Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"id": "6386344d-b7ac-440d-9926-f03af4ff9d6f",
"metadata": {},
"source": [
"# Training the Virtual Spectrometer with Viking and PES data"
]
},
{
"cell_type": "markdown",
"id": "1711c3b9-5065-4a44-8b1b-a3e861b92bc5",
"metadata": {},
"source": [
"The objective here is to use the Viking detector to train the Virtual Spectrometer. This means that we will fit (\"train\") a model, which maps the PES measurements with the Viking measurements and use their correlation to interpolate in cases where the Viking is not available.\n",
"\n",
"The following conditions must be satisfied for this to be possible:\n",
"* The PES settings are the same in the \"training\" run and interesting run.\n",
"* The photon energies of the beam in \"training\" and in the interesting run are similar.\n",
"* The beam intensities are similar.\n",
"* The sample between PES and Viking is transparent.\n",
"* 1 pulse trains in \"training\".\n",
"\n",
"The following software implements:\n",
"1. retrieve data and calibrate Viking using the SCS toolbox;\n",
"2. the Virtual Spectrometer training excluding the last 10 trains avalable so that we can use them for validation;\n",
"3. the Virtual Spectrometer resolution function plotting;\n",
"4. comparison of the Virtual spectrometer results in a selected set in which the Viking data was available.\n",
"\n",
"Finally, the model is applied in data without the grating. This last part may be applied independently from the rest if the modal has been written in a `joblib` file."
]
},
{
"cell_type": "code",
"id": "4a627555-522a-4c9d-b6b2-6ff77148eaab",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"# replace this \n",
"sys.path.append('/home/danilo/scratch/karabo/devices/pes_to_spec')"
]
},
{
"cell_type": "code",
"id": "78bbc433-ac5e-44c3-8740-3e93800c4532",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cupy is not installed in this environment, no access to the GPU\n"
]
}
],
"source": [
"import numpy as np\n",
"import dask.array as da\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n",
"from pes_to_spec.model import Model\n",
"\n",
"import toolbox_scs as tb\n",
"from euxfel_bunch_pattern import indices_at_sase\n",
"\n",
"from scipy.signal import fftconvolve"
]
},
{
"cell_type": "markdown",
"id": "c7609899-5bc0-4211-ae97-010b3edcf676",
"metadata": {},
"source": [
"## Get data and calibrate Viking"
]
},
{
"cell_type": "code",
"id": "95da5231-e454-4f7f-a1ce-eef7e52fe457",
"metadata": {},
"outputs": [],
"source": [
"# pes channel names to be used for reference later\n",
"pes_map = dict(channel_1_A=\"PES_S_raw\",\n",
" channel_1_B=\"PES_SSW_raw\",\n",
" channel_1_C=\"PES_SW_raw\",\n",
" channel_1_D=\"PES_WSW_raw\",\n",
" channel_2_A=\"PES_W_raw\",\n",
" channel_2_B=\"PES_WNW_raw\",\n",
" channel_2_C=\"PES_NW_raw\",\n",
" channel_2_D=\"PES_NNW_raw\",\n",
" channel_3_A=\"PES_E_raw\",\n",
" channel_3_B=\"PES_ESE_raw\",\n",
" channel_3_C=\"PES_SE_raw\",\n",
" channel_3_D=\"PES_SSE_raw\",\n",
" channel_4_A=\"PES_N_raw\",\n",
" channel_4_B=\"PES_NNE_raw\",\n",
" channel_4_C=\"PES_NE_raw\",\n",
" channel_4_D=\"PES_ENE_raw\",\n",
" )"
]
},
{
"cell_type": "code",
"id": "48bb4c8c-04ad-44d5-b123-643ce3253ceb",
"metadata": {},
"outputs": [],
"source": [
"proposal = 2953\n",
"refNB = 322 # run containing the data without sample\n",
"darkNB = 375 # dark run"
]
},
{
"cell_type": "code",
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"id": "0a467b2f-5f99-4ed8-bb1d-cb429454d3ce",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"newton: only 50.0% of trains (629 out of 1259) contain data.\n"
]
}
],
"source": [
"v = tb.Viking(proposal)\n",
"fields = ['XTD10_SA3',\n",
" *list(pes_map.values()) # add PES\n",
" ]\n",
"v.FIELDS += fields\n",
"v.X_RANGE = slice(0, 1500) # define the dispersive axis range of interest (in pixels)\n",
"v.Y_RANGE = slice(29, 82) # define the non-dispersive axis range of interest (in pixels)\n",
"v.ENERGY_CALIB = [1.47802667e-06, 2.30600328e-02, 5.15884589e+02] # energy calibration, see further below\n",
"v.BL_POLY_DEG = 1 # define the polynomial degree for baseline subtraction\n",
"v.BL_SIGNAL_RANGE = [500, 545] # define the range containing the signal, to be excluded for baseline subtraction\n",
"\n",
"v.load_dark(darkNB) # load a dark image (averaged over the dark run number)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4f6124d9-8c1b-44f8-a078-07475a9674fc",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"newton: only 50.0% of trains (661 out of 1323) contain data.\n"
]
},
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n",
"Dimensions: (trainId: 660, newt_y: 53, newt_x: 1500,\n",
" PESsampleId: 700000, pulse_slot: 2700, sa3_pId: 43)\n",
"Coordinates:\n",
" * trainId (trainId) uint64 1473952798 1473952800 ... 1473954118\n",
" * sa3_pId (sa3_pId) int64 1056 1088 1120 1152 ... 2336 2368 2400\n",
" * newt_x (newt_x) float64 515.9 515.9 515.9 ... 553.7 553.7 553.8\n",
"Dimensions without coordinates: newt_y, PESsampleId, pulse_slot\n",
"Data variables:\n",
" newton (trainId, newt_y, newt_x) float64 943.0 800.0 ... 758.0\n",
" PES_S_raw (trainId, PESsampleId) int16 -2 1 1 2 -1 ... 2 -1 3 -3 1\n",
" bunchPatternTable (trainId, pulse_slot) uint32 2146089 2048 ... 16777216\n",
" XTD10_SA3 (trainId, sa3_pId) float32 1.674e+03 ... 1.465e+03\n",
" spectrum (trainId, newt_x) float64 941.8 960.7 ... 1.319e+03\n",
" spectrum_nobl (trainId, newt_x) float64 -25.84 -7.057 ... -41.9 -25.1\n",
"Attributes:\n",
" runFolder: /gpfs/exfel/exp/SCS/202202/p002953/raw/r0322\n",
" vbin:: 4\n",
" hbin: 1\n",
" startX: 1\n",
" endX: 2048\n",
" startY: 1\n",
" endY: 512\n",
" temperature: -50.04199981689453\n",
" high_capacity: 0\n",
" exposure_s: 0.0004\n",
" gain: 2\n",
