFBb/3hGng8ACplnoVuSUiH53hNuu23WZSfppjke92vN3e8t59y7M1wmABSNQ31juurcpvkPXIBAwLSyvlyH+1jpBoD5sCMlABSJ4cmoBsejWllfnrHnXFlfriP9Exl7PgAoVIRuACgS6TaQ1roMh+6+MSXfuAQAnAyhGwCKRFtqRbq1vixjz7myvlxj03H1j01n7DkBoBARugGgSLQPZH6le9WS5HMd5mRKADglQjcAFIm2/nFVloZUW16SsedM94czwQQATo3QDQBFom1gQq315UpuhZAZranQfbiP0A0Ap0LoBoAi0dY/rta6zPVzS1KkJKhl1aU6wko3AJwSoRsAioBzTu2ple5MW1VfoSOsdAPAKRG6AaAI9I5OayIaz/hKt5RsMTnczwY5AHAqhG4AKAJt6cklHqx0t9aX6djwlKZi8Yw/NwAUCkI3ABSBmY1xPAjdLbXJ1fOuwcmMPzcAFApCNwAUgXToXuFBe8mK1NzvjkG2gweAkyF0A0ARaOufUENlWOXhUMafOx3k05vvAABejtANAEWgbWDck9YSSVpeE1HApI4BVroB4GQI3QBQBNoGxjO6/ftsJcGAlldH1E57CQCcFKEbAApcLJ5Q5+CkWusz38+d1lJXpnZWugHgpAjdAFDguoYmFU84z1a6peQEE9pLAODkCN0AUOC8nNGdtqKuXEeHJxWLJzx7DQDIZ4RuAChw7f3JFWhPV7rryhRPOB0dZlY3AMyF0A0ABa5tYFwBk5pqI569RnqDHFpMAGBuhG4AKHBH+sfVXFumkqB3P/LTs7rZIAcA5kboBoAC19bv3bjAtOba9AY5hG4AmAuhGwAKXNvAhKfjAiUpUhJUQ2Up7SUAcBKEbgAoYJPRuHpGptRS6+1Kt5RsMaG9BADmRugGgAJ2dCg5TaSlztuV7vRrtKfGEwIAXorQDQAFrDO18tzs4eSStBW1ZeocnFQi4Tx/LQDIN4RuAChg6XaP9Eg/L62oK9N0PKHe0SnPXwsA8g2hGwAKWOdgsr1keY33K93pFpY2TqYEgJchdANAAescnFBjValKQ0HPXyt9siYnUwLAyxG6AaCAdQ5NzMzQ9lp6pZuxgQDwcoRuAChgnYMTasnCSZSSVFkaUm15CRNMAGAOhG4AKFDOOXUOTqq5Jjsr3RKzugHgZAjdAFCgBsejmojGs9ZeIiWnpNBeAgAvR+gGgALVMTOjO5uhu1ztAxNyjlndADAboRsAClRnFmd0p7XUlWkiGtfQRDRrrwkA+YDQDQAFKpu7UaalT9qkrxsAXorQDQAFqnNoUqWhgOorwll7zXQrS3pTHgBAEqEbAApUx2ByRreZZe01m2rSoZuVbgCYjdANAAWqc3Aiq60lkrSkIqxwKEDoBoATELoBoEB1Dk5kdUa3JAUCpuaaiDqHaC8BgNkI3QBQgKZjCXWPTGV1XGBac20ZK90AcAJCNwAUoGPDk3Iuu+MC0wjdAPByhG4AKEB+bIyT1lwT0bHhSUXjiay/NgDkKkI3ABQgP2Z0pzXXlinhkqvtAIAkQjcAFKBOP1e6U6/ZxcmUADCD0A0ABahjcFJLKsKKlASz/trHN8ihrxsA0gjdAFCAuoYmfFnllo63tLAVPAAcR+gGgALkx8Y4aeXhkGrLS1jpBoBZCN0AUGCcc+oY8G+lW5Kaa8rUOUhPNwCkEboBoMAMT8Y0Nh33ZUZ3GrO6AeClCN0AUGD8nFyS1lIbIXQDwCyEbgAoMLkQuptryzQ8GdPIZNS3GgAglxC6AaDA+LkxTloTs7oB4CUI3QBQYDoGJxUOBtRQUepbDS2MDQSAlyB0A0CB6Ryc0PKaiAIB862GmV0pmWACAJII3QBQcPyc0Z22tCqiYMA4mRIAUgjdAFBgkqHbv5MoJSkYMC2vZoIJAKQRugGggMTiCR0dnvR1Rndac22Enm4ASPE0dJvZFWa228z2mdktc9xvZval1P3PmtkFqdtbzewBM3vBzHaZ2UdnPabezH5hZntTn+u8/BoAIJ8cG5lSwvk7LjCtubZMnUOEbgCQPAzdZhaU9BVJV0raLOl6M9t8wmFXStqQ+rhB0q2p22OSPu6cO1vSJZJumvXYWyTd75zbIOn+1HUAgHJjRndac22Zjg5NKpFwfpcCAL7zcqX7Ykn7nHMHnHPTku6UdM0Jx1wj6Q6X9KikWjNrcs51OeeekiTn3IikFyS1zHrMt1KXvyXpLR5+DQCQV9Khu8XnEymlZOiOxp16R6f8LgUAfOdl6G6R1DbreruOB+cFH2NmqyW9QtJjqZuWOee6JCn1eWnmSgaA/JbuoW6qyYGV7hpmdQNAmpehe64BsSe+x3jKY8ysUtIPJH3MOTd8Wi9udoOZbTez7T09PafzUADIW52DE6otL1FFacjvUmZaXDqZ1Q0Anobudkmts66vkNS50GPMrETJwP0d59wPZx1zzMyaUsc0Seqe68Wdc7c757Y557Y1Njae0RcCAPmia3BSzTmwyi3NDt2sdAOAl6H7CUkbzGyNmYUlXSfpnhOOuUfSe1JTTC6RNOSc6zIzk/TPkl5wzn1+jse8N3X5vZLu9u5LAID80pEDM7rTqiMhVZaGmGACAPIwdDvnYpJulnSfkidC3uWc22VmN5rZjanD7pV0QNI+SV+T9OHU7ZdJerek15nZM6mPq1L3fVrSG8xsr6Q3pK4DAJRcVc6FkyglyczUXMsGOQAgSZ42/Tnn7lUyWM++7bZZl52km+Z43K81d7+3nHN9ki7PbKUAkP9GJqManozlzEq3lDyhk55uAGBHSgAoGF1DyXCbS6G7ubaMlW4AEKEbAApGRw5tjJPWUhtR39i0JqNxv0sBAF8RugGgQBzfGCd3Qnf6D4D0KjwAFCtCNwAUiM7BCYUCpsaqUr9LmcHYQABIInQDQIHoHJzU8pqIgoE5z0P3RXpmOLtSAih2hG4AKBAdgxM5szFO2rKaUpmx0g0AhG4AKBCdgxNqzpEZ3WmloaAaK0sJ3QCKHqEbAApAPOF0dGgypyaXpDXXlnEiJYCiR+gGgALQMzKlWMLlZOhuqS2jpxtA0SN0A0AB6MjBcYFpTTXJreCTmxADQHEidANAAejMwY1x0ppryzQZTWhgPOp3KQDgG0I3ABSA46E7t06klJjVDQASoRsACkLX0KSqIiFVRUr8LuVlWgjdAEDoBoBC0DE4kZP93NLx1XdCN4BiRugGgAKQnNGdm6G7viKs0lBAnYwNBFDECN0AUABycWOcNDNTM2MDARQ5QjcA5Lnx6ZgGxqM5u9ItJVtMaC8BUMwI3QCQ5zoHk20budrTLUnNNWXqGqS9BEDxInQDQJ7L5Rndac21ZTo2MqloPOF3KQDgC0I3AOS5/AjdETknHeVkSgBFitANAHmuc3BCAZOWVZX6XcpJsUEOgGJH6AaAPNc+OKFl1RGFgrn7I30mdA8RugEUp9z9CQ0AWJCOgdzdGCetuSa90k17CYDiROgGgDzXMTihlrrcDt1l4aDqK8K0lwAoWoRuAMhj8YTT0aHJnF/plqSmGmZ1AyhehG4AyGPHhicVS7icX+mWkn3dtJcAKFaEbgDIY+mt1fNhpbultoyVbgBFi9ANAHmsYyAZYlfkxUp3RCNTMQ1PRv0uBQCyjtANAHmsIw82xklL18h28ACKEaEbAPJY+8CE6ivCKg+H/C5lXk01bJADoHgRugEgj3UM5v6M7rR0nR2EbgBFiNANAHmsY2A8b0J3Y1WpQgFjpRtAUSJ0A0Cecs7lxcY4acGAaXlNRF1D9HQDKD6EbgDIUwPjUU1GE3mz0i0lT6akvQRAMSJ0A0CeSo8LzJeVbklqZldKAEWK0A0AeapjcFxSfmyMk9ZcW6ajQ5OKJ5zfpQBAVhG6ASBPtefRxjhpzbVliiWcekam/C4FALKK0A0AeapjcEIV4aBqykr8LmXB0qvynUO0mAAoLoRuAMhTHQPJySVm5ncpC5belZK+bgDFhtANAHkqnzbGSWuqjUgidAMoPoRuAMhT+TSjO606UqKq0pA6B5nVDaC4ELoBIA+NTcU0OB5VS22536WcNmZ1AyhGhG4AyEPp0JpvK92S1FwbURcnUgIoMoRuAMhDMxvj5FlPt5Rc6aa9BECxIXQDQB5qH8y/Gd1pzbVl6h+b1sR03O9SACBrCN0AkIc6BiYUDgbUWFnqdymnrTk9wYQWEwBFhNANAHmoY3BCTbURBQL5M6M7rbmGWd0Aig+hGwDyUMfAeF72c0vHN8jpoq8bQBEhdANAHsrHjXHSltdEZCbGBgIoKoRuAMgz07GEukem8nJcoCSVBANaWlVKewmAokLoBoA80zU0Iefyc1xgWnNtGSdSAigqhG4AyDMzM7rzdKVbYlY3gOJD6AaAPDMzozsPt4BPa6ktU+fghJxzfpcCAFlB6AaAPNMxMCGz5AmJ+aq5JqKpWEL9Y9N+lwIAWUHoBoA80zE4oaVVpQqH8vdHeFNtelY3LSYAikPoZHeY2T0LeHy/c+59mSsHADCfjoH8HReYlq6/Y3BC566o8bkaAPDeSUO3pLMl/f4p7jdJX8lsOQCA+XQMTuj81lq/yzgjzbXsSgmguJwqdP+5c+5Xp3qwmf11husBAJxCIuHUNTShq85t8ruUM1JXXqJISUBdjA0EUCRO2hDonLtrvgfPd4yZXWFmu81sn5ndMsf9ZmZfSt3/rJldMOu+b5hZt5ntPOExnzSzDjN7JvVx1Xx1AkCh6B6ZUjTu8npcoCSZmZpry9iVEkDRWNRZOGZ2wwKOCSrZfnKlpM2SrjezzSccdqWkDamPGyTdOuu+b0q64iRP/wXn3NbUx72nWT4A5K32gXFJ0oo8D91Ssq+7fYDQDaA4LPbUd1vAMRdL2uecO+Ccm5Z0p6RrTjjmGkl3uKRHJdWaWZMkOecelNS/yPoAoCC1pUJ3a13+zuhOa60vJ3QDKBqLCt3Oua8u4LAWSW2zrrenbjvdY+Zyc6od5RtmVreA4wGgILT1pzbGKYCV7hV1Zeofm9bYVMzvUgDAc6c6kVKSZGZ/Ndftzrm/me+hcz1sEcec6FZJn0od9ylJn5P0gZe9eLIF5gZJWrly5TxPCQD5oX1gXEurShUpCfpdyhlbkVqtbx+Y0FnLq3yuBgC8tZCV7rFZH3El+7BXL+Bx7ZJaZ11fIalzEce8hHPumHMu7pxLSPqakm0scx13u3Num3NuW2Nj4wLKBYDc19Y/URCr3JLUmvo60n3qAFDI5l3pds59bvZ1M/v/JC1k45wnJG0wszWSOiRdJ+mdJxxzj5KtIndKeqWkIedc16me1MyaZh1zraSdpzoeAApJ28C4LlxVGF11s1e6AaDQzRu651Auae18BznnYmZ2s6T7JAUlfcM5t8vMbkzdf5ukeyVdJWmfpHFJ708/3sy+K+k3JTWYWbuk/+Wc+2dJnzGzrUq2lxyS9KFFfA0AkHdi8YS6hiYL4iRKSWqoDCtSElBbPyvdAArfQnq6n9PxPuugpEZJ8/VzS5JS4/zuPeG222ZddpJuOsljrz/J7e9eyGsDQKHpGppUPOHUWl8Y7SVmphV1TDABUBwWstJ99azLMUnHnHOcag4AWZZeES6UlW4pOcGkfZCVbgCFbyE93YezUQgA4NRmZnTXF1bofvrIoN9lAIDnFrsj5U8zXQgA4NTa+icUDJiaaiJ+l5IxrXXlGpqIangy6ncpAOCpxe5I+QcZrQIAMK+2gXEtr44oFFzsj+7cMzPBpJ++bgCFbbE7Up5yrB8AIPPaByYK5iTKtPTXw6xuAIVu3tBtZhvM7N/M7HkzO5D+yEZxAIDj2vrHC+okSolZ3QCKx0JWuv9Fya3XY5J+S9Idkr7tZVEAgJeajMbVPTJVUCdRSlJdeYnKw8GZk0QBoFAtJHSXOeful2TOucPOuU9Kep23ZQEAZkuvBBdae4mZqZVZ3QCKwELmdE+aWUDS3tQOkx2SlnpbFgBgtplxgQXWXiKlZnUTugEUuIWsdH9Mya3f/1DShZLeJem9HtYEADhBe3/hzehOW1FXpvb+cSU3KQaAwrSQzXGeSF0clfR+b8sBAMylbWBC4VBAjZWlfpeSca315RqZiml4Iqaa8hK/ywEAT5x0pdvMPjnfgxdyDADgzLX1j2tFbZkCAfO7lIxbUZfsU+dkSgCF7FQr3b9vZsOnuN8kXSfpkxmtCADwMu0DE1pRgK0l0uyxgePa0lLjczUA4I1The6vSaqa5/Ffy2AtAICTaBsY13krCjOQtjKrG0AROGnods79dTYLAQDMbWQyqsHxaEGeRClJ1WUhVZWG1NZPewmAwrWobeABANnT1p+a0V2A4wKl5KzulroytbHSDaCAEboBIMcdSa0AryzQlW4p+bWx0g2gkM0bus2sPhuFAADmdqR/TFLhh+4jzOoGUMAWstL9mJl938yuMrPCm1UFADnuSP+4aspKCnqG9col5ZqKJdQzMuV3KQDgiYWE7o2Sbpf0bkn7zOzvzGyjt2UBANIO940X9Cq3dHwV/zAtJgAK1Lyh2yX9wjl3vaTfV3IL+MfN7FdmdqnnFQJAkWvrH9fKJcURuo/0EboBFKaF9HQvMbOPmtl2SX8s6SOSGiR9XNK/elwfABS1WDyh9oGJgl/pbqkrk9nxk0YBoNCcanOctEckfVvSW5xz7bNu325mt3lTFgBAkrqGJhVLOK0q8NBdGgqqqTrCBBMABWshPd1/4Zz71OzAbWa/J0nOuf/jWWUAgOPjAgu8vURKfo2sdAMoVAsJ3bfMcdufZboQAMDLHe4r/BndaSvryzmREkDBOml7iZldKekqSS1m9qVZd1VLinldGAAgudJdEjQ11ZT5XYrnVtaXq2dkShPTcZWFg36XAwAZdaqV7k5J2yVNSnpy1sc9kn7b+9IAAEf6x7SirlzBQOFvk9CaWs1vG2C1G0DhOelKt3Nuh6QdZvYd5xwr2wDggyP9hT+jO2322MCNy6p8rgYAMutU7SV3OefeLulpM5u9L68pOb77PM+rA4Ai5pzT4b5xvaK1zu9SsmLVkgpJbJADoDCdamTgR1Ofr85GIQCAlxqaiGpkMqZVRTC5RJLqyktUWRpibCCAgnTSnm7nXFfqYq+kNufcYUmlks5Xst8bAOChYppcIklmptZ6xgYCKEwLGRn4oKSImbVIul/S+yV908uiAADH2yyKYUZ32sr6MkI3gIK0kNBtzrlxSW+V9I/OuWslbfa2LABAus2iWFa6peTXeqR/XImEm/9gAMgjCwrdZnappP8m6Wep2xayfTwA4Awc7htTQ2WpysPF8yN35ZIKTccS6h6Z8rsUAMiohYTujyq5A+WPnHO7zGytpAe8LQsAcKR/vGhOokybGRtIiwmAAjNv6HbOPeice7Nz7v+krh9wzv2h96UBQHE70lc8M7rTCN0ACtW871ma2UZJfyxp9ezjnXOv864sAChuU7G4uoYniy50t9SWKWDSkb4xv0sBgIxaSKPg9yXdJunrkuLelgMAkKT2gQk5p6JrLwmHAmqqYYIJgMKzkNAdc87d6nklAIAZR4psRvdsK+vL2ZUSQMFZyImUPzGzD5tZk5nVpz88rwwAitihVHtFemv0YrK6oXzmjw4AKBQLWel+b+rz/5x1m5O0NvPlAACk5G6UlaUhNVSG/S4l61YtqVDf2LSGJ6OqjpT4XQ4AZMS8ods5tyYbhQAAjjvYO6ZVS8plZn6XknWrU33sh3vHde6KGp+rAYDMmLe9xMzKzewvzOz21PUNZna196UBQPE63Dem1Q3F11oiaebrPsQEEwAFZCE93f8iaVrSq1LX2yX9rWcVAUCRi8YTahuYmFnxLTbpk0cPE7oBFJCFhO51zrnPSIpKknNuQlLxvd8JAFnSMTCheMIV5UmUklQeDmlZdakO9nIyJYDCsZDQPW1mZUqePCkzWydpytOqAKCIpdsq1hRpe4mUPJmSlW4AhWQhofuTkn4uqdXMviPpfkl/6mVRAFDMDvWmxwUWZ3uJJK1ZUqFDjA0EUEAWMr3kP8zsSUmXKNlW8lHnXK/nlQFAkTrUN66KcFCNlaV+l+KbVQ3l6h2d0uhUTJWlC5luCwC5bSHTS+53zvU5537mnPupc67XzO7PRnEAUIwO941p1ZKKohwXmLY61c+eXvUHgHx30tBtZpHUzpMNZlY3azfK1ZKas1YhABSZQ33jWt1QvK0l0vHQfZgWEwAF4lTv2X1I0seUDNhP6vjEkmFJX/G2LAAoTrF4Qm3947pyy3K/S/FVup+dWd0ACsVJQ7dz7ouSvmhmH3HO/WMWawKAotU5OKlYws2s9BaritKQGqtKmWACoGAs5ETKfzSzV0laPft459wdHtYFAEXpYB+TS9JWLynXIWZ1AygQ84ZuM/u2pHWSnpEUT93sJBG6ASDDDjOje8bqJRX61Z4ev8sAgIxYyBymbZI2O+ec18UAQLE71DuuspKgGquKd1xg2uqGCn3/yXaNT8dUHmZsIID8tpDNcXZKKu4zegAgSw71jWnVkvKiHheYlm6xYYIJgEKwkKWDBknPm9njmrX9u3PuzZ5VBQBF6lDfmM5aVuV3GTlh9qzus5uqfa4GAM7MQkL3J70uAgAgxRNObf3jeuNm3lyUZo8NZKUbQP6bt73EOferuT4W8uRmdoWZ7TazfWZ2yxz3m5l9KXX/s2Z2waz7vmFm3Wa284TH1JvZL8xsb+pz3UJqAYBc1zk4oWjcaU2Rb4yTVhUpUUNlmLGBAArCqXakHDGz4Tk+RsxseL4nNrOgkpvoXClps6TrzWzzCYddKWlD6uMGSbfOuu+bkq6Y46lvkXS/c26DpPtT1wEg7x2aGRfI5JK0VUsqdJCt4AEUgJOGbudclXOueo6PKufcQprrLpa0zzl3wDk3LelOSdeccMw1ku5wSY9KqjWzptTrPyipf47nvUbSt1KXvyXpLQuoBQByXjpcFvvGOLOtXlLBrpQACsJCppcsVouktlnX21O3ne4xJ1rmnOuSpNTnpWdYJwDkhAM9Y6oIB7WsmnGBaWsbK3RseEpjUzG/SwGAM+Jl6J5r3tWJs74XcsziXtzsBjPbbmbbe3rYXAFA7jvYO6Y1jRWMC5xlbWqTIFpMAOQ7L0N3u6TWWddXSOpcxDEnOpZuQUl97p7rIOfc7c65bc65bY2NjadVOAD44WDvmNY0VPpdRk5Z05gM3QcI3QDynJeh+wlJG8xsjZmFJV0n6Z4TjrlH0ntSU0wukTSUbh05hXskvTd1+b2S7s5k0QDgh6lYXO0D42z/foLVSypkJh3oGfW7FAA4I56FbudcTNLNku6T9IKku5xzu8zsRjO7MXXYvZIOSNon6WuSPpx+vJl9V9Ijks4ys3Yz+2Dqrk9LeoOZ7ZX0htR1AMhrR/rGlXDH2ymQFCkJqrmmjPYSAHlvIZvjLJpz7l4lg/Xs226bddlJuukkj73+JLf3Sbo8g2UCgO/S7RNrGwndJ1rbyNhAAPnPy/YSAMACzYwLZKX7ZdY2VOhAz5iS6zQAkJ8I3QCQAw70jKqhslTVkRK/S8k5axoqNDoVU8/olN+lAMCiEboBIAcc7B2jn/sk1jYmJ7oc6KHFBED+InQDQA442DtGP/dJrGFWN4ACQOgGAJ8NTUTVOzrNuMCTaKktUzgUYGwggLxG6AYAn6VXcAndcwsETGuWMMEEQH4jdAOAzw72JldwaS85ubWNFexKCSCvEboBwGcHe8YUMKm1vtzvUnLWmoYKHekbVzSe8LsUAFgUQjcA+Gx/75ha68tVGgr6XUrOWtNQoVjCqX1gwu9SAGBRCN0A4LODPWP0c8/j+NhATqYEkJ8I3QDgI+ecDvYSuuezlrGBAPIcoRsAfHRseEoT0Tgb48yjriKsuvIS7WeDHAB5itANAD5Kt0uk2ydwcmsaKmYmvQBAviF0A4CP0mPwVrPSPa81DZWsdAPIW4RuAPDRvu5RlYeDaqqO+F1Kzlu/tFI9I1Manoz6XQoAnDZCNwD4aH/PqNY2VigQML9LyXnrlyZbcPZ102ICIP8QugHAR/u7R7Wefu4FWZfasXM/oRtAHiJ0A4BPxqZi6hya1DpC94KsrC9XOBjQPmZ1A8hDhG4A8El65nS6bQKnFgoGtLqhnJVuAHmJ0A0APkn3Jq8jdC/Y+qWV9HQDyEuEbgDwyf6eUQUDplVLyv0uJW+sa6zUkf5xTcXifpcCAKeF0A0APtnfM6qV9eUqDQX9LiVvrF9aqYSTDvWO+10KAJwWQjcA+GRf9+jMRA4sTPqkU1pMAOQbQjcA+CAWT+hQ7zj93KdpXWOlzAjdAPIPoRsAfNA2MKHpeIJxgaepLBxUS22Z9jM2EECeIXQDgA/SY+8YF3j61jUywQRA/iF0A4AP0iu16xoI3adr/dJKHegdVSLh/C4FABaM0A0APtjXPaqGylLVlJf4XUreWb+0UpPRhDoGJ/wuBQAWjNANAD7Y3zOq9UuZXLIY6ZYctoMHkE8I3QCQZc457e8Z4yTKRUr/u7EdPIB8QugGgCzrHZ3W0ESUkygXqb4irPqKMCdTAsgrhG4AyLKZkyhZ6V609UwwAZBnCN0AkGXpsMjGOIu3bmml9vWMyjkmmADID4RuAMiyvcdGVBEOqrkm4ncpeWvjskoNjkfVMzrldykAsCCEbgDIsj3HRrV+WZXMzO9S8tbGZVWSpL3HaDEBkB8I3QCQZXu7R3TWMlpLzkQ6dO8+OuJzJQCwMIRuAMii/rFp9Y5Oz4RGLE5DZVh15SXa203oBpAfCN0AkEV7jiVD4gZC9xkxM21cVsVKN4C8QegGgCzamwrdG2kvOWMbl1Vp7zEmmADID4RuAMiiPcdGVVUa0vJqJpecqY3LqzQyFVPX0KTfpQDAvAjdAJBFe46NaMOySiaXZMDG1JzzdMsOAOQyQjcAZNHe7lFOosyQ9L8joRtAPiB0A0CW9I5OqX9smpMoM6SuIqzGqlLtYVY3gDxA6AaALNnDSZQZd9ayKla6AeQFQjcAZEl690TaSzJnw7JK7T02qkSCCSYAchuhGwCyZM+xEVVHQlpaVep3KQXjrGVVmojG1T4w4XcpAHBKhG4AyJK9x5InUTK5JHM2cDIlgDxB6AaALHDOaU/3CCdRZtiGVH/8HraDB5DjCN0AkAU9o1MaHI9yEmWGVUdK1FwT0R62gweQ4wjdAJAFnETpnQ3LqhgbCCDnEboBIAvSPccbWOnOuLOWV2lfz6hi8YTfpQDASRG6ASALdh8dUV15iRormVySaZuWV2k6ltChvjG/SwGAkyJ0A0AWvNA1rLObqplc4oFNy6slSc930dcNIHcRugHAY/GE0+5jIzPhEJm1fmmlQgHTi13DfpcCACdF6AYAjx3uG9NkNKGzmziJ0gvhUEDrl1bqBUI3gBxG6AYAj72YGmd3dhMr3V7ZtLxq5t8ZAHIRoRsAPPZi17AClmyDgDfObqpW19CkBsen/S4FAOZE6AYAj71wdERrGysVKQn6XUrB2pR6F+EFTqYEkKM8Dd1mdoWZ7TazfWZ2yxz3m5l9KXX/s2Z2wXyPNbNPmlmHmT2T+rjKy68BAM7Ui0eHtWk5/dxeSvfL09cNIFd5FrrNLCjpK5KulLRZ0vVmtvmEw66UtCH1cYOkWxf42C8457amPu716msAgDM1MhlVW/8E/dwea6ws1ZKKsF48SugGkJu8XOm+WNI+59wB59y0pDslXXPCMddIusMlPSqp1syaFvhYAMh5u1Mn97HS7S0z06YmTqYEkLu8DN0tktpmXW9P3baQY+Z77M2pdpRvmFld5koGgMx6IR26Wen23NnLq7X76AjbwQPISV6G7rm2XXMLPOZUj71V0jpJWyV1SfrcnC9udoOZbTez7T09PQsqGAAy7cWuYVVFQmquifhdSsHb1FStqVhCh/rG/S4FAF7Gy9DdLql11vUVkjoXeMxJH+ucO+acizvnEpK+pmQryss45253zm1zzm1rbGw8oy8EABbrxaMjOns5279nAydTAshlXobuJyRtMLM1ZhaWdJ2ke0445h5J70lNMblE0pBzrutUj031fKddK2mnh18DACxaIuG0++iINrETZVasX1qpYMA4mRJATgp59cTOuZiZ3SzpPklBSd9wzu0ysxtT998m6V5JV0naJ2lc0vtP9djUU3/GzLYq2W5ySNKHvPoaAOBMdAxOaHQqxuSSLCkNBbWusYJZ3QBykmehW5JS4/zuPeG222ZddpJuWuhjU7e/O8NlAoAn0m0OTC7JnrObqvXEwX6/ywCAl2FHSgDwSHrFdeMyQne2bFperU62gweQgwjdAOCRXZ1DWttQoYpST99UxCxbWpKtPLs66esGkFsI3QDgkV2dwzqnpcbvMorKOc3Jf++dHUM+VwIAL0XoBgAPDIxNq2NwQluaOYkym+orwmqpLWOlG0DOIXQDgAfSoS+98ors2dxcrZ2drHQDyC2EbgDwQDr0ncNKd9Ztaa7Rwd4xjU7F/C4FAGYQugHAAzs7htRSW6a6irDfpRSdLS3Vco6dKQHkFkI3AHhgV+fwzCQNZNeW1MmruziZEkAOIXQDQIaNTEZ1sHdMW+jn9sXSqlI1VJZqJydTAsghhG4AyLD0pjhbGBfoCzPTlpZqxgYCyCmEbgDIsHTYO4f2Et+c01ytvd2jmozG/S4FACQRugEg43Z2DqmxqlRLqyJ+l1K0tjTXKJ5w2nNsxO9SAEASoRsAMu75zmE2xfFZurVnZwd93QByA6EbADJoMhrX3u5R+rl9tqKuTNWREJvkAMgZhG4AyKAXj44onnDsROmz5MmUNYwNBJAzCN0AkEHpkyiZ0e2/c5qr9cLREUXjCb9LAQBCNwBk0s6OIdWWl6iltszvUorelpYaTccS2nts1O9SAIDQDQCZ9EzboM5bUSsz87uUore1tVaStKN90Nc6AEAidANAxoxPx7Tn2MhM2IO/VtaXq7a8RDvaBv0uBQAI3QCQKTs7hpVw0tZWTqLMBWam81fU6hlCN4AcQOgGgAx5pm1AknTeilp/C8GM81fUaM+xEY1Px/wuBUCRI3QDQIbsaBvSiroyNVSW+l0KUs5vrVXCSbs62SQHgL8I3QCQIc+0DdLPnWPS7zrQ1w3Ab4RuAMiAnpEpdQxOELpzTGNVqVpqy+jrBuA7QjcAZEB6JfV8QnfOOb+1hrGBAHxH6AaADNjRPqhgwLSF7d9zzvkratXWP6G+0Sm/SwFQxAjdAJABz7QN6qxlVSoLB/0uBSdIv/vwbMeQv4UAKGqEbgA4Q4mE0462QVpLctS5LTUKGCdTAvAXoRsAztChvjENT8bYFCdHVZSGtH5pJaEbgK8I3QBwhtKTMba21vlbCE7q/BW12tE+JOec36UAKFKEbgA4QzvaBlUeDmr90kq/S8FJnN9aq/6xabX1T/hdCoAiRegGgDO0/fCAzl9Rq2DA/C4FJ3HByuS7EE8e6fe5EgDFitANAGdgdCqmF7qGddGaer9LwSmctbxKVaUhbT804HcpAIoUoRsAzsDTRwaUcNJFq+nnzmXBgGnrylo9eZjQDcAfhG4AOANPHBpQwKRXrCR057oLV9Vp97ERDU9G/S4FQBEidAPAGdh+qF9nN1WrsjTkdymYx7ZV9XJOevrIoN+lAChChG4AWKRoPKGnjwzqotX0c+eDrStrFTDpyUOcTAkg+wjdALBIz3cOayIa1zb6ufNCZWlIZzdV68kj9HUDyD5CNwAs0hOpFdNtq1jpzhcXrqrT00cGFYsn/C4FQJEhdAPAIm0/NKDW+jItr4n4XQoW6MJVdRqfjuvFoyN+lwKgyBC6AWARnHPafrhfF7HKnVe2pfrvt9PXDSDLCN0AsAiH+8bVOzo9E+KQH1pqy9RUE9GTTDABkGWEbgBYhHQ/N5vi5J8LVtUxwQRA1hG6AWARnjjUr5qyEq1rrPS7FJymbavq1Dk0qc7BCb9LAVBECN0AsAiPHOjTxWvqFQiY36XgNF28JtkS9OiBPp8rAVBMCN0AcJqO9I2rrX9Cr17f4HcpWISzl1ertrxED+8ndAPIHkI3AJymh/b3SpIuW7/E50qwGIGA6dK1S/TI/j455/wuB0CRIHQDwGn69b5eLasupZ87j126bok6BifU1k9fN4DsIHQDwGlIJJwe2d+ny9Y1yIx+7nz1qnXJdykeTr1rAQBeI3QDwGl44eiw+semdRn93HltXWOlGqtK6esGkDWEbgA4DQ/vS4Y0Qnd+M0v1dR+grxtAdhC6AeA0/Hpfr9Y1Vmh5TcTvUnCGXrVuiXpGprS/Z9TvUgAUAUI3ACzQdCyhxw/2s8pdIF61LvnfkRYTANkQ8rsAAP5wzql9YEKH+sbUMTChzsEJTcedggEpGAhoaVVyOse6pRVqrCzlpEFJTx8Z0EQ0TuguEK31ZWqpLdPD+/r0nktX+11OTjg6NKkd7YM61DumgfGohiamNR1zqikrUV15iZZWl+qc5hqdtbxKJUHW7YDTQegGikjn4ITuf+GYHj3YrycO9qt7ZGrmvoBJoWBA8YRTPPHSHtfmmohee1ajXruxUa/e0KjK0uL80fHQ/j4FTLpkLfO5C4GZ6dJ1S/SfLxxTIuGKcnfRyWhcv9zdo3/f2aVH9ve95GdCSdBUWx5WOBjQ4Pi0xqbjM/eFQwGd21Kj121aqtefvUwbl1Xyhzkwj+L8zQkUkYO9Y7r3uS7dt+uonm0fkpQM0ZeuW6Jtq+u1cWmlWurKtLw6olBq5SqRcOoantSBnlHt6x7VYwf69dMdXfru420qDwf1pvOadd3FrdraWltUv2j/a2+Pzl1Rq5qyEr9LQYa8at0S/duT7Xq+a1hbWmr8LidrdrQN6luPHNLPdx7V+HRcdeUleu3GRm1trdV5rbXasLRSlaWhl/z/PR1LqHNwQs91DOm5jiE9dqBPn71vtz57326tWlKuN53XrGu2NmvDsiofvzIgd1kxnLW9bds2t337dr/LALLmSN+4fvpcp372bJd2dQ5Lkra21uqN5yzTb5+zfFGbukTjCT15eEA/fKpdP9nRpYloXOetqNHNv7Veb9i8rODDd9/olLb97//URy/foI+9fqPf5SBDuocndfHf3a//+dtn6abfWu93OZ5KJJzu23VUX/uvA3rqyKAqwkG9eWuLrj6vSa9cUz/zR/fpODY8qftf6Na/7+zSQ/t6lXDS2U3VesvWZr3p/GY115Z58JUAuc3MnnTObXvZ7YRuIP8557Sve1T3v9ite5/rmlnRfsXKWv3OuU266tymjP7yG5mM6u5nOvW1/zqgw33jOrupWh97/Qa9sYDD9w+fatcf3bVD99x8mc5bUet3Ocig3/nSf6kiHNJdN17qdymecM7pl7t79Nn7duv5rmGtXlKu971qtd524QpVRTL3rk3PyJR++myn7n6mU8+0DcpMunh1va7Z2qKrzl2u2vJwxl4LyGW+hG4zu0LSFyUFJX3dOffpE+631P1XSRqX9D7n3FOneqyZ1Uv6nqTVkg5JertzbuBUdRC6UWgSCaf9PaN6um1QTx4a0IN7e9Q1NClJOn9FjX7nvGTQXlFX7mkdsXhC9+zo1Jcf2KcDPWO6ZG29/urqc7S5udrT1/XDTf/6lB4/2K/H/uzyouz9LWSfve9F3farA3rqL99QcK1DLx4d1l/dvUuPH+zXyvpyfez1G3TN1hYFPf4ePtQ7pnt2dOrHz3ToQM+YSoKm125Mnhdy6boGrWusKNg/0IGsh24zC0raI+kNktolPSHpeufc87OOuUrSR5QM3a+U9EXn3CtP9Vgz+4ykfufcp83sFkl1zrk/PVUthG7ko8loXEeHJtU1NKljw5PqGJzQ/p5R7e8Z0/7uUY1OxSRJ1ZGQLlvfoNdsbNRrNjaqxYe3c2PxhL77+BF9/hd7NDQR1TtfuVJ/csUmVWdwFc1P0XhCF3zqF7pyy3J95nfP97scZNgTh/r1e7c9oq+88wL9znlNfpeTEcOTUf3DL/bqW48cUnUkpD9641m67qLWrE8ccc5pV+ew7n6mQ/c+d1QdgxOSpMaqUp3bUqNNy6t01vIqtdaXq7mmTI1VpZ7/QQB47WSh28sTKS+WtM85dyBVwJ2SrpH0/KxjrpF0h0sm/0fNrNbMmpRcxT7ZY6+R9Jupx39L0i8lnTJ0A9mQSDhFEwlF406xeELT8YRicadY3CUvJxKKxpKXhyam1T8WVf/Y1Es+D4xPq39sWn2jUxqejL3sNZpqIlrbWKG3XdCi81bU6vzWWq1tqPB95TUUDOjdl67Wm89v0T/cv0ffeviQ/vP5bv3tW7bo9ZuX+VpbJjxxqF8jkzG9btNSv0uBB17RWqvqSEi/3N1dEKH7gd3duuUHz6p7ZErvvHil/udvn+Vba4eZaUtLjba01OgTV52tI/3jenh/nx470KcXj47owT09is2alhQMmKojIVWXlagqElJVaYkqIyGVhgIqDQVVWhJQOBhQaUnqeiig0lBA4VBAZiaTZCYFZl022cxtoaApFAgoFDSVpC6XBAOqioRUVxFWbVmJysNBVuHhCS9Dd4uktlnX25VczZ7vmJZ5HrvMOdclSc65LjPjt+BpisYTmojGNRmNayo663IsIZMUCJiCZgoGkj+gSkNBRVI/4NKfF7MSEYsn1D82rZ7RKfWOTqtnZEp9o1PqHZ1S3+i0elNhc3A8qoloXOPTMUXjToHUD8vSUEC15WHVVYRVX16iuoqwGitLtaw6omXVES2vKdXSqoiWVpeqNBQ8rdqccxqaiKp7ZErdw1PqHpmcudwzOqXhiajGp2Mam0rWNT4dVzQVqpOB+uVj9haqJGiqrwirrjysJZVhndNcrfqK8MzX1VQT0fKaiJZXR1SR46P6aspL9L/edI7esrVFf/Jvz+r379iua7Y262+u2ZLXb9v/x65jKg0F9JqNjX6XAg+Egsn/tg/s7lY84fJ2pXVkMqq//ekL+t72Nm1cVqnb371N57fW+l3WDDPTqiUVWrWkQtdfvFJSciLKwd4xdQyOq3NwUkeHJjU0EdXwZFQjkzENT0TV1j+u6VhCUzMfyd9X07GEJ3WGgwHVlpeoobJUDVWlaqgMq7GqVI2VpcnbKkvVUBVWQ2Wp6srDL/t+icUTGpuKa2Qq+TWkF1MGxmYttoxHU9enNTg+rem4k3NOCedUVhJUZSSkqkiJKkuTf4AsqUjW0FCZfN3k5VItqQyf9u+7hXDOaSIaVzRVl3NSItUZURYOKhIK+r7Yk4+8/A0+13+NE1PJyY5ZyGNP/eJmN0i6QZJWrlx5Og/NiCcP9+u7j7dpOvWDYTqemLk8NXM5+Q2dSH1DS0r9T5e8HAwcD76hgCkYCCj0kuvH/2I/8fp0LKHRqZjGppIBMX15bCqu6fiZ/6AqCZoiqVWHuUJ5wjlNRuMan05/xDQ4EdVc3UyloUDqB1kyaJ61rErlpUGVh0MKBwOKO6dEwmkqltDg+LT6x6PqHZ3WnmOj6hmdmvMH7/HQWqrashKFQ4GZt1WnYglNRpP/Jr2jU+odmVbf2JSi8ZcXVx4OamlVqWrKSlQeDqm5Nvm5PBxUSTCQ+rDUqsms64GASkIBlQRModRts++vKSvRkopS1VWUvGwsVyE4v7VWP/nIq/WVB/bpyw/s0/ZDA/qH67bqotX1fpd22hIJp5/vPKrXbmxUeTi3/+jB4r3xnOX66bNdevrIgLbl4ffpjrZB3fSvT6lzcEI3vnad/scbNngSxjItHArorFSLyelyLrnokQ7gziVvc9JMSHSp49LXY4nku4/R1GJJLPX7eHgypsHxaQ1OJN9xHBibVu/otHpHp7Tv2Ih6R6fn/N0ZMKmsJJhcWTcpGk+G1VOpjoRUXxFWfUVYzbURbW6uVjgUUCC1Kj8RjWt0MqaRqagGx6d1uG9MvaPTMy2Fcz1fQyqEN1YeD+YnLtIknNPEdFyj08fzwPFsEEtdjievT8c03zpSaSigsnBQ5SVBRcJBlYeDKi8JpX5/B1VWElJFaVBl4aBKg4Hk2w6z60m9OxyLJxetovFE6rNTLHH8v89Lbosn/xuakhmpJHg8A83OQ6FgQI1VpfrTKzad+ovIMi9/g7RLap11fYWkzgUeEz7FY4+ZWVNqlbtJUvdcL+6cu13S7VKyp3uxX8RidQ9P6eF9vQqn3vYKh5JviYVDAdWES5Jvj4WSASyQfP9LJkv+T5f6vky45F/M6VXU9Dfg7Ovj07GZy+lv2ljCKRwMqKI0pMrSkBoqS1VZGlJF+iOc/J8gUpL+CMwEaOc0E3LTzzsVi2symtBUNK7JWEJT0YQmY8dXx9Ofp2ZdNzPVVYTVXJt8rYpw8odMQ1WpGlM/ENKrCBVn8Faec06D41EdG0mukHQPT+nocLIH+tjwpI4OT+pg79jMHzySFClJviVZURpSY2Wpzl5effwHVlWplqY/qiNFuwlMJoRDAf2PN2zUa89q1MfufEbv+Ooj+sPLN+gjr9uQVyuJO9oHdXR4Un+y5Sy/S4GHfvOsRpUETb94/lhehW7nnO545LD+9mfPa2lVRN+/8VJduCp/6j8TZpZqMfH+jwvnnIYn0ws1yXdAe0eS79pORuNKpEJ9OBRQZep3b2Uk+bmuPDwTsmvLSxbdVz8ZjatnJPnucPoPguPXkwtIL3QNq2d0SiNztCemhYMBVUaSgbginKyxtjysFXXlydtS9ZeHQ8m2HSX/uAgETM4l65hIf0wnP8ZTl8enYxoYm1b7wPHrY9PxORfH0guL6cWp44uKJw/SwYApUpL894vGj2eglwb1ZFZaXhNZ1L+zl7xMFE9I2mBmayR1SLpO0jtPOOYeSTenerZfKWkoFaZ7TvHYeyS9V9KnU5/v9vBrWLQrz23Slefmf29grkuH+7qKsDYtL7yJGYXggpV1+tkfvlp/dfcu/cN/7tXTRwb1xeu25s34sJ/vOqpQwHT5pvzvTcfJVUdKdOm6Bt2366huuXJTXrz7NDIZ1S0/eE4/e65Lr9u0VJ/7vfNVV5Ef/1/lG7PkO5Q1ZSWL2ucgEyIlQbXWl6u1fv6pVJOptlE7oXGgLBxUOJTdk2lxnGf/8s65mKSbJd0n6QVJdznndpnZjWZ2Y+qweyUdkLRP0tckffhUj0095tOS3mBme5WcbvKSMYQAck9VpESff/v5+t/XbtHD+3v1pi//Wjs7hvwua17OOd37XJdetb5BNeX525OOhXnj5mU61Deuvd2jfpcyr91HR/TmLz+kn6f+SPj6e7YRuDEjUhJUbXlYNeUlL/kgcPuLzXEAZNXTRwb04e88pf6xaf3dtefqbReu8Lukk3rycL/edusj+tzvnZ/TdSIzuocn9cq/v18fed0G/dEbcnfX0V/t6dFN33lK5eGgvvzOC3TxmuJoJwHyxclGBvInD4CsesXKOv3kI6/WBSvr9PHv79An79mlWAZO7vXCj5/uVKQkoN/estzvUpAFS6sjumTNEv1kR6dydUHqXx87og988wm11pfr7psvI3ADeYTQDSDrGipL9e0PXqwPvnqNvvnwIX3wW9s1PBn1u6yXiMYT+umznXr92cs4obaIvHlrsw72jmlnx7DfpbxEIuH09/e+oE/86Dm9ZkODvn/jpWqqyf5GWAAWj9ANwBehYEB/efVm/f1bz9VD+3r1u7c+rLb+cb/LmvHL3T0aGI/qLVtb/C4FWXTlluUKBUw/efbEYVv+mZiO66Z/fUpfffCA3n3JKn3tPdv4QxDIQ4RuAL66/uKVuuMDF+vo0KSu+cpD2n6o3++SJEl3Pn5EjVWleu1ZbIhTTGrLw3rtxkbd/UxHTrQ99YxM6bqvPaqf7zqqv7x6s/7mmnMUyvJW7gAyg/9zAfjuVesb9OObLlNNWYne+bXH9KOn232tp3NwQg/s7tY7trUueqYu8tfvbWvVseEp/WpPj6917D02ord85SHtOTqir77rQn3w1WvyYpQhgLnx2wRATljbWKkfffhVunBVnf7H93bo/7tvtxLzbYnmkTufaJOT9I6LWuc9FoXn8rOXqqEyrDufaPOthof29eqttz6s6XhC3/vQJXrjOZzMC+Q7QjeAnFFbHta3PnCxrruoVV9+YJ8+8t2nNTnPlsqZNhWL687Hj+g1GxoXtAkFCk9JMKC3XbhC/+/FbnUPT2b99e96ok3v/cbjaq4p049vukznrajNeg0AMo/QDSCnhEMB/f1bz9Unrtqke3d26R23P6rukewFnx8/3aHukSn9/m+sydprIvdcd9FKxRNO//exI1l7zUTC6TM/f1F/8oNndem6Jfr+f79ULbVMKAEKBaEbQM4xM93wmnW67V0Xas/REV37lYf14lHvR7glEk5fffCAzmmu1qvXN3j+eshdaxoq9Pqzl+r/Pno4K++2TEbj+sidT+uffrlf11+8Ut9430WqjrALKlBICN0ActZvn7Nc37/xUsUSCf3urY/ogd3dnr7efbuO6kDPmD702nWcsAb9/m+sVf/YtH7wlLcn9vaNTumdX3tUP3u2S5+4apP+7totnMALFCD+rwaQ07a01Ojum16tVUvK9cFvPqFvPnTQk9eJxhP67H27tX5ppa5iB0pIeuWaep23oka3P3hAUY/GB+7rHtW1//SwdnUO69b/doFueA1/8AGFitANIOctr4norg9dqtdtWqZP/uR5/a+7d2Z8hvL3nmjTgd4x3XLFJuYgQ1Kyzemjl2/Q4b5xfc+DSSaP7O/TW//pIY1Px3TnDZfoynObMv4aAHIHv1kA5IWK0pC++u4L9Qe/sUbfeuSwfv+O7RrJ0NbxfaNT+sIv9uji1fW6/OylGXlOFIbXbVqqi1bX6Yv379X4dCxjz/tvT7brPd94TEurI/rRhy/TK1bWZey5AeQmQjeAvBEMmP78dzbr7649V/+1t1fX/tPD2tc9csbP+1f37NLwZFR/85ZzeGsfL2FmuuXKTeoZmdKX7t93xs8XTzj9n5+/qD/+/g5dtLpeP/jvr2I0JVAkCN0A8s47X7lS3/7AxRocn9abv/yQ7n6mY9HP9aOn2/WzZ7v00cs3aNPy6gxWiUJx4ap6vWNbq25/cL92tA0u+nmGJ6P6gzu269bUhJJvvv9i1ZQxoQQoFoRuAHnpVesb9NOP/IbOaa7WR+98Rp/40XMamzq9t/+3H+rXn/7bc7p4Tb1ufO06jypFIfjzq8/WsuqI/uiuZzS8iLamPcdGdO1XHtKDe3r0qbds0d+/9VyFQ/wKBooJ/8cDyFvLayL61z+4RB96zVp99/EjuuKLD+qXCxwr+PjBfn3wW9vVXBvRV991ISdP4pSqIyX6/Nu36nDfuG76zlMLnmaSSDh9/b8O6Op//LUGx6P69gdfqXdfssrjagHkIn7LAMhrJcGA/uyqs/W9Gy5VKBDQ+/7lCb3vXx7Xk4f75zx+OpbQ7Q/u17u+/piWVIZ1xwdeqbqKcJarRj66dN0S/d1bk+cTfOjbT857Iu+h3jG9658f09/+7AW9ZkODfv6x1+jSdUuyVC2AXGPOOb9r8Ny2bdvc9u3b/S4DgMemYnF986FDuu1X+zUwHtW6xgq9duNSrW2skJO0v3tU9+06qq6hSV2+aak+9/bzVVtO4Mbp+c5jh/VXd+/Syvpy/ekVZ+mNm5crEEiegOuc067OYX3nscP6/vZ2lYYC+surN+sdF7Vyki5QJMzsSefctpfdTugGUGjGp2P60dMd+tmzXdp+eEDTsWQrQGkooFevb9C7L12l3zyL0YBYvIf39+ovfrxTB3rGVFteos1N1TKT9h4bVffIlEpDAf3ethX6w8s3aGlVxO9yAWQRoZvQDRSlRMLp2MikggFTbVmYk9eQMbF4Qv++86ge3NOjfT2jkqTVSyq0bXWdrj63WTXlTCYBitHJQnfIj2IAIFsCAVNTTZnfZaAAhYIBven8Zr3p/Ga/SwGQB1jyAQAAADxG6AYAAAA8RugGAAAAPEboBgAAADxG6AYAAAA8RugGAAAAPEboBgAAADxG6AYAAAA8RugGAAAAPEboBgAAADxG6AYAAAA8RugGAAAAPEboBgAAADxG6AYAAAA8RugGAAAAPEboBgAAADxG6AYAAAA8RugGAAAAPGbOOb9r8JyZ9Ug67HcdHmqQ1Ot3EcgLfK/gdPD9goXiewWno9C/X1Y55xpPvLEoQnehM7PtzrltfteB3Mf3Ck4H3y9YKL5XcDqK9fuF9hIAAADAY4RuAAAAwGOE7sJwu98FIG/wvYLTwfcLForvFZyOovx+oacbAAAA8Bgr3QAAAIDHCN0Fxsz+2MycmTX4XQtyk5l91sxeNLNnzexHZlbrd03ILWZ2hZntNrN9ZnaL3/Ugd5lZq5k9YGYvmNkuM/uo3zUht5lZ0MyeNrOf+l1LthG6C4iZtUp6g6QjfteCnPYLSVucc+dJ2iPpz3yuBznEzIKSviLpSkmbJV1vZpv9rQo5LCbp4865syVdIukmvl8wj49KesHvIvxA6C4sX5D0J5Jo1MdJOef+wzkXS119VNIKP+tBzrlY0j7n3AHn3LSkOyVd43NNyFHOuS7n3FOpyyNKhqkWf6tCrjKzFZJ+R9LX/a7FD4TuAmFmb5bU4Zzb4XctyCsfkPTvfheBnNIiqW3W9XYRorAAZrZa0iskPeZzKchd/6Dk4mDC5zp8EfK7ACycmf2npOVz3PXnkj4h6Y3ZrQi56lTfK865u1PH/LmSbw1/J5u1IefZHLfx7hlOycwqJf1A0secc8N+14PcY2ZXS+p2zj1pZr/pczm+IHTnEefc6+e63czOlbRG0g4zk5LtAk+Z2cXOuaNZLBE54mTfK2lm9l5JV0u63DE3FC/VLql11vUVkjp9qgV5wMxKlAzc33HO/dDvepCzLpP0ZjO7SlJEUrWZ/V/n3Lt8ritrmNNdgMzskKRtzrlev2tB7jGzKyR9XtJrnXM9fteD3GJmISVPsL1cUoekJyS90zm3y9fCkJMsudLzLUn9zrmP+VwO8kRqpfuPnXNX+1xKVtHTDRSfL0uqkvQLM3vGzG7zuyDkjtRJtjdLuk/Jk+LuInDjFC6T9G5Jr0v9PHkmtZIJ4ASsdAMAAAAeY6UbAAAA8BihGwAAAPAYoRsAAADwGKEbAAAA8BihGwAAAPAYoRsA8oCZxWeNZHvGzG7xuybpJXU1n+KYT5rZ359w21YzeyF1+QEzGzWzbV7XCwB+YWQgAOQBMxt1zlVm+DlDqbncZ/Ic89ZlZmdJ+nfn3NpZt31a0phz7lOp679UcrOM7WdSDwDkKla6ASCPmdkhM/trM3vKzJ4zs02p2yvM7Btm9oSZPW1m16Ruf5+Zfd/MfiLpP8ys3MzuMrNnzex7ZvaYmW0zsw+a2Rdmvc4fmNnnF1DPG83skVQ93zezSufcbkmDZvbKWYe+XdKdmf3XAIDcRegGgPxQdkJ7yTtm3dfrnLtA0q2S/jh1259L+n/OuYsk/Zakz5pZReq+SyW91zn3OkkfljTgnDtP0qckXZg65k5JbzazktT190v6l1MVaGYNkv5C0utT9WyX9Eepu78r6brUcZdI6nPO7T39fwYAyE8hvwsAACzIhHNu60nu+2Hq85OS3pq6/EYlQ3M6hEckrUxd/oVzrj91+dWSvihJzrmdZvZs6vKYmf0/SVeneq9LnHPPzVPjJZI2S3rIzCQpLOmR1H13SnrYzD6uZPj+7jzPBQAFhdANAPlvKvU5ruM/103S21KtHTNSLR5js286xfN+XdInJL2oeVa5Zz3XL5xz1594h3OuzcwOSXqtpLcpudoOAEWD9hIAKEz3SfqIpZaczewVJznu10r2V8vMNks6N32Hc+4xSa2S3qmFrUw/KukyM1ufer5yM9s46/7vSvqCpP3OufbT+3IAIL8RugEgP5zY0/3peY7/lKQSSc+a2c7U9bn8k6TGVFvJn0p6VtLQrPvvkvSQc25gvgKdcz2S3ifpu6nne1TSplmHfF/SOeIESgBFiJGBAFDEzCyoZL/2pJmtk3S/pI3OuenU/T+V9AXn3P0neXxGRhkyMhBAoWOlGwCKW7mkX5vZDkk/kvTfnXPTZlZrZnuUPIFzzsCdMjzf5jjzMbMHJK2VFF3scwBArmOlGwAAAPAYK90AAACAxwjdAAAAgMcI3QAAAIDHCN0AAACAxwjdAAAAgMcI3QAAAIDH/n8YRlNlELDd0wAAAABJRU5ErkJggg==\n",
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
"text/plain": [
"<Figure size 864x576 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(12, 8))\n",
"plt.plot(model.impulse_axis, model.impulse_response)\n",
"plt.xlabel('Energy [eV]')\n",
"plt.ylabel('Intensity [a.u.]')"
]
},
{
"cell_type": "markdown",
"id": "3842cb23-a961-4a60-9e9e-d341256e1bb7",
"metadata": {},
"source": [
"## Save model"
]
},
{
"cell_type": "code",
"id": "4e612338-401e-4fd5-bef7-a6579af0d3d3",
"metadata": {},
"outputs": [],
"source": [
"model.save(\"VS_p5576_grating.joblib\")"
]
},
{
"cell_type": "markdown",
"id": "4d7f95c2-e16d-43b2-a0c5-28a968490bb0",
"metadata": {},
"source": [
"## Apply model in data not used in training"
]
},
{
"cell_type": "code",
"id": "dc56d30b-7db8-49ce-82ed-d01d8b6670d8",
"metadata": {},
"outputs": [],
"source": [
"pes_test = {ch: pes_data[ch][n_test:, :] for ch in pes_data.keys()}\n",
"gs_test = gs[n_test:, :]\n",
"xgm_test = xgm[n_test:,:]"
]
},
{
"cell_type": "code",
"id": "0d8054bb-8ad6-4ee4-8d0c-8ac4ee990179",
"metadata": {},
"outputs": [],
"source": [
"vs_test = model.predict(pes_test, pulse_energy=xgm_test)"
]
},
{
"cell_type": "code",
"id": "e087883a-43e3-4e19-9041-6740704d7df7",
"metadata": {},
"outputs": [],
"source": [
"vs_test[\"energy\"] = model.get_energy_values()"
]
},
{
"cell_type": "markdown",
"id": "c4f0861c-a124-4812-beb1-0b8cd56d89c1",
"metadata": {},
"source": [
"Add Viking in the same dictionary for convinience. In practice this would not be done in inference: it is done here to validate the results obtained."
]
},
{
"cell_type": "code",
"id": "a5bd5573-afc9-45b3-9f25-7c713e08dfa9",
"metadata": {},
"outputs": [],
"source": [
"vs_test[\"gs\"] = gs_test"
]
},
{
"cell_type": "markdown",
"id": "6e30cc51-41e0-4458-8867-f43605324fc6",
"metadata": {},
"source": [
"Now we can plot it:"
]
},
{
"cell_type": "code",
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
"id": "44e5df6a-dfc9-47ab-9f37-03fdd0687698",
"metadata": {},
"outputs": [],
"source": [
"def plot(data, i):\n",
" \"\"\"Plot prediction and expectation.\"\"\"\n",
" from matplotlib.gridspec import GridSpec\n",
" fig = plt.figure(figsize=(24, 8))\n",
" gs = GridSpec(1, 2)\n",
" ax = fig.add_subplot(gs[0, 0])\n",
" ax.plot(data[\"energy\"], data[\"gs\"][i], c='b', lw=3, label=\"Grating\")\n",
" ax.plot(data[\"energy\"], data[\"expected\"][i,0], c='r', ls='--', lw=3, label=\"Prediction\")\n",
" ax.fill_between(data[\"energy\"],\n",
" data[\"expected\"][i,0] - data[\"residual\"][i,0],\n",
" data[\"expected\"][i,0] + data[\"residual\"][i,0],\n",
" facecolor='gold', alpha=0.5, label=\"68% unc.\")\n",
" ax.legend(frameon=False, borderaxespad=0, loc='upper left')\n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['right'].set_visible(False)\n",
" ax.set(\n",
" xlabel=\"Photon energy [eV]\",\n",
" ylabel=\"Intensity [a.u.]\",\n",
" title=\"Comparing with the original Viking\",\n",
" )\n",
" ax = fig.add_subplot(gs[0, 1])\n",
" gs_smooth = fftconvolve(data[\"gs\"][i], model.impulse_response, mode=\"same\")\n",
" ax.plot(data[\"energy\"], gs_smooth, c='b', lw=3, label=\"Grating (convolved to VS resolution)\")\n",
" ax.plot(data[\"energy\"], data[\"expected\"][i,0], c='r', ls='--', lw=3, label=\"Prediction\")\n",
" ax.fill_between(data[\"energy\"],\n",
" data[\"expected\"][i,0] - data[\"residual\"][i,0],\n",
" data[\"expected\"][i,0] + data[\"residual\"][i,0],\n",
" facecolor='gold', alpha=0.5, label=\"68% unc.\")\n",
" ax.legend(frameon=False, borderaxespad=0, loc='upper left')\n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['right'].set_visible(False)\n",
" ax.set(\n",
" xlabel=\"Photon energy [eV]\",\n",
" ylabel=\"Intensity [a.u.]\",\n",
" title=\"Same, with smoothened Grating\",\n",
" )\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"id": "f9bb6495-51db-4775-ba91-c7b936dc0b33",
"metadata": {},
"source": [
"These are the last 10 train IDs, which were not used in training."