" photoelectrons_per_count: 2.05</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-fd414bf9-f1a6-4703-9482-124ae0ab5672' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-fd414bf9-f1a6-4703-9482-124ae0ab5672' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>trainId</span>: 660</li><li><span>newt_y</span>: 53</li><li><span class='xr-has-index'>newt_x</span>: 1500</li><li><span>PESsampleId</span>: 700000</li><li><span>pulse_slot</span>: 2700</li><li><span class='xr-has-index'>sa3_pId</span>: 43</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-e1d1f390-4e9c-4d9c-85e5-e4b87a9edb83' class='xr-section-summary-in' type='checkbox' checked><label for='section-e1d1f390-4e9c-4d9c-85e5-e4b87a9edb83' class='xr-section-summary' >Coordinates: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>trainId</span></div><div class='xr-var-dims'>(trainId)</div><div class='xr-var-dtype'>uint64</div><div class='xr-var-preview xr-preview'>1473952798 ... 1473954118</div><input id='attrs-1b4de921-649c-4306-bd88-aeb2636fb1a2' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-1b4de921-649c-4306-bd88-aeb2636fb1a2' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1b9e907f-88dc-4fe5-ad5f-6d3b99ab026e' class='xr-var-data-in' type='checkbox'><label for='data-1b9e907f-88dc-4fe5-ad5f-6d3b99ab026e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1473952798, 1473952800, 1473952802, ..., 1473954114, 1473954116,\n",
" 1473954118], dtype=uint64)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>sa3_pId</span></div><div class='xr-var-dims'>(sa3_pId)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1056 1088 1120 ... 2336 2368 2400</div><input id='attrs-c92acbc3-3161-4c7e-91e1-028fe19b9e12' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c92acbc3-3161-4c7e-91e1-028fe19b9e12' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-413f089f-279a-4500-9a48-8963033f6f29' class='xr-var-data-in' type='checkbox'><label for='data-413f089f-279a-4500-9a48-8963033f6f29' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1056, 1088, 1120, 1152, 1184, 1216, 1248, 1280, 1312, 1344, 1376, 1408,\n",
" 1440, 1472, 1504, 1536, 1568, 1600, 1632, 1664, 1696, 1728, 1760, 1792,\n",
" 1824, 1856, 1888, 1920, 1952, 1984, 2016, 2048, 2080, 2112, 2144, 2176,\n",
" 2208, 2240, 2272, 2304, 2336, 2368, 2400])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>newt_x</span></div><div class='xr-var-dims'>(newt_x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>515.9 515.9 515.9 ... 553.7 553.8</div><input id='attrs-eedd9586-b8a1-4b1a-90bc-55ed7a8d6ded' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-eedd9586-b8a1-4b1a-90bc-55ed7a8d6ded' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a2150d70-3c44-475b-9b95-bab1390eee7b' class='xr-var-data-in' type='checkbox'><label for='data-a2150d70-3c44-475b-9b95-bab1390eee7b' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([515.884589, 515.907651, 515.930715, ..., 553.717729, 553.745216,\n",
" 553.772706])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-9a884bb4-5398-41ec-9b92-9f531e262e24' class='xr-section-summary-in' type='checkbox' checked><label for='section-9a884bb4-5398-41ec-9b92-9f531e262e24' class='xr-section-summary' >Data variables: <span>(6)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>newton</span></div><div class='xr-var-dims'>(trainId, newt_y, newt_x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>943.0 800.0 697.0 ... 805.0 758.0</div><input id='attrs-8457b964-d705-45a0-b43a-54488cbae436' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8457b964-d705-45a0-b43a-54488cbae436' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-1030b7a3-64bc-4972-8c8e-3922ad3f8c13' class='xr-var-data-in' type='checkbox'><label for='data-1030b7a3-64bc-4972-8c8e-3922ad3f8c13' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[[ 943., 800., 697., ..., 985., 1057., 1038.],\n",
" [ 842., 921., 957., ..., 1037., 1041., 978.],\n",
" [ 744., 587., 558., ..., 1094., 925., 1030.],\n",
" ...,\n",
" [ 600., 688., 836., ..., 970., 1061., 1204.],\n",
" [ 681., 625., 675., ..., 921., 938., 887.],\n",
" [ 695., 593., 822., ..., 666., 582., 829.]],\n",
"\n",
" [[ 918., 949., 901., ..., 892., 976., 905.],\n",
" [ 857., 912., 1083., ..., 731., 757., 758.],\n",
" [ 630., 575., 599., ..., 1058., 967., 914.],\n",
" ...,\n",
" [ 741., 776., 874., ..., 784., 961., 1391.],\n",
" [ 684., 971., 878., ..., 954., 1218., 1041.],\n",
" [ 831., 647., 744., ..., 643., 690., 733.]],\n",
"\n",
" [[ 634., 709., 727., ..., 985., 963., 836.],\n",
" [ 553., 612., 787., ..., 1169., 788., 903.],\n",
" [ 668., 618., 621., ..., 785., 863., 835.],\n",
" ...,\n",
"...\n",
" ...,\n",
" [ 920., 815., 759., ..., 844., 1050., 839.],\n",
" [1080., 956., 661., ..., 968., 1001., 915.],\n",
" [ 811., 918., 652., ..., 873., 823., 1034.]],\n",
"\n",
" [[ 733., 606., 582., ..., 880., 1039., 1139.],\n",
" [ 784., 806., 787., ..., 1075., 1125., 827.],\n",
" [ 889., 848., 957., ..., 962., 1071., 811.],\n",
" ...,\n",
" [ 860., 649., 578., ..., 962., 1151., 985.],\n",
" [ 845., 663., 688., ..., 836., 978., 1340.],\n",
" [ 732., 784., 586., ..., 734., 872., 829.]],\n",
"\n",
" [[ 697., 934., 742., ..., 873., 753., 931.],\n",
" [ 694., 730., 774., ..., 802., 1020., 1206.],\n",
" [ 697., 956., 694., ..., 700., 785., 899.],\n",
" ...,\n",
" [ 799., 717., 918., ..., 898., 951., 1050.],\n",
" [ 870., 949., 918., ..., 911., 1283., 1080.],\n",
" [ 894., 627., 652., ..., 1032., 805., 758.]]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_S_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-2 1 1 2 -1 1 0 ... -2 2 -1 3 -3 1</div><input id='attrs-6687d2f9-7038-4d51-855f-5a4192050329' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6687d2f9-7038-4d51-855f-5a4192050329' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-3fcb785d-f744-4a67-9f9b-56245bf972d3' class='xr-var-data-in' type='checkbox'><label for='data-3fcb785d-f744-4a67-9f9b-56245bf972d3' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-2, 1, 1, ..., 4, -3, -2],\n",
" [ 1, 0, -1, ..., 3, -2, 0],\n",
" [-1, 6, 0, ..., 1, -4, 1],\n",
" ...,\n",
" [-2, 1, -1, ..., -1, 3, 0],\n",
" [-1, 4, 0, ..., 0, 2, 1],\n",
" [-2, 1, 0, ..., 3, -3, 1]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>bunchPatternTable</span></div><div class='xr-var-dims'>(trainId, pulse_slot)</div><div class='xr-var-dtype'>uint32</div><div class='xr-var-preview xr-preview'>2146089 2048 ... 16777216 16777216</div><input id='attrs-4db22c03-4d77-4288-b1e7-e9e7876e4dfa' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4db22c03-4d77-4288-b1e7-e9e7876e4dfa' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-37bf01d9-89b2-4ed9-945a-7a9e89759cb3' class='xr-var-data-in' type='checkbox'><label for='data-37bf01d9-89b2-4ed9-945a-7a9e89759cb3' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 2146089, 2048, 2099241, ..., 16777216, 16777216, 16777216],\n",
" [ 2146089, 2048, 2099241, ..., 16777216, 16777216, 16777216],\n",
" [ 2211625, 2048, 2099241, ..., 16777216, 16777216, 16777216],\n",
" ...,\n",
" [ 2146089, 2048, 2099241, ..., 16777216, 16777216, 16777216],\n",
" [ 2146089, 2048, 2099241, ..., 16777216, 16777216, 16777216],\n",
" [ 2146089, 2048, 2099241, ..., 16777216, 16777216, 16777216]],\n",
" dtype=uint32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>XTD10_SA3</span></div><div class='xr-var-dims'>(trainId, sa3_pId)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1.674e+03 1.781e+03 ... 1.465e+03</div><input id='attrs-9f098230-2651-4ea6-b80e-1c462eeb6400' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9f098230-2651-4ea6-b80e-1c462eeb6400' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a216fc85-9c40-4153-92ec-485e03862001' class='xr-var-data-in' type='checkbox'><label for='data-a216fc85-9c40-4153-92ec-485e03862001' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[1673.9749, 1780.605 , 1452.1677, ..., 1836.0759, 1695.688 ,\n",
" 1458.0745],\n",
" [2012.4326, 1767.7134, 1716.7632, ..., 1651.4255, 1813.9778,\n",
" 1431.3564],\n",
" [1630.8784, 1645.9148, 1469.2832, ..., 1508.0568, 1385.6311,\n",
" 1416.7161],\n",
" ...,\n",
" [1507.3145, 1752.1653, 1686.9208, ..., 1737.3125, 1577.063 ,\n",
" 1616.5239],\n",
" [2101.6008, 1569.2412, 1855.7173, ..., 1483.9696, 1664.9822,\n",
" 1348.7126],\n",
" [1564.1768, 1731.567 , 1535.6467, ..., 1721.9434, 1681.0325,\n",
" 1465.4915]], dtype=float32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>spectrum</span></div><div class='xr-var-dims'>(trainId, newt_x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>941.8 960.7 ... 1.302e+03 1.319e+03</div><input id='attrs-251bd6e7-46e5-4ecf-b133-cfdf591daf4a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-251bd6e7-46e5-4ecf-b133-cfdf591daf4a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7971d60c-80fc-4061-92d5-9629bf06c08d' class='xr-var-data-in' type='checkbox'><label for='data-7971d60c-80fc-4061-92d5-9629bf06c08d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 941.7556739 , 960.7466906 , 985.17017035, ..., 1429.04684533,\n",
" 1345.94695049, 1329.10718964],\n",
" [1078.21605126, 1053.65423777, 1074.17111375, ..., 1328.01665665,\n",
" 1424.27242218, 1363.57039719],\n",
" [ 935.14152295, 949.06555853, 981.37960431, ..., 1409.16571326,\n",
" 1329.469592 , 1194.42605757],\n",
" ...,\n",
" [1025.26416446, 1002.32687928, 985.82771752, ..., 1286.78458118,\n",
" 1334.07242218, 1294.76001983],\n",
" [1083.24435314, 1097.98065287, 1044.15601941, ..., 1231.7053359 ,\n",
" 1391.47242218, 1360.74681228],\n",
" [1022.09246635, 1066.147634 , 1049.91922696, ..., 1362.59590193,\n",
" 1302.00732785, 1319.01190662]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>spectrum_nobl</span></div><div class='xr-var-dims'>(trainId, newt_x)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>-25.84 -7.057 17.15 ... -41.9 -25.1</div><input id='attrs-64ed0922-3f72-4788-a79a-233531435e95' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-64ed0922-3f72-4788-a79a-233531435e95' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b632a8a8-d6ed-41ef-add6-95044c150956' class='xr-var-data-in' type='checkbox'><label for='data-b632a8a8-d6ed-41ef-add6-95044c150956' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -25.83624416, -7.0570592 , 17.15456166, ..., 113.93823559,\n",
" 30.58586118, 13.49359361],\n",
" [ 132.95311623, 108.13436457, 128.39426944, ..., -38.76150904,\n",
" 57.18801513, -3.82028416],\n",
" [ -4.23122332, 9.49350667, 41.60822133, ..., 142.82583547,\n",
" 62.89216441, -72.38894537],\n",
" ...,\n",
" [ 22.22432542, -0.8607938 , -17.50780854, ..., 41.21831883,\n",
" 88.32995832, 48.8413355 ],\n",
" [ 80.40705362, 94.91392577, 40.85983533, ..., -147.51518149,\n",
" 11.97845297, -19.02063816],\n",
" [ -34.8527069 , 9.02766964, -7.37555092, ..., 18.90036362,\n",
" -41.89654178, -25.10031672]])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-a2ef37bc-70b0-4dd0-9e8a-f29718e83d0f' class='xr-section-summary-in' type='checkbox' ><label for='section-a2ef37bc-70b0-4dd0-9e8a-f29718e83d0f' class='xr-section-summary' >Indexes: <span>(3)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>trainId</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-ba3f0e5c-908c-4771-9ddd-5b0f4e19029d' class='xr-index-data-in' type='checkbox'/><label for='index-ba3f0e5c-908c-4771-9ddd-5b0f4e19029d' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([1473952798, 1473952800, 1473952802, 1473952804, 1473952806, 1473952808,\n",
" 1473952810, 1473952812, 1473952814, 1473952816,\n",
" ...\n",
" 1473954100, 1473954102, 1473954104, 1473954106, 1473954108, 1473954110,\n",
" 1473954112, 1473954114, 1473954116, 1473954118],\n",
" dtype='uint64', name='trainId', length=660))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>sa3_pId</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-94832636-3d5a-4603-ac77-823aa8880850' class='xr-index-data-in' type='checkbox'/><label for='index-94832636-3d5a-4603-ac77-823aa8880850' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([1056, 1088, 1120, 1152, 1184, 1216, 1248, 1280, 1312, 1344, 1376, 1408,\n",
" 1440, 1472, 1504, 1536, 1568, 1600, 1632, 1664, 1696, 1728, 1760, 1792,\n",
" 1824, 1856, 1888, 1920, 1952, 1984, 2016, 2048, 2080, 2112, 2144, 2176,\n",
" 2208, 2240, 2272, 2304, 2336, 2368, 2400],\n",
" dtype='int64', name='sa3_pId'))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>newt_x</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-139691c8-7ea6-484d-9e69-9f8228575d00' class='xr-index-data-in' type='checkbox'/><label for='index-139691c8-7ea6-484d-9e69-9f8228575d00' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([ 515.884589, 515.9076505108267, 515.9307149777067,\n",
" 515.9537824006401, 515.9768527796267, 515.9999261146668,\n",
" 516.0230024057602, 516.0460816529069, 516.0691638561069,\n",
" 516.0922490153603,\n",
" ...\n",
" 553.525404882067, 553.5528709123703, 553.5803398987268,\n",