]
},
{
"cell_type": "code",
"id": "373ca950-0378-4d7d-96ca-57ad951ebbf3",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABXEAAAHwCAYAAADgsixbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5hcddn/8fe9vZckm05IgFBCykJCAKkaEFR46F1AaeKDigVU1N9DEFBUpKo0kS6IIEUUBelVCBBaICGQQOpms723+f7+OLNzZnZnd2d3Z7bMfl7Xtdeefr6z5Fq++5l77mPOOURERERERERERERkZEoZ7gGIiIiIiIiIiIiISM8U4oqIiIiIiIiIiIiMYApxRUREREREREREREYwhbgiIiIiIiIiIiIiI5hCXBEREREREREREZERTCGuiIiIiIiIiIiIyAimEFdERiQzO8XMnhjmMdSb2Xa97F9rZgcN4vq3m9llAz1/MMzsJ2b2x3gfG8O1nJntMMBzHzez04PLXzOzF3s4btj/7YiIiIgkCzPbz8xW9rJ/ZnCOlzaU44onMzvQzNYP9zhgcPPlOI6h1//mIjI8FOKKJDkzO9nMlgUDyU3BIGzf4R5XX5xz9zjnvjjMY8hzzn0Cgw9cewsdh4Nz7hfOubPifexAmdlNZnZnlO3zzazFzMY5577knLujr2uNhH87IiIiMraZ2b5m9rKZ1ZhZpZm9ZGZ7DPe4BsI594JzbqfO9cEWMowEIyEoHSgzO9jMnjGzOjOrMLPlZvYjM8saxDUjfh5d/5uLyMigEFckiZnZ94FrgF8Ak4AZwB+AI4ZxWH0aze/ijwYj9Od7O3C0meV22X4a8JhzrnLohyQiIiLSf2ZWADwGXA+MA6YBlwAtwzkuGf3M7DjgAeDPwLbOufHACcB0YJsezhmJc38RGQCFuCJJyswKgZ8D5znn/uaca3DOtTnn/u6cuzB4TKaZXWNmG4Nf15hZZnDfgWa23sx+aGZbglW8R5rZl81sVbCi4Cdh91tqZg+Y2V+C7wq/aWYLwvb/2Mw+Du5bYWZHhe37WrA64WozqwSWdq1cDb47fK6ZfWRmVWb2ezOz4L5UM/utmW01szVm9q2ePtJlZl83s7+Hra82s/vD1teZWWnYPXcws3OAU4AfBiua/x52yVIzeydYZfGXaO+Am9kuwI3A3sHzq8N2F5vZP4I/l/+a2fZh5+1sZk8Gf9Yrzez4Xv57TzWzR4PHrjazs6P8t7nbzGqBrwW33R12zGlm9mnw3fz/F15hEX6s+R+XO93MPgv+zH8adp3FZvaKmVUH/838zswyehp3J+fcK8AG4Jiwa6UCJwN3BNefNbOoFcFm9hsze9HMChP1b0dEREQkRjsCOOfudc51OOeanHNPOOfeATCz7c3s6eC8a6uZ3WNmRZ0nB+dhFwbnmA1mdquZTTLvE3V1ZvYfMysOO34v86p+q83sbTM7MJZBmtkdZvaD4PK04Bzof4PrOwTnlWZhrQbM7C68wpC/B+e1Pwy75CnR5odR7vtl8/4eqDOzDWZ2QXB7f//+6PFvmeD+s4Pz4srgPHlqcPvzwUPeDr6GE8LO+UHYvb/e5V5XBl9fmZndaGbZXcbd73OD+y8MnrPRzM7o5edmwFXAz51zt3QWOTjnVjrnvu2c+yh4XLS5f49z9Gg/D+vSXiL4b/IC6+HvnuB/s87XcJaN4kpnkZFMIa5I8tobyAIe6uWYnwJ7AaXAAmAx8LOw/ZOD15gG/B9wC/BVYCGwH/B/Ftkz9gjgr3gVB38GHjaz9OC+j4PnFOJVItxtZlPCzt0T+ASYCFzew3gPA/YIjvV44JDg9rOBLwVfx+7Akb285ueA/cwsJXj/dGAfgOBryQPeCT/BOXczcA/w62CLhcPDdh8PHArMAuYDX+t6Q+fcB8C5wCvB84vCdp+E9/MoBlZ3vnbzKlKfxPs5Tgwe9wcz27WH13UvsB6YChwL/MLMloTtPwLvXfui4GsJMbM5eBXapwBT8P4bTevhPp32BXYCluD9O9gluL0D+B4wAe/f4BLgf/u4Vqc78SpvOx2E99/n8Z5OCP53vAXvZ/9F51xND4fG49+OiIiISCxWAR3BkPRLFha4BhnwS7x52y54FZRLuxxzDHAwXiB8ON586Cd4c6wU4Dvgha/AP4DL8ObgFwAPmllJDON8DjgwuHwA3lz8gOD6/sALzjkXfoJz7lTgM+Dw4Lz212G7e5ofdnUr8A3nXD4wF3g6bF9//v7o8W8ZM/sC3s/4eLz57afAfcHXsH/w/AXB1/CXsHt3zoPPBH4f9t/uV3j/LUqBHcLGx2DONbND8f6bHQzMxpv/9mQnvIrbB3s5plPXuX+Pc/Refh5dRf27J/gavh8c+w74/4ZEJM4U4ookr/HAVudcey/HnIL3Tu4W51w5Xph4atj+NuBy51wb3qRnAnCtc67OOfc+8D7e/8A7veGceyB4/FV4E7C9AJxzf3XObXTOBYITg4/wJlqdNjrnrnfOtTvnmnoY7xXOuWrn3GfAM3gTIfAmFNc659Y756qAK3p6wcEet3XBcw8A/g1sMLOdg+svOOcCPf/Iurku+Loqgb+HjSlWf3POvRb873RP2PmHAWudc7cFfyZv4k3Yju16ATPbBm/S/CPnXLNzbjnwRyL/W77inHs4+PPv+vM9Fvi7c+5F51wr3qTS0btLglUlbwNv402ccc694Zx7NTjmtcBNxD6Ruws4wMymB9dPA/4c/PcUTTpeeD0O7w+Jxl6uPeh/OyIiIiKxcM7V4s3NHF4IWR6sBJ0U3L/aOfekc64lOAe/iu7zpeudc2XOuQ3AC8B/nXNvOeda8Io0dgse91Xgn865fwbneU8Cy4AvxzDUUHEDXmj7a4LFDcHxPNfPlx51fhhFGzDHzAqcc1XBeW74vlj//ujtb5lTgD85594M/swuwvtU3Mxext8WvF6bc+6fQD2wU7AC9mzge865SudcHV67uhPjcO7xwG3Oufeccw10D/PDTQh+39y5wczuC1bXNppZj3P/Qc7RO/X0d0/na3g/OB+/pJ/XFZEYKcQVSV4VwATr/WPhU/Hele70aXBb6BrOuY7gcmfwVxa2vwmvcrXTus6FYBDaWRna+XH95cFJRjXeu+4Top3bi81hy41h957a5fy+rtVZdbB/cPlZvEnMQCarPY1psOdvC+zZ+fMK/sxOwXuXv6upQOeksNOnRFbT9vYzifj5BSdfFQMZt5ntaGaPmdnm4Me3fkHkf+ceBQPW54GvmlkeXlVsbw8y2wGvyuCSYPjc7/HS/387IiIiIn1yzn3gnPuac2463rx3Kt6zKjCzicHwbUNwvnQ33edLXefcPc3BtwWO6zJn3Bev+rSvMX6MFzaW4lW5PgZsNLOdSOy8+Bi8kPlTM3vOzPYO29efvz96+1smYp9zrh5vftvbp80quhTAdL6GEiAHeCPsZ/yv4PbBntt1Lhr+erqNL/g99N/WOXdi8FN+bwKpYcdGzGkHM0cPo/m0yDBTiCuSvF4Bmun94+Eb8SZ+nWYEtw1UqJl+8B396XgTwW3xqhC+BYwPTjTew/soWae+Kj97syl4r27j6EFniLtfcPk5+g5xBzO+gZy/DnjOOVcU9pXnnPtmlGM3AuPMLD9s2wy8HrOx3D/i5xfs0TW+n+PtdAPwITDbOVeA97E/6/2UCHfgVeAeA6zpUpnR1QfA14HHg39sDER//+2IiIiI9Itz7kO8h7jODW76Jd7cbH5wvvRV+jdfCrcOuKvLnDHXORfrp4uew/tUVkaw6vc5vLlYMbC8h3MGNS92zr3unDsCr2XYw8D9vZ/Ro97+lonYF2xVNp7I+XGstuKFx7uG/YwLnXOxFG/0de4mIuefM3q51ofB8R8dw327/jca7By9N5pPiwwRhbgiScp5vUH/D68f05FmlmNm6cG+XJ29q+4FfmZmJWY2IXj83T1dMwYLzezoYPXvd/GewPsqkIs3kSgH7+Fi+JPYeLgfON+8BzIUAT/q4/jngM8D2c659XgfUTsUb2L3Vg/nlAHb9bAvFmXAdIvhIV9BjwE7mtmpwf9u6Wa2R7TeYs65dcDLwC/NLMvM5uP14rqn67E9eAA43Mw+FxzfJQx8UpcP1AL1wRYV0ULn3jyIN/G7hN6rcAHvgSF4k9D/WNhD4fqhv/92RERERHpl3sNpf9DZIirY+uokvHkxePOleqA62NP2wkHc7m68edwh5j2wNcu8h1J13nupmT3by/nP4RVadD7c6lng28CLYRWxXQ14XmxmGWZ2ipkVBlsm1OL1ax2I3v6W+TPwdTMrNe9hZ7/Aa0mxtr+vIfgJw1uAq81sYvB1TDOzQ3o/M6Zz78d78NgcM8sBLu7lWg74AXCxeQ9tKzbPbGBSH0Ppa44+mL917sf7We8SfA3/19cJIjIwCnFFkphz7iq8JvM/wwtQ1+FN0h4OHnIZXs+sd4B38T6Gc9kgbvkIcAJQhdeP6uhgX6gVwG/xqoPLgHnAS4O4T1e3AE/gvY63gH8C7fQwIXTOrcKbOL8QXK/Fe5DDS71MVm/F691VbWYPD2CMT+P18NpsZlv7OjjYGuGLeP2yNuJ9fOlXQGYPp5wEzAwe+xBwcbAnWp+C/cW+jdd3bBNez+AteCF8f10AnBy8xi1ATw9G6GksDfhBbkwhtHPuDuDnwNN99DmLpl//dkRERERiUIf30N7/mlkDXnj7Hl4AB96b1bsDNXgPJfvbQG8UfDP/CLw3tTvn+xfi/62/Db3Pu5/DC/g6Q9wX8T7+/3yPZ3iVxD8LzosvGMCwTwXWBj/Wfy5eJfJA9Pi3jHPuKeD/4c0rNwHbE9nDdilwR/A1HB/DvX6E9xDiV4Pj/g/eg8Zi0eO5zrnH8dpsPB085ukerkHw+L/g9aD9Kt5/6614IerNeA+Y7klfc/Sl9O/nET6mx4Hr8J47sRrvbz4Y2N8SItILc26wnxAWEfHe5Qd2cM4NdBIWz7F8CbjRObdtnwdLN8F+tNV4H7daM8zDGVL6tyMiIiLJxMyWA0ucc30970AkLoKfHHwPyHS9P2RbRPpJlbgiMuqZWbaZfdnM0oIfSbsYrxpVYmRmhwdbbuQCV+JVM6wd3lElnv7tiIiISDJzzpUqwJVEM7Ojgq0yivE+Pfh3Bbgi8acQV0SSgeF9LK0K7yPxH6BeTP11BF4rho3AbOBENzY+qqF/OyIiIiIig/MNvHYeH+O1JevvczFEJAZqpyAiIiIiIiIiIiIygqkSV0RERERkFDGzbczsGTP7wMzeN7Pzg9vHmdmTZvZR8Htx2DkXmdlqM1sZyxPVRURERGRkUSWuiIiIiMgoYmZTgCnOuTfNLB94AzgS+BpQ6Zy7wsx+DBQ7535kZnOAe4HFwFS8J6Pv6JzrGJYXICIiIiL9ljbcAxiMQw891P3rX/8a7mGIiIiIjDU23AMYy5xzm4BNweU6M/sAmIbX3/zA4GF3AM8CPwpuv8851wKsMbPVeIHuK73dR3NtERERkWERda49qkPcrVu3DvcQRERERESGjZnNBHYD/gtMCga8OOc2mdnE4GHTgFfDTlsf3BbteucA5wDMmDEjQaMWERERkf5ST1wRERERkVHIzPKAB4HvOudqezs0yraoPdWcczc75xY55xaVlJTEY5giIiIiEgcKcUVERERERhkzS8cLcO9xzv0tuLks2C+3s2/uluD29cA2YadPBzYO1VhFREREZPAU4sZBWVkZJ598Mttttx0LFy5k77335qGHHor5/Orqav7whz+E1jdu3Mixxx6biKGKiIiIyChnZgbcCnzgnLsqbNejwOnB5dOBR8K2n2hmmWY2C5gNvDZU4x2Mwc6zIfFz7Ycffpif//zncbveQBx44IEsW7Zs0Ne5/fbb+da3vtVt+7PPPsvLL78c83XWrl3L9OnTCQQCEdtLS0t57bXXWLlyJQceeCClpaXssssunHPOOYMee6xmzpzZZ1u+22+/nY0b/fc5zjrrLFasWDGg+/3ud7/jtttuG9C5IiIi4RTiDpJzjiOPPJL999+fTz75hDfeeIP77ruP9evXRxzX3t7e4zW6TiynTp3KAw88kLAxi4iIiMiotg9wKvAFM1se/PoycAVwsJl9BBwcXMc59z5wP7AC+BdwnnOuY3iGHrtY59kwvHPtX//61/zv//5v3K43EvU3xJ05cybbbLMNL7zwQmjbhx9+SF1dHYsXL+Y73/kO3/ve91i+fDkffPAB3/72t3u9XkfH0P5z7Rri/vGPf2TOnDkDutYZZ5zBddddF6+hiYjIGKYQd5CefvppMjIyOPfcc0Pbtt12W7797W9z++23c9xxx3H44YfzxS9+kfr6epYsWcLuu+/OvHnzeOQRrzjixz/+MR9//DGlpaVceOGFrF27lrlz5wLeBOLoo4/m0EMPZfbs2fzwhz8M3efWW29lxx135MADD+Tss8+O+q65iIiIiCQX59yLzjlzzs13zpUGv/7pnKtwzi1xzs0Ofq8MO+dy59z2zrmdnHOPD+f4Y9XbPBsYEXPtVatWkZmZyYQJEwCvcvioo45iwYIFLFiwIBR8XnXVVcydO5e5c+dyzTXXAF616i677MLZZ5/Nrrvuyhe/+EWampr44IMPWLx4cegea9euZf78+QA89dRT7LbbbsybN48zzjiDlpaWiPHccMMNEa/h9ttvD/287r77bhYvXkxpaSnf+MY3QsHobbfdxo477sgBBxzASy+91O01rl27lhtvvJGrr76a0tJSXnjhBT799FOWLFnC/PnzWbJkCZ999lm380466STuu+++0Pp9993HSSedBMCmTZuYPn16aN+8efO6nf/ss8/y+c9/npNPPpl58+bR0dHBhRdeyB577MH8+fO56aabQtfaf//9KS0tZe7cuaHg+N5772XevHnMnTuXH/3oR1FfV+e/A4Arr7ySpUuX8sADD7Bs2TJOOeUUSktLaWpqiqh07um6eXl5/PSnP2XBggXstddelJWVAZCTk8PMmTN57bVRUfwuIiIjmXNu1H4tXLjQdYLEffXm2muvdd/97nej7rvtttvctGnTXEVFhXPOuba2NldTU+Occ668vNxtv/32LhAIuDVr1rhdd901dF74+m233eZmzZrlqqurXVNTk5sxY4b77LPP3IYNG9y2227rKioqXGtrq9t3333deeed1/tgRUREROJj2OeB+kr+uXZv82znRsZc+09/+pP7/ve/H1o//vjj3dVXX+2cc669vd1VV1e7ZcuWublz57r6+npXV1fn5syZ49588023Zs0al5qa6t566y3nnHPHHXecu+uuu5xzzi1YsMB9/PHHzjnnrrjiCnfppZe6pqYmN336dLdy5UrnnHOnnnpq6F4HHHCAe/31192WLVvc9ttvHxrPoYce6l544QW3YsUKd9hhh7nW1lbnnHPf/OY33R133OE2btzottlmG7dlyxbX0tLiPve5z0V9nRdffLH7zW9+E1o/7LDD3O233+6cc+7WW291RxxxRLdzNm3a5CZPnuza2tqcc87tvPPO7t133w393AoKCtyhhx7qrrrqKldVVdXt/Geeecbl5OS4Tz75xDnn3E033eQuvfRS55xzzc3NbuHChe6TTz5xV155pbvssstCP/Pa2lq3YcOG0Otqa2tzn//8591DDz3knHNu2223deXl5d3+XfzmN79xF198ccTPs1Pnem/XBdyjjz7qnHPuwgsvDI3VOecuu+wyd+WVV3Z7jSIiIj2IOjdTJW6cnXfeeSxYsIA99tgDgIMPPphx48YBXmD+k5/8hPnz53PQQQexYcOG0Du0vVmyZAmFhYVkZWUxZ84cPv30U1577TUOOOAAxo0bR3p6Oscdd1xCX5eIiIiIyHDqOs+G4Z9rb9q0iZKSktD6008/zTe/+U0AUlNTKSws5MUXX+Soo44iNzeXvLw8jj766FC16KxZsygtLQVg4cKFrF27FoDjjz+e+++/H4C//OUvnHDCCaxcuZJZs2ax4447AnD66afz/PPPR4ynpKSE7bbbjldffZWKigpWrlzJPvvsw1NPPcUbb7zBHnvsQWlpKU899RSffPIJ//3vfznwwAMpKSkhIyODE044oc+fF8Arr7zCySefDMCpp57Kiy++2O2YyZMns+uuu/LUU0+xfPly0tPTQ5WvX//61/nggw847rjjePbZZ9lrr726VRUDLF68mFmzZgHwxBNPcOedd1JaWsqee+5JRUUFH330EXvssQe33XYbS5cu5d133yU/P5/XX3899LrS0tI45ZRTuv2sBqK362ZkZHDYYYcBkf8tASZOnBjRnkFERGQg0oZ7AKPdrrvuyoMPPhha//3vf8/WrVtZtGgRALm5uaF999xzD+Xl5bzxxhukp6czc+ZMmpub+7xHZmZmaDk1NZX29nacc3F8FSIiIiIiI0tf82wY/rl2dnY2NTU1vR7T27W63rupqQmAE044geOOO46jjz4aM2P27NksX748pjGdcMIJ3H///ey8884cddRRmBnOOU4//XR++ctfRhz78MMP4z0nb3B6ukZnS4VJkyaFWil0mjp1KmeccQZnnHEGc+fO5b333mPhwoURx4T/93XOcf3113PIIYd0u8/zzz/PP/7xD0499VQuvPBCCgoK+hxzWlpaxIPXYvm30tt/y/T09NDPofPfUfi1s7Oz+7y+iIhIb5KmEjeRH/LqzRe+8AWam5u54YYbQtsaGxujHltTU8PEiRNJT0/nmWee4dNPPwUgPz+furq6fr3exYsX89xzz1FVVUV7e3vEBFdEREREJJ6GY67dn3k2DM9ce5dddmH16tWh9SVLloTG29HRQW1tLfvvvz8PP/wwjY2NNDQ08NBDD7Hffvv1ev/tt9+e1NRULr300lB17M4778zatWtD97vrrrs44IADup179NFH8/DDD3PvvfeGzl2yZAkPPPAAW7ZsAaCyspJPP/2UPffck2effZaKigra2tr461//GnU8XX+Gn/vc50L9bu+55x723XffqOcdc8wx/POf/+Qvf/kLJ554Ymj7v/71L9ra2gDYvHkzFRUVTJs2rdefySGHHMINN9wQOm/VqlU0NDTw6aefMnHiRM4++2zOPPNM3nzzTfbcc0+ee+45tm7dSkdHB/fee2+3n9WkSZPYsmULFRUVtLS08Nhjj/X4ejvFct1oVq1aFdF/V0REZCCSJsQdLmbGww8/zHPPPcesWbNYvHgxp59+Or/61a+6HXvKKaewbNkyFi1axD333MPOO+8MwPjx49lnn32YO3cuF154YUz3nTZtGj/5yU/Yc889Oeigg5gzZw6FhYVxfW0iIiIiIsOlP/NsGJ659v77789bb70VqtC89tpreeaZZ5g3bx4LFy7k/fffZ/fdd+drX/saixcvZs899+Sss85it91263MMJ5xwAnfffTfHH388AFlZWdx2220cd9xxzJs3j5SUlIiHvnUqLi4OtYXofEDanDlzuOyyy/jiF7/I/PnzOfjgg9m0aRNTpkxh6dKl7L333hx00EHsvvvuUcdy+OGH89BDD4UebHbddddx2223MX/+fO666y6uvfbaqOcVFRWx1157MWnSpFBbBPBaI8ydO5cFCxZwyCGH8Jvf/IbJkyf3+vM466yzmDNnDrvvvjtz587lG9/4Bu3t7Tz77LOUlpay22678eCDD3L++eczZcoUfvnLX/L5z3+eBQsWsPvuu3PEEUdEXC89PZ3/+7//Y8899+Swww4L/XsB+NrXvsa5554berBZp1iuG81LL73EQQcd1OdxIiIivbHR/LH8RYsWuc6nhI5F9fX15OXl0d7ezlFHHcUZZ5zBUUcdNdzDEhERkeQ3+M9fy4inuXZsc+3zzz+fww8/XCGdRPXWW29x1VVXcddddw33UEREZPSIOtdWJe4otnTpUkpLS5k7dy6zZs3iyCOPHO4hiYiIiIgkhVjn2j/5yU96bfMgY9vWrVu59NJLh3sYIiKSBFSJKyIiIiL9pUrcMUBzbREREZFhoUpcERERERERERERkdFGIa6IiIiIiIiIiIjICKYQV0RERERERERERGQEU4grIknnn/+EQw6B++4b7pGIiIiIiIiIiAyeQtxBSk1NDT219rjjjhvUk2m/9rWv8cADDwBw1llnsWLFih6PffbZZ3n55ZdD6zfeeCN33nnngO8tkkyOOQaeeAJOOgnq6oZ7NCIiIjJQmmuLjFCuY7hHICIy5ijEHaTs7GyWL1/Oe++9R0ZGBjfeeGPE/o6Ogf3P7Y9//CNz5szpcX/XieW5557LaaedNqB7iSSTlhZobvbXV64cvrGIiIjI4GiuLTJCNb8x3CMQERlzFOLG0X777cfq1at59tln+fznP8/JJ5/MvHnz6Ojo4MILL2SPPfZg/vz53HTTTQA45/jWt77FnDlz+MpXvsKWLVtC1zrwwANZtmwZAP/617/YfffdWbBgAUuWLGHt2rXceOONXH311ZSWlvLCCy+wdOlSrrzySgCWL1/OXnvtxfz58znqqKOoqqoKXfNHP/oRixcvZscdd+SFF14Y4p+QSOJt3Rq5/tFHwzMOERERiS/NtUVGkNbVEGga7lGIiIwpyRXiLl0KZrF9nXNO9/PPOSfymKVLY751e3s7jz/+OPPmzQPgtdde4/LLL2fFihXceuutFBYW8vrrr/P6669zyy23sGbNGh566CFWrlzJu+++yy233BLxbn+n8vJyzj77bB588EHefvtt/vrXvzJz5kzOPfdcvve977F8+XL222+/iHNOO+00fvWrX/HOO+8wb948Lrnkkohxvvbaa1xzzTUR20WSRXl55Hpl5fCMQ0REJOlorg1ori0CQEc5dGiiLSIylNKGewCjXVNTE6WlpYBXHXDmmWfy8ssvs3jxYmbNmgXAE088wTvvvBPqwVVTU8NHH33E888/z0knnURqaipTp07lC1/4Qrfrv/rqq+y///6ha40bN67X8dTU1FBdXc0BBxwAwOmnn85xxx0X2n/00UcDsHDhQtauXTuo1y4yEnUNbYPFMSIiIjIKaa4tMgK5DghUQ6AWmDbcoxERGTMU4g5SZ5+urnJzc0PLzjmuv/56DjnkkIhj/vnPf2JmvV7fOdfnMf2RmZkJeA+JaG9vj9t1RUaKlpbI9erqYRmGiIiIxIHm2iIjUKAenIOAniAsIjKUkq+dgnOxfd18c/fzb7458ph+fMSrN4cccgg33HADbW1tAKxatYqGhgb2339/7rvvPjo6Oti0aRPPPPNMt3P33ntvnnvuOdasWQNAZbDMMD8/n7q67v/TLCwspLi4ONSD66677gpVCoiMBa2tkeuqxBUREYkTzbU11xaBYAUuCnFFRIaYKnGHwFlnncXatWvZfffdcc5RUlLCww8/zFFHHcXTTz/NvHnz2HHHHaNOAEtKSrj55ps5+uijCQQCTJw4kSeffJLDDz+cY489lkceeYTrr78+4pw77riDc889l8bGRrbbbjtuu+22oXqpIsMu+PdbSG3t8IxDREREhobm2iJDLFAf+V1ERIaEOeeGewwDtmjRItf5VFkREYA//xlOOcVfP+IIePjhYRuOiEiyit/nz2XE0lxbRKJqWgb1j0HGjlB48nCPRkQkGUWdaydXOwURGfO6VuJ2ba8gIiIiIiKD4BqC31WJKyIylBTiikhSUYgrIiIiIpJAgYbI7yIiMiQU4opIUuka2irEFRERERGJo1BP3KbhHYeIyBijEFdEkooqcUVEREREEqgzxHWt4DqGdywiImOIQlwRSSpdQ9uuoa6IiIiIiAxCoM5fdqrGFREZKgpxRSSpqBJXRERERCRBAi0QqAlbbxy+sYiIjDEKcQepurqaY489lp133plddtmFV155BYDly5ez1157UVpayqJFi3jttdcAeOmll5g/fz577LEHq1evDl3jkEMOwTk3bK9DJFkoxBUREUkemmuLjDAdZeAC/roebiYiMmTShnsAcVW+NL7XK+n7eueffz6HHnooDzzwAK2trTQ2eu9E/vCHP+Tiiy/mS1/6Ev/85z/54Q9/yLPPPstvf/tbHnzwQdauXcsNN9zAb3/7Wy699FJ+8pOfYGbxHb/IGKQHm4mIiCSI5toi0jW07eyPKyIiCadK3EGora3l+eef58wzzwQgIyODoqIiAMyM2tpaAGpqapg6dSoA6enpNDU10djYSHp6Oh9//DEbNmzggAMO6PE+M2fOZOvWrQAsW7aMAw88EIClS5dyxhlncOCBB7Lddttx3XXXhc658847mT9/PgsWLODUU0+N90sXGbFUiSsiIpIcNNcWGYFcl/YJTiGuiMhQSa5K3CH2ySefUFJSwte//nXefvttFi5cyLXXXktubi7XXHMNhxxyCBdccAGBQICXX34ZgIsuuohzzjmH7Oxs7rrrLi644AIuvfTSAY/hww8/5JlnnqGuro6ddtqJb37zm6xatYrLL7+cl156iQkTJlBZWRmvlywy4qkSV0REJDlori0yAnXtgaueuCIiQ0aVuIPQ3t7Om2++yTe/+U3eeustcnNzueKKKwC44YYbuPrqq1m3bh1XX311qIKgtLSUV199lWeeeYZPPvmEqVOn4pzjhBNO4Ktf/SplZWX9GsNXvvIVMjMzmTBhAhMnTqSsrIynn36aY489lgkTJgAwbty4+L5wkRGsayVu13UREREZHTTXFhmBXFOX9ebhGYeIyBikEHcQpk+fzvTp09lzzz0BOPbYY3nzzTcBuOOOOzj66KMBOO6440IPW+jknOOyyy7j//2//8cll1zCJZdcwle/+tWIj2l1SktLIxDwmsc3N0f+TzIzMzO0nJqaSnt7O8459fySMatraNvSMjzjEBERkcHRXFtkBAp0CXEDCnFFRIaKQtxBmDx5Mttssw0rV64E4KmnnmLOnDkATJ06leeeew6Ap59+mtmzZ0ece8cdd/CVr3yF4uJiGhsbSUlJISUlJfSwhnAzZ87kjTfeAODBBx/sc1xLlizh/vvvp6KiAkAf8ZIxpWv7hPb24RmHiIiIDI7m2iIjkCpxRUSGjXriDtL111/PKaecQmtrK9tttx233XYbALfccgvnn38+7e3tZGVlcfPNN4fOaWxs5I477uCJJ54A4Pvf/z7HHHMMGRkZ3Hvvvd3ucfHFF3PmmWfyi1/8IlSJ0Jtdd92Vn/70pxxwwAGkpqay2267cfvtt/Poo4+ybNkyfv7zn8fp1YuMPF0rcTs6hmccIiIiMniaa4uMMF0rcRXiiogMGXPODfcYBmzRokVu2bJlwz0MERlBjjsOHnggcltHB6TocwciIvGkz5KPAZpri0g3VTdAe1hv6bQSKD5v+MYjIpKcos61FWuISFKJ9iAzVeOKiIiIiMRB18pbpwdQiIgMlYSFuGa2jZk9Y2YfmNn7ZnZ+cPtSM9tgZsuDX18OO+ciM1ttZivN7JBEjU1EklfXnrigvrgiIiIiInHRNbTVg81ERIZMInvitgM/cM69aWb5wBtm9mRw39XOuSvDDzazOcCJwK7AVOA/Zrajc041dCISs2iVuApxRURERETioGuI61rBBcD0IV8RkURL2G9a59wm59ybweU64ANgWi+nHAHc55xrcc6tAVYDixM1PhFJTmqnICIiIiKSAK4Voj1TRy0VRESGxJC8XWZmM4HdgP8GN33LzN4xsz+ZWXFw2zRgXdhp64kS+prZOWa2zMyWlZeXJ3LYIjIKqZ2CiIiIiEgCBIJhbWMb/PND2FjrrSvEFREZEgkPcc0sD3gQ+K5zrha4AdgeKAU2Ab/tPDTK6d3e5nPO3eycW+ScW1RSUpKYQYvIqKV2CiIiMhYEiyG2mNl7Ydv+EvbcibVmtjy4faaZNYXtu3HYBi4io1dnWPvdR+Brf4Ev3wr1LV6FroiIJFwie+JiZul4Ae49zrm/ATjnysL23wI8FlxdD2wTdvp0YGMixyciySdaJa7aKYiISBK6HfgdcGfnBufcCZ3LZvZboCbs+I+dc6VDNTgRSUKuBToC8PD73vrGWnjkfThPlbgiIkMhYZW4ZmbArcAHzrmrwrZPCTvsKKCzeuBR4EQzyzSzWcBs4LVEjU9EkpMqcUVEZCxwzj0PVEbbF5yHHw/cO6SDEpHk5lrgky6/dj6uUCWuiMgQSWQl7j7AqcC7nR/lAn4CnGRmpXitEtYC3wBwzr1vZvcDK4B24DznnOrnRKRfFOKKiIiwH1DmnPsobNssM3sLqAV+5px7YXiGJiKjlmuF9zZHbvukUj1xRUSGSMJCXOfci0Tvc/vPXs65HLg8UWMSkeSndgoiIiKcRGQV7iZghnOuwswWAg+b2a7B51VEMLNzgHMAZsyYMSSDFZFRwrXAqi4PF99Qo0pcEZEhkvAHm4mIDCVV4oqIyFhmZmnA0cBfOrc551qccxXB5TeAj4Edo52vhwiLSI9cK2ypj9xWVq8QV0RkiCT0wWYiIkMtWiWuQlwRERlDDgI+dM6t79xgZiVApXOuw8y2w3v2xCfDNUARGaVcM3xhB0hLgduWQelUOGouuChVFCIiEncKcUUkqUSrxFU7BRERSTZmdi9wIDDBzNYDFzvnbgVOpPsDzfYHfm5m7UAHcK5zLupD0UREeuRaWL/bnvzuzW9TetNmTjjyPcxQJa6IyBBRiCsiSUXtFEREZCxwzp3Uw/avRdn2IPBgosckIsmtva2FJcecxqqPJ4S2nXjUe4AqcUVEhoJ64opIUlE7BRERERGR+Fv2Rk5EgHvjHYu8BVXiiogMCYW4IpI0AoHorRPUTkFEREREZHCeeb44Yv2/b06jrS1FPXFFRIaI2imISNKI1koBVIkrIiIiIjJYnz1Vwb84hE1MYVs+ZV3zNjQf+ybpZ1fA148a7uGJiCQ9hbgikjQU4oqIiIiIJEb7x1s5hCciN74C7LP9sIxHRGSsUTsFEUkaPYW4aqcgIiIiIjJwHe3tpG+pjL6zqnZoByMiMkYpxBWRpBHtoWagSlwRERERkcFY/1kjpYG3QuvvMtffWVU3DCMSERl7FOKKSNJQOwURERERkfj7+ON2ZvNRaP0plvg7FeKKiAwJhbgikjR6qsRVOwURERERkYFbv66DEspD6yuY4++sahiGEYmIjD0KcUUkaagSV0REREQk/jZvDkSEuKvY0d9Z3QjODcOoRETGFoW4IpI0FOKKiIiIiMRf2SbHeCpC6x8xO7TsqpuAHibiIiISNwpxRSRp9BTiqp2CiIiIiMjAVa9vJA1vUt2WkUVt1jh/Z00LtKmlgohIoinEFZGk0VNYq0pcEREREZGBa9joh7QdedmML2mhmkIAzDmoLu/pVBERiROFuCKSNHoKaxXiioiIiIgMXNOWRn+lIItJJfVUUexvqygb+kGJiIwxacM9ABGReOmpElftFEREREREBu7dym05iT9TRDW/Ovc5Jj7dwC+5iExaOO2clewxPm+4hygikvQU4opI0lA7BRERERGR+GppgTW1k1nDSaSmBvj917ZQ8nYjt3AOAAt2fpQ9CjOHeZQiIslP7RREJGmonYKIiIiISHyVhXVKmDihgZQUR1FBc2hbVXUWuNZhGJmIyNiiEFdEkobaKYiIiIiIxNfmzf7y5In1ABQXNYW2VdVkK8QVERkCCnFFJGmonYKIiIiISHyVl/vLJeMbACgu8itxq2tUiSsiMhTUE1dEkobaKYiIiIiIxFdlRQc/5Zd8lbtJezsdHt6J4sJ5HMHDXMCVzHxwM0zZB36x73APVUQkqSnEFZGkoXYKIiIiIiLxVVnRxgw+Y2dWQhVQvS1F05qZQBP78hLUAeu2H+5hiogkPbVTEJGkoXYKIiIiIiLxVVnZThHV/obCLIoLm6kj39/W0DDk4xIRGWsU4opI0lA7BRERERGR+Kqs6KCQGn9DQSbF4xz15Pnb6hTiiogkmtopiEjSUDsFEREREZH4qqhwkZW4BVkUTZxPHf7DzWhoGvJxiYiMNarEFZGkoXYKIiIiIiLxVVllXSpxsyieOC2iEtfVN0c5U0RE4kkhrogkDVXiioiIiIjEV2VlSmSIW5RFVt5E2jKyQptcrSpxRUQSTSGuiCQN9cQVEREREYmvysoUiqnyNxSOB0snpSA7tMnVtwzDyERExhaFuCKSNNROQUREREQkvlqqWsjCC2ldVjrklwCQXuyHuDSqnYKISKIpxBWRpBEe4qamRt8uIiIiIiKx6eiAtOqwVgrF2ZCSD0DWOD/ETW1qgUBgqIcnIjKmKMQVkaQRXnGbmRl9u4iIiIiIxKamBsZTEVq38TmQ4j3QrLA4hXpy/YMbGoZ6eCIiY0racA9ARCRewituMzOhsdFbVogrIiIiItJ/FRWwgjks4nXmTVzDbRf/HcwLcfPzU/gqd9NKBt/7wdscnJXVx9VERGQwFOKKSNLoGuJG2y4iIiIiIrGprIQmcniDRdjUKXDA+5DqtVPIL0jlLxwJwBFTgPT04RuoiMgYoHYKIpI01E5BRERERCR+Kiv95XFFTd5CsBK3oMB/CEVtnQJcEZFEU4grIkmjp0pchbgiIiIiIv0XEeIWB0Pc4IPN8vP9D/bW1WWA06RbRCSRFOKKSNIID3EzMqJvFxERERGR2FRWdJBBC+AY3xniphYCkF9goePqGhTiiogkmkJcEUka4RW34c9VUCWuiIiIiEj/VVa2cxen0koGv7zvUPjPOkjJBSA/H67j22xiMlf88Qvwl78M82hFRJKbHmwmIklD7RREREREROKnpjrAeCpIp530xirIKg7tKyiARhqYTBl0AHU1wzdQEZExQJW4IpI01E5BRERERCR+amocE9jqbxg/IbSYnw/15Pn76mqHcGQiImOPQlwRSRpqpyAiIiIiEj81NYHIELdkYmgxPx/qyPf31SvEFRFJJIW4IpI01E5BRERERCR+qqsc46nwN0yYElrsXolbP4QjExEZexTiikjSUDsFEREREZH4aa1qJIsWAAIZ6ZAX2RM3ohK3rm6ohyciMqYoxBWRpBFecatKXBERERGRwUmprg4tdxTlguWE1rtV4jaoEldEJJEU4opI0lA7BRERGSvM7E9mtsXM3gvbttTMNpjZ8uDXl8P2XWRmq81spZkdMjyjFpHRJr2myl8ZlwMp2aHV7j1xFeKKiCSSQlwRSRo9hbhqpyAiIknoduDQKNuvds6VBr/+CWBmc4ATgV2D5/zBzFKHbKQiMmplNlSGllMmZIP5IW5WFjSl5IbWAzUKcUVEEkkhrogkDVXiiojIWOGcex6o7PNAzxHAfc65FufcGmA1sDhhgxORpNDcDAVt1aH1lPFZEZW4ZhDI9dspdNQ2DuXwRETGHIW4IpI01BNXRESEb5nZO8F2C51PIJoGrAs7Zn1wm4hIj2pqYAJbQ+s2PgcsK+IYl+tX4ro6hbgiIomkEFdEkobaKYiIyBh3A7A9UApsAn4b3G5RjnXRLmBm55jZMjNbVl5enpBBisjoUFMDv+c8JlDOwdNehW/v0y3ErSiezWL+yy6sYPXVfximkYqIjA1pwz0AEZF4UTsFEREZy5xzZZ3LZnYL8FhwdT2wTdih04GNPVzjZuBmgEWLFkUNekVkbKipgQCpVDCByvGtMH0CdGmnnV6Yy6vB7ixVWS3DMUwRkTFDlbgikjTUTkFERMYyM5sStnoU8F5w+VHgRDPLNLNZwGzgtaEen4iMLjU1/nJhQUu3KlyA/Hy/0L+ubihGJSIydqkSV0SShtopiIjIWGFm9wIHAhPMbD1wMXCgmZXitUpYC3wDwDn3vpndD6wA2oHznHP6v6OI9Kqmqg1IB6AwvxlSuoe4BQX+cl1dtM4tIiISLwpxRSRpqJ2CiIiMFc65k6JsvrWX4y8HLk/ciEQk2VRX1bEDFTSTxaScSiCj2zH5+QCOLJpp3VDlTchTU7sdJyIig6d2CiKSNNROQUREREQkPmoqt/IkB7OOGdz44L7waU23Y/LzYS0zaSKHUy76PGzYMAwjFREZGxTiikjSUDsFEREREZH4qKmsoJgqf0PR+G7H5OdDC2ET78bGIRiZiMjYpBBXRJKG2imIiIiIiMRBRy21VQEKqfW3FRV1Oyw/H5rI9jc0Nyd+bCIiY5RCXBFJGmqnICIiIiISB+3raatoC622ZuVAWk63w/LyoJmwB541NQ3F6ERExiSFuCKSNNROQUREREQkDjoq6ahoCa225eZCSna3w3JzVYkrIjJUFOKKSNIID2vT0/1l5yAQGPrxiIiIiIiMSoEaArV+iBvIzwbL6naYKnFFRIaOQlwRSRrhbRPS0ryvaPtERERERKQXgTpSavyHlLmCrB5DXFXiiogMDYW4IpI0witxU1MjQ1y1VBARERERiVGgibR6v6rWirN6bKegSlwRkaGR1vchIiKjQ9cQNzXVX1clroiIiIhIjFwzaY3+5DqtOAMst9thqsQVERk6CavENbNtzOwZM/vAzN43s/OD28eZ2ZNm9lHwe3HYOReZ2WozW2lmhyRqbCKSnMJD3K7tFFSJKyIiIiISGxdoJqupPrSeXpIBqYXdjlMlrojI0ElkO4V24AfOuV2AvYDzzGwO8GPgKefcbOCp4DrBfScCuwKHAn8ws9SoVxYRiSK82rZrOwVV4oqIiIiIxKapoQ0XgDryAEgbnw0pqsQVERlOCQtxnXObnHNvBpfrgA+AacARwB3Bw+4AjgwuHwHc55xrcc6tAVYDixM1PhFJPmqnICIiIiIySC5ATW0Kv+LHFFDH1PFV8O0vRj00Lw+WspRxVDAptxK+//0hHqyIyNgxJD1xzWwmsBvwX2CSc24TeEGvmU0MHjYNeDXstPXBbV2vdQ5wDsCMGTMSOGoRGW3UTkFEREREZJBcMzW1fouEvMIOyO7eSgG8dgr15AOQ0hTAWQo2JIMUERl7EtlOAQAzywMeBL7rnKvt7dAo21y3Dc7d7Jxb5JxbVFJSEq9hikgSUDsFEREREZFBck3U1GaGVgsLmiElO+qhaWmQmen92R4IpKibgohIAiU0xDWzdLwA9x7n3N+Cm8vMbEpw/xRgS3D7emCbsNOnAxsTOT4RSS5qpyAiIiIiMkiByErcwvwWsJweD8/N9WuvGuoDCR2aiMhYlrAQ18wMuBX4wDl3VdiuR4HTg8unA4+EbT/RzDLNbBYwG3gtUeMTkeSjdgoiIiIiIoPkmqmpy+QLPMV+PM883oGO9B4Pn5DTyEzWsDMf0LTykyEcqIjI2JLInrj7AKcC75rZ8uC2nwBXAPeb2ZnAZ8BxAM65983sfmAF0A6c55xT7CIiMVM7BRERERGRQQo0UFuXyb2cxETK4QWg6n4ojn74/wQe4Td8FYCay4+Dx+8furGKiIwhCQtxnXMvEr3PLcCSHs65HLg8UWMSkeSmdgoiIiIiIoPkGqiry6CIan9b0fgeD7ccv9VCR2NTAgcmIjK2JfzBZiIiQ6VriKtKXBERERGRfgrU01wVIIM2ANpSMyCnsMfDU3L8/rmuQSGuiEiiJLKdgojIkAoPatPSIitx1RNXRERERCQGgXraK/zVluw80i27x8Mtx9/nmpsTOTIRkTFNIa6IJI3eKnEV4oqIiIiIxCBQT6DKf5BZa04upOT2eHhanl+JS5MqcUVEEkXtFEQkaagnroiIiIjIIAXqoMavqG3PzYGUvB4PT83zK3GtRZW4IiKJokpcEUkaaqcgIiIiIjJIgQas1n9GeaAgG6znStyMAr8SN6WlJaFDExEZyxTiikhSCAQi11NS1E5BRERERKRfXABcI3lhlbiB8fmQktXjKWn5fiVuSqvaKYiIJIraKYhIUujaSiH8O6idgoiIiIhInwIN4BwT6jb4m2ZM7vWUzEI/4E1tUyWuiEiiKMQVkaQQHuJ2VuCmprRF3S8iIiIiIlG4BgBmNqwKbUrZoY8Qt8ivxE1vU09cEZFEUYgrIkkhvNI2NRXoqCEtpTrqfhERERERiSLQCMDVGRfyXxYDkLp4p15PySzMoo00asmnKb3nB6CJiMjgKMQVkaTQrZ1C22ekWlPU/SIiIiIiEoXz5s//blvCXrzKIfyL3DlTej0ltyidDNoopJazD/1gKEYpIjImKcQVkaTQrZ1CRxmpKS1R94uIiIiISBSumfb2FBobMwDjSfsiuQWZvZ6Sm+svNzRYYscnIjKGKcQVkaTQvZ3CVtJSW6PuFxERERGRKAJN1DdkhFbzcluxlKxeToC8sA4K9Q2KGEREEkW/YUUkKXRrp9BRTWpqIOp+ERERERGJwjVTV++HuAX5LWDZvZzQJcStV8QgIpIoacM9ABGReOjWTiFQTZpCXBERERGR2NVVUfDdu/gNG/mI2TyfdzSk9B7i5uZCKW9RRDU7lFdD/cGRya6IiMSFQlwRSQqR7RQcBJq971H2i4iIiIhIFOs2Uvjcci5gOavZnrfyDgPL6fWUvDy4i1OZy/uwEVjzDsybNzTjFREZQ/RZBxFJCpHtFDqC31WJKyIiIiISs61bQ4tlTKIgryWmStxmwvrmNjcnanQiImOaQlwRSQoRIW6KF96qnYKIiIiISD9UVoUWKxhPfl5Ln5W4XUNc16QQV0QkERTiikhSCG+XkJbaCqB2CiIiIiIi/VFZ7S8yjvy81j4rcTMyoMX8ELetviVRoxMRGdMU4opIUoisxG3zvqsSV0REREQkdpU1ocUKxlOQ3wJhAW1POlIzQsvN1arEFRFJBIW4IpIUInviemW3aWkKcUVEREREYlZVF1r0KnHbwFL7PK093Q96W2oU4oqIJIJCXBFJCpHtFLyV1BS1UxARERERiYlzUOmHuBWMJz8/0MsJvo6wELe1ViGuiEgiKMQVkaQQWYkbiPjedb+IiIiIiHThWqGyKbRayTgKClwvJ/gCGQpxRUQSTSGuiCSFyJ64Xngb3k5BlbgiIiIiIr1wLVDth7heJW5sp4aHuG11CnFFRBJBIa6IJIXwELczvA1vp6BKXBERERGRXrgW2NoQWt3KBPLzLbZzM7NDi231LfEemYiIAGnDPQARkXgIr7RNTXXB72qnICIiycnM/gQcBmxxzs0NbvsNcDjQCnwMfN05V21mM4EPgJXB0191zp079KMWkRHNtcB5n+OO38ygZV0z69iGgoIPYzq1MX8Sq5hNM1k0pRcneKAiImOTKnFFJClE64mrdgoiIpLEbgcO7bLtSWCuc24+sAq4KGzfx8650uCXAlwR6c61woml/G78j/gGN1PFOPILUmM69elFP2QnVrGAd3h3jzMSPFARkbFJIa6IJIWIdgqpAXAu1Bu3634REZHRzjn3PFDZZdsTzrnOty1fBaYP+cBEZPRyrQDU1WeGNuXnx/bh3bw8f7m+Pq6jEhGRIIW4IpIUwittc2iAL9/Kd64+jv14HlCIKyIiY84ZwONh67PM7C0ze87M9huuQYnICOa8Xra1dX6IW1AQW4ibm+svNzT0fJyIiAyceuKKSFIID2m/sOVRWLGBHODPnMw2rFc7BRERGTPM7KdAO3BPcNMmYIZzrsLMFgIPm9muzrnaKOeeA5wDMGPGjKEasoiMBKFK3IzQpvzC9JhOjajErQugejERkfjTb1YRSQrhIe6eW58JLU9nAzk0qBJXRETGBDM7He+BZ6c45xyAc67FOVcRXH4D76FnO0Y73zl3s3NukXNuUUlJyVANW0RGgjsfwn35Vm5vOJnjuB+AvPyMPk7yTG79jBO4j9O5nakrn0rkKEVExixV4opIUgivtN2x+p3Q8gKW00iuQlwREUl6ZnYo8CPgAOdcY9j2EqDSOddhZtsBs4FPhmmYIjJSrfwYW7aeY1jPm+xObk4rqWlZMZ06c/Or3MdJALy+/Bjg4AQOVERkbFKIKyJJoTOkLaKKotYKANrSM3i3bR6A2imIiEhSMbN7gQOBCWa2HrgYuAjIBJ40M4BXnXPnAvsDPzezdqADONc5Vxn1wiIydm3aElrcyFTy81ogJa+XE3zp+X4fXWtpjvvQREREIa6IJInOEHd7Pg5tqxs/GbfZ6xrT0e4AG4aRiYiIxJ9z7qQom2/t4dgHgQcTOyIRGfXK/Pd2NjOZgvxWSCmO6dSMfL9i19pa4j40ERFRT1wRSRKdlbbhIW79hEmh5Y6OwFAPSURERERk9KiuCy1WMo78/A6w2CKDjAI/xE1tVYgrIpIIqsQVkaTQWYm7A6tD29pycynlLYqopr19HyB1eAYnIiIiIjLSVTeEFqsoZlp+7J9iyyryQ9y0drVTEBFJBFXiikhSiNZOYfv/Pstb7M5fOU6VuCIiIiIivekS4hYUxvZQM4DMAr8nrkJcEZHEUIgrIkkhWjuFThOoILWpdohHJCIiIiIySgQCUNMYWq2miPyC7JhPzy72A9/0gEJcEZFEUIgrIkmhsxL3j5zF+9P2hozI1gnF9Z8Nw6hEREREREaB+noIOG+RXNpJJ78g9u6LOeP8EDejQz1xRUQSQSGuiCSFzkrcuzmVW75yFXx4IVt32iW0f1yDQlwRERERkaiqqvxFigEoKIj99IhKXNeCc3EbmYiIBCnEFZGk0BniAqSlBiAvk6aSCaFt4+rXDcOoRERERERGgcqK0GJniJufH/vpGfl+T9wsmmltjdvIfK4DGl9IwIVFREaH2D8fISIygkWEuGneQ8xaSsaFtk1oVIgrIiIiIhLVtlPhzhO564+zefT5eUD/Qlyys3klbR/q27OpI58D6iEzs+/T+qX5TWh6CbL3BlOUISJjj37ziUhSaGvzlztD3LZi/zNghS3lQz0kEREREZHRoTAHDt2Jp/5xJA9QCvSvnQJZWRw/6WnWb8gA4NMGGD8+zmNsfhMCzdC+BdKnxvniIiIjn0JcEUkK7W2Os/gjc3mPua83wMpMOor88oGClopezhYRERERGcOc9zCy2jq/fLZflbhAXl4gtFxfH5dR+VwbdJR5yx0KcUVkbFKIKyJJob29ncN4jCN4FF4EPjqe9uKZof2FrarEFRERERGJynlNbOvqM0Kb+h3i5iYwxO2oAhe8fkdlnC8uIjI6KMQVkaTQ3tbGRLb4GybkEmjKC60Wt20dhlGJiIiIiIwCnSFuw8ArcXNzXWi5oSEuo/IFqv3ljqo4X1xEZHRQiCsiSaG9rYUSwqptJ+QQaMijnly2MJHy9GnMGL7hiYiIiIiMXD+6FO5/kDu33s9FXMrfOKZ/PXGBo6ruYC9qyaKZlk3fAcb1eU7MwoPbQE38risiMoooxBWRpNDW2tqtEtfV5ZKP91muhdttZNkwjU1EREREZETbVAYba9mRWnJoBPpfiXvc2quZymoAHtt0EnENcdvL/GWFuCIyRqUM9wBEROLBmmopoA6AjpRUKMwiLc3vy9XenhL6mJiIiIiIiISprQ0t1lAI9D/E7UjPCi231jbHZVj+xcM+cReoA+d6PlZEJEkpxBWRpJBd778735xXCGakpviTu46AQaBpOIYmIiIiIjKy1ftNbGvx+ij0N8QNpPv9dOMf4lb4yy4ALt5Nd0VERj6FuCKSFLLr/Xfnm/O8iWdqenZoW0dHCriWIR+XiIiIiMiIV1sXWqwjn8xMSE/v3yUCGQkKcTuqINDY5Wb18bu+iMgooZ64IpIUchu3hpZbCgohdTxpeQuYxzvswGp2qfwMVu0OcyYO4yhFREREREagushK3P5W4QK4TL+dQnt9HEPc9k3dtynEFZExSCGuiCSF3Aa/Erc1Px8yZpGaMZELuIjTuAu2Ai9dAXP2H75BioiIiIiMRLV+petAQ1yy/BC3rSGOn4CL9iAzPdxMRMYgtVMQkdHPOfLDK3ELCyF1EmmZxVRR7B9XVTkMgxMRERERGeHqBh/iWliI2xHPStyO2ijbquJ3fRGRUUKVuCIy+rlG3ilazE+5jGlsYLddciG1hNT0HCoZ5x9XqRBXRERERCRCSwu0tAHQRhrNZA0sxM32n0cRaIxjiBtQiCsiAgpxRSQZBOr4IH83HuNEAB5d/GdILSY1lS6VuJrsiYiIiIhEqIt8qBnYgELclBy/EjfhIW5A83oRGXvUTkFERr9AHe3t/q+ztDQgpYC0tK4hrnpniYiIiIhEqPVD0loKAAYU4qbmhoW4TQnuiduhT9iJyNijSlwRGf0C9bS3F4RW09JzwIzUVCLbKVQrxBURERERiTBtGjz/Yx79SyFX/v5zwMBC3NbSPbnroRqayWJlyi7xGZsLQKC++/ZAs/eVktV9n4hIkuoxxDWzR2M4v9I597X4DUdEZAACjbS1+xW3aRl5AFHaKUT5KJaIiMgw0FxbREaMzEzYtYTVE3flBfYHBhbithx/KqddfCoAO6a4+IwtUOsFuVH3VUPK5PjcR0RkFOitEncX4Kxe9hvw+/gOR0RkADat46bl57KSWbzHXNIyjwGI0k6hrocLiIiIDDnNtUVk5HCt1NVnhFYHEuLm5fnL9VGKZwck0Mv8vaMG0hTiisjY0VuI+1Pn3HO9nWxml8R5PCIi/ffpOnZqfI+deI9pbKAt+5sAUdopxGs2KSIiMmiaa4vIyOHaqKvPDK2OnBC3sZd9+pSdiIwtPT7YzDl3f18nx3KMiEjCbdjoLzKNtPRcIEo7hep6cHH6aJeIiMggaK4tIiNGSwO0tQ26Ejc3119uaIjTtNs19bxPIa6IjDE9hri9MbNz4j0QEZEB27gptLie6aGeuGlp0EYGL7M3T/EF+Mru0No6XKMUERGJiebaIjKkrrsGpl7KtX/ej6VcDAwsxE1f/jrXpZzPDZzLaR230dISh7EpxBURCemtnUJvLK6jEBEZjA1b/EWmkZbhVRGkBN+m2oeXAei47RZSMjO7nS4iIjLCaK4tIkOnpgqArI5mAsE6r4GEuKxcybcD13nnU0d9/RlkZQ1ybIHeQlw970JExpYBVeI6527q6xgz+5OZbTGz98K2LTWzDWa2PPj15bB9F5nZajNbaWaHDGRcIjJGbawILa5nOmlhb0+lpvrLHe3tQzgoERGRgYllri0iEje11f4iBcAAQ9ywxDaLZhoaBjkuiFqJ29aWQmNjuipxRWTM6bMS18z+L9p259zP+zj1duB3wJ1dtl/tnLuyyz3mACcCuwJTgf+Y2Y7OuY6+xiciY1ygBTbWhFY3MC0ixE1Lg47gb5L2tnbSh3h4IiIivRnEXFtEJD5q/bl0HV56G48QNy4PNws0R6w++9JMTjznWMrK8/jaSe/yx7siizZERJJZLJW4DWFfHcCXgJl9neScex6ojHEcRwD3OedanHNrgNXA4hjPFZGxzDXCJv9d+PVMJz0sqR3OStznn4dHH/VDZBERkSgGNNcWEYmbWn8u3VmJW1AwgOskIsR1fohbVZ0VCnABbr93Hrf9KRCHm4iIjA59VuI6534bvm5mVwKPDuKe3zKz04BlwA+cc1XANODVsGPWB7d1E3zQwzkAM2bMGMQwRCQpdNRHhLjRKnH35QX25L+k/epxOGUx7LNPwof16qtwwAHe8h13wGmnJfyWIiIyCiVgri0i0j91fm/ZkddOwQ9xb7h9j1CA2+m3VznOPAtMncRFZAwYSE/cHGC7Ad7vBmB7oBTYBHROWqP9ynXRLuCcu9k5t8g5t6ikpGSAwxCRpLF1A7R4pa41FFBPfreeuEfwCFdyIVk3PA0vvjgkwzrvPH/59NOH5JYiIpIcBjPXFhHpv9rEhLjxrMR1Dh64cyazWUV4VPDhh6l8+GEc7iMiMgr0GeKa2btm9k7w631gJXDtQG7mnCtzznU45wLALfgtE9YD24QdOh3YOJB7iMgY85k/a9sQLODvGuJWUexvqNo6JMNqaxuS24iIyCgXz7m2iMiA1Plpa2eIm5s7gOskpCeu92CzVc+n8fT6haxiJ25PP5MvLfkodMiTT8bhPiIio0Cf7RSAw8KW24Ey59yAGkua2RTn3Kbg6lHAe8HlR4E/m9lVeA82mw28NpB7iMgYM70D7v8qZ5/6BWpavNlm13YKkSFurK26BycjY0huIyIio1/c5toiIgNS6/c9qCOfvDxIGchndrOzQ4vxbqdQf/Vb7IT3ALbT224jY7fFPP7UbACeew6+85043EtEZISLpSfupwO5sJndCxwITDCz9cDFwIFmVor3+Ye1wDeC93jfzO4HVuBNXs9zzulRQCLSu/bNkLURDtyee1K+ShPeE816r8StGJKhKcQVEZFYDHSuLSISN3V+2lpLwcBaKUBEJW42TYOvxHXt3ldNM3Nf/UfErs9vfAQ4F4C33hrkfURERolYKnG7MbPHnHOH9XaMc+6kKJtv7eX4y4HLBzIeERmjWt6F4Ps97e1+uUB6un9IWppXURASl8919U0hroiIDFQsc20RkbhwDuqaQqt15DMxDiFuXNopBKtwO55dQ2agJWLXxM0fk57eQVtbKmvWQHU1FBUN8n4iIiPcQD4kAXB2XEchIjIQrX4vrPAQN7wSNz0d6gl7iu0QhbiZmUNyGxERSU6aa4vI0Fl3J2/d82t25gM6SBt4JW5uLv/d+0wu46f8ih8Nvp1CwAtxt77eRDupEbtSVpez605bQutvvz3Ie4mIjAIDCnHD+tqKiAwP1wEdW8E5AgHDOQPALLKHV7cQNy7NufpWUBC57lz040RERLrSXFtEhowZ5KdSmTmRlewMMKh2Cq8dcxH/j8v4NT+KQyWuVyH85IKvkU0T83jH37eumt22/yy0umrVIO8lIjIK9BnimtlsM3vAzFaY2SedX0MxOBGRHnVUgQvA8Xdju/6Gt5nPQpZFVOFCtErcoQlxUyOLBagcmuepiYjIKDPQubaZ/cnMtpjZe2HbxpnZk2b2UfB7cdi+i8xstZmtNLNDEvV6RGQUcm3U1fsfIxtwiAvk5fmVC/Fqp/DmO1NoJ533mMfW4unBfbC40A91V68e5L1EREaBWCpxbwNuwHvg2OeBO4G7EjkoEZE+BYKzwrI6rKKB+bxLG+ndQty0tOGpxG1ujlzfpJoqERGJbqBz7duBQ7ts+zHwlHNuNvBUcB0zmwOcCOwaPOcPZtbl7UYRGbNcK3X1/gMdBhPi5ub6y/Fqp/DGO1NCmzqmj4ecdJg9gVkTy0PbFeKKyFgQS4ib7Zx7CjDn3KfOuaXAFxI7LBGRnjU0wPW/z+CRx3eCcn92WMakbr1ou1fiNg7JGFsin73QLdQVEREJGtBc2zn3PND1cx5HAHcEl+8Ajgzbfp9zrsU5twZYDSyOw9hFZLSrq4OP19O+qZFMvAnr4CpxLbQcr0rc9z6cGNrUetNJsOYieOk8ipaUhLZ/9FG3s0VEkk5a34fQbGYpwEdm9i1gAzCxj3NERBLmmmvgZz+bShrH0sbJAAQwtjKB8RmRx6anQwO53MuJHHjwRqbMmT4kY6yri1xvaxuS24qIyOgTz7n2pM5+us65TWbWeZ1pwKthx60PbhORse6pp+CoS/g6MJ77OYJHBxXiLrj9Ev5GHdk0cUPl7cDkgV/MNVG5vIm9qp7hI2ZTlj2N6ds3eX18gdnb+e9jrV7tPYPCrKeLiYiMfrFU4n4XyAG+AywEvgqcnsAxiYj06mc/876X4H+EaisT6CCNjCghbjvpnMy9rPjGGfCLbw7JGLv2wG1vH5LbiojI6PNdEj/XjhZrRH3kppmdY2bLzGxZeXl5tENEJJnU1vqLeE/mHUyIO/7NFziKhzmUf2N1tX2f0BvXTM39a/kHh7GKnbg169yIkHZccRPFRd7Dz5qa1L5MRJJfn5W4zrnXg4v1wNcTOxwRkdhNoiy0vDn4Ln96euQx4ett7angWodiaFRURK6rEldERKKJ81y7zMymBKtwpwBbgtvXA9uEHTcd2NjDeG4GbgZYtGhR1KBXRJJI2MfH4hHiWlZWaLmjYZD9xAJNBN7aHFqtm9b9E3Xbz6xk2XLvgwWffAJTpw7uliIiI1mPlbhmtrSvk2M5RkQkUcJD3DImAUStxO3U1pYCLvFpqnPdK3EV4oqISLgEzbUfxa/iPR14JGz7iWaWaWazgNnAa/28togko7BK3Dq89HZQIW62/4CKQYe4rpnctetCq21zt4GOALy5Af6+Am5fxoxpNaH969cP7nYiIiNdb5W4Z5lZb59/MLyn3C6N64hERPowfbo3SZuM/858bCFuKpD4NLWxsXv7BLVTEBGRLgY11zaze4EDgQlmth64GLgCuN/MzgQ+A44DcM69b2b3AyuAduA851xHnF6HiIxmtdX+YhwqcVNy/Epc1zT4Sty8Gv/jbcWl2RBw8KU/eg1hDGac8ePQ/nXrolxDRCSJ9Bbi3gL09ev7ljiORUQkJoWFXojbn0rcb3E98+/4O/y7FS6ZDTvtlLDxtUbp2KBKXBER6WJQc23n3Ek97FrSw/GXA5fHNjQRGTNq/UrWeFTipuRGhriDethYXQ157d57XS1kMGNeK6SnwqR82FwHDnbJ+wTYF1CIKyLJr8cQ1zl3yVAOREQkVo2NASClXyHukTzMDs897a2ctU4hroiIDCvNtUVkRKjzQ9y4VOJm+yFupmuiuRmyswd4sY3+XH8D05g1M/jhhWmFXogL7JC+JnSMQlwRSXY99sQVERmpGhu956xEC3F7erBZPXn+xvr6hI4vWmCrdgoiIiIiMuLUxjfEJctPbLNopqFh4JdqWF0dWt5o0yiZELzY9MLQ9unOT27VE1dEkp1CXBEZdRobve/f4CZms4ozt3+If3MI0HMl7lCGuKrEFREREZFRIc4PNusa4g5m2l21wk+Aq3Im+m0ZphWEtk9s3hRaViWuiCS73nriAmBm45xzlX0dJyIyVFpavBlcA3msZjYdbRMooxgYGSGuKnFFRCRWmmuLyLCq8+fFcQlxs3NCi4MKcV0bjasbQ6uNxeP9fWGVuAW1W0hJCRAIpFBWBi0tkJk5wHuKiIxwsVTi/tfM/mpmXzYbcEtyEZG4cA5aWyN/dVVW++/4j4QQV5W4IiLSD5pri8jwSUuBjFTAny8PrhI3MsQdcDsF10LbZ/6cvWNikb9vmh/ipmysZsok/yYbNw7wfiIio0AsIe6OwM3AqcBqM/uFme2Y2GGJiEQXraK1ptZ/gMJICHGjBbYKcUVEpAeaa4vI8Hn2blo+vpgMWljBHFJTISur79N6dMwxXLfdUs7iFp5iycCn3YEmytxEXmcRq5iN27bY3xdWicuGGqZM8ltCbN48wPuJiIwCfYa4zvOkc+4k4CzgdOA1M3vOzPZO+AhFRMJ0Vrn+jEv5Iv8mk+aI/SMhxI1Wiat2CiIiEo3m2iIyrFwrdfWZtJGBI4WCAhjUZwIOOID/zD6JWzmL95k7iHYKLdy2zfdZzOvsxCpaDpjj7wurxGVdDZNL6kKrCnFFJJnF0hN3PPBVvOqAMuDbwKNAKfBXYFYCxyciEqGtDWbxCZfyfwCUM4EpbKIj+OusM7TtpEpcEREZyTTXFpFh5dqoq/erIAbVSiEoN8evXhh4O4VmNmz2H2A2fYpfbUtxNmSnQVM7NLQyq7gM2BlQiCsiya3PEBd4BbgLONI5tz5s+zIzuzExwxIRia61xbE/z4fWX2ePUIALPVfiNpDrbxzwbDI26okrIiL9oLm2iAyfYCVup3iEuHl5HaHlgVfiNrNl68TQ6sQJYfN3M9hnFrR1wKR8po6vDu1SiCsiySyWEPdnzrn7wzeY2XHOub86536VoHGJiETV2tLMPN4Nrb/G4oj9XUPctOBvuUb8hyzQUEciRQts1U5BRER6oLm2iAyP1lZ4+lX4sII5vM8Kdo1PiJvrT3wH3hO3mfKt/vx9YkmXIow/nxxaLPiTH2ts3tRObDGHiMjoE8tvtx8D93fZdhHex7tERIZUa3MT2/NxaP0DdonY31Ml7vvsyn8Wns1Bh3wMC09I7BhViSsiIrHTXFtEhsfWrXD4BcwH/sNtTGXT4EPcxx/ne4/8iNNI5XG+RH39LwZ0mUBrI1+v+D1VFFFFMRPGNfZ47OSJflK8aVMHCnFFJFn1+NvNzL4EfBmYZmbXhe0qAFRTJiLDorWlialsDK2vZ3rE/p5C3A/ZhUcXfp+DvnsfjPtiQseonrgiItIXzbVFZNiFtRjrbD1WWNjTwTGqrmbGpneZAXzIziwfYBez6s/quML9GIBa8snI+H6Px4aHuGqnICLJrLe3qDYCy4D/Ad4I214HfC+RgxIR6UlbawtT2BRa38jUiP09PdgMoK09uOKilMrGUbRKXLVTEBGRLjTXFpHhFdbroPMhwIMOcbOyQovZNA24nULV2jrGdY4ttYCCXo6NDHFTBnZDEZFRoMcQ1zn3NvC2md3jnFP8ICIjQmtTU0SIu4kpEft7qsQFaGsP/soLtMRtPFddBf/5D/z857BoUfA+qsQVEZE+aK4tIsMuSiVuQW9paSzCQtwsmgcc4tas99snNGXkdT/gk0p4/EPYUs+06SXA+QBsLkvFOe/ZZyIiyaa3dgr3O+eOB94yMxe+C3DOufkJH52ISBeubBNpeE+8rWAcLWRF7O81xG3r/JUXn0rcN96AH/zAW960Cd56K3h19cQVEZE+aK4tIsMuwZW4WTSH58T9UhcW4rZk5nY/YFU5XPIkAJkHzSY/r4W6+kza2lKoqoJx47qfIiIy2vXWTuH84PfDhmIgIiKxsE1+P9yurRSg5xA3hwbOe/4bcMKHkPEU/OuFQY/loYf85eXL/WW1UxARkRhori0iwysRPXHjVInbuMkPcdtzsrsfUBy2raqRKZPqqKvPBLy+uApxRSQZ9dgwxjnX+XnlrcA659ynQCawAMKeKiQiMoRSN24ILfcnxG0njcUb/gHPfAxPvxqXsaxZE3272imIiEhfNNcWkWEXlrAmop3CYHritpQ3hZYD+WGBbcZ23vdxOf62yiY93ExExoRYun4/D2SZ2TTgKeDrwO2JHJSISE8as/K4lxN5nUW8xW7d9vf0YLNWMuiwVG+lrT0uqeonn0TfrnYKIiLSD5pri8jwCKvEjVs7hcxMf5GWAbdTaKv0Q1wrCF4zYwfIOxIspVslbniIu8l/fIaISFLprZ1CJ3PONZrZmcD1zrlfm9lbiR6YiEg0W7bfmZP5do/7e+6JazSn5pLbXuutNjRAUdGgxrJhQ/Tt0QJbtVMQEZEeaK4tIsMjwe0UMmkZcCVuoNoPcVOLgxP87M9BagGkTYGi9mAHcaC6mSnja0LHl5UN7J4iIiNdLJW4ZmZ7A6cA/whuiyX8FRGJu9aW3tPQnJzI9fDK3OaUsJ0DLQsI01N1rSpxRUSkHzTXFpHhEeXBZoNup9ClEnegIS61foibMT4NLBXSZ3gb0qZCWgoU+oHxjDw/uVWIKyLJKpYQ93zgIuAh59z7ZrYd8ExihyUiEl1rS6DX/SUlkevhIW5TatiTbeMQ4natrnXBZ4urJ66IiPSD5toiMjwKC2H78WxOnUIF40ObBiUe7RRcO6n1foibNTEdUseBBd/fSvXGSrFfoDE9y2+EW1bW+98LIiKjVZ/v8jvnnsfr1dW5/gnwnUQOSkQkKudobe29ErfXEDclviFuc3Pkenu7d79olbhqpyAiItFori0iw+a758GptSzY9UK2lMepnUJhIR13XMIRp+9OIznU13uFDmb9uIZr5dWOxQRooZAadts5D1KK/P2dIe64bAg+aHhqxpbQ7i1lHcRWryYiMrr0GeKa2Y7ABcDM8OOdc19I3LBERKJY+yH73nENF/MWb7Eb/y1ZQll5XsQhEyZEnhIR4lr8QtxAoPslmpu9+6kSV0REYqW5togMG+dVHtTU+tWzg26nkJ5O6rEH8dQ39qC5OR0cNDV1b3nW67ACrVzb9L+0B5+D0fSVyyA1bJKfUux9D6vELUktDy2XlblBvQQRkZEqln5bfwVuBP4IdCR2OCIivfj4A3Z861mW8iwvsg/fnbpHRIhrBuPHR54SHuI2xjHEbWry2yd0ammB/Hz1xBURkX7RXFtEhkkbLS2ptLR4sUBaGmRnx+GylkZebqsX4gJ1df0Lcaur2mhvTwUgP6+FrKx2SJvoH5Ba5H0f5190fKAytFy2pT9lvyIio0csIW67c+6GhI9ERKQvmzf4i0xm+tRa3nh7amjbuHGQmhp5SniI2xDHEDfa6Y2N3vdoga3aKYiISA801xaR4eFaqa2LrMLtV9uDnlgaBXktbK3w5t51dTBpUuynl2/x388qGR+cdIdX4loapOTAvjMhKw3G55C3uCi0e8uW1P63cBARGQViCXH/bmb/CzwEtHRudM5V9nyKiEgCbN7oLzKZqVMjE9uu/XDBqyjo1ED8QtxoT9qtrfW+qxJXRET6QXNtERkej/6Djvfe43Ae5Xn2p7CwKE4XTiM/z58Qd86RY1VeHhbiTghWSaSOizwoJR9OLPW+gCy8qt26+kza2lKoqvIKPEREkkksIe7pwe8Xhm1zwHbxH46ISC/KykKLm5nMhJLIz2Xl53c/JbwS96+5X+d/Lq6FvGLYd99BDSVaiFtd7X1XT1wREekHzbVFZHgsvZLJ737Io9xFKW9hhaXxue5+p/DUqjKMduawgrq6yf06vbwcruF8mshmSk0rBCZC+AOKAVIKgLKITZNK6qmr9yqLy8oU4opI8ukzxHXOzRqKgYiI9GmzP1ErYxIzc4qYNMnPdktLu58SHuI+n34QnPYKWDaMH9yvtmghbk0N0FFLa2s+EPn5rWjVuSIiIppri8iwqfc/mdZALlMH+1CzTlsqGd/mPWgsi2bq6vp3evmmFs7nOgACH6dA5u3dD0ot7LZpUkkDq9d4D8goK4NddunffUVERrqUvg4wsxwz+5mZ3Rxcn21mhyV+aCIiXZT5T53dzGQyMnM4+mhvffJkuPji7qeEh7htbYBlhJ7EOxhRK3GrHNT9jbaWmm77FOKKiEg0mmuLyLDpfKADUE8ehd1z0YHJyAgtZtHc73YKdev9iXZzRq7/ILNwKcXdNk0q8c8r2xzo301FREaBPkNc4DagFfhccH09cFnCRiQi0pMtFaHFMiaRkWn8/vewbBl88glMm9b9lKghLm3g3KCGEjXErdgCbWtpbeq+s6Wl+/EiIiJori0iw6XeD3EbyI1fiJuVFVrMpKXflbgNG/25dFt2DqRGKRFOLYbmdvjJ4/D1++GYO5lU4lcWl21q7H6OiMgoF0uIu71z7tdAG4BzromunxMWERkKZVWhxc1MJiPDe+rswoWQnR39lO4hbnowwB1ck9poz0VrrKsM3qf7tRNZifvqq3DrrdDUlLh7iIhIwmiuLSJDzzlobA6tNpBLQbzaKWRm+ou09LsSt3mLn/p25GYH+992kVIEGalw5xvwjw/ghTVML/Q/tVe2WSGuiCSfWB5s1mpm2XgPWMDMtifsybkiIkMiEIByv03BFiZGBLQ9CT/moObH4MBfQ0MjHFEFv712wMOJVonb1OilqK2t3d8fS1Ql7rp1sM8+3o/nrbfgd79LzH1ERCRhNNcWkaHX1BT6ZFoTWQRIjV8lbpcQt7+VuK1bwwLY/ExIifL04tRiSDGYnA+fVQMwK/2z0O6yzfo1KiLJJ5ZK3KXAv4BtzOwe4CngR4kclIhINxUV0OH1tqqmkBaywttt9Sg8xM1qr4d31sHHFbDus55PikFzc/dtjfXexta21G77ElWJ++yzXoAL8Pvf+8siIjJqLEVzbREZamEVCfXkAYyYdgrtFX6Ia8VZ0UPclGyvTVrY09im24bQ8pYt/buniMho0GclrnPuCTN7A9gL76Nd5zvntiZ8ZCIi4TIy4P8dxmP3juf91ZNCm/oSHuLWduT6Kw1RSmn7IVplbVOz975YW9vQVeKmdfktXlsLRUWJuZeIiMSf5toiMizCeoM14M2R49dOwQ9xB/JgM1fjjy19XHr0dgoAqYURIe6kNj/ELdsSy4eORURGlz4rcc3sKedchXPuH865x5xzW83sqaEYnIhISGEhnL8Pf9rxR/yYXwGxhbgpKd4XQD3hIW6Uprb9ED3E9RLjaJW47e2JqZLt2gc3WpsHEREZuTTXFpFhkchK3MyBV+I6Byl1/jw9c0K6V3UbTUohTPFD3B2vuY2LWQpAWXk2BOJYReEctOv9NREZXj2GuGaWZWbjgAlmVmxm44JfM4GpQzZCERHwJk6uhbZ2/9dWLCEu+NW4DXEMcaO1R2hs9G7UFiXE7emcwer6Mvr7cTURERkemmuLyLBKZCVul3YK/anEra2FvIA/oU0fH6WVQqeUPNhjm4hN/49LKaCGsvJcXHt5DycOQPsmqHsA2tZB3cPxu66ISD/0Von7DeANYOfg986vR4DfJ35oIiJhXDM4R2urH5DGGuJ2HhfPEDd6Ja73sa3wMYZLRIjb2OXBuwpxRURGDc21RWT45OTAknm8nbcHyykF4tkT16+c7W8lbnk5FOI/zJiiXgaVkg8Hz4Y8/4+CVALMYg3NzenUVcWxMW77Z9C+GapvhZZ3IBDlARkiIgnWY6MY59y1wLVm9m3n3PVDOCYRke6c1zcgvFVBeL/b3kQLcas3tlA0iOH01k4hvFq4r3MGS5W4IiKjk+baIjKs5s+HB77PyXt9mRUrJwJxfK7CT3/Gqj2ncsw3T2Id27BNPypxy8vhKZbQRjqzJ2zkmNIZPR+cUgDpqfCDA+CSJwH4c97pbK2fAEDZphoKJg3mhQS1roWWd1i2fCofry3mS0tWU5D3EWTNi8PFRURiF8uDza43s88BM8OPd87dmcBxiYhE+t0N8MjdXPTBctI4j/9wcMyVuJmZ3vfwELetZnDvnkdtp9AU7IkbVombkuL3wlUlroiIdKW5togMnzaqqv2q2eLiOF12hx1Iq57Oe3ghZ1E/K3Ef58s8zpf5cukqjjnwg54PTgm2Wjjvc3D6IshK47rDz2HDG9MBKNvUwOzSAb6GTq0fQc09/PYPe3PB0kMA2Habal5/9jlKtlOIKyJDK5YHm90FXAnsC+wR/FqU4HGJiERavhye+ZgvVj7CLNYAg2unkEsDHR0DH05v7RTa2v0QNy+v93MGq2uIu2JF/O8hIiKJo7m2iAwb10Z1rd+/Nm6VuEBBgT/R7lc7hS3toeWS8Y09P9QM/BAXvJYKaSlMKvEf2Fa2uXnwDzdr/Ygt5bn89JdLQps+XVfEBT+dM7jriogMQJ+VuHiTyDnOOZfowYiI9Kii0l9kPND/ELcJfxKYQxPrNwSYPqPP97KiilZV2xSlEjcvj9DDHIaiEvfFF+N/DxERSSjNtUVkWLQ0d4Tmr2lpkJvbxwn9kJ/nh7i1td4zis36Pm9LWTudMUXJ+AawGEPcoEklfq+xsi3Z0PYJZO4S87i7aVvHH+/ZnZaWyOjknr9uzxVXwZQpA7+0iEh/xZJevAdMTvRARER6NYgQt7OdgiOFBnJC22s3N/ZwRt+iVdV2tlNoCQtx88PmlkNRifvKK94kWURERg3NtUVk6D3zDK1XPMl3uJaFLKO4OLaQNVaZmZCT1kQGLbS3xz4PLi/3w9+JE/oKcXO6bYqoxC3P9ULcgWrfCh2beeyJHbvt6uhI4e47mwZ+bRGRAYglxJ0ArDCzf5vZo51fiR6YiEiEsBB3K97DCvr7YDOAY3mAg3iSvXmZ6uasnk/qQ0/tFNraUmgPtlNITQ2Ql+cnqomoxG3qMnesroYNG+J/HxERSZi4zrXNbCczWx72VWtm3zWzpWa2IWz7l+P4GkRktPn3v8m/7u9cy3f5Ik/Erx8uwNVXw4Tv0dCewy/4CeB/Mq0v5eWOezmRv3A8Rzz5G2jopf+ZpUFKcD5f0ww//Adf+9dF/I2jANiyNRfaPh3Ya3ABqLmD6upM/vvmNO925vjNxU+EDvn73wMDu7aIyADF0k5haaIHISLSp4oaf3GAlbgA/+JLoeXagRfiRm+n0JxOU7OfLOdkt5GZkUrnr9qhqMQFWLUKpk+P/71ERCQhlsbzYs65lUApgJmlAhuAh4CvA1c7566M5/1EZJSq9ytW68mLb4ib5scMmXgT4Lo6mDix71PLy+FIHiaLFngFSLu69xMsF2iG1BS4fRnbA9PJABxl5XnQsRVcG1iM1R+dWt6HQB3/fWN7AgGv9m33+Zs49bi3+eHPD8Y546VXcqishHHj+ndpEZGB6jPEdc49NxQDERHpUSAAVf4TEQbaE7erWCsCoumpnUJjY2SIm5HRQeev2qGoxAWoqem+TURERqYEz7WXAB875z61eH5OWkRGvwZ/bt1AbnxD3LAKivAQNxbVW1q9ABcIpKWSklPU+wkp2dCB92Cz3AxoaCWTVoqo9topuAC0rYGM7i0RetReDvXeByKWvT01tHnP3dczaWIDe+y2gdfenE4gYDzxBJx4YuyXFhEZjB7bKZhZXfDjV12/6sxsENGHiEg/1dRAh/dxpTryacNLZQdSidv1sgMVLZBtaUmjvsEfVHZ2G5nprWH7B36/nkSrxB1MOC0iIkNjiObaJwL3hq1/y8zeMbM/mVnUyMbMzjGzZWa2rLy8PE7DEJERJyxVrSePoqI4Xjts8p1FMxD7/LRli18h7PKyILV739sI4T1zJ+WFFiez2avEBWh8KbabA7hWqLvfq94Fli33Q9xFpRsB+NIXVoe2Pfts7JcWERmsHkNc51y+c64gyle+c65gKAcpImNcRYW/aONDy4OtxK3YOvAngPUUyFZW+xNJrxK3LbQ+VJW4CnFFREa+RM+1zSwD+B/gr8FNNwDb47Va2AT8todx3eycW+ScW1RSUjLYYYjISNXgh6Vxr8TN8p870Z9KXOegbWtDaN0KM8H6eIZFSliIO9EPcaewyavEBa8vbt3D0PxW34NoXeNV4ga9+8Gk0PLu8zYBsP/efp/dF17o+5IiIvESy4PNRESGV3iIS/9D3PBK3D/xdSoppoUMJrz0yICHFD3EdbSv2EoJWwDIzmonM72lj3MGR5W4IiLSgy8BbzrnygCcc2XOuQ7nXAC4BVg8rKMTkeHVkMCeuFHaKcQyP62vh+w2f1wxhbjhlbhT/Pe/prOe+oZMv9VZ83KvRULLyt6v11EWWmxuTmPNZ0Xebcyx0w7e3yR7LVxPWpr3wLUVK2Dr1t4vKSISLwpxRWTkC5sZlbsJoeX0GJ9PEFYMQBbNFFNNBm00ljf0fFIfolXV/pKL+Nz3f8KH7MxevOJV4oaFuCecAOeeCx29PGS3v6KFuOqJKyIiwEmEtVIwsylh+44C3hvyEYnIyFGfwErcKO0UYqnELS+HQvyJrBVmg/URWYSHuFP9EHcGnwH41bjglfo2Pt379Vr9VgkffTIu9FCzWTOqyMpqByAnp41FCzaGjnvxxd4vKSISLwpxRWTkKy2Fm4+l4/IvczPnAN5Db2N9Rktu2NytAX+lrXrgIW7Xqtr9eJ4f8ysAxlHFLZxNTmYLmRmRB950E/z+9wO+bTfR2il89FH8ri8iIqOPmeUABwN/C9v8azN718zeAT4PfG9YBiciI0ODXwkQ90rcAbZT6BriUpDb88GdUsJ65k7zQ9xtWAfg98Xt1F4Gze9Gv1agGdrXh1Y/XO0Xj+w8O7Lcdr+9Pgstq6WCiAwVhbgiMvJNGQ9H7krzyZ/jIY4GYm+lAJAXNnerx19JaY5PJW5uTis/5fKI/XN5n13a3ycjvbnbuXfcMeDbRnAueoj70kvxrfYVEZHRxTnX6Jwb75yrCdt2qnNunnNuvnPuf5xzm4ZzjCIyzLr0xE3Ug836006hvByKqPY3xBLihlfiTisMLUatxO3U9JI3ke62/UVwgdDqhx+Fhbg7dA1x/b64L/XjuWkiIoOhEFdERj7nBaGtbamhTQMNccMrcdOb66McHZvwStz8vBau5AJuClYJd5rX8AaZGd37LqTE6Tdvc1g+nJ4Okyd7y+Xl8Nxz8bmHiIiIiCShBr8SYMS0U9jiIitxC/N6PrhTRCWuH+L2WIkL0L4ZWldFbgu0QNNrEZsiQtwulbh7L/Irdt98M3JeLiKSKAkLcc3sT2a2xczeC9s2zsyeNLOPgt+Lw/ZdZGarzWylmR2SqHGJyCjkvMS0Lc4hblpLvELcVv7DwZzLTTy48Duh7TvXLCcjvXtJbFragG8bIbwfbl4eHHmkv/7KK/G5R29efhmefDJ6IYOIiIiIjGAnfoXHCo/hQY6mjvyEt1OI5ZkNW7a0RYa4RQU9H9ypzxC3h2rehsfBhc3TW98DF1l8sXrtuNDyjttXROybML6R2dt529ravCBXRCTRElmJeztwaJdtPwaecs7NBp4KrmNmc4ATgV2D5/zBzFIREYFBV+KG98QNb6eQ3hafdgoF+X6i+07uwtDyjJpVZGZ2D3FT4/TbLbyVQk4OTJvmr0d74Fk8/f3vsM8+8MUvwj33JPZeIiIiIhJnV1/A/+bdyrE8SBsZ8Q1xd9wRPrybR6+6mT35LwDV1X2fVr6lnYc5knO4iaeXnA1fWNj3SRYW4o7Lhh9/nn8f9X2O4iHAsWVrDyFuRzW0hPXGjdInd+1nRaHl7bat6rb/c3usCy2//HLfQ+1TRwW0re/7OBEZsxIW4jrnngcqu2w+AujsBnkHcGTY9vuccy3OuTXAamBxosYmIqPM8WfD3r9jwqnXs4DlgNc+IFY9VeJmDjDE7ejwe86aOXJz/ER3hZsTWp5U8ymZqd3bKcQrxA0ParOzI4oeEv6RrqOP9pfvvjux9xIRERGROHNtVFX7k8e4hrjp6TB9KtnTM6knH4gxxC3vYDm7cQvnsPbwr8Deu/V9UkpYSGsG39+fii9+jmf4AmDR2yl0anwaOiq9B5p1lEXsamhIZ8tW79y0tA6mTu7eD2LvRX6IG5dPwTW+AC3L43AhEUlWcfpQb8wmdT5EwTm3ycwmBrdPA14NO259cFs3ZnYOeI0nZ8yYkcChisiI8fGn8HEFWVSQgvewgf5U4hb6n6yKDHHbBxbihrdSyMjooCDVb8uwrnEyG5nCVDaR3tHKxMbu76bH66FjXStxw9qPRYwxEdrb/eVXX+35OBEREREZedpaO6hv8CaPKSmQnx/nG1gqRYV+VUFsIa7fo6tkfANYDO0ULA1SsrwgNmhSiT8377GdAkBHLVT9DlIKIBD5tOBP1xeFlmdMqyE1tXv/sK6VuM55OfKANL4ArSvB+lGpIiJjzkh5sFm0X3VRuyw65252zi1yzi0qKSlJ8LBEZESo8D++VMF4oH8h7vjx/nJ4O4Uc1xDRFiFW4efslPYRD768kMf4CqdxB9U1WXzALgAELIUJ9Ru7nR+vVgfh1baZmZGVuIkOccOpJ66IiIjI6FJZ4U/gxo2L34N3fWkU9zvE9WOBkvGNkJId260sMqidVOIXavRaiQvgAl5rhS7WrisKLc+aUQ3rquHp1bCqHF5aCx0B5uxUTn6eN+nevBk+/TS24XYTqIfGZ7wguaM26nhERGDoK3HLzGxKsAp3CrAluH09sE3YcdOB7smHiIxNlf4DDgYS4k7wHywbUYmbSwONjf27FkQGpHum/JeMQCtf4Z+k0sG/a47hh/yaNtI5d+knkNn93fSmpm6bBqStzV9OT4+sxE1kO4V4jV9EREREhsGnn5LxvSu4hu1YzQ48Of7b8b2+c7ClmnENm9iBj1jNbKq6t5TtpnyrH094lbhZvRwdJiXP6ycb5FXiOsZT0Xslbi/WfFoUWv5y+uOw+DroCKtcOHg2qXefxF4L1/Pkc9sDXjXuzJkDuFnLh16Y3Kl9I6QW9Xi4iIxdQ12J+yhwenD5dOCRsO0nmlmmmc0CZgOvDfHYRGQkamyEZq/0NZCeHgphB1qJ+zp7MJ+32Y6POYYHB1QVGx7i7sTK0PK7zGNrZQ5vspB3mU9mgZGR0b13QrwqcXsLcRNZibtpU+R6bW1kewURERERGcE2bKD40cc4n+s4mT9HzJXjZtZXGLfkCj5iR4wANTUQCPR+SvnWdJ7kIF5jD7b93vWwuTa2e6WE9YKoamLCWTdQwXjeZ1eqa7Jpaen/AynCK3G/tP4vkQEuQF0LVDbFpy9ue5f2a+2qZxOR6BJWiWtm9wIHAhPMbD1wMXAFcL+ZnQl8BhwH4Jx738zuB1YA7cB5zrk4dY0UkVGtwn9XvS2/ECq9j1n158Fm48bB9tvDxx/DrLl51Ndvz5q1Xhg82BB3duCj0PJKdqKjw39vLDurnY6O7t1i4hWwhgen6elD92CzriEuQFUVqMONiIiIyCjQ4LcbaCA34lNrcWEGGenQ6lUcZNBKSyCL+noo6KHNbUMDNDamUcpyJlABLwNpObHdLzXsooVZ2PINjMO79yQ2s2VrLttMizEQDuoMcb/Bjeyy6oXIndMK4OZjYXxOt764A9Je1mV98wAvJCLJLmGVuM65k5xzU5xz6c656c65W51zFc65Jc652cHvlWHHX+6c2945t5Nz7vFEjUtERpnK0K8JWvOLQsv9qcRNSYEnnoCrr4bHHoPcHL8MYLAh7vbtkSFuuJzstqiVuPEKcUdKJS5E/GcSERERkZEsbALcSE5iKnGz/IlpJt7EtLe+uFu2ADgK8duoURxjupxSFLZssOvk0Gopy/vuixvF2nVFHMHD3Mg3I3dsNw5uPAYme9W/ey7cENr19tsuPB+PjQtAR3nkto4t0Y8VkTFvpDzYTEQkurBK3Nbc4tByf/vYbrcdfPe7sO22kBO3ENcxs+3j0PbwENcIUFy3iW0+fIMiqno4f3C6hrhDVYlbU9N9W319920iIiIiMgIluhIXINOfrGfhTUx764tbVgbZNJFO8KNmmamQ1UPZbldd+8fOnRRa9ELc/vfFXfNZMRdwZeTGHx4Ir34b9pwR2lRU2MyuO3uha0eHsWxZP2/UUQmuS1+yjloIxKn/mogkFYW4IjKyhb1l35I7LrTc3xA3XH5WK4VUM5UNgwpxp7KR3IA3Ca6kmHL8fgKP8yUO+Pb3+dxVv2JvXol6/mAN14PNov3M4tXnV0REREQSbCgqccNC3FgqccvKoIiwA/KzwDJ7PD5CSmHk+iArcevqM6itTGNnPvQ3/uYrcMEBUY8P74vb75YKHWXRt6ulgohEoRBXREa28BA3a+CVuCHO8e8XJ1NNMRuYTlNd/5/I1RnCbsunoW0fsz3g97/9hO1Cy7vwQcT5gUB8HgTWNcTND3umQ7Rq2Xhpauq+TSGuiIiIyCjRpRI3ISFuRv9C3C1biGylUNifELdLxe5cP8RdwNv9rsT9dF0RbWQwmc0cO/XfXoB7+iL/AOfgrQ1w+VNw62sRfXH7/XCz9sjWCZVV2XzjB4exzwElXHONdysRkU4Je7CZiEhchM32mrPjEOKa0ZKWQ0679/n/lsoGoLD3c7roDHFL8PtXlTEp4pgP2CW0HPEuftg10gb5G7hriDvZn6+yOYFv3kcLbKMFuyIiIiIyAnUJcWckpJ1C/3rilm1ujwxxC7LAYpwsp2RD2gRo3+qt7zyRgKWQ4gLsxEqqN/Wvdm3NZ0UAdJBG7eztIwNcgCdWwan3ecuLprP3tetDu155xQterfuzjaPr8Cftzc1pLDnmNJa/NwWAl1/1rnP++f0avogkMVXiisjIduqp8K9z4b5T+OBzZ4Q2p6cP/JKtaf678e3V/W/m2hniTsR/5zy8lQJ0VuZ69pzwXo/XGIyuIe64cX4wXFOTuGBVlbgiIiIio9iQPNjMf1hDZ0/c3tspdA1xc/p3v4w5/nJOOrWTpgKQgiP94yhP5e3F2nVFoeWZM6q7H1A61V9eUcaOs8oZV+z9TLduhdWr+3Gzdr+dwhXX7RsKcDv99KdQW9uP64lIUlOIKyIj24TxsPsk+MIObJm4W2jzYHritmT4IW5HbX8fIQutrd738ErcriFueDuFeTkf8vYzNzB+nD9hjneIm5YGKSkwKawguKyHFluDpZ64IiIiIqPYkDzYrHslbm8PNttSFojsidvfEDdnX8g7LLTavMP00PLUT97v16U+/dRvzzBzm+ruB0zMgwnB8TW2kbKuir0W+tW4MffFdQEIeAltTW0mV9+0V7dDGhrg3ntjHbmIJDuFuCIysrlg2adl0NqWGto8mBC3Ld2fFAZqB16JeytncskBt1N93WncwykRx3zKtqFl21DD/J02kZvT2u0ag9G1EhciWyooxBURERGRboaiJ25/2ymUdemJW9C/PrZYBqSFTYQP9D8Vt3DLs7Ffp6KRn9x+NDdwLnvwGrO2qYxyL4M5YfdaUTawvriBGi/IBW64fQ9q67zq5Z122MpVP/9X6LAHH4x9+CKS3BTiisjI5ryPX5GSHaqAhcGFuO2Z/qQwUNf/StzOAHYLk/h06nyyj9qBd1gQcUwTOTAp+CTcDgfra8jM6Oh2jcHoK8RNVF9ctVMQERERGb06vnw4l/Izfsv3WU4p48Yl4CaZWWDQnp5JGt4TfXt9sFm5RYa4Rfk9H9yTVD+NLjhyGwIYDeSwoXUyHa0xPiHsllcZ11LOudzEPZwSvRIXYPuwH9pn1ey9aACVuB1eD9+mpjT+/IeZ/JMv8S5zueKYezj28BWhw55/Xs+fEBGPQlwRGdmaqoNPB8iOCC0HE+J2ZPkhrqsfeIgLkJnRTmZmB9nZbd0P3KbIX95YQ2Zme9RrDFS0EFftFERERESkN1X7HMb/cSkX8FtWFe056IftRvX3B2Dz//H3257kSb4I9FGJuyWN+ziRg3mC6qu+Cicc0P97pmR7X0DOjEwOz3+CCWzlGPc3yioL+jgZaOuAB94Nrf6WHzBr25rox04v8pc31LB4tw2kpHhVte+9F2Mf22CIe8dfSvl95df5Ev9iLu/zP6/+jm2m1bLLzt4Eu6WlH8GwiCQ1hbgiMrLt/RWYfhns+EMK1vvvSA/mwWbtWXn+Sv3A2ykAZGZ61bWF+c0RxyxcsBGmhE0WN9UNSSVufljRwgBeWkyiVQKoOkBERERkdNha7k8iE9JKASAtE8woKvDnyD31xG1rg8rKdNazDU/ZQeSftAOU7jyw+6YUhRY3brsrzXih7roNMYS4D70Hn1UDUEceD2SewKSJPUyotyn0l9fVkJfXyvw5XgWFc/DaazGMtW0D7e0p/OZ3e0e0Zkt5bjVUNrLf3v5DlF9/PYbriUjSU4grIiNbdQ20BWBrHY34vWwHU4nrcvwQ1xoHXombRROZGV51bVFhZIj7y5/+ByaHhcWbaslIT3yImxP2DIhEBauqxBUREREZvSq2+p8OS1iIa96zLMLnyD2FuOX+s4KZML6R1FQHlhn94L6k+PPvbab55bA1r9fCra/B+h4qawGeXxNavJUzmbBNB2Y9HBteibu+GiCiL25MlbPtG3jg73P45LPx3MS5vJ662N/3zw/Zo9S/nkJcEQGFuCIy0tXUhRZrU4tDy4MKcbPDHpQwgKTTC2AdNRRy6Y0Hw8JrKMmLnBBOnljvVeKOy4Y5kyA/c0jaKWRn+9sU4oqIiIhIV1vK/cKCiRMTdRevR8P4Yr9goqIi+pHhLcAmlQQrX+MR4k715+frK4vhF0/D7tfAxz0M5NVPQ4v3clLP/XABpodV4gaD4fC+uH0+3CzQSFtzDT//rd82onLfhf7+F9ewx4KPQqsKcUUEFOKKyEjW3g6dDx4zow6/V8BgQlxywkLcluaej+tBSwsUUEsGbWS0N0NFIxOntUYcs/12DXDe5+DDH8Kz58Lpi4aknUJ4JW6iglU92ExERERk9Jrzm2/wCP/DnzmJ2fkJehLuxk3w1gYmrX6T6XgVpeXlXquBrjofxmsEmDihc+4/wMl+iv/3Qmcl7ne4ljOuORPqghPwCx7rPpBNtaFWCo1k8xa7MWtGD6XDABPzIDvYTLiqCaqaIipxX3kFAoFextlexh/+tIiFq/7FrrxHYW4je/5vqr//rY3suuN6srO9ca5bl7jnXYjI6KEQV0RGrvAnAhTm0dLm/8oaTIj74VcvI486Umnn4W2/2+/zW1pgIn6PKibkcv45r4ZWd9wRcvJL6Pr5K1XiioiIiMhwm7LiOf6Hv3MS9zFpXJSH88bD1VfDIX8k8+jfcFr6fYA3d62r637ohg3e9/fZlUde3Q32uh4+7aFati9hn9zrrMR9j7mRx7y0Fu5+M3Lbfz8LLb7KXrSR0XslborBV+bA8Qvgp18AYNa2VUyc4FUS19TAu+/2fPraT2q44YqduIvTeI95rEuZQdHehZAe/HtnTSVpdQ0smO8XivR2PREZGxTiisjIFf4I28L8iNByMCFuelEuDeQRIHVAQWdLC5QQ1rxrfA777b2J3/y6g332geuuA9ImdTtvKCpxhyLEVSWuiIiIyOiV1uK3OCicmtvLkYOQ6bdDGJfjf/ItvP9tpw3rvWrTiWwhr60WPqmE3MLuB8YiJSzEDVbiPs0S9lq4Dvbfzj/u8qegIeyTdC/4/XBfZF8AZs6o7v1efzgKfncknL8fFGdjBp/fd21o99//Hv201lY4+fRtmdHwcWhb7k45kJUGu072D1y+kV138R+stmIFIjLGKcQVkZErPMQtKqQ1bJ7VGVoORHjQ2dz/bgq0tnYNcXMhbQoXXJjKiy/CIYcAqSXdzut8CBrEJ8Rt9y+nB5uJiIiISEwy2vyJW/G0nF6OHISsrNBiUY4/8d26tfuhGzd2kEo746n0N47vPpeOSWpRaHHGNL8n7mfrC+GWY/1K18om+O1zwUE1wAPvhI79DwcB9F6J24Mjv/RhaPnhh7vvDwTg61+HV14rZlfeD21P2XmCt1A61T94+Qbm7ORXJCvEFRGFuCIyckWEuEURIe5gKnHD5pTxqcSdkAtpUyMPSg0+6vfVz+Cv78B1L1Jk1f41mgaQHnfRVyVuIoJV5xTiioiIiIxabW2kOW8S2UEKJdMH+ACxvoRV4hZm+iFu1ErcDQHGhQe4xdmQPsAK4ZQCMC/mmD61lrQ075Nwm8ryacwsgN8e7h/7+5e9NgoOOHk3yE7j7ZRSXmA/AGb1VYkbxZf+P3t3HR7FtT5w/DsrcTeCu2txKIVS6u5221t3v5Vbd7fb3rqX9lf3W6NQqNHSIsXdAwQSiMtmN7t7fn+czc5ssjGIAe/nefJk5MzMyRI2Z9955z1T1uJ06msuWABr1pj7lIJbboH339frA7BEZfsGZpg7wPKZYmE2A3qbk6VJEFcIIUFcIUTbFRLETW6yIG4sZfRmDUNZREbR2voPqKZGTdzUGHB2D21kD9xNv/17uOoLeHAmXcvMa7ldxeyp+oK4u5Nl3JBrhpukQYK4QgghhBB7AcugrYxY2mUadTTeA5YgbkK9QdyapcowdjO4bNiCk5s5HH66djKzcTdsTtY1bEd20hsUcO8MSImGR46m8Kd/c65/KmAQHV1JelpZzfPXZn0erMolMcHNUVPMMf/zzwcupeC22+Cpp8xDDkn/y1zpG8g8HtZRf7cZ4KpkQO/NwSbLl4efGE4Isf+QIK4Qou0KCeKmNFkQN3XBdNbQl0UcwNVbbmn08eFq4uLIDG1kjwdbLPRMDW7qWL7JPIersNHXrc4axHUEJse1vi5NUbKhutqCtRLEFUIIIYTYC5SZgckyYsnIaKbrWB59i4+ou5zCtmwbaVh2pMSALapmw4aymfV0e3YzM3zXb0rWwdHnT9RlFaIccMloWLwdgLVFXVjKEAC6dymoPkdxePnlOmnjoBfhnukAXHPR3ODuN96A1avh6qvhscfMw044YiU9KixpulVB3D5p8L/zYf2t8Mm5dG6/jbg4HbnNzw8fBBdC7D8kiCuEaLtCgripTRbEdSaatb8ivI2PPtYI4qYn6Ee3qnO0CwniZpaad9Ld5c2TiWtJemiWIK61/IT1WhLEFUIIIYRo+zyF5qCtnBhSU+tovCcsA8U4hzmArB6EdLth505H6Ng6ZQ8ycaFaELcguLx+U4pe6JEKl46FCi888xu0iwNgzXrzxejb06xFW6dCF7w+F7x++HUD5JUzZeIGhgzYAegxcr9+8OKL5iEnHJvPRw+9hVESGKzHR0Kmzh7GboOxXSFWf9gx8NK/n/kYnJRUEGL/JkFcIUTbdc01sPJ2+OtfcMstYYOWu8MaxI307U4Q1xc60MzIJOytenu1IG6xGcR1lbvAv2eRz9YI4lqDtdZBvwRxhRBCCCHavoKtZiau2xGLrbkiApZBaYy99kzc7ToJlnbkmBvTY/csiGtPCS7WyMSt8q+JMLozrMsLTmpmDeL2qR7ENZwQ0R0MB0QNM7f3SDXLM/gUTFuFYcArT36Dw1GzBtlpp8HHb/1M5DbLZ4meqeE/SwQM6G8GwSWIK8T+TYK4Qoi2y2GHVCf06gQdOjRZJm5EkhnEjfI1otZVgLtCVcvE7Ri+oSMdepmDwYyCzdjxAlBa5oTKzeGPa6DWzsRNSiI48Pd4wOtt+usJIYQQQoimU7i1NLjsjohrvgtZBqXRNnOihuqZuFlZ+ntIEDcjXgdLd1fV3BTUkokLOvv1mwth651wnZ7IbM2GOoK4ET0g/kxIuR7ijg0t93DcAHP565UAjB25la//7326dtY1eTMy4Nln4aMPXEQYq3UN3So96k6H7tPLrOu7tvHTeQgh9iESxBVCtF0qMOAz9CDJGsTdk0zcyGQziBu9G9mwbrefsfxJB7ax9MW7YNDQ8A3t6dDLHESm7szCi5MhLKakNAK8W8Mf10A1grh+N5ER5h3/5s7EjY2FGPOlDAnwCiGEEEKItqc42wzi+qKaMYhrqYlrDeLu2BHabONG/T0kiNsuac+ubZmrotZM3Co2MwM2tJyCJWXYcEBEH7BFgi1Or0cOM/cf299c/nUDlOpB+JGHrGPj/P+Qn7uL7dvh2mvBcC8Ev7taENcSXAY9e1lOCcxaB+8vpHd3c0Lldevq+dmFEPs0CeIKIdquakHckhJzV3z87p/WWk4hmnJ8vsYd73YrKolgOx3w92sP8bVk4tpT9F3+ge1CNl/Dc5SWRUDllsZ2PUSNIG7p50T6frX0c49OH5Y1iBsdHRrElZIKQgghhBBt26bYgZzH21zF88weeGnzXSg+HtonQ5cknB3N4OjWajkMVUHcTCzR3fSkPbu2PQ0M/dhej65mJu6mLUl4veFDIErVUk7BFguJF0DUiNADInqZy52TzPG+1w9/ZgV3GQYkR8/F5suC/GfAFRird0+B8V0hOTqk/BoApR4Y/DSc+R7c/A19Om4I7pJMXCH2bxLEFUK0XevXwPZicAFKhc5zlrT7pzVizchjDOWNziC1BkcjInwhkyeEsMXqR62umxCyeRiLKCmNBO82UJ7wxzZASBDXVgKe9UT45gW3eXb/1LWyvlYxMaFB3LLGV6YQQgghhBAtaGNlJ97hPF7kKrJGnNJ8FzroIFj1Msy/jsh3nwmWfM3JCR3DVgVxz+RD3rvtNfj+Ijiof83zNYZhgCMDgNjYStq305kgXq+dTVlJYQ/ZkRtHaZkuAZGU6CItNZCdEDUUnGESNuzVsnrHdTWX/94Wus81F4rfA18h+ANJKv8cAV+eD6tuhhMHhvY9PhK6BPpZ6aeXZ05w94YNUsJMiP2ZBHGFEG3XKefD0P9Ahwth8eImC+JaI48xlFNRUUfbMDweFVyOjPCBrY60YHsKnDAQrhoPwAtcyT94T2fiKh9UZtV+bD1CgrgVH4LyEhlpjurc7pqTKewpycQVQgghhNh7ZWebyx061j6ZVpMI1LV1OrxkBiocKGVOZgZmELeCaNKHRcKITpBarbzA7nC0Dy72622WRlixJj1s8+pZuMF5xpzdwp/flqJLK1QZ1sFcXpxds72/lkfkDAPsgbBM9BiIDJRpG2A+yRe7cQOZmXpcX1lp1hEWQux/JIgrhGi7CouDi+7opGAGrNMZUmar8aKjg4sxuHCVNS7YGeEqZgDLSWMnkQ5P3UFcW2C22XsOY/70V7iaF1hDXx3EBahYvDs/AVAtiOvQNSEiI8zaEM09sVn1TFwJ4gohhBBCtG0hQdwOtbdrGvbAdy+dOplbrSUVqoK4AN2rSh8YezCDcRWH+cMN7GvWlF2+OnwQd/mqjOBy36pSCoYBjs7hz28Y4OxirocEcbfraHVjRPSC6LFm2YYBZn9YkUPvnmbWidTFFWL/JUFcIUTbVWQGcVdkJwWXExMx747vDpsNl2EGct2FjaunMLLsN5YziJ1kkH7D23qSg9rYk4KLUZYs2Qp3YMZdz0rw796MYKFBXB2IjrAEcT0eW6PHj/WRTFwhhBBCiL1XiwZxjUAQV3npaKlIUBXEdbth2zY9WDUMRZeORYHj6hhbN5RlcrOBfXcGl63BWqvFy83M1yEDApOsRQ4GW3TY9voaZrYvvdIgNhB8zi2FHSXhjwnHsEP8abpEg7OzThCxZOKyIpfePc3zSV1cIfZfEsQVQrRNXi+U6CKrfgzOuCQhuCs2ds9PX2hPZSdpbKYL7uLGpawmVZqPZBnpCXW0JKReblRIqQNzUItndaOuX6XSY96Rdzp18NZmU0REmNdpbL3f+lgDtTExof8WEsQVQgghhGjbTlzxEIsZwu+Mp8+ST5vvQhUV8N18+N9y+PK7sJm4GzaAUgaRVHBgxiIiK8p0BmtTBHHtGcEg8sB+9WfiLlpuBn2HDgxMshY9IWzbIIclMm0zYGh7iIuAKb2grI7JKd5ZAHf/AB8shOxicPYMTQqJ6F4tiJtDr+55wVUJ4gqx/3K0dgeEECKsoiJzkUTWrjfvOe1RKYWA44euZf4CfaK/GjlOTPKaQVxbu+Q6WgJ2M4hr1qtVUGFJo/WsgahhjeuEZyOVnmRA/wxVmbgAGWllbM3W183JLqZ7r3oCzY0g5RSEEEIIIfZOSkFK0UaGsBSACvKb72KFhXDGfXo54yc6/evq4K6qIO7y5fr7IJbxW84o6I0uS/Dba3t+fcMO9jTw5oRk4q5cm47Xa8NhGTv7fAZLV5pB06EDc8CeEJwcrVbV979yKqTGgKOeXLlpq+HHQCT2jdOg98mh+53doHsKRDmgwgs7ShiYuhwYAEgQV4j9mWTiCiHaJsssZoUkhexqiiCu9RyNyVb1+yHVb94Jt7WrZ+IFS73c+KVrWcRQikjkufyLzTaelVC5ueGdcK+Ckg+prDTfwq0D0Q6Z5uNW27J20ZSknIIQQgghxN4pPx+i/WXB9ai0uDpa76FIS5aE2xOSiVs1MVdVEDcdM8hKYhQYTTDYh2Bd3JRkFx3b6zJtbreDlWvSQpqt3ZCKy+UEoH27EjLSy8DZq/7zG7HBydsAaBdXfwAXYIP5WYLuKeBoF7rf0UVPdtbPDBIP8M0JLktNXCH2XxLEFUK0TXUEcSOb4Amr6GizqG5jgo9ul5sMzEeyjIx67tBbZq11xBkMZQkJlNDNu8FsoxQUTYXiD8C9vP5OlM8Cvxuv13wLryqnANDREsTdnl1BQ2zdCiUNKN1VVyZuWVnN9kIIIVqeYRibDMNYahjGIsMw5ge2pRiGMcMwjLWB7/U8SiKE2NdkZ0McpeaGuBYK4la46dnTXF2zRn9ftkx/DwnipsY2TTkFCCl3MPqAbcHluQs7hjSb+7e5PmxQoJRCRJ/6z28YIfNfNEilD7IKzfXuKWCvVuLBkaY/Q/RMDW7qXGHOALdhg648J4TY/0gQVwjRNjVzJq51zNqY4KPbVRQ60ExvV3tjCNyh12+1Ef3Mz8s91TrwmtmzKD+4V0PJ51C5rfpZTL488OnrV1qDuNXKKVTZtdNStqEW778PnTtD9+6wq57EXcnEFUKIvcZkpdQwpdTIwPqtwEylVG9gZmBdCLEfabUgrttD3z7mbLtr1oDPZ2bipmEZgKbFNGEQ15y5bfRwSxD379Ag7uy5XYLLB47O0pOZRfRt2DXsqfW3sdpSaH4GaB+v/w0sc2gEObtBN/OzQ+SOXbTP1HV2vV7Y3IiH+IQQ+w4J4goh2iTvrsLgcnMEcft6V3A4P3AiX+Dfml3/AQHu8uJqQdzM2huDvkMfyMZ1pjrZhh5MRuLBt7GwZnvlg5JPQdUyGYJrrs7cBSor7cHN1kzc1BQzmrprV/236f/xD/09Lw9OP73utlITVwgh9lonAFMDy1OBE1uvK0KI1rBtWwsGce12cJhj1eS4SqoeYHO7YfVqMyM3ZGyd0pRB3Pa6ti0wZvjW4Obqmbi//WkGcSeMyQJHZz2Gb4jqQdxNBfDhIrjje/h5fc32qy0/a680nXUb7lrOjtA/Q9cIPnEgDGhH757mv53UxRVi/yRBXCFEm5S1pDC43BzlFM5Ydi8/cCRfcDJxK/5q8HHuitKQcgq061h74yqBuriGAatt/YKbvStqmUzCVwBlM2pu92yEirnB1doycdNCgriWbN8w/NV2//RTMEYcljVQK0FcIYRosxQw3TCMBYZhXBrY1k4ptR0g8L2eekBCiH1NdjbEY6mf1ZxBXIDICHO5ooJ+5jCYN9/U2bgAvRK2mDtSY8DWREFcwwhm1I4Yuh2bTQ98l6xoR15+NAA7d8Wwaq0uZ+B0+nTZhYjeDb9G9SDuR4vg2q/gtbnwyZKa7VdaPkf0zwBbLZm8jg5w/ECYfgm8eiqcNIjePczPDlIXV4j9kwRxhRBt0rqVlZShI4RFhD5i1BSZuP6o2OCyr7jh0UePqyQ0W6Bdl9obV7ElBBfXOcz6Wr7VeeFaaxXzocIy8FN+KJsWEmGtLRM3NIgbCb7CWi9TGGZX1WQT4Ug5BSGE2CscqJQaDhwFXGUYxsSGHmgYxqWGYcw3DGP+zp076z9ACLHXaNFyCgBR1pIKbkaONFefespc7pVgZsk2aU1cgAgdOU6IdzMmUFLB77fxw0964rJps8wJzEYN20Z0jB8ihzT8/NWDsIdbaun+FWZQXT2IW1s5BkcHMJwhm3p1ywkuSyauEPsnCeIKIdqk/3ouJ44ynHi4lUdD9jVFEJdoM/roL214UdzKvJ1EoksdlBsxEJdWzxGE1LnaYJ0kYU0dH46VgrLvdVYuQOVG8OaE7Pb5zLdwhzUTN9USxM2PCTmuutzcmtsWL66tT35cpWafY2Ig1oyFSxBXCCHaCKVUduB7LvAFMBrIMQyjPUDge5i/AKCUelUpNVIpNTI9PT1cEyHEXqpFyylAaCau282BB4Zv1tG5w1xJbcJyCgDOLsH5KY4+1Ix8fvejzrb98nszPfjYw9eAI7NxmcCOavNjDMwER2CMnlUIW4tC96+yvPX2ywBHLe+zhhOcXUM29e5u1vWVIK4Q+ycJ4goh2hyfD6ZP18tenLgJjdo2RTkFZYk+qtKGRx+9u3aylY64iaDAkRqsd1sny6y1G6LNIK5z8ZYwjS38Lij+AArfAteckF3WLFyHwxdSSiskEzc/Bry1z3wQLskqbBDXVwiuOZSXVgQ3SSauEEK0PYZhxBqGEV+1DBwOLAP+B5wXaHYe8FXr9FAI0VqyNquWDeJGhJZTmDChZvlXh8NPqt/ydFpTB3ENJ0T0B0KDuF9P78OGTcl8Pd2cwOzEo1aBvZGVZmzR4LAcE2HXdWyrfLnMXHZ7YZ1lEre+GWCv42aZI7Qvvbubr5MEcYXYP0kQVwjR5uTlQWWlud6nT+j++Pg9v4YRu3vRx9KEaDqzlSgqOHvQLDAi6j/IlhRcXBk3lAr0wNS5ORe2F9d9rDcXKjeDJ7TwVWWlpR6u0w9fLINR/4WM+xh1xGV8zGkkUaCDuBV/gwo/wdn27TW3hS2n4PodymbgqnAEN1WviVvW8IRmIYQQzacdMNswjMXAXOBbpdQ04FHgMMMw1gKHBdaFEPuRnCw3DnQJLuV0hAZZm0O1cgoZGXDssaFNjjp0K/YiS2C5qcspAMQeCs4OHHCAjz49dRC1uCSKnqOvCyZGjB2xhf59dtUdVK1N5KDQ9TOGmsv3/wh5gc8aszeCL1AarVsyxEWEJHvUYG8PS7bDk7/AJZ/S9++ZwV0bN4Z+XhJC7B8kiCuEaHPyLfN99epRTPfuofvbt9/za9h2J4irPLgrqsoWGBDdwLoO9mTzutEOfsfyLNmvGxt2jmoqvWYmbqZtB1z2GWwuCG47jU95lUt1ENdfUSOTt8rmMEm6NUosKC9U6PTccpdZmys6OjSBo6QEIYQQrUwptUEpNTTwNVAp9VBge55SaopSqnfgey2zawoh9kWlpZBb4GAiv3CC43+oqY81/0WHDoCRneCggcFH6e65x4wdx8bCg7f+Dg47GOiv5GgwmqJ2moU9GZIuxUg6n2suXR22yQ2X/6kXnA2Y76K6yMFgmIkOHNobbJaU40kvQakHDu4Jn54LZw6D04fqLN66EkIc7WFuFjz+M3y1nMj56+nQ3g3oJxc3bWp8V4UQezcJ4goh2py8PBjDn0zgN8ZELaRbO1fI/qYI4trjzSCuUdHAIK6/BLfbDJ42uKyDPSX47FhkpI+ZTAGgMikeyj0NPEmoqkzcI5jGhrLwg83T+JRB5QspL3dC+S/gqxllDZd1+7//gd9v2VC5BVSgDrAliBsTA8lmfJqCAoQQQgghRBuUlQU+HPzGRJZ3OhDbyUc2/0XffR6+uwi+vh166QnERoyANWvgjTdg1SoYMigbVtwE2XfBipvBERWsYdvkbDFcdm1/DhgcOl/EoRPXc9rxy3Ug1tGhloPrYE/WgdwqHRPhREt2bm4pfLMC7DaY2AP+ewLcNCnkab3w502BfpYPPqt30qeXOZ5fs6bxXRVC7N0kiCuEaHPy8uB5ruY3JvJ/Kw7mpJ5LQvY3RRDXkWAGce2uBtYB8JXg9ph32SMb+gSa4QRbCgBRkV7e5nwGs4Q5bz8DF4xq4ElCVXrtOKjkNh6ps91VvEBeQTQoL6r8jxr7w5ZOAOZYE3crzXRdV0XtQdx8yekSQgghhGiTrE9fdelU1LCSYHusatwcWtara1e48ELo1AlQgWQNuy1QDze6WXvkjErh+28rOPuUJXTuWMQFZy3ki7c/0vkWzu5g2Os9R1hRI0PXHz8aMiyPrD3wI/hVaBt7St3nNGwwwJx4jVW59OtpTmghQVwh9j8SxBVCtDn5+ZCIOZNrZt/EkP2ZmXt+DUeiObGZ3d3QTNxiYlZt5Bi+YTR/kWIrqv+Y4AV1fa3ICC/b6cAyBlPhdtZzUO0qK214cXIwvzA5/S/okwYHdYfNt8MHZwfbDWMRu/JjuOexg2nX4yCef84fcp7agrjz51svtim4WL2cQopl7CmZuEIIIYQQbZM1iNu1U2HLBHGrAqKqluKtqrLmvA1NXUohjHadu/Le21vIWvgf3nz2K+LiAk/GRY3Y/ZM6O4I9wVxPiIJvLjTLKpwzPLTEAtQfxAVo3xNSAoHt8kpGJC8K7lodvjKEEGIfJkFcIUSbk5cXGsRN6R4axG2KTNyIJDMT11HZ0CBuKT1n/MA3HMdfjGVc3oyGX9CeBkBUlDlQdXt2804/hGQEuyNj4YN/wGf/hGgnjOnCq91u4Ri+4Ti+Zt3GFO5/6mB27orhmmtD3/a3bTOXb7rJXL7+evB60QNr71YAlAKXNYgb5Scx0ZxluLg4cIwQQgghhGhTrDfuu7ZUJm5VndhaJtjFH2YMbmveTNyguGNC6986O0NE3z07Z8SA0PVuyfDQkdAjBa47qGZ7e0b953S0h75mu6H2BcFlycQVYv8jQVwhRJtTPRM3rWdoENf6CP/ucmamsoL+zGMki4p7sHNn/cfgL8FZXBxcdcU1YvbayGFgGERG+IKbKtyO2tvXw+Uyjy2JT4POSebOuEhmDj2X7ziGLLqyel1ayLFV87j5/aElEA6qNrb85BMC9XD1wLuiwlJKItKLzb8Dm02XVTD7tds/khBCCCGEaCabN8Nx/I9i4rnl1ZPhylub/6I/zobX/4LnpsGKFTX3KxdsyIOf18PSHVDgavZyCiESTtdPy9liIO54MzNhd0X2r7ntotHwyxUQE+YJPEcDg7j9zM8c3V1rg8uSiSvE/keCuEKINqcop4JI9GNNPpuD6JRo/vtf6NdPT4Kwp+MrgMQTJzOQFYxmHrfwBM8914CD/AVElphBXHdCI4K4jjRIOI+oKLPz3mIvvLMAjnoDiisafq71ebDSnJAhJrrmI2qpyWY09e0Ph4Xse/dd/b2oSM9sCxAXB0OGhJ7jyScBb3ZwPaQebnQleHVKR7RlrC1BXCGEEEKIticrCxIoJp5SYooLoLSBT6LtiXc/hNunwT1fwoIFNff7XfDpUjj9/2DKK/DKHB1QbSm2OEi+CpIuCpY+2yOOjuFr6kaGSdwwbMEn9epkTwnJxE3J3YzTqcujZWdDSc15i4UQ+zAJ4goh2hxXjhko9cbEg2FwzTWwcqWeBKEpxMaGrj9S9/xgmq+QqFKzb56EBtw9t4roRmSUWedr8nMPwU3fwIKt8NHihp1DKbjqC4ZcfT9T+SedySI6quYjamkp5sB8/abQeltXXKEnVcjLM7elpkKXLiHNiIgAvDuC675fN/MBZ3IhbxAdVQkeffvfmolb3gKfB4QQQgghRONs3gxxlJobYuOb/6KRlvq2bnfN/aoC8iwTDKc0/8RmYdlTm+Y8hgMc7Rp4zZSGTaJmS4B+5jlta3Lp2a0wuL52bZhjhBD7LAniCiHanMpdZikFX1xCHS33zBmnmFmmBxzQgAN8BUSXmX1zJzZwkGYRE2cOZu/ZeK254/2FDTvB58vg720YSvFP3qUD2TqgWk1mhh6kx1HCKOYSjRlddQSSAawTkaWkgM2mg7nWbXi3gs8P904n/ZKXOJOPeIOLGWv7S2fpKiWZuEIIIYQQbZjbredBsJYrI7EJ6pPVp94grgvyLYPH1NiWzcRtDo7ODWvX0MCxYcDAPub62l307WEmWUhJBSH2LxLEFUK0Od48ywAzofmCuHffuim4XO+jSP4KKC7G4dMB0zJisMUn1nNQTV27miUJ3udslDNwB355js7KzSqs/WCvH+7+Ibj6BhfyF2PDZuKOHr6N7ziKEhKYyxgOwAwSDx+qo7ellmSMqpd5+nRz29q1PvAVwFO/wotzQs5/VcnT4HeDb5dk4gohhBBCtGGbNum5EJIoNDcmJTX/ha1B3IowpcP81TJxU2PAiK3Zbm/i7N6wdraU+ttUyegKaYHXpbySsenLgrskiCvE/kWCuEKINkcVmkFcI7nxgdIGcbvJmDmNS3mFy3kpJKAZlr8IdpmDzJ2kExnV+InJjj3OPKaUePJHDzV3vrMARj4LN34d/uA/N8NO3Qef3cEtPA4QNhN32KAdlNjNAPggzMFeTq7ug/VnjovT3/v3N2sOr19vozLPoyekqOaQkmmwowS8WyUTVwghhBCiDVu3Tn8PycRtiSBuVD1BXFUBeZYMgNQYsO0DQdyGlEmwJzX8nPZ0uHo8PHQkfHoumYPNXWvWNLqHQoi9mARxhRBtT5E5wHSkNFMQ1+Mh7dYHeIXLeYKbKSurp72/GHLNqGcuGUSGm6SgHv0GxBMT4wmuzz7qYkiIDG307t/wwh81D/7anNV31dgjyEc/hhUdXTMT1+HwU9ixa3DdmolbVOwEvyskiFtVIzg62iyp4PcblH+6HgpDB93vcg4P9n0G4iPBmy1BXCGEEEKINixsEDexmcbYVtYgrjvM41qqAgosg8eUmL2/nIItEuwNmDfDltTwc9oz4MrxcMkYmNiDnv3NQbxk4gqxf5EgrhCiTamogGJPJEsZRBadcXTp1DwXskQeYyinrFTV3d5XBNnmpGZb6Exk1G68hRp2LjpnVXB1va8HTD2zZrv7ZsDP6811jw++NY9b2W9icDlcJi5Ace8eweUxmNm0xSWRKM/GkMB1VSZu9eXCr826wctOPwsDXYt3XvcjIDYCvNlSTkEIIYQQog1rtSBupCVRwR3mTr/fBfmWwWPyPlBOAcDRoQFt0hpxvsyQ1b49zdmJ16zR8x4LIfYPEsQVQrQp+fnwHccwhKWMzliB8fLLzXMhhwMVoevT2lAYlW4qw8dCNX9xSBB3K51Cgp2NkZlpPmKVszMWDuwGuffA0huptA52P15iLv93tpkJnB7L+nZmGYZwNXEBynp3xY+ujTCEJbRDT4Lg89koy18ZNhMXdN20KvYF5sqW7uY1Y2MCL5Z3B3Fx/uD2emsLCyGEEEKIFtUmgrgVYe70lxbrRAWAaAfEOPf+cgoAznqCuIYDbI2YWM6epo8JSE8rIzFBPylXWgrbt+9OJ4UQeyMJ4goh2pQ888YyKUlhZrFtQkasmY0bS1ndJRX8xZAey7KUUayjJ+vpudtzrrXLjAgur15n3oVflNuLfu7llBDHo/yb7DvO0TsWbIX//Gqe4NoJlLvNQXFtmbin/WMDCxgBgB0/t8Y8FdxXlLeNslIz+BouIB1PMcW+eL0S42RLcl+zfWygJITykRRvRoMLCmr5oYUQQgghRKtoE+UUKsJk4u7aZS4nx+hSBA2pJ9vWObrWvd+eCkYjQjGGDezmRGiG10ffXuZrJyUVhNh/SBBXCNGmWIO4qSme2hs2hZjQkgqWUrw1+Uvg9KHcMOgDerOO57h2t4O4Y8aYd9Jn/NoDv19ny95y/2FsoCfd2MRtPErHA27mwy8G6Vq447qBwwYjO8HFo3FVOIPnCFcTF2BA352UnnNQcP3K8v/SF12SoajITmmR+WJbg7hPBWK9JSRwePs/YdXN8NE5lLotQe8YD/gV5JSSkmRmKEsQVwghhBCi7aisNJ+yatWJzVxhMnHz8s3l5Ggw9vJ6uFUcaeCooy6uPb3x5zRS4fT/05Mgd3+EAd13BHfJ5GZC7D8kiCuEaFPyLWO5lOS66hs0gWp1cauyFMLyFQJQUmZmwMbH795lBw1NIi1Vp/2Wl0ewZVsCbredWbO7AwQnLAM467JT4e7DYGJ38PrhkaPAbsNVYQaCa8vEBZj8aCwM0nW0IvBwC48DUFQcSVmxeQffWk7hnHPM5ZLSCFRyDIzpQlm5Dhx3YTOX/HgL9HscznqP5ETzA4EEcYUQQggh2o7Nm8EbuN9/UrtZMPtK+PFx6NCAuq17qnt3OHoonDQIRg0J08ANwzpAlyTonAS23Rxct0XObrXvqyvAW+v5UmHNTsgqBI+PkanmhMeSiSvE/qPxU6sLIUQzysuDo/mWNHYxorwCdp4M6btxt7ohqmXiLl8OU6aEaacU+HWgsrjEDOLubiYutiT69trGrjwdOV29Lo3Ssgh8vvD31da9nEuvh2bCyYNgqB5wh2TiVtXEjRoBqkxPpuBZB5VZEGHXgd/j3gLgHP6PO3mQopIoSksqguewZuKmJ2WTmJBCUXEUxSVRbM1OoHPHYkrLdBmIApLpt+EPUH4o2kE723pgoN4nQVwhhBBCiDZjhRnrI6lPNPRJh+jBEBFR+0FN5eCDYdg1ULkFEk6vuX9wGky/xFy37e7gug1y9gTX3PD7HB0bfz57CnRPCc7RMTjGnPB41araDhJC7GskE1cI0abk58O/eJqpnM+1v1wOixY138VizEe2YigPGeSG8JeC0oHSJgniGgZ9e5v1flevT2V7Tu2ZB//+8lz47J/wwknBbS5XtUxcwwGxh0LCmRAzEeKOMmuKjekCozoDEEElZ/ARRcWRwaAsWDJxlcIo/47B/XPM/gXq9paV6/YlJJDbsVegPfTa/luwrQRxhRBCCCHajuXLzeVB/XL1ghEZvnFzqJqQS1Urk6b8NbftS5m4EX3AFqY8hC0GnPXUzA3HngHdzMnQeivzEcIVK9Tu9FAIsReSIK4Qok3Jy4NkLJHA5qzXVS2IW2s5BX+JfnTpnumcmfcmE/kF2IMgLtC3n5lJu35TCttzwswsFvD5ovEwoTvYzbfskEzcxG6QcjPYzMxiHO3B0dlcv+EgZvQ9i+Es4Bmup7gkMlgeASAucgeUfA6FL0LlVobHLuV2HuJAZrNji65nZm2f22dgcLnThsXBZWs5DCGEEEII0QJU7aW1li0zlwf23a4XWjKIG3z4t1ofVZiJzmyxNbftrQwDIvrV3B450AxsN4YjQ2fiBmQUbMLh8AGwebNBaWltBwoh9iUSxBVCtCnFxZBEobkhObnWtnss1gycxlBOYWEt7fwlsDIHXprDk54buJ2HgdASBI2Vmm7+XEXFkSxenhlcP/jAjfUeH1ITN2mons23Omcnc/nQ3kybfDULGQ4YFBVHhWTixhnToGIJeHcCMLbgZx7iTmZzEPzrfwAh7QsG9Td/lpUrze2SiSuEEEII0XKKP4PCN3RmaxhVmbiRVDAsbSVUeMOPG5tLMBO3WhDXH2ais30piAsQMwmiDjDXHRkQNWr3zmVEwAFmUNg+dxO9e5jZE5bhuBBiHyZBXCFEm1JaWi0TtzmDuCNHUDpuAJ9wKjm0o6ioZpMFC+CZ/8ZQusocaG6iG7Gxfuz23b90fJL5uFhpWQTTf+4ZXL/pyj9Y/tsLIe135YU+jhWSiRtTS0ciQyeQyEgrCy5vyU4IlkcAiI0JfZyt46alweXZTKDSl0iZ25yEoXxwD7AbAERt2EYyehApQVwhhBBCiBagFJTNAPdS8O6Air9rNPH5zHqpE5jNmPNvhC4PwfHXtUwfc3PhgU/gnunw6Ouh+1Q5fL8K3lkA36yE3FIwwpQf2JvZEyHuWF1CwZEBSRfv3qRmVcaNAGcghLNqJ2O7msVwVyzz1HKQEGJfIhObCSHalLISP4lYoqnNWU7hzjspPTmR0wffBEBaYejuvDwYOxa83s546Mstge1ZdCEhYc9qT1mzeNesT2XpynYAOJ0+Jo3bTFTVZGUB6zclk5ZqBpJDMnGjCc+RAfYE8OkJEPr2ygvuWrkmPaS+b1ysZeDnV4z2zAmu/sIk1m4rp6zCnGAuOs2uZxNesA1DKSbxC19yEjk5UFEBUVH1vwZCCCGEEGI3lXwCbsuEDu7FED0ypMn69eAOTMPQM3kXwTyJ2BbKeC0qgic/08s9NsN9ln1+F7w5D37ZoNc/OBv67GNBXNBzVMSfDrYonU27J+LbwwEdYe4WAA6PnMVbHATAiqXbgd2otSuE2KtIJq4Qok1RhUXY0AHSyph49ijdtT6Gg6TEiuBqUZFOaqiycCF4A7HUzmwJbt9C5z2qhwsQb5m3YckKs5TC+FFbiIvz4HD4GTE0O7jdmjUL4HKZmbgxdY13nWaGb+8eOoibQQ6DV8xAFZq1yJItrwOb8okqKwFgF6msoh+5RQNDam3FxtpgfLfg+okJ0wCd8WGdQEMIIYQQQjSxyi3gWVNzm68kZJO1Hm7/drnmSnJS8/XNynpX3+UO3afKocBSFzc5JvxEYPuCiG7gyKy3Wb3syXBgt+Dq8FIz6WLFivDlNIQQ+5ZWCeIahrHJMIylhmEsMgxjfmBbimEYMwzDWBv43ozPUAsh2ipbkfk8vj9+DyOl9THsREX7iYjQkdrKSnBZxpLW2lI1g7jGHl06vpbJd/v23BVczswwo6bWScWggZm4AI52wcVOHYp5i/PJIZOndl7ByKLfg/uswWwWmcHjeYwCDHblR1FmVmMgNqlTyCByvDLPtWNHHf0RQgghhBC7r2IhFH8AyltznzcrZHXRInO5V7JlgJacQouwDlIrqj3u76+AAktd3ORoMOoa1ArsKSFJFF02mpMLr1iVCD6ZYViIfV1rZuJOVkoNU0pVPfNxKzBTKdUbmBlYF0LsZ+wlhcFlf2JS81/QcNIu3YxOVgUglYLnnzebVQ/ixsfv2dtnbUFcazDVWqe2Riau2xzk1hnEtZt3/RPi3exwdgiuH+L7EYCICG9o+YaFZhB3PvotOi+PakHcXvpxroBuZWtwBGYdlrq4QgghhBDNwL0MSr4KPykYgGddyOr8+eZy9yRzfEdyajN0LoyQIG71TFwX5Fl+jrRYCeLWx54KoztDpB2cNpyTumA39Bh+Y1Yy5YXr6jmBEGJv15bKKZwATA0sTwVObL2uCCFai7O0hSY1A5g3D574mQe9t3MCXwKQHRjfrl8PawJPqdnw0ZFtwcO20mmPyyl07Rr+x0tOsgZxzVl8a2bimvVs6wziOjuAobOGDQMWpU8I7jqSaRj4SUqoCD1mvhmw1pm4sGRJaBA3LrkTpCZD50SIsLM9uScZ6Mf0Cgvr6I8QQgghhGg8fymUTqu7jXt5MENXqdAgbqfoVgjiWsspVFSG1i2rKIHywFjXbkBCYnDMKmphS4SYCHjoKPjzGuxPHkXPHoUAKGWwaumWuo8XQuz1WiuIq4DphmEsMAzj0sC2dkqp7QCB72GnbTQM41LDMOYbhjF/586dLdRdIURLiSw3g7i21GYO4s6dC49N5585L3I40wEziLt9u9kskx048AGQSzpuovY4iOtwwLBhNbdbs2+ty6VllkxcRwYul/n2XWcQ14gAe1pwdUfHPhSQBEBntnIYM0ICx5R6YLH5w//OgQC8+WZohm1snA2cveCrC2Djbbx8zqtkozNzJYgrhBBCCNHEyn/Xgdy6KA9UbgUgKwuqPi4nJkKCN8dsl5Ie5uBmYLeDM1ACTCnwWEoq5JslxEiKBnstj6kJk2EHWwL8cwR0TgJgQB8zJrJihVGjLrIQYt/SWkHcA5VSw4GjgKsMw5jY0AOVUq8qpUYqpUamp7fQHx8hRIvZ6knnS07gFyZiCxflbEqWGcFi0I9zVQVxr7rKbFa9lAKwx0FcgNQwSRCd2hcHl+NiwwdxVdQYXC4zU6HOIC6Ao7N5zQwP73JucP1c3iU91ZJiu2ArePXECL4+7XBm6AyKCkuc12aDyEggahh0SgSnneREs5iwlFMQQgghhGhCZT+Ba0797SBYF3fuXHPT8AO8GAWW4F5LBXEBos2nx0IGlAWWIG5iFNjiWq5PezNbYsjqgL6WIO6adHAvbekeCSFaUKsEcZVS2YHvucAXwGggxzCM9gCB77m1n0EIsS/yeuFHzyRO4ksmGz/jePD+5r2gJYgbiw5kZmdDUREstYx/wgVxa6tp2xgpYeaUOPIQs5ZVeqpZJyx7h3lBt79bcDkiQgdV6xQ5KLjYLr2Mbzg2uH4O79EvZoPZ9veNwUX7hC6ceoJZRqJKXFzgaTdnNzB0doW1lq9k4gohhBBCNBH3Sij/peHtK3QNhV8sh4wfWwxFlgBqc5css4qyBHGtMwgXWu76J0WDIUHcBrEnhawO6LOTSPS/7YrV6eBZ1QqdEkK0lBYP4hqGEWsYRnzVMnA4sAz4H3BeoNl5wFct3TchROsKqbka62n+slixscFFaybuhg2hzdbQh4e5jXc5h1kcAjRPJu6B40qITuwWXO/R1RzcbtgcGGzbEyl3mwfWm4ULENEDHO0BaJdeygwOYwmDg7tf++kQ+HqFXrn2IHj0aOidBhN7kJnpqHG64MtmOMDZBQit5StBXCGEEEKIJuAvhdJvG3eMrxi8O/n1V3PTpPHZUGgJoLaFIK710a3EKLCZ43JRB1uS/q4UrN7JMe89wMtcDgQycb1bwF9W+/FCiL1azU/nza8d8IWhozMO4H2l1DTDMOYBHxuGcRGQBZzWCn0TQrSiUkuZr7jYSiCy1rZNIkw5hcJCWLQotNkShrKEoSHbmiKIO2ZM6PrQA+Ih4Swo/RoqFtGtc2Fw35bswKNTEQNwFZnHNCiICxB/MhS+REZaGWBwL/fyOaeY+6/5Eg7vA3ERcOEouGAkKEh6P6rGqUJ+dmc32LGMXqv/4HHm8TXHUVgwntb58yKEEEIIsY9QXih6r/46uGHkbV/D0qW6ZILDAeNHrg1t0JJB3GjLWNJlPmVGgWVAmxQt5RQayh74TLAiF6a8QpJfMSIwd8f6TclUuOxEeTZA1OA6TiKE2Fu1+KdspdQGqBYN0dvzgCkt3R8hRNtRbJaDJS7O2/wXDBPE3bIFLrwwtNkJR67iq2n9QrY1RRC3esnf4cPRExbEnwhGBGmp5uNQefnRYNggagSuHeYxDQ7iOtIhajjt0vWd+S84ibu4nwe4W++f3Ct0RmDDAAOSUmrWjciwTjvp7ArP/c6wF/5gGGCguPmnBpc5F0IIIYQQ1fnyoewH8G4Pv39rEXyzAnaUwIZ8GNsFLh8HNj2WmznDDPyOHAmxkRth/nVQ4YWCpPA1vZrLmcfB9r8gyqEzbgFUJbSLguMG6Azhge0kE7ehqmridk0KbhrIctqTzXZ/B1asSWd4wmIJ4gqxj5JUKSFEmzF3LlzBi7Qjh2SfA7ZdCB07Nt8FwwRxlyyp2eyWq3+vEcRtipq41QPBIePp2KNI7WgOZvMKYlBR4zEcaSFPojU4iAsQNYauXb4IrBg8yF3kksErXA6XjIYIe2h7WxTJqTWzIkKCuI6OMK4HvPAHABOYDcDatdC7dyP6JoQQQgghwF+hM3B9eTX3fbYUrvi85vZpq2HmOvjkXLAZfP19ZnDXkYcV6RILoAOp3To3YEKFJnT7VVAUyPxNDgQg/aUwobv+qiJB3IaxB17LuEgY3xVmb8KG4jym8ii3sWhZJsOHLgJfgdlWCLHPaJWJzYQQIpy//4bzeZt7uJ9rN92t02KbU5ggbnXffDybDpklNbY3RSZu9XMkWiebNQyi0yYRHa0fj6qstFOqDgXY/SCuI52+/ZJCNr3KZfx9279gXNea7Z1d6duvZmHidOuExoYDxo8Lro5gATGUsa3mfGhCCCGEEKI+pd+GD+C+8Ef4AG6V3zbCtyvx+Qy+m2neST9uyu+h7YzGDB6bgiVvTAUGseFKRBgxNbeJmmzJ+sk9gJPNbNsb+A8OKlm8vJ2ul+teWssJhBB7MwniCiHajLVrIYlCc0NSUvNeMMzEZtVNHL6Wjpc/y3uczSPcCiigaYK49mqJr05nzTZpaWajXbv0990O4gJxqb3o1KEoZJvt0N6EnUXO0YWePasFlwmTHJ3RB/rqyK4TL6OZy64duxrXMSGEEEKI/V1ldvjgm88Pr/1V97FH9oU+6cz6rTv5BTog2iGzmAP6zw1tZ6s530GzMixBXH9gvB0uiCuZuA1j2MAeeCzu9KHQQX8oyWAnR/E9i5YFsrBdc0H5W6mTQojmIkFcIUSbsW0bpGEJ/qWmNu8FLZm4sUbNIO6NN0J88Wac8zdxNh9wLu8COtjZv3/Td6dDh5rbrC9BXiApY0+CuET0pV/v0OyO9LRaZrB1dsIwYMSI0M1dqyftOtrDmC7B1QnMJi9HUnGFEEIIIRpM+aDks/D77DZ450yICdzxT4qCny+H3Htg5c3w+1V6f990pn40LHjYacev0PfpN+TD75tg3S5qyVtoRtZM3MCY019Ys5lk4jacs5P+HmGH04YEN/+bx1i8rB1KoQPl7jB14oQQezUJ4goh2oyywkpSKABAGUbzT7oQEwPnHg0XjmLusHNq7HriCWBbdnDbFjoDcMIJIfHfPfLmm7o8wXXXQc+eNfc3eRDXFkvvXpUhm9JSahnN2/Wd/AEDQjdXX8fRMSSIexC/sSunAPwuhBBCCCFEA1T8Hb6MQpUh7eH9s+GbC2HNv2FAO709NQZ6pwFQXBLJ59+ZmQbnnbFIL3yyGE6aCuNfgKc/bqYfoBZvfaTLQFz4Mcz6TW/zFcHLc+ChmfD875BTDrbIlu3X3sxheSzuzGGowIR2B/IHfUqWsnlLkt5XMa/l+yaEaFYSxBVCtBnOIjMLVyUn1qw30OQXdMIrd8OjR7P5ostDdvXoAQZe2GYOpocc6uKzd2bx3ntN14ULLoCcHHjmmfD709LM5apyCmWWxNlGB3GB/gNCZ2WLjPTVbGRPCg6mjzzS3HzkkTUzc7EnwTjzA8No5pKXFwGuPxvfOSGEEEKI/Y0vH8pm1N9ufDcY3bnW3e9/NhiXS2frDu6fw7BBO/SOXEv5gvaZYY5sRnMX6gnZvlkJ6zfqbf5C+HAxPDsb7v8RcivrPIWoxmn5HeiZinHiwODq6XxsllSo3AaejS3cOSFEc5IgrhCiTSgqAmfRzuC6kdHMpRSCF9ID3a6di0M2H3MM4C+D7eakZjHdozj5xCJrKd2m6UKYcrRVrMnI+fn6++bN5rZwJRjqc+oZSSTEV2Cz+Xnh0W/DN7Lc4T/6aHjoIbjiCmoPYPccTkVMHABJFGFsKYBKGTQKIYQQQtSr/DdQnprb3d4Gn8LnM3j65XHY8BFLKRf9429zjJljDeLuxuBxT0RZavC69BN3+IqguMLc3txP3+1r7Klgt0xacfrQ4OIZfMSSxZYsEM/qFuyYEKK5SRBXCNHqvvtOz2GWTisEcdFB3C6dCkO2TpoEqHLYYQnuZiaArdosX80sLs5crsrAXb/e3NarV+PP2b5jDFuWfcy6v/7LlRfW8piV5Q6/YcDtt8OLL9Yxxo7oQUmPbsHV1K3rwbuF3OxcnnkGvq0lViyEEEIIsV/zbISKhTW3uyph3PPw5jzwq3pP8+vLTm7fcCM7yOSBiHu58GzLOUMycTs1QacbIdqS/VBWAKoS/PlQaCm7ldxS4/59SERvc/mg7lTExlNONH8znK1/W9q5l6KL5Aoh9gUSxBVCtLrTT9ffrUFc0tJb5uJGBAC9uu9i+PDApdNgwgT0hACWTFzax4MtoWX6FVBfEDdcHd2GSMgYRveuhbU3cHSpfV/Y9p1w9zM/FHTIXQNKcc45Pm64AY49FqZP372+CiGEEELsk/xuKP0y/L5rv4KtRXDrd3q5Dl6vjS9e78D5TCWdXZyU+gPxcYHMXqUgq8Bs3LFbk3S9waIstb/Ki6H8V/C4oDTQPwNIlCBuo0X0M5eddja/cD1p7OJEvmL6hpHmPn8ZuMPcJBBC7JUkiCuEaFW5uWZwMoNcc0dGu5bpwNNvwfVfYbvwOX6fuo4ffoAlSyA+nhrlFGifAPaWfdzLWrqhNJBEsW6duW13MnEBiBwAhiP8PiMCHI2sl2ZPQ03qw8tcxqW8wvv2c/D7DWb81D7Y5LXXdrOvQgghGswwjM6GYfxkGMZKwzCWG4ZxXWD7vYZhbDMMY1Hg6+jW7qsQ+72y73RpgerW58FXy831A+ougfDGewfw8TZzEoOuO5ZDVqFeyS2F/EDWa1wEdNnNDIDdFWPJSHBVgms2FFlKKSRGgSO+5nGibs4eYJjzh/Q4zIE/UienbN6SRO5Oy4eI8p9BNbw0hxCi7ZIgrhCiVVmzM0ODuC1Ur+ubmfD+IvhyAVH52Rx+OLSvijv6S0PLKbSP1zWoWlD1TNzycsjO1ut2O3RpZMJskOGA6PHh90UOBqORfx4Mg5ijx3IFL/MalzK3dBjZO0IH5Dt27GZfhRBCNIYXuFEp1R8YC1xlGMaAwL7/KKWGBb6+a70uCiEomwkVi2tuL/XoMgoW//jlfp56cRx5+TVntN2UlcS/HziMHDL5g3EAGErBjDW6wQrL+Lp/Bth2Y1bcPZFgKUVW5tGZwUWWUgoJUWCLq3mcqJthC/lc4nT6GTk0O7g+Z76lbIavGCoWtWDnhBDNRYK4Qojm5ysC5Q+764cfzOVfmcgT3MT3KSfDqDEt07c4S6CxtDR0n7cYdlgzcRNbtZxCaSls2GCud+sGTucenDxqVLCcRJBhh5iJu3W6pLT22Gz637moOIqvf+gTsj8vb7dOK4QQohGUUtuVUn8HlkuAlUDHuo8SQrSoioV6MrPqlILzPwrZdC3P8v60kdx07xF0GX4DN9x1RPBGeU5uLMefexZFxXrysB9STjQP/C0wwewqaxC3feNv1O+pkIyEQAmFQksmblI02Jp41uD9haNzyOq4kVuCywv+SIVKn7mz/BfwFbZQx4QQzUWCuEKI5qMUlP4ABc9Ayedhm/xmGb/O4HAeT72X9I9O1EVUW0L1KKnVzm1QGQg+J0ZBXBrmNL8tw1pOoawMzj/fXO/efQ9Pbo+HlGshsr9ed3aExPNDZ7ttzOmiupGSbGZWfDNDgrhCCNGaDMPoBhwA/BXYdLVhGEsMw3jTMIzk1uuZEPsx1zwo/V/4fe/+Db+ad+xnMZnnuDa4Xl4ewTOvjKPHqOs56LgL6T/hapau1CXI7HY/Jz9sCY7+sUlPiLbSGsRt4UnNoJYgriUTNzEKjJiW7dO+ImpIyOq4kVsZzgJe5RJufe1k+GypudNfItm4QuwDaimIKIQQe8hXCMUfgjfwDL17GVSOAmfXYBOXCzZv1ss2G5Tv+AjDs4aImBasO2vNxC2pVpMsuhLeORO2F+s72S2chQuQYnkp/ldtvJ+by56zxUHsUWBP0xm4xh6k9joyGTIgm1m/9cBBJe4fs4De6BkrdH8LCyEpqQn6LYQQok6GYcQBnwHXK6WKDcN4CXgAUIHvTwEXhjnuUuBSgC67XbNHCBGWvxzKvteJDtUVuOChmcHVYuI53JjOvTf9RLv0Ml6aOpIly/WcBW63ndl/mf8/DUPx9n+/ZOhJPrgrFnaW6WzX71fByhzzGgO7NddPVrtwQdyi6pm4EsTdLc6u4GgHXv1vPG7UFo5gPZfwOvhB3TsD49j+EBep23uWQ/Q4sEW2YqeFEHtCMnGFEE3Plw8lX5gB3CquP0NWrRN0de8OkY5dRET4wGjBWl3xlqzT0sLQfVEeOLIvXDAKLh0LtpafdKFfv9r32ZrqHdyeALFT9iyAC2CLYlD/Ih7hVrLpwI8cxmjmhjT58cc9u4QQQoj6GYbhRAdw31NKfQ6glMpRSvmUUn7gNWB0uGOVUq8qpUYqpUamp6e3XKeF2NcpHxR/EL7EmFJw5zQdyAU20o1ObOXZh3/gnpt/4fLz57No9nS+/hrGVKs41r1rEdM+/D/OOW2JfmLsyL7mzlnrYEQnPTFajBMG7u6MuHug3kzcSMnE3RMOcxLh9u1K+brjPyggCQAjvxwOt8ws7N0Jrj9auINCiKYkmbhCiKZVNgtcv+uBanWeteCvAJuu27V2rbmrTx8/+ALP27fkhAtxluza6pm4/mrlFVohEzcjo8UvuUcSEiPJIJd0dgHwL57mTMzabjk7FFWZuUIIIZqeYRgG8AawUin1tGV7e6XU9sDqScCy1uifEPst12yo3BJ+3/Ic1OdLgyOkf/E04w7O5coL5wWbGNGjOfZYXXFs0yadDJGcDMMG+7GXu6Ey0PC4AbosA8Dvm2D2VeCw6dIK0e2a6YerQ/fucOdx+gm3DoGx9KBMuHq8zsgd27XlJ1vblzh7hpRJGHlQPvd9eA/PcIPesC4PvlkJxwbKp7nmQNQIncQhhNjrSBBXCNF0yn/VX7VRXh3gjZ0ChAZxh3TcCqdMhYw46NkPHj2rmTsbEG8tp1BoLvsrdH+tWiETF+Cyy+CVV2pu94WJk7e2xKQoXuMSLuQtAE7hM2Iooxxd3HdXzk5gL4tMCyHE3uVA4FxgqWEYiwLbbgfOMgxjGLqcwibgstbonBD7pdJpNZ5ICzEokz+feojc6/9EYfCt4zhWPf6CORVDZD/9FdCtm/7SksF+OhQ8D8qjM29jI3TW6+YCWLsL+meAzWidsgUdOsC/jgHvdnPbqM76q4pk4u6+yP5QnqgnkgYOP3g953x4jRnEBXh7vhnEVR4onwXxJ7Z8X4UQe0zKKQghGi07GyZP1k9snXwyvPkm+ErnQPnP9R/sNhN/rDVde0et0hM5fLoEPm/Bx3xCJjazZOJWz8IFsLfOHDCTJ4ffPmhQy/ajIRISY/iTcaxEf9Bw4ONIpgX379yxq7W6JoQQ+wWl1GyllKGUGqKUGhb4+k4pda5SanBg+/GWrFwhRHOqzIKKeXU2UQpu+eBsTuQrTuEzLjx7ET26FZgNoifUfQ17AkQH6izER8J1gfbXH6QDuFVssTWPbQlGHbljtkgwJCyx2wwHxJgfFg6duAE/dg5lhtnm1w0w15IF7l5Ws+ydEGKvIO+WQohGO+88+PlnvfzFF3DRRfD+1O3ha3xV5ysIBnJ3WeJ5HVhlrmSmNV1n6xMSxC02l/0lcNlnMPJZOOoNmLcF7Ekt1y+Lzp1rbktNhSeeaPm+1Mfj049mfc7JwW13cz82dNrwzp1+qNzcKn0TQgghhGhRqhJKvgxfZszip9ndmf2XnvzX7oTbrvvN3OnsDM5O9V8rarQZDL18HFw0Cv41MbSNLa7mcS2hriCuZOHuuYj+wcnK0tPKGT4km5kcyhecaLa57iuzJrHyQtnM8BPsCSHaNAniCiEaLdzkVP+8+uSaG2sTeJwsL8/clOG1zHLWrgUft681iFsMWQWQVQgLtoJPgS2p5fplUT2Iu20bbN0KHTu2SnfqNOwAXdPsea6mAj2YHMoSxjEHgF35MeD6q9X6J4QQQgjRYkqn6Ql/q1MKvloO7/2NUnDvEwcHd1141kK6drY8HRY1qmHXsseDo0PgGAc8cjQ47aFtWqk0WJ1VHKUe7p6zRULc8cHVIw/Rn6vu5258RuB3YH0eDH/GDNx61oLrN4QQexcJ4gohGsXlqqeBUrA4G279Tmew9nkMOj8IHy4y21RuhcotIUHc1PJsc6VDh6bsct2GDIF/Hwv3HgZnTzK3+4sh11JSITOl1QaZHTtC/0AZq0mT9MsTFdUqXanX+AN18bYdtOdDzgxuPyMwudnOXbHgWa0zsoUQQggh9lWVWeD+u+Z2peCfH8Iln8INX7P5yr/57c8uADidvtAsXFtUSC3cejl71b2/tTJxz/0vHPsmTH4ZSt36c8Kln8JN30B2fR8uRINE9A8G6U8/fjkAiziABx136/2dEuHVU6GwwjymbFbIpGhCiLZPgrhCiEbZUWv5JAX/nQ3t7ofDXoM35+kM1sIKcPvg2q/gJZ2N6fcbUP5LSDmFpAJLELdHPQPQptS/P9x6Elw5Hg6zDJK9+bCzzFxv13pprzYbzJwJ774Ln37aat1oEJsN+vUpAeB9zg5uv5yXGcoidubF6EcKy2a2VheFEEIIIZqXvwyKP6j5uPq90/VY+Yc1wU0xX88jDT0ovuDMalm4kYPBiGj4daNH1V1ftrUyceeu0TVZl+dAqQd+XAtfLod3FoBbQhJNwrBB9DgAhgzMoV/vnQA8UHk7frsdthZBuQeSqyWllHwJ7hUt3FkhxO6Sd0whRKO89FxO2O3X8ww8WEdgbkwXOHEgr707nKRet3LRlQPZvt0b3B1jneWsR98m6m0DGU793V9ibivcDhWB/sU4ISG9ZftUTfv2cM45kNaC5YJ316kn6+D3DA5jZfxQAJx4eYTb2JUfoz/PeJZDZXYdZxFCCCGE2AspDxS+Cf5qGaafL4UX59RoPskzi12k43D4uP16SxauYYOYQxp3bVssOGpJPDBsYLTSxGaxlsBhmQeKLNmgyakt3599VfQYsMViGHDGCTob14eDEycuhhsngqsy/HGuP3T9ZiFEmydBXCFEw3k28MR/2tXYPJRFPMa/a7ZPizFnxH3hJHwZiVx64/GUlEby5vsHUFZm1sdyZltqK/Qe0NQ9r1tVhoPPUhN3+yZzOS0WHEkt2aO92o03xTJiaDbt0svwPH4S2HSJha85Dr8XCouidGZK2bcyYBRCCCHEvqVsJvgs49pSN1zzJVz+eUgzdcpgjhm5iFXomlkXnLWoWhbuoN0r5eWoZRI0WxwYRuPP1xTiLD9HiRuKrUHc1k2U2KcYdog9DIBzT1uMYehM8K9/GsiaU0+FkwfrdkrpjOgqlVuh+OOW7q0QYjfUUWFcCCEsfAVU5n8B3BjcdNSUtaQklHHBFzcSQSAYFx8Jf1wN7WrW3PrHpaeEPbUTD8a2wKDVMKBbj6bufd2qMnFVqX7UX1VCjiXjOCMObAkt26e9WFJqPPN//hC/OxubTcEvQ/ns6368VHYFYJC7K5bkpAqo3AYV84OPfgkhhBBC7NVcf4VO4FrogpOm6jICVncdyswh5/LdafqJJYfDx+3WWrjObhB3wu71IeoAcNXM+G3VsWxsjLm8owSqqkzERUBEK9Xp3VdFDoHyX+jZvYBjDlvDN9P1E47PvT6a5x75XrdZnwfjX4BDesGH/9DbPGuhYjFEDW2ljgshGkIycYUQ9VOVUPQuW7aE3vd54NZZjB2dzRH8wKW8Qm5sR/jy/LAB3NLSCD76clDY03chC/yB0Vz7xJadtcvlgtMf1QPs49/SmRO+XNhpmdQsXYK4jRYxQAdwAR4+kuf63Afo7I+duyyP8pX/Jtm4QgghhNj7uf6qWfP/722wylIyLC0WZlyCuvpA7n5scnDzRWcvpFuXQr1iOCDuWJ1VuTvs6eEzeFurHi5AnCWIu82SbZwUDUYbna13b2XYIPZQMAyuu8S8ofDa/40ga2sivPaXDuACzFoHt39v1m4u/Qo8a8KcVAjRVkgQVwhRN+WF4g/Bl8/GrKTg5oy0UkYM3c7g/jn4cPA6F3NK6jQYnBn2NKvX63pXsZRyGS/TiS3Bfa9ePdVs2D388c3G6YRp8+D3TfDnZj2TcOUmyLUEcTNiW3fguzeKOsD88BEXSWI7f3BXrjWI6y8PzVgRQgghhNibKK+exKz0e10P1+qQXvDm6Xq5Zyp8eyEM7cD3M3szZ35nACIivNxxw6/mMTGHgGMPJkEwDHD2rLndnrz759xT8ZaxnzWImxglQdzmEDkQoicxZeIGRg7bBoDb7dA3Do6vVrbu9blwwtuwIQ+UH0q+gMotNc8phGgTJIgrhKid8kPJJ+BZD8DGLHPwd8SktQCMGb6NyEgvChuzswZRVBwZ9lTLV2VwGS+zjY68zBVczfPBfUlHZ8LXF8Adh8CJBzbjDxSGwwFRgZq4Ctj1kw4qhgRx48CW2LL92tvZYiDSfBwrPbU8uJyXG6FnKK5S/jN4w0+YJ4QQQgjRZvlKoPANcK+uvc1R/WDxDTDnauiegsdj5193HxHcfem5C+jcMTAvgz0Zosfueb+cnWtus6Xs+Xl3l7WcwlZLEDclBozdqPsr6hd7MEbcITx+j5kdPvWjYcxcPQReOCm07Z9ZcPI7etI5v0sn8Hg2tHCHhWjDqrLV2wAJ4gohwlMeKHorZFCatTURULzMZbzz2XBYnE1UlJeMtLJgm8KimnfT121I4bxrTsJDBInoQeolvIYTna3QrWcpjOkC1x0El5/WvD9XOAmW8g8F28FfBjvNn4mMOLAntXi39noRvYKL+ndEcTKfcfJj18DJUyGrUO9UXv34lt/dKt0UQgghhGi0ikVQ+Ap4t5vblu2AzQU127Y3y3I9++oYVq/TmbYJ8RXccX2gFq5hh/jT9OPweyqiX83zOFpxArE4y1i7avwHOohrk0zcZhMzkcmHpnHCkauCm8675iR2TBwPq2+Bc4ebbbOL4ZBXIKdUfxYq/VLPXyGEaFNlRiSIK4SoqXIzFLxc41GanNwY3uAiLuNVveHUd+GPTSQlmDPMFhbHmxOFAfkF0fQeey0A73IuW9Az5qZQwNF8B0Byksu8iK0VJjdIttS7LQz8LHcdCjMv08X+Dx2q65OJxnH2BJvOzO6YqYP3N/MEqQXbwOODOyw1uCqz9WBRCCHE/sm9qv42QrQFvjwo/gRKvgS/5cmtV//UQbCxz8G1X4WWDQhYsz6V+548OLh+3y0/k9kucI6YieDs0DR9tCeCzVI+wTDA3sIly6ySLE+0bcw3l1OiJRO3ucUeysvPLiUtVSeobNuewKGn/ZPtnnR46ji43JL5vTEfTnxb34zwFeuMXOtNCiH2R8oDrl9auxdBEsQVQoSqWAJF/we+/Bq7hv76JRfylrmhqALaJ5BoCeJuyDsHUm6C+JPA2ZHn3xgd3OfFyTv8M7h+Bw/x1rNfYBiWi7RG7dkkSxC3KBBQTonR9X0P6QXdurZ8n/YFtkiI0ZN2TJ6wCTC4iSfN/T+sgVu/M9fdK8GzqSV7KIQQoq3w7mhTjysKUYPyQtkMKHwN3MsD2xS8NEcHvu78QW/zKfhmhf5u4XbbOfvyUygr12W8BvbL5aoL5+qdUUMgZlLT9tfR3ly2ZwRvrLeKFEtAucCSvJESE34SNtF0jAgy+5zG1Ne2YLfrOSqWr8pgyMFX8NSL49h66Snw5LFV8w/D+jz4x/vg9oI/UC6k/Bc9j4UQ+6PKreCvqL9dC5EgrhDC5F4BZd+Cqqyxy/PmIq7Meji4XjioL2y9E7qnkL3DDLzecGOUHiRGDWX+mnO55/HJIefpeH2P4PIo5nN+1Huwy1K6wJZAi0u2ZAcUhnmDlknNdl/kIDAMunTU2Si/M4Fnudbc/9Z8fLdMM9dLPgJfzcwVIYQQ+zovuP5o7U4IUZPygHsZFL4M5b/rD/P55XD6/0G7++Ge6fDHZrN9hB0+/Sd0SQpu8vsN/nn1SSxYrDNtIyK8vPvC5zidfl1+Ku74pu935EBz2dGp6c/fGIdNgudPhPfOgtdP1UHDOw6BSb3AiGjdvu0njj6pH++8mYvNpgO5u/JiueneI+g8/CZ6PjeVN4beideh/y28j58AkYGnEJUXyn6Confrrv0sxL5IecG9pLV7EUKeDxZC6CwC1x9QPguUr+b+z5cScetXwdXfGc/QT46ACD0ISEstZ8NmPVnC5s3w118wciScfGrNGlfn374FlvaCmev0hss+09/7psN/T4AprRAwTU4ylwtdNfe3RmB5X2GLg4gBxMYuJyqqkooKJ7fwOIcznf7oR2ftb/9F+dljiBmWbE6mkHRhSFkOIYQQ+4GyGTpgFju5/rZCtITKbCh+T9cIBdgQeNx8R0n49gd2g0eP1uPaAL/f4JrbjuLjrwYFtz1xzwwOOMAHkVMgegKhj6U1kYjeut6svyL8RGctqX9f6DC05vbWKKO2Hzv7n5lkdnBx/gV+tmyNDW7fsDmFizc/wOOcwxRm8v5VF3L+mYu48oJ59EnfBo/9BJN7waHbIXIwxBwIjlYszyFESyn/Vdc/t7fixJDVSCauEALKpgc+OIUJ4M5cC1d/GVxdxkCem/A0can+4LZnHp4fcsjYseBwwJbQkrq8+ezXeuH6g8BebbC6vRj6pIMtkRaXZHnEq6gCvH49sZk/8BicZOLumbjjMRyJVFTooKyHSI7j65Amhad9YwbQvdv176QQQoj9j2t22JJOQrQoXyGUfgdbn4efl8LyHJ30sCIHKmo+scaEbvD7VfDFeSEBXJfLwblXnsSLb5nlxa6+oohrbh4BSZdDzEHNE8AFPZ9D1Bid6RrRp3mu0eC+1HJjXkoptLhDDo1m7RoHrzy7mEMnbSAy0hvct4a+vMSVFBVH8eyrY+k77hrOP+dweG0unP0+ZNwHDz4Ha56C0sBNNyH2VX4XuH5v7V7UIEFcIfZ3ZTPBNafmdqXg9b/gHx/ooCaQQwbH8g1lMUlmO8Ng3CGjGnSpKUdk6IUxXeDho8wdDpsurJ+Q1joTiCVb7qwVumBDHgx8Ejo+AEe/IUHcPWWLhNjDQzatpxdH8n1wvUPRBujzOCwMzILrmgcVC1qyl0IIIdoC5YOCF8Cb09o9Efsb5QFfCZR8BSuehrNugh6P6Il8z/tQT8p6bH/45QoY0M48bsYl8Pl50Dst5HQ//96N0UdewvufDwluO/NMeOa5RAxnBhj25v+ZosdA0kVgi2n+a9WltvG9UfOpPdH8IqMjufTaocyY1Z7iXVn8NWsWzzz4PWeetJROHULLmmX+OTf04Cd+0Z+T4g+Hm4+Doj9A+RFin+P6M3ySWyuTcgpC7M/Kf9NftVmRE8xG3eHowATvL2ymG+9e/abZJmIgODty0EHwWx2nAujSawAU/KD/0F8wCtJiYfoaOGe4DuxaZ9FtScmp5nJxhc7CBT0hhd0mQdymEDmQu/69gQceM2si/8CR3MJjPM6/zXZHvA6bb4doJ5R+A95ciD0CDLnnKIQQ+w3lg7IfIeF0Ka0jmoevCLCBvxC2r4ev3oYVG2HmCli7q0bzz0Zdx4Inp1BW7iSWUsa2hy2HjMDfIZnY5ZXEbvTgqnBSUBjF2g2p/DKnKytWZ4Sc4/LL4fnnwd4CsdsgW0zrB3ABqOX/sQRxW5ctmoi4How+uAujJ2znupLP8VcW8uMvPXj+zdF8+0MvjrIkXdTw1HT9dWAveONZ6Ht0y/VdiObkXgauX1u7F2FJEFeI/VX5L7pIvdWuMh1YBf1o1zkj4P8WwoiOjFs+h01eXU+rc4di3cYWAzEHA/DYYzB+fO2XmzkTsMdD9FgoD0xcctwA/VWltWrNHH4oRMyDxGjolaofmauSHitB3CZy060dePp5D2Vl5gQWT3ALKeRzK4/hu24i9qvG6gAuBGo1/wXeLZB4UctkrAghhGgbPGuh6B1dLzSyb3BzRYWuvb9+PUTO/Y3Rs5+m9/Ivyel7EOU9B6M6dyXz149wn3oOtn9dT3yCga3qPuCiRfoEffpAcjL4fLr+k9g/bNkIv8+Cx56EHdkwIAOmng1j/wPba6lxC5QTzRWfXclOrEHZQ2Fmwy4bFQXPPAOXXtp8lRPaPL8Bk16CrEIo88DQ9tAzDd66p7V7JkBnSjs7Q8p12DzrOfzI+Rw+5Rs2bHDwwpuPcPJ7Q5hUMp2beYJx/FnjcP/KbGzbvoK0xRA9HnyDIC5lP/6FF3s193Io+VJ/Fm2DZNQixP5GKSj5BNwrzG1zt8DdP8CqXNh4m/kH94AOcNehZB8/hU2jzAkRkhIr9ELMweDQj46NGwevvQaXXFLzkoccor8AiBxuBnGra60g7qCh0P4Ac/3n9eZyRpxMutBEEpKiKMnfxr9v3MyS5Rk8fMdMRhx6GbfxKAUkM3lDDkfGRdY8sDIbSj7XMzfbwuwXQgixb3FVQoELHnselt0DS7dRfOgJ3Jf4H178thsVFQad2MJn3Ehv5gHQbvVvsNp8JMjxwFKSH7gUlxFDQoLipIhveWvn8XVetrDrENZf+TT+yVNIMQro+MBlRGxcjdGxA0ZxMfTtCxdcAAMGQEkJdO0aPkixYwfExkK83ARuMStXwp9/wkknQYIT5i6F00+vOUGD1SNHsnFHMj9c8iajn/sPwwtqjk8XM4TzmFotgNsw0dFw9tlw1136V2W/5oiELYU6gAuweDsUu/XEa6Jtieipv3zF9Bi0kqceWcJ9t87nnY/7ccGrX7NhXQKn8BkfcHbwkOFFfxDz7xSGDtzB+LRFnPvUwQD4OmdimzAW48ApMHAQDBoEiYnglCcsxG5SSv/d3bYNVq+G7Gz48Ue48EJ8B06kvEzhmbeY2NuuJWqeOSbYOvpkdiV0p8IFSVuX8vmAu9jWfQLdusEhQ/M4IPcHbJs3gr0I1Fow3JAZryexTIiC+BQ4y9smbvwaqo1Glxti5MiRav78+fU3FEJoygfFH+rsFgC3F+6dDm/MM9ss/Re0C/3Q8dJbI7ny38cG130592GLOxiiJ9b48PLqq3DZZaGXveoq/fhYUNH/gWddzf4lnA6RA2pub27KB7seMNcf/BH+GyhifutkeHim3EluSq45UPoDAEbGvSG7VG5gfd0ueGkOHNILjulPfkE0Z195Dj/M7MiQIfDOOzA0zCTHQogWI2+K+4EWG2tXVsL/3QM/fAc/rIbCihpNXrBdxW3+hykhAYCbeIInuKXO057JB3zEmQDEUcJSBtONzbW2X84ABrMUhY1ubORgfuYFriIGV63HuGyxXDhpPe6kdkRHwzlL/81RSx+vs19ZR1zMhpteIqFkG/3uOJmYlX8DoAwDQylUQgLGsGFw2mnQvz907qyzh6ts3w5lZWCz6WBIVhb4/TrIPH06DByoA82RgRufSsGcObpNp05w3bXQfwA8/LD5gdjWgLJFPp9uV9uYqKJCX9Pv118+n64d4HDofZs363/rAQP0dq8X3ntPB1q7d9f7x4yB9u1h61b49FPIzIT779f9fPZZePddnVHtr6UG5xGj4ZbD4IJXIWtnrT/KkoxxXG17nt92DGcYC1nI8JD9r3Ap/458kr4DS+nbV9E+00NCopPYuFgqvZGUuxyUu5yUlRH8io7W8alOnWDwYJg4UcfyBeB3w8DOsMrybzKhG0x7HWKntFq3RAMpBcqD3+9lxrQSXn4tjq+/jaGvbyUX8zp5pPIUN1KBnqjuBa7kSl6q85QFXYdSPvlYnHffRnq3WAyUfv+Kj4fRo6G8HBISzOuDfB7bFygFHo/+t/ztNygu1oHYbdtQxSVUnHUBxb2GU1IChYXgn/4jw+87Hoen9r/DAB6cROPCj51+rORvhhNNzbEEQCGJDGMRm+kKGLzCpVzKa3X32zD037SW/R0Me7HWDyMLIZqfUuBZA+U/gjcweFqZC5d9GjqYAtiQXyOIu3BZ+5B1W+wkiJkU9lKXXqq/Lr4Y3njD3BYicmj4IK49tea2lmDY9VdV4fKqmrgAGakyYGhqUWPAuwsqFnDlBXNDZmzOL4gmJdkFJW7IKYULPoaJPfil/6X8MLMjAEuWwBVXwB+1JHQLIYTYyzz/PPzrkTqbXOV/gX6s5FBmcnj3tTyw5T7whrbZGdWJ9IqtwfUOEXkQSPw7n7frDOACDGQFV/ECz3MNLqK5kwfrDOACPOK/hQ9/Mie5WsbZHEXdQdxXf+jKQz84cNCBS7iI+8ginV0YgUCFUVwMv/6qv4CbenzGvMyu4HAS4yvj+9871Hl+gK86X83UPg/hcsZz5NbXuW5ZtcHY/76Gxx7Dhw07OiC6M7oLVxytXyPDgHZl63n++151XicnrjsPHjWHzJLV3DEt/NjQym/Y+PzepVR070dmzq/0nf4dnWd8XPdBNx0N9mL8P3+O7e+/62w6c1lH7r75Yo4rdnIr99bazpXrYzV6XLGIA0iiAIVBt0F+jjysjMMOrWDHRDdRce1rPYdoBMMBXZNDP3d0SARDnrDaKxgGGJHYbJEccWwsRxyr425vvjmQdz57ikWLzJtAsZSyjrrfNwCSNy9m3tsZHPF2DLGxPnp09/LyrhcZv+N/9R5b8vdabH16YbOBzVWG/YfvsC2YhzH7V4ylS/WNr8MOg7g4HTBMSIBTT9U3uLxefVMrKUnfEPr1V5g8GY47DmbPhh499N0Yrxc6djQ/B27frr9iYiAlBfLy4O+/9Y2nzEwdcczIgAizbBxK6cBfaaled7uhnWVSRL8fFizQN7HS0kKPq+3zZ137QPfL59N9LC7WpYNALyckhB5bUAD5+foulMOh2yYm6npFTqfe5veH3kQE/dosXKhvvGVkQHo6bN2KPyaO0mI/np9+x1XiZdXBl7PDk0LRDhcT372Egcs/wu6v9ofbwgCue2Ewr1luqkVxID8zmDHMrfW4rXRkJPPxYyeZfFZSd1JYEkV0ZBub6QbAF5xUfxC3f2bd+1uQBHGF2Nd5d0Dpt1AZeJwsp1SXTvhyGVgS8b3dM8g98zDiBvYmAQ8+n8FF15/A1I+GhZzu+8/mQOzB9V72gQf034AhQ/RXiMj+UBqhZwGuYjjAnr5bP2KTMCJBletla1209o1/fE7Uw7BB/HHgyODef/8ZEsRdujKDSYlz9QRnVX7dwAm/3sZ9lPEgd1JJBHPm6MFjh/o/xwohhGjrpkyB4yfA/2bX2qSIBF4d9hJzXoKxY3uDJ19/OI8zSx5VH0U8DTzu1Z9dC/OvYuXCyRSVOyktqMS+dhW2bVnEbluLx63wu9zgclHRcRLDvXDwlhn03Lmhzm5n0ZnXuTi47qCSsWHqRVb3eCCDOI5SBrCCPxjPCdQeuBiw4Rue2nByYC2ek/mMzzmlzmv8vqUzX2yJBwxmch7jeZVR1MyqrgrgAnzmOorPPtPLEbh5gboD6wBvlp7B859kABlMYQxj+avO9q+ri7jsHv0BuzO9+ClMn6xuMP7DJ+17sMuXSjd3F5YzMKTP1T227XLitq0OCeC+yiW8xQU48LKEIRSTGNwXHa3jN8cem8Qxx0CXLgCtNNHuvsyww6D28MMac9uIjhLE3Yt16AB33gl33mkjNxfmz4cVK2D58jhWr7+YY7KOoO/2n+jjWcYR/EB3NoUcX040l/MyYFBWZmfpMjsn8wor+I0UCuq89oDhkVTdrotFkcVlocesXq2/rO69l47xRcQY5cwqPYfO/ixz3+uvU50fg7E9d1HiTCYSN4tW1f+hI9+ZwXGjcjAMP3abwVMrjmRk3vQa7YpiMsFmI7E0G4Cfj3uKhQddS6VyEL0ziwNnPcDwv1+n0hGF06uzSb32CBw+87PzD2Pu4vux96P8PjDsdC5cyk3vVP/QXdMbD26nPL4dyuvi5BdOoNOGemYmB66ftIBVUcPxeHQcesTOH/nv2qNqtLNB4FkZyCWd814+n+2AQSRXM5pH+ZyY6ndfqzmVT3mNqpuOiqmcV2sAdxsd6Eg2ndjGgfzOF8YpZESVss3diY7+rSFtyxwJFMV1gggnHXIX89xx0/n1kANZvBjmfjEEisx+ZxDmKY5CV5upoy/lFBpD+WWGdLH38OVD2SydgVsVLJ22Gm77DrYVB5tVEMnNPMHzXE1Dno7N2VFJRrsmqGNU+h24LG/Izi6QdOGen3d3VFTAyJ5QWAoVXj2ZWVWmwC8PwsQ7Wqdf+wNfPuefk83UDwcBMHTgDhb99DJ8uAiu/apG8/mM4BJeYxEHcP2VG/jP853AiKjRToj9ir8CvNshontLXlUeUdgPtNhYe/FiGDcGXG69/tCR3LLmJp6Yaj5mfdNN8Oij+in8lub366FCeTm4XPrLk1OAu6CcchVNiTMluN2RtYGMRdNJ3LqcqMLt5MV0wedVdN7+F+0LVrAkfQrvdL+XFfbBuFwwPHca126/lQGexbVefyX9GM1cSonHjpcLeMvyIbd2L3IFV/EioLiH+7iX++psfzXP8QJXAQZ3cT/3U/ekU78znlP5lB20x0Eld3M/d/FgnccMZBkrGAjAqXzCJ5xe78/RlU1k0ZX+rOBjTmcQywEdZCkgGYXBdTzLL0xiG51Cjo2I0IlvGRnm94wMHawdO1YnGkh5zhYy4yo4/EW9bABLboRe/4So+gNPYu9VXBxIYs1W5K3ehWvVZpLnzyCv0M5rXMLirGRKAvkzfVjNzxxMe3bUec5V9KU/q4Lr93E3d/NAre2ncQRn8QGFgRs0g1jKH4wnntI6rzOOP/iTcdjx0pP13MLjXMSbdR7TgW1sRwd8RzKP3ziIKNx1HpPKLvIxn0h9n7M4iw/rPGYpgxjC0sCa4mae4HH+XecxG+lGDzYG16Nw8TxX1/szvcolXMarwfVObGELXeo8BmAWkzmMGfixA4qreZ7nuDZsWz8Gu0hjvm00FyR/RUy8nZQEL/+ofJsJpdNwRtlYP+os0h0FJMb5cB98BFF9upCQoBOMY2N1NZ/deYC2rAyeeAIeekgnGQN0yCzmz+9fp3O7Qsgvh8zOkHpd40++Z8L+NBLEbQzXPIge1XLXE6KxlA8qN4FrNlRuBVVp7nvtL7hjWkjziug4Jrh+YgEjG36JpnrL8GyCorfN9dgpEHNQE528kZSCuCgo99Tct2EqdP9ny/dpP/L0k+XceHNMcP2045fz7gufExnpg7lbKDv7S2KL80OOmc5hPMqt/PN5xfkXd4CIflL2Quy/Sr8BR0eIOqD+tk1H/sPtB1p0rL3hEyj4Hbok8fUPfTj+XHPSnH//Wwdw9xeVlfpDZWmp+VVebpaBVX6F8umVyJwsKtI6ofwKe3kJ0VvWUNJjKNHZ66lI7YgnLkWXs1RgqygnOncz5WldiNm+Hnw+PNGJ+G0OonM3U9hlCN7YRN3e5yd5/XzsrlIStywjNncjCdmrKGnXkx0DppC88W9K07qxfvy5+OwRKAWxuzYz+sN/URkZy6oDL0aVlZOT2IeKSjv+0nJyIrtQ7IulosIMhpeXQ3mZwlVhUFnqxllawFZPBvbyEnaUJ+Dzm281NptOvK76qgrIVg/SWr9Xf3pYtKK8p+CG9+H9hXDZWLj3cEg8GyL61H+s2GcppZ/o37ABNm6EbcsL2L7RTUVhBWUVdnpm/4rP5cFwuehZuojJZd/wiPNuXrdfHiy/Pc73Gz/7JtZ5nZe4nCt5ETAYxx/8hxtqzfDcSRoOvNzLvfyX6zDwM4tDOJhfaj1/JQ6ceDmer/gaPYnmiXzBv3ms3icUHuMWbuUxoOEBUoABLGclA5jIL/zEZGzU/UF9GkdwFGY8IIMcljI4fOZpNaOYy3x0LOxfPMVT3FRr23mRB+J0QFbKML4edT9RHVJISoLulWuIS7QTl+wkMbKCiE4ZxKZEEpsWTXy8LofcmjfVZs7Uc2NW3VQYNmg7f37/uv5Mak+BlPAB6GYkQdw9ohQUvQEJZ+7xTPU+H/z1ly7JkphYf3shrIqL4euvdfmdZ5+F3Fx45uly2icvAPdi2L4ZZq6Fjfl6Uq7AyHXVnCj6nHQHtsAngG3DRtJt0R94afg75RlnwId13xRsOOWHwhd1bVSA5KvA0YrlFHpkwMZqf8Ai7JD3A8TJhAvNKSur5qzNZ560lA9e+YzS0gg69Liam3mCO3ioxuDkJp7g4t+j6NfXDTEHQtRwycwV+xdfIRS+CrGHSRBXNLkWHWuX/QjlsyksiqLvuKvJ3aXH2yeeCJ9/LoG4/VVlpQ70RkRAVJT8HuzV8v+rnxT0+PQYGyDpAnB2rfs4IRpBKXNuRb8f/B4v/goP/qiY0O3Vv9yVGNnbqMzsjN+w19ivysqJXLUYV7f+KJcLv9+gMiEVR14OyufHndEZo7wMX1QsCgOfDzylHmKXzIHCQiqIwrlrO24VQVF0JsWOFKJ2bmFndBc2J+nZmh0OiFbl9Nj+O66k9iSVbGHk3BfZ1m0823pMJDV3BU5POcUp3ShO7UZhu374nZEoBTG5m1AVbtKzFpCdPBB/pY9iezLxBVnEegrIj+tCaXQ6hXGdgm+kDgckqCLiKMUfn0iKezvOCAN3ZlcinIoYw4Uz0ka0rxTatyciQr8XR9q9RCkXjqQ4Im2VRDp8OOMiSY6rJCJ+7y6RMnMmHHmkmZF781W/8/g9MySI21RaPIi76z6wJ0DcCRDRs9GnyM3Vd5c+/hieflrPXLpunTlxrBD1UQoOPxx+/NHclk4u1/Esd/BwaNsh7TF+1I/azZnXifHHXMw0jiACDxfzOhto/O/w1q26vnuTcS+D4k/BkQbJVzfhiXfD+L4wZ03oti5JsGq6ZOC3gHPO0RNU12U4C3i31w0MWKdrN/mw0Yt1jDyunE/e+ASAyumbMQYfiqPXWIhp/O+4EHsV7y4ofEU/dRF/ggRxRZNrjSDuDXcdwTOvjAN0zcUlSyC1leY9FUI0oYKX9VwdVslXgKNd+PZCCNEKnnsOrg3Eaw1D8ef3rzN6lKvNBHFbvyrv3sZXDKVfQczkGh+Wysp0Qe/Ro3WR/HXrdMC2pASWLYNvvgk91datOrvgu+/0zZBt2/REgO3b68eLakwGJfZr3krFQRMN/vwTOpPFFbzEeUylA9vDtt+YNogefoUyDMYfoyfdOIrvUTS+rvM778CZZzbD4w2RgyAmByL6NvGJd0O7FHP5xZPg0N5QWAG22Nbr037kmGPqD+L+zQic/3cq8z8bxcgnnuYrTmAT3dn0NcR370VpWSTr6UEP3gYgN6Ervq5dSflsKqpzN264QWfzPPOMOVEr6JsjbrfO8BGiobxe/be7KepzKgU5OXpy47qUlOixQr9+6KcZSv8XWjZHiL3citXpPPf6mOD6f/4jAVwh9hnhnpQyZPAlhGhbrrpKx+6mTwelDK694yj+mPb5bkRRmkdb6cfexVcMpd9SXrCS669TGIb+IJeRAQcfDDExer13b3j2jhy2Pvoukd98ykR+oQfrGcOfHMDf9GA9G6etItWWz0Un7KJTJ5g0Cfr0gaFDCZ73uutC65CuXg1vvKE/8P34I/Tqpa/btav+APj552bNrBUr4Ljj4IEHYN48OOEEHWQ++2y9z+cL/dGU0h8QldIfUI89Fo44Ah5/XJ+3qh+VlTWPs3rnHbjkElizBv78E/LyGvcSP/qoDuosrn2Oh6A//oAHH9Qz1e+p6q/Hnqr+OlU3axbcfLMupL1zJ/qFXL8e3nwN/nVJ8Jdg4x134YzQAVwDPwfxG7fxaK0BXIDVs+wMyjwNW7t7g9vqCuAed5z+npCgs20jIuCKK3SXzj23GevTxE4BZ6f62zW3TMunxNxSSIqGbsl7XD5FNExKSkPaVNK9u5/0MzthoDiLD4L7Ssv0Iw3plppOGcWbab/0VyL7dCcq2uCQl08j5Z3/MCplHQkJ+nGZ88/XNfaio+G00+C22/STEn6/Ll3yyiswezZs2aKDzIWFoX1auxY2b26CF6ABlNJ1EUXr27gRunWDzp31W3YVpfTvy08/wfHH67fwG2+Ezz7T6y+/rMspvfce/P03zJgBTz4Jo0bpG7hVf/ejovTfzipz5sAnn0DPntC/P/z3WS+uHe9BZRZLV2QwbVavJv/7JURruPuxyfh8eqwyaZJ+XxZC7COMMB8mDHkkVQjRtths8OKLOh4C8NeCTnz0Rdup3S3lFBpAKZj9m+Laq3Zw4+V/8OkXfdky081hzGAQyxjO3wxgJTtJozsbKaMq6KP4lFM5hc/rvcYihjKKeXhxYuBnO+1JJY/ttGcn6SRQjMKgN+sA+IjT2UQ3PuMU5jEagEQKmcBscskAYED3CmZv7EAEHrbRET824inBQwR5pAWvbTMUl56aT5E9hQ8+BDBwUIkPOwobTjxUon+DjztO12Ot8txzcM01OsD3yCM6ezg5WX8gre6II/TxQ4fCgQfCwoW67erVOvP4mGP0f5RFi+CAQJJz9+7w66+QlqaDtcuX6w+9v/4KRUW6RutHH5nXuP12PatgZaUOrjz2mD7HqFE6yD1woP5wffnlev+118KFF+p+z5oFhx6qzzN3LgwapEtgLF2qJ9Q44QR4+OEaP1bQ5s36js2xx0KXTn6uvd7GC8/7aR9XyhVX2fA89wp90/Jof/kJJB42mnPONShftZnHuYX2bGciv9V67vN5i6mcH1hTfMFJnMhXNdq9w7m8wFUsZihuGn5n+733dGAf9O+7YYDHY75x7RfuOx/unaqXLxsLDxyhl1OuAbukATW3igp942vr1trb/PYbTJgAeHdw0UV23nwntIayg0o207XOmxtVHuJ27uSh4PpAlpFAMeXEsJ6euIjGF+ZhlcMOgw8+0O9B330Hr7+u/9D/+Wf4972VK/X/o5499c8YFaX/j/l8ug5VbXw+M8OzslKf56qrdDDvySfh+uvNtmVl+vrjx+tgdBWl9Ptrly765mJTc7lq1if0ePR1q8oEzZsHr70Gp5+u3189Hnj/fX2j6LDDGne9ykr9mthssGOHzs4Ld3OpslL3yfr6Vr2vVcnL0zcbMzNhxAi49Vb44gu47z64+27dz2++gcGD9Q3CzEx9oyE9Xd+c7Fvt4YGPPoIfZyg+fF3PhNCBbLqQRQa5HMjvXMHL+DF4lut4nFvYQXsM/NzBQ5zHVFbRj7X0Jo9UkgJ/y3eQSSFJDGYpd/AQP3Bk8Hrj+Z0DWIgdH9G4KCWOMdf14dxnDm/ci7pnpJzCfqAlyyksnzeHQaPHBdf//tscDwoh9gHFH4F7pbluGJB6txQ6FkK0SbfdZk6q2q93PstWpjTJE3iNEP7NUSm1136NGDFCtYR//EOpW3m4amLXWr+KiVMjmBey+W7urfe4HWSobmwI2TyHMfUep0CdysfB1UQKVCX2eo/5jJNUD9ZZNvkbdK1/8rYy8IUcdwcPqM85Uf3FKPUdR6r3OEt9xGlqLT3V61yoZjJZfc6JKo3ckNPdwFMqi07Ki029wQXqNw5UX3GceoA71AIOUNlkqqv5b41uXMEL6i7uUxfxmnqI29RlvKRu4Cn1AWeouYxUM5msruUZFUFF8Jhk8tQVvKDe4Rz1LNeon5moHuNmdQNPqWe4Vt3IE+oe7lFH803wmEhc6g0uCF54JX3VQoYqBWoznVXWoCOD+z4++wvlcOjVISxq0Otow6tAKSdutZz+DXr9r+FZBUodyG/KjVNlk6ne5p/qRD4Pnq+hX6++qtScOUqVl7fIf6G9w9Q7zBfokF5K5d6jv3yu1u7ZfmPrVqUefVSpyZPD/95Wd8cd4dvFUqKu5Hm1hEFhG2TRSbVje8jmR7mlRruV9FU/cJj6hYPUJ5yi3uMs9T5nqnH8HtK0I1vUNTyr/sG76ob+36vf7/xOXTZxhRrP7MB7kV9FUKHsVAbfK4LXfcSvoiL9CpQ66CCl1qzyqSlTlIqMVOquu5TavDn8z7hihVIPh/mzlJGh1LffKuX3K3XxxaH74uKUOuEEc/2CC5T68EPd9s8/lXrrLaU2blSquFipefOUuu8+pVauVGr+fKXGjlXqkkuU8vmU2rXLPEdUlFLvvaeUy6XUtddafq5HlXr55brfh+65R6kvv1TK7VZq5079b7pokb7m3Xfrv727dimVn6/UFVfoY+LjlZo4USnD0OtPPqnUF18o9ddf+jX54w+levfW+x55RJ/zscdqXnvKgS6VSIGKojy4LZ4idQUvqFt5WF3Mq+p9zlQK1FIGqi10VL8yQX3NMepzTlRDWRhyvru4r0FvvqXEqAEsU6BUEvnqH7xb7zE+DNWHVSF/f2/nwRrt/sWTqri4Rf6rVkG+9v2vlhprK6XU2adnB3+ljzuuxS4rhGgpxZ+Z4+vce5Ta9Ugrd0gIIWqXn69UQoI53P7ggxbvQtixWasPDvfkq6UGlrfdptTNhPkUWMtXEvnB1ee5st72X3CC6s3qkM2fcnK9xz3EbSGbTubTBvXPh6HO582Qza9wSb3HPcGNIZt6s7pBQePqrwkolU9Svce8wiUhm9qzrcH/BqFBTb9axJB6j3mZS4OrdirVndzfoJ9vLH8EV9PJqbd9BRHq3zyiHHgUKHUws+o95mNOVV3YFNxUdey4cV4VG6tUnz5KHXaYDqYsWFD7qWJilLr33hb5b7P3WfhO6Iu14Taldt7f2r3ar02fHvpPEs6tt5r7L7ss3O+9X/VhlXqKG9R22qmtdFBjmFOjXUPeq8P9nwcdNF5Lz3qPe5RbVDo5DXpPyyZT5ZGsFKiDmaXAH9w9gV/Vn4xW8xmuckhXHkIjwztJVYUkqHX0UJP4KeS1+J4jgu2WMlApUAs4QG2hY3D7BbwRcr0oytWD3K6mc6iay0j1P45V73Om+phTg4HymUxWz3NljRt2dirVbxwY9mfMopP6kUPUYgaru7ivRpPzeVNVEKEUhPyMLiLVGnqp1fRWq+ijvuHo4HsiKHUZL6kCEkOu48GhdpGiCkhURcQH9/3MxODPaqcy+JrX9eXFpo7g+5DNo/mzQb87l/BKMBibRH6Df+cO5LeQTSfxWY02Z/K+AqW2bWux/6LI177/1VJj7TVrlLLZzPedv/5qkcsKIVpSydehQdy8Z1u5Q0IIUbe77jKH2wMG6ISWFhR2bCYTmzVAp04wm06spB/9WRXc7sGJgWIrnejOJt7lHO7iAQoxZ8y5huf4F08H2kcABhG48WHHhwMDP7GUUUp88BgDP69zMX8xhv4ZeUTlZpFFF4axiCOYHmy3gBEY+IN1TjuQzRY6UUEUvVmHH4NCkkihIOTnsaF4gLv4H8eTTyqHMJMEiut9HW7iKf5mOB+gn7u/j3twUH8Rvl2khrwmAEUkkkxhncedwUdcxqvB9e10YB4jGUXdj/WtoTd+zDz3U/mUoSypt58GKrjsw8EMDqMHG7ggMElSbTLIDS7vJJ0yYoilvNb2kXjIIBdfoI8rGMDxfEUcpRSSxC9MwosDD+FrRHXvDi++6CQpCcaOtaNUzaeQbrwRnnrKXI+K0jUc09ObZhKefVKf3pASDfkuvX7XNHj27Nbt037u0EPhggvg5591XaJwHn4YTj1VP0I/Zox+/HbePGsLgzX05Uae5sbAe7HVSSfBmKEVlN4bxwa6k0oeiXW8Hy5iKH8y1rJF8RqX0Iv1tR5j9kSxM1DuBiCF/FrbtsecvTmRIqxP08RTwhjm1npsGroI+Tp6hfTVSSUH83NwfRDLARjOwpDjz+Vd3uLC4HoF0RzI7xzML7Ve8xB+4hB+4nNOZhZTgttjKGcAK8Ie05mtdEbXz1hFvxr7T+MTIvEE+u4Nbo/CHSwtBPAdR+PFrKuwhCEkURRyHYDUaq93PslcwFtUvbY+HHzNcZzHO7X+nAB2/HzEGYxiHmvR9bEWMYzNdKErWcF2yxmADztDWBrcVk5M8G+2DT/fcRRH8z0vcTnd2cgOMjmEWXRhS8g1x/AXvzMhuJ5FF7aTSQ7t6Ml6yolhB3pWNKmbLPZGjzwCfr/+v3j44Xr+BiHEvqZaDSRbdPhmQgjRRlx/vZ4Uu6REzyn12WetX69fgrgNcMYZ8N5VXVlDH77lGL7nKH7m4JBAYXIyFBTUPFZhCwnGvfwyfP55JKmpugapYdg48sh4DEMHIZSC/v1tTNt0FOnnHsUjb8FNN+kAht2uaxBaPfywrgML8DzX8DzX1OiDDV9IX+MDdR8nHeJg1iyYxSHsIo1nuY4IPMRTQiFJROAhigoy2YE9EHb+C3PG4I85ndX0JZEi0tlJL9bxI4cymZ+Ip4RfmEQUFTjwEkuppVaw/tB9JS8F11fThyy6sJVOdGIrh/Ejj3NLyM8RgRt7IGi8kGEMYQnbaY/CCH5IB6jECSiqPpgfFKg168OGHX+w3TxGUkYs2XQgkSKWMSjkeuvohcJgCYOZy2iO42vakYsHJ2vowyCWU0w8WzEn5UqgmNt5mCy64CaSCqKw4WctvdlCZyLw1KhVm0s7vub4Gv9u4TzwgJ5krGtXc1u4MlJPPgn33qtrcE6dqoNb9c16vt+zRcFjx8Bln+n1Y/qDrRkKiYoGMwx4883624wYYa5Pnaonfpw4EY46StdMXbsWLr5Y17EFPVlkSQkMHw6XXQYORxRfDHmMnic/BujaukNZTDQuEihmArOJwEM2HQL/383/dN3ZGJxMbTuZIcHX6q7lvzzOLcGa5O0bULsX4EtOIpn84M2wyuofgsLwYeOfvBPyfjOQ5UThrvfYISzB+h4KKrCtfg9xB+M4JHjs1Txf40ZiOP1YFXLN7mzgSKbVe1wBSTzAXSHb5jCeH5nCocys89hfmISy/Fs68fA9RxGNi0jcxFNCP1bRjhxe4xIWMxQDRSlxeHGwGfONuBInQ1lMCfE4qcSLA5vTgc+nfwdfeklPgnbgWnjvSn3MgAmpPOT/jj8mw0UXwf/9n65rvNILXY+s3ltTt26wYNPIYO3n/zwwjSdeGE+FJ4bv39OTowqxN9m0Cd5911y/665amwoh9mZGtck2DBlnCyHatpQUPQdU1dxIP/7Y+kFcmdisgVYsV0w5pJROHYo574zFnHTsNjr2PwOvSghOnuLxwO+/60lQjjxST7qycqWeGMXng2nT9ORe9cnL0xNrTZ6sMyireDw64+zrr/W5N2yAhAS45BI9uQ7oiXZiY/Uv2+uv64m8pk7V/crM1MGLmBgd9Bg3TvdtRbUkqfHj4c479eQtVZPnDB8OHTroiV4aKj5eB0pqc8ABenKzcE48Eb780lw/6yxo1w527oQrrtCv67vvmkEZK5tNT5hTUKCDOGefrSfSue8+vd/h0JOWLVpUe99iY+HSS+E//6nnh2ygyy6Dfv10htQbb8C2bfrf7ogjdMbJ+eebbf/xD/3vMmSInhDoiy/0h/9Zs6BXr6bpjwjDvQqKP4TVOiBH33RwdoOk81uzV6IJhctar87n05nszz4L7dvrwNqUKaFtxo/X2b5jx+rJ1qwG9vezfKXOtBzQX7FmpZf2bCeHdnRjE+vpGZwwzYaPeEo4g4+IoZxS4vBhZxmDiMaFDT9OKsmiC6stmaoJFDGCBXRjEzGUU0EUHchmBAvIJYPFDMWBl284lvWYbxod2MYkfuFkPmcDPaggitHMZT4j6cEGUshnLqPx4uBxbgkGgCNw8x9uwEARv3XdvQAAFQpJREFUSxmLGMYOMrHj40LeJIlCpnEkcZRSRCKPcwslJAAwhj85hc84iS+Ywzj82OjMFvJIZS6jKSCZNHbhJpKXuZwKooPXPIRZjOEvEihmGx2x4acLWayjFysYQCRucslgHqOwBtYN/EzmJwaxDCeVbKIbCgOFgYFiPT1ZTV8qiAoel5YGn3yi/73feCP03zQ6Gg46SGeGjxun/75UVOjfj+3V4vAffABnnlnzd8r6BMRPP+mJMM86y5wArrrKSnj8cf07e8stenK8Vat0ADcqSv99W7ZwK+MHTsVuq0QpqHCeSHTysPAnbB4yE81+oCXG2j//rG9Qb90KkybpdSHEPqj8dyibYa5HDYH4k1uvP0II0QC7dul4zc0363FKCwo71pYgbkMpBbsCUUDDCUmXgCOj7mMCsrN1Bm3Pnk3TjYULoUcPSErS21wuHSAeMULPQt4YO3fCL7/oD6WJiaH7/H4dJO3aVT/Cb+3DTz/pD6/nnGNuj4zU2W8ffghZWToIabNBUeCp1qrzu92hH1yLiuDzz3Uwedw4OOYYHWg56SQdlO7YUe9LSAj/M3g8+o7IsGE60FxboObPP/UH9HPO0cEXpfS1k5L0B+qOHeHtt/Ws59ddp4PQVf2Li9MB2KrX3OHQAWrDgBkz9MzmJ5ygA8XDh8PSwNOzd94JJ5/csNmVc3P1NaOrPVnkDyQP22z1n0PsAc8mKHo7dFvkQEho5VttolXs2KGfsIiM1AGz+fNhwoSa/z8B3ntPZ/tee62+gQZQWKjfL1at0jeMpkyBb7/V71NDh+r37YULdfAwM1O/v111lc7Y7NZNv/95vfo9YcIEHUB0OOCPP/R6lWnTYP16eOwx6N1b30DMydGPIm/frt83Lr9cv4/5/foaMTH6qRC7HRYs0IMRj0f38b33dADxuON0v8eOhU8/1WWFrGJj4ZVX4K239M2oG27QN6rWV6sqceed+mZUTo5+bW6/Xb/XffWV/u736/f9o4+GjAx9wzEyUv8chYX69W7fXv+tevhh/fcK4OOP9c/77bf6794RR+h/o08/hXXrdHB95Ej9Pr12rS4lk5Ojj508Wb8up5yin1Lo2lX/WzW01MzWrfq1HTnS/FtTXAzl5a3wxEPFQij5Si/HnwBRDfhj03QkiLsfaKmxtscD77wD/fvDgQc2++WEEK3BNRdKvzPXo0dD3NGt1x8hhGjbJIi7R6xB3PiTIGpoy1y3DfP7dUbrypX6A/f33zf9NXJz9YfriIh6m7YIpXRQID6+9ow+r1cHsXv0aNm+iT3k3QEFL4duix4DcUe1Tn+EqMXTT+vg8D336JtPzaW0VAdrDSPwJ3CXDoZ6vQSfQLHy+2H5cpg5Uwc6Dz9cfy1apIOrZ52lnw7ZE9u36yBvVbC8NlV99Pl0cDU+Xgfm98m64KXfg+svCeKKZtGiY20hxL6tYhGUfGmux0yE2ENaqzdCCNHWhR1rS03cxoocIAHcAJtNZ+T+9JMO4jaHjIYlO7cYw6g9I7iKwyEB3L2SEVVzmy225fshRD3+9a+WuU6cWcYcw9ABUAgfwAX9N2HwYP1lNWyY/moK7ds3rF1VH+1286mKfbYueOyhUJlVfzshhBCiNRnVagiFG3sLIYSokwRxG8MWD3HHtHYv2pR27WrW/xNir1R9YAlgi6u5TQgh2hLDCfEn6qcJhBBCiLaqetDWVktheCGEELWSIG5DGYau2SOZeULsm4wo87nxKrZ60q6FEKItcLQDez01JoQQQojWJJm4Qgixx2SqpMaI7N/aPRBCNBfDAKNa8WVbfOv0RQghGstwtnYPhBBCiNrZqgVtjTCzxQohhKiTBHGFEKJKjce8JPNeCCGEEEKIPVZ9nC2ZuEII0WgSxBVCiCrWjADDACOm9foihBBCNDHDMI40DGO1YRjrDMO4tbX7I4TYj9RIlpBMXCGEaCwJ4gohRBWbJWhrRIMhb5FCCCH2DYZh2IEXgKOAAcBZhmEMaN1eCSH2G4YttHSZZOIKIUSjSYRCCCGqGJbyCVJKQQghxL5lNLBOKbVBKeUBPgROaOU+CSH2J1V1cQ1DgrhCCLEb2lwQVx7zEkK0Gmvg1hbXev0QQgghml5HYItlfWtgWwjDMC41DGO+YRjzd+7c2WKdE0LsB6oCt0aUDuQKIYRolDYVxJXHvIQQrcoaxDUkiCuEEGKfEi5iompsUOpVpdRIpdTI9PT0FuiWEGK/UTX/hMw7IYQQu6VNBXGRx7yEEK1JMnGFEELsu7YCnS3rnYDsVuqLEGJ/VFVOQSY1E0KI3dLWgrj1PuYlj3gJIZqNNXBri2+9fgghhBBNbx7Q2zCM7oZhRABnAv9r5T4JIfYnwXIKkokrhBC7o60Fcet9zEse8RJCNJuQic0kiCuEEGLfoZTyAlcDPwArgY+VUstbt1dCiP1KVRDXntC6/RBCiL2Uo7U7UI085iWEaD3WTFwZXAohhNjHKKW+A75r7X4IIfZTVUFcW2Lr9kMIIfZSbS0TVx7zEkK0HmtNXHtq6/VDCCGEEEKIfY0tUEbBJskSQgixO9pUJq5SymsYRtVjXnbgTXnMSwjRYgyHZcIFmdhMCCGEEEKIJlMVvJUgrhBC7JY2FcQFecxLCNHKJANXCCGEEEKIpldVRkHKlgkhxG5pc0FcIYRoVfYMws+xKIQQQgghhNhtjjRdUsGW3No9EUKIvZIEcYUQwipyABgRrd0LIYQQQggh9i1GBMROAaOtTc0jhBB7BwniCiGEVUTv1u6BEEIIIYQQ+6aoEa3dAyGE2GvJLTAhhBBCCCGEEEIIIYRowySIK4QQQgghhBBCCCGEEG2YBHGFEEIIIYQQQgghhBCiDZMgrhBCCCGEEEIIIYQQQrRhEsQVQgghhBBCCCGEEEKINkyCuEIIIYQQQgghhBBCCNGGSRBXCCGEEEIIIYQQQvx/e/cfc31d13H8+ZKbERiKojYQ3Y1TMEDlp5Ml4HRZmIUFFZsTCWrCqoGtFUxba/3SrM2IFktAcRN0OFlaKyDXfUsGAjfcwX0bKAgmygLUCJAg8d0f53Pl6fL7va77XByu873OeT62s+vwuT7f7/W5XrzhvK/POd9zJA2Ym7iSJEmSJEmSNGBu4kqSJEmSJEnSgLmJK0mSJEmSJEkD5iauJEmSJEmSJA2Ym7iSJEmSJEmSNGBu4kqSJEmSJEnSgLmJK0mSJEmSJEkD5iauJEmSJEmSJA2Ym7iSJEmSJEmSNGBu4kqSJEmSJEnSgLmJK0mSJEmSJEkD5iauJEmSJEmSJA1YqmrWa1izJA8CX13DoS8AHprycuaBufQzm27m0s9suplLP7PpZi7dZp3LQ1X1kzP8+VoHa+y1Z12bQ2Y23cyln9l0M5d+ZtPNXLqZS79ZZ9PZa2/oTdy1SnJzVR0963UMjbn0M5tu5tLPbLqZSz+z6WYu3cxFQ2Vt9jObbubSz2y6mUs/s+lmLt3Mpd9Qs/HtFCRJkiRJkiRpwNzElSRJkiRJkqQBW9RN3L+e9QIGylz6mU03c+lnNt3MpZ/ZdDOXbuaiobI2+5lNN3PpZzbdzKWf2XQzl27m0m+Q2Szke+JKkiRJkiRJ0kaxqK/ElSRJkiRJkqQNYS43cZOck2RHkp1Jzm1jhye5Icn2JDcnee3Y/POT3JXkziQ/MbOFP8MmySXJ5iSPt/HtSS6a6eKfYT3ZvCbJ9UluT/KZJM8Zm7/INdOZy7zXTJJLkzyQZMfY2POTXJvky+3r88a+11kjSY5q2d2V5IIkWe/fZZqmmMuWNrZUPy9a799l2ibJJsm+Sf4pyaNJLlx2noWtmVVyWfSa+fEk21ptbEvyxrFj5qpmNCw9vcHC99lgr92nJ5eF77PBXnvJFPvJuXv8m2I2c9U3TbGfXOiaWSWbRa6Z4fbZVTVXN+AwYAewF7AJ+EfgFcA1wIltzluALe3+IcC/AnsABwJ3A7vN+vcYQC6bgR2zXveMs7kJOKHNOQP4fWtmxVzmumaA44Ejx39H4E+A89r984D3r1YjwI3AsUCAv1/672+j3qaYyxbg6Fn/PjPM5tnA64GzgAuXnWeRa2alXBa9Zo4A9m/3DwO+Pq814204txV6g4Xus9eYzWbmuG/ahVwWus9eYzZzWzMTPv4tTJ895Wy2MEd904S5LEyfPeVsFrlmBttnz+MrcX8UuKGqvlNV3wW2Aj8LFLD0DO9zgW+0+ycBH6+qJ6rqHuAu4LXMn0lzWSR92RwMfK7NuRY4ud1f9Jrpy2WuVdXngG8tGz4JuKzdvwx429j4D9RIkv2A51TV9TV6BPjo2DEb0jRyWY91zsIk2VTVY1X1z8B/j09e9Jrpy2VeTZjNrVW19Ji9E/ihJHvMY81oUOyz+9lrd7PP7mev3dhn97PX7maf3c9eu9u89NnzuIm7Azi+vSx8L0bPeL8EOBf4QJKvAX8KnN/mvxj42tjx97WxeTNpLgAHJrk1ydYkx637itdPXzY7gJ9pc36+jYE105cLLE7NLPmRqrofoH1dusSkr0Ze3O4vH583k+ay5MPtUp3fmYdLmXr0ZdNn0WtmNdbMyMnArVX1BItTM5oN++x+9trd7LP72WuvzD67n712N/vsfvba3TZcnz13m7hV9W/A+xk9a/kPjC4n+C5wNvDuqnoJ8G7gknZIVyHWOix1Xa0hl/uBl1bVEcBvAJdn7L2q5skK2ZwB/GqSbcDewJPtkEWvmb5cFqZmdkFfjSxE7axgpd//7VX1KuC4dnvHuq1q2Ba9ZlZizQBJDmX0/+p3LQ11TLNmNBX22f3stbvZZ/ez114z++x+9tqTsWZWtvA1M8Q+e+42cQGq6pKqOrKqjmf0cukvA+8EPtWmXMn3Lyu4j///7OYBzOllTpPk0i7B+Ga7v43R++kctP6rXh9d2VTVHVX15qo6CriCUQaw4DXTl8ui1UzzH+2SiqXLcR5o4301cl+7v3x83kyaC1X19fb1EeBy5vTSL/qz6bPoNdPLmoEkBwBXAadV1fhj1CLUjGbEPrufvXY3++x+9torss/uZ6/dzT67n712tw3XZ8/lJu7Sp+YleSnwc4we/L4BnNCmvJFRUwXwaeDU9v4WBzJ6M/kb13fF62OSXJK8MMlu7f7LGOXylfVe83rpymZs7FnAe4GlT4Bd6Jrpy2XRaqb5NKM/zmhf/2Zs/AdqpF2i8UiS17XLUU4bO2aeTJRLkk1JXgCQZHfgrYwuJZxHfdl0sma6WTOQZB/g74Dzq+rzS5MXqGY0I/bZ/ey1u9ln97PXXpF9dj977W722f3stbttvD67BvApcdO+AdcBX2R0Scqb2tjrgW1t7AvAUWPz38Pomcw7mYNPI5xGLoze92NnG78F+OlZr38G2ZwDfKnd3gfEmunPZd5rhtEfYvcD/8PoGbgzgX2BzzL6g+yzwPNXqxHgaEYPgHcDF47X1Ua8TSMXRp+Kug24rdXQnzMHn0S9hmzuZfQqnEfb/EOsme5crJmC0R/2jwHbx24vmsea8TasG/bZU8mGOe+bdiGXhe+zJ81mnmtmDb3BQvTZ08qGOeyb1pDLvSxAnz2tbBa9Zhhwn730gCBJkiRJkiRJGqC5fDsFSZIkSZIkSZoXbuJKkiRJkiRJ0oC5iStJkiRJkiRJA+YmriRJkiRJkiQNmJu4kiRJkiRJkjRgbuJK2rCSPJVke5IdSa5MsleSzUl2THie05Ps/0ytcwja7/hgkotXmXdPkoOXjX0wyW8lOS7JFyfNV5IkSRuPvfaus9eWtB7cxJW0kT1eVYdX1WHAk8BZazzP6cCgG8skm6Zwmk9U1S+vMufjwKljP/dZwCnt2OuAt0xhHZIkSRo+e+3J2GtLeka5iStpXlwHvLzd3y3Jh5LsTHJNkj0Bkhye5IYktyW5KsnzkpwCHA18rL3SYM8kb0pya5Lbk1yaZI92/L1Jfi/JLe17r1y+iCS7JflAkpvaz3lXG39Dki1JPpnkjiQfS5L2vaOSbE2yLcnVSfZr41uS/FGSrcA5SY5p57y+/Ywdbd51SQ4fW8Pnk7x6pbD61glcwVhjCRwP3FtVX53sX4ckSZLmiL3299dgry1pJtzElbThtWfOTwRub0OvAP6yqg4F/hM4uY1/FPjtqnp1m/u7VfVJ4Gbg7VV1OFDAR4BfrKpXAZuAs8d+3ENVdSTwV8BvdiznTODhqjoGOAb4lSQHtu8dAZwLHAK8DPixJLsDfwGcUlVHAZcCfzh2vn2q6oSq+jPgw8BZVXUs8NTYnIsZvcKBJAcBe1TVbavE1rnOdtz3krymzTuVUbMpSZKkBWSvba8taRjcxJW0ke2ZZDujxvDfgUva+D1Vtb3d3wZsTvJcRk3a1jZ+GaNnvpc7uB3/pZ55nxo/b8fxbwZOa+v6ArAvo0YX4Maquq+qvgdsb8cfDBwGXNuOeS9wwNj5PgGQZB9g76r6lzZ++dicK4G3tib1DEaN8WpWWucVwKmtYT+pnV+SJEmLxV57xF5b0iBM431fJGlWHm/P6P+fdtXUE2NDTwF7TnDOrPL9pXM/Rff/QwP8elVdvWxdb+hY16Y2f2d7xr/LY6utq6q+k+RaRk3gLzC6ZG01netsrgCuAbYCt1XVA7twPkmSJM0Xe23stSUNh6/ElbQQquph4NtJjmtD72DUOAE8Auzd7t/B6NUEL++YtyuuBs5uz9ST5KAkz15h/p3AC5Mc2+bvnuTQjvV/G3gkyeva0KnLplwMXADcVFXfejrrrKq7gW8C78PLuyRJkrQKe+1dX6e9tqS18pW4khbJO4GLkuwFfAX4pTb+kTb+OHBsG7+yXeJ0E3DRBD/jYkaXbt3SPkzhQeBtfZOr6sn2gQ8XtMvQNgEfBHZ2TD8T+FCSx4AtwMNj59mW5L8YvZfXNNZ5BfDHwFW7eD5JkiQtNnvtXV+nvbakiaWqZr0GSdIuSPLDVfVou38esF9VndP+eX9GzeYr2/uALT/2dODoqvq1p7mGzcDfVtVhT+c8kiRJ0pDYa0saOt9OQZI2jp9Ksj3JDuA44A8AkpzG6AMT3tPVVDaPAycmuXitP7xdHvcZ4KG1nkOSJEkaKHttSYPmK3ElSZIkSZIkacB8Ja4kSZIkSZIkDZibuJIkSZIkSZI0YG7iSpIkSZIkSdKAuYkrSZIkSZIkSQPmJq4kSZIkSZIkDZibuJIkSZIkSZI0YP8Ldecw4HXl0kUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 1728x576 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot(vs_test, 2)"
]
},
{
"cell_type": "code",
"id": "cb587a4d-dbf6-4f96-9c71-62a72619cbfa",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABXEAAAHwCAYAAADgsixbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xcVd3H8c+Z2dlesum9AQFCEgKEAIq0SFFQihQVkCpiL49YsIACVhQVlaIICIogCJYHfEB6hxASqgHSe7K97045zx/3ztw7fbZlN+z3/Xrx2pl7z71zZpNXOPvd3/yOsdYiIiIiIiIiIiIiIsNTYKgnICIiIiIiIiIiIiLZKcQVERERERERERERGcYU4oqIiIiIiIiIiIgMYwpxRURERERERERERIYxhbgiIiIiIiIiIiIiw5hCXBEREREREREREZFhTCGuiAxLxpgzjTEPDvEc2owxs3OcX2uMeX8/7n+LMebKvl7fH8aYS40xvx/osQXcyxpjdu/jtQ8YY85xH59rjHkqy7gh/7sjIiIi8m5hjHmfMWZljvMz3TVe0c6c10AyxhxhjNk41POA/q2XB3AOOf/MRWRoKMQVeZczxnzcGLPUDSS3uEHYoUM9r3ystX+y1h4zxHOotNauhv4HrrlCx6Fgrf2BtfbCgR7bV8aYG4wxf8xwfIExptsYM9pa+wFr7a357jUc/u6IiIjIyGaMOdQY84wxptkY02CMedoYc+BQz6svrLVPWmv3jD/vbyHDcDAcgtK+MsYcbYx51BjTaoypN8YsN8Z83RhT2o97Jn0/Uv/MRWR4UIgr8i5mjPkK8AvgB8AEYDrwW+DEIZxWXrvyb/F3BcP0+3sLcIoxpiLl+CeAf1lrG3b+lERERER6zxhTDfwLuBYYDUwBvgd0D+W8ZNdnjDkNuBv4MzDDWjsGOAOYCkzLcs1wXPuLSB8oxBV5lzLG1ADfBz5rrf2btbbdWhu21v7TWnuJO6bEGPMLY8xm979fGGNK3HNHGGM2GmO+ZozZ7lbxnmSM+aAx5i23ouBS3+tdboy52xhzp/tb4WXGmH19579hjFnlnnvDGHOy79y5bnXCNcaYBuDy1MpV97fDFxtj3jbGNBpjfmOMMe65oDHmZ8aYOmPMGmPM57J9pMsYc54x5p++5+8YY+7yPd9gjFnoe83djTEXAWcCX3Mrmv/pu+VCY8wrbpXFnZl+A26M2Ru4HjjEvb7Jd7rWGPO/7vfleWPMbr7r9jLGPOR+r1caY07P8ec92RjzD3fsO8aYT2b4s7ndGNMCnOseu9035hPGmHXub/O/46+w8I813sflzjHGrHe/59/y3WexMeZZY0yT+3fm18aY4mzzjrPWPgtsAj7iu1cQ+Dhwq/v8MWNMxopgY8xPjTFPGWNqBuvvjoiIiEiB5gBYa++w1kattZ3W2getta8AGGN2M8Y84q676owxfzLGjIpf7K7DLnHXmO3GmJuMMROM84m6VmPMf4wxtb7xBxun6rfJGLPCGHNEIZM0xtxqjPkf9/EUdw30Gff57u660hhfqwFjzG04hSH/dNe1X/Pd8sxM68MMr/tB4/w80GqM2WSM+ap7vLc/f2T9WcY9/0l3XdzgrpMnu8efcIescN/DGb5r/sf32uelvNbV7vvbZoy53hhTljLvXl/rnr/EvWazMeb8HN83A/wc+L619nfxIgdr7Upr7eettW+74zKt/bOu0TN9P0xKewn37+RXTZafe9w/s/h7uNDswpXOIsOZQlyRd69DgFLg3hxjvgUcDCwE9gUWA9/2nZ/o3mMK8F3gd8BZwAHA+4DvmuSesScCf8WpOPgzcJ8xJuSeW+VeU4NTiXC7MWaS79qDgNXAeOCqLPM9ATjQnevpwLHu8U8CH3Dfx/7ASTne8+PA+4wxAff1Q8B7Adz3Ugm84r/AWnsj8CfgJ26LhQ/5Tp8OHAfMAhYA56a+oLX2TeBi4Fn3+lG+0x/D+X7UAu/E37txKlIfwvk+jnfH/dYYs0+W93UHsBGYDJwK/MAYs8R3/kSc39qPct9LgjFmLk6F9pnAJJw/oylZXifuUGBPYAnO34O93eNR4MvAWJy/g0uAz+S5V9wfcSpv496P8+fzQLYL3D/H3+F874+x1jZnGToQf3dERERECvEWEHVD0g8YX+DqMsAPcdZte+NUUF6eMuYjwNE4gfCHcNZDl+KssQLAF8AJX4H/Ba7EWYN/FbjHGDOugHk+DhzhPj4cZy1+uPv8MOBJa631X2CtPRtYD3zIXdf+xHc62/ow1U3Ap6y1VcA84BHfud78/JH1ZxljzFE43+PTcda364C/uO/hMPf6fd33cKfvtePr4AuA3/j+7H6M82exENjdNz/6c60x5jicP7OjgT1w1r/Z7IlTcXtPjjFxqWv/rGv0HN+PVBl/7nHfw1fcue+O93dIRAaYQlyRd68xQJ21NpJjzJk4v8ndbq3dgRMmnu07HwaustaGcRY9Y4FfWmtbrbWvA6/j/A887iVr7d3u+J/jLMAOBrDW/tVau9laG3MXBm/jLLTiNltrr7XWRqy1nVnm+yNrbZO1dj3wKM5CCJwFxS+ttRuttY3Aj7K9YbfHbat77eHA/wGbjDF7uc+ftNbGsn/L0vzKfV8NwD99cyrU36y1L7h/Tn/yXX8CsNZae7P7PVmGs2A7NfUGxphpOIvmr1tru6y1y4Hfk/xn+ay19j73+5/6/T0V+Ke19ilrbQ/OotKS2/fcqpIVwAqchTPW2pestc+5c14L3EDhC7nbgMONMVPd558A/uz+fcokhBNej8b5QaIjx737/XdHREREpBDW2hactZnFCSF3uJWgE9zz71hrH7LWdrtr8J+Tvl661lq7zVq7CXgSeN5a+7K1thunSGM/d9xZwP3W2vvddd5DwFLggwVMNVHcgBPa/gS3uMGdz+O9fOsZ14cZhIG5xphqa22ju871nyv0549cP8ucCfzBWrvM/Z59E+dTcTNzzD/s3i9srb0faAP2dCtgPwl82VrbYK1txWlX99EBuPZ04GZr7WvW2nbSw3y/se7XrfEDxpi/uNW1HcaYrGv/fq7R47L93BN/D6+76/Hv9fK+IlIghbgi7171wFiT+2Phk3F+Kx23zj2WuIe1Nuo+jgd/23znO3EqV+M2xB+4QWi8MjT+cf3l7iKjCee37mMzXZvDVt/jDt9rT065Pt+94lUHh7mPH8NZxPRlsZptTv29fgZwUPz75X7PzsT5LX+qyUB8URi3juRq2lzfk6Tvn7v4qu/LvI0xc4wx/zLGbHU/vvUDkv+cs3ID1ieAs4wxlThVsbk2Mtsdp8rge2743Ov50vu/OyIiIiJ5WWvftNaea62dirPunYyzVwXGmPFu+LbJXS/dTvp6KXXNnW0NPgM4LWXNeChO9Wm+Oa7CCRsX4lS5/gvYbIzZk8FdF38EJ2ReZ4x53BhziO9cb37+yPWzTNI5a20bzvo216fN6lMKYOLvYRxQDrzk+x7/2z3e32tT16L+95M2P/dr4s/WWvtR91N+y4Cgb2zSmrY/a3QfradFhphCXJF3r2eBLnJ/PHwzzsIvbrp7rK8SzfTd3+hPxVkIzsCpQvgcMMZdaLyG81GyuHyVn7lscV8rbR5ZxEPc97mPHyd/iNuf+fXl+g3A49baUb7/Kq21n84wdjMw2hhT5Ts2HafHbCGvn/T9c3t0jenlfOOuA/4L7GGtrcb52J/JfUmSW3EqcD8CrEmpzEj1JnAe8ID7w0Zf9PbvjoiIiEivWGv/i7OJ6zz30A9x1mYL3PXSWfRuveS3AbgtZc1YYa0t9NNFj+N8KqvYrfp9HGctVgssz3JNv9bF1toXrbUn4rQMuw+4K/cVWeX6WSbpnNuqbAzJ6+NC1eGEx/v4vsc11tpCijfyXbuF5PXn9Bz3+q87/1MKeN3UP6P+rtFz0XpaZCdRiCvyLmWd3qDfxenHdJIxptwYE3L7csV7V90BfNsYM84YM9Ydf3u2exbgAGPMKW7175dwduB9DqjAWUjsAGdzMbxF7EC4C/iicTZkGAV8Pc/4x4EjgTJr7Uacj6gdh7OweznLNduA2VnOFWIbMNUUsMmX61/AHGPM2e6fW8gYc2Cm3mLW2g3AM8APjTGlxpgFOL24/pQ6Nou7gQ8ZY97jzu979H1RVwW0AG1ui4pMoXMu9+As/L5H7ipcwNkwBGcR+h/j2xSuF3r7d0dEREQkJ+NsTvs/8RZRbuurj+Gsi8FZL7UBTW5P20v68XK346zjjjXOhq2lxtmUKv7alxtjHstx/eM4hRbxza0eAz4PPOWriE3V53WxMabYGHOmMabGbZnQgtOvtS9y/SzzZ+A8Y8xC42x29gOclhRre/se3E8Y/g64xhgz3n0fU4wxx+a+sqBr78LZeGyuMaYcuCzHvSzwP8Blxtm0rdY49gAm5JlKvjV6f37WuQvne723+x6+m+8CEekbhbgi72LW2p/jNJn/Nk6AugFnkXafO+RKnJ5ZrwCv4nwM58p+vOTfgTOARpx+VKe4faHeAH6GUx28DZgPPN2P10n1O+BBnPfxMnA/ECHLgtBa+xbOwvlJ93kLzkYOT+dYrN6E07uryRhzXx/m+AhOD6+txpi6fIPd1gjH4PTL2ozz8aUfAyVZLvkYMNMdey9wmdsTLS+3v9jncfqObcHpGbwdJ4Tvra8CH3fv8Tsg28YI2ebSjhfkFhRCW2tvBb4PPJKnz1kmvfq7IyIiIlKAVpxNe583xrTjhLev4QRw4Pyyen+gGWdTsr/19YXcX+afiPNL7fh6/xK8n/WnkXvd/ThOwBcPcZ/C+fj/E1mvcCqJv+2ui7/ah2mfDax1P9Z/MU4lcl9k/VnGWvsw8B2cdeUWYDeSe9heDtzqvofTC3itr+NsQvycO+//4Gw0Vois11prH8Bps/GIO+aRLPfAHX8nTg/as3D+rOtwQtQbcTaYzibfGv1yevf98M/pAeBXOPtOvIPzMx/07WcJEcnBWNvfTwiLiDi/5Qd2t9b2dRE2kHP5AHC9tXZG3sGSxu1H24Tzcas1QzydnUp/d0REROTdxBizHFhirc2334HIgHA/OfgaUGJzb7ItIr2kSlwR2eUZY8qMMR80xhS5H0m7DKcaVQpkjPmQ23KjArgap5ph7dDOavDp746IiIi8m1lrFyrAlcFmjDnZbZVRi/PpwX8qwBUZeApxReTdwOB8LK0R5yPxb6JeTL11Ik4rhs3AHsBH7cj4qIb+7oiIiIiI9M+ncNp5rMJpS9bbfTFEpABqpyAiIiIiIiIiIiIyjKkSV0RERERERERERGQYU4grIiIiIiIiIiIiMowVDfUE+uO4446z//73v4d6GiIiIiIjjRnqCcjg01pbREREZEhkXGvv0pW4dXV1Qz0FEREREZF3Ja21RURERIaPXTrEFREREREREREREXm3U4grIiIiIiIiIiIiMowpxB0A27Zt4+Mf/zizZ8/mgAMO4JBDDuHee+8t+PqmpiZ++9vfJp5v3ryZU089dTCmKiIiIiKyy+jvOhsGf61933338f3vf3/A7tcXRxxxBEuXLu33fW655RY+97nPpR1/7LHHeOaZZwq+z9q1a5k6dSqxWCzp+MKFC3nhhRdYuXIlRxxxBAsXLmTvvffmoosu6vfcCzVz5sy8rUJuueUWNm/enHh+4YUX8sYbb/Tp9X79619z88039+laERERP4W4/WSt5aSTTuKwww5j9erVvPTSS/zlL39h48aNSeMikUjWe6QuLCdPnszdd989aHMWERERERnuCl1nw9CutX/yk5/wmc98ZsDuNxz1NsSdOXMm06ZN48knn0wc++9//0trayuLFy/mC1/4Al/+8pdZvnw5b775Jp///Odz3i8ajfZ57n2RGuL+/ve/Z+7cuX261/nnn8+vfvWrgZqaiIiMYApx++mRRx6huLiYiy++OHFsxowZfP7zn+eWW27htNNO40Mf+hDHHHMMbW1tLFmyhP3335/58+fz97//HYBvfOMbrFq1ioULF3LJJZewdu1a5s2bBzgLiFNOOYXjjjuOPfbYg6997WuJ17npppuYM2cORxxxBJ/85Ccz/tZcRERERGRXlGudDQyLtfZbb71FSUkJY8eOBZzK4ZNPPpl9992XfffdNxF8/vznP2fevHnMmzePX/ziF4BTrbr33nvzyU9+kn322YdjjjmGzs5O3nzzTRYvXpx4jbVr17JgwQIAHn74Yfbbbz/mz5/P+eefT3d3d9J8rrvuuqT3cMsttyS+X7fffjuLFy9m4cKFfOpTn0oEozfffDNz5szh8MMP5+mnn057j2vXruX666/nmmuuYeHChTz55JOsW7eOJUuWsGDBApYsWcL69evTrvvYxz7GX/7yl8Tzv/zlL3zsYx8DYMuWLUydOjVxbv78+WnXP/bYYxx55JF8/OMfZ/78+USjUS655BIOPPBAFixYwA033JC412GHHcbChQuZN29eIji+4447mD9/PvPmzePrX/96xvcV/3sAcPXVV3P55Zdz9913s3TpUs4880wWLlxIZ2dnUqVztvtWVlbyrW99i3333ZeDDz6Ybdu2AVBeXs7MmTN54YUX0uYgIiLSK9baXfa/Aw44wMbB4P2Xyy9/+Uv7pS99KeO5m2++2U6ZMsXW19dba60Nh8O2ubnZWmvtjh077G677WZjsZhds2aN3WeffRLX+Z/ffPPNdtasWbapqcl2dnba6dOn2/Xr19tNmzbZGTNm2Pr6etvT02MPPfRQ+9nPfjb3ZEVEREQGxpCvA/Xfu3+tnWudbe3wWGv/4Q9/sF/5ylcSz08//XR7zTXXWGutjUQitqmpyS5dutTOmzfPtrW12dbWVjt37ly7bNkyu2bNGhsMBu3LL79srbX2tNNOs7fddpu11tp9993Xrlq1ylpr7Y9+9CN7xRVX2M7OTjt16lS7cuVKa621Z599duK1Dj/8cPviiy/a7du329122y0xn+OOO84++eST9o033rAnnHCC7enpsdZa++lPf9reeuutdvPmzXbatGl2+/bttru7277nPe/J+D4vu+wy+9Of/jTx/IQTTrC33HKLtdbam266yZ544olp12zZssVOnDjRhsNha621e+21l3311VcT37fq6mp73HHH2Z///Oe2sbEx7fpHH33UlpeX29WrV1trrb3hhhvsFVdcYa21tquryx5wwAF29erV9uqrr7ZXXnll4nve0tJiN23alHhf4XDYHnnkkfbee++11lo7Y8YMu2PHjrS/Fz/96U/tZZddlvT9jIs/z3VfwP7jH/+w1lp7ySWXJOZqrbVXXnmlvfrqq9Peo4iISBYZ12aqxB1gn/3sZ9l333058MADATj66KMZPXo04ATml156KQsWLOD9738/mzZtSvyGNpclS5ZQU1NDaWkpc+fOZd26dbzwwgscfvjhjB49mlAoxGmnnTao70tEREREhg9jzB+MMduNMa/5jv3UGPNfY8wrxph7jTGjfOe+aYx5xxiz0hhz7JBMup9S19kw9GvtLVu2MG7cuMTzRx55hE9/+tMABINBampqeOqppzj55JOpqKigsrKSU045JVEtOmvWLBYuXAjAAQccwNq1awE4/fTTueuuuwC48847OeOMM1i5ciWzZs1izpw5AJxzzjk88cQTSfMZN24cs2fP5rnnnqO+vp6VK1fy3ve+l4cffpiXXnqJAw88kIULF/Lwww+zevVqnn/+eY444gjGjRtHcXExZ5xxRt7vF8Czzz7Lxz/+cQDOPvtsnnrqqbQxEydOZJ999uHhhx9m+fLlhEKhROXreeedx5tvvslpp53GY489xsEHH5xWVQywePFiZs2aBcCDDz7IH//4RxYuXMhBBx1EfX09b7/9NgceeCA333wzl19+Oa+++ipVVVW8+OKLifdVVFTEmWeemfa96otc9y0uLuaEE04Akv8sAcaPH5/UnkFERKQvFOL20z777MOyZcsSz3/zm9/w8MMPs2PHDgAqKioS5/70pz+xY8cOXnrpJZYvX86ECRPo6urK+xolJSWJx8FgkEgkgrV2AN+FiIiIiOxibgGOSzn2EDDPWrsAeAv4JoAxZi7wUWAf95rfGmOCO2+qfZNvnQ1Dv9YuKyvL+xq57pXptQHOOOMM7rrrLt566y2MMeyxxx4Fzyl+7T333MPJJ5+MMQZrLeeccw7Lly9n+fLlrFy5kssvvxwAY0xB980l2z3iLRX8rRTiJk+ezPnnn8/f//53ioqKeO2119Ku9//5Wmu59tprE+9hzZo1HHPMMRx22GE88cQTTJkyhbPPPps//vGPBX2vioqKkjZeK+TvSq77hkKhxPfB/2cZv3dZWVne+4uIiOTyrglxB/NDXrkcddRRdHV1cd111yWOdXR0ZBzb3NzM+PHjCYVCPProo6xbtw6AqqoqWltbe/V+Fy9ezOOPP05jYyORSIR77rmnV9eLiIiIyK7LWvsE0JBy7EFrbTw5eg6INx09EfiLtbbbWrsGeAdYTC8MxVq7N+tsGJq19t57780777yTeL5kyZLEfKPRKC0tLRx22GHcd999dHR00N7ezr333sv73ve+nK+/2267EQwGueKKKxLVsXvttRdr165NvN5tt93G4YcfnnbtKaecwn333ccdd9yRuHbJkiXcfffdbN++HYCGhgbWrVvHQQcdxGOPPUZ9fT3hcJi//vWvGeeT+j18z3vek+h3+6c//YlDDz0043Uf+chHuP/++7nzzjv56Ec/mjj+73//m3A4DMDWrVupr69nypQpOb8nxx57LNddd13iurfeeov29nbWrVvH+PHj+eQnP8kFF1zAsmXLOOigg3j88cepq6sjGo1yxx13pH2vJkyYwPbt26mvr6e7u5t//etfWd9vXCH3zeStt95K6r8rIiLSF++aEHeoGGO47777ePzxx5k1axaLFy/mnHPO4cc//nHa2DPPPJOlS5eyaNEi/vSnP7HXXnsBMGbMGN773vcyb948LrnkkoJed8qUKVx66aUcdNBBvP/972fu3LnU1NQM6HsTERERkV3W+cAD7uMpwAbfuY3usWGtN+tsGJq19mGHHcbLL7+cqND85S9/yaOPPsr8+fM54IADeP3119l///0599xzWbx4MQcddBAXXngh++23X945nHHGGdx+++2cfvrpAJSWlnLzzTdz2mmnMX/+fAKBQNKmb3G1tbWJthDxDdLmzp3LlVdeyTHHHMOCBQs4+uij2bJlC5MmTeLyyy/nkEMO4f3vfz/7779/xrl86EMf4t57701sbParX/2Km2++mQULFnDbbbfxy1/+MuN1o0aN4uCDD2bChAmJtgjgtEaYN28e++67L8ceeyw//elPmThxYs7vx4UXXsjcuXPZf//9mTdvHp/61KeIRCI89thjLFy4kP3224977rmHL37xi0yaNIkf/vCHHHnkkey7777sv//+nHjiiUn3C4VCfPe73+Wggw7ihBNOSPx9ATj33HO5+OKLExubxRVy30yefvpp3v/+9+cdJyIikovZlT+Wv2jRIhvfJXQkamtro7Kykkgkwsknn8z555/PySefPNTTEhERkXe//n/+WvrNGDMT+Je1dl7K8W8Bi4BTrLXWGPMb4Flr7e3u+ZuA+621aeWlxpiLgIsApk+ffkC8mnUkKnSt/cUvfpEPfehDCukko5dffpmf//zn3HbbbUM9FRER2XVkXGurEncXdvnll7Nw4ULmzZvHrFmzOOmkk4Z6SiIiIiIyhIwx5wAnAGdar1pjIzDNN2wqkHGXJWvtjdbaRdbaRf4Nu0aiQtfal156ac42DzKy1dXVccUVVwz1NERE5F1AlbgiIiIi0luqxB0GUitxjTHHAT8HDrfW7vCN2wf4M04f3MnAw8Ae1tporvtrrS0iIiIyJDKutYt29ixERERERKR/jDF3AEcAY40xG4HLgG8CJcBDxhiA56y1F1trXzfG3AW8AUSAz+YLcEVERERkeFGIKyIiIiKyi7HWfizD4ZtyjL8KuGrwZiQiIiIig0k9cUVERERERERERESGMYW4IiKD5Kab4IMfhCefHOqZiIiIiIiIiMiuTCFuPwWDwcSutaeddlq/dqY999xzufvuuwG48MILeeONN7KOfeyxx3jmmWcSz6+//nr++Mc/9vm1RWRgbd4MF14IDzwARxwx1LMRERHZNWmtLSI7TbR1qGcgIpKTQtx+KisrY/ny5bz22msUFxdz/fXXJ52PRvu2Z8Tvf/975s6dm/V86sLy4osv5hOf+ESfXktEBt6rr3qPY7Ghm4eIiMiuTGttEdlpOh4Z6hmIiOSkEHcAve997+Odd97hscce48gjj+TjH/848+fPJxqNcskll3DggQeyYMECbrjhBgCstXzuc59j7ty5HH/88Wzfvj1xryOOOIKlS5cC8O9//5v999+ffffdlyVLlrB27Vquv/56rrnmGhYuXMiTTz7J5ZdfztVXXw3A8uXLOfjgg1mwYAEnn3wyjY2NiXt+/etfZ/HixcyZM4cn9RlvkUHT2TnUMxAREXl30VpbRAZNrAu6X4Vo81DPREQkq3dXiHv55WBMYf9ddFH69RddlDzm8ssLfulIJMIDDzzA/PnzAXjhhRe46qqreOONN7jpppuoqanhxRdf5MUXX+R3v/sda9as4d5772XlypW8+uqr/O53v0v6bX/cjh07+OQnP8k999zDihUr+Otf/8rMmTO5+OKL+fKXv8zy5ct53/vel3TNJz7xCX784x/zyiuvMH/+fL73ve8lzfOFF17gF7/4RdJxERlY/fi0p4iIyPCktTagtbbIu1KsDWwEwmuHeiYiIlkVDfUEdnWdnZ0sXLgQcKoDLrjgAp555hkWL17MrFmzAHjwwQd55ZVXEj24mpubefvtt3niiSf42Mc+RjAYZPLkyRx11FFp93/uuec47LDDEvcaPXp0zvk0NzfT1NTE4YcfDsA555zDaaedljh/yimnAHDAAQewdu3afr13EckuNcS11vl5VURERAqntbbIu4wNgwkN9SzS2Xbna3g1lO47tHMREclCIW4/xft0paqoqEg8ttZy7bXXcuyxxyaNuf/++zF5Uh1rbd4xvVFSUgI4m0REIpEBu6+IJKurS34eiUBoGK5XRUREhjOttUXeZXrehtBsCJQO9UySxdwKjMjWoZ2HiEgO7752CtYW9t+NN6Zff+ONyWN68RGvXI499liuu+46wuEwAG+99Rbt7e0cdthh/OUvfyEajbJlyxYeffTRtGsPOeQQHn/8cdasWQNAQ0MDAFVVVbS2pu+eWVNTQ21tbaIH12233ZaoFBCRnWfduuTn3d1DMw8REZEBo7W21toi/RXdAV1Lh3oW6awb4sbah3YeIiI5qBJ3J7jwwgtZu3Yt+++/P9Zaxo0bx3333cfJJ5/MI488wvz585kzZ07GBeC4ceO48cYbOeWUU4jFYowfP56HHnqID33oQ5x66qn8/e9/59prr0265tZbb+Xiiy+mo6OD2bNnc/PNN++styoirvXrk593d0Nl5dDMRURE5N1Ma22RXUikDogO9SzSxdxdiW2H+qCJyLBlrLVDPYc+W7RokY3vKisiMpwcdhj4N6XetAkmTx66+YiIDDD9dDsCaK0tIgOu8QYwxTDqvKGeSbL2h6DjaefxmEsgUJF7vIjI4Mq41n53tVMQERkmurqSn6udgoiIiIiMeLYd7DBcGMd8i3fblX2ciMgQUogrIjIIFOKKiIiIiKSIdQ3PENd2eo9jw3B+IiKoJ66IyKBQiCsiIiIi4mOjYHvADsMYwvb4HqsSV0SGJ1XiiogMgtQQ190wW0RERERkZIqHo8OyElchrogMfwpxRUQGgUJcERERERGfRIgbBRsZ2rmkUogrIrsAhbgiIoMgNcSNDLN1qoiIiIjITuXvNRvrzD6uUNGG/t8jzvoqLmIKcUVkeFKI209NTU2ceuqp7LXXXuy99948++yzACxfvpyDDz6YhQsXsmjRIl544QUAnn76aRYsWMCBBx7IO++8k7jHsccei7V2yN6HiAwsVeKKiIj0n9baIu8i/jYKtqP/9+taMXCbkKkSV0R2AcOwo3g/7Lh8YO83Lv/9vvjFL3Lcccdx991309PTQ0eH8z+jr33ta1x22WV84AMf4P777+drX/sajz32GD/72c+45557WLt2Lddddx0/+9nPuOKKK7j00ksxxgzs/EVkSESj6aGtKnFFRGSXp7W2iPSHHeBK3FgLxBohMLH/90IhrogMf6rE7YeWlhaeeOIJLrjgAgCKi4sZNWoUAMYYWlpaAGhubmby5MkAhEIhOjs76ejoIBQKsWrVKjZt2sThhx+e9XVmzpxJXV0dAEuXLuWII44A4PLLL+f888/niCOOYPbs2fzqV79KXPPHP/6RBQsWsO+++3L22WcP9FsXkRy6MxQEKMQVERHpHa21Rd5lBroSN9Y6MGEwpLRTGKB7iogMsHdXJe5Otnr1asaNG8d5553HihUrOOCAA/jlL39JRUUFv/jFLzj22GP56le/SiwW45lnngHgm9/8JhdddBFlZWXcdtttfPWrX+WKK67o8xz++9//8uijj9La2sqee+7Jpz/9ad566y2uuuoqnn76acaOHUtDwwD2ChKRvDK1TlA7BRERkd7RWlvkXSapEneAQlw7AIGr7QEb8z1XJa6IDE+qxO2HSCTCsmXL+PSnP83LL79MRUUFP/rRjwC47rrruOaaa9iwYQPXXHNNooJg4cKFPPfcczz66KOsXr2ayZMnY63ljDPO4KyzzmLbtm29msPxxx9PSUkJY8eOZfz48Wzbto1HHnmEU089lbFjxwIwevTogX3jIpJTpqpbVeKKiIj0jtbaIu8yA16J2z4wgWtq5a0doD67IiIDTCFuP0ydOpWpU6dy0EEHAXDqqaeybNkyAG699VZOOeUUAE477bTEZgtx1lquvPJKvvOd7/C9732P733ve5x11llJH9OKKyoqIhZzfjPYlbJbUklJSeJxMBgkEolgrVXPL5EhpEpcERGR/tNaW+Rdxr95WH9bFljrBMED0fogtZpXIa6IDFMKcfth4sSJTJs2jZUrVwLw8MMPM3fuXAAmT57M448/DsAjjzzCHnvskXTtrbfeyvHHH09tbS0dHR0EAgECgUBiswa/mTNn8tJLLwFwzz335J3XkiVLuOuuu6ivrwfQR7xEdjJV4oqIiPSf1toi7zL+vrP9rcS1XU4LBFXiisgIop64/XTttddy5pln0tPTw+zZs7n55psB+N3vfscXv/hFIpEIpaWl3HjjjYlrOjo6uPXWW3nwwQcB+MpXvsJHPvIRiouLueOOO9Je47LLLuOCCy7gBz/4QaISIZd99tmHb33rWxx++OEEg0H2228/brnlFv7xj3+wdOlSvv/97w/QuxeRTDIFtqrEFRER6T2ttUXeRfyVuP0NX+PXD0Tgatsz31tEZJgx1tqhnkOfLVq0yC5dunSopyEikuTtt2HOnORjN94In/zk0MxHRGQQ6LPkI4DW2iIyoFruhu7XnMeh6TDq/L7fK7IVGq+H0gVQdUr/5tXxBLQ/4j03ARj73f7dU0SkfzKutdVOQURkgKkSV0REREQkxYBW4roVuLEBqJqNNqbcO5bc+kFEZJhQiCsiMsDUE1dEREREJJUvGO33xmZuiDsgPXFbM9y/J/2YiMgQG7QQ1xjzB2PMdmPMaxnOfdUYY40xY33HvmmMeccYs9IYc+xgzUtEZLBlqrpVJa6IiIiIjGgDWYkbU4grIiPPYFbi3gIcl3rQGDMNOBpY7zs2F/gosI97zW+NMcFBnJuIyKBRJa6IiIiISIqkEDcMNtqPew1kiNuW4f4KcUVk+Bm0ENda+wTQkOHUNcDXAP+OaicCf7HWdltr1wDvAIsHa24iIqleegm+8Q14Le2zA72nEFdEREREJEVqMBoPYvt0rwHqiWujYDsyHFeIKyLDT9HOfDFjzIeBTdbaFcYkbbQ2BXjO93yje0xEZNBFo3DEEdDWBrffDhs39u9+aqcgIiIiIpIidbMw2wWU9/Fe8UrcHmcjMtPH+rRYG1ibflwhrogMQzstxDXGlAPfAo7JdDrDsQz/koIx5iLgIoDp06cP2PxEZORqbHQCXIBNm5x1nMn0r1KBVIkrIiIiIpIiNRiNdUFfmyim9tc1fQyDM7VSSL2/iMgwMZg9cVPtBswCVhhj1gJTgWXGmIk4lbfTfGOnApsz3cRae6O1dpG1dtG4ceMGecoiMhL0pKzROvu5WW6mwFaVuCIiIiIyYtkY2JRF8kC0UwCw/Vi8Z7tWIa6IDEM7LcS11r5qrR1vrZ1prZ2JE9zub63dCvwD+KgxpsQYMwvYA3hhZ81NREa21NC2vb1/98sU2KoSV0RERERGrEyhaH+CUv+1sf6EuFl66vYnYBYRGSSDFuIaY+4AngX2NMZsNMZckG2stfZ14C7gDeDfwGet7c9WlSIihUsNcduyfKqqUKrEFRERERHxyRSW9qsS13e//lTiZtsYTZW4IjIMDVpPXGvtx/Kcn5ny/CrgqsGaj4hINj/5SfLz/lbiqieuiIiIiIjPgIe4vmv7VYmbZQ6qxBWRYWhn9sQVERmWbrst+flgtFNQJa6IiIiIjFiZgtZ+tVPwV+J2DMx9ko4rxBWR4UchrohIiv6GuNEMzWBUiSsiIiIiI9ZAV+LG/JW4/Vi8K8QVkV2IQlwRGdEyhavd/VyzZQpxVYkrIiIiIiNWpqB1oCpxY/2oxM3aE1chrogMPwpxRWRE68mwduxv1WwsNvD3FBERERHZZUXr0o/ZPlY52Fjytf1qp5Cln65CXBEZhhTiisiIlqnqtr+Bq9opiIiIiIj4xJrSj/W1Ejf1umwtEQq6lypxRWTXoRBXREa0TCFuf1sfqJ2CiIiIiIhPpo3N6GslbkqIm60lQiEyzovknrsiIsOEQlwRGdEGoxJX7RRERERERHwybmw2QCFuvypxs7RiUCWuiAxDCnFFZEQbjJ64qsQVEREREfHJGOIOcTsFG8vRTqEfm66JiAwShbgiMqKpJ66IiIiIyCDL1Lagz5W43enPre3DfTqyX2d7+nZPEZFBpBBXREa0weiJm6mdgipxRURERGREsrHMla19rnZNWVjbGMRaen+bbP1wE/dVNa6IDC8KcUVkRFMlroiIiIjIIMrWX3ageuICROt6f59Yu/f4sVXwzfvhufW+11FfXBEZXoqGegIiIkNJPXFFRERERAZR1jC0ryFuhutirX24j7up2eoGOON2sMA9r8Kr/wMlRarEFZFhRyGuiIxomULcwWinoEpcERERERmRslbi9nVjswyLdZunNUImMTfEfW6dE+B+5/2w1zgnwO3P/EREBonaKYjIiJYpsFUlroiIiIjIALFdWY7HwGZYOOe9X6ZK3I4+3McNflfucL7+5FFYscV3Xu0URGR4UYgrIiPazgpxVYkrIiIiIiNSrjC0L31xB6oSN37Ntjbna3cUptb4zqsSV0SGF4W4IjKiZQpX1U5BRERERGSAxHKFuH0JSjMs1qMtvb9NzA1x630bnI2ryP06IiJDSCGuiIxoaqcgIiIiIjKYcgW1A1SJG2vuw33iIa6vFYMx8Po22NisSlwRGXYU4orIiJYpsO1viKtKXBERERER10BX4mYMcZt6f5+Y26vXX4n70T/BkdfDLS8qxBWRYUchroiMaJkqZPtbNatKXBERERERV86euAMV4nZDtKmX9+kEa6GuPf1cfYdCXBEZdhTiisiIpo3NREREREQGUa4wtE9BaZaFdbSud7exndDaDeEMH6Nr6lKIKyLDjkJcERnRdlY7BVXiioiIiMiIlLMSN8e5rNdkWVjHerm5WawT6joyn2vuzP46IiJDRCGuiIxoqsQVERERERlEA95OIcvCOtbau3vYsBPWZtKoEFdEhp+ioZ6AiMhQUk9cEREREZFBNNAhLtkqcbMEshlf193UbO8J8NRnoL0HNrXA+Xc5x5u7FOKKyLCjEFdERrSd1U4hFnP+C+jzDyIiIiIykuTsiTuA7RR6E7rGX7e0COaMcx7PHuOdb+oka1gsIjJEFCeIyIi2s9opDMR9RURE4owxfzDGbDfGvOY7NtoY85Ax5m33a63v3DeNMe8YY1YaY44dmlmLyIi0s9opZNvwLJNYhjlVlUDAOI/beqCnF5W9IiI7gUJcERnRMgWrg9FOIdtriYiI9NEtwHEpx74BPGyt3QN42H2OMWYu8FFgH/ea3xpjgjtvqiIyosVD3Jc2wpHXw+fug0gs+Vyv7jeAlbh+AQM1pd7zpl5ulCYiMsgU4orIiDYYlbiZ2ikMxH1FRETirLVPAA0ph08EbnUf3wqc5Dv+F2ttt7V2DfAOsHhnzFNEJFFt+/Mn4PVtcNcKuOz/nGOZKmLzyrKozlqhm2ms+7pdEec/a53n/hC3sbkPcxMRGTwKcUVkRNuZ7RS0uZmIiAyyCdbaLQDu1/Hu8SnABt+4je4xEZHBZ7uJxQw89LZ37HcvuMHpQLZT6E0lrvu61z4F06+CyVc4IXNtmdMnd0IldHX0fm4iIoNIG5uJyIimdgoiIjICmAzHbMaBxlwEXAQwffr0wZyTiIwENgo2yrW/2o8vpp5b0wB79rIS19rsIW6vKnG7nK872p2vUev0xP3X+RByu80Eqno3NxGRQaZKXBEZ0XZmOwVV4oqIyCDbZoyZBOB+3e4e3whM842bCmzOdANr7Y3W2kXW2kXjxo0b1MmKyAjgVuH+7/Vj0s9tbulDT9ws1RLQt56429q8YxMqvQDXP0ZEZJhQiCsiI1qmwHaw2imoEldERAbZP4Bz3MfnAH/3Hf+oMabEGDML2AN4YQjmJyIjje3h1TfG81DDe5nKBlqp9M41dnoVsQXfz11Qv7oVjroBzrrD6WkLZO2Vm/E+bkC7vdU7Nr4yZUwP2CzVGSIiQ0AhroiMaJmqYwernYIqcUVEZKAYY+4AngX2NMZsNMZcAPwIONoY8zZwtPsca+3rwF3AG8C/gc9aa3OUs4mIDBDbzcuvTQIMm5jKXZzunWvqQ4gbD2ovuhte2woPvgX/esN9rX5W4o7P0D5B1bgiMoyoJ66IjGg7s52CKnFFRGSgWGs/luXUkizjrwKuGrwZiYhk4FbixjUwOvG4c0uYst6GpDYCPVFYVe8dW7oRTl3Qy5643U5/3e0p7RR2tDv3buuGiVVwWDdQ1rs5iogMEoW4IjKi7cx2CqrEFREREZERxXbz2n+9EPd19uE/LKGB0ewTGMc+Nua0LTDFBd4vAltbk49tbnEf9DLEbepyAmGAymKoKIa7VsDX73eOnb0/vK+3lcIiIoNH7RREZEQbjEpc9cQVEREREQFsD/99ZyxldBAkwmv7HsPR/IczuItnJhzrjIn1JiiN+EJb19eOcF+rF4vtWDds84XBE9xWClUl3rG2nl7OTURkcCnEFZERbTB64mZrp6BKXBEREREZSaKRbjZtqeZ2ziJCiGden80J/BOAt1aNcQb1pi+ujUBjh/f8mDkwb6J7Luq0SCjoPt0p/XDdTc0q/SFuN9jOwucmIjLIFOKKyIi2M9spqBJXREREREaSLZst0WiAapzq2eJIN904Qelbq/sY4jb7xleXpgwosGrCplbiuiFuaiVurzdeExEZPApxRWREUzsFEREREZHBsX6DEznEQ1yAFqoBeDse4sZ6U+0agVbfZmjVJcmnC22pYLud+wSM8zwe4lb6evO2divEFZFhRRubiciIlilYVTsFEREREZH+27AhCEAVXtXrRdzIifydytWdWDsK059K3JrS9PMF3acbLlgM5y6Cug4vzK1KaaegnrgiMowoxBWREW2wK3FLSqC7e2DuKyIiIiKyK9mwMQQkV+Kez80AhCNFtLR8j5qqnl7cMQKTq+G9M+HptXDNk3DDc/D8593NyQpYcNuoF/YGA14VLkBFak9chbgiMnyonYKIjGiDHeKW+ooDVIkrIiIiIiPJtu1O3Zi/EjcuRIRNb5eA7cUi2Ubh4/vBvefA7m47ho4wNLlhayGVuLY77VBrWzHX/n4x9z65wDuonrgiMsyoEldERrTBbqdQ4vtlvipxRURERGQk2VFXhCFGtS/E3VE8kXE9WwHY/rZh7mG9rMSNqynzHjfF++pm2ZzCLyXEDYcDLPnIObz48hTAEjXnEbAx6IpAT1sv5iYiMrhUiSsiI9rOaKeQ67VERERERN6tdtQVU0G7d6A8REd5TeJpw2qA3lTi+hbqo3wfeYuHuLYXIe6LG+C1rdzx62ksfXmSe9LQYqu8sS1Nhc9NRGSQqRJXREa0TIHtYIW4qsQVERERkZFkR11xUj9cKkuIlFZAk/O0dUO0l+0U/CGuvxK3N+0U3Mrf02+H9h4+wQ18gZNpZhQA/2Uv5kzYzOipFnrUTkFEhg+FuCIyomWqjh2sdgqqxBURERGRXV6kDorGFjR0R10JVdR5B6pKoKoc1jtPOzdHvFC1sBeHG5+DqIUH/usdbu5lO4VwFNp73CsCtFCdOH0Iz3HS/m9y7613QlFZtruIiOx0aqcgIiNapmDV2uQgtrdUiSsiIiIi70rRemj9K8QKq1DdUV+aUolbTNE4b4Ec3t7V+43NrnkSLnvQ2dAsrrEXIW6sy6vcBZoYhSXAuLFe24cnn5+BtfQyYBYRGVyDFuIaY/5gjNlujHnNd+ynxpj/GmNeMcbca4wZ5Tv3TWPMO8aYlcaYYwdrXiIiftmC1f4EruqJKyIiIiLvSuG1ENkGsca8Qzs7ob09xFIWMbqoEbviK3DzGZSMC3mDWrp7GeKGoSVDgNzcm3YKXb6N0KCB0QCc/7GXqap0+uXWN5SzdXtl7+YmIjLIBrMS9xbguJRjDwHzrLULgLeAbwIYY+YCHwX2ca/5rTEmOIhzExEBsger/Qlxs7VTUCWuiIiIiOzSog3u16a8Q3fscL5aApSNDWAmVcHUGsoneDFEoK2zd9WuHe0QzvCRucbebGyWHOI2UgvAew7cwPy9tyWOv/L6BFXiisiwMmghrrX2CaAh5diD1iZ+NfYcMNV9fCLwF2ttt7V2DfAOsHiw5iYiEpctxO1P1ay/Ere4OPNxEREREZFdTqzV/dqcd2g8xAUYN6Yj8bhiohdDFHd1EO7Nwrspy+vGK3EL6ombuRL3gH03M3/v7ezHMs7mjwRvfR5e3QS2H33WREQG0FBubHY+cKf7eApOqBu30T2WxhhzEXARwPTp0wdzfiIyAvirYwMBr4p2oNophEKZj4uIiIiI7HLiIW60tyGu1282uM94bi09n61dY3mOgzl+RxOTxxX4+i2tmY/3pieu7U7qidtILTXVXUye2MrcPXcwlwf4AtfCA8B7joXDe8CUFjhBEZHBMyQhrjHmW0AE+FP8UIZhNtO11tobgRsBFi1alHGMiEih/L/4LyuDdnd9OVDtFFSJKyIiIiLvGrG25K85xEPcCWxlfumbsL0Nakph8TSunvVpXntzAgDf3XYbk+cW+PpNvk3S9hgLV5/g3HNMhXOskJ64sfRK3LlzdmAMzJ7RyHKqvbFt8Z69CnFFZOgNZk/cjIwx5wAnAGdaa+Mh7EZgmm/YVGDzzp6biIw8/rC2rMx7rHYKIiIiIiIpYm5bBNudd2hDvbP4/SK/5OcPfgjm/QyuexaACWO9ytxtO4ozXp9Rs68Sd0oNHDID5k6ACZXuvAqtxE3uiTt3Tydxnj2jkVaqvLGt3YA2NxOR4WGnhrjGmOOArwMfttZ2+E79A/ioMabEGDML2AN4YWfOTURGHmuTw9pS3y/Y1U5BRERERMTHWrDxDcTyh7jNzc7itwZf64UqZ9ffCeO8St5t20somD/ErclUHVvAIt72ZKzEBZg5rYkWXyVurDXsVuKKiAy9QQtxjTF3AM8CexpjNhpjLgB+DVQBDxljlhtjrgew1r4O3AW8Afwb+Ky1hfwKTUSk7/yhaiAAJb71o9opiIiIiIj42C5vk68CQtyWZueDt7U0egfd4HXCOF8l7vaKwoPSJl8bh+oM4W8h7RRsN1SWsLV4Mi1UOSGuW4lbXh4mWO11nezYHlOIKyLDxqD1xLXWfizD4ZtyjL8KuGqw5iMiksof1BYVOf/FqZ2CiIiIiIiP7fQ9LqQSN0OIO6oMeqJ84oUrWUwVpXTxxPavO/czoSx38mnxh7huJW446mxUNqqUwipxu+GbR7H4rn+yYVMNYPnWzGsTp0vGFIHberenMaIQV0SGjSHZ2ExEZDjwB7WhUHKIG4nAihXw8MPwsY/BpEmF33fQ2inE2sGUgNE/3SIiIiKyk8UGIMStLoWiAPsuf4CF7l7mf9v2HafFQSHmTIDT94XuCCyYBB/4Pby0yTn38KdgcWEhbk9PkI2bnbYJxsD0KV7Lh7KxAVjjPI42hQufm4jIIFMSICIjVmqI6w9cm5rglFOgrg7+/W948MHC7zto7RS6X4NAFZQUun2viIiIiMgAsV2+x/mDzRa3mjW5ErcUAoZIWRmhDmebnI4dtqBQGIDj5sLRE7zntyz1Hjd3FlY1a7tYt3EU1hoApk5uoaTEW6hXTDDe0LYetLGZiAwXO3VjMxGR4SRXO4UHHnACXICHHnL2cSjUoFXiRndA51P9vImIiIiISB6ZtqhJCnEjXn/cLJpbACxT2egdHF/pXF7mVTp01FuIFRji4s1r89YqVtZN8U41deXviRvrBhtjzbraxKFZ0xuThlRP8hb+wfYutVMQkWFDIa6IjFi52imsW5c8tjF5bZeTvxJ3YEPcFohsgWgvJiMiIiIi0lvdr6Uf84e4kLcat6XFMIFtlOO2YagucXriAlR6IW53UwwosGWBG9J2dIQ47MPn8fTbe3rnmjrJ2xPXdoK1FN+zlBO5j8N4nFnT3LV15XFgiqid6oW4oa4OhbgiMmyonYKIjFj+StzUdgrNzcljN22C0aMLu2+2jc1iuYsV8ou1OiXB4Q0QrM0/XkRERESkL3regtJ9k4/5e+KCG26WZr1Fc3OAyWz2DkypSTwMVnpRRLgx2ou+s85C+97792LV2tE04q2JbVMnJl8lru2C9jBH3PUrjuBXdFLKT2bcDyYApYsgWs/oGdt5jMNppYriUSUcqxBXRIYJhbgiMmL5K3FT2ym0tkTw/xPZmbJmzSVbiNv/jc1a3a/NuceJiIiIiPSVjUJkQ/rxWHvKgdzBa3NLkDk0eQdqyxIPA9Ve9USwu5uuzjClJQXM7eZnYOVWRj25lrnsxQ7GJU7VvR5jXL7ANdbl9M51NVLLrOlNEKh2Ng8uWcjEaf9kPx4DYJ/a7Rxr3yhgYiIig0/tFERkxMrVTqG1NTlxjRSw0W3coLRTsBZsh/sCLf24kYiIiIhIDrFW9xNgKR8jsykhbo7q2WgU2tqCFBFhKxOwJUGo9qp2TYVX6VBBO/V1BX5k7f/ehN+/wPErb2UWa3iH3ROnWpa3kr+dQjc0eiFuA6OZNqXZ2TwYIFjL5ImtifObt1ahjc1EZLhQJa6IjFipG5v5A9fW1uSx4V6s3QalEtd2egvpWFs/biQiIiIikkOszSkgiLVBsNp3vPAQN76WfohjmFO5jpbVP4SIL6j1hbiVtFFXB1N2JzdrodtbwHdRygamJZ6XbKvLv7GZ7YZmr7dvI7VMmdQKgQnOgUA5Y8eGKSqKEokEaWwqo6szSmlFnrmJiOwEqsQVkRErdyVuIOvYXKx1/vPfN65fIa5/0Rzr6MeNRERERERyiH/qK+ararBRiGxMHpejdYF/f4maajc0LfKtryu8RXIlbdTXFzKxCHQlh7hbmOTdsqMp/yZktptYQ3Il7pSJLRCoTBwLFFUwboy33t6xwxQyORGRQadKXBEZsVI3NksKcdsCWcfm4m+lEAhAMOg9718lrm83YKsQV0REREQGSbTB+epvnxBrglh38rgcgWmLr/tXdVV3+oDUStz6AoJSG4Uu7zU7KePID20l+s8AQWLUxhpprrfU5NqM2HbTtilGvL64LVRNRUUYAr5S20A5ZwX/TBlbqaKV5uULmLZ3/umJiAw2hbgiMmKlbmzmr5rt6AhmHZuLP6gd2BDXt/hVJa6IiIiIDJZoo/PVv+aMH/PL0U4hqRI3U4h77J7c89LB/GfZXjzNe5lTZ9PHpImktVNYMG8rTfePZky0jjYqeGdZgAP2yHEL203rxmgixI1UuuGtrxIXU87pHdeziKcAeOnNHxcwNxGRwad2CiIyYuVqp5BrbC7+oDYYhKCty3iu1/whru1M7tkgIiIiIjJQYm4CazvTj/kVUIm7H8s4KvwgPLce6n2h8GGzWXbYR7ieT/MqC6hvCGa+UdLrRdPaKew2s5FvHnEXFbRRRRtv1E/Pc49OOrb4FuWjypyvptw7FignWuZtwtaxzfeJOBGRIaQQV0RGrNSNzQYixPW3UwgGLcHYqsTzgQtxY8mLahERERGRgZLoieuvxG3JMDB/T9z/4WdcueJC+PDN8Mg7SWPGjvbuX1dXyIeE00PcaZObGTc/SAdORe1bq0blvkWsi54dXgVx0Wi3rYPxQltMObayxHud+gyVxCIiQ0AhroiMWL2pxC20J25yOwVL0LRnPNdrsZQKALVUEBEREZHBEN/QzL/ejGUIcQtop1BJm3fQ1wcXYEytV5RQVx8iL5vcTqGTMqZNaWHObG9XtJXvjHEqdrPeo5NIk3eP0nHuDwDGN7dABabKe95Tr0pcERke1BNXREas1BA3lGPt2Ld2CpZgoCvjuV5L3czMtgNj+3FDEREREZEUNuZtqGvdANZaCK/LMDZ/O4VcIe7YMd76tr6hsBDXdkWIb4HWY4qZPLGVObt5Ie5bq8Y48zJZ2jPYLlaF5tBImGpaKJ1eCkTBeJW3BMoJ1nhzjTYpxBWR4UGVuCIyYu2UdgoBr8Kgf5W47SnP1U5BRERERAaY7fD2Xoi5AWxkPUQbMozN306hilbvYKUvxF2xmff+5Eqe4yCu51PU1ZeQlw1jfJW4oyeGKSqKsefM7cxgLYfxODXvrCIWy/ERulgXN4z5MkfyGAewDA6f7Rz3V+KaCoprvRDYtqidgogMD6rEFZERK62dQjBGtt9t9amdgokRND0Zz/VarC35eWplroiIiIhIf/kLB+JtFbpWZB6bq51Ck7OuzlqJ2xGmZvl/OQjooZi6htLUW6SL9rD29A9z5117UUwPU6c49x79/ArW8i0A/tV9PFs2386UbPub2W42bqlOPJ0y0X2PSZW4ZZSM9UJc06biCREZHlSJKyIjlj+YddopZE9Z+9ZOIUYwGMt4rjdzAxJ9yB59aiZX/vwwtm4uMFUWERERESmU/9NesVaI1EHXssxjc7ZTcNbAWUNc3+NK2qgvJMQNWp5437l8gx/zFa5h2hS33HdiVWLIBLaxalWW6wFsN5t8Ie7UyS1gTEolbhnl47yoJNCpdgoiMjwoxBWRXVL8U1794Q9mi4qgKJg9GO1bO4UYwaA30UJD3CeegIkT4YADoLMTZ3OGaB076sr5wMfO4js/OoovfS1beYGIiIiISB9ZX+sAa6HljzkG52qn4KyBCw1x29pL6Or0LaQzzi2SVEU7bbLbeHdsReLYeLZnD3FtjLZWQ3OLExiXlEQYM7rDqcI1xhsXKKNygve8uKvD6RUsIjLEFOKKyC7n2WdhyhQ45BBobc0/Ppu0dgpF2UPcvrVTsAQDva/EPe00qK+HZcvgqquAWBPYKP96aA7d3U4XnDvvmVjYzURERERECmVT+r9GW3KMzVWJawGb0hPX17Kg3NvILB701tfl6T1rI2zdXpl4OmmCe++x5Ylj49jB6tUm9Ur3+h42ba3iW1zJl/k5X6r4DSYWA1OePM6UUTXJe1oS7iAWLbCiQ0RkEKknrojscn78Y9iyxfnvS1+Cm27q233SNjYbgErc5HYK0T5V4m7f7j2+6iq48ruNAJSXJU/C2uSiARERERGRfrG9aB2QZ2OzYnoI4a6vQwEo9vrMplbiAtTtCDNlWlmOF4ywbYdXdTthXHviXpGiEEWRMOV0suGtLGGw7WHzhnKu5AsARBsCEPg2BFJD3CBFM2q5vehsGiKjWMmeLGwNU1NbwOZrIiKDSCGuiOxy/v537/Ef/tD3EDe1EjdgBr6dQiDQ+xA3TbQJAGuTE9umJqit7eM9RURERERSpVbi5hybK8Q1VPqrcP2tFADKvecVtGOIUV+f56Nv76zhC09ezymMZiV7MmHc7s5xY7BlJdDqzGfzqmwhbjfb13oRSGeogkpj0itxAWZP5tIJl7FhUw0AX61vpkbrbhEZYmqnICK7nEMPTX7e1/64qSFuMJh9Idq3dgrJG5vF+thKy0adStyW1uTf/jc09O1+IiIiIiIZ9SrE7cl6qqXVUESE51lMZPZ42G1M8oCiAJQ6gWoASxmd1NflqXjYUc97G/7DGdzF0TzkVeICptyr8t22Nsua3nZSv94bFy5xw9vgqPSxpoTaGm+Tt8YGbSosIkNPIa6I7HLKUj5lVWiVbKrUdgrBwEC3U4gR7EMl7gEHJD/v6XR6kbW2JVcw9KcfsIiIiIhImhzVtYWOtRaam4NsZwIH8zyRxz4PD1yYPjClpUJdXZ6Kh86OxMMuShk/1gtxgxVeONvVFKa5OdPEumja5H2yLVpe6l48On1soJTRtb4Qt1Ebm4nI0FOIKyK7nO6UAoGOjszj8kmrxA1kX7T2tZ2CvxK30BA39bW6OpwFZHwn3bjvf7+w+4mIiIiIFCRHdW26zAvkri4Ih52wtLg4QmlplkKJXoa4kTYvVO2ilLFjvB8CTJm3UVo5HaxeneEGsS5at/qeV7mfcgvUpI81JdTWeP2BGxoU4orI0FOIKyK7nJ6UtWVnZ+Zx+fgrcZ2euAPcTiFg+7SxWVfKfhKdnc68ttdVJB2/997C7iciIiIiUpABqMRtafEeV1flaM+QEuLW1+d+uZbt3uvFikMUFfmC1VIvxC2jk1WrMs23i47t3jXBGveaQFX6WFPC+et+xs2cy72cRMfGxtyTExHZCbSxmYjscgajEtdpp5B9kdmndgoB26dK3NQQt6vTSa23bq8s7AYiIiIiIn3SmxA3CjYGJrk2zN/KoCZXiPvtJTz28BR+9IclrGEW8+tyV2a07giTaHxQmhJljK+ksWI8O9priBHIEuJ2013vLchLRrv3yBjilnLwhgcYy2YAbtz01ZxzExHZGVSJKyK7nIGqxE1vp9BV0Nhc0top9KEnbnolbhRrYcUbEwq7gYiIiIhIX/SqnQIZq3Hjlbh78wYXhG+Au1bA8s3p1x49h/YlC/k/jqOVauobguljfFp9G58FylJC3FvP4LZLb2FP3uJ5Ds4Y4oZ7eog1e++vdGwAjIFAhkIJU0q43PsUXPcObUYhIkNPIa6I7HIGqhI3fWOz7JUCfW+n0PtK3O3bk593dQXYsKmGtetrC7uBiIiIiEhf9KadApCpcjdeiXsYT/DNTZfC5+6D215yDgaS93gYO9pbyNfV5/6gcHuDtyAPVgTAJIe+u81sSDzO1BN3yxanbUNcoKYYTFnafeLzjFV4uylH6hXiisjQU4grIrucQanELbIETVtBY3NJaqcQ7H1P3DfeSD/W2RliR3152vFRowpMhUVERERECtHbEDfD+HiIW4Uv+Kx0NxErngPlhycOj6n1FvL1DV5f20w6G70QN1RpoOwQMF7wO3uG17c2UyXuxk1BqvE17K0syVyFC2BKocKbT09TH3/gEBEZQApxRWSXMxiVuKGijpwbm/WpnUIg1utK3DVr0o91dRfR2FSWdry9Xf+Ei4iIiMgAGsB2Cv6q18QmZsGxEJqeODx2jL8S19voLJOuZm/xXlwVgOAY5z/XrOlNGOMUUKxfn174sXFjESvYl5s5l2cnHA1zJ4BJL5QAwJQSqPAC4khL9rZrIiI7ixIAEdnlpIa4hQasqZI2Ngt2JVXNpupzO4Ve9sTN9F46u4pobC7NMNawdWth8xIRERERyavXlbjpoW+8EjdziDsOAm5weutSat7/E3Ywlu/wfVpbQ2nBq19Pi7eYLq0BAjVOOwSAt+sofeQ1PlPzB/bhNWIxWLcu+fqNm0q4j5M5n5v58wlXwIfmprV3SDClFFV7IW5UIa6IDAMKcUVkl5O6uMu12MslqZ1CsJtgIFbQ2FzS2yn0rhI303vp6spciQvwzDOFzUtEREREJL/BDnHHesFrVwSzrpGx1DOGegDq67O/1H/Kj+Mz/Ib/4Wq6Fs+BQBUE3HvdtQLOvZNfN13IifwdSG+psGlLSeLx1EluubDJEuIGSglVeXGJ7ejjDxwiIgMod+dwEZFhKLUSt68hbtLGZsEuAjkqcfvSTsHZ2Kx3lbiZ3ktnV4jGpswLzL72AxYRERERSTMAlbjxdgrJPXHdEDdQ4fWxrfJC1Rqc5LeuDiZNyvxST3YfwnI+BMBHD7nR6WcbD4TLvP61ZTgL5NTNzTZu8ooipkxy55YtxDWllNT6at46VIkrIkNPlbgiskuJRtPD0AGpxC3qJhAY2HYKfemJmyks7uouorG5jCpaKCU5tS10XiIiIiIiOdko2OyfTMt8TS8qcY1xQldT7AS5GULcXJW42+u8wHXC+E6nCjdeiVvq1aeV4/TZTa3E3bjZ6387dXKeSlxTSskok3ga6O4paC0vIjKYFOKKyC4lU2A7MO0UupIC11xjc0lrp9DLnriZK3GLmL38SXYwjgZGcwheD4W+9gMWEREREUnS203NslyTdWMzU+YEueBU0VZ7AeoomgCnEjeTWAy27/AqacePc9fY8RC2NL0SNz3EreQKvs2v+DwL7vsz7GjP2RM3UOHds5wOmpoyDxUR2VnUTkFEdimprRSyHStEUjuFoi7IUYnb93YKA9MT90MrbqUE5+Td5lRm29V0U6oQV0REREQGRm9bKQDY9IV41krcgFcJ64S4hVfiNjZCJBIEoLqqi9JyN8qIt1Mozx3iRqOweWslZ3E7M1kHtwKf29u7PpUphoNncHXNt9jUPIalLOLERhgzJvNwEZGdQSGuiOxSBrMS1+aoxO1TO4VgLKUnrgVM+kVZ5hTX02aZ2bIy8Xyy3cJp/JXbOVshroiIiIgMkD706coQ/MZD3OSeuCXJgWmgKqkSN9ETd0eMTB8Y3r4druVzHMiLEC6CZUfAErxK2gztFFavBmud4t/Nm8JEIiGqafFuWlWSo52CgUWzuWPGOSx7ZTIADQ2Zh4qI7CxqpyAiu5RMVbcDsbFZqKgrKXDt62sk98S1SX12+1qJu3l5+rzO4VZA7RREREREZIAUWolb1w7RePFD9nYKj3AULQfPg/fMgFGlyYFpoCKpJ248XK2ry1xUsW0b7MPrHMQLHNT1DLS74+L3LPFC3MoipxK3o8O5DmD1qjBgk0PcyhKvp24mpoTaGm9Ds8YGNcUVkaGlEFdEdimDVYlbFOzKubFZoa+R1k4hEPOdy37/THOKe/aR8WxjfNKxubwBaGMzERERERkgNs/CMmbh03+DuVfD+2+EznCWSlxnzfs5fkPTb8+H+86FCVXJIa6pdFosuCpoB6C+PnuIW4oXqFJW4d7HDWF9IW5tqVcBHG+psHpVhFK6KMINYkuCUBzMXokLTog7yttUWCGuiAw1hbgisksZyErc5HYKnUmBayGvm0nudgr5r8/0Xl5mfyayjXJ3cQswmS2U0aFKXBERSWOM+bIx5nVjzGvGmDuMMaXGmNHGmIeMMW+7X2uHep4iMszkq8T99dNwz6sQNLDnOGjoyNlOAaC6yreI9le9BqugLJToNFZOJwGi1NVlLnrYtjWWHOKWuiFuhnYKNcVeL954iLtqlU1vpQDJfXpTmRJqR3mv2aAQV0SGmEJcEdmlDGQlbtLGZsHOnO0U+hbiDszGZnGdlLOWGYnnk9lMuCd/da+IiIwcxpgpwBeARdbaeUAQ+CjwDeBha+0ewMPucxERnzyVuP90PglG1EJnBKbUgE1evEaj0Nbm7QFRVelbRCdV4pZBwEB5cjVufX3m/SO2bbMplbiVyff0VeJWhbzCh0Ql7hqTHOJWlDh9b02OEHdtE//z+Gd5jMO5lU/Q2Ji94ENEZGdQiCsiu5TBqsQtCkaSAte+vkZaO4WkStz8/+Tmq6zdxoTE4/FsJxxWPwUREUlTBJQZY4qAcmAzcCK4DdWdrycNzdREZNjKVYkbs/B2nff88qMzXtPq28usqrI7uUgiNcQFuPMs1t/yVfbkv7RTQV1d9hC3DK+1QVo7hZpSWDgZDppO26zpiWGJEHd1MMOmZiVgcqzPewx7rn+ew3mCRSxViCsiQ64o/xARkeEjU4hbaJVsKn/gWhSM5eyJ26dK3ED6PWNRSyCYeXEK+cPix077PK+O7eZr151ME6M4VP0URETEx1q7yRhzNbAe6AQetNY+aIyZYK3d4o7ZYowZn/NGIjLy5OqJW9cOHe66s7oEZo12r0lei8Y3NRtDHVfYK+DqV2BSFZy5v9f6ALzWCounUdlYxlvsCUB9Q+aXT6vELY1X4gbAFMPuY+HBTzpjn54JJzun33CLh1etKWYf/AlzSe4qXIDyqsTDCtppbMw9XERksKkSV0R2KZlCzkLaFGTiv87ZhKz/Ia4/GI5XHiS1VIh05Lw+Uyb7Hp7mCB5lP5Zx9lfW0zJxKo2MxhIgHFZvLhER8bi9bk8EZgGTgQpjzFm9uP4iY8xSY8zSHTt2DNY0RWRYylEcsNUXgE6u9p1IXpzH++FOYgufbv8V/OQxuOE556Ap8QYarz/uqJouAu7eFM3NwYzr4a3bTHKIW+Gbg7/XLrDvPlsTj197Ddavh7q6UHolbq5+uAAVlYmH5XTQ1JR7uIjIYBu0ENcY8wdjzHZjzGu+Y1k3VDDGfNMY844xZqUx5tjBmpeI7NoyhamRPnYUSA1c87VTsAW0n00Nhp17+0Pc3KW2mULqa/gyj3IUyziA8TvWEAp5LxIO62NdIiKS5P3AGmvtDmttGPgb8B5gmzFmEoD7dXumi621N1prF1lrF40bN26nTVpEhoFclbhbfAHof3fAzS/CVQ9DT2fSsHiIW4m3uRgVbt9bk6ESF2fNPLrWu099ffrLb9tmktsplHoBa2pFbe2oLnaf3QQ4BRK33eYcTwpxK4uTguSMfEGxU4mb/dN0IiI7w2BW4t4CHJdyLOOGCsaYuTgbLuzjXvNbY0xwEOcmIruoTCFnX0PctErcoOV/uJoHOI4DWJo2vpDOBckbmzkBa1GRF7RG8twk0/urwdvit2h0MSHf/dau1WJSRESSrAcONsaUG2MMsAR4E/gHcI475hzg70M0PxEZrnKFuPUpnyb7+v3wy6dgW13S4Xg7haQQN755WVIlbrHXjzZmmT5qO8U41RqpIa61sH0rlPirfsu8VgeplbgABy7cnHh8003O11dYwN/3/RR85hB4/x4Zr0via6dQTidNaqcgIkNs0EJca+0TQGpHm2wbKpwI/MVa222tXQO8AywerLmJyK5r8CpxY5Rv2szVXMJx/B9LOZBJbE4aX0hLhaR7upW4/tA1nKfpbaaMdxRN3pOaUkpMF1PZwCxW878PVKg/l4iIJFhrnwfuBpYBr+Ks928EfgQcbYx5GzjafS4i4rHuOvWZtXD148nVt6khblxza/JTt/agyt9/tiJDiAtOZe6n/wYTv89Lq2bzYf4BQF1yLkxzM5iwbw1dWpTcX9eUOxuv3bLUad1w7dMsWrghcXrNGufrqyxg88dPgMuPgVMX5K/EDZYSKwklnnY29HE3ZRGRAbKzNzbLtqHCFOA537iN7jERkSSDVolrLNVvvJN0/iJu5Htcnnje3Q1VVeSUqZ1CfypxDTFq8aW0r23lvEtO4zzgCd7H4TzBM8/A8cfnnpeIiIwc1trLgMtSDnfjVOWKiGQRhpYuOP8uaOiElzbCHWc6pxqyhLit7UlPM7ZTqHTD27QQtwxC3gdw49ekhrjbtkGYEB/kf5k1bju/+cH/Jt8rUA4G+Pr/gtv+7H0PfCTjdI9635rk18/FhKAsBN3O+r2nuY+7KYuIDJDhsrFZps8DZ+w+qc0WREa2weyJW7lqXdL5Q3kq6XmeIlogczuFUJGvh21P7smmZrwT2Uqxu8lEV3kVTK5JnBvvtjMsZF4iIiIiIjnZsBOq7jne2fjr4Xegw12cZgtx27qS2jBkbKdQ4VazmuLkawOl3jm86t3tKR27t26FKEU8wAdZPvMoOHGflNYM5WAMlHg1aov22sC0acnr7ulTm5izm69Xg7+aN6MQpty7Z7S1u88bKouIDISdHeJm21BhIzDNN24qpHyO2aXNFkRGtoEMcVOrZstWbUg6/wZz8752qtRgGPpXiTuTtd61k0fDuIrE8wlsA6AzeT8JEREREZHes2Gn8nRbK7S6C99Vbuj55cPg7rPhd6fC3AneNW09XhsG8m1slqGdQoUX7Mav2bo1edi2bd7jCePcyl9/IBxw18e+ENf0RDjnzOSS3nNOX4Hxl4+ZPCGuKcb45ldOR+L9iYgMhZ0d4mbbUOEfwEeNMSXGmFnAHsALO3luIrILGMh2Cqk9cUPbmxLPZ7OKL/KrpPG93dgsYJwQd5LZSvzDBeFw7l/f5wpxw5NGQ20ZBJzVZy1NhOhRiCsiIiIi/Wfdxe7M0d6xDU3usVo4bLZTBZsU4nYnhbjxStyknriVJe5GZikfwDUlfQhx27xr4wKVzldfiEt3hG9+5TWOOcZ5etIH3uQ7Ld+Cj/8ZLr4H3txeQIjrtlNwVdCuvShEZEgNWk9cY8wdwBHAWGPMRpy+XD8C7jLGXICzc+5pANba140xdwFvABHgs9ZafVBBRNIMWiWuiRFs8Bab25iQNr63Ie7xL14Hhz7AC5u+xxxW8jZz8lbipp72h7g9E8dAMACjSp0+ZUAtjXR0pM9VRERERKR33IXoNK99Fxub0odV+qpg23u88JcclbiZWhdkqcTdsiV5mD/EnTi+DUwQjC/KiIexpb5jXRHKi7fxf/8H3U0vURL+J3xwHSzd6Jw/98DCQtyvHs6l3zyUNzZNYRW70dSU+xIRkcE0aCGutfZjWU5l3FDBWnsVcNVgzUdE3h0GqxK3qK0D41bJtlBFBxVp4wsJcf33nLX1FdjsfIxrKht5mzm9rsSdhbf5Qtke7pxGlSWFuJ2dCnFFREREpJ9iYXhsFcR829PEK3H90kLcAtopZApMC6zE3bwZFvM8/+DDlP8eeHsi3Psdb0A8IE6pxCWyEaLNlITqnXy6pcs7X1MKgXwbmxXDcXvy7A0f5LFNswBUiSsiQ2rQQlwRkcEwWJW4wWZvZ90dZO633dtK3Pby2sTj+CZkkUjuEDdXJW713HLnwShvwTmaBjqy7DMhIiIiIlKwHQ1w+u3Jx9Y1OaFuOOqFpL7gNVs7hYdZwnEfWMO0mnqYMxZMhsA0UFhP3I0bnfYME9gOjUBddfIAkyXEjXVC42+8nrktvh8kqksK6okLUFvjhb8KcUVkKCnEFZFdymBV4prJlXT/9QJOO+3DHMTzXMQNTGQr93Iyr7Ig62unioe4n+Na9ln1ROJ4fBOycE/hlbh//PXfeOPzc6mhmf1q/kto+ijnhC/EdSpx889LRERERCSnVRn2Ft/WChubYdEvnb0Z5k+Co/fwzmfZ2OxOPspXv9zCtIXuPTO2U8heiWut10J340aYja+KtqyYJJlC3C73BwTbA1F3fqmVuHlDXKfvbu0ob7GtEFdEhpJCXBHZpQxaT9yKEEWHTuOffJiTuZdv8QMANjM5EeL2pp3C9/kuAeulxPEQN9KLdgqHLNpI9WtTgdMIjfMqhRnlLThraaSj3QIpG0WIiIiIiPTG6q3px+ravb64jZ1OEDp7NLx/D6etwvyJGUNcgJpqX2iaqRLXhJJC3JpgC0SdNXdDA4wZ4xzfuBHm+kPckpKU+5Q4iW9pSiWuXzgKHe5iPmCgsjRRaZuVG/KqEldEhguFuCKySxnIENdfiRsMWIJBSyAQY2tsYuL4JLydFQptp1BEmFqako7H2ymEw7EMV3n8rxEKRRnvD2/jUtoptHdEgFD6OBERERGRQm1vSj9W1w5Pr/We7z0ejp7j/JfgLWD9G3+N8oe4gaoML1icFOKOckNccKpxx4xx2jO0tkJpUiVuaogbgEB1cojbmbJwb01ppRAo9Up9szEBuO55vnHnH/gC8CO+QVPTZ3JfIyIyiBTiisguZSDbKSRV4gacDRyKi6Ns6ZqUON6XEHc0DWnHE5W4kd6EuFnGupW4bVRQRITOzigKcUVERESkX+pb0491RuBlX5uFQ2akj7FOQGptaiWuLzgNpPSxBacSdq/xsOxLUFHM5z9xITzvnNq8GfbZx6nCBSjD1z+stCTtVgTHwOJpUBqC8hBMqEw+3+wLgatLE60S8moOM7ZhAwBjqWO7KnFFZAgpxBWRXcrgVeI6iW5xKDnEnRzYAu64QtspjKUu7XihlbhJm60Fsoz94vu4b++LOPmTZwFwYrt2NhMRERGRfmpICXHfvweMrYBn13nHZo5Ov85tp9De7q1lfx+8kOKvvgQVIbh0CVRnqMQ1xU4f26k1AEye2pkIcdevd77GQ9ykStzSDL1sA5Xw5cOyv7ekStwCWinEVVYkHlbQrnYKIjKkFOKKyC5lsCpxi77/APz5Jd7o+j3384HE8SnGqzwodGOzcexIO+71xC08xC1ZsQZeeRPGVcJ+k52NJADKQpT61sGdnbnvKSIiIiKSV72vjdfNp8PxezuP9/ixd3xWbfp1biWuvwr3tNhf4S8tzpNvHJV5E7GUIHXWDC8hXbPG+brBKYLN3U4BwJSnH/Pzb2pWXVJ4JW6FF+JW0qYQV0SGlEJcEdmlZKrEzVghG6mDorE57+WvxA20dEJHmClsYjvjE8cn9qGdQvZKXEs4YnNe7w+kS154G375mPPkC+/1QlygvMybTIcKcUVERESkvxravMdj3FC0sdNrRVAegvGV0NQJv3ve2SistAguOwDw98O1VFjfvSqKIZApeE0OcWdOS9yAtWudr/GK3KR2CiWZKnEzbJzm19d2CpVe5UQlbUk9f0VEdjaFuCKySymoErftf8GGoeqkrPex1vkvoclbGL7B3MTj8VEnfAVTWDuFqM0Y4pbTSSVtRMK5Q9ykdgr+j7SNS+7r5Q9x29rybMogIiIiIpKLjUKDLygd7Ya4t73kHZs12tkMrDMMP33cOTahEr7rLNDjlbhldBKM9yMrLYKiQJZKXHdPh4YOaO1mXvRVghxPlKJEiLtqlXubpErcDIGtyRPiLpwMvz3ZaaswpabwdgpVXi9fVeKKyFBTiCsiu5S8PXGthe5XINiLKtxADOMLcTcwjU5KKaOLYnqooJ12KgusxI0lh7j7TebS6p/xp8cPoZ0Kwr0IcQMNvo+0jfM+ykU4yqjN6ziUJymmh0deWUI0CsFg/vmJiIiIiKSxESdMdZ345fPZfeI2fvbP73ljTpnvfK3wBaDtPWntFCpJqcKFzJWv8SD10N9CXTsHAeO4gK1MSoS477zjfM0b4gYq4MUN8OBb0NEDB8+AD3mFGUypgVMX+F67wErcKq8St4pWGhud4g4RkaGgEFdEdil5Q9xYG8S6IUM1rF9SWBqwSR+xaqSWOsYyDWcnhTHU005lgT1xU0Lck+ax/pW5rGeGO9dehLh1vkrcsb4Qt66d3c+9hif5AVuYyGS2sHw5HHBA/vmJiIiIiKSJ9UBVCTECdDZa/vfFfYlSxJdqdmda8zswqhTOW+SMLfeFuB1hiDnhb7zVQOYQN0clbmUx1DnFC9Wmha12Eps3O+v+eIh7NV/lzD9bJlQ1w55L0u8VqIRXtsAvn3KeR21yiJv22oW2U6jxHrrtFKx1CpJFRHa2wFBPQESkN/K2U4g1uV+7nUA3C38lbjBonX5frgZGU8+YxPN4KFtQO4VYSog7upxQyEtm893D/15MnW/+/nYKo7zqg9E0AJbt2/PPTUREREQkIxOFpV/kpm//mUraiVJEDU1Em93F688/DJVu8FkUgGL3I2AxC11O4UHWSlxTDCZD9GBCThrqq+zdfdxWwAlKV6yA+nrneGPpOMYdNQoOmg5TJqffK1AJZSHveUeeRXeh7RRSQtxo1NCW/UcMEZFBpUpcEdml5K/E9W2LG21xFnQZJFW8mlhST9xGavk/juUN5jJqhqFp3SigwI3NIpanOBSD5bA5bzJtZi1Fz3uJca5K3LQ+vfVZ2imUhaAkCN1RSuihjE7q6vLsyCsiIiIiko11FtR/+9+9E4eaGcUSHuY3NzzCcSdsSh5fUQw97vq5tRkmeZW4VbQmj8tZ9RrywmFgzoTN3O8WJ9x5pzdqz93qnU/PgVfB62dSQtzOfCFuoe0URiUexsPpxsakLgsiIjuNKnFFZJeSvxLXt2i0nWljE8N8lbhVgTbocVLdHlNMJ2V8gx9zJn/mjgO/xmp2AwoMcaMxbuBizuJPPPjpy+Cg6YSCUUbRSC0NhMMmJan1X+s9LjFdmCa3xUPAQG1K76+a5GrcutzdI0REREREcohgLby4fErS0dXsxr9fmp8+vNwXmLa3gLXZK3EDOQJTU+y0U3DNneKFxTff7A3bb/4W3zUZQtxACVT41ssdKT80fOsBOPQ3cNzv4bFVhVfiVtcmHsbDaW1uJiJDRSGuiOxS8lfiFhbi+gPT8WZH4nFTaAz+zQrKy7zktpCeuDFfOhwMWrh9Gb+67VAaGc0VfIdIxACRjNf65zS5aKv3ZEw5BFP+ufaFurU0JiofRERERER6zYbZvLWK+ob0T3ctXZ6hfYG/L257N9j2HO0UMvTDjTOhpHYKcyZ4Ya0/LN1/rw1eIYTJ8oHicl95bGol7vomeKsOlm1yWi0UWok7ehzceRafnnsPR/Jo2rxERHYmhbgiskvJVA0bjfqKW2O+FgSxwipxJ5hticf1wbFJ4yrKvRcsrBLXq7INGAsVxRTFnAvHs51wOAg2cxrsD6MnBbw5JfXDjavxFsOjacgYbouIiIiIFGT7Nrb+YT3H8m8WsILdZjYkTr3yxgRisZSdvCr8IW4PRBszt1OoLMkdmKZU4u42blvGYZ+4+2sw4fsw7Up4annme/n616b1xG31LZarSgqvxC2ugiN3Y9O0fXideQAqnhCRIaMQV0R2KdmC1EQVqz/EtV1Z7+Oveq3F+3X62s7kj5BVVHiBa2E9cf2VuDEY6/WyncA2ItEA2Mw38s9pAv4QtyJ9cEolblf2tyoiIiIiktsrr3HAL3/Fv/kAP+crHHvkO4wZ3QFAa1sJ6zbUJI/3t1Po6IFoU6IS90UO5PWPnwlfOwI+sGeeELckqSfu5Ko6Jk1oTRoyalSMqpC7xu+OQnGWyt7yau9xaiVum6+IoipPsJw0Pyfsra3x7Z+hSlwRGSLa2ExEdinZgtRIBIqKANvhHcwR4vorcZ8oXQKvfAPequPK484FYD6v8An+yLGPvkYTr/BrPl9QiBuMdPAbvkk7Fcz/v43wP14fLacSN5C1Etcf4m4rmgRnHQh1HTB3fPrglJ64CnFFREREpM/avRYI7VSw+6wG9t1nK488ORuA1/47nlkzmrzx5SmVuDGvEvcN9qH+jCVwyDrnQL5KXF9Vb6C9m5M+8F+uu+XAxLHjP9BOYIVvIV6WocABelmJW2iI64TVo2q8xbZCXBEZKgpxRWSXkivEBVIqcbP3GPAHpoGAdSoA9p/CM7wXgNms5qv8DF6Goynm13y+oJ64JZ0tfIbrAOh6uAp++KnEuQlsIxLJXonrb6ewsmQf+OEHkwcUz4GicdDxNNR6FQi1NFKvEFdERERE+qotOcSdNb2JPXerT4S4b68ekzz+6D1gxigngJ1RC9HGRCUuwKhq3+I0V+uClBCX9h6+cvGz/OXvB9DYGKCyEi792jY41bdQLs0S4lb4Q9yUhbs/xK0syb3ZWur8gNqaLooIEyNAY2OwsGtFRAZY1hDXGPOPAq5vsNaeO3DTERHJzR+klpXF6Ox0usJEIjiNcWO+jRRihbVTCAZt2vkmRiUe1+CsSAupxC3q8T5qFS0pgdHlxEyAgI1RS5Pz0a4CKnGDgVj6gNB0KHsP9KxMq8Td1GXxb8gmIiLDm9baIjKsdHhr6A7K2WdGI7vP8vrivr16dPL48w5Mfh5tSOoVW5MU4uZpp1BRDAHj9MYNGnaf3cDLL9bx0KPjOeoomD25Fbp9IW62StyKUd7jtHYK/hC3uPBKXELwkT/y7Weu4nIiLOZ5GhsXF3itiMjAylWJuzdwYY7zBvjNwE5HRCQ7a5ODzrKyaEqI2w7WNyBHJa4/kA2Fomnnm/F+kz+KprRrsikOewvgaEkJBAyNoyczpn4jAOO2rQZmZLw2X7BMcAyYAIRmw/hKOmpH807jFOoZQ3dXDFBVgIjILkRrbREZNmJt7YkNc9qpYNaMRvaYXZ84n1aJmyrakFSJW1PtW4fnq8Q9dxGcfyAYryBhxrQ2LrzQbSnW2QVdhbRTqHbuVRZKru4NR6HLDYEDxunn25ueuDFLUdS5vpI2bWwmIkMmV4j7LWvt47kuNsZ8b4DnIyKSlT9ELSqKESqKAk6fqkgEiDYlX5AjxPVX9O5pV8K2VhhdnjjmD3G9Stz81a6hsNeTN1riLA53TNotEeKOqVtfWCVuMEMlbtDtrxscC584gMennMEHP3YWAMd1RdLHi4jIcKa1togMGx3bu6h0H0dLSqiq7GGP2b5K3DWjM1/oioTbEx0ZfsA3qTn7Dqgqhi++D47KU4kbzLDfuvU+3UasywthAcoq08cDFJXBT45PP566qVkgmOh1m5cxUOm1MauiVT1xRWTIZPjX0mGtvSvfxYWMEREZKKnVs0VFXuoZiQA9byVfkGNjM/+97tp0LMz/OUy5kvt/+zsgcyVuT3d6xW6q4h6vJ2+s1KkAaBvtbUxW3boja4jr74l7Zcsl8OV/wFUPQ517z4A7p4Cz825piXdBV1eG0FdERIYtrbVFZDhp3+Gtm4NVzqe7Zk1vJOC2+NqwqYauruw1YE1NXtC5qGgZ5rl18NDb0NyZvxI3k5gvxLXdKe0UsoS42e6VtqlZjvlkUqEQV0SGh6whbi7GmIsGeiIiIvkkhbhFUYqCKSFuZEvyBVnCUvAqcQNEqY61JI5/4OQNvPLYb1n2/M2JY9W0YIgRDucPSkMRX0/cUqfqoLPWq1zIFeL6K3E/2PF3+NPL8MunnI+AmRAE3D64gSogNcTNOzUREdlFaK0tIjtbZ70XdIaqnRC3pCTK9KnOJ9KsNaxeV+td8NQa+Px9cMFf4dal1Dd6+zXUBFu9cRXFeULcLFW6/krcSDvE1+EGKC7LeEnW6tr+hrhVCnFFZHjI1U4hF+2eIyI7nb8FQigUoyjohZhOO4W65AsKaKdQjRfgUuV8nGv+3O3O8/IQdIQJYKmkjXA4/4KvOOyrxHXbKXSOdnqIdVNMIBrNG+IGiDI65nsvYyoS1bfOACfELSnxUt+urgw9dEVEZFeltbaI7FTdDd66ubTW+ydo95kNrF3vhLer1tYyd88dzonVDXDnCudxdQn1e3ttyaoDqSFurnYKxU6V7RvbnLYH1sJhsyHmtSij07deLwtlD2uzHZ9ZC/8639ncrCjQi03NXJXee1NPXBEZSn0Kca21Nwz0RERE8vFX4haHohQVeZWxkXAUYs3JFxQQ4sZbJQBQU5o8qKYUOsKJceGecXnnWBzxFpyxUmchuW2fBUxgKzsYx9mLXuG9tj7jtfEQdxRNBIl5cygOQsBbPBKohKhl7IvL+AS3UkE7j3ZdkHduIiKya9BaW0R2tnCLt24uG+2FuLvNbOQ/TziPkypx/RuHdYSTKnEraUsel68Sd0c7HPt75/nkalj+5eRKXH+IW1LkbPSb8V4h+Nnj8FYddIbhsqNhtzHOHBZP843rbTsF772pEldEhlLeENcY891Mx6213x/46YiIZJfeE9cX4nY3gE1pd2BjYMMZfyufMcStTglxq0thi1NJUEMz4XCeXXmBkohXiWvddgqmLMR2JjjzjATy9sQdjbeJBKPcRaPxzc0EgAqmf/NGbuVGYhh27zw/79xERGT40VpbRIaDDUUz6eBAKmindEoJ4CxMZ8/wEsukELfct77u6KHBH+La3oS4xcmBcJsbJvtD3BoD/73EqdiNBHPf66m18PRa5/mFi50QN9O43qiq8B7SSnc3dHZCWZauDiIig6WQnrjtvv+iwAeAmYM4JxGRjJJ74sYoCvpC3LYVmS/KUo1bUCWuL9QdRRM9PflbFhT7euLGypwFYijktT0IR4Jge2hpSbs0UYmbFOLWZghxAUpriVU4IXEAS6gzww1FRGRXoLW2iAy5G6Z+k4N4gXm8TvjQOYnjs2d6Ie6qtd4+D5T7gtD2HuobvU+NlUZ9rRDytlMogUp/iOu2VPBvbEYXjC6HSdUwI9cn40LJ6/nmLJtG9Ladgi/EjVcZqxpXRIZC3kpca+3P/M+NMVcD/xi0GYmIZJGzErdrbeaLbDeQvoNt/F41+FowpIa4p85n424L+MVfjmAdM5gczh/ivlp+AD/kG5TTwTH7OPNLCpsjAb5wyVyuvQHOOQduucW7NmOIG6/EDaT8qj9Qia0pg3YnpC7ragLG552fiIgML1pri8hwsGWrtw6ePMHrabvbTG9dmr0S12unYIhREvYFsIW0UwgFoSQI3VGIWeiKQMgNYGPdyf1xTY4Iw4RglG893+TOw1owvlbjve6Jm1yJC9DUBJMn9+42IiL9VUglbqpyYPZAT0REJJ+0StyknrhZLsrSuqCgdgrnHcjW8z/Mz/gqG5ie9PrZLKt8D5fyQ77EL2l+z77OXEMxamlgf15it/8+w//d4Mz71lth+3bv2ng7hVp8v9pPVOKmhLimAjPKO1be3YSIiLwraK0tIjvdZn+IO9ELcf3tFNasH0Us5oahST1xe6hvcCpxy+jE4BY+lBVBMM9GYvFzFSnVuPFK3FhDygV5Qtwa35q50b3HTx6D6VfB3J/CDc+lf8Itn0qvICQe4qoSV0SGQt4Q1xjzqjHmFfe/14GVwC8Hf2oiIsl6fHlsKBRNqnANR7L8cxbrRTuF6vQFZqjI1wqhgErcqDecoDu/oqIY3+IqXmIRP119ISdzb2LMK6+kX5tciesuMgNVyS8UqMLUevMt72nB5p+eiIgMM1pri8hQsxa2bfeCzQnjvD0eaqq7GV3rVMJ2dYXYss0NNNPaKTjhaTzkBNwq3BwbkQEE3Net9K3D27rBtrttFVqdjYbXN8G2NmiLZL+XKUquxI23U2jrdqp76zogGut9Je5h+8Fzn+PM9z7JGdwJKMQVkaGRt50CcILvcQTYZq3N8S+niMjg8FfCFqe2U8gW4vamJ25qJS5OFW3qNbn4Q9xAwElVQ0VRNjElcXwymxOPt21LvzZzO4XUELccU+tVGoymgZ4eKOnlmlRERIac1toiMqRaW+GC8I0ARIpLKA904o8KdpvZSIPb83b1ulqmTGpNa6fQ0OSsS+M9YwEn6M0XmJqQE/JWJIfC2JgT4Mba4fn1cMbtzrnD94LHvpLlZiFv7QxeO4VGX2/cUWW9r8StqobZY7ATamh327QpxBWRoVBIT9x1O2MiIiL5JPfEjaX1ms0oT4hbRIRwoJhQrCe9Jy5OWOy9vkk7nyrmTYmgG+IWFcVoYlTiuH9x639POUPcYHXyC5mypEqDWhrp7laIKyKyq9FaW0SG2o4d8CO+QQ0t0AN0fx1Kvahg9oxGXnzZKUhYvbaW9x28PrkS19dOYTvjWfXdi9ht/HYoKcrdDzfOlKS3UwCINTshbrfv91qluVozGKj1+tcmKnEbfT11R5dDoJcLZuME1rU1Xq/fpqbe3UJEZCAUUombxhjzL2vtCflHiogMnJwbm0Wzhbi5e+J+hyvZdt6HuPayf6YPemoNk6/9G//h7zzMEm4Pfz7vHD+z5YeMYT3tVFC+bjrMLyJUFKON9F5aqe8p3hP3b5xC2awyPnXiU7BoqlOdEEzZiTdQllRpMJoGurqgOiXrFRGRXY/W2iKyM9XVwXR8QWdZKOm8vy/uqrWjnQf+StzOCI0NTgjbSjXBD+8N0yc55wppXWBKk9spuBv3Em2EWAt0+RbMpXlC4VG+T681uSFug++91Zb1vp1CPMQd5VX0qhJXRIZCn0Jc4JMDOgsRkQLk3Nisl5W4qa0Z/NUGCdvaKH/0VZYAdYzl5kj+StwDOp7lAJ4HYE3bF4FRFKWEuP5KXH+Lhngl7pMcRvnMyXzqUneBGRiVvhOvKYPa8sTTMdTT1YWIiLw7aK0tIjtN3ZYwIZxqgigBgqHkdfVuM71Pia1eV+s8CBi49CgoKcKWh6j/tldcMGa0LzQttBK3MlMlbiNE65x+tnG5KnEhOcSNV+A2eBW0jCkvbE5JiqC1m6mBjcxmFavZTSGuiAyJPoW41totAz0REZF8Uitx4+0KIFeIm7sSF6C4OJpxjL+9Qg3N9PTk2QvSRimNeYtW437MLBSKZg1xM7VTAG9TNOdJbfprBcqdRahrLHUKcUVE3iW01haRnalpixdyhoMlBE1y4YK/EjcR4gJ86X0ANDeX0n6JE+JWlPdQVelbaBdUiVsCU6phZq1TkRuv8u1+FaItySFuWZ77TfDNb6v76bekStxyoJchbg+w24+4GDiPYkrpVogrIkMib4hrjNkD+CEwF0gkGtba2YM4LxGRNP7gNVQUSwo6s7dTyN0TN36vjKq8RWINzYTDQScUzvbbexumNOb7TX+F809sUTB7JW62ENdfZZwxxDXlMG0Uy8oWs75zEsvYn/0V4oqI7HK01haRoda81RfihkpI3SUia4jr2rrdW+dOHN+WfLLQStwrjnP+84vUOV+T2inkCXEnjYEvHgqTq2FKDURiXm9cg7OnRG974pZUOJXHMUsJPRQRprExlP86EZEBVkgl7s3AZcA1wJHAeTj//ImI7FRJLRCKoxjTj0rcbgsYjuBRZu14Dd7aAbPHQFHAaV1gI2k9Z8ORAMQ6IZg9xC3zV+KWhcAYQqHC2ilEwmHAWRD6q4wJ1KS/VqAUDtudT+35A5YudzaaOEshrojIrkhrbREZUi3bvBA3Vpy+zp06uYVQKEo4HGTbjkraoodSGXwqcX7LNm+de3bwdtj/F0417Unz4Nv75Z9AIH1z4ST+jc3K8owNlcC3lnjPd7R7j0eVQTDQ+3YKgWJn47VWpzikgnaamkb17h4iIgMgz2eDASiz1j4MGGvtOmvt5cBRgzstEZF0yT1xoxQF+94Tt6fHWQz+jVM477YvwKG/hRY3Ba05DwIVzu61rjHUu5W4uZLSHsqtL8StDEHZ4Tl74iZV4kbCgOUFDuR7L5wHF/wVojGnJ24mppzSEm9R29WR+b2KiMiwprW2iAyptu3e+tWWpFeYBoOWmdOaEs/XbD8qab+GLdu8PrRTy7bCxmZ4qw7q2wtsp5AnVO3sRYibWqfWmLKpGdDrdgomlLSRWwXtaqcgIkOikErcLmNMAHjbGPM5YBMwfnCnJSKSLrknbgzrK1btbTuFcDiKIUgNzd7BavfjVUWToWgS1LYmTo2mARu1xKLdBLL9y5lSiRuoHgOh6YSKlhe2sVmkhwpiHMhSqAP+U+RUCwR8GzT4BVJC3M5uoJcfDxMRkaGmtbaIDKn2Ol+1alnmhe5uMxt4e/UYAFavCTB/ahVccTc8v4Gj1hXzHibyDO9lXJlvbV0WKrCdQp4x/nYKJXnWuqmbAfv74cYLNPJV/qbdMwTl3hwV4orIUCkkxP0SUA58AbgC52Ne5wzinEREMkqtxI1Z79Om2StxM1fO9nRHqaKVAG4SXFHstFIomgzGQKDSeV5TCs1dBLCMoolwT3f2tWO4kxKcVDaGwVSMg0AlRUUx2qlgA1Npo5JWqgCnnYP/PUXCYUbT4h2It3MIeBXBSQIVlJb6Q9xw5nEiIjKcfQmttUVkCHX6gs5AeeaIwN8Xd9Uq4PBq+O8OeHYdE4HxbAdgdLFvLVtoiEsItrTA8+uhrQcmVcGSPbzTSe0UytIv90sNcQ+cBm9e4lTkxiyYoBPK9oYpTqrEraSNjfW9u4WIyEDIG+Jaa190H7bh9OgSERkSqZW40WghIW62dgoxRtHkHahxfyMfcDdriFe/1pYlNkMYSx1dnVFKshTG0u4tWtupIFhcDYEKQkUxYgSZzoac7ykaiTCaBu9AvhDXlHPqxptYRBlVtNLV8T9ZJiYiIsOV1toiMtS6Gr2euMHKoPMgNAPC6xLHkzY3Ww0EqtOqUwFGFXufZKO8uMBK3BAs2wQX3eM8P27P5BA3ZiFoIGqhtIB2Cv95G371FGxugQ/s6WyYNsZdTxfS3iFNyCn4cFXQTmcndHRAeZZluojIYMjaE9cYc3m+iwsZIyIyUPytB0KhKEVFvp642dopxLJV4mYLcd2ENlDtfB3jrczGUkdne+aN0gBo80LcDsoJhqrAlFMUslkvSWqnEO1JDnFry5yqYJO9EveMlb/mMr7PV7iGSHNz5nEiIjLsaK0tIsPFmpax3MVp/IvjMQdMhWAtlMxPGrP7LG+NunIlEKyCiuTqVIDqoC/ELQsVVvVqiqHSF662pRRh/Ph42PJd2PwdOOeEPPcqgo4eeG49rG+CdU0p53vZSgEytlMAqKvr/a1ERPojVyXuhcaYlhznDfBR4PIBnZGISBb+qtXiUDTpXK/bKfTY5BC3OiXEDdY4X2uTNzdrb8/x2/uUStxRISeEDRVnvyZvJa4pBZPlvZkyukLllEad6olYY1PmcSIiMhxprS0iQy4chifaFvEEd2GMJXz596FoKgTHJo2bu+eOxOPXXwdMZdpmXwCVxtdft7zQEDcElb6K3bYsRRNFAQgVUIk7ucZ7uimlyKG3/XDj88vwXuvqYPr03t9ORKSvcoW4vwOyfWjYP0ZEZKdIbacQixXSTiEMNur0v/JJC3ETlbgV7tdRztfzFvHd1z7NK1tn8QKL6Whfk32CYyr5YumvCXT10EE5Pw467RCKciw2/ZW4kXCEWny7JIwq9eaTSaCMnuJy6HKacoXrW7OPFRGR4UZrbREZcvW+3q5jRncQDFqnlUJRcog7e0YjpaVhurpCbNkCDU01jK5Ir06tCPg2EivvxcZmuSpxk+TpCGmKYEq19/zVrbCuEabWOBsG96WdgklupxCvOq5XX1wR2cmy/gtorf3ezpyIiEg+qRubJfXEjbdTsBZuegHe3A5fPRwmVTt9cVNaEoTDltEZK3Hd0DQ4yvl69Bz+Pel0Xtw6BYD2trezT7CmlD8EL6QNZ3F4dWi9M9cSJ8x9H08wjQ2U08H/cjxbmJxciRvNVImbI8Q1ZUTKyojvhdbl31lYRESGNa21RWQ48LcEGDvaDWCLnM15MUVgnU3FgkHL3nMaefmV8QC8/mYV7ytPDjYrK7opjnj9dSkLAQNYiQvpG5dlutd4d4PiiNt67cBfQXEQnvos7LlX/vlkuqcb4vYEiimKOd8TtVMQkZ0ta0/cwWSM+bIx5nVjzGvGmDuMMaXGmNHGmIeMMW+7X2uHYm4iMnylVuIm9cSNBJxND075I1z6b7htGXzh787JDJub9fRADb6PV1W7v5WPh7imGAJO+FpR7i0kOzqS2zgksWGiMe+f1WBRvBLX+fpdvs+fOIvfcRFzeSPtPUUj4fSeuIHK7K8XKCdW7lX5hus7so8VEREREUnR4Ft6jh7lBrDBMc7XQHXS2H328jrAvP5mRVqLgdkzGjGdvsVtoT1xyVOJ+8oWWLoRXtsKnZE89ypyKm5njU4+3BOFydWFVQZncsUJsPk7fPmcJ/kDFwAKcUVk59vpIa4xZgrwBWCRtXYeEMTp9/UN4GFr7R7Aw+5zEZGEpI3NiqIUBVNC3Bc3wNNrvUGPr4bW7owhbnc3mdsp+Ctf3YVreZm3GG1vz75JGTac1OIhEHTuGSgqJxCI0YFXDRz/yFnSxmaRnvRK3ECOT9qaMqxvwRtpUogrIiIiIoVrbIRj+D9+xNf5TP3V8NwGbz0crEkaO29uW+LxK6+VJrUYiIe4dKSGuAW2U/Ddi/Ye59N1cV/6B3zwJjjqBli5Ps+93NB4/qTk47NHO9W4fWmnAFBWDkUBxtR6lcYKcUVkZ8sb4hpjRucb0wdFQJkxpggoBzYDJwK3uudvBU4ahNcVkV1YzkrcaACWbUq/aHV91krcZmp4g73pGV0DY8qdvrn+zQ7cKtiKcu+FOzpyhLiEk1o8BN0KXAIVhELJIW45HWnvKRJJ6YlbmyfEDZRiqrwFb6y59yHu1VfD8cfDsmW9vlRERAbAIK21RUQK0tgIh/M4X+cnnLn6WnhuKxh3PZvS1mv/hd5a87kXSiClncKs6U3wm5Phn+fBX86EPcYWVokbKHHaH5S5rRIs0O5bJHf5g+HkFmlp4q/32fc420PGfXShe76PIa5737FjvO+BeuKKyM5WSCXu88aYvxpjPmiMMfmH52at3QRcDawHtgDN1toHgQnW2i3umC3A+EzXG2MuMsYsNcYs3bFjR6YhIvIu5Q88i0MZKnHfyfDr8NUNmUPcsOFXfJF9eIMVd/wELjoYTFnyoEAFPLeOnz5+CquZxe2cSU9PjnYK9z7Kc5HFPM5hfIlrCBa5C9FAJUXBGO14C+F4iJtUiRvu4Uq+zSncwz1HfQ0WTslTiVuKqfYWz8HO3oW4r7wCl1wC998PH/hAry4VEZGBM6BrbRGR3mhshDJ8fWzLfa28UjbYPWhxTyLfXbEiSKdv7VxBO3vP2eEEtwdNh6N2d/acKKh9gTumwhewtvvW792+FgqlBYa48yfC8i/Dh+fCt46Cz73XPd/HdgrxEHe0t95WJa6I7Gx5uoIDMAd4P3A+cK0x5k7gFmvtW315QbfX7YnALKAJ+Ksx5qxCr7fW3gjcCLBo0aJcJXEi8i6TXIkbTe+Ju7Yx+YKJVc6iL5apnYL3c3JJsRvMpixUCVRCJMaMZuefu/VM552e7P/s2E3bOQCnpHUF+yYWuZhKQqFoxnYKifcU6yIajbGChaxgIXP3HctHpj+SuyeuKSNQ5VU3hDp7t7HZU095j7dv79WlIiIycAZ0rS0i0hsNDTDFH+KWZQ9xq0dVMG8evPoqxGKGZezH3ycczNvbJrGRqfxmn+XpL1BIJW48WK0shvhGvW09MME97++DW55j018gKeKYVA2/Py3ltUrpk9YIrNrKbjti7MOevM48hbgistPlDXGttRZ4CHjIGHMkcDvwGWPMCuAb1tpne/ma7wfWWGt3ABhj/ga8B9hmjJlkrd1ijJkEKFIQkSRJlbjBMEVB75+wSDQAm3wblf37Qth/ivPYdqXdq6fHC3GL4yFuaiWuqXAqCFw1NNPTHSMb29aR+NRWB+VeiBuopKgoczuFRCVurJlo1LcpWiCWuDYrEyAwyptzqLt3lbjBYK+Gi4jIIBiEtbaISMEaG2EPfGtIf0iaug4N1nDIIU6IC/CPFYv52Y5DiBHAGMs+ez6YPN4YoMAQ1xhYPB1m1DqbnIV8C1V/O4XSPCFuvtC4ryHuo2/BuTdwEPB9XuMj/E0hrojsdHlDXGPMGOAs4GxgG/B54B/AQuCvOBW1vbEeONgYUw50AkuApUA7cA7wI/fr33t5XxF5l4uHuIfyJB/91rm0Vo/jMpbRzCinEjfiC1h3G+M9zhjieoFpcSheiZvaTqE8KcQdRRPhsAUbA5Pejca2eVUMnQHfR70ClYSKMrdT8CpxW5wg2pWoMk6tDk61YDp/4DxaqGZF4GA+lXt0EoW4IiJDbxDW2iIiBUtvp+Br5eVv62UMFE3lyCPhxhudQz+59r2J03P33EFFeQ9ELQTja9oir79uLvGw99cnZT7vb6dQnqPAAfKHuIE+hriV3po8/ok69cQVkZ2tkHYKzwK3ASdZazf6ji81xlzf2xe01j5vjLkbWAZEgJdx2iNUAncZYy7ACXpPy34XERmJenpiQICf8DVK2tsoaW/jS/yC73E54UgQln4ReqKwvQ2qfT21MvTE7e4JcDZ/JEqQmudegYmToDRDT1zffWpopqcn6NwvtWoXsO3eArjDJFcxFBW15Wmn0Jq0KVpRUcxZ0Jrcfb/MMftyARcAMMZ2ZA2YM/FXNgN0dUFpH9e1IiLSZwO61hYR6Y3cIW619zg4BgLlfOADEAqlryOPPeIdaOqCPX8CpUVOW7Ol3yx8IqYYbE/68WgMwm5xgwFKCuyJm/V8Hxe7Fekhbl0dWFtYTi0iMhAK+Un/29baK/yLSmPMaQDW2h/35UWttZdZa/ey1s6z1p5tre221tZba5dYa/dwvzb05d4i8u4V7okRIMohPJc49hHuAdyeuADFQZhak7yaylKJew1f5k+cxZgv/AHautN/M28qoCo1xDVgO8nEtnuv0+Wv6jVBQiGbe2OzaAMVjTtopppVzOb0u77tBLh5VoUVFd4/4x2doYyBdTatrcnPm5oKvlRERAbOgK+1RUQKlRbiJvXE9Ye4ToPamho48cT0+xx/9NvQ7i5suyJOYUUh/XDjTEnm413+Tc2KwOSpQxu0ENcLtytNmzO1LujoXTczEZF+KSTE/UaGY734lZqIyMAIhy27sSrpWHzRmQhxwWmrsGIzPL4a/m8lxDKEuN2GUTR5B6pL06trA2UQCtIdchZ7ASymrSfj/QDwh7jB5DYIRUVkqcR1KwsimyjraKGaVmazhqqW7flbKQBl5V5PhM7OELFoOMfoZG1tyc+7srwtEREZVFpri8iQaWjwiguAlBC3zCtyCI5NHP7ud522XEEivM5cNoemcuTFn/VCXICKYm/DskJkG5sU4obA5OsHli/EzRIW51PhBdo1Aa8SQn1xRWRnyvprLGPMB4APAlOMMb/ynarGaYMgIrJThcMx9mVF0rFZrKGErqR+svRE4ejfOY9LgrDthLR7hXo6CeIEqLYshCkOOj1w/dxWBj0lFZSEnYQz2N6RtRKXDi8F7UwJYEMh2MhUHucwOijnVeY79+6OAgGIbKW03QuRuyuq87ZSAAgESygrC9PZ6SxYOzt6qKjJe5nzGilFuwpxRUR2Hq21RWQ4yNlOAaBoKvS847RTcM2fD3ffDT/+QQNzlr5NUTgCO4Am3316HeKWwPPrnf/auuHQWXDY7OR+uKVF5O0ImbcSt48hbpW3wK4w7YnH9fUwY0bfbiki0lu5/gXcjLPh2IeBl3zHW4EvD+akREQyCYctC1medCxIjDm8xbS6lfDIOzB9FEwd5bRV6IlCdxQ628AXbNpYmPKwrwy1xq0wMCmVr4FSMAG6SyupanN2Lgi2d2Zvp5AU4iYHsEVFhkdYwiMsSX5PPd3Q/iTEOinr9KoXuiqqC6rEpa6Ta2OfI0QnLVTT3v6dgkPcnpS2Y6mhroiIDKpBW2sbY0YBvwfmARY4H1gJ3AnMBNYCp1trG/vzOiKya7M2U4hbnTyo/AiItUHxnkmHTzoJTjryPzA9CC1u0LrDCzf7VIn7+Gq4+nHneSDghLgxCzNrnTB3QlX+Sty8IW4v5uRXOSrxsMJ671OVuCKyM2UNca21K4AVxpg/WWtVDSDy/+zdd5gb1dXH8e+or7ave2/YGIPBgGmmht4h9ASICQQSCAkESICQQgIB3lBCDQRC6J3Qa8BgOhhjGxt3G/e63l5V7/vHaDUz0kgrabW7sn0+z+NnNTN3RrOOs9z96cy5oteFQopl7MD/OIIjeQ+AzfSjH9UctuIFOOsFfeBNR+vtEbbEJlh1tTDQuE44FLC0UtA6Qly70FQrIlhkBLKu1jaIpqrENVLQgCu5Etf2ewo7oPVjAPytjcb5JaXJlcG2F3BxQUBfIngdg2ltsXsq115iaCshrhBC9JxunmvfBbyjlDpN0zQP4Ad+D0xTSt2iado16G0crs7z+wohtiItLRAOw2NMZbhzLb848wvoO8A6yD0UKn9hfwHNDX4PNMYmkZtNRRJ+d/YhbolpfEvsmkPLYcavTQO7UImruTNeADhJiVElURRpRf98TJMQVwjRo9K1U3heKXUGMFvTNGU+BCil1K7dfndCCGESDMKj/JRH+Skzn/sHGxsrOf7C8wB4qP5SY+DwSr26Nh7i1luuE2hrT+6HC+BIeHwMQPMR8hthqru1BZTNCgYqjNZqlLYmtlNwuewnjMGgUU3gb28w7rGkNLky2E6Z8WhbKU2saYl0fk78va3b0k5BCCF6TnfNtTVNKwMOAs5Dv1AQCGqadhJwSGzYY8B0JMQVYrtWG1tK/GZ+z+B+jfzizjugclDmF9A8eljbodoU4uZSiVtmWnSswaa6QHN0uuivHtRqeplx0rEcWykAeEriT/o5iOIlQAAf1dW5X1IIIbKV7mOsy2Jfk5tJCiFELzCHjo6+RWgRfdLYl2pGNy3SD3idsM9wqDBPAhswCwaC1hC33Kc/muWw6UPg8DLrmB8xdfFtNFDOlD7NEG1JHqeC1F97CheedzjFtLDOM8py2O2x/3EbMi3IVtxm3FOorFRfTKIzphC3jCZamzJf2EzaKQghRK/qrrn2aPTulI9omrYbequGy4ABSqkNAEqpDZqm9bc7WdO0i4CLAIYPH57nWxNCFJI6U0OVyorYp/nZBJ2aWw9rO3S1ErfK9BRanU3RRGdVuJZxNnPiXFspdJzrd+vt2tAXKQ7gY/Pm3C8phBDZStdOYUPs5RagTSkV1TRtHDAeeLsnbk4IIcwCAeOTd583jMupL0w2kXnGoJ0G6KGs+ZP8+iZQ0fjjU8FAKLkS11Fh/8m+5qNxdD8+ihUvTVTfQtRmtqYCtO06hlc5GYBhbuuTsS6XmyJauZCHKKUJDcWN/NFSiVtsqsQNlpSClkGI6yql1VGMPxYst29p6uQEg4S4QgjRe7pxru0C9gB+pZT6StO0u9BbJ2R6Xw8CDwJMnjzZppRNCLGtsIS45bF2YV2pnl1ntAaj1JdDiGua+9batC/rrB+u+VrKJsR1+JL3ZUrzwqAyKPZQFyrDvVm/voS4QoielMlHWR8DB2qaVglMQ1+A4Uzg7O68MSGESGQOGb2eCC6XHuLuylzjwE6xwqJSUxVBYzuodtD0T/eDgUBCiOtN3X9W8+LxGC0KQmEHRBuTx6kg0agRAjud1kDYX+zARZi7uByAJkq4kT8SjTqIRDScTkVJwLinUFlJZpW4Dj+t7hL8AT3EDVVnvkaNtFMQQoiCkO+59lpgrVLqq9j2i+gh7iZN0wbFqnAHARI9CLGdM4e4VZU5hrjlpmB0temCZV4gm2u5odI0H6+NVeIu3QLfrtfn9jsMhz72pyddy3Z/F0Pcjy4GYPqb49n0U33BjU2bcr+kEEJkK5Ou3ppSqhU4BbhHKfVDYEL33pYQQiQb3fwdN3Etv+JuSr9bTFFzHUfyLneaF/GeEFuMocwU4jYFQBmf5gcCYcoxtVgo96UJcX243dH4ZjDohGhD8jjVTiRiBLcOhzXELSlx0ExJfLuUZjT064ZCelWBOcSNlBVnNtHUiml1G718IzX1qccmkEpcIYQoCHmdayulNgJrNE3rWEr+MGAB8BowNbZvKvBq7rcshNgW1NZCMc08y5lctehquP797Bb+0txQaSo6WF1vvC7LoRLXfK2OdgofLINLXoZzn4X/fJH5fdnu70qIa3wv/fsardUkxBVC9KRMKnE1TdP2Q68GuCCL84QQIq8mtM/mWm4BoP2/k9jn3Yd4l4QFvQ+M9aItNU3SGgMQbYPYE1jB9gDfM5o3OI5Bvmr2HFUVr9JNonnxuPVJpIMIWnsQos3J41SASNSY9DoTnvYqKQGFgyZKKEU/v4RmmigjFHbgA0qCRoVvuKwks3YKDj/t3hJilyRSY1MlnIKEuEIIURC6Y679K+ApTdM8wPfAT9GLN57XNO0CYDVwehffQwixlaurgzIaOZPnYSXwYincl80V3NZK3F8fAD/ZU38KrsrftRC3vh0iUWg2TVDLUszXk67VTZW4MQP6GSGutFMQQvSkTD5muwy4FnhZKTVf07TRwIfde1tCCJGsKmh81K0NKaVt1BDrgHP3MCpxze0Umtoti5EFg0Ge4cecwBtcMOZV+PHuadspDJk3k3rKieDi8rlXgwpDNCHxrK1mzJHXsJphfM3kpHYKJbEi3CaMqtky9MC1oxL3mn2eZhKzOZRphPqUZ9a3Syuivcio8FV1uYe4rXbrRwghhOhueZ9rK6XmKKUmK6V2VUqdrJSqU0rVKKUOU0qNjX2tzcvdCyG2WnV1UISp92xRlgt/JS5G1hSAgaUwrh/0Lc4+xHU7jafpogoa2vVrdijJoMABgBQhbpd64poqcftZK3GVdA8XQvSQTj/lV0p9jN6rq2P7e+DX3XlTQghhpzRstDFw9vGx+oKT6HPNE1RRx7f+Pdnt+iOMwQNLYWSl/ihXvxJQRvVsoN1Y6CDe7zZV1avmxVHkoDwWuPqDsYXDVCtgCoqb63E2tTKMVlyEbdop6F8bKWMw+lo2ZTSyDuKLm230DOFbxgHwG+/TmVXiahohc4hbn3uI25T5mmhCCCHyRObaQojekhTi+rINcd1w/ASYOAiGlsOQ8oTjWYa4oPfFbYwFt3Vt0GyasJZ2tRLXa78/o2s6YUE1rKyhtCXIBM8iFgTH09YGLS3GXF8IIbpTpyFubJXcq4CR5vFKqUO777aEEMIqEoESZaSMzgo3bXuPpw81VFLH4OFhviv9p3HCOXvofzqYK3EDRojr9cTaMaSqxHV4LY+JFYcajes5K41xLUbA3EKxbTsF0EPcDqXo308o7Ih9j0bw63I5Ml6BN1RsVPc6GjNPYhPbJzTYtPoVQgjRvWSuLYToLbW1Xa3EdcPoKv2P7fEcQtwTdtIrcCuLoNhjbadQUpzdtZL2dyHEBfjXV/DMN2jAcZWHsiA4HtCrcSXEFUL0hEz6bb0APAD8G4h0MlYIIbpFIGC0HwDQSr2xKlqNOqroF9qS/gKR+vjLYNCuEjd1OwWtwghxS8KxkDSaUPHabKzGmy7EtWun0FGJGw6beuq6U1QQ2Fi10/68OWci9VQwpt9Ajs7wvMRK3MbMi3iFEELkj8y1hRC9IrmdQpYhZ2JYuqIW/B69JYLPlV1o2nGtPx1h3W9up1CWaYibqhI3y5A6kd/4naC/vw5i0/9Nm2DMmK5dWgghMpFJiBtWSt3f7XcihBBpJIa4lHrxuI3fdYOhTqpWI8aqA4H2MNdwM04iDNkYgKYwVKRqp+DDUWlMQEsiHZW4CYlnlypxndAexh9oxEGEKE6czszXtNk06QBufGZPAC4tmZvxeaGQdVsqcYUQolfIXFsI0Svq6qDS0k4h2xA3ISw98iG9ihZg0W+hKodK3ESWdgq9XIlbbPy+0K+oPv5aFjcTQvSUTFKC1zVNuwR4GYh/DCaLIQghelJTk02I6zFC3FCnIW51/GUwEOYK7qAfW2Ap0HZlmp64PhzlxoSvNNKgL7SQFOIa2y0U402YIxbH5pzmENdY2MwB05fz6ld7EEXjRU7D5T4v/fdj4vcbbRhaWjJZr5LY+1q3JcQVQoheIXNtIUSvqKuDIZhWts22Ete8gFggbAS4oC8ynFVomqJ61lyJW1pqPyZRqvfNY4jbx1sff71pk81YIYToBpmEuFNjX39r2qeA0fm/HSGEsPf557ATppSxs0rc1hC8twQa20HT9P64kQZwltPSHKGCemNsmQ+0FKvVOorw+KGJEkppxoHSe3P5m63jEkJcT0IBQNp2CiEn1OtVEA4U7fhwujKvXPD7jeC2tTXzEDcctm4n9sgVQgjRI2SuLYToFck9cTNYVNesoxL3J8/CO4uN/WVecDuz7ImbImA198Qty7DxbLeFuEYlcKXbmPtLJa4Qoqd0GuIqpUb1xI0IIUQ6K1fCPpZKXB9uc4gbTAhxW4Jw4Yv66z7+WIi7CXCwYlERbvQEM+T04Pa5wJG6EtfjjlBPBaXEgtv6dujbYh3XbCwo1oo/ZYj7JftSRiONlDGPifo9mEJcgFqqGJdFiOv1GsFtIKiBUnpw3YnEStzEHrlCCCG6n8y1hRC9IRqF+vrEEDdFUUMqHSFuUUIV7fDY4r/ZLmymaTBrLTwzB2pbYc+h1hC3y5W4XeyJW2KsoVHuMH4vkUpcIURP6TTE1TTND1wBDFdKXaRp2lhgR6XUG91+d0IIEbNlS5Y9cUtNk7fGdj3YDG8C3GxaZowNFRfj1pxpFkDw4fFEqKGCYazV9zW0QzSxEtcIcdNV4j7FOTzFOZZjwYQQt45KnO7MJ5kVDRt5nd9TQT1qZimoVzKqNJAQVwghep/MtYUQvaGpSQ9y81KJO6zcun9YhX5My/wJMTRND1nX1MOjM/V94SjsPRxqWvW2CmW93E6h1KgELsOY+0uIK4ToKZm0U3gE+AaYEttei76KrkwshRA9pqYGHuU8qqjlkF0XMarEg8eRphLX5wKPE4IRCEWhPQy+DRBtxdVifKIfLi5K3UoBQHPidjupo9LY19BmDXFVBFqNCXC6ENdOKOSAOmslrsuVIlS24XVpHMabAGxoGAoqAEiIK4QQWwmZawshelxdnf71M/bnxrIb+MPF02Cf/bO7iObWw9fRfaz7dx2YW9Wr5oVKo9qVujZ49Txj25/pwmbdVIlrqgT2m34XkHYKQoiekkmIO0YpdaamaT8CUEq1aVoGz+kKIUQebdkCV3E7AC9f8SyjvItwqWj8eCTiIBrVcDiUcVKZF7bEFmtoCkDRAgDc7TvGh4SL/albKcR4fC7qqTB2NLSDagUV1SsMVJvegzfGLsQtTjPnDIWdeouGmFqqcLoyrxRw9jUC5pJwI6h2MC2glvJ9JcQVQohCIHNtIUSPq40tnTiH3YkOHcQfrgxDyUE5XMkNEwcZmxpw+NguhLimeXlda8KATOILUhdodDXENVUCF4WN1mpSiSuE6CmZPN8Q1DStCH2BBTRNG4Np5VwhhOgJLS1GYFtaov8I0jTweIzVuUKhhB9pJaYg1LSyrbfNmHRFiv3pK3EBn8/NpdzLCFZS5axFHTNeb88QjV0n2gxTJ/Pa1bezH5/zb36WVYgbDDqTK3GzaKfgrDJC3OJIE0Ta0ow2JC5sJiGuEEL0CplrCyF6XEclLkBlRayYIFV7sXQ0N0wcCH86HE6YAM+fC7sNzvFaXqgyVeLWJIS4mV7TYTO315ygZRgCp1JmFEl4g8a9SYgrhOgpmfwUux54BximadpTwP7AT7vzpoQQIlF7u1Fh6/Ma6aPHHSEY1H+UBUNOvF6jxQJlpglco1Hp6gsYjz9FSztppwB4fR7qSwbQ1OyFCNQ3FumTXdUClOohbh8/m/rvwJfsB8DhKULcIazlV9zDADZRTT9+x616+JywsJkzm4XNSnw0UkoZTThQ0FAD/Ud0ep5U4gohREG4HplrCyF6mCXELe+Yh+ZSPRsLVi9NaMWQl0rcNuuCvZmGsHZz+65W4QJUVsEuA6HUi3NUFc7likhEo74e2tvBl+W6cEIIka1Ofwoqpf6nado3wL7oD0dcppTa0u13JoQQJgFTTZLPZ4S4brdRoZvUF7fMvhLXGuL6Og1xcRTRv2+LHuICm6pL9BC3oxdWtCnp/RMrcV2xn7ZlNHI1fwdgMeP4HbfqC5vVJYa4mbdT8Hrd1FNhLLBQuxH6pz8nEtHnxGYS4gohRM+TubYQojfktRI3m/1pr+WFIjf43XqrsnAU/vgujIqFp4d1JcTNQ8I6fCh88HP9csCgj4KsXafP2devh9Gju/4WQgiRTqftFDRNm6aUqlFKvamUekMptUXTtGk9cXNCCNFhWP1cHmUqd/MrBr73cXy/x21a3CyUEOKa2yk0GiFuUdC0KFmpr9OeuGh6iNthU3WsrLajnUKkOun9E0PcDptN6Wp/9FUQQiFnUiWuy5P5RNPnd1sXXqur7vScxCpckBBXCCF6g8y1hRC9oaMn7p+5nt9PvwDOego+npX9hVJVuOZaiQvWatwHv4Jr34Zn52RRies1qnc7dDbfz+i61mB68CDjSb/167t+eSGE6EzKn4KapvkAP9BX07RK9A+bQF8tZ3AP3JsQQsQNaFnBVB4HoOXzXYCxAHg8phA3qRLXFIQ2GZOs79y7cQ+XUkE9B+6UWSVun/JmKqmlkjpC3zfqa4jHKnAJV0NbiJDxFilD3FqqCOPERYRK6vEQIBjQoNVIUOupwOmySVlT8Po81oXXajsPcRP74YKEuEII0ZNkri2E6E0dlbgTmccOG2bDBuBnDdlfKGVYm2MlLkClH9Y1Wo/1Kybzhc000Ir0hYjj+/JQiZsQIg8Z1AqUAxLiCiF6RrpK3J8D3wDjY187/rwK3Nf9tyaEEAZvwDSRKzMmiy6n0U4hHNZ/pCkFLS1uKDVNKk3tFKZ7D+fX3MNPeIK2I3brfFKn+Tmw8X1q6cNydmCnR57Q90diJQzRBjjnGX530zG04+UQPkwZ4iocVNMvvt2PakIRF6z5A+P6rmEEK4nixOXOop2Cz01DbAIJQENtp+dIJa4QQvQ6mWsLIXpNR4hbhGlBXH9J9hfqjkpc8+JmHfqVZLcwmSPhGvkIcROC6cEDjaf71q3Lw+WFEKITKX8KKqXuAu7SNO1XSql7evCehBAiiS/UFH/tMIWzLpcR4kaiDgIBJ/sd+zMWLOnHp6evYvLBNVDqheFGuwFL71p3pPPHqxxFREqNMc7m2Kf6kRr9a7QhXknrJUg7PtsQd+hQWLtWb6kwiI2A3lIhFHaCQ6NOVbIFvVWD06UlXyCFIr/HGuI2dl5FISGuEEL0LplrCyF6k22IW1Scw5W6I8S1mZv3K84uxNUSQ9w8tVN4dT5saITmIGPKDqTj6UCpxBVC9IRMFja7R9O0KcBI83il1OPdeF9CCGGhtRiPQznLjU/BnQmVuD/7zYnMnjcIgL2f+hfRTX9Jupa1d20kg0rcIig3xrg77iVSDZEmiAb0xRdiWii2DXHffBP+9tc6+szVYKm+rz+b46FyJGI8HOHKYo7q80GTVgaxhcrCNY2d/nC3C3GjUX3BM6cz+ZgQQojuIXNtIURv6OiJa63ELc3+QnmtxI2dc9LOsPMA+NsHxrF+JWTcTgGSK3EduQTUCTQX3PExLNTXtRhzzY+BwwAJcYUQPaPTn4Kapj0BjAHmAB3NJxUgE0shRI9YtAhKMB5XcpYZP7rMlbi1dUU8+eJu8W2l7KtZkypxO/tkXvNDuTHG0xq7l2grtH2uv24xylhThbi77grPPbUOzlXxEHc4qwmF9aVsO9pBQHZBqqbBKyVn8FnTFBoo5/EDF1PVyTl2IS7o1bhFeShUEEIIkRmZawshekP+2imk6H2bU4gbu9ZxO+lfn54DK2Jpc7aVuI6EQDox1M2F5rYsnDzIvzn+WtopCCF6QiY/BScDE5RSqrtvRggh7Nx3H4w2hbiOUlMlrsP40TT985EZXe+Pjdfhp4kmSvHWF4Oj84XNtEpjjLfduBfavtC/ZlCJC+gT2lFGxDqWpfg2+mDmWgaHV/M9IwjhyboadknF7rzXdDAADaXVNK2Cl16CAw6AvfZKHm+3sBlIiCuEEL1A5tpCiB7XEeL6MS3+lVMlbop1HLpSiduh2jTnzronbsL3ouWhEheX3qYtZkCRsZiwVOIKIXpCJj8FvwMGoq9XKYQQPW7DBtjVFOJqxfY9cR2OzH7/PT70GiNZCUBL6IqMFjbzlDsJ4cJNGE84AIEweE0/Qls7r8TVuWG0NcQd8M1yePhlFvEwv+EO7uQ3WbVTACgrNVLZujqNH50FS5aA16tXMo8caR2frhJXCCFEj5K5thCix9n3xM0lxO2GSlyA5gA0xyambgdU+MiunUJ3VeIa31cf95b46/Xr9cWVtcyXtRBCiKxl8lOwL7BA07QZQHx5d6XUid12V0IIYdLaam2nQIoQt77BGsZO6r8U7v4UmgJQUQS/nIJSUKKMRdJ8fR2dt1NweCkuDlFPBf2ITdbq22FA7JGzqLJU4rbiT1+JO7pPfHMsS4k29otvb0Dv55ttJW5ZmRHiLl1ewpIl+utAAN56Cy65xDpeQlwhhCgYMtcWQvSoSATq6/XX1nYKOQSdeQ1xTefM22i8Hl6pp6NZVeImtIbIV4hrqsT1hxsoKlK0tWm0tEBjI5SXpzlfCCG6KJOfgtd3900IIUQ69fWpQ1ynwwhx6xJC3PJQHdw4Td8Y1xd+OYX2dhelGCGus8Kb+jGwDpqHkpIQdVQaIW5DmxHithmJaBs+ojjThLhuGNOHWfucxH++OpyF7MS/Wy6PH17PYP2+sgxxi/2R+OuVq62zx3nzksdLiCuEEAXj+t6+ASHE9qWhwXhtrcTNoadWd1XiBsL64mbzN8GEAbGdXQhxOyvayITmsVTias0BhgxRLFuml9+uWychrhCie3X6U1Ap9VFP3IgQQqRiG+J6xkJoWdpK3O/rBhobTXpxU2uDRh/0pDKEC7fPn9FzT8XFijoqTTfVbrxO6IcLpA9xS718dtJF3PfVsQCUttTED29gEJqmcDiyexZrfHA+d3Io5TTQ+PBQruEI45o2D+hKiCuEEIVB5tpCiJ7W0UoBFP4uh7gpJr2dFUl0dq1VdXqAW+yBX06JHU8RGNteqzsqcT2Whc1oDjJsaJRly/TFiVevhgkTuv42QgiRSsoQV9O0JvSVcZMOAUopVdZtdyWEECYNDfBvfsaH/ICrzptO2fAK8O0J0SacTuPHVG29deLZgOmj8EY9xG3fYlSstmglVHS2qFlMsR9riNtgmvCa+uE2o08Y04a4gDsWPrsIUd5q9NPawCBcLoX+ozZzHq/GTiwCINRknbTahbjpFjYTQgjR/WSuLYToLR0hrobit8Me5Nar34KwL/tHwQDIYyUupnOmTobJw/ReuENic/qs2ikUg+YAFdUXMc7pfhIktFOgKcDIEWE6YpWVK7v+FkIIkU7Kn4JKqRy6mgshRP7V18PTnA3Ab//kglIFnjEQXIzLaVTiLlra13JeE6VE0XCgoCUIkSjtRl5Ks7OUigyrBIqLNVZRSQQHzc4yykPG+2ZXiasf6Kgg3pHFuKP6+asZRgsl+EzfU6YiJcbv+r5As+XY5s3J46USVwghepfMtYUQvaW2Vv+qcDBr5GFwxjpwDUh/Uir5bKfgSJiX75x4T1mEzJoDHGUQqQdn306HZ6zEVNHbEmDk6CCgF4VIiCuE6G6O3r4BIYRIJxTSFzYDcDiilBQHwTVQnzC6+uM0BZ7rN1qLlhQOWsyPUjUHCdYZlbhtzuKMJ5jFxQ7O41FchDlg3CI4drxxcMd+sPwaTt3rS47mHSBNiBurVugIcQ9hevzIHCbFjmV0SxaqxPg+/WFriNvx92cmIa4QQgghxPbJaKcAleWxFmHZtCowS9lOIceFzVK1OdNcGbVAs3DGnqJzVmV/L6mUWn+3GDnCaLEmIa4QorvlEBUIIUTPMS+8UF4W0OduHZUCzj6Wnri251NuLGTW2E6ozpj8tbmLM+7XVVKqEUQf29ySMCl1aFDqZSODWMswIF0lrgaam/LGjTzP6ZzOi/FDHSFuLk+yqVKjdUSxakYjiop9TtfWljxeQlwhhBBCiO2TJcStiE0Ucw5x89lOIXaeCtjszyG6cA2C4ApwVHY+NlMjB8BxO+kLnO05lJHDjWoJCXGFEN1NQlwhREGrrzdel5fFPul29tG/OipxObcknWM5X5UzlLX6RmOASL3xAELA7c84xPX5jB+XgYD9j85gyEhfU1fiApqHaJmfo3jXsnsahwHgdGZZZQB4/S6aKKGUZhwoSmmiMdYT2C7ElZ64QgghhBDbp452CgBVHSFuqt62nbELa2NFC7ldzwvYhLi5RBfOQbGvfXK7Fzt7jYNHjG44I2qNJ+AkxBVCdDdppyCEKGgNDeAhwIccwmN1Z8AlL4Mj9kiUo8yysJnt+ebFzZoCaE3GpLDVXZpxiOvxGhPUjrC2scnL+ZedxPmXnURTs4dgMPMQl2Ivh/IBi9hRv5cz9+NjDgJya6fg8zloxGgnUUZj/HU4nFx5K5W4QgghhBDbp45K3EnM5vdPnAb73wc/fyC3i9lW3OYY4ELquXkulbjuEeCdCJ4dcr+fpPuwfm9DBjfFn6LbtMm+eEIIIfJFKnGFEAWtvh5KaOYQPoIm4H0fOGK9qBzeTgNPc7BJUzs1QydwBbdTTgNFgyo4OIsQt5hmxrOIIa2b4KvV3PzeT3nkmd2ppJYdtdGUt1VTRBlt+DsJcb243VG+YTI7sYgTjlrM/b9/A57TK3BzqcQt8ms0UM4Q1gNQTkO8tQPoE0q3ac4pIa4QQgghxPapI8Qtp4Hyhk3QAPSrye1itpW4XQlxU7VnyOGazjIoOzX3e7G9D+v363K0M2IEfP+9vr1sGUycmN+3FEKIDhLiCiEKWkeIG1fsAYfxCJMzRYrr9+sLeiVW4tb1H84/OAOAU4YuAG1jRvfh8XrZmxl8wGHQDtw0gv/78mEAzuUJrn76cq4G7uFSfs09nVbimnv5hsMOIhHjwYhceuL6fE5LYF1Og+V4WxuUmfJsCXGFEEIIIbZPHe0UijCVjRZlVtiQRHPr7ROUsu7LWapJdIFEF4mhtWpn/HgjxF24UEJcIUT3KZCfhEIIYa+hwS7ELY5vutzJk0SXC4qL9RD3fQ7nxNNX4h/ghB36ElpmhKVudzTzdgo+D3WYxta34XZHCAZdFNMS392Cfm+dhrhOa4gbDpvvK6NbsvD5XJbA2txOAZIf7ZIQVwghhBBi+9RRiWsJcX2+3C+YuBhZlypxU0yic2mn0B2UC26aBs1BaA3CA7sxYQK89ZZ+eMGC3r09IcS2rUB+EgohhL3kSlwfaEapqsudPNHz+8Eby1sf5mf86domhg/VK1NDC41z3a4IODKbsDpdRTRoXogVGaiGdjxdCHHdbmMl21DYQdhUiZtTT9wityXEtavENZOFzYQQQgghtk+2Ia6/CyEuHiyLkW3LIa7DA/d+DuFYQcadTUyYYBxeuLB3bksIsX3olYXNNE2r0DTtRU3TFmmatlDTtP00TavSNO09TdOWxr5W9sa9CSEKS3IlrnWC6XQlTziLiqDZdMrXswfHX4fCuVXiovlodptaM9S36+dDDiGuN6mdgrkSN9cQ96/8if34nJ35jjc5znLcvAoxSCWuEEIIIcT2qiPE9WMUFVBUlPsFk4LXdBPhbK/VoVBCXC+Umn5/aKyzhLhSiSuE6E69EuICdwHvKKXGA7sBC4FrgGlKqbHAtNi2EGI7lxziWieYLk/y5z3FxXoFb4fTLjgz/nqfFx5kOgfzCicxqnEBaBlWHTh8BNx+IrEfm1prkCJnu/5+phC3GX3RtU5D3DTtFHILcR3MZxe+ZD8WsDPNlFqOr19vHZ8qrJUQVwghhBBi22bfE7crIa47/XZW10pViduVPrt5pHmgxHSPjfWMH29sLl6culhCCCG6qsdDXE3TyoCDgIcBlFJBpVQ9cBLwWGzYY8DJPX1vQojC09aWEOKW+C3Hna7kH2OlpUm74vqs/Z6D+ZiTeI1i1ZJ5iKv5cHsV9VTEd1VSr9+S6f4yb6dghLihsLPr7RQ6+TYSQ9xAwH6chLhCCCGEENuuUMh4Yq3bKnFTVtPmcK34/gKpxMUNJeZK3AbKy2HkSH0zFIJvv+2VGxNCbAd6oxJ3NFANPKJp2mxN0/6taVoxMEAptQEg9rV/L9ybEKLAtLcnVuIWW457bbohlJQYrycwn39xEVz0Itw6HU+bMVkN+/1Zhbged4Qa+sR39VHVAFTEwlwg3pc2bRBrU4kbCnVviNvx2FwHCXGFEEIIIbY/5qfVKr2mOXbBhLipWp0VSIireZJCXIB99zV2ffGFaXzEutiwEEJ0RW+EuC5gD+B+pdTuQAtZtE7QNO0iTdNmapo2s7q6urvuUQhRIJJC3BJriGsXXppD3H5UcxEPwSvz4aPv8bQbrQ9Cfn/GC5uhefF4ImxgUHxXVUD/GVSJkZDWUoXHA5qW/lqWnriRPLRTMH0bHgKU0GQ5nvhYlznENVcNS4grhBBCCLHtMq+TUOEzzbH9/uTBmeqJELdQ2yk0t0M0wH77Gbs++sg0vuUtiJr+noUQogt6I8RdC6xVSn0V234RPdTdpGnaIIDY1812JyulHlRKTVZKTe7Xr1+P3LAQovckh7glluN2RQPmIZvNRf1bWihqNT4ND5WWZFGJ68Djtoa4lbEQtwpjNlxHZfpWChBrpxAx7iPkyEs7heN4gzZ8BPDxOD+xHE+svDVvm9tPSIgrhBBCCLHtMj+dVeE2fehfVJw8OFM90k6hkEJcU9DcHIBoI4cdZux69139dxgAQmv1P0IIkQc9HuIqpTYCazRN2zG26zBgAfAaMDW2byrwak/fmxCi8AQC8BKncC6PM/+C8+DYgyzHU1Xi3n23/toS4q6swxXRS1Jb8KOKfFn113K7lSXE7RvWP2uyq8RNq5OFzdw5zFGLiqAdHz70dLacBjRNxY8nhrMS4gohhBBCbH/MIe4bY86D134Kz58DJxyZ+0UTq2e36UpcN5Savr+mAETrmDABxo3TdzU3w1NPAdE2vQq35V1QyvZyQgiRjd6oxAX4FfCUpmlzgUnATcAtwBGapi0FjohtCyG2c+3t8B0TeZJzqT7+YNh7D8vxVCHuJZfor2upIoxT34gak6ct9MXtTtfzIFlRUZRVjGAlI9g8chxb6Aso2iiiHX3CWUel5TE1W7HWDB0CQVeX2ykUFRn9eAHKaGTAAOM9JMQVQgghhBDmEDc0qAr2HQ6HjIFRI3O/6HbVE9ebUIkbhEg9mgbnnWfsvuQSOO20IA89sQeRYD20fdrTdyqE2Ab1SoirlJoTa4mwq1LqZKVUnVKqRil1mFJqbOxrZzGIEGI7EH8UCfB5w0kTO7sQt7QUnE6orASFgzUMSxqjh7jZ/Qjcded67uJyRrGSE6qm8QjnAxojWE0R7RTRSogMJq2ah7JSI0VtbPJ2uZ1CWRk0UhbfLqeB/v2MRrgS4gohhBBCCHOxQWV5q+lIF0LSpErcVEFsBhyFXombGOIGIKovbnbppTAo9tBeMAj/fbmci648kTN+djqq5UMIb+yFGxZCbEt6qxJXCCEyYg5xvRmGuB09cSsr9a+L2TFpTA19cHucWd3LjmON3rwz5wxOvlcyXNXX4aW0JBhvd9DU7CUQMCbO+Qhxy2hkyGAjkZUQVwghhBBCmCtxKytME+2uhKR5baeQYr2KgglxfbDPcLh4P/jtwbD/SIjUA/qc+p13YMwY6ykvvTmBx57dFYKLe/x2hRDbFglxhRAFrbNK3HQLm1VU6F/tQtwt9MXrza6dQrmRkRKNduHHp+bF4VCUlhhJam298Y3kEuI6HNDqMtLYchoYPrQtvi0hrhBCCCGEMIe4VeUtxkYW60QkSWqn0IVK3EJvp+Dwwg/GwF+OhN8eAlNGQnhD/PCuu8LixTDjvWc546Tv4vtvvW8KKrim5+9XCLFNkRBXCFHQ2trgv5zCd+zMqJ/fCvNXWI6nq8TtOJYqxO1Tld0CA2XlnY/JSKzCoKLcSKhrarsW4gI0hosJxSa4PgKMHGA8LychrhBCCCGEMLdTOO8/v4Thf4Pxf4dvF+Z+0cTq2S6FuIVeiesBLSFGidRC1AjEnWoze+22iAdvf52SYn3SvWBxf2bM6MkbFUJsiyTEFUIUtPp62IFl7MwCfPNXg7K2QMgkxF3COMvxS7mHNzmO/gOyC3HLy/XK3WN4i5/zAH/menZkEcfwFvvyBUNYm9mFNBdobspNfXG31Prjr3MNcUGzLG42styoCkgMZ83bHX9fduOEEEIIIcS2w1yJ6w21QXsYatvAm2FbMDv57ImrOewD2660aMg3u+8vFCs0iTZDw6MAlJcFOO2EBfEhr709HJRMtoUQuZMQVwhRsEIhaGyEEoxetJRWWsZkW4lb76jkPn7J/ziKfn2zu5+yMj1Avo9f8gAXcz1/4Xz+w1scxxdM4a/8KfOLOYrw+42Fx5qajclgriHuDw4JUk9FfHugN3WIGw4br/1GfiwhrhBCCCHEtkSFIWo8/WUOcT1hU9+yki48cubIYyUu2FfjFnqI2/oxRFuh+S39a8xJRxt9cN+eNhbC1T1xh0KIbZSEuEKIglVfr3+1hrh9LGPsQtyO9gAdx9YylCVHHAd3nsiZVa/Gx1VUZpeWlpXrVQEbGBTfNwHj0/VaqgB4+ukMLqYV6T1+Y5qajYlpriHumWeEqcMIucsjm+OvJcQVQgghhNgONb0Mzcb81xziOgOmELe4CyFuPtspADj8yfsKpZ0CwLoW+MV/4Zxn4PLY3214M9TeAYEFlqGHHrgChyMKwLfzB9BUl+GTe0IIYUNCXCFEweqYZBZjWnShtMIyJl0lrjc+f9SYcfL58OPdmaX2ALTY8ewmg/7izELcs87K4GIOvyXEbW7teoirlMsS4vraauKvzT1wASIR47V5cTgJcYUQQgghthEqDMFFEFioP+aPtSeusz1Ff61smUNcTet61ayj2OY9CqgSN6TBS9/B/5bApyuN/SqcNLSsNMDEnfTCimjUwVdfNCeNEUKITEmIK4QoWE1N4CBCMcYjSZbEMXkTSG6nABAI6q0QgkGjp67Xl2WI69dTYXOIOxpjobUa9CphTcvgYloxRT6jnUJzSx5CXFz8lEcYyAa8tNM+xegFnBjOmkNcqcQVQgghhNgGBReBik36QmsAo0jCTRAtHDvm0MzVD9nTvMYE2Pw65+sVeCWuebXjls4nz1P2WhN//dnnKRZuE0KIDEiIK4QoWG1t4DcHuMUecFh/bGXSExegvV1PRgNBIyH1+LL7RN9fok9uNzLQ9vgahmV+MYcfn8/4tL6xyZg4u3Oco07ey8F6hrCJgYQ0Dx53W/xYunYKuVbirlsHL7wAzVJQIIQQQghReEKmR/dD39Pers+vAcqdTcax4i4Gr5pmBK92/WyzZdtOoYAqcUtNIW5zIPW4mP33Xh1//cXXAyDSlGa0EEKkJiGuEKJgtbUl9MMtTp4UZhziBlwoZa3E9XizDHFj72+uxDVbzXCuuy7DizmKLe0UGhqNm821EGKvveD3v/mCffZcy0evPoLHbSSy6Spxcwlxg0HYZx844wz4+c9zu18hhBBCCNGNovXG68B86mpVfHNwmamvgj8PAakjNgHPR4ib2FNX04ACqsQtKgZXLEoJRCAYSTt87z3WxV/P+W4gmNatEEKIbEiIK4QoWO3tuYW4xbE2WuYwNBB0EYk4UEqvMnA6ozhd2aWlHl8RDkc0ZYh74TVruPrqDC/mKKHIZw5xjXvxdGEe/bc/zODLt//NgfuuxuM2JpT5Xtjsq6/0SlzIcCE3IYQQQgjRsyKmVcyirdRsNtZLGFJuCnGLu7gQGYAjtrJwXkLcxIXSPF1v0ZBPDh+Umf7OmtJX444ZWUexX59kb6ouYcPqFWnHCyFEKhLiCiEKViaVuIlVqz4fOGPFtsWmNRFq64oIBExVuJ5I1ivnag43/qKQfYhb6uWy3y2ntDTDizlKrZW4TV2vxAUg7IRNTbC4mqING+O7812JG41at6WXrhBCCCFEgTGHuMCWzfXx14NKjUAXfz5aIMQqcR02C1Zkfa2Ea2Q5Z+92mgdKTX9nDe1phzscit12Nublc76pNXoVCyFEFiTEFUIUrLY2KKbF2FGSPClMaJFr6Sc7frzx+tv5AwiGTIuaecI5VQr4/WH7EHdoeXa9uhylFBUZC5sFAqZevV15ou3dBTDxDjjwn1Tc8Xp8d74XNmtstG5v3Gg/TgghhBBC9IJoCyjrxK6m2iiOGFhsCnHzWombhxA3qRK30EJcL5Sb7rExfYgLMGkXU4g7rwqCC7vjzoQQ27gc10AXQoju194Oc9mVA/iE0w6bw+W/bez0HJfpp9rYscbrjdUl1n64nghoplLdDPm8EdbQn1aK8GMsHMaQcrLq1eUop6LMfsLXpUrcygrjLZq6b2GzWbOs2598AmefneE9CiGEEEKI7hWpT9q1ZaPRi7Vm9Dh48ApoCYJ3dNffz1EW+5qPELfQK3ETQtxOKnEhIcT9biC0fAjeXbrj7oQQ2zCpxBVCFKy2NmiijM84gBWjJ8P+u3d6jtPIaS1haDDoJBA0Vbu6ozn11vJ6FQoHb3A8dVQAoCqKYEwVaNmEuH7697dPTPMW4ja0xl9n2k4h0PkCuwC8/rp1+/PPM7w/IYQQQgjR/aINSbu21BgT5Yo+IRhYCmP6wJihXX+/jhBX86cfl9G1Eq6Rjz67+aR5oKwLlbjfDYRIDUQ6L1ARQggzqcQVQhSsNlOhq88bzuhTeHMlriXEDTktlbheb0JT1wx1nHcmzwP6AmnhJX/VD2YT4gID+tuHyF1qp1BZGX+pNVorcZUycmtzJW5JifG6rc06LpXEBeXmzcv1hoUQQgghRN7ZhLg1tUY42rfK+LA/2zmsLWd57GtF16+VGAQXZCWu6Z4yqMTdZfxmHI4o0aiDpd/3obnZQ0npKnBOtA6MtumhdSEt5CaEKBhSiSuEKFgNprlnaUkwo56z5kpccxgaCLgsPXE97hxDXI+ybPtNfW2z6okL9O1n/zlalypxq/oYt9PQhtv0fZqDW3MlrnkxuGjUOi6VxMre6upcblYIIYQQQnQLu3YK5hC3jznEzUNtl6Mi9rUy7bDMrlXoIa4HTt4Fbj4G7vsh7D+y01OKisKMH7sFAKU05i4YAIG5oEwT72gAam+Dpue66caFEFs7CXGFEAVrwwYAPTQdNKCpSyFuMOQkYKnEtYaxmUo8r8hnDnGzq2LwFtk/btalELekHFyxH+1tYUrdxgTd3CrBHOK6XNaWCuYK6FRCIet2Q3KxhxBCCCGE6C2R2qRd5hB3oGsTbGrSe+KqfIS4Pn1xM1f/rl9Lc4LDNCF2FFo7BS8cMgYu2BtO3xVGVWV02u6JLRWCSyHwnTEguABUBAKLoOklvW+uEEKYSIgrhChY69fDDfyRVoo450/nwj9f7PQccxiZ2BPXurBZriFu4vuZy1azC3E9vlL7/V1pp+AoggpjotvftSX+2lw9a662dTqzD3ETK3Hr67O8TyGEEN1G0zSnpmmzNU17I7ZdpWnae5qmLY19zUOpnBCioIXXJO2qqTMmfLu+91+YeAeMuhnufjk/71lyXH6qesHaUqEQK3FzYO6LO/u7gfqLts/1FgoAodXG4Pa50PoRtCesJiyE2K5JiCuEKFjV1VBMC0W0421qgmjnP7L8pvmepZ1C4sJmOQalXq+1P5W1Eje7i3p89r9Dd6kS1+GDCmOCbg5xU1Xi5iPEbWtL3ieEEKLXXAYsNG1fA0xTSo0FpsW2hRDbqmgrRJP7tG6pMSbKxZFm40C5fWFB1rzj83Md0AsTOmwjIe7uEzfEX8/pCHHDm6HxKWifA+G1ySc1vwMqtzZwQohtj4S4QoiC1dwMJZgmmCWdTzBThbjBoItAwNxOIbd7Sg5xTSWtWbZTcBcNsN3fpUpczQflxqR3gMcIcVtajGHmStzEdgrtna/NkNROAaSlghBCFAJN04YCxwH/Nu0+CXgs9vox4OQevi0hRE+KNtruNrdT8IVME8Oysu6+o+xZKnELsJ1CDsyVuPMWDiAUisUxobXQ/DqEbRaZUEG9tYJNKC+E2P5IiCuEKFhNTYkhbnmn55SbhjgcekDZobXNCFkLoxLXfkLapUpczWtppzDYuzn+2tzyILES13wruVTiZnqeEEKIbncn8DvAXLo1QCmld5rXv+ahaaUQomDZhLihkIPGJn3C53BE8bSbQtzSAgxxzYubaUWpx/UGzQOLq+G4/8AB98E5z2R0Wp+qNoYN0aseAgEXi5b2NQ6qSIqz0Pvmtk4z2i4IIbZbEuIKIQpWcohrP8G8/Xbj9a23Wo+Zw9qmZq9pvzWMzZTHa/2x6S/KfWGzVEFy10LcWDsFnwsGllJSZEz2Oipllcp/OwWwtmsQQgjR8zRNOx7YrJT6pgvXuEjTtJmaps2srrapChNCFL7wlqRdNaYq3KrKNrQm08StvKIHbipLWrHxuuAWNnPovX+/XgNLtsD3NRmfOilxcbNMtX0NbV9lc5dCiG2QhLhCiIIUiehhojXErbAde+ml8Mwz8MknMGGC9Vhrq/H6i5lD468TK2ozNf1jv2XbsrBZtu0UUgzvWjsFL9x7Mqy+DuZewXcjD44f6ghxo6baLE3TK5bzEeJ21hO3tRWefhqWLOn8+kIIIXKyP3CipmkrgWeBQzVNexLYpGnaIIDY182pLqCUelApNVkpNblfv349cc9CiHyLJIeK5kXN+la1QrM5xO38abce5zCFuIXWTgGgwvR3Vp95q4PddzH64s6eNyi792z7HJRNTzMhxHZDQlwhREFqjmW3lhC31H6C6fHAWWfBAQekv+Y/H9nbdE5uIe7BB4Yt28V+U3KZbTuFbqnE9YLT+NFeXmZMKjtC3MQqXLC2U8ikotauJ25n5/3iF3D22bDffrBpU+fvIYQQIjtKqWuVUkOVUiOBs4APlFLnAK8BU2PDpgKv9tItCiF6QjR5oQJzP9y+Va1grsRNMcfuVZYQt8DaKQBUVhiv69v0R90ysPtEUyXu/CwqcUHvjxtald05QohtioS4QoiCVFenf7WGuBV5u36ulbjX/9maXh68n3kilV0lrrlfr1mXQtyEx81Kio2QuWNhs8RFzRLfM5OFzXJpp/DEE/rX2lq4++7O30MIIUTe3AIcoWnaUuCI2LYQYltlF+LWGCFun8o2aDRN3CqqeuKustMR4moaOEp6917sFBVDUWwiHY5CS2YVsuZ2CrPnDcw0+zVIiCvEdk1CXCFEQVqxQv9qDXErs77OqFHG6/59jWt5PLn9+NthrIclX97NWT+cx7WXfcKF55raDmZZiaulyJG71k7BrffpivF6jLLbjpC1q5W4kYi1JUOHdO0UEieoHSG9EEKI7qGUmq6UOj72ukYpdZhSamzsa21v358QohtFkkPcmjojxO1X1Wxtp1BWgJW4Wux+HaWWuW3B0Lz6OhQd6jNbdGzEsHoqK/Sx9Q1FfL8yy99vgouzGy+E2KYU4E9DIYRIEeKWZP8p/AUXGK8bzQubeZ253ZjDy9gx9Tzzr/9y03XTcDpN6WSWPXFT6VIlLkCzBjPWwP+WsNNmYwGEjnDWHLZ2BMbZVOLatVIwX99OQ8LvEi0t9uOEEEIIIUQXRFv1x+4TmNspDCqthY4prN8NrgLsOdtRieuwX9i41zl8nYe405bCwffDL1+GgP4onKbB3ruviw/5/Oth2b1veDO0f5vLHQshtgES4gohClJtLYDqcohrrjBtbzdCVm+uIS6kXlwhy0rcVLpUiQuwcAsc/x845xmO/vKh+O6OkNUctnq9CkKrs6rETVVxm+68VQlPfm1OuaSOEEIIIYTIWaTedre5ncJAfw34Yq0AynxAih5fvamjhUIhtlIA/feBdCFue1gPbxduhhfmwt+mxQ/tv/fq+OvPZgzP/r1b3k75v7MQYtsmIa4QoiA1NupfR7KSey54DD74bU7pZqqq1pwrcSH14gp5CnG7XIlbURF/6Q82xV/bh7hhaJ2eVSVua6v9/nTtFL77zrq9dm369xBCCCGEEDlQzba7zZW4vhF+WH0drP0DfHxx3p4myyvNrQe4hRzilpuqIOoTJtDzN0KtKdh94Et4dT4A+++9Jr77s2wrcQGi7dD8RvbnCSG2ehLiCiEKkh7iaqxnCOER/WHSmJyukyoQLSnpQojryF+Iu9tuCZfQUi94lrFKo7dWUVtj/HVHyGoJcT36Krc+t9EesbNK3FQhbrrz1q2zbi9dau3NK4QQQggh8iBq37NqU3Vx/PWAfrGg1+PUq0kLMcQFcFaBVtz5uN6g+aAyTSXu7ITJL8CFL8L3Neyzx1qcTn2BifmL+lPfkEM7i+AyiHYyaRdCbHMkxBVCFKRGI3ukrDSQ8+TSl2JOVFbehR9/dpW4mhO07NPXZ5+1bjudqRc8y1iVscKwt72ZjqZndpW4Hlc7qAg+x7L4vs4qcVP1s00X4iYGv4FAcrArhBBCCCG6KGWIa1S0DuyfWK1bgO0UAJx9wdmnt+/CniOxEjchxP14hf15f59OcXGISbtsBEApjc9m5FCNCxDZktt5QoitloS4QoiClBzi5taqIFUlbnlXFuG1q8TN8f7Gj0+4TFcDXICiCijSJ+POaIRi9Mm8bTsFj77hdRttF3Jtp7B6tf3+VOds2pT+fYQQQgghRJYidcbrxnaYuwHaQmzcnCbELdRKXPcIcA/t7buwp/ngR7vDUz+CN8+HMycZx75aDe8sNrYHlepfL50CtxwLwCFTVsYPvz1tbG73EPo+t/OEEFutAv3ITQixvVu3Dny0UUkdVZ4GoDSn64RC9vu7FOLaVuLmpx+uOx9zaEeR/mhcmx7MVlFLCyXx8Nbcu9br0VfK9XnD8X25tlP4+uvszpEQVwghhBAizyKx1WM3NcMPHoDWIJFZV1BtWtisf3A9fFUHpV4YWA79CrS2y7db52N6i+aBnfrrfxKNrIInfwRLquGTFfDcOUlDjj18KbffPwWAN98fyz0q+2IO1TaH+csPYEuNxuTJOa0BLYTYyhToT2shxPasrQ2++QYO5BPWM4TDfnIRnPJ/OV2rqcl+f1lZF27Q4U/el6cQt8v9cAE0v2W13Er0iox4JW670YzW69Vfd4S5kF07BXO7ilThbqpjEuIKIYQQQuRZpEb/+ts3YEsLnL4rW9oqiEb1X/37VLXifus7OOEROOQB+McnvXizW7F0c/8BJXDIGGgLwe8PtR1ywD6rKS3RJ+crV1fy3cLkMLi+wcd1Nx3KfsdcwDFnnc09/96bunp98j3t41Hsf/TJTNxV4wc/gOHD4Z13uv5tCSEKm1TiCiEKzsyZegVtOQ3GzlKb4DQDp50GF1+cvL9rlbh2IW6Kvg1Zyk8lrt/Soyse4rZHACeB+s+BAwFTJa4vt0rcPn2M3rbpwl+7EDdVwC6EEEIIIXIQDUC0FSJR+Dj2qH0kSusbq+JDBvRrhibTZK+0QBcOK3SdtaDwOOG3h6Q+7IlwzGFLef7VXQB47LlJ3PaX/8WPr15bzg9+OJXvVxlrXbzzwVh+99cjGD6kgSXL+1quV1cHP/whzJkDO+6Y9XcjhNhKSCWuEKJ3Rduh6TV9whmzKjbPLMPcGDe354P69oX+Nk85da0nrs29aDmsKmujSxXCHTSfpRK3iloAAq0boP4RAs3GimJeT8TyFbKrxDWtoZZ1iJtqgTQhhBBCCJGDaKwAYlUdtMZ6ij05m2Wj944PGdi/We+V26Est0KJ7Z65EjeqYG0DBMIQiqQ+ByAYgXn6ombnnTUnvvux53cjEHACUFfv45gfnW0JcDu0t7stAa7bHaWoqOMYXHVVbt+OEGLrICGuEKJ3BWZD+yxonR7f1bGomSXELc2tJy7A5MnJ+7oW4trcSxcqccea1jI4+eScL2PQiuzbKbSHILSKQNB4CMPrTa7EbW9NWF03gTmQzTTEbU5cBBkJcYUQQggh8ioam3Atrjb2HTiKDbUV8c0B/VqgxvxYVVcmxduxjhD3whdh1E2wx53w+So4/j9wzVvwyndGkA56dfRZT8G4/4MjHoSGdo48ZDnDhujB+5aaYu77z960trr54XlnsWCxXoXidkd44NbXue+WN5m0y4b45VyuCBecPYvl3zzN558b/XTfeAMWLeqJvwAhRG+QdgpCiN7VNkP/GlwM6hjQtHiIa2mn0IXUddCg5H1dyITzHuI+8ID++NPQofCXv3Thvjo4fDC8AnbsR4OjnLqFlQAEg/qn+x2f8oO5EtfUTqG9FbBZvC0m2xA3GoVvv03eLyGuEEIIIUQeRWO9qpZuMfaN64t75vdcyW3szmxm9bkYlpomc30revQWtx2mSty22Dz6zk9g9nr9z+sL4EhTXwOnA2pajGD3q9U4jxzHlRd/zuV/OAaAa/92GPc/OpllK/rET3v07lf48anzALj4p1+zZHkfauuK2Hl8NWWlAdA0hlW1ccIJRbz2mn7OM8/k6XcKIUTBkUpcIUTviTZDRK8SJdIAIb13l20lbhf6DOy3n3W7pCSC02k/NiO27RRyD3EPPVRf5Ou777oYLsfvxQdXHQyfXMKSO3/Ly5wCEK/ANVfiemIhrs9rqsRtC6a9fLbtFGpr9T/priOEEEIIIbooWq9/XVZj7NuhL8e+cDO38VvO5ml2jczRw8QO/Sp78g63HR2VuGNMk+EvjN7DXDIF/Al9c6eMTBr7i6kz2WUnfbXfYNBlCXBv/fP/4gEu6NW2O+5Qw357rdUDXAClILiAc881Lv3f/+b8XQkhCpyEuEKI3hOutm63zwbo9krciopoztcCQHOCIyG0daSuXM2Ez2c8BtVlmnEv5l63gY5K3KC5ElcPb71e07hA2NKjOFHiwmYdUoW4DQ32++1aLAghhBBCiByFY4/bWypx+zG3r1HRsMvmL63tFPom910VGXB4QXPApCHJx5wanLZr8v69hhmvYyGu1xvh5UeeY/QIo+LB6Yxy2/XvctUvP8/sXgLzOeYY4r1x58+HxYsz/UaEEFsTCXGFEL0nssm6HVoJpKjELa/I+W2KEvLVQQNVzteK0xJW8tW6FuLmlebRJ5UYPW8BAgG9AjcYTG6nYKnEbXdA21cpL59tJW5jo/1+qcQVQgghhMij8Ea9MnOpqVBibF9meKfEN4dsXmytxO0jlbg503yw3wgoSuhS+ePdYYDNk3uTBhuvZ63T/wA7jK5l7vT7efKf/+W+W95k4Wf3cmXJvXDw/XDIA9YKXzvhjRQXw5FHGrumTcvxexJCFDQJcYUQvSexEjfaDKH19pW4ZblPMBND3CFD8lDy6kgIcbtYiZtXmqZPKgGP264S12ZhM3OIG3BB+0wIm6o4TNL1xFU2+XiqSlwJcYUQQggh8kQFIdoAm5uhMfaofakXBpTwVchY5bdq5XIIxOaHPheU5KOX13ZK80G5D644yNg3shL+cpT9+KHlcNQ4Y/vof0NQ/9+iuDjE2afN45LdX2Hsb+6Aq96AhZthwSY46VH43qY3WYdoK4TWcuihxq7p03P+roQQBUxCXCFE74nYhITtX6Zop5C/EHf48K40xI1J7Iur+bt+zXxq0eCleVT99yN+xd2AUYlru7BZYsVutAXav7G9tDnELS0Fd6zdl1IQCiWPr6szXpvbL0iIK4QQQgiRJ5FafTL24XJj34QBoGl8WWs82u/ZbJ6Y+ZNbhInMdRRx/PoAuO5QOGlnePZsKPGkPudn+1i331qofw1G4KIX4ah/J1feOjT4voa02mdzyCHG5vTp9sUVQoitm4S4QogeMWsWrFmTsNMuxA3Mo7GhDQA3pkSwsl/O750Y4h5xZB5+9DkSqhYKqRIXoE2DX7xE+S2v8EduANJX4hb5jBC3tS2WygYXJV9XhWlpNv538fv1fr4d7FoqfPGF8XroUOO1hLhCCCGEEHkSiVVqThoMNx0NP98HLtiLpmYPaxoHsBZT71aXQ3/cf0ApaG7764nOdSxsrGlw2YHw0Gkwuk/6cw4aZd2+6L96gPvkLHhlvv05z50Dh49Nf93QMnbZxXhKrroaFtlM5YUQWzcJcYUQ3e7xx2HPPWHsWFixIrYz2qZXeyZSisZ6vdRzT2ax+ON/wPyrYOyOOb+/P6FIdmwnc6CMOMqs24VWiWsqea2iFgeReHgbsOmJ6y8ygtl4iBupgzZTAgvQ8i6tjWvjm8XFnYe4Cxcar82PeUmIK4QQQgiRJ+H1+tfx/fVqzxuOhpN3Yc06fXHg6RxijL3mBzDvSnjzfAlxu0LLoYpZ0+Cji6377vgYHptp3ffjSfDJJfrvQQeP7vy6kQYcqokpRvtjZszI/vaEEIWt10JcTdOcmqbN1jTtjdh2laZp72matjT2VTqsC7GNmDpV/xoIwGWXxXaGUjfob2wyJkRllWHoVwzu3EPSxErc/v1zvpQhsZ1CoVXiekr0Hl2AkyiV1MUXNOtoqwDg9egVuMX+YHxfS6tpMt/yvtEbV4WhfY4R8gJ+xxx8PuNZLbsQ17yw2d57my4tIa4QQgghRH6EN9ruXrNOLzyYxmHGzk9iVRVOh74grsiN5ut8jJ3x/WBMH3A74I4T4Jw99P63AE4Nll8Dd54EO/bTfw/KVHi1Za799de53Z4QonD1ZiXuZYCpPotrgGlKqbHAtNi2EGIbM7PjQ+bwWtvjLS1uttQagW15aWxhhi5MMBMrcSsqcr6UwRziaq7CmwA7ivQ+ZzH9qCYScRCJaJZKXE+sEtfnC6NpehgbDLoIh2P/eVARaPg3tH4GweWgQpaQ188X+LxGcttZiDtokPFaQlwhhBBCiDyJ1tvuXrNer8S1hLhfrYb2WCutQpvDbk1yqcQFvRr3xXPhvMlQ5YfGdiOs3W2wviBdKusboSlgfyywyBLiSiWuENueXglxNU0bChwH/Nu0+yTgsdjrx4CTe/i2hBA9YEtHG9yI/Qqrc74bSCSi/2jaefxm/P5QLCTN/cdVURFcfjl4PPDnP+vzpi4z98TVCqwKF/TKgD7GJ/f90T/db2n1JFTi6iGupqVoqQAQbYeW96Dpef2YKcQt9ofweZri24khblMTzJljbA8caLxubYVoNOvvTAghhBBCmCkFkXrbQx2VuGsYzpaK2OIETgesji1wlmsQKbr2dzekHP52DBw7Xl+AbvZv4MFT4fy97Mcv2AQXvwST74I3F9qPCS1hr8nGE3Lffqs/CSmE2Hb0ViXuncDvAPOv7wOUUhsAYl/z8cCzEKIAmEPTUEdOGKm2HVtdowePldRyYtk7+oSlJmg7Nhv/+IceKF5/fZcvpTOHuI4sHnPqKVqR5fGrjhC3sclr7YnrNRY0M7dUMAe1cUoPfFtajYoNvz+Ez2uEv4kh7l13WbcrK6HU9FfX0ND5tyKEEEIIIdKI1ultr2atg73uhtOegDs/AYxKXIA1u+8Dp06ELy6FcbFFg6USN3f5bKfmccLJu8AZu9kff38p/HcehKPw8Qr7MdEAVWUbGDNG3wwGYe7c/N2iEKL39XiIq2na8cBmpdQ3OZ5/kaZpMzVNm1ldbR8CCSEKS2I7g0B7CCJbbMfWNei9pfblS26aMRUOeQAufj4v9+HJ5xzV4TcWgijEENfhs4S4A9gE6CFuMJS8sBnoVbUdWuxC3BhzlW6xP4jPFAS3Ny61jP3jH63nlpZa1lyjpqaT70MIIYQQQqTXMa9eUQur6uDj72HuBsCoxAXYcMFJcP8pMND0iToS4uasJ5/G23eE8frb9anHhZZKSwUhtmG9UYm7P3CipmkrgWeBQzVNexLYpGnaIIDY1812JyulHlRKTVZKTe7Xr19P3bMQoguKEzLOzz5p1B/7slEfC3GrMLVbqCyxHdvrHLFJceIiZ4VAK4K+9iGupZ2CKYD1W0Jc+wm9UtYQ118Usoa4DUvS3lZREfTta2xLiCuEEEII0UWRWGuEdaZHnIbqFbjLV1bFd40c0UgSqcTNnSP3hZeztstAcMQeb1y2BZpT9EkIrZQQV4htWI+HuEqpa5VSQ5VSI4GzgA+UUucArwGxNeyZCrza0/cmhOge3oR2UfW1qVe06ghx+2BK96pKU4zuZR0tFRyVvXsfdrQi6GeEyx3tFBoaE9opWCpxTe0U2uwrcYNBZ7xnscsVwe2O4vOZQtzWxpT9jjuYK3G32BdkCyGEEEKITHX0w11vCmkHlxEIOFm1Vg9zNU0xekRd8rkO6YmbM60Hn8bzu2FcrBJCAd9usB8XWsPeexnz+6+/7v5bE0L0nN7qiWvnFuAITdOWAkfEtoUQ24C2toTtluaUY2vr9ceSLJW4VeUpRvcyZ6wS19kn/bje4Ciyb6fQbFTiOogw/rEn4ZTH4ItVGbVTsLZS0MebK3Hb2l3Q+lG80tpp5MVcfLH+tcx4qo+W1Hm+EEIIIYTIREc7hQ3GYrMMLuP7VZVEo/qv/COG1Vs+eDdIJW7O8tkTNxOThxqvH51pP0aFmbTLxvgcfNEiWYNCiG1Jr4a4SqnpSqnjY69rlFKHKaXGxr6mL+USQmwVQiGor7fua2tpTTl+42a9etRaiVuWYnQvc1ToX50VvXkX9jQ/jKyEH4zhs5HH8x5HANaFzX7JfQx+7X34dCWc9Chj1LL46anaKVgWNSuyC3Hd0P4ttH6IUuAw/Vfm//5P/+o25cPBrq9ZJ4QQQgixfYvE5s0bTJW4g8pYstwoNBg7KsWv11KJmzvN17Pvd9xOxuvXF8D39v+b+t0rmThRf60UfJPTakRCiEJUSJW4Qoht0IoVEE740L+1NWQ/GCPEtVbiFmC7AgBnrC+3owArhR3FMHEQPHcOzx9xHf/klwA0NPoIBPVK3FN4yXLKQ58dyVG8A6Rup5DYDxegyGf879nWFuu32/oxq5cuJWT6n7o01n3CvMBcKPU/BSGEEEII0RmlIBortVxvDXGXfm8KcUfbLESgaUDqxWxFJzRf7O+whxy6Axw4Sn8dVXDV6/brjISWS19cIbZREuIKIbrV6tXJ+9oyCHGtlbgFGuK6BoLmNnrjFhLNCQ69OqC81Fj4QF/YzEkRrezHF0mnPc2PGcDG1O0UWs3tFPQy2qKihErcmL/eYCygZmYOcaUSVwghhBCiC1QLqAi0h6E61rJMAwaUsMQU4o4bYxfieno2hNzWaFrPLgynaXDtocb2pyvh/aXJ40Kr2GtP4/ct6YsrxLZDQlwhRLdqtemc0NYWjR0MwVOz4MlZ0NAOGI/rWypx+1QlXqIwOPuCd0LhTn41fcXcssQQN+iiDT/78iUtP5hoOaWKOqbyWJp2Cp1U4rYbwe1/nhxlew1ppyCEEEIIkSeRWPXt0mp9wSuAkVXgdrJgcb/4MPsQV1opdJnWC31xdx9sbH+zLnmMirD3Hqvim1KJK8S2Q0JcIUS3sg9xXfqjP6c+Br95Ha54HQ6+HzY1xfu1WipxKws0xNU0KDm5t+8itVglrjnEbWjyEoz9Hc9hdxrv/gmsuBZ+sW98zFk8m9XCZkU++0rcIYOMR/quvtq4hrRTEEIIIYTIk0i1/nWZae68Yz+iUY1v5w+I79pt503J5/ZkFem2qqf74gL8cgocOQ4u2Q+mjLAdMmHsSvx6PQdr18L69T14f0KIbiMhrhCiW9mFuK1tbv3RH/Mnx+sb4c5PCAT0Sk5LJW7ffhSsQq3CBb264qvVHDjtYd7hKE7lRWrriuJBOYDXE4FiD/z2EBT69zKRebQ32PTXImFhM3/qnrhNzR7WbTAWpPvrX41rSDsFIYQQQog86Qhxzf1wh5WzbEUVzS16pW3/vs0MGtCUfK5U4nado4crcQFO3Bme/BFcfyQcNNp2iCuykD33NLalpYIQ2wYJcYUQ3couxG1q9sKHy607j98JzpxEIOhEI8pCdkINKgO3AyoKtCduodO88PH37PT2qxzF/ziAT6nf6MQXaI4P8XpiVbSlXmr6D+cjDuIK7qC52b4yw3ZhM5ueuOs3Gn2Cx4xRluBW2ikIIYQQQuRJZIv+9ezd4Z2fwSNnwJmTmDnHeOR+94kb7esOJMTtut6oxM1EpIa99jSexpOWCkJsG+xXnRFCiDxpa0veV1tfBEtNVbjXHwGXTKGxyUs4rFeJTuELonOuh2gUXP6eudltjeaDXQfFN/dgFt7v7+cn7Q/yP47kMabi9Ubix9+86u+c97szADivfbbtJa3tFGILm9n0xG0zjSspDgDGBFcqcYUQQggh8iQSa6NQUQR7DAGGAPDx48Zj9vtNXmN/roS4XdfTPXGzsPfuy4EJgFTiCrGtkEpcIUS3sqvEbaxxwvyNxo4zJwFww+0HWcZpGuB0SL+uXGlemGiEuAfxCT9peJBiWvkhrzBGW47LFY0f95taDzc22U/q7RY2Ky8zPuWvq9cnspaKXZ9R+QvSE1cIIYQQIm8iDba7P/rCCHEP2m+V7RiZY+eBo5NKXNcg0OzXmsibSNR29967LY6//vprvTZGCLF1kxBXCNGt7ELcPtWrIBCrAB1eAX30Stvb/rm//UWkSiA3Dj8MKkX1N1obFKP/D7KQ8dzvudQyvLTEKIttarb/O7drpzCov9FjbcPmkqRxRd4miBg9jqWdghBCCCFEHkTbQCVPphYv68OipfqaEj5flH33XGt/vsyxu07r5InB4sOg7MfgGZXf940q+MVL+uLQo26GuuTHH0cOnk/fvnpyW18PS5bk9xaEED1PQlwhRLeyC3FH1S4wNnYbnDwgkUwwc6MV6+XMR41LOvRn/oLHa128rKzEqKgduHkp/OTZpE/2zeHspA2fwKR/sPsNf2cEKwHYaBPi+ouCEDR6IEs7BSGEEEKIPOhopRAIw/c1erAHPPvyLvEhxxzjoKhsiP35hdrPdWuSbmEzTQPXMD3ALfsJeHbI4/tqsLIWFm6G9jB8uiL57Qmz3z7GL2PTp+fv7YUQvUNCXCFEt7ILcfdq/8LYmBQLcd9axLOcyULG8yRn8zMegveXwqZmCXFz5SgGQPvNgWymX3z33/ktL3CGsahZTGksxP01d3H7kqnwzmL43ZuWMTfecXD8dd2oMbClBf+MJbzGifhoY0utXo3Q0RsXYhW7AaPHrrRTEEIIIYTIg3CsPdm8jbDvvTD6ZkI/f5V/PrJXfMiZZwLeCfbnS4jbdekqcZ39wBH7PUbTwLd7ft/7kNHG6+e/tR3ygwONFnYS4gqx9ZMQVwjRrexC3B3Ci6FjhdwDRupfl1RzJs8znsWczdM8xEXw46fhg6XSrytXjtikcmg5RxRN53HO5Upu42r+D8CyqBkY7RT24Sv6RTbrO5+YBXM36K+VtXLXq9ohqF9jV+bxCQcSbY0QjWrWdgq+MITWQ1CvEDC3UwgEEEIIIYQQuYhs0b8ui31tDTHnm75s3qI/GTV0KJxyCqkrQDvr5yo6l25hM+8u1m33yPy+9ykTjdfvLoE19UlDfjBlbvz19OlJ03khxFZGQlwhRLdqS27PxGT1DWrF72HaRUYl7v4j7S8wskoqcXNlqgxYVzSSqTzOHVxJR4KeqhL3Ah62XufwB+GER2DSP9gXo4r6sBM3gNv4z8hkvuERfkpri4tWmwXQCC7St00FC3b/PoQQQgghRAY61hxYYaw98O7qfeKvb7gh9uG5sw84SkmSLoAUmXGkqMR1lIBv74R9xfEn5TKiOcAzJvXxcf3gQFOv3S9XJw3Zdcf5VFXpye2mTbBwYeZvL4QoPBLiCiG6lV0lLkDAUQQTB+mPFgFMHsp6l02/rh0GgOZK3i86Z+rR5XFHkg6nqsRtp4izeMY6+KvVsKGJL5jCJdwHwPAd22HVdTB1z/iws3iO4PuraG4xqqeL/bHGt0F9NYWSEuOyTcaaaEIIIYQQIhuRTfrX5TXxXUsZC8CPz6xl6lTTWFc/kkg7ha5LFYQ7+9pXOrtHZH7t4mOg/Fzw7ph6zN7DjNf//iqp1NahRTj4gIb49ocfZv72QojCIyGuEKJbpQpxzT1TAdA03qs40bpvcBn079M9N7Y9ME0qvd5w0uHESlyPxwh1n+NMXuA028suYRx+fxCHQ4HLATcdwxK3Mbn0/edjauuN966qjJXbRuoguMwS4jY3Z/UdCSGEEEIIgEiD/gdomNMS372EcZx6/AIee9wfr5UAwGWzmHC6RblEZlJV4nrGpti/U2bX1TxGD93Ss8A1wH7cj3YHr1N/PXs9zFqXNOQHBxgLDE+bltnbCyEKk4S4QohulSrEbQ8kV9e+4j3VuuPoHcEpk8ucac54BYDXk1yJO2uuzWTeOJkzeIGDmW7ZO5eJfMgPKOmorgVwO7li2H+IxP6TUjRjCZH1RjpbVWHqmRD4TkJcIYQQQoiuirWpatzioGj1+vjuAfv6ePqh/+HyJFSBuoYmX0MqcbtOcxqLl5l5JybvA/CMtt+fyLen8TSipoF3Z/txwyusvXFfmpc05PD9v4y/fu89WZNCiK2ZhLhCiG6VGOKexyMcxTsEV7YkPe7zVXhvHuZ8AELjBsG1h8rksqscemJq107Bzi/Pn2HZ/piDiW74M7z0EzZfcwaH8z4RXBT7Q5ZxNZXD+JiDANCUYvjyOfFj8UpcgMACSkuMcyXEFUIIIYTIQWgNAE/eNBgP+tzqe+cYHnn8XTy+8uTx7uHJ+6Qnbn44Ev6+HSXgLEsxthiclemv5xoE/gOt+3z72Pc1BmuI++oCiEQth8fvUM3oUXpy29wMH32U/u2FEIVLQlwhRLcyh7gaUe7jl7zDMYw44Xqob7eMbW7x8DP+zQ4speWlS6DcJyFuV8Ume43NmS0Od8/Nb/GHK6wzu+ZWLxwwig1HHkI1/QEoKQ5axpQUB3mfw+Pb4zbMjL+2VOKqICWelca1JcQVQgghhMhepIbGJi8zXjKtgTChksqKdvv+tw6/NQTUHPoj+6LrEkPZzvrepluszFkB5T9JbtPg8KZu0XDASOgXWzBtczN8ttJyWNPghKOWxbdffz397QkhCpeEuEKIbmUOcQexAT96oNfkKYdKY9KpFLHFsDSWswPFlbFPkCXE7ZrYZH3VmoqkQ5f//IukfZoGN1xjXfGgqVmf4JsXK0sMcYv9IT7g0Pi2p83ozWapxAX8rsXx1y0tCCGEEEKIbEXrePTZSQxqXR3fNXi/2OP3zhT9U139jddaEdamuSJnjoQQt6OXbSr+I+yrajUnlP04da/iVOGv0wEn7ww79YfrDoVxySH+CUfMir9+/fWkByKFEFsJCXGFEN2qzZTfjXca4d2WUmtfrvZ2F0rpE0mvN4zbHQtxZcGFrtGKUx466+TvUh4bO9pY5bgpVsXb0po6xC0pDjKDvfkF9/PijQ8ytfTZ+DFLJS7g1ZbGXwetlxFCCCGEEJ0Jb0ZF2nn4qd3ZAaPC0jG6Sn/hrLI/z1wx6iixHyOy56wwXmsucI9MP97hhcpLk6ttvbtZg/ZE7tGpg/c/HwkfXQyXHQgDkwPiA/dZSVmZvqjxqlUwd276WxRCFCYJcYUQ3UYpayXun099Of56Q7H1MaOUVZ5Sids1scnh4/e+lHSorDT1qgalJcYxu0rcYn9yiBvFyb/4BdXuQdTWG+F7YiWux9UYfx0MSiWAEEIIIQQAKgJtX0FwZfpxgTnMnjeIuQsG4iBKK7F516iOEDdFz1VzxWiq/qoie84+xmv3MGNBsnQcXig5Vl8ATXPprS1StUuIn1OUXPXbweNMe6rHE+HYIzbEt194ofNbFEIUHglxhRDdpt3U8tbrDTO4xqgUWO0dZRmbOsSVStwuceiVuOecnvxxe2KFrFlpifG/QUclbvp2CsZ2TZ2f1ljVrssVSRrrdCocDr3SWimIZLbmmhBCCCHEtiu8Berugea3oeFRaP0UIg3J41QEgst49NlJAJzPI/z81M9h7hWwz3C9162jwv49XIOM11KJmz+uoUaFrHt05ud5d4GyU6Hy11B+Lnh26PwcZ9/c7hE446R58dfPPSeFFEJsjSTEFUJ0G3MVrr8oRN/VxmP033r2sIxNGRBKO4Wu0fRK3MQnryor2hjQP3VD2s4qce3aKXRYv9Go7OhX2ojWFkq6vsdjJLfSUkEIIYQQ2zUVgtb3IVJv7Gt5H5pfgWjCh+6tHxANVvPSmzvFd009a67+CL3frVdqail+zXcNNl5LJW7+OIr0alzNAd5J2Z/vLItV8Lo7H+vKMMT9vgaarE/dHXPILEpL9Tn4smUwa5bdiUKIQiYhrhCi2ySGuMWbNsW352kTLWPN/VYtj+pLO4Wucdj3xB09oi7taXaVuFf8+aj4vmjUmgoX+42gdlN1MZdyD3PYjVV1/eGOj5Ku73FLiCuEEEIIAUBgHgQWJe8ProD6+yHarG+HN0Lb58yYNYR1G8oA6FPVyiH7rzTOcZalfh+Hz2i1ICFufnl2Ac8EcHbz36szTc9cgJe/gyMfgn3vhQe/tBzy+cKcdOya+PZzz3XHDQohupOEuEKIbmMOcQe4q3E36hPQVoqYvXmcZay0U+gmKUJclyua9rTSYuOT+47/bQIBo79XTZ11IQbz/2abqktYwzB2Yy5uwvDQV1CX0Bc3TSXuG2/AscfCyy8jhBBCCLFtUwravkx9PNIIdQ9Ay3vQ8BQoZanCPenoRdZ5ndZJm4SOlgqO8i7ctEhSfIje47a7uQamPx6MwJz1+utnv006fOaJM+Kvn39eWioIsbWREFcI0W3aTLndOKfRSmE5Y1i/uZzaOiOg3VJrhILSTiGPUvQ70zDN2GwWXzD/b9DRTsHslOMWphy/qbqY1zmBJcQWZ2gLw4zVlvGpKnGVghNOgLffhlNOkX65QgghhNjGBWZDeHP6MdFmaP0Mok0oRTzEncJn/LLPIzBvA7TEJlSd9brtaKmQ6WP5InMOf+djusrZX6+oTuXkncEXm9uvqoPXF1gOH3nwYioq9An2qlXwZZrPD4QQhUdCXCFEtzFX4o7FWNRsOWMA2FxTDCVHg6s/V/zJeFT/+1WmVVelnULXaB79T4INm2OPejn7QMXPwTfJMulPbKeweFkfy/knH2N95M/cAmNTdQlRnLzOCcaAD5dbxqeqxE2syjX/GxJCCCGE2KYoBa3Tszpl3oIBLF9ZBcDFrn+xxz33wmEPwvOxqktnJxW2rkF6COioTD9OFCbNAb69Uh/3uuCknY3tn//XUm7r8UQ45QSjpcITT3THTQohuouEuEKIbmMO4KrLh8K5e7DSO4YFTACgOTASivaF0lPYsMnoH7Wp2lRB0BOfaG/rYuHskYcYQfoPj41V0np3BFc/KD0ZyqfGF8KorDDKqGd/N5Df/fUIyyWLiqyLlVkrd/Ueum9wvDHgtfnQapyTqhK3JWGtNQlxhRBCCLHNap+ht0vIwqvv7Bh/PaXkG+PADrHKWme/9Bdwj4DiY1IvfiYKn2/35FWLzS7a13gdjsKb1uKLn5z2Vfz1M89Ae3u+b1AI0V3kJ7cQotu0thif+q7tvxPcfgJT93ifP3AjAM2B2OP2roGWXl6XXxR7rkfzZLZKq0gvFuI+cver7D5xA3vutp7fXfqZfswzwRjn6gcevVfxwfutiu9+43878to74y2XTJw3WlpgxHzMQdT4YosvbGmF+z6LH/OaK3Hb6uOvE0PcxG0hhBBCiG1CpBZaP8n6tP9N159ocxNkRPMS48AusV6pzj42Z5loLvDtlvX7igLirALvrqmPTxwIZV5j+9X5lsMH7rOIUSP1uXt9PbzySv5vUQjRPSTEFUJ0m1ZTAuePVW6WFAdRsR8985cMiffNHTrECAHPOvk7/UWKRblElmKrDw8e2MSsaf9i5nsPMmhAM3gngnuodax7JAA7j++kN1sHzQHOMor9oaRDUZy8ueuFxo7n50JUD/Yt7RRaVsZfJ4a2t9yS2W0IIYQQQmxV2mfqvW6z0Njk5YuZwwDYmfk4w2H9wPAKqCzS52WOsjzfqChI/h+kP/63Y4zXM1brFbkxDofivLNXxrcffTS/tyaE6D4S4gohuk1rU138dZFPn2SaKzYv/XUJY8bowV19g9G3tbws9kyPhLj5kWqBC7sqDM9Y0DTc7mjysZgrL/5cf+HsA5WXQ+lpVPZJXhwNYN4uh1sXV3hYXxHX0k6haSEo/f2aE36XeeihlLchhBBCCLF1irZD+7dZn/bhpyOJRPRf4X849APjwK6D9K+OMmmTsL1wVqRvO/fDXaA8trbIhiZ407oo8dRT30HT9OKK//0P1qxJvIAQohDJT3ghRLdpbdoUf22uxDXbsAHuvRcaG43n88tKA/oLTfrh5oWjNHmfaxC4hyfvd/YB96i0l9t/79X6C//+4CwD93CGTzjedqynzAGX7GfsuPtTCIQtPXUbGiIQ1CeWdu0TGhrS3o4QQgghxNZDKWh6HqLZ94zqaKUAcETlp8aBeIib4oN7sW1K1//Y44QzTC0X/vWl5fCIobUceoj+b1ApuO++7rhBIUS+SYgrhOge0Xaa6vX07W5+xWXTLoV/fk55y5akoQsXQjSqh7glxQGjClQqcfPDYbNKsWes3nPYjkdfMOPPV023PdyvT6t+vnf3+D7NPZDTT07+CL/YH4LLD4L+sV8q6ttgznpGjzCqtJd+3wfa9AUWVq5Mfr9Fi5L3CSGEEEJslQJzIfh9TqeaQ9wJgXnGAQlxt0+esemPT52sf3Vq8Ocj4m3NOvzqp+/GX//rX8lPxAkhCo+EuEKI7hFezxcz9X6rU/icHdfMgOvfY2RoWdLQmhrjdb8+rcaGhLj54eqfvC+2gJktzzjQPBx2kP0vGPsdNATKfpy0utmgYQOSxpYUB/V2ClccBJcfAN9cDvsMZ/wORpi/aGlfCK2G4Pd8/nny+21Jzv2FEEIIIbY+Kgotb+V06opVFSxboS9aVlrUStnq1cbBibEQV5O583bFt0fqogyAcf1g6p7wu0Ngn+HgsM7djz/iO8aM1tvY1dfDY491360KIfJDQlwhRPcIb2Tl6gqchNkZY0XUY37dlDTUEuL2NT1aJgsz5Iezr7U/mntk8oJmlvGVUHoiO46LJB1at2Q6zvKjkgJcgH79kyeRxf5Y+4zz94LfHxavyN1xB+N/9MXLY6sot/zP8m+hg7RTEEKIzGmaNkzTtA81TVuoadp8TdMui+2v0jTtPU3Tlsa+Vvb2vQqx3Qmthmggp1Pf+8iowj134vto7bHWVIPLoF8svHVWdfUOxdbE4Qf3kPRjbjoGfn2A7SGnU3HZhR/Ht2+9FQK5/fMUQvQQCXGFENlRYf1P2jEKAnNpaXWzI4vxEZsNDClj7B5tTNlns2X4ZtOmpRLXWZGfe97eaU7rpN43sfNzvLvQf/Qxll1HH7acwTvYTwIBqmx+byj2h5J3AuPGGGntB5+MZkuNHyKbqK9PDo4lxBVCiKyEgSuVUjsB+wK/1DRtAnANME0pNRaYFtsWQvQUpaDlzZxPN7dSuCR0r3FgD1OIZ/f0ldi2OQemP+52gjN17PPTM2fSt68+X1+1Cv7973zenBAi3yTEFUJkrn0O1D8ANTdD06sQWms/LrQKwhtpafWwK3ON/RP0x+1PPanWMnzFCuN1P3N/fkdFXm5boFffgl6R6xmf4TlDmTULfD7FLju389TjTaC5Ug6vtKnpGtjfvrlWVUUbYPTlOveXPwSlqK8LJo2VEFcIITKnlNqglJoVe90ELASGACcBHQ/LPgac3Cs3KMT2KrgYwtU5nRoOO5j2ibHwrOuGw+CvR8KYPvDDXYyBzr5dvUuxtfHskNm4+Zvgxveh/1/gi1Xx3SUlQa65bHZ8+8YbobXV7gJCiEIgIa4QIjPBJdD8BoS3gIpA+2xo+A+0fQnKVG0ZroamFwBobXOzG98ax3bWQ9zTT7NWW0ajxut+/b3GhlOe9Mybjh64vj2y6jW8++7Q1qYx7zsfVYMnpR1rF+KOGFqfvHNlHZU3vciLnBbf9c4HY6lv8FGzJTnEXb9e/9rcDLNn64UsQgghOqdp2khgd+ArYIBSagPoQS8gJXtC9JTgSmh5J+fTZ84ZTH1DEQBDBjUybq82+MV+MO3ncPxO+iDNJQUQ2yP3SL2tQmf+9C7c/Zn++jrrv8VLfvI/Bg/Se+Nu3Ah33JHnexRC5I2EuEKIzkVboOm/yW0UVBSa34HGpyG8SQ94m16AaIv+xFirm0nMMcbvrD/uM2xkKffdZ/9Wjc2xJNBRApo7/9/L9sq9AxTtBf5Du+0t7NopDB3caN2xuRn2vxfnE19zKi9xIEYfrrkLBrBydXnSNT78ENrbYZ99YI894De/yfedCyHEtkfTtBLgv8DlSqnGzsabzrtI07SZmqbNrK7OrWpQCJGgdTpE6nM+3dxK4Zw9P0Rr0gM3/G5jnQJHue2aBWIbpzmh+LDOx51iqtj+biN8uz6+WVQU5vrffhDfvuUWo4hCCFFYJMQVQnSu+Y30izAEV0D9g1B3L4Q3U73Fz7IVVUSjGrtjPJ7DxFjPJkc5u+1mf6mddi7WKwlcA/J3/0Jvo1ByXGaf1OcosRL31OMX4HZHrTv7l8BJxiTyHY7GgV6Z/a/H9ozvHzHCOGX9enj6aViwQN++66683rYQQmxzNE1zowe4TymlXort3qRp2qDY8UHAZrtzlVIPKqUmK6Um97P0OBJC5KR9FoRWdukS/5s+BhchFjOOW944GR77JnmQrCWx/fLsaF3E2M7Ze8D+I43tv0+3HD7/R18zcRe9j0JLC/zhD/m9RSFEfkiIK4RIr30eBBZ2Pk7pQdzHX4xg2O5XMG7fXzOIDQzo+B2x2AMjq/TqWkcp5ckFlwCc91MnuIaCe4T9AFGwEitxL71ghv3AX+wbf+mnjb/yJwCefmnX+P6DD2qPF5PU1cHcuQghhMiApmka8DCwUCllfij2NWBq7PVU4NWevjchtjsqAq0fdz7OTlRBVNHY5OXLb4ZyE79nHEtpP3lPuHRK8nhnn67dq9h6OUqg+OjOx/3taOgo1n5vKSwxnrZwOhV3/OXt+Pajj8KsWfm9TSFE10mIK4RILdqc9Sq6Dz+1O4GAvvjVgXxiHNh1EDg0cA0GzWHbP3XiRPRwt+Q48O3ThRsXvaGiwrpdVpqienvXQXDQ6PjmddxEGdbVy0YPWxu/nlKwYYP1EtIXVwghUtofOBc4VNO0ObE/xwK3AEdomrYUOCK2LYToTu3f5NZG4eYPYOBfYeBfKRvze8IRJ7/lNgB8782D055Ingy5BnX9fsXWy7cnOIrSj5kwwFqN+6tXLIcPP3Aexx+jL0CtFFxxhcy5hSg0EuIKIewpBQ2PQrQ9q9Nmfjs4/toS4k6JVdbG2iQMGQJnn209d1THoruufuDwIrYuTqd12+VNUxFy14mWzRN5zbI9rP8i+vY1Zo3PP289vT27f5ZCCLHdUEp9qpTSlFK7KqUmxf68pZSqUUodppQaG/ta29v3KsQ2TUX0XriZWFwNCzYZ2//4JPVYlwOe/FFy/1upxN2+aU4oOqDzcacbT74xe72lGhfgtj+/jsulz8E/+gheeSWP9yiE6DIJcYUQ9gJz9YXKsrBqTTkLFhuLXV/OnezDl3x4yAVwbGzlXGff+PHHH7eef2j3rbklesjxx+tfR46ECbsNTz1wSDmctHN88zauwomxcN7wIbX0qWxKeXpjxkv0CCGEEEL0gpZ3INra+bgPlsHB98P/TddbKNS0gtN+gbKmMSNg9uVQZLP4r6OiK3crtgVFUzqvyD5rknX7gH9Cayi+uePoFVxykfGBwm9/C4E0S6MIIXqWhLhCiGSB+dD8StanXX3DEZbtCC5msA+zDjndWNTMtOiCI+EnUP/+iK3c44/rPbSmTwdX0bD0g/92NFGX3npjAJt5kIvih4YMaqRvZepV0a++Og83K4QQQgjRHdpmQNvXnY8LR+EP78ARY+H+UyAYgT5+uPFoKPcRdbt4ljP5Dz/lCu9d+KZNhRKbp9Via06I7ZymQckJyVXaiWP+cJh138PWdSz+dMUbVFbq1bjLl8O99+b7RoUQuerxEFfTtGGapn2oadpCTdPma5p2WWx/laZp72matjT21aZjphCi24U3QPNbOTVAevH1Cbb7A0GXseFIsaIZ4Pdn/ZaiwFRWwtSpMGIEeiWAO001bv8SHBftFd88n0c4jRcAqKpoo09F6krcxx7L1x0LIYQQQuRReLM+l87E36bBshpYuBn2vBNag/r+C/aGpVdz959e50c8ywX8h1WHH47bnyKcc/ZNH9yJ7Yd7MLh3SD/mV/vD7rEWeL850LLoMECfsrX86dqV8e0bboDq1LUVQoge1BuVuGHgSqXUTsC+wC81TZsAXANMU0qNBabFtoUQPa3tS4i25HRqRbnRqHQ0y+Ov29tjIa7mAGfqz2f6SCuvbY//kPTHrzuMdf4RhHDxIqeyHn1CWV4WoG9VBo8gCiGEEEIUimg7NL/W+TiAez+D+z7XX6+uh0umQJW1ouGN/42Lvz760GWpryX9cIVZ6Un6GiOpaBq8dQE8/WO4/EBwO5OGXHLua4wdqxf1NDTA9dd3070KsTVQoc7H9JAeD3GVUhuUUrNir5uAhcAQ4CSgo7bqMeDknr43IbZ7gYV6L9wcDRmoNyrdixksYAL78gUA7YFYiOvsD5rHcs7ll+tfJ02CKVNyfmtRqNxDQXOlOe5kzfUXcBbPcjov8jn7A+DzhRk0IHUlLugVAe+8A8FgPm9YCCGEECIH0QA0vQChtZ2PfXo2/PV9Y/vwsXDJfpYhNbVFTP98ZHz72MOXpr6ehLjCzFECxcfpbTZScTr0f3fm/srhKNS3AeBx1nHbjfPih/71L1iwoLtuWIgCF1rR23cQ16s9cTVNGwnsDnwFDFBKbQA96AWkO6YQPSnaAi1v59RGoUNLqx7Q/pL78BLkYS7ARxv77BGbzLoGJ51zxx0wbx589VVyj1yxDdA84Nkp7ZB9pkaombJn0v5hQ9KvXrbTTnDMMXDBBV26QyGEEIUgUtfbdyBE7qLt0PwSBJd3PvaLVXB5QrXuLcfqoZrJq++MJxLR9+03eQ1DBqX5cDtd1aXYPnlGQvm54MiwX93SLXDcw3DxS/HfB0849H8cemgUgEgErrqqm+5ViEIXKJxPMHotMtE0rQT4L3C5UirjdcY1TbtI07SZmqbNrJbGLELkR6QJau+ESMb/V7TV3OJhB5YylccBmMBCrjv0OU45fqE+wDUg6RxNg112AY8n6ZDYVhQfAg5fysOaBm88+TTlZXo7juMPWwgffc/wIQ1pL1tTo3998klYluYJQyGEEFuBAqpyESIrKgz1D0FgcfpxkShMuBVOetS6/5kfw/CKpOHmtSZOPb6TAME1JLN7FdsX93Dw7tb5uE3NcMSDMHs9TFsGT80GQFPN3HHDx/F2y2+/De++2433K0QhUiEIr+vtu4jrlRBX0zQ3eoD7lFLqpdjuTZqmDYodHwRstjtXKfWgUmqyUmpyv37yiaMQXaai+qNfeejz8sOGp1mK0buLPn7+8MRyY50Fp/x/drvk7NPpBLKkJMjbzzzJf358D/9ddwSc/gQ7rJqRNG7SJPtK8QsvzMudCiGE6C1R6YMutkJK6T1wIzWdj/1gGWxJ+Hd+78lw2NikoRs3lfDeR6Pj26d2FETY0VzgqMjsfsX2x38IuIelHzOgBM41PRX3x3f1Ps3AbuM+5vzzjMKKK66AcDj/tylEwYrUgor09l3E9XiIq2maBjwMLFRK3WE69BowNfZ6KvBqT9+bENults8htDqzsa0hiJpCtGVb4Lj/wJEPQf+/cH/w59bxfznSaJSvaeAalJ97Fluf4iPAPTLtkP32WstP2x/Es0j/pLPvxQ/hx1hk796b36R/H/tfkqZPz9eNCiGE6BWqvaB+SRIiI+1fQ3uG60kcMgZ2Nj2Vdu0P4Az7D7kffW4S4bA+hz5w31WMHF6f+rrOCoyKCSESOLxQcYE+F0/XO/n3h8IOseMtQTjlMf2rinLjVU9RUqK3VViwAB56qAfuW4hCUWDtnnqjEnd/4FzgUE3T5sT+HAvcAhyhadpS4IjYthCiO4XWQ+v0zse1hWCvu2HkTbDR1I/r3zPgSvkl5AAAR3VJREFU6zUwZ33yOVP3tE5Mnf3AUdTlWxZbKc0FxYd2/kvGdYeB0xjzcckRAPSpauWCs2fTt8Lm31rMmjV5uVMhhBC9JTC/t+9AiMwFl0LLO+nHRKLw1iJYVacXNtxyLPxoErz2U/jNQbanRKMa/35yj/j2hed8k/49XJ1UWQoB4N8ffLunPl7khntOBkdsHr66Hi58EYCB/TZz7W+MRc7+9Ceor++2OxWisBRQKwXohRBXKfWpUkpTSu2qlJoU+/OWUqpGKXWYUmps7GttT9+bENuVaIv++Jfq5HmYUAT2v0+ffAJMfVavyAW46Rh9Imoyh93Ywb8Sbj3eeh1ppSDcw6Hk+PRjhlXAAaPim3s2f8GHe57Na48+hc8XpqqiLeWpd96Zn9sUQgjRS5rf0OcnQhS6aAs0vay3JUs5RumLRJ33nN5zFGCf4XDXSbDv8JSnvf7uOJavrAKgoryN007opB+uJ7kdgxC2POPBu2Pq43sOhV/sa2y/vxQ+0fuV/+ZnrzN8qP7veMsW+NvfuvNGhSgQkRpon9Pbd2Eha8ELsT0KrYfGZyC8Mf04peCG92GtaYGpbzfA8tgj7aEI7DYYilwA3MpV7MXXLG8dkXwtm0XNxHbItyf4Ollg4dEzLZuHfPM0U676PUSiuFypf1m64474YrpCCCG2RioILf/r7bsQIr3QWqi7O30f56iC374Br8zXKxt3zmweHI1q3PgPo0L3Z2fPoqiok4ILt828Wwg7rr5Qejq4BqYe88fDrdu/eQ2agxQVhfm/PxqV53fdBcuXd9N9ClEoAvMh2tT5uB4kIa4Q2xsV1CtwQ2s7GafgrKfggS+t+7+/BibG/sPvdcH5e8Gq69BQ/I5bCeO2v56smis6FB+lTyJTHvfAtIT+yku2wOWvEQmnb8fQ0JD2sBBCiEIXXNrbdyCEPRXRq8Ubn4NowH5MKAI/ewEG/hWemKXv09BbKmTg8ed3Y+Ycfc7s84W48uIv0p/grABHcWb3LwToLc5KTtB75dpxOuCDn4MrFhWtroczn4T2MGee/B377aX3LwuF4He/65lbFqLXBOZ1PqaHSYgrxHZAqViFYrQZ6v/deQVuSxAO+Cd8aPp49YixsOGPUJL8H/y33rc+xnXQfiuTr5nuE1+xfXH4ofzC9IsrTBwI86607nvuW4765j9pL11dnYf7E2JrFN7Q23cgRH5EWyEkTc5FgQlvhqYXoG1m6qqspVtg3N/htYT2B3sOhR/u0ulbfL+ykiv+dFR8+/KLvmTggOb0J/n2SH9cCDvuIVByImgp4qBdBsLtsRZoZV64dApUN6NpcMdf3o0Pe+kl+OijHrhfIXpDtBnChffLpYS42SiwVemEyMSSJTBmDFRWRtiw8BHWrGrnhtsP4ouvh9qf8PYiGHWzPhHtMHEgPHKm/smsjeN+fLZl++F/vGYdIFUCIpHDCxUXpl9gYUAJzPkNVPj07b5+5g7e3zLk3Veti+Bs2pTvGxViKxBa0/mHc0JsTRqfTv+ouhA9qWU6NL0IgRTVtK/NJ7Dvv/Q1JFqClkPvuY5kp41fcfTZP+Hqvx7Oh5+OJBRKnk8vWtqXI884l7p6fRHg4UPr+cNvPk5/X94J4O2kRZUQqXh3hvLzoPgH4BqUfPysSfCzvaExAK8v1NetAPblS8478av4sCuugGia1tBCbLVChbWgWQdXb9/AVkMpCC6Hosm9fSdCZOXcc2HFCgAng3f5FSOG1bNqTQV/v3d/Nsy7nZIS02RzdT38/L+W85VD4yjtXSI/KuGlR54jFHLy+PO7cdiB37Przpv434djLOM9njA7jE5Yl9A9CiGSOHxQcoy+4md4s/2YwWV6a4Xzn4d/ncaxra38/i390HlnzebIKa/hck0gHGuzcOCBEA6D09lD34MQhSC4CJxpWpQIsbWJtkF4LXjG9fadiO2ZikDb59A6PeWQlhpYfGMde6xM/iDtYv7JA+GLYTUsWg3vfrgDf7/3ACor2jj+iCUceuAKNBTTPhnNc6/uTDCo/2ru8YR5/qEXKC4OJb+hpunz6kgDlBwLjpJ8fbdie+Qerv9xDYPwGmj9yFisT9PgxqNhaLke5IajeouFmz/gkU8eZrXnQz4IHsKsWfDEEzB1au9+K0LkXTCzNjg9TVNb8SowkydPVjNnzuyZN1NK/w948Q965v2EyAOlwJGm3v69Fx7n8IO/N3aEIvDqfLjrU1hcDSfvzLH1/+Xt6WlWMU1QVdlKzeK/W3eWHANF+2R592K7EW2Dtk8g8B1EGjsd/tSLE5m/uD+XX/Ql/fu1cN9/9ubSa46NHx83DqZPh0E2RQVCbJMangDvLukr2/MvfYNqsU3o0bl2y/vQ+qmx7dsDSk/smfcWIlFotb7IXpo1JL76Zgjn/vIUln7fh9N5nufRF2Z9lRM5k+cI4Mv6bX2+EM89+CInHr3YfkDxEeDfXw+YNfnEWuRZYKHe9znaYn98UxM8NRtu+RCAX3E39/IrBg0Ks3Chi/LyHrxXIbpTaDU0PGp8qOGsgqpf9/Rd2M61pRI3G6FloA6S/2CKrYNSPHTPHCD1L/UuVxQe/wZ2HwITBxJ1unCctisUuWFjE1ywN2/3zzzABSjy2ayg6x6Z1TXEdsZRBMVHQtHBUHdH6sVCYs4+LdZgfm0DzGrm8IOsS+MuWQKDB8PChTB+fHfdtBAFQkX0anZv5/0WhdiqtM/SP5hwD+vtOxHbCxUFYtW37XMhUmM9vnQL3PYRvPwdM3Y9kSnf/YloVK+WeIejuXy35zjoVxH22nMDdVW3EY1qtLW72VRdzKKlffnws1G89u6OrFlnn3Ttv/dq7rvlTXbbJUVvKO8EPcAF+X1UdA/vTuDsp/d/Dtv8O/y/D+EDY959D7/mdq6kYkM9F/50M8+9OBAtXQWREFuLwEIjwC0wEuJmI7QOmt/UH13R5K9OFLBoG8G6afz8suNTDnEQYeSDz8Lb78J+I7hpt7u56fGj+emPZnPPzbm/dZEv4dEv10BwDcj9gmL74fBC6anQ/A5EalOPW10PD34Jz38LwQhjP7zYdtj55+uLLbjd3XO7QhSE5rcg2t7bdyFE92h8GkpPA8+YzscKkYtoO2geCMzXC3aCy/XFbDqsrINr34JpyyynfTZ3NNHY8jKlJQHuvukDpp65AC2hbqq4OETfPq3sPL6aU09YyD03v8WsuYN47Z0dWbqiD+GwgwnjqjnhqMXsuVuKBSo1B/j2huJD8/mdC2HP1RfKzoaWt/Ugy+z6I6HuNVhvPDnnIUQrxQx5eS133/wBl/12BHjGIsRWK7AI2r/s7btISZLIbAXm6BNJ7869fSdCJFOh2IcNr7Buhf2QsSzhMaayH1/C27GdX6ziyC/+yh84nnsf3od7H96HffZcyz03vZX1LSRV4np2yPoaYjvmGQflA6Dh4dStFRrb4d8zIKq3A3Lsczdfn9nCXs/92zLsiy/A44FTToEXXyTpFyshtnqRRgjM7u27EKL7RNug7bOkEHf1apg7F1o3NDDlpavov/AjXBPH47j8MjjsMH3Qpk3wyitw6KEwYAAUF+s9psJh+XRP6L0/cQAaBBdAaL31+Ddr4TevwSL7lclb8eMkzAFT1vLo3a8wcnh9Rm+rabDnbhtSB7Z2J5T8EHwTMxsvRD44y6D0DHBOj/1/JabMB4+cAU/PhsutC1mvYyj3/+EXPFZ0KFMvaQLvJP0DCCG2NsEFel/KAiUhbrZUFIJLwDNBEgFRWIIrofUDvX8LUFtvbQg6jsU8xlT25aukUxewEz/iGRTGf2i/+mYoex91Uda3UVRkqsTVHODbM+triO2cs1xfLbfhMX3hjkS7DITHz9IXOwtGAJj83MMoHmY8C1mMtYfCSy/BnDmwe4+2CxWiB7TPLNhHvYTIm/Am/QPqTa00Hf9TSr/9jOFAlBGMZJUxbtVSXv2kgucO2YUdxzv48/8NTHnJyOlnEXngIRxlJWgaaKEgWkM92qaNsPPOsjrmtkqF9Cd9gsug8UP95+fXa6AtBDNWQ20b/HxffewxD6e91GL3Ttz6x/e57KKvcDi66Zd9zSEBrug9mgb+Q/SnKts+g0i10fLsx7vD5KFwwD/jwyM4eJof8/mVU5i3fAY3XHs3RVWT9d8FNa8EuqIgKKV/xtvQAOXlMDBxqtD+LQRT9CQvEBLi5qL9W3CUQvHhXb7U8uWwYQPsv3/6TDga+x3NrsXMM8/Aa6/BlVfC5MldviWxtQlvQrV8yoql6xnUv4HrbjqKUNjBlL3WAHAw07mPX7IzC2xPf5xzOZ//EMnTj4N+fVr1F45SfSFAZ2Veriu2M84qKL9AXyk3tBbavrAeP3IcPHganPecZfciduJhzudKbqeBivj++vruv2UhelxoeedjhNhaKQV/eAfmbIDTPubxtosYNLeII2KHLQFuzBMNJ/Lyq32JvupkNOdwLk/aXtr5wrO4XngGAA+BtAtQfXnWndSd+2sGDoQhai19RpfjrCiVYo5CFg3oLZpA/3cUrYe2GaAC+mrj902DP//P/twFm6h5/Jd8/Ys/c9CDt+KPtsYPfcYUjuFt9ty/hoduf50dRi+zv0ZXaBp4xoN7jP6htjyWLnqTpul9cr07QWgNRFv1J5NDq2BcP9jwR7jov/D6ApxE+YSDqKCO2/+5Hy+9OpbPo1MoH+WkqK0VzjgNzr0chkifc5FnixbBrbfC0iWwahUMHIS67HIaDtuH+UtH8N18J+E33qH02095tf5gdm36FC8BPuYgBvcJMu7UiVxw0xj6FM+Cpukwczns2A+aAvDlKpg0GAJtcKAqiP/2a6qAy4Q706Mr5ioFW/5ibDsroOryrC8TiUBrK5SWwooVMHasvu8f/4ARI/Qwt39/6znff68/GeZw6CuuDzP93Nu0yfj0oKoKahL674ttWKQRFVjAq//dxFkXHkcgYB/C7sI85rFr0v4oGgfwKV8wJaO38/uDtLZ60o7RNMXCmdPZcUcFriHgzW5RNCFSCq3TA6vWD62Pt3yxCk561PaUc3iCpzgHgLfe0ourvvgCjjsOSkp64J6F6E6BxdD4jLFdepK+CFTP6f1ZrOh2PTrXbnkflrypB7dvLbIcqhs8nGHr53MOT3Imz/EDptteYgeWshy9jdOLnMqpvJTy7fpSTQ19cROkngr8tNmO+4iDOJ43GMI6LuQhruSOlNeMeHzUHHU29TffT9UANxVLZuC65x/w7LPg88GJJ8J558GQIfDxx3DaafpEvqEBWlr0VTnjF9OfNMl7VXAoBK+9CKPHb3uPqIQ3wxufwf23ws8vgSHlcNtNsKkaJg+Gaw+FeRvgzk/hu42wIrn//oODr+SSTX+nb2QzL3IaPtr5FffwJfux64SN3HjtBxx/5JL8/x6vaXpwW3yErCUhCpuKAiq2AOA3EG2C+hbab/+SD18fyDXrrmUuu7EnM5nJXkmnB9zFLNnvDDb//GZ2O3IAffv2/LcgtgLRKKxZA0OH0rp0Hevn1VA/ewW+Lz6kMVzEp0N/xLfarvg3reShD+zbN0bR2IXvWMMw/s7vuJgHUr7ddaV3ceSTfTn4rXvgXyn64ba16f8t7zm2/6WREDdTiSEugP8AKD6cd9+Fv/9dr/SqrYWVK2GffeDJJ+G++/TtXXaBG280Tn3nHXjwQf0xX7PRo2HxYv3cn/4UJk3Sg9k1a4wxr76qzwE3boSZM+GEE6y3+fXX+jzw4IML4oOCbUIkAmecoa92/+ijsPfevXcfTq0Fwhug6QWuvv5A/n7vAYCikjqm8hin8BJn8xRrGB4/77uB+7Lzxq9oqBzIlkAFh7a+w2pGZPXe7Wtu4Ac/PI8vZtp/evqfu15h972GM2m/PbryLQqRXqQGml7TKwA6BCPwq1fg5e/iuxop5Vfcw+NMje8rLVU0NWmcfTbcdRf06ZN8+WhUXwytshJ22gm83m78XsR2obkZioq6lsMopf+JP42jIlD3T+vK6RLiim7QY3PtL7+E00+Etcn9R7+/+nwOvO0G1kcGM4CNXD30Kc7+mZ/+m+ZBuAX2nAIDBtC0874srBvIggX6fG3hQtiwoI6BDYsZ0bqQw9vf4OSoMfEe4KymRlXxo+hTPMFP0t7eROaykpG8zTEcwGdpx17HjfwfV3MCr/Myp6Qd2zRiPNVPP8uI15/Gecvf7QfNnAl7mlpTNTbqjd79fthhB/2Hw+zZ+n+wzjrL+h+uhgZYv15/ZnT+fP3xv2XL4IYbwOWCefNg/Pjk9wT9uq2t+vuk+oVi8WL4z7/hhJNgyhT7RwYTr9nSYnyS2vF7aKrrK6X/2+hfAWN2gqYmCAbhgfthxicwfld48w1YvhI+vgWK22Dna+2v9btDUFcezLpvNbQ/v8OQL+x/ST+Sd3mPI+PbLleEU45byMXnzeTgKSu773erov2g+DBZPFtsXaIBCK+D9hkQ3kA03Mi/n9iD3990GFNr7+d2rkp7+oU8yMc7/ITjDq/jxzuvZNJuCteAPnqlmwQZ27bWVpgxg8iipTRuaGbp/j9lZX0FG5c2MeXJS5i8yP5Jmg7vcxhH8B7lNFBP6id/VzCSycykhtSfFixiR3ZnNsrr5q1/PcyhT98B/1tiHTSyD6zYktW3mAf2/ydQSm21f/bcc0/VY6JRpTb/2fqn+q+qZuXbyvj1KvmPg7Dqy2bVn42qkpq0Y/Px54MPjNfPPWf9FiIR/dtQSqkNG5Q65xylLrtMqaYmpRYuNI4ppdTatUpt2mRsNzfn9le2YIH+vna2bFGqtTX76/aGBx4w/l4HDOj+97v5ZqVOPFGpk05SatiwqLrqimY1eFBAgVJ/uupTFdl4vVoz53a1IwvVy5xk+UfwOsepUSy3/Lu45uRXlVp+jVKb/6zWzLk9639XF537tVKb/6xmvPsvddiBy9UlP/1KjR+7OX587iePKdU+r/v/YoTo0PaNUtU3Wn8mr75OqZ36KwXq8aNvsPwbPojp6mc8qJyE4vsuuCD5sg89ZP23/49/KDVnTv5v3/zzVin9Z+wTTyj13Xf5fy9hlfh33xXhsHW7tVWpujqljjxSqb33Vuq225Ty+5UaOVKp+nrreR3/XY1GlQoElFq/XqnFi/XXSilVU6PUxx8r9fbbxr/Hf/4zdoH6pyz/9oPr/qJU26z8fWOZ6fV5oPzZhubaEyaoVJOQV8pPVx7aFSi1yy76/8fyqrlZqVdfVS2L16gNtz2Z9P7rynZUx/2gWd3b7/qU99jx5wnOVn2oVqDUWBarVzgx7fhLuFeBUmfzRMoxc2+6T303e6Vat/w7tWX1V6rtrDPTXrNt1A5q4Utz1KwPa1TNIT9MO7b6jIvVogUBVXv59SrqcMT3R/v1Sx5/7rlKbalWqq1NqWuvVaqqKnnMLTfof6dbqlX0+OM7/fv6+vYn1Ce3PKjaKvqnHRf1uJX64Galbr0g7bhF912d8tjp46apkqI2dSO/VwpUO574sTc4Vu3DF2oHlsRP2W/yanXb9e+oDfNuTf4dMN9/mt5RKprwHxQhtkbhBqUCS1TLusfUo7e9qW4Zf1vK/09upq8qo16BUn3ZrGqoTP8z46STlPr6a/19IhGlHn9cnyR1iEaVamnRv6ab7KUKJ0T+tLUp9eWXKlzXqNatU+rLT0NqxcE/Sfu/72/QM4qRfK/e5qi0Y2/imvjvdP/Hb1OOi6CpX494WT209wPp/22BOoun9fcvWasaD9/dflww2NN/k7ZzM6nEzZRSsOUvfPLlcJ59eRd+fMo8Xn1nPLfet7/dYH7OvxjN9/yOWy1HWiliFSO4lpt5lZPj+3/CY1zJ7RTRxnscwXOcyUpGspn+tFOU0y1XVsJXX8Gdd8KMGfoH+aB/qJXqf/Zly/QWDQcfrG9/+aV+7iWX6NsXXqhXF5sX9b3hBr2i+IYb9A//R43SCwPOPBOefx5++MPkiuNp0+DYY/WFghcsgC1b9Or0vZKfuEjS0qKfl4mZM+G3v4UDD4S//jWzcxKtWQPDh1v3Jf79vf8+3H47nHMOnH126mspZfz9h8N6ZdbixfqTbbvGOh588XmEKfsbJVseAgTRqyrcBDmf/3A1/8coVqZ8n/c4nPN4lPUMAeDCc7/hwdtfjx9fubqCUZMvTzpv8MBGRg6r5/Ovrd/wL6Z+zf23vmnZV1tXxMdfjuCQQzxUDDtZmtWLnhdtg6aXIbSMxMWdGpu8lI/Rq3EcRHiZH3Ii+v8HPuEAruI2ZrAPTU3wyCPwpz+l75v72Wf6auhvvQVXXWX8/zUXN94It92m/2y67jp932WXwd136wVPa9fqP7/zobFRL7b673/1n+0XX5z5z89tTTQKp5+u/zftkUcgENB/Fh9/vH6848nlujrSPtrX8fP/tNPgvffggQf0Fh0PPwxXX63/bLdzzTX6fyP/YnqoZ6+99KdnEp14ot7r3s4Lz9Qy68v5nHv6t4wdXctv/ngU/3p8MtddvZk/3zDI/qTuISUy24Eem2ufdRY8Z+1xzikTuWf4H/j1nWfw/+3dd3zURf7H8deQ0KVjownYkN5UUAHFLrafvZxgV+7EdneWswCi3HkWzoINVNQDsYvllCbSLHQFLIB0RHoNKST5/P6YzRayJcGYXZL38/GYR3Zn5/v9zk5mvzs735n5gj8/zp/vZ60lTU4O2b+sZuuMRbh33iZ3w2aqL11ArY2/kJVenZGHDeClarexcWtFbltzF7dmPxZ7V1TkHD5mHKeTSxppRL9J4T94hH/yDwDOZUzE74dY6Z+nL1upQ3V2spMaMdPWZRNbqMsxfMu3dIm7388qns1f675EWqUKfLu6OdVsV9R0DWpuZWt2VX7OPpTGrI67z/3YwS6q0YfXGM71MctgLKfxZNW7uNZe4dKsUVHTjONUOjGbehReIgEil1iqxVZ2U5Fd+C/EOrUzOabDGo7puMb/7bCGA/bPCG1cYT+wHGA3uKp+XVAAlwYVakFafZ8m56fI1ywv+htPqw2WCZWOhMptoVL0qcAi+6ywH7052RksX5xL/jNPUXviGOqvWEh6Xg4AX7muHG9fAXAdwxnODXF3u+SBQaRdegpVv1tKjedfoPq0qTHT3tr1a1bU70TP397ktpl9Il7bnV6Fn7tczZze/6FKzTRqZf9G+6du5MA5n7Gm87m43FwazPsfKzr9H/n5jjyXzueXv0amVaHmmh9pO2M4Xb8OLa0zt/VV7KpxIFapMtsP78SWHudTt57jwOyV1K2whdo5G6gx9h3S6tXxHSoHBpZM2S9wbnGBJQvXrfPllpHhZx7Uq+eX2Vm1CrKy/KyKgm0zM/108LffhkMPJb9qdbKO7kaFjz5gx3Gns+biO9iVnUb63JlUX7aAvAoVwYyqa5ey/4xPqb3YN0B/vvRBlpzVj5wa9an26xLqfz+Rht+8R071OqTv2s6Ogw7HXBqVt60jp2ptXH4eS7pexcYm7eny334cMX1E3P/Z33iMWXTmUt6Ku5xBTyYyiZ4ApJHLo9wdc/mi9fVaMPHyl9l99HHUqpFPk8UT2S9nE3TqTOWjmrNflVxqzP+Kiq2PhIMDbePdu30nVna274BKT/evZWayfszXXPBIJ6b/digAx3dezuT+D5OWlwsVHMz7FS48AVo+EPe9/gE0EndvrVxpNvnLfDujZ+jqbAVyrRMz7Vn+bNuoYfVZH9FJv4PqMXv5V9LIOjIrGFWZTHuS2+NeGbiJ5y2dHAOzTsy0mXQKvraQo2wljewTzrJTGGd12GSOvD12kW9gUeKLH556ymzhQrOsLLOffoqe5vXXI5/fdZfZQw/5Ub8DB0a+dtBBoceHHBIq9927zX77zR+n4GLaVVeZVahgNmCA2ZNPmjVubPboo7H/d3XCLuiNH2/2zTdm771n9s47ZnfeaTZ5st+/mR8Z9cUXZkuXmr3/vtm77/qLedHe3yGH+FHMBcJfmzrV7/umm/z+77zTH2/yZLNGjWKX6wfv7rSRd0+wfzZ51KZyfMSLf+UxA7MW/FCkf9IL3GhV2BWMKhhJGx7OOuXniM0OPnC72fr+tmvFoEK7/Hz065Hbb/yn2ebnzbJ+0MgBSb7cjWa7vvWjEzc9bbZhgNn6/jZkkJ8pMZh7Yn5WXuQGe5NL7XHutP1ZF/Nj1aBB6HH79v7888kn/hw1aZI/XxXIyvKf92XLCmd1xYrI/a5cabZhQ2Tc008X/a0vXWo2eLDZ998Xfu3llwu/j2OP9QMQdu0ye/tts0WLQuk//tiPcnvggaIfP5qsLLMrrzQ7/XT//n6Pbdv8rJK1axOnzc31aT/5xOzZZ80GDfIDAQr06xf9f3vPPWajR5tVCgzKqlDBz4aoVSv0/ZWf78utefO9+968iLftFa62j+ll39HG7mOQjeYSM7C5tLPabA6mvYxR9ncetYt5y45nqp3NR3YYi+wK/mu9+NgasyJi344868wMO5g19sQToZG8pQCFsh9KbSTulCmhSn1WC7N1D9q2XwZb3ToZweghQ0onKyUmP99yv55hmxdvtMWLzWbMMBv/wQ77/P4p9sTd6+z6PjnWvbtZw4Zmh7PI3uFCi3YCOZ6pwacPMNBySI+aLjz8i7sMLObreTgbxH3BqI7MslU0jJl+EYdZBXINzK7npbjHbs4Sg3w7gSm2mdox043n5ODvp4asirvPSxhtD3F/wvfdnCU2mktsJJfbVI63+xhkxzEt4vdPvXq5dsLxmXbbrfk28o1MW7xwmeVnLTLbvdYs83uzjOm+TZE51yx7qVnOKv8lkLvdLC/TLC/DLGe5Wc5Ks7yswv/33Rt8+zhrodn2j8x2fWWWs9ps9zqz7e+Z7frGLD/bLH93yU4NEdmXbN1q9vablrlohY3/fIvd8ucMO6rBhrif77e4OPi0MzPipr2SNwzMarElbrrbedLA7GTGx033IefaOYyxdHJsCLfFTXseH1hTlhqYvcw1cdM+3W6Y9blyrfW7JcueuGia5aRVTnieG3joq9au3e6E6Y7lazuQtQnTFeQZzO7mnwnTZlPRHuYf1o65tpWacdN+RRerxRYDs0HcFzftF7XOt/POM7vlFrPht8+3eRc/bN8NmWg7e11seY89Yfbll37a2p7T4ErIzJlm6WFfry8+/lFk/8emp/6Q4yZAtBA1cl8JpdWwvPVWs2rstBb8YP/liqiVbjD3RETtpFrCD0BvRpgjz94j/lSnTCoHp2aBWV02Jtx3wQkJzK4hyi/5QFhK0+DjE/nCwKwKu2ww99gMOtvPHG6LOMyG0tc6M8M6M8PaMydwYsovyjmh2OGNP31uj3NnoBEYiu/WLfY2Awf6z/P27b7j4pVXzPr3L3g9cT5vvtl3OBQ3r2eeabZ+XX7CzvH9WWcvc42N52SbR1vbQi07iYnB16uxM+6BLuLt4PtowGqbTeQQ/63UtH48FTMfj/xjQqFO3LkTn49Ik7XqIbP1/S1/Xf+I+Ksunmf56/r7jrGdY81yViSepiKSTDkrzXZ9Y2PfH2dgdgb/K9IH+nluCn7OmrDc+vCqXcJoa8s8a8TKuJvfc49fdmH06Mj4Zs38TN2cHLNp04p+bmnSxGz+fN9J3L+/2WWXmU2f7vf1wAPRt+nUyc80u/56s1mzYu976FB/EQrMatQITU0OT/Pzz6HiLJj2/+9/m/XoYfbaa6H4mTP9qWD2bN9pumyZ2TPPhPZz6KGhx+PGFf5XzZzpz9nhS/bk5/sLbr16ReZp+XLfSfvSS2bt2vm40aND2w0ZUvi9FnRIb0z8tZkwHHFE6DulMpl2Op9ZX4baY/zVXqWPvcGV9jYXWTYV7XlusgNZa2D2DH9JuPOLecvArD1zEqZ9gRvtCH4K5uU0PrdFHBacll2KswRRKPuhVJcu+/wJs5GXm6170Gx9fxt0T6id1Lx5MmYxlp7sbLMlS8wmTDAbPtzs/vvN+vQxO+ccs+OOM2vRwuyAA/wKBnXrmtWrk2cN6uyyJgdk2sX1v7C+9d+2o5uut6saT7K/NP7QOrXOso4dzXq1X20vNHnYftyvkz3eYpj1PXqmvdDsX3ZR+8XWsaO/cHfEEWadG62122qPsP9WvtbeS7/EBqYPtG852gxsHm1tOl3tOKYZ+KUf3uJii3Z+Gs/JwYtSZ/OR/UIzW1ChtX2b3tUMbEidAXZngzdtUZXWNqHuxfZ/XdfaGWeYnXt2nt3X8X+Whyu0z4sqfmjgL1jVZrOdwBTrx1PWiJXWmu+tPuut7n7ZdkjjPGvb1qx7d78k2Q03+O+AZ5/1AzOmTTNbvz7Z/2kRiSU/32zOrDybeMpgG3vgVfZxhXNsMqEOgA85N9A5m2+NWBn1HBQebuFpO5NP46Z5hHsN8q0SWXHTbaWmXc0rVoVdNoPOCdPewIvmyLOqZNgCYi8XtI797VqGB3/Df0yvuPueSSc7F39OvJQ3Y6abSzvrxEyrwi7rzYiE+ywYIJCoo3UNB1tPJpgjz2qxxcZwTtz0lzPS6tXNt3bt8u2llkPMwH5t0NF+bdnTFt4/ylb/d5Jlfzo+cs2xJHrwwVD2Gxy0zXatGKRO3JIOpdWw/Ne9W+NenTawjdS1BqwORr3OnyI+sNuoYU/Rz27kBXuFq+1eHrGK+DVOL+Jt+5nD4+7/AQYGn57HB3HTGlhPJgSfOvJidj6Hf9ALGl2n8XnC/RvYCUwx8COJw+Pn0N4KTmDhV+D7MjSYbD+22xecGLHddvaLeP4VXYL5P5avrT/97d/8zfoy1M7mI/snd9sUTrBhXGf385D9H+8FT4C12GIX8G5wX29zkb3P+fYgA6wvQ+1wwkeh5tv1vGTPc5O9zDXWn/42kMhekne4MPj0AH6zW3ja3uDKiDRrOdDm08rGcqp1YqZBvo3l1Lhl2IWvDMy6MTlhefdgkh3MGluM7xWZyEnBjvdEYcfSRwp14ub9NsBaHulHHl5+wfcRrzVq4NcnqlAhz7JXP2S26Qmz3Wr5yr4lO9usceOw0TdssAE8GPVDspu04FXzgpkWe6ZZQnP7Cd+T9xw323UMC45MKghp7LZq7DRHXmAddN8pXLVqkU6rSQkvveTLKzzuxRd9J/I//mHmnFmbNpGv33RT9H21aWN21FHxj/XRR5GzJMB3PI8aZVYz/gX9qOH55/2P9Fivb9pkNmZM7NcrkWVd+Mpu5AUbxym2jENsBL1tLu3MwP7DrcH1OCHfZtGxSBnrzpcGZrXZbL8Re73H9znfjuZbA7OKZCfc73PcHBF1Ae9aDul2Na8YlOpHDIWyH0q1E3fn+GA7JHv1Q3ZA/R3Bej5iROllQ0Jyc/3Mja1bfQfo6tV+BshPP/kZILNm+QuYP/1ktmxpvq39Nd82b/Yz2UpysNTu3T4Pa9b4mRmbNvnZfdnZGlMgUlZlZZl9/bW/sHXHHX7wVMeOfqBDkyZmXQ9ZYzce8YWNOHKwzWlynv1yyEm2vVZD29S4rX3X93n7dMxu+3jUdttZv4nt2ZbKquhnTY9t0c8uvCDfrj5peaE0e4ZJ7W61wdf+aKsPStwOnNHwPOt1SqY9csiLtqhi7E5cw/cjNWVpkfpg/s6jVvDb4jjijw454agNduLRO23RfoXXd81IC/W7ZKTXsMvO3Grnn5tno44aYJlp1Wy3S7edFWvZL3U62u4KFSO2/aVuJxt82iTr08fsvQ6Doh7711N726J5GZaxdd+6+pqRETlL/MmHPkvJTlytiVsErw9YSu+Bh8Z8fTN1eIeLuZWng2uX7q0K5GE40sijB5M5hBU0YjXf0IVxnA7AFYwMrukUy0GsZR0HBdMfz3T+zPNxtzmVcUzgVGqzhbv4N/fyr6jp1nIQlzGaKfQA4HimMY1uCd9bJ2YxB3933aOZwQyOjZt+EifSk0kA3M8gBvFgwmO0ZCE/0pLX6E1v3oiZ7jva0pE55JPGaYxlLGck3HcdNrOVOrThe76nXdy0j/AP7ucRruJ1XqdP1DSv0ZurGQE4HmQgAxkQc3/X8Aqv0Qej+OvOzhz3Ep07rPXnoj1s31GZmXMb0L3rCipWDK1D9v3CA3l5VAcuPm85J/SoA9V6QIUqxT62SLLl5ETeqBugGhl0ZhbVyeAKRvEnRrKdGtRiGwVLD3VjSvAcF8tCWnI1I5iFX8z7LD7lU86OmX49+9OG+azHr2XVgh8ZyZV0ZG5EugW0YgRX8w4Xs5JDAH9ue5j7Wc8BzKYTpzKeDezPh5zPeYxhC3V4jj+zlgYANGQ1o7iCI1jE8/RlJU3Iogq5pNOTL1jEEbzMdeygJgBVyOQ8xrCMZsymE2nkkUMlbmAYDVnDCK5mOc2ivq90drM/G9hCHWqwA4dRm60soxm7qRRM14QVdGMqHZjLKhqznZp8G/geqIRfG+0nWgTXga9GBpfwNmfzCQ5jCt2ZRWdqsY0OzCWPNHZRjWmcEPxuacIKejCZi3mHY5iBw5iX1okmDfNYszKPOmxhBscE1+T6M0MZyi1x/89D+TP38QjbqA0kXpNyN+l0YC4LaQ1AM5aylNhtiO9oy+mMZR0HUZNtwePEU5stbKM2HZjDtxxLRXL5C8/y7gF/Yd26hJuXFK2JWw6U6v0nMibArmkAvPVhKy678WIAGjaE5cv98nUiIiKlpuD3s4vT5MnJ8TdEqFYt+uubNsGiReTXqEXm4tVsrdaAbXn7sW1zHtmr1rOm6mFsdPtTfesaam5dQXa1uuys24QKFdNouuJLOn94P+uOOYf1p1xJfpOmVKmeRpUqsB87qbNkJukd2lCtch6ValTG1azhbwp06KGhGzzk5MCPP8KRR0KVPX7P5+Ym/nLNzfXr8e63X+z3n5bmQxnw7LPQr59/3KTRVpbOfIq0NIO0ulD31tLOjtbE3VvPDc235URewXmcO/cYzRkKBSOJatY0S0tLeEElZijCTV0LhQrkWjV2RsRVIsv+wjN2G0PsOobZSC63L+lu0zguuK5WBlXD7tqeb/cR/apKQZhO1+A6Vv14KmHGXqVPxDrA/+DhhNvcwIvBpxPomTA/B7MmGBVvisVkullDVkVEx1vD2MDGcE5wlG89NtgDDIyZ9mN6BUfnJRoB3YuPDcwOZbE9wEB7hHvtAH4r9trFG1Z9Z1PGL4n62pKf1gfW71pjljnb3wF35ySzLa+YbX7BbPv7Zjsn+nW6tgwzy5js1/LK/K5UPl8if7S//tWfixs0MHv1VT/1P97nac6MzbaEQxN+8DKpbE1YHowqyrINt/Kf4NNm/BIz3UKOsgcZYFXx60H+QIuE+55PKyu4Ol+UGRudmRF8WnC37njhVfqEjUj13zeJtjmZ8cGnQ+mbMP04Tgk+/TuPFukEWLCMAJidwriE6cPXdqzBNvuS7gm3KZj14Mizq3gtbtrZdLCuTI+IrsMmq8vG4P+nKhnWkFX2xcTCy/1UIstqsM3SybE0dlt91lsXvgp+t9dgm4WWCcq3Y/naWrLAwNfvUoRC2Q/JGonb47hlwc/EgAGllwUREREpvzIzzerXD7XLx7w+KuVG4ia9cfh7Qmk1LIcO9dPdP+GswJIA+da+9a+Wteoh27jsk0I/wDIyQtuG1mWNDHXq+BvKhMctXWpWpYp//MYbfl27QYP8mk57pgWzY44xO/LIyAWY/6hQgVzryCw7kS/sAH4LLgUBZoexyO7lERvEffYof7e7+aeN4Rwbwm32Ieeagb3LBXYAvwW3uYL/2jSOizjIeupbJpVtAj3tSt4IdmRWJNtm0NlW0TDY6ZxNxUKZnE0Ha8YvBn4N2nhvyE9F8E/rEVpEPXzK61oODD7+kHOD+W/F/Ii1hAvCUpraS1xv9zA4eIOkauy0kVxuH3KuncH/7FAWW202WyWyAlOti1b+vXub3X134fgWLfy9QArMmmU2dmxkmoL1LkXKs/Dz8rZt8T9vBX75xXeoteE7O56pdhIT7RPOijhHXMao4HbhS7jECitpFFwr9Vn+HDftbQwJPv0Tryfc91mEvo/irZMVbf/tmGvzaRU3/dccW2j5iETHWE6TYGfxoSxOmD6809eRV2j97z3DFmpZdXZERD/BHXG3OYZvgk9b833MdAVL/IznZDuEZcGXDmGZncAUq84OmzI535bO2WLVqxXujP3kE39zhlg3VLv6al/PfvghdMF3zBgfV7BmcbTw+L+3WZ3auyLiXnjsI/vfh0tKcz1cM0t+O1Ch7LS1zSzYibts1pBg3U5L81P4RUREREpDeL/L6SctViduSYbSalguWGCFfkRN+3i42cbBZrlbrW9gcFH9+pEdBWZ+HalLL/WvH3+82Xff+Ru2bNzob+QS8WPY/E1s5s+Pno+LLgqlPfxwsx9/DL0WbT3Ayy/3d7xN8Js59MP3iaKnTeX1HUPB33ymArlWiy3WlnnmRy8V/rEd3ikNVuyRsMUN4Vd39gyHHVY4LivL39Dj7bf92mOJjBxp1rKl/5+KSGHDhkX//A0fHpnum2/8zWWK8rmuwTa7jmF2JW/Y//GePc6d9iADLBN/p9n5tAqMGvXnoHOIs1Ar2AoaBy9Mhc942EjdqOm7MTn4tCgzJAyCN1g8nqlFSh8+kvgAfkuYPotKdgmjDfzNcBKlD59JEq/jOoOqtoTm9jh3Rrx0Ay/aRE6Ke4yC9WcLQivmW1emWyvmF+vc/9xzoXqyZzth2LDIdRpvuMHH16rlb8TZr5/ZunWh11evjryZXME+o128GzbMbMbkWdb8EH8hsN/13/jGZeacEv6UJIRC2Q/J6MR9rP/YYH0/44zSO7yIiIjI0qX+niBg5ly+/Tr/sZTqxNWauEX00ECj/4DQkhQLpgylVcdWUP1EsrLg88+hUydo3Lh4+33mGRg2DO65B664In7a/Hz4/nto06bwkiM5OTBqFNSr5/Px1Vdwxhlw771+XY8C55wD27b5pVkWLvRxhx0Gixf7xx9/DOee6x/feiscdxysXg2ZmbB5M8yfDzfdBBdcADfeCC+/XLz3G65aNdi1KzKuaVO/3/x8uP/+vd/373HqqfDBB76sJk3ycY0a+XLYGxdcAO+/H3rerBlcey088EDhtDNmwNFHRy67s2FDaEkbESk5W7b48+OYMXDwwXDnndCjB1SIsvT0nkthtWwJP/xQvOO1bQsPP+w/4wceCB99BOefv9fZBwyHJVwruxLZEeu1VyGTfCpQnQy2UDcYfwjLqcMW1tAQgDpsoQpZLKcp6eTSnKUs5vDgmq0VyOMaXqU1CxjB1TRhJQ0rbmDR7qbM4BjqsAWAVTQJHqMm26jPRlbShErksD8bcBi7qcgaGnHUUXDiifB8YAn3dHaTS0UA6rGRbdQil3SKsxxrVXaRSdUibfP5537Zr0su8d+rsbz4ItxwQ2S9GDIExo2DgQPhmGMi0+/cCR9+CJ07Q4sWRc46+flw+OGwdGkobsoU6HZCHmwZiuVuDuWhxnlQpUPRd/77aU3cciAZa+Iee8b1zJjTCPDtzGuvLZ3Di4iIiAD07BnqC3rqkc+49ebFWhO3JEJpjg7IyY4cvbnqu6fN8naV2vH31pYtZj16+GUX3n8/NDIoP9/f5fGUU/xon3DZ2WYLFxbtbq+ZmWbvvhv7zt+v7zGQqmNHs4kTzX791Y88evFFs8GDzWrU8COHwxWMLq5WzY9YejD6TeULhSFD/CinmjXN2rUr2jbg18n87LPQ3XSXLvWjqAcM8GURbZv/7bEEZrS0c+eaVa4cev7tt/4Ov9UDy/A+9JDZU09FjrAdNUojaUVSSfhn+skn/ajJPeOinSPatTNbssRs6lSLOdU9K8vszjsTn6PGjjW79lqzXr38eTsnx59zoqVduDB0BbngPFMxbBWad981u/9+s7vu8jNIZszwz5cs8Xn6+uvY+TjzTH/sL76IjH/jjcIzTMDspJNC57cffgjl67bb/Mjn3r39+1q1yqfZvNnstNMSl0e/fv48GR43c6bZ9On+u2nt2ujbjRnjz8G33x6KO/RQsw0bQv+TzEyz1/ZY+rZjR7MJE/w5vDQtXGjWpYvPwzXXhL2QOTd0x1yNxFX4g0Jpj8RdPvvJ4GcuPd1s06bSO7yIiIiIme+nKmiPdO28UiNxS0qpjg4ww1UIdYRv+3USNQ8+qXSOvY9YvBiOOCL0fOBAePBBWLDAj6rKyvIjjg8/vPC2eXmFRxebwezZfhTsQQdFpsvN9SPYPv3Ux/fsCVddBQccAGed5ePy8/2Iul9/hYkTYd06v7/Ro6FqVRg/Hq65BlatgsGD4Y474r+/kSP9qL2+ff1+q1SBCy+MHLU3fbofvfzaa/DQQ370yH33+ZHRc+bAn/4EtWv7tBs3+ry1aRP/hpciknx/+xs88QRUr+7PGXXq+PPZhx/Cv//tZzBcdBG8955Pv3GjPzfUrl30z/eKFdClC/z2m3/+7LMwc6YfEfrgg7FHcG7Z4vP1zjt+JOnf/+5H/WZm+nNmwc1k8/J8/qpWhbPPTpyvrCz47DN/M9tOnfxz5/x+CrZ97jkYMABOO82PmKtcGbZuheHD/WjlgvNxuIkTYckSfz6sXj328WfP9seaPt2Pkg530EGwdq1//Ntv/n/Tpg307h2ZbtUqv+0vv/jvjZNP9iNmw2Vm+nzvOQI7L8/PzJg0yY/QHjHCzxZJFrM9/mdmsPU5yN3gn2skrvwBSnsk7pNP5PHX/qcDfkbZZ5+VzqFFRERECmzc6Gdq5ub65yu+e4UmbUt9alDUtrY6cYvKjNtv/panXupCn0vnMWJkc0irWTrH3of8+KP/YX3YYdCkSeL0v9eaNf4Hdq9evlMlkR074K23oGNHH8B/MNPT9z4PQ4b4Dp6TT4axY9UhK1IWZWX55WbatvWdmtGsX+8v9vToETq/FNeyZfDf//pO1g6l2h8X36hR/gLY3/4G3bsnJw/h59ZGjXwHbWn4vd8Rf6isObDjI/9YnbjyByjtTtxTzmzOxKnNAb/c2PXXl86hRURERMKdfrpfKg3guccm0fdvpT6IU524v4sZbBzIps1VqXdQI6h1ZekcV/YJ27ZBzZrqwBUR+aMMG+bXTAc/4vj005Obn5Rgu2Hzk5CfqU5c+UOUZls7Y/0X1G3cnZwcf9Vk9Wpo2LBUDi0iIiIS4Zln/H2iAM4+fRkff96stLMQta2dqmNLUla9uplQtUuysyEpplatZOdARKRs69PHX0+tUcMv3yCAqwiV20Pm18nOicjvNnlanWAHbqtW6sAVERGR5OnVK9SJO3FKIzIz/bJ0yRb/ltZSWFotqNg82bkQEREpVypV8iNxL79csx4iVGmf7ByIlIixE+oFH2ukvYiIiCRT8+ahZfQyMyvy5ZdJzU6QOnGLq3Ir/XoUERGR1JB+IFRskOxciPxu4yaqE1dERERSR69eoceffpq8fIRTJ25xVW6T7ByIiIiIhFRul+wciPwuK1fCT4uqA1ClCnTrluQMiYiISLl31lmhxwU3OUs2deIWR3p9SD842bkQERERCancGt1nTPZlY8eGHnfvnhprzomIiEj5dsIJoTbJ4sWwfHlSswOoE7d4KrVOdg5EREREIlWoDhWbJjsXInstfHSLllIQERGRVFC5MvToEXo+fnzy8lJAnbjFUblVsnMgIiIiUlha7WTnQGSv5ObChAmh56edlry8iIiIiIQraJfUqwcZGcnNC0B6sjOwz3AO0vdPdi5ERERERMqMmTNh61b/uEEDaKUxEyIiIpIiLr/cj8Zt3x4qpMAwWHXiioiIiIhIUrRuDe+959fFrVfPj5sQERERSQUHHeRDqlAnroiIiIiIJEWNGnDBBT6IiIiISGwpMBhYRERERERERERERGJRJ66IiIiIiIiIiIhIClMnroiIiIiIiIiIiEgKUyeuiIiIiIiIiIiISApTJ66IiIiIiIiIiIhIClMnroiIiIiIiIiIiEgKUyeuiIiIiIiIiIiISApTJ66IiIiIiIiIiIhIClMnroiIiIiIiIiIiEgKS7lOXOfcGc65n51zS5xz9yQ7PyIiIiIiIiIiIiLJlFKduM65NGAocCbQErjcOdcyubkSERERERERERERSZ6U6sQFjgGWmNlSM8sBRgPnJTlPIiIiIiIiIiIiIkmTap24DYFVYc9XB+JEREREREREREREyqVU68R1UeIsIoFzNzrnZjnnZm3YsKGUsiUiIiIiIiIiIiKSHKnWibsaaBz2vBHwa3gCM3vJzDqbWef999+/VDMnIiIiIiIiIiIiUtpSrRN3JnC4c66Zc64ScBnwUZLzJCIiIiIiIiIiIpI06cnOQDgzy3XO3QKMBdKAV8xsYZKzJSIiIiIiIiIiIpI0zswSp0pRzrkNwIq92LQ+sLGEs1MWqFxiU9lEp3KJTWUTncolNpVNdCqX6JJdLhvN7IwkHl9KwV62tZNdN1OZyiY6lUtsKpvoVC6xqWyiU7lEp3KJLdllE7WtvU934u4t59wsM+uc7HykGpVLbCqb6FQusalsolO5xKayiU7lEp3KRVKV6mZsKpvoVC6xqWyiU7nEprKJTuUSncoltlQtm1RbE1dEREREREREREREwqgTV0RERERERERERCSFlddO3JeSnYEUpXKJTWUTncolNpVNdCqX2FQ20alcolO5SKpS3YxNZROdyiU2lU10KpfYVDbRqVyiU7nElpJlUy7XxBURERERERERERHZV5TXkbgiIiIiIiIiIiIi+4Qy2YnrnLvNObfAObfQOXd7IK69c+4b59w859ws59wxYenvdc4tcc797Jw7PWkZ/4MVp1ycc02dc5mB+HnOuReSmvk/WIyyaeec+9o5N98597FzrmZY+vJcZ6KWS1mvM865V5xz651zC8Li6jrnxjvnFgf+1gl7LWodcc51CpTdEufc0845V9rvpSSVYLl8GYgrqD8HlPZ7KWnFKRvnXD3n3CTn3E7n3LN77Kfc1pkE5VLe68ypzrnZgbox2znXM2ybMlVnJLXEaBuU+3Y2qK0dS4xyKfftbFBbu0AJtifL3PdfCZZNmWo3lWB7slzXmQRlU57rTOq2s82sTAWgNbAAqAakAxOAw4FxwJmBNGcBXwYetwS+AyoDzYBfgLRkv48UKJemwIJk5zvJZTMT6BFIcy0wSHUmbrmU6ToDdAc6hr9H4N/APYHH9wCPJqojwAygK+CAzwo+f/tqKMFy+RLonOz3k8SyqQ6cANwMPLvHfspznYlXLuW9znQAGgQetwbWlNU6o5A6IU7boFy3s/eybJpShttNRSiXct3O3suyKbN1ppjff+WmnV3CZfMlZajdVMxyKTft7BIum/JcZ1K2nV0WR+IeBXxjZrvMLBeYDPwfYEDBFd5awK+Bx+cBo80s28yWAUuAYyh7ilsu5UmssjkSmBJIMx64MPC4vNeZWOVSppnZFGDzHtHnAa8FHr8GnB8WX6iOOOcOBmqa2dfmvwFeD9tmn1QS5VIa+UyG4pSNmWWY2TQgKzxxea8zscqlrCpm2cw1s4Lv7IVAFedc5bJYZySlqJ0dm9ra0amdHZva2gFqZ8emtnZ0amfHprZ2dGWlnV0WO3EXAN0Dw8Kr4a94NwZuBx5zzq0CHgfuDaRvCKwK2351IK6sKW65ADRzzs11zk12znUr9RyXnlhlswA4N5Dm4kAcqM7EKhcoP3WmwIFmthYg8LdgikmsOtIw8HjP+LKmuOVS4NXAVJ0HysJUphhilU0s5b3OJKI6410IzDWzbMpPnZHkUDs7NrW1o1M7Oza1teNTOzs2tbWjUzs7NrW1o9vn2tllrhPXzH4EHsVftfwcP50gF+gL3GFmjYE7gJcDm0SriFYKWS1Ve1Eua4EmZtYBuBMY5cLWqipL4pTNtcBfnHOzgRpATmCT8l5nYpVLuakzRRCrjpSLuhNHvPd/pZm1AboFwlWllqvUVt7rTDyqM4BzrhX+XH1TQVSUZKozUiLUzo5Nbe3o1M6OTW3tvaZ2dmxqaxeP6kx85b7OpGI7u8x14gKY2ctm1tHMuuOHSy8G+gDvB5K8Q2hawWoir242ooxOcypOuQSmYGwKPJ6NX0/niNLPdemIVjZm9pOZnWZmnYA38WUA5bzOxCqX8lZnAtYFplQUTMdZH4iPVUdWBx7vGV/WFLdcMLM1gb87gFGU0alfxC6bWMp7nYlJdQacc42AD4DeZhb+HVUe6owkidrZsamtHZ3a2bGprR2X2tmxqa0dndrZsamtHd0+184uk524BXfNc841AS7Af/n9CvQIJOmJb1QBfARcFljfohl+MfkZpZvj0lGccnHO7e+cSws8bo4vl6WlnefSEq1swuIqAPcDBXeALdd1Jla5lLc6E/AR/scZgb9jwuIL1ZHAFI0dzrkugekovcO2KUuKVS7OuXTnXH0A51xF4Gz8VMKyKFbZRKU6E53qDDjnagOfAvea2fSCxOWozkiSqJ0dm9ra0amdHZva2nGpnR2b2trRqZ0dm9ra0e177WxLgbvElXQApgI/4KeknByIOwGYHYj7FugUlv4+/JXMnykDdyMsiXLBr/uxMBA/Bzgn2flPQtncBiwKhH8BTnUmdrmU9TqD/yG2FtiNvwJ3HVAPmIj/QTYRqJuojgCd8V+AvwDPhterfTGURLng74o6G/g+UIeeogzciXovymY5fhTOzkD6lqoz0ctFdcbA/7DPAOaFhQPKYp1RSK2A2tklUjaU8XZTEcql3Lezi1s2ZbnO7EXboFy0s0uqbCiD7aa9KJfllIN2dkmVTXmvM6RwO7vgC0FEREREREREREREUlCZXE5BREREREREREREpKxQJ66IiIiIiIiIiIhIClMnroiIiIiIiIiIiEgKUyeuiIiIiIiIiIiISApTJ66IiIiIiIiIiIhIClMnrojss5xzec65ec65Bc65d5xz1ZxzTZ1zC4q5n6udcw3+qHymgsB73OCcG54g3TLn3JF7xP3HOXeXc66bc+6H4paviIiIiOx71NYuOrW1RaQ0qBNXRPZlmWbW3sxaAznAzXu5n6uBlG5YOufSS2A3b5nZ9QnSjAYuCztuBeCiwLZTgbNKIB8iIiIikvrU1i4etbVF5A+lTlwRKSumAocFHqc554Y55xY658Y556oCOOfaO+e+cc5975z7wDlXxzl3EdAZGBkYaVDVOXeyc26uc26+c+4V51zlwPbLnXMDnXNzAq+12DMTzrk059xjzrmZgePcFIg/0Tn3pXPuXefcT865kc45F3itk3NusnNutnNurHPu4ED8l865wc65ycBtzrmjA/v8OnCMBYF0U51z7cPyMN051zZeYcXKJ/AmYQ1LoDuw3MxWFO/fISIiIiJliNraoTyorS0iSaFOXBHZ5wWunJ8JzA9EHQ4MNbNWwFbgwkD868DdZtY2kLa/mb0LzAKuNLP2gAEjgEvNrA2QDvQNO9xGM+sIPA/8LUp2rgO2mdnRwNHADc65ZoHXOgC3Ay2B5sDxzrmKwDPARWbWCXgFeCRsf7XNrIeZPQG8CtxsZl2BvLA0w/EjHHDOHQFUNrPvExRb1HwGtst3zrULpLsM39gUERERkXJIbW21tUUkNagTV0T2ZVWdc/PwDcOVwMuB+GVmNi/weDbQ1DlXC99ImxyIfw1/5XtPRwa2XxQj3fvh+42y/WlA70C+vgXq4Ru6ADPMbLWZ5QPzAtsfCbQGxge2uR9oFLa/twCcc7WBGmb2VSB+VFiad4CzA43Ua/EN40Ti5fNN4LJAg/28wP5FREREpHxRW9tTW1tEUkJJrPsiIpIsmYEr+kGBWVPZYVF5QNVi7NMleL1g33lEP4c6oJ+Zjd0jXydGyVd6IP3CwBX/aDIS5cvMdjnnxuMbgZfgp6wlEjWfAW8C44DJwPdmtr4I+xMRERGRskVtbdTWFpHUoZG4IlIumNk2YItzrlsg6ip8wwlgB1Aj8Pgn/GiCw6KkK4qxQN/AlXqcc0c456rHSf8zsL9zrmsgfUXnXKso+d8C7HDOdQlEXbZHkuHA08BMM9v8e/JpZr8Am4B/oeldIiIiIpKA2tpFz6fa2iKytzQSV0TKkz7AC865asBS4JpA/IhAfCbQNRD/TmCK00zghWIcYzh+6tacwM0UNgDnx0psZjmBGz48HZiGlg78B1gYJfl1wDDnXAbwJbAtbD+znXPb8Wt5lUQ+3wT+CXxQxP2JiIiISPmmtnbR86m2togUmzOzZOdBRESKwDm3n5ntDDy+BzjYzG4LPG+Ab2y2CKwDtue2VwOdzeyW35mHpsAnZtb69+xHRERERCSVqK0tIqlOyymIiOw7ejnn5jnnFgDdgIcBnHO98TdMuC9aozIgEzjTOTd8bw8emB73MbBxb/chIiIiIpKi1NYWkZSmkbgiIiIiIiIiIiIiKUwjcUVERERERERERERSmDpxRURERERERERERFKYOnFFREREREREREREUpg6cUVERERERERERERSmDpxRURERERERERERFKYOnFFREREREREREREUtj/A0Qqe8cIlkdjAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 1728x576 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot(vs_test, 3)"
]
},
{
"cell_type": "markdown",
"id": "1f0f3f20-060a-488a-9f61-6b4cb3cf1614",
"metadata": {},
"source": [
"# Apply it in new data without grating"
]
},
{
"cell_type": "markdown",
"id": "d99852b3-ec27-44e7-bd63-056fa3804810",
"metadata": {},
"source": [
"Retrieve PES and XGM data into the expected format.\n"
]
},
{
"cell_type": "code",
"execution_count": 89,
"id": "afd8d85c-d6f0-4fff-9e90-79a99363aca8",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# bunch pattern table\n",
" 'bunchPatternTable_SA3',\n",
" #{'bunchPatternTable': {'source': 'SA3_BR_UTC/TSYS/TIMESERVER:outputBunchPattern',\n",
" # 'key': 'data.bunchPatternTable',\n",
" # 'dim': ['pulses'],\n",
" # },\n",
" # },\n",
]
},
{
"cell_type": "code",
"id": "83fe11bc-aa8b-4037-aa15-4a36e3104bf5",
"metadata": {},
"outputs": [],
"source": [
"from pes_to_spec.model import Model\n",
"model = Model.load(\"VS_p5576_grating.joblib\")"
]
},
{
"cell_type": "code",
"execution_count": 90,
"id": "6115d454-d695-441e-b70f-40ac4a336355",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"XTD10_SA3: only 92.4% of trains (5914 out of 6402) contain data.\n",
"navitar: only 72.0% of trains (4608 out of 6402) contain data.\n",
"energy: only 72.0% of trains (4608 out of 6402) contain data.\n"
]
}
],
"_, data_inf = tb.load(proposal, runTest, fields + field_bpt)\n",
"\n",
"# transform PES data into the format expected\n",
"pes_data_inf = {k: da.from_array(data_inf[item].to_numpy())\n",
" for k, item in pes_map.items() if item in data_inf}\n",
"xgm_inf = data_inf.XTD10_SA3.isel(sa3_pId=0).to_numpy()[:, np.newaxis]\n",
"\n",
"# assume it does not change:\n",
"bpt_inf = data_inf.bunchPatternTable_SA3.isel(trainId=0).to_numpy()"
]
},
{
"cell_type": "code",
"id": "61361cb1-4ae6-4651-ad98-05504386ef4f",
"metadata": {},
"outputs": [],
"source": [
"# assume the same bunch pattern structure throughout the run!\n",
"fel_pos = indices_at_sase(bpt_inf, sase=3)\n",
"fel_pos -= fel_pos[0]\n",
"freq_ratio = {ch: 220 for ch in channels}\n",
"sample_pos = {ch: fel_pos * 2 * freq for ch, freq in freq_ratio.items()}\n",
"pulse_spacing = sample_pos"
]
},
{
"cell_type": "code",
"id": "432794bf-969e-404f-a087-1961c1b93736",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'channel_1_A': array([0]),\n",
" 'channel_1_B': array([0]),\n",
" 'channel_1_C': array([0]),\n",
" 'channel_1_D': array([0]),\n",
" 'channel_3_A': array([0]),\n",
" 'channel_3_B': array([0]),\n",
" 'channel_3_C': array([0]),\n",
" 'channel_3_D': array([0]),\n",
" 'channel_4_A': array([0]),\n",
" 'channel_4_B': array([0]),\n",
" 'channel_4_C': array([0]),\n",
" 'channel_4_D': array([0])}"
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pulse_spacing"
]
},
{
"cell_type": "markdown",
"id": "4627fd62-348b-4db8-aace-35d4f354be71",
"metadata": {},
"source": [
"If there are multiple pulses in a train, the pulse spacing above tells us about how many samples there are between them. The first item in the list above is always zero, as the task of identifying the position of the first pulse is taken care through the Virtual Spectrometer itself.\n",
"\n",
"Now we can do the prediction itself. To get each pulse in a train, the `pulse_spacing` should be specified as the one above."