" 553.6078118411368, 553.6352867396001, 553.6627645941168,\n",
" 553.6902454046867, 553.71772917131, 553.7452158939867,\n",
" 553.7727055727166],\n",
" dtype='float64', name='newt_x', length=1500))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-61ad767c-b93f-436b-a3b4-625a410aa189' class='xr-section-summary-in' type='checkbox' ><label for='section-61ad767c-b93f-436b-a3b4-625a410aa189' class='xr-section-summary' >Attributes: <span>(12)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>runFolder :</span></dt><dd>/gpfs/exfel/exp/SCS/202202/p002953/raw/r0322</dd><dt><span>vbin: :</span></dt><dd>4</dd><dt><span>hbin :</span></dt><dd>1</dd><dt><span>startX :</span></dt><dd>1</dd><dt><span>endX :</span></dt><dd>2048</dd><dt><span>startY :</span></dt><dd>1</dd><dt><span>endY :</span></dt><dd>512</dd><dt><span>temperature :</span></dt><dd>-50.04199981689453</dd><dt><span>high_capacity :</span></dt><dd>0</dd><dt><span>exposure_s :</span></dt><dd>0.0004</dd><dt><span>gain :</span></dt><dd>2</dd><dt><span>photoelectrons_per_count :</span></dt><dd>2.05</dd></dl></div></li></ul></div></div>"
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (trainId: 660, newt_y: 53, newt_x: 1500,\n",
" PESsampleId: 700000, pulse_slot: 2700, sa3_pId: 43)\n",
"Coordinates:\n",
" * trainId (trainId) uint64 1473952798 1473952800 ... 1473954118\n",
" * sa3_pId (sa3_pId) int64 1056 1088 1120 1152 ... 2336 2368 2400\n",
" * newt_x (newt_x) float64 515.9 515.9 515.9 ... 553.7 553.7 553.8\n",
"Dimensions without coordinates: newt_y, PESsampleId, pulse_slot\n",
"Data variables:\n",
" newton (trainId, newt_y, newt_x) float64 943.0 800.0 ... 758.0\n",
" PES_S_raw (trainId, PESsampleId) int16 -2 1 1 2 -1 ... 2 -1 3 -3 1\n",
" bunchPatternTable (trainId, pulse_slot) uint32 2146089 2048 ... 16777216\n",
" XTD10_SA3 (trainId, sa3_pId) float32 1.674e+03 ... 1.465e+03\n",
" spectrum (trainId, newt_x) float64 941.8 960.7 ... 1.319e+03\n",
" spectrum_nobl (trainId, newt_x) float64 -25.84 -7.057 ... -41.9 -25.1\n",
"Attributes:\n",
" runFolder: /gpfs/exfel/exp/SCS/202202/p002953/raw/r0322\n",
" vbin:: 4\n",
" hbin: 1\n",
" startX: 1\n",
" endX: 2048\n",
" startY: 1\n",
" endY: 512\n",
" temperature: -50.04199981689453\n",
" high_capacity: 0\n",
" exposure_s: 0.0004\n",
" gain: 2\n",
" photoelectrons_per_count: 2.05"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_train = v.from_run(refNB) # load refNB. The `newton` variable contains the CCD images.\n",
"v.integrate(data_train) # integrate over the non-dispersive dimension \n",
"v.removePolyBaseline(data_train) # remove baseline\n",
"data_train"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "294b5f3a-1d59-444e-80ab-4834d26d62dc",
"metadata": {},
"outputs": [],
"source": [
"# transform PES data into the format expected\n",
"pes_data = {k: da.from_array(data_train[item].to_numpy())\n",
" for k, item in pes_map.items() if item in data_train}\n",
"xgm = data_train.XTD10_SA3.isel(sa3_pId=0).to_numpy()[:, np.newaxis]"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "b477bf49-f5ca-4df0-b6ed-a270ee35cd28",
"metadata": {},
"outputs": [],
"source": [
"channels = tuple(pes_data.keys())"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "8f154e38-d208-477e-9d9c-ef2a632514c8",
"metadata": {},
"outputs": [],
"source": [
"energy = data_train.newt_x.to_numpy()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "0c5ff2a0-0737-417d-9f57-158d4fbd8090",
"metadata": {},
"outputs": [],
"source": [
"vik = data_train.spectrum.to_numpy()"
]
},
{
"cell_type": "markdown",
"id": "995e2ac0-1898-46dd-b95f-f65a24496871",
"metadata": {},
"source": [
"## Train Virtual Spectrometer"
]
},
{
"cell_type": "markdown",
"id": "9cbf75c8-fbe0-42ec-af85-6194aede91f5",
"metadata": {},
"source": [
"So far we have only done pre-processing due to experimental problems with some data not being available in certain train IDs.\n",
"\n",
"Let's finally take a look at the data before training the model."
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "63b35dac-ad50-4124-b6f8-e1ceea667b4d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2ad645bdbb50>]"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD4CAYAAAAKA1qZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2JElEQVR4nO3deXhb1Zn48e8ryZL3bHY2OyuEJQkQkhTCvkMKLWHoUFJoSQvTtJTSdYbC/GCGDg2l7UwX9qaUspRCU5ZC2UPKHiA4ISQkIWRPnM2OE8e7rOX8/rhX8rUt23K8XMl6P8/jR1dH98qvryW9Oss9R4wxKKWUykwetwNQSinlHk0CSimVwTQJKKVUBtMkoJRSGUyTgFJKZTCf2wF0paioyIwfP97tMJRSKm0UFRXxyiuvvGKMmd3VvimfBMaPH09ZWZnbYSilVFoRkaJk9kuqOUhEfigia0TkExF5XESyRWSoiCwWkQ327RDH/jeJyEYRWS8iFzjKZ4jIavuxO0VEuv+nKaWU6i1dJgERKQG+B8w0xkwFvMBc4EZgiTFmErDEvo+ITLYfnwLMBu4VEa/9dPcB84FJ9k+XVRWllFJ9J9mOYR+QIyI+IBfYBcwBHrYffxi4xN6eAzxhjAkaY7YAG4ETRGQUUGiMec9Ylyk/4jhGKaWUC7pMAsaYncD/AtuB3cBBY8yrwAhjzG57n93AcPuQEmCH4ynK7bISe7tteTsiMl9EykSkrLKysnt/kVJKqaQl0xw0BOvb/QRgNJAnIl/t7JAEZaaT8vaFxiw0xsw0xswsLi7uKkSllFKHKJnmoHOBLcaYSmNMCHgaOBnYazfxYN9W2PuXA2Mcx5diNR+V29tty5VSSrkkmSSwHZglIrn2aJ5zgHXAc8A8e595wLP29nPAXBEJiMgErA7gZXaTUa2IzLKf5yrHMUoppVzQ5XUCxpgPRORJYAUQBj4CFgL5wCIRuQYrUVxm779GRBYBa+39rzPGROynuxZ4CMgBXrJ/lOq2jRW17Kpu4vQjtLlQqZ6QVF9PYObMmUYvFlNtjb/xBQC23nGRy5EolZpEZLkxZmZX++ncQSrtBMOR+Haqf4lRKtVpElBpp7G5JQk0hiKd7KmU6oomAZV2GhxJoLoh5GIkSqU/TQIq7Ti//R9s1CSgVE9oElBpx9kcdKCh2cVIlEp/mgRU2qmobYpvNwS1T0CpntAkoNLOzgON8e3mSNTFSJRKf5oEVNppCrV88DeHNQko1ROaBFTacX771ySgVM9oElBpozkcxRhD0DE6KKjNQUr1SMqvMawUQDRqOOLml/j6yeMJZLV8d9GagFI9ozUBlRZiTUAPLd1KcziK32u9dDUJKNUzmgRUWnD2AwTDUfKzrUqsJgGlekaTgEoLIceH/YH6ZrJ9HnweaTWZnFKq+zQJqLTgrAlU1TUTyPLi93m0JqBUD2kSUGkhFG6ZMrqmKYTf67GSgI4OUqpHNAmotOD8sK8LhvH7PAS0JqBUj2kSUGkh5EgCtU1hAj6PNgcp1Qs0Cai00DoJhPD7PPi9Hirrgi5GpVT66zIJiMiRIrLS8VMjIj8QkaEislhENti3QxzH3CQiG0VkvYhc4CifISKr7cfuFBHpqz9Mpbed1Y384ImPWPjWJowxrZJA1IDf58HrEdbvqXUxSqXSX5dJwBiz3hgzzRgzDZgBNADPADcCS4wxk4Al9n1EZDIwF5gCzAbuFRGv/XT3AfOBSfbP7F79a9SAccOTH/P3lbu4/cVP2VsTpDncei1hv9fDjHFDiOoaw0r1SHebg84BNhljtgFzgIft8oeBS+ztOcATxpigMWYLsBE4QURGAYXGmPeMtTr4I45jlGol6mjqD4Yj7UYBBbK8BHxegtonoFSPdDcJzAUet7dHGGN2A9i3w+3yEmCH45hyu6zE3m5b3o6IzBeRMhEpq6ys7GaIaiDI9Xvj25sq61pdLAbEh4iGdIioUj2SdBIQET9wMfC3rnZNUGY6KW9faMxCY8xMY8zM4uLiZENUA0huoGVuw6sfKuP9zVWtHo91DIci2hykVE90pybweWCFMWavfX+v3cSDfVthl5cDYxzHlQK77PLSBOVKtZPnqAkArN/bugM44POQ5fUQiRoiUU0ESh2q7iSBr9DSFATwHDDP3p4HPOsonysiARGZgNUBvMxuMqoVkVn2qKCrHMeoDLZjfwPjb3yBN9ZXdLhPU6j1HEEBn4csn1W51CYhpQ5dUklARHKB84CnHcV3AOeJyAb7sTsAjDFrgEXAWuBl4DpjTOwdfC3wAFZn8SbgpV74G1SaW7H9AAB/K2vpMmps86Ff3RBqdT/WHAS6zrBSPZHUojLGmAZgWJuyKqzRQon2XwAsSFBeBkztfphqIPN6rG/0zuGeTaEIY4bmsGO/taj8gbZJwGs1BwHtOo2VUsnTK4aV64L2wvHOJNAYijI0L8Cnt1mXklQ3NLc6JtueRRTQzmGlekCTgHJddaP1Ld/Zv9sUipCT5SE7y8uwPD/hNp2/gayWmoDOH6TUodMkoFx30E4CzlE+jc0RsrOsEUJ5gfatltboIKsZSfsElDp0mgSU62rsJBBLBgBVdUGG5QWAlgvHYn0HAAGfN94xrKODlDp0mgSU62Lt/QfsW2MMFbVBigusJBCw2/5jH/qxspY+AU0CSh0qTQLKdbEaQGwYaHMkSjhqKLAXk4+1/ceaf6B1n4AmAaUOXVJDRJXqS7Ek0NhsXRsQmxQuVgOIfdjHvvkDZPu8xGYi10nklDp0mgSU62KjgxpDEYwx8auDY0nAZ9cAspzNQVkt2zo6SKlDp0lAua7G0SEcDEfj1w0E7NFBsb6A2GghsDqGY/fbXk2slEqe9gko19U2heMf9E2hSIfNQQFf647hEYVWx/Hemqb+DFepAUWTgHJdKBKlMMeqlDaFoo7mIOubfpb94Z/jb10TyA/4yMnyUlGr6wwrdag0CShXRaOGqIH8QCwJROJDRYfm+YGWUUHZPkcSyPIgIowoDLCrurGfo1Zq4NAkoFwVmw4i3x4O2hiKUGl/sy/Kt5JArEaQ7egMHpSTBcCUkkGs3FHdX+EqNeBoElCuCtuLCTtrArGO4tgHfew2N+Cj0E4WsU7h4QUB6prC/RqzUgOJjg5SrorXBALWB31jKEKjPToo12+9PGNJwO/18MoPT6eqrmVG0Ty/j9pgmGjU4PEkWsFUKdUZrQkoV4XtaaBjVwcHQ1Eam61v9rHRQINzrSQQNYZRg3KYWjIofvzybdaCNPe8vrHfYlZqINEkoFwVjrRuDrJqAhFysrzxb/bOi8TaOrbUSghb9tX3caRKDUyaBJSrYs1BsSGiDc0RGpojrYaDxoaM5mR52x3/4/OPBGDEoOy+DlWpAUmTgHJVrDmoMNtq8vnTu1tYt7um1Qf+7KkjOWpkAd8647B2x/t9HvIDvvhVxpW1Qc781ets2FvbD9Erlf40CShXhezRQbHO3zW7alixvbpVTaAoP8DLPzidCUV5CZ8j4PPQHLFqC69/WsHWqgbufWNTH0eu1MCQVBIQkcEi8qSIfCoi60TkJBEZKiKLRWSDfTvEsf9NIrJRRNaLyAWO8hkistp+7E6JTQOpMlZsNbG2q4fl+ts3/XTE7/PEawLYr6hYE5JSqnPJ1gR+B7xsjDkKOA5YB9wILDHGTAKW2PcRkcnAXGAKMBu4V0Ri7+j7gPnAJPtndi/9HSpNxdYCaNv5m52g/b8jfp8nvsTkPz7eBbR0NCulOtdlEhCRQuB04I8AxphmY0w1MAd42N7tYeASe3sO8IQxJmiM2QJsBE4QkVFAoTHmPWOMAR5xHKMyVKwm4FwwBiCvGzWBgM8Tn056n30NQewKZKVU55KpCUwEKoE/ichHIvKAiOQBI4wxuwHs2+H2/iXADsfx5XZZib3dtrwdEZkvImUiUlZZWdmtP0ill5DdMez1CB//9/nx8uEFyY/28fs88ZlHY1cb6xoDSiUnmSTgA6YD9xljjgfqsZt+OpCond90Ut6+0JiFxpiZxpiZxcXFSYSo0lXY0Rw0KCeLi44ZBcDIbgz5DPi88Q/9WBLQ1caUSk4ySaAcKDfGfGDffxIrKey1m3iwbysc+49xHF8K7LLLSxOUqwwWaw7y2heG1Qatq4VHdSMJ+L0eguEIkaiJH69JQKnkdJkEjDF7gB0icqRddA6wFngOmGeXzQOetbefA+aKSEBEJmB1AC+zm4xqRWSWPSroKscxKkOF2vQJzDtpHEX5AY4tHZz0c/jtPgHnCmXNYR0dpFQyku09ux54TET8wGbgG1gJZJGIXANsBy4DMMasEZFFWIkiDFxnjIm9I68FHgJygJfsH5XBIvZ1Aj6P9X3knKNHUHbziG49R8DuEzjYZplKpVTXkkoCxpiVwMwED53Twf4LgAUJysuAqd2ITw1wzo7hQxWrCbRKAiFNAkolQ68YVq6KTRvR2SRxXQn4vATDUartJGDVDLQ5SKlkaBJQrootKuPz9qwm4GwOGlGYHb94TCnVOU0CylWxmoCvB81B1sViLSuSFeX7481By7ftp7FZawVKdUSTgHJV7Bu739eT5iBr2ohYZ/CgnCyC4SgbK+r40n3vccuzn/RKrEoNRJoElKticwf5e9AnEGsOil0wlp+dRTAcoarOWrB+za6angeq1AClSUC5KvbBndWDmoDf68EY4stSFmT7aA5Hqbfv9yC/KDXg6dtDuSrWhNOTmkAgyzq2NhjGI5CbZY0W+uuH1hRWXp2xXKkOaRJQruqV5iD72LqmMH6fh0CW1Tz0ypq9AAS6MS21UplGk4ByVXM4SpZX4ovKH4rYh3xdMEyW10PA5yUSNZxxhDX54LIt+9lYoctNKpWIJgHlKisJ9OxlGK8JBMMEfJ74SKPK2mB8nzl3v9uj36HUQKVJQLmqvjncbmnJ7op96Nc0hfF7PQTs+9UNzY7fo9cKKJWIJgHlqv31zQzN9ffoOWIf+nVNIfw+T3xpypqmcKv9yg809Oj3KDUQaRJQrjrQEGJwblaPniNWE6gLWh3DsUXq64Ktk8DKHdU9+j1KDUSaBJSr6oPhHi8KH/DZH/pNVsew8/nOPLJlZbr1e7RzWKm2NAkoVzU2R8jtpT6B+uaIXRNoeb4xQ3Lj2w3aL6BUO5oElKvqm8Pk+Xs2jj/guNpYgMKcliTg93k4tnQQoIvPK5WIJgHlqoZghJxeTAIrtlczZmjLt3+/z8Nz3z2VEYUBTQJKJaBJQLnGGGPXBHqnOSimMLuloznHHinkt2caVUq1pklAuSYYjhI1kBvoaU2g4+Nji9X4vR6tCSiVQFJJQES2ishqEVkpImV22VARWSwiG+zbIY79bxKRjSKyXkQucJTPsJ9no4jcKaIze2WyWEdtb9YEfnP5ca0eq6prtvfx6uLzSiXQnZrAWcaYacaY2ILzNwJLjDGTgCX2fURkMjAXmALMBu4VkdhXtfuA+cAk+2d2z/8Ela7q7XH8Pe0TcCaB48dY30Ve+9HpAJx79Ij4PtocpFR7PWkOmgM8bG8/DFziKH/CGBM0xmwBNgIniMgooNAY854xxgCPOI5RGagx1Ds1AWfHcOxq4cOHF7D1jos46bBh1j5eawnKRHbsb6CmKdSjGJRKV8kmAQO8KiLLRWS+XTbCGLMbwL4dbpeXADscx5bbZSX2dtvydkRkvoiUiUhZZWVlkiGqdLN82wGg530CzvWJs7MSv6T9Pg8hez3jtk775et88a53ehSDUukq2a9gpxhjdonIcGCxiHzayb6J2vlNJ+XtC41ZCCwEmDlzZuJ3rkprkajhpqdXA9YiMD3h7FrK7uC5srzCwcaOm4O2Vem8QiozJVUTMMbssm8rgGeAE4C9dhMP9m2FvXs5MMZxeCmwyy4vTVCuMtCemqb4dk9nEXUKdLBMpd9njQ56cfVutu6rj5dbLZNKZa4uk4CI5IlIQWwbOB/4BHgOmGfvNg941t5+DpgrIgERmYDVAbzMbjKqFZFZ9qigqxzHqAzjnOY5t4cdw04dDTjz+7w0R6J857EVfP53b8fLtbNYZbpkvoKNAJ6x31w+4C/GmJdF5ENgkYhcA2wHLgMwxqwRkUXAWiAMXGeMifXIXQs8BOQAL9k/KgM1OubxGdzDqaST4fd64rOKxjqkAZpCLUkgFOn5AjdKpZsuk4AxZjNwXILyKuCcDo5ZACxIUF4GTO1+mGqgcS7yMiinZ1NJJ8Pv83Cgvrld+bsb98W3t1XVc/jwgj6PRalUol97lCsaHHP9e3uwvnCyAj4P4WhL+38oEqW6oZlNFXXxsvV76hIdqtSA1ns9ckp1Q+xq4Tf/48xeeb7nrz+1076FtvML3fjUap5aYY1Y9nutC8n21QUTHarUgKY1AeWKhmarJpDbwwvFYqaWDGJicX6Hj/vbtPX/feXO+PYx9lTTzr4CpTKFJgHlilhNoDdHBnWmbU0gyyvttht10RmVgTQJKFfEOoZzenihWLLaJgHnqCBjrCuNtSagMpEmAeWKhmCYnCwvnn7oFIb2zUFOxljNUloTUJlIk4ByRUMoQl4P5wzqjrY1Aafzp4wgJ8urNQGVkXR0kHJFQzDca53CyYgmmB7i388/gitPHMfg3CweX7Zdk4DKSFoTUK5oaI70W6cwtKwr4DQ0L8CQPD8iQo7fq81BKiNpElCu6O8kMHpwDl6PtJp2emhey3QVuVnaJ6AykyYB5Yr65nCvzh6ajNW3ns8nP42vdsqw/JYkkO3XPgGVmTQJKFc0Nkf6bXhoTK7f12q9geL8QHy7INtHTaOuLqYyjyYB5Qo3agIxowdlAzB2aG68rCjPT6VOG6EykI4OUq5o7Oc+AaeHrj6BcMS0ukahKD9AbVOYplCkw9XJlBqINAkoV9QH3UsCR4xoP110cYHVNFRV30zJ4Jz+Dkkp12hzkOp30aihMRTp1+sEujKi0Goi2lih00mrzKJJQPW72Cgct2oCicyaOAyfR/hgc5XboSjVrzQJqH5XH5tG2qWO4URy/F7GDM1l+/4Gt0NRql9pElD9rj5o1QTyUqgmADAsz8/+BEtQKjWQaRJQ/e7DLfuBls7YVDEs38+HW/e7HYZS/SrpJCAiXhH5SESet+8PFZHFIrLBvh3i2PcmEdkoIutF5AJH+QwRWW0/dqeI9M88wiql3PDUKgDGD8tzOZLWlm6qIhQxvPlZpduhKNVvulMT+D6wznH/RmCJMWYSsMS+j4hMBuYCU4DZwL0iEqv33wfMBybZP7N7FL1KOwvf2gRAyeAcxjgu1koFEXsh+jW7DrociVL9J6kkICKlwEXAA47iOcDD9vbDwCWO8ieMMUFjzBZgI3CCiIwCCo0x7xljDPCI4xiVIW5/8VMALp422uVI2nvy2ycDkOXRVlKVOZJ9tf8WuAGIOspGGGN2A9i3w+3yEmCHY79yu6zE3m5b3o6IzBeRMhEpq6zUqvlAdNaRw7veqZ8dMcJaqF4nklOZpMskICJfACqMMcuTfM5E7fymk/L2hcYsNMbMNMbMLC4uTvLXqlRnjMHnEa45dQInTBjqdjjt+OwlKH+9+DOqG1pGCX26p4bNlXoRmRqYkqkJnAJcLCJbgSeAs0Xkz8Beu4kH+7bC3r8cGOM4vhTYZZeXJihXGaI2GCYcNYyyJ3BLZe9s3AfAtqp6Zv/2bc7+vzddjkipvtFlEjDG3GSMKTXGjMfq8P2nMearwHPAPHu3ecCz9vZzwFwRCYjIBKwO4GV2k1GtiMyyRwVd5ThGZYCDDdZUzYU5WS5H0rVI1BCORFnwwrqud1YqjfXkks07gEUicg2wHbgMwBizRkQWAWuBMHCdMSbWyHot8BCQA7xk/6gMEQxbL4P+XkfgUByob2bSzS/hXJrYGIOOalYDTbeSgDHmDeANe7sKOKeD/RYACxKUlwFTuxukGhiaQta4goAv9UfffLjtAG3Xpm8KRclJsaucleqp1H83qgEjVhNIh/n61++pbVdWG9SVx9TAo0lA9Zt0qgk4p5Q+rNi6snnrPp1cTg08qf9uVAPG6p3WlbiBNKgJOE0ePQiAXdWNLkeiVO/TJKD6zWd2E8vIwtQdIjqhqP18RjlZ1tvkQIPOMKoGHk0Cqt8MyfOTneVhZApfJ/DyD07j8W/OalU2sdi6kvin/1jrRkhK9SlNAqrfNIejKbWkZCIBn5fRg1uS1K+/fBzXnDqBMUOtdYdN2yFDSqU5TQKq3zSHo/i9qf+SG5zrB2Ds0FwunV5KltfDvJPGA1DTFHYxMqV6X2p/LVMDSjAcwZ8GI4MG5WRxzxXTOXFiy/xGQ+zEsL++mUFpcMWzUslK/XekGjCaI9G0SAIAFx07iqL8lpXPBudaH