]
},
{
"cell_type": "code",
"id": "d9f267f7-3e0d-4101-97f0-019c837b5e5e",
"metadata": {},
"outputs": [],
"source": [
"vs_inf = model.predict(pes_data_inf, pulse_energy=xgm_inf, pulse_spacing=pulse_spacing)"
]
},
{
"cell_type": "code",
"id": "2be3b1ac-5e21-4503-b763-ba7723b808c2",
"metadata": {},
"outputs": [],
"source": [
"vs_inf[\"energy\"] = model.get_energy_values()"
]
},
{
"cell_type": "markdown",
"id": "cdd39379-bb88-4717-bcf5-beb4440daf78",
"metadata": {},
"source": [
"Now we can plot it:"
]
},
{
"cell_type": "code",
"execution_count": 86,
"id": "c9ea5c57-cdf3-4268-856f-44b48cd3fb69",
"metadata": {},
"outputs": [],
"source": [
"def plot_new(data, i, pulse=0):\n",
" \"\"\"Plot prediction and expectation.\"\"\"\n",
" from matplotlib.gridspec import GridSpec\n",
" fig = plt.figure(figsize=(12, 8))\n",
" gs = GridSpec(1, 1)\n",
" ax = fig.add_subplot(gs[0, 0])\n",
" ax.plot(data[\"energy\"], data[\"expected\"][i,pulse], c='r', ls='--', lw=3, label=\"Prediction\")\n",
" ax.fill_between(data[\"energy\"],\n",
" data[\"expected\"][i,pulse] - data[\"residual\"][i,pulse],\n",
" data[\"expected\"][i,pulse] + data[\"residual\"][i,pulse],\n",
" facecolor='gold', alpha=0.5, label=\"68% unc.\")\n",
" ax.legend(frameon=False, borderaxespad=0, loc='upper left')\n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['right'].set_visible(False)\n",
" ax.set(\n",
" xlabel=\"Photon energy [eV]\",\n",
" ylabel=\"Intensity [a.u.]\",\n",
" title=\"\",\n",
" )\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 88,
"id": "99256b0f-780d-4a20-bc70-6e0b894c584c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtQAAAHgCAYAAACFLvrWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAB4WUlEQVR4nO3dd5gb1dn38e+Rtvdd94ptsAGDjQGbGjqhppFAQgohCQmQkDe9V1Kf5EnykA6hJCE91AAJvRO6AVNssHHFNu729irpvH8ciZnt0mrUdn+f69pLR6MzM8eD2L11655zjLUWEREREREZmVCuByAiIiIiUsgUUIuIiIiIpEEBtYiIiIhIGhRQi4iIiIikQQG1iIiIiEgaFFCLiIiIiKShKNcDSMdpp51m77zzzlwPQ0RERERGPzPYCwWdod65c2euhyAiIiIiY1xBB9QiIiIiIrmmgFpEREREJA0KqNMUDodZtGgRBx54IOeccw7t7e0jPtaHPvQhbrjhBgA++tGPsmLFikH7Pvjggzz22GNvPL/iiiv405/+NOJzi4iIiMjIKKBOU3l5OcuWLeOll16ipKSEK664otfr0Wh0RMe9+uqrmT9//qCv9w2oL774Yj74wQ+O6FwiIiIiMnIKqAN0zDHHsHr1ah588EFOOOEE3ve+97FgwQKi0Shf/OIXWbJkCQsXLuR3v/sdANZaPvnJTzJ//nzOPPNMtm/f/saxjj/+eJYuXQrAnXfeySGHHMJBBx3ESSedxPr167niiiu47LLLWLRoEY888giXXnopP/3pTwFYtmwZRxxxBAsXLuSss85iz549bxzzy1/+Mocddhjz5s3jkUceyfIVEhERERl9RldAfemlYExyPxde2H//Cy/s3efSS5M+dSQS4Y477mDBggUAPPXUU/zgBz9gxYoVXHPNNdTW1vL000/z9NNPc9VVV7Fu3TpuvvlmVq5cyYsvvshVV13VK+OcsGPHDj72sY9x44038vzzz3P99dcza9YsLr74Yj772c+ybNkyjjnmmF77fPCDH+THP/4xL7zwAgsWLOA73/lOr3E+9dRT/PznP++1XURERERGpqDnoc4HHR0dLFq0CHAZ6gsuuIDHHnuMww47jNmzZwNw991388ILL7xRH93U1MSrr77Kww8/zHvf+17C4TBTp07lxBNP7Hf8J554gmOPPfaNYzU0NAw5nqamJhobGznuuOMAOP/88znnnHPeeP2d73wnAIceeijr169P698uIiIiIhkMqI0xM4A/AZOBGHCltfYXxphLgY8BO+Jdv2atvT2+z1eBC4Ao8Clr7V2ZGl9QEjXUfVVWVr7Rttbyq1/9ilNPPbVXn9tvvx1jBp0j/I19h+uTitLSUsDdTBmJRAI7roiIiMhYlcmSjwjweWvt/sARwCXGmMRddpdZaxfFfxLB9HzgXOAA4DTgt8aYcEpnvPRSsDa5nyuv7L//lVf27pNCycdQTj31VC6//HJ6enoAWLVqFW1tbRx77LH84x//IBqNsmXLFh544IF++x555JE89NBDrFu3DoDdu3cDUF1dTUtLS7/+tbW11NfXv1Ef/ec///mNbLWIiIiIBC9jGWpr7RZgS7zdYox5GZg2xC5vB/5hre0C1hljVgOHAY9naozZ8tGPfpT169dzyCGHYK1lwoQJ/Otf/+Kss87i/vvvZ8GCBcybN2/AwHfChAlceeWVvPOd7yQWizFx4kTuuece3vrWt3L22Wdzyy238Ktf/arXPtdeey0XX3wx7e3tzJkzhz/84Q/Z+qeKiIiIjDnGWpv5kxgzC3gYOBD4HPAhoBlYisti7zHG/Bp4wlr7l/g+1wB3WGtv6HOsC4ELAWbOnHnohg0bMj5+ERERERnzBq3BzfgsH8aYKuBG4DPW2mbgcmBvYBEug/2zRNcBdu8X7Vtrr7TWLrbWLp4wYUJmBi0iIiIikqSMBtTGmGJcMP1Xa+1NANbabdbaqLU2BlyFK+sA2ATM8O0+HXg9k+MTEREREUlXxgJq46amuAZ42Vr7f77tU3zdzgJeirdvBc41xpQaY2YDc4GnMjU+EREREZEgZHIe6qOB84AXjTHL4tu+BrzXGLMIV86xHrgIwFq73BhzHbACN0PIJdbaka3bLSIiIiKSJVm5KTFTFi9ebBPLc4uIiIiIZFDubkoUERERERnNFFCnqbGxkbPPPpv99tuP/fffn8cfd9NmL1u2jCOOOIJFixaxePFinnrKlYM/+uijLFy4kCVLlrB69eo3jnHqqadSyN8WiMgwbHeuRyAiIhmSyRrq7NtxabDHmzD88T796U9z2mmnccMNN9Dd3U17ezsAX/rSl/j2t7/N6aefzu23386XvvQlHnzwQX72s59x4403sn79ei6//HJ+9rOf8b3vfY+vfe1rgS4xLiJ5pvtV6HoBShdB6f65Ho2IiARIGeo0NDc38/DDD3PBBRcAUFJSQl1dHQDGGJqbmwFoampi6tSpABQXF9PR0UF7ezvFxcWsWbOGzZs3D7k8+KxZs9i5cycAS5cu5fjjjwfg0ksv5SMf+QjHH388c+bM4Ze//OUb+/zpT39i4cKFHHTQQZx33nlB/9NFJFXR3dC1EnrW5nokIiISsNGVoc6ytWvXMmHCBD784Q/z/PPPc+ihh/KLX/yCyspKfv7zn3PqqafyhS98gVgsxmOPPQbAV7/6VS688ELKy8v585//zBe+8AW+973vjXgMr7zyCg888AAtLS3su+++fPzjH2fVqlX84Ac/4NFHH2X8+PHs3r07qH+yiIxUtLH3o4iIjBrKUKchEonw7LPP8vGPf5znnnuOyspKfvSjHwFw+eWXc9lll7Fx40Yuu+yyN7LYixYt4oknnuCBBx5g7dq1TJ06FWst73nPe/jABz7Atm3bUhrDmWeeSWlpKePHj2fixIls27aN+++/n7PPPpvx48cD0NDQEOw/XERSZ1vdY6w5t+MQEZHAKaBOw/Tp05k+fTqHH344AGeffTbPPvssANdeey3vfOc7ATjnnHPeuCkxwVrL97//fb75zW/yne98h+985zt84AMf6FW2kVBUVEQsFgOgs7Oz12ulpaVvtMPhMJFIBGut6rFF8k1MAbWIyGilgDoNkydPZsaMGaxcuRKA++67j/nz5wMwdepUHnroIQDuv/9+5s6d22vfa6+9ljPPPJP6+nra29sJhUKEQqE3bmr0mzVrFs888wwAN95447DjOumkk7juuuvYtWsXgEo+RPLBGwF1B9hIbsciIiKBUg11mn71q1/x/ve/n+7ububMmcMf/vAHAK666io+/elPE4lEKCsr48orr3xjn/b2dq699lruvvtuAD73uc/xrne9i5KSEv7+97/3O8e3v/1tLrjgAn74wx++kQ0fygEHHMDXv/51jjvuOMLhMAcffDB//OMfufXWW1m6dCnf/e53A/rXi0jSYh2+dguE63M3FhERCZRWShQRyTQbg52+D7J1H4Piabkbj4iIjIRWShQRyRnb2ed5x8D9RESkICmgFhHJtL4BdUwBtYjIaKKAWkQk02J9M9SdA/cTEZGCpIBaRCTTbFef58pQi4iMJgqoRUQyzXb3fq6SDxGRUUUBtYhIpvUNqFXyISIyqiigFhHJtH4lHwqoRURGEwXUIiKZpgy1iMiopoBaRCTT+tVQK6AWERlNFFCLiGScMtQiIqOZAmoRkUzrV/KhWT5EREYTBdQiIpnWL6DuAmtzMxYREQmcAmoRkUzrN8uH7b9NREQKlgJqEZFM65uhBtVRi4iMIgqoRUQybcCAWhlqEZHRQgG1iEimvbIBzvs7nH4N/O05lXyIiIwyRbkegIjIqPejf8Ndq1z7mU3w2h74n/NyOyYREQmMMtQiIpm2cmvv5797Uou7iIiMIgqoRUQybXNj7+dt3bBje06GIiIiwVNALSKSSY27oWWAeumNG7M/FhERyQjVUIuIZNKGtb2f33cRTKuB6bNyMhwREQmeAmoRkUzasM5rHzcHFkyOP+nJyXBERCR4CqhFRDKpsxVm1EJrN8ys87ZbBdQiIqOFAmoRkUx652lwwob+2xVQi4iMGropUUQkk/oGzj1R2NEGm7cO3F9ERAqOMtQiIpnkX3b8qY3wlt+79mFz4ckLczMmEREJlDLUIiKZ5F9ivKbUaze2Zn8sIiKSEcpQi4hk0iOPw8aXoaoEJlR52xvbcjcmEREJlAJqEZFM+ukf4K7HXPuqs73tje1gLRiTm3GJiEhgVPIhIpJJrb7SjvGVUBJ27e4IdHTkZkwiIhIoBdQiIpnU7Auoq0uhtsx7vmdP9scjIiKBU0AtIpJJre1eu6oE6sq9542NWR+OiIgETwG1iEgmtfgC6kplqEVERiMF1CIimdTqq5Pum6HevSP74xERkcApoBYRyZRIBDrjKyWGDFQU985Q796Zm3GJiEigFFCLiGRKS4vXrixxU+TVxQPq4hB0tAy8n4iIFBTNQy0ikin+gLqqxD1+/ST4xskuW93w3tyMS0REAqWAWkQkU3oF1KW9HwFi7YiISOFTQC0ikilFRXD0HHdj4sz6/q8roBYRGRUUUIuIZMq++8K/zgcbG/h1q4BaRGQ00E2JIiKZEuvqH0x3RmDlDnhmEzy7LCfDEhGRYClDLSKSKbbTa4fKwVTA8ufh9GvctoMfgmcvys3YREQkMMpQi4hkivUt6lI8B+o/DuMWetta27I/JhERCZwy1CIimfLww/DIY25mj6OmwJFFUDfbe71VNdQiIqOBAmoRkUy541746T2ufekMOBKomey93tI54G4iIlJYVPIhIpIpLU1eu7rBPdZO9ba1dYO12R2TiIgETgG1iEimtPoWdqkZ5x5L6t0qieCC6VYtPy4iUugUUIuIZEqzP6Ae7x5DFVDpWy2xaUd2xyQiIoFTQC0ikimtrV47kaEGqC7z2s07szceERHJCAXUIiKZ0uKbFq+mzmtXlXvt5j1ZG46IiGSGAmoRkUzxT4tXU+O1qyq8tgJqEZGCp2nzREQypdkXUFdXe+0J9TCh0s1PbSLZH5eIiARKAbWISKa0+uaZ9gfUf/kmdDwV335QdsckIiKBU8mHiEgmWDt4QG18NdS2K3tjEhGRjFCGWkQkE6JReM8iaO2CnjIoLvZeC/lm+VBALSJS8BRQi4hkQhj4xdtcu+yQ3q8pQy0iMqoooBYRyQTb7bVNae/XNjfCk6ugtRv2roWTTsrq0EREJFgKqEVEMsGfee4bUN/9OHzi7659XhOc9NnsjUtERAKnmxJFRDKhV0Bd0vu1mgav7V/8RURECpIy1CIimfDcs3D5f9xc00tK4byjvNeq67y2f/EXEREpSBnLUBtjZhhjHjDGvGyMWW6M+XR8e4Mx5h5jzKvxx3rfPl81xqw2xqw0xpyaqbGJiGTcK6/AH5bCrx6FWx/q/VrNOK+tgFpEpOBlsuQjAnzeWrs/cARwiTFmPvAV4D5r7Vzgvvhz4q+dCxwAnAb81hgTzuD4REQyp7nJa/vnoIY+JR8d2RmPiIhkTMYCamvtFmvts/F2C/AyMA14O3BtvNu1wDvi7bcD/7DWdllr1wGrgcMyNT4RkYxqbvTa1TW9X6vxPW9VQC0iUuiyclOiMWYWcDDwJDDJWrsFXNANTIx3mwZs9O22Kb5NRKTw7NnjtevH9X7Nn7H2r6YoIiIFKeMBtTGmCrgR+Iy1tnmorgNsswMc70JjzFJjzNIdO3YENUwRkWDtafTaQwbUWthFRKTQZTSgNsYU44Lpv1prb4pv3maMmRJ/fQqwPb59EzDDt/t04PW+x7TWXmmtXWytXTxhwoTMDV5EJB1NvvxB/fjer5WXQzj+67crAp3KUouIFLJMzvJhgGuAl621/+d76Vbg/Hj7fOAW3/ZzjTGlxpjZwFzgqUyNT0Qko/b4AuqGPh/+jYHxvjpqfdsmIlLQMjkP9dHAecCLxphl8W1fA34EXGeMuQB4DTgHwFq73BhzHbACN0PIJdbaaAbHJyKSOU2tXrtvyQfAojmwcxtMqIJod//XRUSkYGQsoLbW/peB66IBThpknx8AP8jUmEREssYfUNfV9X/9+kuh8xnXHjc1GyMSEZEM0dLjIiKZ0OxbsKW2tv/roVKvbZWhFhEpZFp6XEQkEz5xEmzfCq0GGhoG6FDiNW1P1oYlIiLBU0AtIpIJlxwL0T1QNAUqKvq/boq9tjLUIiIFTQG1iEgmJIJkUzLw6ys2wr1PQXMnHDEL3vahbI1MREQCpoBaRCQTEmUcpnTg1x97Ab56h2t/dLICahGRAqabEkVEgmYtkAioB8lQ1/huVGweahFZERHJd8pQi4gEbemT8OU/Q00ZHPYafO3s/n38AXVLS/bGJiIigVNALSIStA3r4IE1rh2tGbhPbb3XblJALSJSyFTyISIStMZdXrtmkIC6ps5rt7QO3EdERAqCAmoRkaA17vHatcpQi4iMdgqoRUSC1tTotQdadhygbrzXbmnL5GhERCTDFFCLiAStyZ+hHmDZcYAa3+qJzW3xmUFERKQQKaAWEQlaU5PXrq0buE9pFZSGXTsag46OjA9LREQyQwG1iEjQmnzzStc1DNzHFEGFb47q9vbMjklERDJG0+aJiASt0ZehHiygBjjzQOjsguopEA5nflwiIpIRCqhFRILW7Ju1o3aIgPoX74VoE5QthOr6wfuJiEheU8mHiEjQ/NPg1U8YvJ8pdY+2J7PjERGRjFKGWkQkaD/8BGx8DJo6YcrMwfuZcvdoI9kZl4iIZIQCahGRoL3lCGjvBlM8dMlHKBFQK0MtIlLIFFCLiAQtESCbsqH7/fNJeOZx6CyFTx4IixdnfmwiIhI4BdQiIoGLB9SJDPRg7l4GNzzp2qesUkAtIlKgdFOiiEjQEjXRw2WoKyq9tuahFhEpWMpQi4gEaflyeOclUG5hwb7w548M3reiymsroBYRKVgKqEVEgrRnD6x63bVLa4buW6mAWkRkNFDJh4hIkPyBceUwNdQVvoBbAbWISMFSQC0iEqS2Nq9dWTl4P4BKBdQiIqOBAmoRkSCNNKBua83MeEREJOMUUIuIBKlXQF01eD/oU/LRNng/ERHJawqoRUSClEpAXVnttduVoRYRKVQKqEVEguQPqCuqB+8HUFHhtZWhFhEpWJo2T0QkSP6AumqYafPmzoVPHA9lUVh0VkaHJSIimaOAWkQkSG0tXruydui+++0H3z8XIlug7q2ZHZeIiGSMSj5ERILkD6irhgmoAUype0wsVy4iIgVHGWoRkSB97uNwagw6euC4U4fvb0riDQXUIiKFSgG1iEiQ9p0Jk/aBUBmMmz18/zcy1NHMjktERDJGAbWISJBst3tMBMpDaW+Hj/4KWrdB8SNwy32ZHZuIiGSEAmoRkSDZLveYTEAdDsP1D7l28erMjUlERDJKNyWKiAQplYC6pARC8V/DPRHo6cncuEREJGOUoRYRCdIhZ8G2rW7RlsdOgRkzBu9rDFSUQmuHe97RAcXF2RmniIgERhlqEZEg7WyE3R2waVdywXF5mdfu6MjYsEREJHMUUIuIBKndFxRXVg7fXwG1iEjBU0AtIhIUa6G9y3teUTH8PuXlXru9PfgxiYhIximgFhEJSkeHC6oBSovdLB7DUYZaRKTgKaAWEQlKW5vXriwfvJ+fP4utgFpEpCApoBYRCYo/oE6m3ANU8iEiMgoooBYRCYo/oK5KNqBWhlpEpNBpHmoRkaC0tHjt6qrk9rngQ3B0CKpmwqJFmRiViIhkmAJqEZGgtLZ67aokA+q3vQ2OfgVK5kHtXpkZl4iIZJRKPkREgjKSgNqUxBuRwIcjIiLZoQy1iEhQTjkFnvwUtHbCpA8nt48pckuQWwXUIiKFSgG1iEhQyotgdr1rjzsw+f1MCdiezIxJREQyTgG1iEhQYr5VEt8o5RjGX/8KP78COqPw4Tb43OcyMzYREckYBdQiIkGxvoCa4uT22b4dlr7m2q+9FviQREQk83RToohIUJp2QmsX2LCri06GFnYRESl4CqhFRILypW/DnB/BpG/BNdckt4+WHhcRKXgKqEVEguJf2MWfeR6Kv58CahGRgqSAWkQkKP55qKurk9tHJR8iIgVPAbWISFBaRrCwS6+SDwXUIiKFSAG1iEhQWtu89kgy1AqoRUQKkgJqEZGgtPkC4mQz1KqhFhEpeAqoRUSC0uILqJPNUPtLPlRDLSJSkBRQi4gEpc2XYVaGWkRkzNBKiSIiQbAWWju958kG1BMmwJ++BaFXYcrZmRmbiIhklAJqEZEgtLe7oBqgvBTC4eT2KyuDd70Z2gzUHZq58YmISMao5ENEJAj+Oagrk1zUJcHEcxu2J7jxiIhI1ihDLSIShEmTYNv/QfM2MEektq8pdo82Evy4REQk4xRQi4gEJdwDtWVQNSXFHRMBtTLUIiKFSCUfIiJBsfGbEhMZ52SdcD4c+DOYfBRs3hz8uEREJKOUoRYRCUKsC2ws/iTFgHr7btger8HWXNQiIgVHAbWISBB2bIYVW6GqFGZ2QlkK+5b7OiugFhEpOAqoRUSCcMu/4KLfufYHN8O1NyS/r3+1RC3uIiJScDJWQ22M+b0xZrsx5iXftkuNMZuNMcviP2f4XvuqMWa1MWalMebUTI1LRCQjWhq9dnVNavtqtUQRkYKWyZsS/wicNsD2y6y1i+I/twMYY+YD5wIHxPf5rTEmyVURRETygD+grqpObd9yX4ZaJR8iIgUnYwG1tfZhYHeS3d8O/MNa22WtXQesBg7L1NhERALX0uS1a2pT21clHyIiBS0X0+Z90hjzQrwkpD6+bRqw0ddnU3ybiEhhaGr02rX1g3YbULkCahGRQpbtgPpyYG9gEbAF+Fl8uxmgrx3oAMaYC40xS40xS3fs2JGRQYqIpKy52WvXpBpQV3ptBdQiIgUnqwG1tXabtTZqrY0BV+GVdWwCZvi6TgdeH+QYV1prF1trF0+YMCGzAxYRSVZzi9eubUht3wpfQK0aahGRgpPVgNoY41+P9ywgMQPIrcC5xphSY8xsYC7wVDbHJiKSluZWr12rGmoRkbEkY/NQG2P+DhwPjDfGbAK+DRxvjFmEK+dYD1wEYK1dboy5DlgBRIBLrLXRTI1NRCRwLW1euybFafM+/nE4qRUq6mG/C4MdV6GINoMpgVAqK+KIiOSHjAXU1tr3DrD5miH6/wD4QabGIyKSUS2+zHKqGeq99oLqOS6grB8X7LgKRc8aIAxlC3M9EhGRlOVilg8RkdGnpgTqyiBkUs9QA1AMtifwYRWMyBaIDHjrjIhI3tPS4yIi6bIxuP8isBaK9oK6EWSZTTHExnD9dGS7yj1EpGApQy0iki7b4YJpgFApmIFmAh1OEXR2jN1ZPqLbINo0fD8RkTykDLWISLpiviDYlKa+/223wdsvdEH5256FW24Jbmz5zlqI7nTZeRt1z0f0gUREJHcUUIuIpMv6AurQCALq0lIvw90xxjLUrbdC9yrXtt0Q2wPhFOfxFhHJsUEDamPMrUnsv9ta+6HghiMiUoC2b4Z7XobqUpg5FZakuH95uddubxu832jTvR66lnkfJgCiuxRQi0jBGSpDvT/w0SFeN8Bvgh2OiEgBeuF5+PB1rn3si/BQinNJ+wPqsZShbn+gdzANEG3MyVBERNIxVED9dWvtQ0PtbIz5TsDjEREpPE27vXZ1der7j8WVEqON0LOh//ZYY7ZHIiKStkFn+bDWXjfczsn0EREZ9Zr2eO2aEQTUvUo+xkiGeqBgGiC6e+DtIiJ5bETT5hljxujauCIiA2hu9NojWdSlV8lHZ9rDKQiRLQNvV0AtIgVopPNQa04jEZGEJt/8yakuOw5jM6CO7hpk+w6ItWZ3LCIiaRpRQG2t/V3QAxERKViN/oC6PvX9e9VQj5WAepBMtI0Nnr0WEclTw85DbYz51kDbrbXfDX44IiIFaFej1x4/MfX9i4shHIZoFCIR6Olx20YrG+t98+HONvjxAzCtFj5xlFZMFJGCk8zCLv5JUcuAtwAvZ2Y4IiIFaFez1x4/YWTHKC+F1vgNiR0dozugjjW6VRETfvoQXPuMa3dH4dLjczEqEZERGzagttb+zP/cGPNTIJlFX0RERj/bA7t9eYfxk0d2nOeuh54HYOLbRzb1XiGJ7un9vNT3p+inD8E3/192xyMikqaR1FBXAHOCHoiISEGKtcEe31R3Iw2op0+D8ZVQUQRmlN/3HetT0vGVE6DI9+doz+vZHY+ISJqSqaF+EUgsZRUGJgCqnxYRARdQHzgZqkphTwdMmDSy45h4iYeNBDe2fNW3Rrq8GPYeByt3uOer18Je2R+WiMhIJVND/RZfOwJss3Ys/MYXEUmCbYOrz3HtUCWMG2ENtYn/OrY9wYwrn8V8NefdUTcR6+wGL6BeswlOysnIRERGJJka6kGWsxIREWK++mlTOvLj7GmD15vAroV5S6CqKv2x5atEQP3ZW+Gvz8H8SXDC3t7ra3ZCrANC5QPvLyKSZ0a6UuK/gx6IiEhB8i9Ckk5A/f5PwSE/h0M/Co89lvaw8lqsBV5rdME0uGB6ToP3+trdvT+oiIjkuZGulPixQEchIlKoggqoey3u0jHy4xSCWAtc85T3/DePwUzfgjhrd4Ft77+fiEieSqaGuh9rrZaxEhEBWPEK3PZfaKiABQZOHuFxyn0BdfsoDiZtFJqb4Nql3rb/OR329dWer90FsVF8DURk1Elmlo+5wP8A83ELuwBgrdXUeSIiS1+A79/n2u9pgpO/PbLjlI+RDHWsFe5/FdrjN1/OGw8fWeLaFcVue2Mn7Hgdpu+Xu3GKiKQgmQz1H4BvA5cBJwAfxt2TLSIiO7d77XF1Iz9ORaXXHtUBdRvcsdJ7/vYDvHm3z13k5qOeMw7CmkxKRApHMgF1ubX2PmOMic/4cakx5hFckC0iMnZF98Bu3xRw4+oH7zuccl9APapLPtphxTbv+Qn7eO0fneG1K8LZG5OISJqSCag7jTEh4FVjzCeBzcDEzA5LRKQA9KyH3b7gd1zDoF2HNVZKPrpbYM0u7/m88QP3s6P4GojIqJPMLB+fwS03/ingUOADwPkZHJOISGGIvA67fYFfOgH1WCn5WLfGLeYCMLkaasoG7hfrzN6YRETSlMzCLk/Hm624+mkREQGIbIU9/gz1INnWZIyVafNeWeW15w5xvWxX5sciIhKQQTPUxphLh9s5mT4iIqOStRDZBnv8GeoRLjsOUO5bFXA011CXGbeQy9zxboXEvr5yO7zjj7Dg07B9e//XRUTy0FAZ6o8aY5qHeN0A5wKXBjoiEZFCENsNtrtPDXUat5eUl7vZLsqLIDyKb8g7fj844gP9txdPA9sDT7zm3bS4YQNM1C07IpL/hgqorwKqh9n/qgDHIiJSOCJbXZban6EeP2Xkx/vAB+AtTRDbA+O/lf748tVgC7YUzwLCMLPOC6jXrYMlS7I0MBGRkRs0oLbWfiebAxERKSiRrdDW7d1gV14EVWlMmxcKgSkGGwMbATOihWzz32BLihdNcR9QpvjyOFu0KK+IFIZR+htbRCQgXS9D6f79t0e2QszCBw91WWoDmEFmrEiWKXaPtmf0BtSDZajDk92NiON8s53sUA21iBSGUfobW0QkALFWaL0VSub2DnCthcgmN+XbT9/ibTel6Z0vcQ7bA5QP2bUgtbbCV66D6VUwpwFO3ddtNyUQHudq0sf7A+qtuRmniEiKhg2ojTEN1trd2RiMiEheabkZYh0uG1083dve9Ee33c8Up5dV7uyEZ1+Dlg1Q+wgcd+bIj5WvNm2Cqx5z7Vn1LqA2BsoPd4+mFMb7bkLcqQy1iBSGZH77P2mMWQb8AbjDWmszOyQRkTzQsxG617h25HUvoO5aCT0b+vcPpZlRfu01ODF+M+I+D8GrozCgfv01rz2xyj1WnQVlC33bp3ntnTuyMy4RkTQls1LiPOBK4DxgtTHmh8aYeZkdlohIjnUt99qReOmBjUHbHQP3T7d+2r+wy2idh3qLL6CeVA2hyv716RN8AfWOndkZl4hImpJZKdEC9wD3GGNOAP4CfMIY8zzwFWvt4xkeo4hI9kV95QbReKa043GINnrb//YcPLPJ1f2+/UQ4Lo3z+Rd26Rily25v2ey1J1ZC2SLvRsw3ts/22rv2ZGVYIiLpSqaGehzwAVyGehvw/4BbgUXA9cDsQXcWESlUEV+5QWSby073rO7d5+F1cNOLrj3vAAXUw9nyuteeVA0l8/v36RVQN0Es5qYUFBHJY8nUUD8O/Bl4h7V2k2/7UmPMFZkZlohIDsU6INbiPbfd0LO2f+30jlavne6KfmW+kpHOrtEZSPrnlZ5UD0VT+/epmAG/PgtqS2HqUdkbm4hIGpIJqL9hrb3Ov8EYc4619npr7Y8zNC4RkdyJDnAzXPN1Lkvtt7PNa0+elN45QyEoK4HObve8s7N3XfVosM1XRjNltpvZo69QBbz/DOjZBOWzR9+HChEZlZL5TfWVAbZ9NeiBiIjkDX+ddILt7r+tV4Y6jWXHE8p9WeqOjsH7FardjV574l6D9ws3uMe+UxOKiOSpQTPUxpjTgTOAacaYX/peqgEimR6YiEjOxJqG7xONwS7fbByTBihfSFWZb2GY9nYYNy79Y+aTxmavPW7G4P1Cde7RKqAWkcIwVMnH68BS4G3AM77tLcBnMzkoEZGcGmie6b52tUNiVv76ciipTv+8Ff4bE0dhMNnoq0tvGCKgDte5x1iHW5VyoNIQEZE8MmhAba19HnjeGPNXa60y0iIydkQ2Dt9nh69+ekIlmADqnf0lH6NxLuoPnwI71kFjJ4ybOXi/H/4Jrv696/ezGHz849kbo4jICAxV8nGdtfbdwHPGGP/qiAY3PfXCQXYVESlcsXaIdQ3fb+0urz21Nv2VEgGmT4Hm7VBRPTpvxrv0HOh6BUwYShoG79cJbIlns/doLmoRyX9DlXx8Ov74lmwMREQkLwx0Q+JAVvpmAtl3QjAZ6luvhcY/uKW4q0dhziIWn187VAtmiA8MDb4pCHfvzuyYREQCMOhvNGttYsLQncBGa+0GoBQ4CFdfLSIy+kR3Dd8H4AXfnMrzJwaToSa+auBAM4qMBjYeUIdrh+7XMN5r70nyv4eISA4lMw/1w8Axxph64D7cjYrvAd6fyYGJiOREsgH1F4+H4+bAc6/D4XuDSebX6TASy3DbnvSPlY8Ss3aEaobuV1/vtXfvzNx4REQCksxfAGOtbTfGXAD8ylr7v8aY5zI9MBGRnBhoUZeBLJjsfmD4jGuyRnNA/d//wv/9EWpL4Nhu+PBZg/dt8NVX71HJh4jkv6QCamPMkbiM9AUp7CciUniiI8iIBlE/DfDiSnhmOXSvh+OOgPnzgzluPlixAm5+wbVjU+DDQ/T1Z6h1U6KIFIBkAuNP41ZGvNlau9wYMwd4ILPDEhHJARvtHVDvaod7VsEJ+8CkqsH3CwUUUP/+z/CrG1z7skWjK6De48v8+2ukB9IroG7MyHBERII0bEBtrX0YV0edeL4W+FQmByUikhPRnS6oBjeLx3v/CpuaYO9x8ODFUBr/ldnYAXW+mxCDylBX+IL20TYP9W5fbXr9hKH7+gNq/+qKIiJ5atiA2hgzD/gCMMvf31p7YuaGJSKSA91r3OPL2+G0q6AjvqbVml1w9yp463yIxGDRZS6gPnga/PYsKK8M5vwVvsB8tK2U6J+twz8t3kBqatzqiNZCSxv09EBxcWbHJyKShmRKPq4HrgCuBqKZHY6ISA5FXnOP373HC6YBqkthSnxmiqc3QnuP+wkZKC8OruSjfBQvPe6/ubBh8tB9QyGor4HdTe55YyNMGCarLSKSQ8kE1BFr7eUZH4mISK5FtrpyjvtWe9t++XY4d5Frd0Xg7X/0Xjs8vnx2KAMZ6ra2wfsVIv/NhQ3jhu9/6xUQexgmHQrjkugvIpJDyQTUtxljPgHcDLyxHq+1VnMZicjoYaMQa4IXt3rbFk7xgmmA/7m/9z7HzXGPQdVQ98pQj+KA2l8jPZgli6HpFSgpH53LsIvIqJJMQH1+/PGLvm0WmBP8cEREciTW5Gp2l/sC6gW+0oQ7XoHfPu49n1wN71rg2kFlqEdzQN3Y5LWTCahNmXu0o+zmTBEZlZKZ5WN2NgYiIpJT0XgGdaVverf94jfP9UTh87d520/cB/7+PnfjHGQmoG4fbQF1i9dOJaCOjbJachEZlYb9Hs0YU2GM+YYx5sr487nGmLdkfmgiIlkU3e4eX/EF1PtOgB1tcM6fYWc8Uxo2rq46EUwDGM3yMaRYDBpbved1dcPvEyqD7ihs267FXUQk7yVT8vEH4BngqPjzTbiZP/6dqUGJiGRdJL6gy1bfvMf7TYT2bnhsg7ftI0tgom++aBN2wV8QRmuGOhaDn1wAu9ZA14TkpsD7zv/Cd7/v2pcWwbe/ndkxioikIZmAem9r7XuMMe8FsNZ2GONPzYiIjAKx+H3Wj3wC/rEMbl7urY544GR4aStUlsCFR/TeL6hyD3CzWSyZC6U9sPCA4I6ba0VFcMEx0D0VKpNcwqC2zmvv3p6RYYmIBCWZgLrbGFOOuxERY8ze+Gb7EBEZFaLxgLqqFD56uPtJuPY9cPsrcMo82KtP/W9oiCXJUzV/Ptz3v9C5DGrODe64+SAWL5kx5UP3S+i1/PiuwfuJiOSBZALqS4E7gRnGmL8CRwMfzuSgRESyKtYFsSGWuJ5RBxcdMfBrQdVPv3G8eDmE7Qn2uLlm4yUsoSQD6oYGr71rZ/DjEREJUDKzfNxtjHkGOAIwwKettfrtJiKjR3S7mzJvJILMUIMXUBMZslvBSczWkeyc3f4M9W4teyAi+S2ZWT7us9bustb+x1r7b2vtTmPMfdkYnIhIVkR3uYB6S3PqgXXQAXUizzGaMtTXXwenXQ7n/hWuviG5ffwZ6sbGjAxLRCQog2aojTFlQAUw3hhTj8tOA9QAU7MwNhGR7Ijuhk1NcOgvoL4cjtwL/vie5PYNVQc3DmvhiluhaTnYTfC9w4I7di6tXw3PbHbtBRuG7pvQK0PdNHg/EZE8MFTJx0XAZ3DB8zN4AXUz8JvMDktEJIuiO2HFNtfe0wGNKcwBHWRAbQx8+dcQjbrn37o8uSnm8t1uX5Vgw4Tk9umVoW5xHzY0wZSI5KlBSz6stb+Ir5L4BWvtHGvt7PjPQdbaX2dxjCIimRXZAi/7pmbbf2Ly+4bHBTuWCt+c1u2jZNntRl8NdH2S16u8HEpLXLu7Z/RcCxEZlZK5KfFXxpijgFn+/tbaP2VwXCIi2RHrdMuOv7TV2zZ/UnL7mnDwAXV5KbTEZ8To6IDa2mCPnwuNvpUOk1klMaG+BrbGs9u7d0NlwDOqiIgEZNiA2hjzZ2BvYBkQ/x4SCyigFpHCF90OkRg8tNbbdlCSt4mEJ7qgOkj+1RJHy/LjIw6o61xAXVoMzUNMaygikmPJzEO9GJhvbWq3vhtjfg+8BdhurT0wvq0B+Ccu270eeLe1dk/8ta8CF+CC9k9Za+9K5XwiIiMS3Q3rd0NTp3s+sQoWTE5u3+LpwY+nwr/8+Cgpc/DP0pFKQH3fDdB9HdTsBfWjaOVIERl1hp02D3gJSPKvSy9/BE7rs+0rwH3W2rnAffHnGGPmA+cCB8T3+a0xQad9REQGEG2ElTu85/tPTP7mt6IMTHg0KgNqX3Y5lYB6wjSoKAarxXlFJL8lk6EeD6wwxjyFb8lxa+3bhtrJWvuwMWZWn81vB46Pt68FHgS+HN/+D2ttF7DOGLMaOAx4PInxiYiMXKwJXvXNQrGvbxYKEwZig89NXTQt+PFU+BY+GS0BdVOL104loE6sqmhHSemLiIxayS49HpRJ1totANbaLcaYxK3004AnfP02xbf1Y4y5ELgQYObMmQEOTUTGpFgjrPIF1HPHu8fS/aH63dCzFpr+3H+/UCmEk5wCLhX+gLqtLfjj50KT79+RSkBt4jOe2M5AhyMiErRkZvl4KAvjGOj71QFTQtbaK4ErARYvXjzCtYJFROKiTbDKV/IxLx4kly12pR/Fs8AUge2zFHjRzMzMi1zhm8liNGSou7uhPf7lZjgEVSmsLNnWAWsaYXcLzHkJ9jswI0MUEUnXUCsltjBwUGsAa62tGcH5thljpsSz01OAxMSvm4AZvn7TgddHcHwRkeRZC7FmKA5DSRi6oy5DbcJQHP+VZMKuVrrntd77Fs/KzJhGW0AdCsH1n4HdGyG6d2ofQq69Fj75C9e+EPjdNZkYoYhI2gYNqK21AS7/9YZbgfOBH8Ufb/Ft/5sx5v9wKzPOBZ7KwPlFRDy23WWe77jATZ33WiOMr4SiyWBKvH7FM7IXUB95JLQvd4H1nDmZOUc2FRXBSXMhUgtVp6e2r3/58T27gh2XiEiAkqmhHhFjzN9xNyCON8ZsAr6NC6SvM8ZcALwGnANgrV1ujLkOWAFEgEustdEBDywiEpRok9cuCsGc+HLX4T4rJRZN8domDFVnQnEGbkgE+MQl8O49EKqCcW/KzDmyLTFLhykbul9f/uXHd+8evJ+ISI5lLKC21r53kJdOGqT/D4AfZGo8IiL9xJoG3l68V+/nienxjIGqt0DZwZkbkymKl0X0ZO4c2ZYIqEPlQ/frq1eGes/g/UREcixjAbWISN6LNfbfZgyUzu+9LdzgMsYVb8psMP3GGErAjsKAOq0MdWNgwxERCVoyC7uIiIxO0T1w44vwn5fd4i6RGIRqetdPJ1QcC2WHZGlgxWBjMBoq3379S9j/f+GoX8Nlv09tX39A3TjItwkiInlAGWoRGbuie+C798CW+MIjT3wS9tt34L7lh2VnTEuXwh9vh7YWeNNUuODC7Jw3U3ZshZ3t7qc5xQVa/HNWN7ZANAphLaIrIvlHGWoRGbuatnjBdHEIZtb3vgExF155BX7zAPxxKdx/X27HEoTdvkVzxqW4EE44DLW+eaublKUWkfykgFpExiYbgxdWes/3Ge9m+sh1QN1r6fFRsFLiLt90d+MmDt5vMHW1XlszfYhInlJALSJjU3QnvLTZe37gZPeYVwH1KFjYZY8vCPbXRCerQTN9iEj+Uw21iIxNkc29lxzffyKEKiBcl7MhAaMvQ72n0WuPJKCePBkmrIP6WojFAhuWiEiQFFCLyNjUsx5W+8oR5o6Houk5G84bRluG2j/d3UgC6n/fCrt+7OYGrzs8sGGJiARJJR8iMjb1vAav+m6YmzseSublbjwJvQLqFGfFyEfpZqhNGZgQ2M7AhiQiEjQF1CIy9sRaoXErbO0zw0emlhNPxWgKqGMx2N3sPfevfJgsY8CUK6AWkbymgFpExp7I67DOd7PcrAYoDkM4xWndMsEfUHcUeEDd0uLVPVeXQ3HxyI4TqlBALSJ5TQG1iIw9kR2w3hdQz2mAUDWYPLitpFeGusCDSP+sHP75pFOxfTvcuxquXwr33hPMuEREApYHfz1ERLIsugMm18D7FsH6PbBoKoRGUN+bCeXlXru9E6x1ZQ+FaOpUePpK2PUUlB48smP897/w7p+79tu64eQ3BzY8EZGgKKAWkbEnsgUOm+F+EopGsOhIJoTD8Kn3gXkNavd1JROFutx2SQnsOxk6p0HV4pEdw193vWfX4P1ERHJIAbWIjC024jLUfYXzJKAG+PEXoeVfUHFM4QbTCbbbPZryofsNxj8ziFZKFJE8pRpqERlbojvdsuN9hcdlfyyDMfGb92xPbscRBNvlHkMVQ/cbTL1WShSR/KeAWkTGlsgA2WmA8PjsjmMooyWg7uyEtuZ4HXgAGeo9zYP3ExHJIQXUIjK2RLe4KfPO/ydcejfc/BKEyiFcneuR+SSmlyvwgPryy2Hax2Hq9+BrPx7ZMSorven2OjpdkC4ikmdUQy0iY0tkC6zcAXe84p4fNwfe/ZbcjqmvH/4WnvkPdN0CP5sLCxbkekQj0xJfOCdqoWSEGWpjoL4WtsdXtdyzB6ZMCWZ8IiIBUYZaRMaWyDZY45stYlZ9ftVPAzzyJPz7ZbhnGWzdmuvRjFwioAaoGcEqiQkNvn11Y6KI5CEF1CIydkR3QawdntrobTtgMhTlUf00QEWl125vz9040tXsq3muqRn5cep0Y6KI5DcF1CIydnSvhZiFJzd4247cC8KTcjemgYyWgLrFF1BXp1GjPs73gUcZahHJQ6qhFpGxI7IRVu2A3R3ueUM5zBsPRXlWk1vhW6a7kAPq5iavnU6G+sAFsO0FaBjXexo9EZE8oYBaRMaOng3wmC87fcReUNTgZvnIJ6MlQ+0PqNPJUP/oR7BrHIQboO6Y9MclIhIwlXyIyNgQ2QnRJnjcF1AftRcU5Vm5B7ip4hIKOaBubfXa6QTUAKYMrKbME5H8pIBaRMaG7pfd4zObvG1H7pV/M3wAVPhWFRwtAXVV1eD9khEqg5gCahHJTwqoRWRs6F4Fu9thU7wMoTQM+010ZQT5xh9Qt7Xlbhzp8o893YDalHnLmIuI5BnVUIvI6BfrgshmWL7N27bfRCgOQyjfM9Stg/fLd60BBdSvvw5/fxB2roNZDXDRxWkPTUQkSAqoRWT061kHNgaHz4T7L4KXtkJJ2L2Wb3NQw+gJqNffD9uuB45Kb5aPDRvgC7937cNaFFCLSN5RQC0io1/3KvdYEoYDJ7sfgFAphNIsRciEww+HH54LJa1w6HtyPZqRKw/DuAqo3htCaVQY+qfKa9TCLiKSfxRQi8joFmuDrhcHfi2Uh/XTAAccANPPhO7VUHdoMMfsWgEl+4EJQc9mCI93HygyyXa7R1OS3nHq6rx2Y9Og3UREckUBtYiMbm33gu0Z+LVwHpZ7JJhi95gIStPV8RSEqqFoGrT+G6Lb3Q2Z1WdnburANwLqNAP3XgF1M1gLxqR3TBGRAGmWDxEZvWyPl53e3ASrd7pgLKFoYm7GlYxEQE1AAXWsCdrvh5brIbIFbBQiO6D9v8Ecv6/2dljxqptVpTnN6e7KyqA0nuXu7oZOTZ8nIvlFGWoRGb26XgEbce0/LoVf/NfV9H7jJHj/IRCekNvxDSn+6zkW0FRxsRaIDlB/3LPKBdcmHMx5Ep5/Ho76qGsf9gg8uTS949XVwLadrt3YCOV5trqliIxpylCLyOjV+bTXfmqje9zVDjVlrp2vGerNm+HUr8HJV8JbPpb+8WKd3geLfq91QWTbwK+lI8hVEgFqa712Y2P6xxMRCZAy1CIy+vRsgq4XIBJfFbE7Cs9t9l4/bKZbeS9UP/D++eDx5e5xUgAlH3aY1RYjm6B4avrn8eu1SmIAAXWvOurG9I8nIhIgZahFZPRpu9PdhGdj7vmzm6AznqHdqx4mVUHxXvl7Y1tlpddu70j/eLFhjhHZNPTrI9FrlcQ05qBOqPNPndeY/vFERAKkgFpERpeOx12G2u+uVV77uDnusWRe9saUKn9A3dbZ+0bKkbDDBdTb0zv+QHplqAOY67veN8WhAmoRyTMq+RCR0SPWBm0P9N9+ty+gPmWey0yX7Ju9caWquBiKi6AnArEYdHW5mS5GargMdXRX8FPRBR1QH3MsRFdC/USYMyf944mIBEgBtYiMDrEu2POb/vM2v7rT/QBUFMMxsyE8MT9XSPSrKIOmeFDa3p5eQD1chtr2QKwZwrVD90uFP6D2Z9xH6pJL4L3dEKqBusPTP56ISIBU8iEihc9aaP47xAa4+e72l732CftAeTEUz8je2EaqosJr++uRRyKWxP7R3emdo6+gM9QApgKs5qAWkfyjgFpECl/3KuhZP/Br/1rutc/Yzz0WBTyjRSZU+uZZTjegtknsHyuAgDpUPnz5iohIDiigFpHC1/3KwNtf2Q7L43Msl4bhtHjddNFYy1C3Dt8nsiO9c/SVkQx1uTLUIpKXFFCLSOHrWTPw9n0nwDXnwIRKOGN/qC51808X5fMKiXGVvoC6fZh5pIeTVMlHwAF1UQgq48uFBxFQr1kDX/8rfPpG+M6l6R9PRCRAuilRRApbZBtEmwd+zRh463x402y3uAtA0ZTsjS0dvabOy0YN9a70ztHX738LP5kDJYug6q3pH2/7dvj1La59WBF8+9L0jykiEhAF1CJS2HrW9X6+Zhd84d+ufdERrsyj3lePXDQte2NLx9c+Dx+Y4rK7S5akd6xkSj5iTW55chPQnwXb4x7DZRAOp3+8Xisl7kn/eCIiAVJALSKFrWej1+6Owkeug5e3w+RqqCvv378Q6qcBjj0Wdj8LJgzjxo38OLa7/1SCA/az8anzGobvm+x5AUxxMMfrFVA3BXNMEZGAqIZaRApb5HWv/a27XDAN8NHDYPH0/v2LCyRDnQhEbdRljkcqmXKPhGiAgeobAXVJMMfrG1Cnu3qkiEiAFFCLSOGyPRBrdO0Xt8Dvn/Zea+xwN8b5FRXAgi4J/kDUdo38OKkE1LFBatFH4u774LH18NxaiEbTP15ZGZTEP2R090CnZvsQkfyhkg8RKVyR7S5T2doFJ13pbZ8/Cb50Qv/+JfOyN7a0+X49205ghKsNphRQB5ihPvti6OwCroW2c3pPAzgSxkBdLWyPr3rZ2AjlA5T0iIjkgDLUIlK4EtPl/eiB3tu/eRKUDZAvKJ6V8SEF5sorYdFlMO/H8M3vjfw4ySzqkhBtHPl5/CKReDCNC4SDCnzrfEujNzYGc0wRkQAoQy0ihavnNfjvOrjySW/bBw+Fk+b272tKCiug7uqC1+MlGOnMatF3ho9blsP37oWYhdkNcMLe8OElbs7ooDLU/mn+qipcUB2E2jqvrYBaRPKIAmoRKUzWQmQT/OpRb9txc+DHZwzcv/SA4KaEywZ/iUR7EtPeDcafdW7ths/fBs3x7PGmJnhkHbywBa48O7iAutcqiSMsVRlIvW8GEgXUIpJHVPIhIoUpugt27IYH42UfIQM/eQuEB/m1VnZI9sYWhKAWdkkEydbCt+/ygmm/fy2H9XuCm+UjE8uOA9TVe20F1CKSRwooXSMi4hPZAM9thsTsaYunw6z6gfuGa6BogCn08llgAXWLe7TAhkZv+5n7w6ProDE+W8btL8Mn6t1NjKE0s8qZCqjPOgtm7IL6ibBoUXDHFRFJkwJqESlM3Wvh5Lnw0udd2ULFEAuIlB4cXB1vtvQq+Wgf+XESNdQhA789C064Ao7YC64+G/70DHzxP+71Zze7x2hT/gbU554Lp+yAUCnU7R/ccUVE0qSAWkQKU8969zixCt61YPB+pftDxZuyMqRA+TPUIw2obQzWboaV22FCFcyog5vOd5l8Y2DRVK/v81vcY6wJmDrQ0ZLXK6CuSe9YfYXKIKY5qEUkvyigFpHCE+scen5lY1zNcPFMqD4HTAHeLuIPqFtHGFDH2uCulfDNu9zzjyyBH/lu2txvIpQXwV71sHAqRGPeQjnp6DXLR3X6x/MzZWAbgz2miEiaFFCLSOGJ7hr69crTXOBVsk9hBtMA1b5AtK1jZMewrbDDly2e0KeUo7QIVn3ZPSYEcWNipko+AEx5eitHiohkgAJqESk8kU1uPuXptXDQ1N5LjBfPgrIlhRtIJ/gD6pYRBtSxVtjhyxZPGCC4Le3zZyCIDHVVFcyf5j4ITJmS/vESXnwRvv4z2LMVFmyG314e3LFFRNKggFpECk/HOvjcbdDSBTWl8N9LYHI8AK1+e+EH09A7s9s60oC6pU9AncTNhkFkqN/9bnjzDlfD3fD/0j9eQlsb3PaEa3c9HdxxRUTSpIBaRAqLtfD0f10wDW6Fv0nx4LPiTRAeZOq8QlNaCnf/DIpWQd009+9OdaaSWN+SjyTKL2LNqZ1jMLYbTMXw/VJRV+e19+wO9tgiImlQQC0ihSW6DR5Y7j0/bm8XaIYboOLE3I0raMbAUQdDezOEq0c27V+sefgMdVcE7njFLeyypwO+cwrYSPqrStoeCJWkd4y+GnwrJe5OYzl2EZGAKaAWkcLS9RLc86r3/NjZYMJQc+7oKPXwM/G5tUd6E16kCXYOU0MNcNGNbuEXA3ztRLdcedH4kZ0zwXaDyWBAvacJolEIh4M9h4jICIyyvz4iMuqtftJbhKQoBCfNhdIDoWhibseVCf6A2tqh+w5kzzbojrp2ZcnAi9+UFsG02vh5gE1NEEuznOKO2+HvS+GWZ2HLlvSO5VdUBLXxWnlroSmgpdJFRNKkgFpECke0Be5/0nt+7ByoL4fShbkbUyaZYojEoLEdulpS33/bNq891A2Je/nqztfvHn5awuH88pfwqVvg/P+DZ59N71h9NfjGuivNcYqIBEQBtYgUju6X3ap/CYfPgFAVFM/O3Zgy6Z2fhanfg7k/hvvuSm1fa2HbDu/5UDckzvIH1HsgsjO1c/XV5gv+g56Hepyv7EMBtYjkCdVQi0jh6HoeXtzqPZ87AUoPGH210wmlpV67OcUyDNsOxQaOmOluTJzdMHjfvfoE1OlmqDO5sEuDr7ZbAbWI5AkF1CJSGGLtsGsNPLXR27ZkOpTsm7sxZZp/cZfWxtT2jbXCkhlw64eH7+vPUG/YA9E0M9SZDKjHT/DauzV1nojkh1Ga1hGRUadnIzy01tUUAyycApNroXhGbseVSb1WS2xMbd9YCjXXe/UJqGOtEEtjee8238wilUksJpOKhnFeWxlqEckTylCLSGHoWQsHT4NL3wz3rYaj9oKiqd5MGKNRlS+gbk5x3uVY6/B9Emb5ykE27HH119EdEJqe2jkTWn0BddAZ6nPPhXnbob4a3vSOYI8tIjJCOQmojTHrgRYgCkSstYuNMQ3AP4FZwHrg3dZazdwvIi7A634ZptfCJ45yPwBlh+Z2XJlWXeu1U85QpxBQ15W5Jdybu6C9B7a3Qc12KB5BQG0ttLZ7z4POUB99NMx/HqJ7YPysYI8tIjJCuSz5OMFau8hauzj+/CvAfdbaucB98eciItD9CkT7LIltQlCyX27Gky3+gLo5xTmXY61w7VK4+km4ZTk0dw7e15jeWer1u6HntdTOl9DZCbF4WU5pCRRn4BsEU+ZWYkynLEVEJED5VPLxduD4ePta4EHgy7kajIjkCdsD7ff13168N4TKsz+ebOqVoU4h4wwuoP7Vo/Bao3v+xCehpmzw/mfuBwdPhRl1MLUGejakOlqn1w2JAWenE0z832HbgNIhu4qIZEOuAmoL3G2MscDvrLVXApOstVsArLVbjDEDLntmjLkQuBBg5syZ2RqviORK6+3QuhW2tvSejaL8sNyNKVtqfP/e1hEE1Nt9+/jnoS6a7OrPw+Nc9r9nI3z22N77R/dArA1CKQbF2QioQ/GAOtYG4SGmAxQRyZJcBdRHW2tfjwfN9xhjXkl2x3jwfSXA4sWLR7AWr4gUDNsNXS/Bo+vgvX9zAfUHDoFPH+8y1KNdjT9D3T54v4Fs2wKdkfhxSqHal8mtOtObHaV4JjReM/AxutdAWYqrUBYVwRmHQ8t2mHpQavsmY+tWOO1LsGsnVP8FVqwO/hwiIinKSUBtrX09/rjdGHMzcBiwzRgzJZ6dngJsH/IgIjL6db3kSj4eXOOer98DO9ugaOLoXczFr9c81CkG1K9t8trT67x26f69pxosnuGy0DHfzBwJPRtSD6hnzIC/fxG6XoSGz6S2bzLKy+H5+Puhsjv444uIjEDWA2pjTCUQsta2xNunAN8FbgXOB34Uf7wl22MTkTzT+ax7fGCNt+34vaF4bm7Gk22HHAIvfQsquqGyBGwsuQ8Stgc2+xZnmVYTL5MwUHly//7FM6BrgC8KI5v6b0uGjd8saEpGtv9QamogHIZoFNo6oKur94qSIiI5kIsM9STgZmNM4vx/s9beaYx5GrjOGHMB8BpwTg7GJiL5ItoEPZvcvMir4sFhaRiO2AtKF+R2bNlSWgpTJ0Ak/u+PtUG4euh9AGLNsM1Xyzy52k0xWP6mgW/kLN4LOl6Gr98BG5vg9Wa452Ngtrta7FCKc0nb+IwimQiojYGGGtgRn1V1926YMiX484iIpCDrAbW1di3Qr7DOWrsLOCnb4xGRPNX5jHu8dYW37Zg5ULs3FI3PzZhywR+U2jYgmYB6gBsSi2YOPitK0TQIGTe93s54acm2VjfbR/caKEuxFtp2uUy6ydCfmIZ6L6DetUsBtYjk3BgoQhSRgtT1vLup7tql3ra3HwDlR+RuTDnhC6gHqnMeSKwVdvgC6olVbkaPwYQnuMcZdd62xHR7PWuTO2fCY4/B//wLfv0EPPRQavsma5xvZg8tPy4ieUABtYjkn8hWV/Jx5RNeYFdfDmcugJJ9cjq0rNvTBWt3wbLXoWN3cvv0zVBPqoJw3eD9Q+XuxkR/QL2x0T2mOh/1Y4/BT+6G79wBt96a2r7JGuf7cKCAWkTyQD4t7CIi4nS9AC1dcNkj3rYvHQ/jD81MXW4+O+FbsCE+6dELJ8OCJcPvE2vpE1BPGL78ItwwcEAdbUytjrqlxWtXpVh7nawGf0C9c/B+IiJZooBaRPJLrN3VT9+zCtri06LtPQ7OX+xurBtr6qq8gLoxydlEYy1w5v4wd4ILrGdMHX6f8HiYWec9f22P1468DiXzkjt3c6PXrqlJbp9UjfOt+7VzS2bOISKSAgXUIpJf2h+BWBf8xzeN2zkLoaQKiqfnbly5UuPL8u5JMhsba4ZPvcl7XpLEdQuP6x1Qb2zy2pEtKQTUvkC8OokbKEdi3ASvvXNrZs4hIpICBdQikj9szN2MCPD1E+HgqXDHSjhjPygag8E0QK0vKG1Msl441tL7uakYfp/whN4lHxv8GeptyZ0XoMUXiGcqQz3eN8vLLq0BJiK5p4BaRPJH14uu5ANgzjj45NHuB9xcyWNRnS8obUz2psQ+AXWocvh9wuNcQG0AC2xqcrOslBW5m0ST1eQLqDOVoT7zTPjXJ6E2AnuflZlziIikQLN8iEh+iLVD2+2Dvz7WZvdIqKv12skE1Lbblcz4JXNDYbgBKkphr3r3PGZhTTwjHt2d/JR9/psSM5WhnjYNjlsIB0yCBpOZc4iIpEABtYjkh67l/QPBhHADFE3K7njyRa0vKG1qh1jH0P1jLfDwWrj4JvjWXXD3quQCahOCUA3s66tPXrXDa0deT268Lc1eO1MZagATX6Qm2jx0PxGRLFDJh4jkXqwLOp927UTtbiJTCmNzdo+EOt91aO6EWNPgKx4CRPfAS1vhphfd85iFc5Kcvi5U42ZTOXN/mDse9vPNphF5HUrmDn+MFl8mO1MZavAC6lhj5s4hIpIkBdQiknsdj0IkfnPZrx+Fa5+BWfXw3VPhjEVQdkhOh5dT/oC6qdPN4MHkwftHd7tlwxMmViU/h3SoFk4eJGhO9sbEFt+5M5mhDpVDTxReXwtVESjSnzMRyR39BhKR3LLd0BlfXjwScyUKAOv3QHUplB89dEZ2tKvtk6GONg3eF1yG2h9QT6gEk2RAHR4io5xsQH3eKbBzLXQ0ZDZDfdzn4LmV7gbKV8+DffbL3LlERIahgFpEcqv1Tm9mj1uWw5b4TW3jK2HJDCg9IHdjywf146AoBLVlUFkyfIlDdBds990YOLkmuVk+AEJ1g78W2wM2MvyKi999r5utpfodUFqa3HlHoqjYBdMAG19RQC0iOaWAWkRyJ9bhgi9wtb4/9y01/qHFUD4RwvUD7ztWHH88bP4GmPhsFtHGofvH+pR8TJ7gbjhMRtg3o4i1sHqXC+ZnN7g5wqM7oWiIchMA2+keM71E/NTJwEuuvfHVzJ5LRGQYmuVDRHKn8zmwPa791EZYGZ9VorIEPnZ48qvzjWahMi+YBpcpHoyNuZKPrb4M9dRhAuBe56pzj7csh4Mug6N/A1c+4b0eTWJhGRufhSTTAfW0aV570/rMnktEZBgKqEUkN2wMOh73nv/rJa/9zgOhvhxK9s3+uPJN38B0qKA21ghtndASn36wOATjJw7ev69wnXusK/eC8kfW+c6dxDzYiWn9THHy5x2J6TO89uaNmT2XiMgwFFCLSG50LfdW9Fu6Cf641HvtbQe4gKx4jC437meKe5dsxLog1jpw38g22ObLTqcywwe44D1UAYfNgJKw27ZqpxdcR4fIjgO88AJc+Hv40n/g6uuSP+9ITJvltTdvyey5RESGoYBaRLLP9kDHQ97zyx93NdQAR8yEY2dD8czhb4AbK1Y1wgNr4IYXoLEDIjsG7hfZ0jugnlyd/A2JCeE6KC92N4QmJLLUQ5WbAKxZAzcucx+Obr8vtfOmavpsr/369syeS0RkGAqoRST72u6FyE7XXr0TblvhvfY/Z7ia4dKFuRlbPrrkBnjPX+ATN8OrOyE6SADZs6HPHNTVbm7pVCTqqI/xBaz/jQfUw90Q2egrR6mtS+28qZox02tvadKKiSKSUwqoRSS7utdDx5Pe89eb3VzJAAdMcj8AxXOyPrS8Nd43n/OudujZ1L+PjUBkMyycAj8+Az53LLx1/94zdyQjMauKP6B+I0Pd7Gb/GEyjL3Oe6YDaf1Pi1hbofi2z5xMRGYK+TxWR7LE90Hpz723HzoFHL4Hv3gPvPshtCzdAOIOr7BWaCXVee1cbRLf279PzmguqZze4n4SRZqgPnuZmW2nrhk1NsLERZtS5oHqwIN2foa4bl9p5U1VeDnWV0NjmFgTa8iLMOTCz5xQRGYQy1CKSHTYGrf8ZeKW/unL4v7fBEXu55yWDLH89Vo2v89q72t1MHzbSu0/nswPvm8pNieBlqItCsNh3U+gT8QzwUDcmNvlmAamrS+28IzE1/sFhfCXsWDF038hOaLkF2h5w7WgT9Lze/zqKiIyAMtQikh3dr0DnsuT6lh2c0aEUnIm+jPOOVvfhpHult4pk18vQvXzgfVO9KdG/WuIRM+Ghta795GtwzkK3uAuzBt630RdsZyOg/us3oWqNW0USXKBcNL5/v1gbNP/FqwFv990QG66BijdD2YKMD1dERi9lqEUk82wM2n2rIMYs3L3Km9nDr3jG8KvxjTWTJ3jtxE2HPevdY6wNWm8ZuLbZlKQ+H7S/nONQX4b6pXiZSXTn4Ps2NXrt2hRLTUZi3r5eMA3eNemr/YHBb6iMNkPrTdD5YtCjE5ExRAG1iGRe57NuSreEW5fDB/4OJ/4O7u2zbHT5UdkdWyGYPMlrJwLq7jUuiO54AmKd3usn/Q7O/D185DroGMGXkKbYKxM5YDKUFcGiqXBI/CbA6LbB923yzbSRjYA61KfOvuv53s9tDFpug46lDMlaV9vf9dLQ/UREBqGSDxHJrFgHtN/rPe+KwI8ecO0V21wpwcnxmmlTDCX7ZH+M+W7KFK+dmGc6uttlprt8pR6dEXgxnkkuCkFl/cjOFx7nFo+ZUAnrvgphX+4lMkRA3egLqLNR8tE3oO7Z6GaRKZnlnrfdDZ3PJHcsG4PWf0PRNK+OXEQkScpQi0hmtd3rZVCthS/+B9bGb16rKYVLfBnpskMzv2R1IeoVUPvmme5c5mZOeeO1PqskFvmm20tF2DdDR7jPn4lY+8A3lgI0+8aWjQy1qYLtrfDEBvhnPDvdcr0rg2m7x2XvUxHr7F2aJCKSJGWoRSRzulZCl2/2iaufgn8s855/4Tg3wwe4MoPKk7I6vIJRPx5Kw9AVddPYtXZDVUn/fv5ge1KKy477FU0Y+vXI1oGnzvv8abDpNWiugMlZqIM3VbD4Fy4zD3DKPKgHdv906Pmyh9L5rFtUKJHlFhFJggJqEcmMyFZo+acX2PzpGfjGnd7r7zkILjrCe156oLLTgwmVw8KpEInCpGro7BkkoPZlqCdV9y+JSFZ44tCvR7cC+/bf/u4DIbYXlB0C1XUjO3cqiqpgzjhXOgRu1c0lM0YeTCe03gYN/y/98YnImKGAWkSCZ6PQcrOrSwW47nn4wr+91w+ZBj95i1tiHFzgV3549sdZKEwp/Ocjw/frFVBXpRFQ+6ae647Cna/A8m1uVctfvcNbNt7PxsC2euPNlvnTvYD6uc0uoE5XdJdbjbJ4+vB9RURQDbWIZEL7g97Na50R+Ilv3t/xlfCHd7vZIxIqT9aNYEMJlQ3fB/qUfFRDaIQ11KEa79sCA3ziZrjsEVenvKdj4KnzYq1eZjibAfUSX6b8mc3BHbft3vQz3SIyZiigFpFgRXd7N4NZC5+/DTb4Fvy486MwxRfolcxx5R4yOJNkQL01oAy1MV4ddXEY9vXVVK/Y5gLqxLcPCTHfuUNZDKgPX+i1n3wttSA4EnOzzgykZz10Pp3W0ERk7FDJh4gEx3ZD01+8mSeiFurLvdd/eBrMrPOemxBUngEmnNVhFpxkM74bG732tNrUV0n0C09xS3MD7DfRm45v9U44epYLqot8tdb/fRC+cLW7yfT4nfDNI0d+7lQctNDNFtPc5UpSXtoGC/rcELm7HS69x7shdq96mFXvAvCuiJsR5XPHwoeX9N6v7W6XrS/dLyv/FBEpXAqoRSQYNgrN17sMdUJRCL5/GpywNzyyDi44rPc+pQsGXipaejNlsKMN7nsVXmuEhnL46AA15+t93wTMHgemYuTnLJnjzeG8t28avcSUh9EdvQPqjevg2XjJRf3eIz9vqkrHw8nz4Kb4Sod3vNI7oN7ZBmf/2auzBveNif9bk86INxe6n41Ay3VgzoWSeZkZv4iMCir5EJFgtN4K3a8O/NpJc+HSU7ybEMFlpSs0TV5SjIENrfCpW+CnD8Hfl/Xv09HjMrQAYQMzp/a+3qkqnuW1Zzd47XXxgDqyo3f/XVu9dn0W6+HDdXCGr476thVe2UckBh+/qXcwPZD/eyvMqBv4NRuD1rvcEuUiIoNQhlpE0tf5AnTFM4T3vgpbmuG8Q4fep/xoCI/wprmxaNZUr71+jwsa/QFzaRE8/kkX8G5vhdI0F1YJVULRZDf94RxfQL12l3uMbundf/d2r90wjqwJN8CJ+0B5EXREYOUOuPFFOHuh+4bkhL3hobWu7yHTIGZhXAXsMx7ed7DLvvetu27vcTOmJD5IRHe5pcmr3+2mMBQR6UMBtYikJ9rilmy2MTe12kevh4piOGvBwHMlg5sir+L4rA6z4E2e6AWNLV3Q2Nm7Pj1kXHCYKM8Y6aIufiX7xQNqX4C8fg9EY9DTZ0aNXb6M9bgslvGE6qG6HD60BC5/3G27dQW8c4G7JjXxGzr/39HwzZOHP5618PBa+MF9cP15MDl+Y2f3OrfUe/V70sv8i8iopJIPERm5WDs0/8ndjLh8G5zzJ5fd29kOv31s4H0qT4aq090NiZK8UIW7mS7htT2D94VgAurivdxjdamb7hDcvNSbm900edH4GGKdsNs3noYsBtQm5LLUn3qTq52++my49j0umAY4eBrc9MHkg+kzroEP/sNluq/ss3R51yvQ8g/3fhcR8dFfNBEZmchWaLzG1dL+6yU442oXSIP7qv3EfXr3D9dAzdlQ8absj3U0MH0C6g3ZCKhnePNRD1T20b3GPUY2QmOH93rDMCstBi080ZVx3Hw+vHV+7wzyAZPgTbOTO44xcIyv768fg+/f68pEErpWQuMfBl7cRkTGLAXUIpK6no3Q/DdXW3rrcrjwRleKAK7c4+pzYLFvlTkTgsrTNN90OkKVvQPq9X0C6hXb3LcD/v7pMkVQPNO1/WUfiRsTe+K1yd1r3IIvCeMmpX/uVITj82TXlKVfjvGVE+GImd7zXz4Kk78Lr/oC6MgWaLoGul5K71wiMmqohlpEkmdj0LkU2u5xc00/sAYuutF7fWYd/O19MM+3EIgJQfU5ULp/1oc7qoSqes+20SvAi7lSha4I7D8Jbv0QVAcQUAMUz3EB80n7uPmeZze4eagBejZAtBG6lvfOUI/L4k2J0Hup9HSFDFzzbnjr770pAgGO/g3c/TFYFL85NNYBLbeCKdGUeiKiDLWIJCna7G4+bL0dWtvg23fD+//mFm8BKAnDX97bJ5guUjAdlFAV7O8rpXjZN6vGqh0uOx21bt7lqtJgSj7Amz7v7Qe4OcUvOMz7bxxrgz2/cask7mr39sl2QF00efg+qZhQCbdfAPv0+XecchVcererI4f4QkZ/cwvA9F05UkTGFAXUIjK8jqXQ/GfofNbduPWev7gZFSLxIKK8yC0pvp8v4Cs/DMZ9VcF0UEKVLvucsHK7d/2f8824cfA0r38QiiZ7ddQDsT0uwEwE1CEDE7NdQz0eQkkuz56shgp47JPw2WN6b//t4/CR63pPtdf+GLRc77LWIjImqeRDRAbX8xp0PO3NMQ2uRvUzx8DHboC2bjhwMlz+TtjXl5mufhuUHZL98Y5mptxNkze1xi3g0hV1NwfOm+CtUAhwSLwkIRTQHN8m7ILqno2D9wkZd0PgthZorYRwlpeSN8aVpnStCP7YXz0RDp0On78NtrXCmfvDJUf1r9XuetkF1NVnQTjNOcBFpOAooBaR/mLt0P4QdD4ND66Gm1+ECw73lnQ+eS7ccB787Tn4welQFv9VUjQJqt7iZoeQYIXiy4i/awG0d8P8STCu0i2bfedKr9/i+MwcQS5AUjSld0BtrZv5Ihz/krMo5NVVl+4X3HlTUbLfyALqULkra4nuAds+8IqIp8yDRz4BX/oPnL4fHDrNe23tLvj8v+FHZ8C+uJsVa8+HcJbLXkQkpxRQi4jHxqDjEWh6EG54Dn78gJtzGODcg3v3PXS6+wEIlULlW9wsHlr0IjNMPEDuO5/yxTfCjjbXnlgFh8+EUHWw5y6Kl5pc/4L7eXELfPvNcO6iAcYZcOlFskrnQ9tdrq57MCbk1TqHKqHqDCjxTbNno9DxKLQ/DDbSe9+6crjy7N7bOiNwyc3wzGY45rdu8ZjPHwf2j1Dzbn2wFMmEvqvE5gkF1CNh4zekmCx/rSmSSZHtcNcv4JOX95+SDdw8vwMJ10DthyFcP/DrEgxT1jsgBHhwDdzkm7rts8e4bHHQAXU4HlBv2OPOCS6ozqeA2hS5D3QdTw7wWggqjoPSgyHWBNEdbmaOvjdumjBUHOtea7xy+BsNL3vYBdMJv3rU/VxzDrytDSpO1LzrIkGKtUL3qrwsKVRAPRKRTe4TUsmsXI9EJBhr/wmf+T7cNsi8uodM85ZwTiieCaULoexgfbjMBmNcltrGM7DRmJtpJeHIveD8xa6diQy1CcHCKd62F7Z6bX/GKMhSk1RVHOfKPmIt8bFUuixx8Rx3kyy4D4DDZY6LJkPVWdB2hyt/GsxXToAZdfC9e3vPw33B9fDOV+CnHTBuE1QcH/xMJCJjUds9bmXUPKSAeqS6noPiaUPf/S6Sr6yF2B7ofAU+8024+v7+fcqK3FfYH17ilp028cxn6UGuXrVospYPz7ZQpVfS8FojfOE4+MytEInCFe902WkIbsq8BFPsaoL9AfWLW1wddcjAl293q2VOrIJLS+G9xwV7/mSFKqDuQmi5AYpnQ/mSkc92UrbA1YNHd7klxzuf7D+LhzHwgUPg3Qe5bPXPHvZeu+lFuHcVnL0QvrkCxh8O5UfpmxyRkYruhu5X3P9HeUgB9Uh1Pg+RbVBzjm4+kcLwwrOw6lm3GMdpUyG6E5ra4JlX+vc97xD4nzOgYiqE66D0EPc+LwpwAQ1JXSI4tBZufskFcV1Rlymd4pvVI+gMNbjVCCdtd3M072hz816v3QX7jIfNTdDY6X5MafDnTmmc1VD34WCOZYrdB8eiyS7D3b0Gul5wJSO2C2xn/NvKMHz5BHjnAvjsrfBU/AbO5i74/dPuZ+u33Iw5pQugbBGU7B3MGEXGgshWaLzGTdOZpxRQpyOyFZr/CVXvgOKpuR6NiKexEW6/BS77Obz8MrR1ea9Nq4GTP+vaNWVw84fgfX+FxzbAx46AH34Kqg5wX4srm5ZfTDygNgZKi2BaLSyZAZ88une/oKbM8wtPcOddMAXuX+22vbAlHlD7ZsaYOXPg/QtdqMJlrcsWuOe2x9Vzdj7j/hb0rIe54+G2D8M/n4efPAgbm1zf35zlMvngpqBseg7+thpO/yAsOD0vb7ASyRs2As3X53UwDQqo0xfZDk2/h9oPQfH0XI9GxorGRrj/fjj+eGiI15M9+ih89QvwyBND71tR0ud5MdzyZVfGUblIQXQ+85dyXHKU+xlIOBMBdfybuIWTvYD6xa0uK/t6k9dvxuzgz52PTLH7f6UyPutKrBO6V7j5qM818I4D4cv/gb8vg6P26r3vExvgK/90P5Wl8PlPwOe/BTV12f5XiOS3WIdbVCy6K9cjGZYC6iDYiPsPXrYEyha7r8ijUZd1CPlqTJ9/Hu68E/79b/jvf2HePJg0CR55xOtTXw/f+x5ccol7HonA1VfDrbfCQQe5n332genTXSDV3e2Cq9JSmDABGUV6euC112DjRvjUp6CmxgXNCScfCVvXwfmnANth+grYtGr44+49DYr2geIGl8kM10PJ/qqHLgTJ1kZnJEMd/+C2wH9j4hZo7XalHuBKHyaN0aniQmVu5oGyQ6DndXefza8b4H/P7J+BfmCN127rgu9e5n5mT4LZM2H6vnDSm+Gww9zv+yL9qZY819QElZW936sbNsAtt8Cxx7qYpa7OlUgVFUFXl4tbOjqgrKx3rJTQvRra7nXfABUA/V86EtGoe1N0R+E/L8OTr8HjG9wqWo3xmrraWti2AYoiQImbqum2v8E3/9c7zqpV7sdvzx7YsRy61wJRePQleO5JuOMO9zOU22+H00937csug899zo1j4ULYvt097rWXewPviU+Lduqp8MEP9j7OqlVw3XUwfrz7QxCJwPr1cPLJ7o0P7n+IcNj9sh/fp662p8e9bgzEYgP/jxKk55+H5cvhnHOgOKCbRO+/3/3Pf8gAU/P09PQ+TyTiPtRs3gy7dsHixS749XvhBbjpJtfvrW91j08+6R6vusr1uegiuOIKb5/uVXDxJ+HeBwce472Pw5cOhLZmd60rgGs/DMf+zOtz8L5w+plwzFFAEZx0GhTnuMZVRi7pgDoTNdSJDHWfGxP92ekpNVAU0JLnhax4qvuxp0HVWpddi2xxs49Ed8Khe8HC9e4Did+6be6Hp+FPf3HbVvwN5hzspiNsCcP//tr9njngAJg2Dfbe2yVniotdgJKt37syOkSjsHs3lJS498zrr7v30Lx5Xp9IxP2dWrHC/V1MxAgA48a59yPAbTfD6acCHdBRArNmJTeGz3zGxSwAO3fCgQfAtu29++xVD3Vl7r6Ec9bAj3N04/MQFFCnavVqOO1kWLNh6H5NTfD598FPvhW/cSUCs1qGP/6SBXDe29wvYFMEh42Hbzw7/H5vOwaOq4T2R12m5PB6bxyJDPjKlf33u+EGeN8pbjquWIub8uqxB+Gb3+zf96c/7b/t8cfd/1BE3Feg73qXCxz7qq11QWZNDbS0uP9B//lPeNObXID6oQ/BmjXwyisuS799O7S3Q3U1LFgAW7a4fkce6f2PDPDqq67sobER3v9+9wGhqcll7isr3TGbmtwfnZtuco/gPvTccQd84xvw3HPe8fbe2+2TcMcdcNpp3vNnnnEB83B2b4fqqJuRIVQB558Hy15wr/3iFwPv858boekYsN0Q7YQv/9kFzUM55SrY8SBUT3ABz7id8NdD3C/DuXPddZfRI5lAOVThfncEfu5yd+yZ1i2BvqfDJRBu993UOrPOW4BG3HSSJXOBub23f8TC+bvh4dvg6r/AjQ+6BE1fB0yC8SuhOf6721pY/wBc9/TQ5120CJ56qvcH/+efd9nC8nL3u7Sx0R2vs9MF5rNnu8Bo/nw47jgvq75zJzz2mAvS99vP/U6eMMEde+dO9y3a5Mnu+cSJvcfR3g47drhEzu7d7vdROOzOC4PXjnd2eh8O/Kx1fwsmTUp+eftoNPm+mdLd7YLVwb5paGuDiorUaukjEffv6u52/906OmDrVvff6dVX3fU+5xx37RO6utzf0MTfvNJSt62vAw6AZf+FUFH8v1UXvL4Rfv3r/n0TwTTAT74OSzZDabm7OfmKL8LFPxn+33JWDbTc5krVyjrhyInwrz4B9YY9kAi7dg+wmmkeUECdqmnT4IhDhw+oAW54Bj43AebMcc+PngMf6nCZ5P32c58EJ01y/zMtW+b+Z5q1H7RMhvJFbp8XX4THXhj+XAuPg5Y5MHGaC8hakvyKJBaDaCuwCyhyQXWyX69c9HZY2AVt/3ELIJgSWProwH2bmtxPwpsPg4U90HqnCwSnFcHfnvT6JrS0uF/mCf++FVofA5oh1gzjpsOSeXDPU+71u+4a+PyrXoGJu6Fto1vVL9YO/72hdzANvYNpgGXXwbHlbrqezir4f58d9rIA0HUXhEvcNTGlcPAEWDbMPhe935UMmRAsXw/3vj5wv+pquPBCOOYYmDoVxi32fhHPnwTzD0hujFJ4Qkl8QMpEuUdCeJz7f+fIvVwgXVEMtyz3Xj9gqkqHkmEMFI2DEz/kfgDWrYQ1q+GJx+C66+HFV+H974bKN4PtAAzEuuHunw1x4LgXX4DNv4Pxc93fg3Ad3HcLfDuJfb/4RRdQJ2zfBp/7LKxZO/R+H/0oXHml+7fZGKxb7yUw/Cor3d+djg73u+w734HP+n6vrlnjkigd8SkKjXHfgjY09E8KjR8Pf/6zl/R4/nlXHvfCC+4b2Y4Od1N2ZaX7kFFS4pI173kPfPrTvbP4zzwDH/iA67Nmjfu7XFfnkhOvvALN8SDuBz+AL3/Z+2Bw++3u28XaWhe8r17tvsk94AC3z+rVLvgF92Fgcnw+8lgM/vEP903ytm1uW12dO8bkya5vba375jPRP3E9br0VLr7Y9RlMURGccRzEJrmp5gjB8hWw8mWvz0DBNLj3W/cKl5yzEXhgGfzwx4OfK+HhFXBPrbuOAIfuCwwTUE+aBIvPhdLpQAQ2b4XjT3HTcA7mkH2HH0sOKKBOlTHQ6lvadnwFNFS45X4jITjyVFj4Zpgxw33d4f8fdvZs+MMfUjvfggXep3m/tjb3ybS42P2yaG11v5zABXCLFsNXvuI+nUajLjCNRt0vmJ074YEHXCZ46lQI7dU7k1F/gMtuvvpq//MuXOh+WQG842IoO8b7N+7aBa9tG/7fVFkJv/kz1MS/Uop1wfd/Cw+vdGUQQ+nogo0VsN8R7g93rNULpocydx5UxLNEptj9PPSN4ff71wr40mI3XdmnzoPHlw+/D0DTEpjs+5/+qM3wh/tce9Ik92OM+/Cwfr3bvvg0t0KbMXDwXG+7SEK4Lh6wDPA74Y0+GVz0INwAPRvh02+CTxwFB0+Fs//svX6IpoIbsdn7up+Tz4Rv/GDwfm8+w/1urquDBx8cuE80Bg+H4Ny9gTDYdti8O7lxPHoHtB3r/o7YLjA7XBZ6OI1roOPh+DdsTVA0SPldm+/vZ0sL/PC7bpyJMrkpYfjYKfDLW9xza12We8eO/sc6ZC4sqYK2u4EQ1HbD6ldc9v1h35zgra29ky2b1sEZE2FavVugihBc/2sXOPf6NzW6TL/f9Ch0Pe72sa3QsswFvYnAN/Fv7LvfvjOhejm0vQgUu/+P/36FF0wnzpe4LolxA5ywGDqfcNfVhGB6G3S29r8efpEIXPRxuPPXUDobWjrgfd+C9s6h9wNYvxVCh3glns/e7WKR2lpXBhmLwdq1LqY55BCXXa+udt/e+u/lOvRQ921IU5OLPxoa3H/P5ctd2WlJiUtSVszy9plRB0e8G75fC+H10B2/rg0VsG63u+fg9Pych9rYoX4x57nFixfbpUuXZv/Eq/4Lt/zI1RIePDV+82Ep1Jw3tmf6sNYF7Lt2uU/Hzc3uf+rOTvfL//XX3S+KSZNg332hylcP2tbmgvzmZhfcP/+8+/rq9NPdvtu2ufqt/fd32xp8QcNjj8GNN7r9Jk1yHxQ6O90vg9ZW9wHg9NPhHe/o/ZXaTTe5XwoPPuh+kZWUwEknuXE2N8PRR7usxhFHuP6RiMtijBvnMhgHHuj9Aiwqch9eysrcviUl3i8jkSDt+pm3EuBAKo52Wc1MaH8I2h7wnrd2w74/hp549mzlz2De5zJzbumvo8MFcuPHu1KOxx93j3vv7X5H+hM6d9zhsqlbt7ogp7XVfQO6fXv/47a3u+MA/PjHLjkznERWNaGrK/nfgd/6Jnznu97zp592N2QOpaoKnn8GZu/jgsyeDjjldHjwoeTOuXAhLF0K4S5obYbZC1yZxHDm7w8vveA+OFDmgsZly4bfr6jIBZGJv3sPPAAnnpjcWN/7XvjrX93frx073Dk3buzfr6zM/Q3cEP8GfckSNwnCxInuvXL99e790tDgkn5Tprj3SuLvVSJJB/kzlWP7o9B+P1hfSVTlCW5V1NwY9MIooB6Jng3Q6Ms0m2Kov1gLvIhI5jVe47LEg6l6C5QnUec/Ep0vQsuN3vNtLXDJv+DhtbD/RHj8Mqh9X2bOLbkTibgAKxx2gfiGDS4Aq6hwgXd1tQve+wZh69a5b0QTQdumTS6w6+lx+3R1ueMtXNj7Ru5YzCVCnn3WvVZa6pIk1rqERUuLK5tMHBfca3feCffc4449c6Ybz+TJ7hwtLS7ZUlHhMqYLFrh6cXCv33EHvPSSO9fWre64J5zgjpEIOO+80yVnjo7P+x6Nwr33uiB55053nMQN+dGoKxeZOtUFweXl7pvfhOZmr9Rz/nyXVOrpcdc60T8Uctds/nyvfCYWc0mgoiI3pnHjXFZ4z57e9dKjScdT0Hq791wBdfDyIqA2Iag+G0rnZ38cIjL2tNwEnUPcV1F7XuZW4evZBI1X99/+6HrY1Qbvfj9UvyMz5xaRsav1dhdYQ94G1KqhTlf5kQqmRSR7QnVDv57JhXkGq88+epZ7TCyNLiISpMpTILIZejYP3zdHdDt2Ooqn5vJTkoiMRUMFzCY0fMCdjlCFu19k0PNXZO7cIjJ2mSJXDRDK32k5FVCPlAlD1TvctGgiItky1CweodrMT1sXGur8ylCLSIaE612mOk8poB6pihOgaOLw/UREghSeMMRr4wd/LShFQ5w/2ZUcRURGonQRFOXnzZeqoR6JUD2Uz8j1KERkLApVuExwrK3/a9n4kB8e4hyZWPJcRCTBGCiZletRDEgZ6pEI12g1MBHJncGy1EVTMn/uoc6RyVUaRUTymKJCEZFCM1gmumhaFs49deBFH0xxXt8wJCKSSQqoRUQKTdEAK7KGKjM7Zd4b5ykfeBErlXuIyBimgFpEpNAUTeq/rWRu/20ZO//M/tsUUIvIGKaAWkSk0ITH97+PoyxDy40PpHiAm7JVPy0iY1jeBdTGmNOMMSuNMauNMV/J9XhERPKOCUPxbO951WlQPEAZSKYMdGNiWAG1iIxdeRVQG2PCwG+A04H5wHuNMVrXW0Skr5J93GPxXlB+RHbPHZ7U/wbETK7QKCKS5/IqoAYOA1Zba9daa7uBfwBvz/GYRETyT8l+bmaNXKwcZgwU96mjzsYNkSIieSrfAuppwEbf803xbSIi4heuh/r/B8U5+hXZd4q+8AA3SoqIjBH5FlAPMLkptlcHYy40xiw1xizdsWNHloYlIpKHclm3XLyP1w5VQVizfIjI2JVvAfUmwH/7+HTgdX8Ha+2V1trF1trFEyYMslqYiIhkVvFUCNfF2wNMoyciMobkW0D9NDDXGDPbGFMCnAvcmuMxiYjIQMoOdo8l+wzdT0RklMurgNpaGwE+CdwFvAxcZ61dnttRiYjIgEr2c8uglx6Y65GIiORUUa4H0Je19nbg9lyPQ0REhlE0Ceo/ketRiIjkXF5lqEVERERECo0CahERERGRNCigFhERERFJgwJqEREREZE0KKAWEREREUmDAmoRERERkTQooBYRERERSYMCahERERGRNCigFhERERFJgwJqEREREZE0KKAWEREREUmDAmoRERERkTQooBYRERERSYMCahERERGRNCigFhERERFJgwJqEREREZE0KKAWEREREUmDAmoRERERkTQooBYRERERSYOx1uZ6DCNmjNkBbBjh7uOBnQEOZ6zQdUudrtnI6LqlTtdsZHTdUqdrNjK6bqnLp2u201p72kAvFHRAnQ5jzFJr7eJcj6PQ6LqlTtdsZHTdUqdrNjK6bqnTNRsZXbfUFco1U8mHiIiIiEgaFFCLiIiIiKRhLAfUV+Z6AAVK1y11umYjo+uWOl2zkdF1S52u2cjouqWuIK7ZmK2hFhEREREJwljOUIuIiIiIpG3UBtTGmE8bY14yxiw3xnwmvm2RMeYJY8wyY8xSY8xhvv5fNcasNsasNMacmrOB51gq180YM8sY0xHfvswYc0VOB58jg1yzg4wxjxtjXjTG3GaMqfH113uN1K7bWH6vGWN+b4zZbox5ybetwRhzjzHm1fhjve+1Ad9fxphD49d1tTHml8YYk+1/S7YEeM0ejG9LvO8mZvvfkk2pXDdjzDhjzAPGmFZjzK/7HEfvtdSv2Zh5r6V4zd5sjHkm/n56xhhzom+f/HqfWWtH3Q9wIPASUAEUAfcCc4G7gdPjfc4AHoy35wPPA6XAbGANEM71v6MArtss4KVcjztPr9nTwHHxPh8Bvqf3WlrXbcy+14BjgUP8/37gf4GvxNtfAX483PsLeAo4EjDAHYn/p0fjT4DX7EFgca7/PXl63SqBNwEXA7/ucxy911K/ZmPmvZbiNTsYmBpvHwhsztf32WjNUO8PPGGtbbfWRoCHgLMACyQyhbXA6/H224F/WGu7rLXrgNXAYYw9qV43Gfya7Qs8HO9zD/CueFvvNSfV6zZmWWsfBnb32fx24Np4+1rgHb7t/d5fxpgpQI219nHr/hL9ybfPqBPENcvGOPNNKtfNWttmrf0v0OnvrPcakOI1G2tSvGbPWWsTMcdyoMwYU5qP77PRGlC/BBwb/3qlApdVnQF8BviJMWYj8FPgq/H+04CNvv03xbeNNaleN4DZxpjnjDEPGWOOyfqIc2+wa/YS8LZ4n3Pi20DvtYRUrxvoveY3yVq7BSD+mPh6eLD317R4u+/2sSTVa5bwh/hX8N/M+VfKuTHYdRuM3mupX7OEsfxeS+aavQt4zlrbRR6+z0ZlQG2tfRn4MS7DdSfu67wI8HHgs9baGcBngWviuwz0xh1z05+M4LptAWZaaw8GPgf8zfhqhceCIa7ZR4BLjDHPANVAd3wXvdcY0XUb8++1JA32/tL7bnBDXZv3W2sXAMfEf87L2qgKl95rI6P32hCMMQfg/mZclNg0QLecvs9GZUANYK29xlp7iLX2WNxXC68C5wM3xbtcj/e13iZ6Z8KmM0bLGlK5bvGvSHfF28/gag/nZX/UuTXQNbPWvmKtPcVaeyjwd9y1Ab3X3pDKddN7rZ9t8a88E1+xb49vH+z9tSne7rt9LEn1mmGt3Rx/bAH+xtgsBRnsug1G77XUr5nea0NcM2PMdOBm4IPWWv/f0rx6n43agDpxh6wxZibwTtwf59eB4+JdTsQFiwC3AufG63Jm426Oeiq7I84PqVw3Y8wEY0w43p6Du25rsz3mXBvomvm2hYBvAIlZKfRei0vluum91s+tuA+6xB9v8W3v9/6Kf4XaYow5Iv5V8gd9+4wVKV0zY0yRMWY8gDGmGHgLriRprBnsug1I7zUgxWum9xowyDUzxtQB/wG+aq19NNE5L99nubwjMpM/wCPACtxXySfFt70JeCa+7UngUF//r+OyXisZxXckB3ndcPVMy+PbnwXemuvx59E1+zSwKv7zI+KLKOm9NrLrNpbfa7gPtVuAHlxW5gJgHHAf7sPtfUDDcO8vYDHuj/Qa4Nf+9+Ro+wnimuFmZHgGeCH+3vsFo3xGnhFct/W4b5da4/3n672W+jUba++1VK4ZLrHSBizz/UzMx/eZVkoUEREREUnDqC35EBERERHJBgXUIiIiIiJpUEAtIiIiIpIGBdQiIiIiImlQQC0iIiIikgYF1CIiI2CMicaXCX7JGHO9MabCGDPLGJPS/LHGmA8ZY6Zmapz5IP5v3GGMuXqYfuuMMfv22fZzY8yXjDHHGGNWpHp9RUSyQQG1iMjIdFhrF1lrD8QtkX7xCI/zISCvA2pjTFEAh/mntfajw/T5B3Cu77wh4Oz4vo8AZwQwDhGRwCmgFhFJ3yPAPvF22BhzlTFmuTHmbmNMOYAxZpEx5gljzAvGmJuNMfXGmLNxixP8NZ7tLjfGnGSMec4Y86Ix5vfGmNL4/uuNMd8xxjwbf22/voMwxoSNMT8xxjwdP89F8e3HG2MeNMbcYIx5xRjz1/jqYhhjDjXGPGSMecYYc5dv+d8HjTE/NMY8BHzaGLMkfszH4+d4Kd7vEWPMIt8YHjXGLBzqYg02TtyCD+f6uh4LrLfWbkjtP4eISHYpoBYRSUM8e3s68GJ801zgN9baA4BG3CqPAH8CvmytXRjv+21r7Q3AUuD91tpFgAX+CLzHWrsAKAI+7jvdTmvtIcDlwBcGGM4FQJO1dgmwBPhYfDltgIOBz+BWZpsDHB1f5vhXwNnW2kOB3wM/8B2vzlp7nLX2Z8AfgIuttUcCUV+fq3FZdowx84BSa+0Lw1y2AccZ3y9mjDko3u9cXJAtIpLXFFCLiIxMuTFmGS4gfg24Jr59nbV2Wbz9DDDLGFOLC04fim+/Fpd97Wvf+P6rBul3k/+4A+x/CvDB+LiexC3nOzf+2lPW2k3W2hhu+d5Z8fMdCNwT3+cbwHTf8f4JYIypA6qttY/Ft//N1+d64C3x4PwjuA8EwxlqnH8Hzo1/UHl7/PgiInktiLo4EZGxqCOeVX5DvIqiy7cpCpSncEwzzOuJY0cZ+Pe3Af6ftfauPuM6foBxFcX7L49nnQfSNty4rLXtxph7cMHvu3ElLMMZcJxxfwfuBh4CXrDWbk/ieCIiOaUMtYhIhllrm4A9xphj4pvOwwWMAC1Adbz9Ci6jvc8A/ZJxF/DxeLYYY8w8Y0zlEP1XAhOMMUfG+xcbYw4YYPx7gBZjzBHxTef26XI18EvgaWvt7nTGaa1dA+wCfoTKPUSkQChDLSKSHecDVxhjKoC1wIfj2/8Y394BHBnffn285OFp4IoUznE1rpTj2fhNhzuAdwzW2VrbHb8x8pfxspQi4OfA8gG6XwBcZYxpAx4EmnzHecYY04yrsw5inH8H/ge4OcnjiYjklLHW5noMIiKS54wxVdba1nj7K8AUa+2n48+n4oLs/eI12n33/RCw2Fr7yTTHMAv4d3yqQhGRvKGSDxERScaZiYVsgGOA7wMYYz6Iu7Hw6wMF03EdwOnDLewylHi5zG3AzpEeQ0QkU5ShFhERERFJgzLUIiIiIiJpUEAtIiIiIpIGBdQiIiIiImlQQC0iIiIikgYF1CIiIiIiaVBALSIiIiKShv8PsAR1cmct7oIAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 864x576 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot_new(vs_inf, 0, pulse=0)"
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2ae94611-5d71-4c11-806c-04905607be1d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "SCS Toolbox (p005576)",
"language": "python",
"name": "toolbox_p005576"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}