/w/eOIjt0JSqk+kxztSDQjp0hyUSNhecObjcl1wRg0s6fmOVGmpsq45/o063Zx6eBEAsyam3hTYSvWEJgHVb7ZV1TOxOLXWFU5WXsDHxKI8hjmaiJQaCDQJqH7T2BwhL8WHiHYmx++lsVlXHVMDiyYB1S+iUUMwnN6zcA7N87NlXz2ryqvjk+Eple40Cah+0ZRGawl05LjSwWzZV8/Fd7/LdY/pKCE1MGgSUP0i1oySzjWBSfZC9ADvbKx0MRKleo8mAdUvGkPps5ZAR44YURDfPuvI4S5GolTv0SSg+kVTKP2bg5wzjNYFdfoINTBoElD9oqE5/ZNAdpaX314+Db/PQ70mATVAdJkERCRbRJaJyMciskZEfmqXDxWRxSKywb4d4jjmJhHZKCLrReQCR/kMEVltP3an6KrdGWHpxn1869HlQHr3CQBccnwJZx1ZzIrt1fxo0UqdVVSlvWRqAkHgbGPMccA0YLaIzAJuBJYYYyYBS+z7iMhkYC4wBZgN3CsisXf+fcB8YJL9M7v3/hSVqq544AN2H2wC0rtPICYUsT74n16xk/31utCMSm9dJgFjiS24mmX/GGAO8LBd/jBwib09B3jCGBM0xmwBNgIniMgooNAY856xvj494jhGDWDO+l5eIP2TwBvrK+Lbu6qbXIxEqZ5Lqk9ARLwishKoABYbYz4ARhhjdgPYt7HhEiXADsfh5XZZib3dtjzR75svImUiUlZZqUPx0l1hdst8QUPz/C5G0juuPHFcfDs26kmpdJVUEjDGRIwx04BSrG/1UzvZPVE7v+mkPNHvW2iMmWmMmVlcXJxMiCpF3fT0Kg42huL3B+ekfxK49eIp/OnrnwPgy79/j2hU+wVU+urW6CBjTDXwBlZb/l67iQf7NlZHLgfGOA4rBXbZ5aUJytUAVR8M8/iylkrh56eOTJv1BDrj9QjFBS0TydU360ghlb6SGR1ULCKD7e0c4FzgU+A5YJ692zzgWXv7OWCuiAREZAJWB/Ayu8moVkRm2aOCrnIcowagAw0tnabXnDqB+746w8Voeld2Vstbpz6oTUIqfSXztWwU8LqIrAI+xOoTeB64AzhPRDYA59n3McasARYBa4GXgeuMMbF3ybXAA1idxZuAl3rxb1EpptaxHu8phw9zMZLeF/C1dHDf/+YmFyNRqme6nNfXGLMKOD5BeRVwTgfHLAAWJCgvAzrrT1ADyH1vWB+Ot3xhMmcfNcLlaHpXfqDlrfP8qt3cevEUF6NR6tClfwOtSlmf7LKWYvzicaNcjqT3ORebP3/KwEpwKrNoElB9JhI1XHTMKIYXZLsdSq/zeFoGux3QC8ZUGtMkoPpMdUOIYfnpPyS0I2/fcBZHjSygsjZITVOo6wOUSkGaBFSf2F/fzMHGUKsLxQaaMUNzmVicR9m2Axx766v85MlVvL+5yu2wlOoWTQKqT8x/pAwY+GPonXMg/rVsB3MXvu9iNEp1nyYB1SdCkSgA5x09sDtNs33pPxeSymyaBFSfGDcsj+KCACcfXuR2KH3KedGYUulIX8GqT1TVBxkzJMftMPrcQJgaW2U2TQKqT1TVNTMsP9D1jmnu6yePp6jN36kLzah0oklA9Yl9dc0UDeDhoTFjhuZSdvO5LL3xbGaOsxbXiy2go1Q60CSgel00athfH2RY3sCvCcSMHpzDN0+fCKCrjam0oklA9brqxhBRQ0bUBJxiC+ZoElDpRJOA6nVVdUGAjOgTcCrItiaVqwsO7Gsj1MCiSUD1un111jfhgTxlRCK5WVYSaGjW9QVU+tAkoHrdPrsm0HbUzECX7bfeTo0D/CppNbBoElC97s/vbwMyLwnk+rUmoNKPJgHV62LrCMc6SjNFjn3hWL0mAZVGNAmoXlUfDPP2hn2cOsCni0jE6xGK8v3sOdjodihKJU2TgOpVZdsOADBq0MBbSCYZk4YX8NLqPTpCSKWNLpOAiIwRkddFZJ2IrBGR79vlQ0VksYhssG+HOI65SUQ2ish6EbnAUT5DRFbbj90pznl41YBQUWNdLXv92ZNcjsQd159zOLXBMNc89CEPvrPF7XCU6lIyNYEw8GNjzNHALOA6EZkM3AgsMcZMApbY97EfmwtMAWYD94pIbJat+4D5wCT7Z3Yv/i0qBVTUWiODhhdmVqdwzHGlgwH4YMt+/uf5tSxeu9fdgJTqQpdJwBiz2xizwt6uBdYBJcAc4GF7t4eBS+ztOcATxpigMWYLsBE4QURGAYXGmPeMNcPWI45j1AAQiRp+9cp6IHNn18wL+Frdv/bPy12KRKnkdKtPQETGA8cDHwAjjDG7wUoUwHB7txJgh+OwcrusxN5uW64GiE92HnQ7hJRw3JjB8e1wVGcUVakt6SQgIvnAU8APjDE1ne2aoMx0Up7od80XkTIRKausrEw2ROWyAw3WlcI3X3S0y5G465lrT2bWxKFuh6FUUpJKAiKShZUAHjPGPG0X77WbeLBvK+zycmCM4/BSYJddXpqgvB1jzEJjzExjzMzi4uJk/xblsooaqz/g9CMy+3/m8QgLr5oJQMnggb+wjkpvyYwOEuCPwDpjzK8dDz0HzLO35wHPOsrnikhARCZgdQAvs5uMakVklv2cVzmOUWkuGjXc8NQqAAblZLkcjfsKs7P42qxx7KxuZFNlndvhKNWhZGoCpwBfA84WkZX2z4XAHcB5IrIBOM++jzFmDbAIWAu8DFxnjIldQnkt8ABWZ/Em4KXe/GOUe+oc8+WMKMzMawTayvJab6/P//ZtlyNRqmO+rnYwxrxD4vZ8gHM6OGYBsCBBeRkwtTsBqvRwsCEEwC//9ViXI0kdsVlUmyNRrv3zcn5z+bSMHTWlUpdeMax6xcFGKwkM1qaguH87bQJnH2UNmnvpkz18uHW/yxEp1Z4mAdVj26sa+MJd7wDaH+AU8Hn5zeXT4vd/+9oGXYRepRxNAmlqxfYDKbOM4e+WbIhvD8rVJODkTIrLtx2g/IBOLqdSiyaBNGSM4dJ7l3Lmr153OxRCkShPrWi5BnB4gXYKt3XvldPj25oEVKrRJJBCnl+1i0ff28qbn1USikQ73K8pZD1W0xRmy776/govoX+9b2mr+5m2hkAyLjxmFG/fcBYAX/nD+2yrcvd/ppRTl6ODVP/57l8+im9PLSnk+etPS7hfrBMW4Kz/fYOPbjmPIS59+H5cbk0Vcc2pE7j8c2O62DtzOafWPuNXb7D1jotcjEapFloTSFGf7Kzhi3e9w157aman2PKNMTur3Wli+GxvbXz7li9M5ogRBa7EkQ58Xg8vfi9xUlfKTZoEUtjqnQc58fYlzPzZYv7+0U7G3/gC33ykjLtf39hqv+/+ZQUASzfu45J73qWhnxY631ihV8J2x+TRhVx75mEAvL+5yuVolLJoc1CK6OyDe19dMz/460qAhPPTb61q4P89s5oXV+/mQEOIrfsamDy6sK9CjdtsT4dw1EitASQr355qeu7C97n6lAlsqqxj1sRh8eSgVH/TmkAKCEWiTP6vV1qV/f5rM7r1HI99sJ0D9lW71Y19P3Q0FInyv69+BsA/rj+1z3/fQLGvLhjffvDdLbz5WSW/ePlTFyNSmU6TQAr4+YstHwITi/O49szDuGDKSJ669uQOj3n0mhO4dHri5RheWLW71YdNb3pi2XYeeW8r029bHC+LzZGjujZ19KCE5a9/WtGqw19ltk/31FDVR+/htvTdmwL+VtayBs9dXzmen8w+CoAZ44aw9Y6LeOs/zmq1f1G+n9MmFfPrL0/jxAnt561/7IPtzPzZa30S641Pr+a/nl1DbZPVfPXna07sk98zUF06vYRffOmY+P3vn2OtxfyNhz7kx4tWuhTVwLW/vpnmcMfDrftTXTDMbc+vTarPbvZv3+bCO/tn4kHtE3DZ6b98ndpgy4viqJHt2/LHDsvlzf84E7/PQyhsKMhu+bc9MX8Wa3fX8P7m/dz2/FqG5GbFm4U2VdZxWHF+r8UaTbBK1vRxg3vt+TOBiHDp9FJW7zzI+GF5XP65MfErrt/6bB9vrK/gzCOH8/r6CkYNymbS8AK8no7mb0xP26rqWbe7htlTR/Xp74lGDdNvW8wXjh3F3VdM7/qAbth9sJHi/AC+NrXgT3Ye5NW1e/nReUfEy8KRKJNufolheX721TUzalA2/3baxFZxRo2JP1fEfp/tremfmoAmARd9uqeG7fsbWu7fNrvDN/y4YXkJy0WEKaMHMXlUIecePZzt+xv42h+XAfCdP6/glR+e3mr/1eUHmXPPOyz+0RndShCNzREWvLi2VdkNs48k168voe7K8nr42SXHtCtvjkT5+p8+5MgRBay3h9+eP3lEfIEaNyxZt5cH393Cn685EWsZkOSE7T6jb5wyvt3U4pfc8y4HGkJsuv3CVq/3YDhCY3OEwbmtr3kp27qfSSMKWk3BEY0aPJ0kx+qGZqrsaVWeX7Wbu6+A8Te+wNdPHs+tF0/p8LiFb21i9c4a7vrK8fEyYwy7Djbx0fYD5GR5yfX7+Mof3ueokQXkB3zce+V0htt/4xfvfgdj4OpTxsf/joeWbsUYa4AHwJufVfL+5iqmjRnMH97ewnmTR/Dk8nIWfm0GZx81nJqm/hndF6PvYBfNdswzf9ucKT2aZlhEGDcsjxx/y3NMLRnE717bQCgS5d8vOBKAJz7cTtTAi6t2c73dFNERYwyNoQjlBxo5/zdvtXvceQGUOnRfOHYUr63bG78SfL3j+otX7dFgwXCEZVv2c9qk1qu2rdxRzdihuTy3cierd9Yw7+RxHFs6uNPf1xSKsGZXDTPGDQGsD9SL7nqH7519OJ8/pvW382//eTmhiGF/fTPD8gOEItGEfUDbqxoYOyw3fn/Z1v3c/+Ym7n9zU/zCuOqGZv7+0c54TXVvTRNF+QHe3biP6eOG8K1Hy3h/83423X4hfyvbwdSSQSxeu5ffLdnA6UcU88jVJwCwq7qRk+/4J/dcMZ2LjrXi3VhRy2HF+YgI1Q3NTPufxa3iG3/jC4D1gXzrxVNYs+sgR40sJByNEooYbvvHWi6bWcrtdv/ccaWD+LfTJrJ00z6u+MMHCc/jp3us/9MJty/hb98+iZrGELH5AbdWNTDWwBfveqfddTxvb9gHwGvrrMUYn1xuTbsy/9HlXHHiWEb283ocmgT6iTEGEaH8QANDcv3kBVqf+kG5vXPF7/CCbJ7+zslcdv97reb0KR2Sw0fbqzH2ss5bqxo6eoq45z7exfefWNnh4yMLdenE3nD3FdN55qNyfvjXjxM+fsk977JyRzUAL3zvVKbYncvRqOGSe95tVXN4akU5/3fZcfzfq+v567dOorggwL1vbOKaUybw68XrmX/GYdz9zw08vmwHr/3odD7Ysp9JwwtYt7uGH//tY2ZPHdnqG3+u38fBxhA7qxtpCkc55Y5/8pvLjyPb56UgO4vCHB/76oJc/VAZQPwDv+1FjsaYdh/Mu6obeeDtLTz47pZW5Yf954vtzsFbn1XSFIrwuyUbuO+NTQD8feVO3vysgkVl1us8O8vD3M+NJdff+ZepWEJo66+OvrmfvbCOn72wrtPncbrs/vda3b/knneTPtbpLx9sj2/n9NPaE5oE+sGpv/hnq4nDZk0cyqOODtXsLA+zEnTwHqrpY4fE2xVjbnx6NQCxGvSOAw2EIlGC4Wh87Hp9MMzr6ys468jhPP3RTm75+yftnvu0SUX8ZPZRPPbBNo4bk3iki+q+yaNan8uHrz6BpZv28fs3N8cTAMCVD3zApceX0hSOcLpdK3DWHAB+/DcrmXznsRXsPtjEvrogn+2p5eU1e3j4vW34fdY3+XN/3bp219Ac4ZhbX+XaMw/ji8eOZuyw3HhzzcV3v8v5k0cAdJisAH7/5ia+dcZhbKpomR/pgbc3xxOX06ryg+0SQGeOuuXlVvfbXjPTFIry0NKtST9fbxk/LDepL1UAx48dzEfbq5PaNxyNxr889iVJ9fnNZ86cacrKytwOI2m7qhtpDkcZX5RHY3OEW579JF7dS+TeK6dz4TG930H2z0/3xr+ddWXmuCFU1AZb9U+09dEt5+HzCgXZOlV0X1m8di/HjRlEUV4Aj0eobQpxzK2vuhbPuUeP4LV17S9O7Ep+wMeoQdlsSHBFeXFBgMra/unw7E2/mzutVa34+etPja+hseXnF/K5Ba/F2/zPPXp4vKkH4MXvncazK3cyZmguBdm++PN887QJ/OHtliR475XTeXzZ9nhzEVj9hIfaTCwiy40xXXYoaU2gl518xz8B+MG5k9hQUccLq3Z3uv/sKSP7JI6zjxoR3x6W5493kgFMLMpjs2P20bJtB7p8PrcmqMsk500e0eq+M+F+58zDuNduBunIhKK8Xp1V9lASAFhDITdU1LV73QG885OzWL+nlovv7ry55MJjRvLi6j0JH7vyxLFs2VfP0k3W1BunHD6Mdzcmnobjg/88h+88toLlSbzGAZ777inx2P727ZO47P73+OJxo5kzrYQ500o48fbXKMjOYmrJID756QWA1R9XdvN5fOm+pSzfdoDp44awdFMVDc0RfvmlY5k8ujB+Bb8xhseXbefKE8fxxeNGM3vqSI4eVcj2/Q0cNbKQM44oZuFbm7lgykgaQxF8/TAyTGsCPfTJzoNs2VfPpso6TptUzJfaTK0cc88V07nj5XXs2N/SLFR287kU5Qf6LLYFL6zl2NLBRI2Jf/sYNSib339tRpdvQqei/ABlN5/bR1Gqzhz2ny8ydXQhz373VCJRk7C9HKAw28fbN5xNUzjCibcvafXYqYcXkRfw8sqalg/1ovwATaEIdcGuR6JcceJYDivO57bn1+L3ebhtzhSWbqri2ZW74vu8fcNZrCo/yHX2PFYAZxxRzJufVbZ6rlifwWd7aynOD3DXPzfaH4AFrebE2nrHRfzXs59QnB+gNhhm3snjefS9bWzdV8/99tX0F935Nmt21bD59gupDYYJ+Dx8bsFrYOAbp4znO2cdHv8W/cKq3Ty9opwln1bE4z3tl9Z6HF+aXspTK8p576azGTUoh5U7qvlgcxXfPG0ij76/jUunl8QTcuyag1iTmtOmyjruXLKBn17cMsjDzTWlk60JdJkERORB4AtAhTFmql02FPgrMB7YCnzZGHPAfuwm4BogAnzPGPOKXT4DeAjIAV4Evm+SyEBuJoGt++opzMlKOEf+ETe/xOUzx/Bomxk9O3yuOy7ip/9Yw5/e3cpdXzmeyaMLe3UMf2eaQhFue34t804ez/hhefEX8Ktr9vDRjmpGD85J2P6/4F+mcmzJYA4bnqdDQV3SFIrgEYn/zz7ZeZBgOEpFTRPXPraCq0+ZwDdOGc+YoS0jc575qJyheQHmPbiMkw8bxl++OQuA2b99i0/31HLD7CO58oRxDMrN4oG3N1PTFKY4388tz64B4LeXT8PnFY4eVcg/11Vw6fQSsrO8fPWPH/C1WeO4dHppu4S09n8uINvn5b43N/HEh9vZsb+R1350Buf++k0AfvWvx3LGEcXxoZSJbK9q4PRfvc7np47kvq92PW3KwYYQ+xuamVDUMnw6HIniEUk4fLQpFOGoW17mW6dP5KYLj6a2KcS7G6uYPbVvauNu680kcDpQBzziSAK/BPYbY+4QkRuBIcaYn4jIZOBx4ARgNPAacIQxJiIiy4DvA+9jJYE7jTEvdRVgT5NATVOIRR/u4GsnjSPga8nKxhjW7KrB5xWOGF7Q7kWzqryai+9+l/HDcnnDccXu0yvK+dGijjvGEvnd3GnMmVZCbVOIT/fUMnPckD7v7Omun7+4jt+/tZnzJ49g2tjBfOfMw90OSXUiGjU8uaKcS6aVJPxWCta1HT6vxId0Lt20j/ve2MTdV0xPuBZ0bDhk7BtxV5Zu2ocgrCqv5ltntJ8Ary4YZup/v8L1Zx/Oj88/ssvnM8awdFMVR4wooLigb2rIsQETA+0CvER6LQnYTzYeeN6RBNYDZxpjdovIKOANY8yRdi0AY8zP7f1eAW7Fqi28bow5yi7/in38t7r63YeaBGqaQnz5/vfiY3mzszxcMGVkqypszM8umcpXZ42juqEZn9fDH97a3Grd3GNLB7HKXjylIyWDcxLO6/+/lx3Hv84o7Xb8/a0pFOHZlTu5dHqpzgWkek1dMEye35tyX3oyQV93DI8wxuwGsBPBcLu8BOubfky5XRayt9uWJyQi84H5AGPHjj2kAB98Z0s8AYA1fCxRAgC4+e+fcHOC5pCYrhIAwJWzxnL6pGIOH57PVX9cRlGBn2+fcRjHlKTHMMrsLC+Xf+7QzrVSHckPaDNiquvt/1CidG86KU/IGLMQWAhWTeBQAumNRTtuvujohBeMZGd54ld3gtXc84VjR8ermIu+fVKPf7dSSvWHQ00Ce0VklKM5KDYothxwLjRbCuyyy0sTlPeJSNRw0sQixg7NjV9NGDNldCGnTSrmoaVbuP1fjuEfH+/i9fWV7Z5j9pSRzJ46kp+9sI7rzz6cxWv38sevf47CbB8F2VlEoobnV+1iUE4WZx45vN3xSimVDg61T+BXQJWjY3ioMeYGEZkC/IWWjuElwCS7Y/hD4HrgA6yO4buMMYnHuzn0pGN4x/4GTvvl6+QHfFx4zEgWlZWz5ecXtmqf3FXdyFUPLuNPX/9cfMjY1JJC7v/qDEqH5NLYHCE7y6NtmkqptNKbo4MeB84EioC9wH8DfwcWAWOB7cBlxpj99v7/D7gaCAM/iI0AEpGZtAwRfQm4vj+GiN5lTz51TMkgQtFoqxFCbR1sDOHzSLt5fZRSKt306uggN6X6xWJKKZWKkk0COhZQKaUymCYBpZTKYJoElFIqg2kSUEqpDKZJQCmlMpgmAaWUymCaBJRSKoNpElBKqQyW8heLiUgl0NnKLUXAvk4ed5vG1zMaX8+leowaX88kim8fgDFmdlcHp3wS6IqIlCVzVZxbNL6e0fh6LtVj1Ph6pqfxaXOQUkplME0CSimVwQZCEljodgBd0Ph6RuPruVSPUePrmR7Fl/Z9AkoppQ7dQKgJKKWUOkSaBJRSKoOlfBIQka0islpEVopImV12mYisEZGovWJZbN/xItJo77tSRO53Kb5ficinIrJKRJ4RkcGO/W8SkY0isl5ELkil+Nw4f53EeJsd30oReVVERjv2T4VzmDC+VHkNOh77dxExIlLkKHP9/HUUX6qcPxG5VUR2OuK40LG/6+evo/gO6fwZY1L6B9gKFLUpOxo4EngDmOkoHw98kgLxnQ/47O1fAL+wtycDHwMBYAKwCfCmUHz9fv46ibHQsf094P4UO4cdxZcSr0G7fAzwCtbFlkWpdP46iS8lzh9wK/DvCfZNifPXSXzdPn8pXxNIxBizzhiz3u04OmKMedUYE7bvvg+U2ttzgCeMMUFjzBZgI3BCCsWXMowxNY67eUBsBEOqnMOO4kslvwFuoHVsKXH+bIniS3WpdP56RTokAQO8KiLLRWR+EvtPEJGPRORNETmtr4Oj6/iuBl6yt0uAHY7Hyu2yVIkP+v/8QQcxisgCEdkBXAn8l12cMuewg/ggBV6DInIxsNMY83GbfVPi/HUSH6TA+bN9127ye1BEhthlKXH+OokPunv++rPadYhVodH27XCsatjpjsfeoHVzUAAYZm/PwPpnFboY3/8DnqFlKO49wFcdj/8R+FIKxdfv56+rGO3ym4CfpuI5TBBfSrwGgQ+AQXb5VlqaW1Li/HUSX6qcvxGAF+uL8gLgwRQ7fx3F1+3zl/I1AWPMLvu2AusDq8Oql7GqaFX29nKs9roj3IhPROYBXwCuNPZ/BOtbwxjH4aXArlSJz43z11mMDn8BvmRvp8w5TBRfirwGz8Bqr/5YRLZinaMVIjKS1Dh/HcaXIufvBGPMXmNMxBgTBf5Ay/88Fc5fh/Ed0vnrywzWCxkwDyhwbC8FZjsef4PWNYFi7E4aYCKwExja3/HZP2uB4jb7T6F1p9Jm+rBT6RDi69fz10WMkxz7XA88mWLnsKP4UuI12GafrbR8006J89dJfClx/oBRjn1+iNUPkDLnr5P4un3+fKS2EcAzIgLgA/5ijHlZRP4FuAvrD35BRFYaYy7Aqib9j4iEgQjwbWPMfhfi24j1IllsP/a+Mebbxpg1IrII6wM4DFxnjImkSnz0//nrLManRORIIIo1euTbACl0DhPGR4q8BjvaOVXOXyf7p8T5E5FHRWQaVnv8VuBbkDrnr6P4OITzp9NGKKVUBkv5PgGllFJ9R5OAUkplME0CSimVwTQJKKVUBtMkoJRSGUyTgFJKZTBNAkoplcH+PxO5hBak94WYAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(energy, vik[2])"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "d0b70fef-5e27-4cb1-90e7-2653989cf48a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2ad645f58e80>]"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3wElEQVR4nO3dd3xc1bXo8d+aGXXLVpe75W7sADYIU0wzPZAESF4SIIUQAiGBG1Juckm4F5K8x7vcJJC85BIIXAiE3luAUE03xr13WZZl2erNatP2++MUzajYYxXrSFnfz0cfjc60fWZGa/ZZe+19xBiDUkqpkcU31A1QSik18DS4K6XUCKTBXSmlRiAN7kopNQJpcFdKqRFIg7tSSo1AhwzuIvKAiFSJyIaYbU+KyBr7p1RE1tjbi0SkLea6ewax7UoppXoRSOA2DwL/DfzN2WCM+apzWUTuABpjbr/TGDN/gNqnlFKqDw4Z3I0x74tIUU/XiYgAXwHOGuB2KaWU6odEeu4HcxpQaYzZHrNtqoisBpqAfzfGfHCoB8nLyzNFRUX9bIpSSv1zWblyZY0xJr+n6/ob3C8HHo/5ex8w2RhTKyLHAy+IyDxjTFPXO4rItcC1AJMnT2bFihX9bIpSSv1zEZHdvV3X52oZEQkAXwSedLYZYzqMMbX25ZXATmBWT/c3xtxrjCk2xhTn5/f4xaOUUqqP+lMKeQ6wxRhT7mwQkXwR8duXpwEzgZL+NVEppdThSqQU8nFgKTBbRMpF5Gr7qsuIT8kAnA6sE5G1wDPAdcaYuoFssFJKqUNLpFrm8l62f6uHbc8Cz/a/WUoppfpDZ6gqpdQIpMFdKaVGIA3uSik1AmlwVwkrrWnhw+01Q90MpVQC+juJSf0TOfN37wJQevtFQ9sQpdQhac9dKaVGIA3uSik1AmlwV4fNGDPUTVBKHYIGd3XYgpHoUDdBKXUIGtzVYQuGNbgr5XUa3NVh69DgrpTnaXBXh0177kp5nwZ3ddg0uCvlfRrc1WHTAVWlvE+Du0qYT6zfHSEN7kp5nQZ3lbCA3/q4BCORIW6JUupQNLirhCXZXXetllHK+zS4q4Q5PXcN7kp5nwZ3lbAkv9Vz12oZpbxPg7tKWMBn59w1uCvleYcM7iLygIhUiciGmG2/FJG9IrLG/rkw5rqfi8gOEdkqIucPVsPVkRfQnrtSw0YiPfcHgQt62P57Y8x8++dVABGZC1wGzLPv82cR8Q9UY9XQStacu1LDxiGDuzHmfaAuwce7GHjCGNNhjNkF7AAW9qN9ykM6e+5aCqmU1/Un536DiKyz0zbZ9rYJwJ6Y25Tb29QI4ObcdYaqUp7X1+B+NzAdmA/sA+6wt0sPt+3xzA4icq2IrBCRFdXV1X1shjqSnGoZnaGqlPf1KbgbYyqNMRFjTBS4j87USzkwKeamE4GKXh7jXmNMsTGmOD8/vy/NUEeYiJ2W0Z67Up7Xp+AuIuNi/rwUcCppXgIuE5EUEZkKzAQ+7V8TlVc4h2BaLaOU9wUOdQMReRw4E8gTkXLgVuBMEZmP9f9eCnwXwBizUUSeAjYBYeB6Y4yOvo0QzrlTtVpGKe87ZHA3xlzew+b7D3L724Db+tMo5U2RqAZ3pYYLnaGqEmbHdk3LKDUMaHBXCXPSMjqgqpT3aXBXCYs6OfeQDqMo5XUa3FXC3LSM9tyV8jwN7iphTs9dc+5KeZ8Gd5WwaFSDu1LDhQZ3lTAnLaOlkEp5nwZ3lTBNyyg1fGhwVwkzOqCq1LChwV0lTHvuSg0fGtxVwjqXH9A6d6W8ToO7SpguP6DU8KHBXSXMWX7A6cErpbxLg7tKmJNzD2lwV8rzNLirhDkxXXvuSnmfBneVMGeGaiRq3BSNUsqbNLirhEVjAnpYe+9KeZoGd5Ww2HiuqRmlvE2Du0pY1Bj8PgEgpLNUlfI0De4qYcZAkt8K7tpzV8rbDhncReQBEakSkQ0x234rIltEZJ2IPC8iWfb2IhFpE5E19s89g9h2dYRFjSHZb31kNOeulLcl0nN/ELigy7Y3gc8YY44BtgE/j7lupzFmvv1z3cA0U3lBxBiSA34AwhEN7kp52SGDuzHmfaCuy7Y3jDFh+89PgImD0DblIcYYjIGUgNNz15y7Ul42EDn3bwOvxfw9VURWi8h7InLaADy+8gCnCtLJuWvPXSlvC/TnziJyMxAGHrU37QMmG2NqReR44AURmWeMaerhvtcC1wJMnjy5P81QR4BT454c0Jy7UsNBn3vuInIl8Dnga8aermiM6TDG1NqXVwI7gVk93d8Yc68xptgYU5yfn9/XZqgjJOr23DUto9Rw0KfgLiIXAP8GfMEY0xqzPV9E/PblacBMoGQgGqqGVreeu6ZllPK0Q6ZlRORx4EwgT0TKgVuxqmNSgDdFBOATuzLmdODXIhIGIsB1xpi6Hh9YDStucLd77lrnrpS3HTK4G2Mu72Hz/b3c9lng2f42SnmPE8uTtVpGqWFBZ6iqhHTtuWtaRilv0+CuEmLsjnqSzlBValjQ4K4SoqWQSg0vGtxVQiJ2cHd77roqpFKepsFdJUR77koNLxrcVUKc5QectWW0FFIpb9PgrhISddMyerIOpYYDDe4qIV3r3LXnrpS3aXBXCYlGnTp3Xc9dqeFAg7tKiA6oKjW8aHBXCYl2Xc9dlx9QytM0uKuE6KqQSg0vGtxVQoyuCqnUsKLBXSWk68k6QpqWUcrTNLirhDg9dbcUUtMySnmaBneVkGiXtWVCmpZRytM0uKuEOMsP+H1CwCdENC2jlKdpcFcJcXruPrECvFbLKOVtGtxVQpwsjE+snrtOYlLK2zS4q4Q4A6oiEPD7tBRSKY87ZHAXkQdEpEpENsRsyxGRN0Vku/07O+a6n4vIDhHZKiLnD1bD1ZHl1Lk7OXddFVIpb0uk5/4gcEGXbTcBbxtjZgJv238jInOBy4B59n3+LCL+AWutGjJxaRm/aM9dKY87ZHA3xrwP1HXZfDHwkH35IeCSmO1PGGM6jDG7gB3AwoFpqhpKzoCqCAR8PkI6oKqUp/U1515ojNkHYP8usLdPAPbE3K7c3qaGuc5qGafnrmkZpbxsoAdUpYdtPXbxRORaEVkhIiuqq6sHuBlqoJmYtIzfJzqJSSmP62twrxSRcQD27yp7ezkwKeZ2E4GKnh7AGHOvMabYGFOcn5/fx2aoI8XJsfsEaxKTpmWU8rS+BveXgCvty1cCL8Zsv0xEUkRkKjAT+LR/TVRe4KZlfELA59M6d6U8LnCoG4jI48CZQJ6IlAO3ArcDT4nI1UAZ8GUAY8xGEXkK2ASEgeuNMZFBars6gkyXahk9WYdS3nbI4G6MubyXq87u5fa3Abf1p1HKe2KXH7DWltGeu1JepjNUVULilx/w6SQmpTxOg7tKSPzyA9pzV8rrNLirhMQuP+D3iU5iUsrjNLirhHRdFVJ77kp5mwZ3lZC4AVW/lkIq5XUa3FVCOteWsddz1wFVpTxNg7tKSPzaMrqeu1Jep8FdJcSZs+TUuYd0EpNSnqbBXSUkrueua8so5Xka3FVC3OUHfNbyA7oqpFLepsFdJSS2WsavpZBKeZ4Gd5WQrssPaLWMUt6mwV0lJBJ3mj3ROnelPE6Du0qIu/yAXQoZ1gFVpTxNg7tKSDTaWS2T5NdSSKW8ToO7SkjXnLsx6KCqUh6mwV0lxF1+wGct+Qvomu5KeZgGd5WQ2ElMSXZw10FVpbxLg7tKSGdaBgI+62Oj5ZBKeZcGd5WQnnruesIOpbzrkCfI7o2IzAaejNk0DbgFyAKuAart7b8wxrza1+dR3mBiB1T9ds9dK2aU8qw+B3djzFZgPoCI+IG9wPPAVcDvjTG/G4gGKm/oLIW0JjEBWuuulIcNVFrmbGCnMWb3AD2e8pjYUsgku+eu1TJKeddABffLgMdj/r5BRNaJyAMikj1Az6GGUNzyA1oto5Tn9Tu4i0gy8AXgaXvT3cB0rJTNPuCOXu53rYisEJEV1dXVPd1EeYgxBp84p9nTnrtSXjcQPffPAquMMZUAxphKY0zEGBMF7gMW9nQnY8y9xphiY0xxfn7+ADRDDaaoMfjE6rG7de6ac1fKswYiuF9OTEpGRMbFXHcpsGEAnkMNsajBDe5aLaOU9/W5WgZARNKBc4Hvxmz+jYjMBwxQ2uU6NUxFjcGO7ST5tM5dKa/rV3A3xrQCuV22faNfLVKeFI2a7j13De5KeZbOUFUJiRrr9HoQs3CYpmWU8iwN7ioh8WkZ7bkr5XUa3FVCTNyAqlMtoz13pbxKg7tKSNSuc4fOUsiQTmJSyrM0uKuExNa565K/SnmfBneVkEjUmp0KsWkZ7bkr5VUa3FVCjDHYFZCdC4dptYxSnqXBXSUkElvnrkv+KuV5GtxVQiLGxNS568JhSnmdBneVkHDEuD12PUG2Ut6nwV0lJBKN6blrtYxSnqfBXfXomZXl/PndHe7f4WjUHUjVE2Qr5X0a3FWPXlu/j+dX7XX/ju25iwh+n+iSv0p5mAZ31aNgJBo3YBqOdubcwaqY0WoZpbxLg7vqUTAcJRjuDO6xPXewat01LaOUd2lwVz0KRqIEY3vuEeMOpII1S1XTMkp5lwZ31aNQ5OA994BPe+5KeZkGd9WjYLhLzz0addeUAatiRkshlfIuDe6qR6GIieu5h7v23P2ik5iU8jAN7qpHwXCUqLHSMRA/QxWsszHp8gNKeVe/TpAtIqVAMxABwsaYYhHJAZ4EioBS4CvGmPr+NVMdaU5KJhiOkpbsJxLtYUBVc+5KedZA9NwXG2PmG2OK7b9vAt42xswE3rb/VsNMKCa4g5Vz9/vjB1S1WkYp7xqMtMzFwEP25YeASwbhOdQgc4K604OPdJnElOQXrZZRysP6G9wN8IaIrBSRa+1thcaYfQD274Ke7igi14rIChFZUV1d3c9mqIHm9twjTs+964Cq9tyV8rJ+5dyBRcaYChEpAN4UkS2J3tEYcy9wL0BxcbF2AT0kGjVurzwU7rnnHvBpz10pL+tXz90YU2H/rgKeBxYClSIyDsD+XdXfRqojK/b0efE9986PS5Lfp3XuSnlYn4O7iGSISKZzGTgP2AC8BFxp3+xK4MX+NlIdWbE98mBvPXetc1fK0/qTlikEnhfrvJoB4DFjzD9EZDnwlIhcDZQBX+5/M9WRFDt5ye25R6K6/IBSw0ifg7sxpgQ4tofttcDZ/WmUGlqxk5M6SyG7V8toWkYp79IZqqqbuJ57THCPq3P3+zQto5SHaXBX3cQuGBaKqXNPih1Q9YkuP6CUh2lwV9107bkbY7ov+avLDyjlaRrcVTdxOfdI1F08LKCTmJQaNjS4q266Dqg6ufXYnHuSTmJSytM0uKtuOsIJ9tw1566UZ2lwV910ncTk9txjBlRTAr64LwGllLdocFfdxA6ohnrpuacm+QlHjVbMKOVRGtxVN91y7vbfsdUyaUl+ANpDkSPbOKVUQjS4q27ilx8wblomrueebAX3Ng3u/WaMDkyrgafBXXUT7NJzd9My/s6Pi9Nz7whpWqY/WjrCTP35q/z1o11D3RQ1wmhwV930VgoZ6CEtoz33/qlq7gDgVy9vGuKWqJFGg7vqxknL+MQZUO2ec09Nsj46bUEN7v3R2BZyL3eE9bVUA0eDu+rG6blnJAe05z7IGlqD7uVlJXVD2BI10mhwV904PfeMlADBSNRdQ8afwIBqU3uIJVv05FuJiu25b6hojLvuw+01VNtpG6UOlwZ31U3QDubpKf74Gar+HkohgxHaQxF21bQAcP2jq7jqweXUHNCglIjY4F57oLMXH40avn7/Ms79/XtD0Sw1AmhwV90Ew1GS/T6S/b5eZ6i6wT0c4aGPS7nw/31ARzjiphZig5bqXWOr9TqNHZ1KbcwXYkswDEBDa4iorpuv+kCDu+omFImS5BdSAr74UsjYnLuTlglG2VXTQlsoQnVzh1tGqcE9MY1tIdKT/YzLSqUmpufe3B52L2+saBqKpqlhToO76iYUiZIc8JHk9xGK9DxDNTXQmXPf19gOdJb1gQb3RDW0hRiTlkRuRkpcKis2uL+3Tccw1OHT4K66CYajJPl9JAd8vVbLpCZbH532UIR9jW0A7Kw64F7vpBvUwTXawT0/M7lLz73z9dtV0zoUTVPDXJ+Du4hMEpElIrJZRDaKyI329l+KyF4RWWP/XDhwzVVHQjCm5x4/oNr5cUn2+/CJVefu9Nw/3dVZyqc998Q0xvTc61o63Px6bM99f1PbUDVPDWOBftw3DPzEGLNKRDKBlSLypn3d740xv+t/89RQcAdUD9JzFxHSkvzUtnS4gWiZBvfD1tgaYkpuOnmjkokaqG8NkjsqhSa75z67MNP98lTqcPS5526M2WeMWWVfbgY2AxMGqmFq6FgDqj7Skvy0BiM9zlAFa1DVKYEEKKtrJeATkvxCg6ZlEuL23EelAFDbYqVmnC/MmYWj2N/YrouLqcM2IDl3ESkCFgDL7E03iMg6EXlARLJ7uc+1IrJCRFZUV1cPRDPUAAmGrbRMTkYy9a3BHnvuACmBzuAu9lXzxo+mIDO1zz336uaOf6pA1tAWJCs9iTw7uNfYg9JOcJ9VmElrMEJTTJpGqUT0O7iLyCjgWeCHxpgm4G5gOjAf2Afc0dP9jDH3GmOKjTHF+fn5/W2GGkBtoQhpSX5yMpJpbg+768f01HOvbLKCUVFuBgALJmczOi2pT8F9Y0UjJ9z2Fs+sLO/nHgwPHeEI7aGoO6AKuCmY5vYQfp8wNc96XfdrakYdpn4FdxFJwgrsjxpjngMwxlQaYyLGmChwH7Cw/81UR1JbMEJasp/sDCvgOFUcAV/8x8WZyATWACvAgslZjEkL0NgW5HAtt3P2q8oa+tLsYcepKBqTlkT+qFQAfvL0Wp5dWU5ze5jM1ADjs6ztFY06qKoOT3+qZQS4H9hsjLkzZvu4mJtdCmzoe/PUUHB67rl2cK9qtnqNfn+Xnrsd3MeNSSUjxbo8f1IWWWnJcT33TRVNXHzXR2yvbD7o8zpfIvmjkgdmRzzOOeopGJ3KmPQk7rriOLLSk1haUktze4jM1ADjxqQB2nNXh68/PfdFwDeAs7qUPf5GRNaLyDpgMfCjgWioOnLaQnbPPd0J7lYQ6ppzdxYPK8rN4Pdfnc8tn5vL5Jx0xqQlxQ2ovr+9mrV7Grjkro9o6eg9d+x8iYhIr7cZTqqbO/jxU2uob4k/iukIR/j5c+tZsds6Uhk3xuqdX3TMOD4zfgxb9zdbPfeUJPIzU/AJ7GvQnrs6PH0uhTTGfAj09F/4at+bo7ygLRglLdlPrt2DrrZ7mN1y7vaa7lPzM5iSm8G3T50KQFZ6fM59T501CaclGGHL/maOnxI/xh6ORLnvg12s32tNsz9wkC+A4eTWlzbw6vr9nFCUw+ULJ7vbN+xt4vFPyyjKTQdgrB3cAWaPzeSRT3aTHPCRmRogye9jfFYaJTFVSUolQmeoqm7agmF3QBWg2p4Wn9Ql595un2Jvqj2Y6hidlkRHOOqePHtXTYubk+9ptciVu+v5r39sYfM+O7iPgMqQ1mCYd7daVWBlda28uanSXcah1A7UpbWtJPmFvIwU936zx2bSEY6ysaKRzNQkAOaMzWTr/oOntJTqSoO7imOMcXPuWWlWcHHWFO+ac69sstIoTkWHIz/TClYVdiphV00LxUVWbz12WVuHswKi43B67nsb2jx5NqjlpfW02u26+92dXPO3FTy3ei9A3NyAwtGp+GKOiOaMzQSsL87RqdaB9eyxmZTUtOiZmtRh0eCu4gQjUaLGKnMM+H1kpSe5wbZrzt0p2yvqEtyPmTgGgDV7GtzlCYrtVExPPfeuZZPNhxHcF93+Dl/5y9KEb3+kOMv3Hmu/FkDnkUxtZ3AfF5OSAZhZkElywPq3dMY0Zo8dTSRq2FnVeb9QzLIQSvVEg7uK0x60UgdOJUxOemflStec++xCq5c5OSc9bvvMgkxGpQRYXdZAqR3IZhZmMjo1ELdmucMZfH3phkWcOiOPA+2J1cg7wXL93kbPTXyqswdRT5qe625rsr/EdlV3BumxdjWMIy3Zz22XfAaADDu4O735rZWdS/9+6e6PufUlLURTvdPgruK0hqxes7Neu5N3B/B3qWK595vH8+L1i9yepns7n3DspDGs3lPPzmprpcipeRnkZabErXzocHruc8eNJjM1kHBapi6mCmXrIcosj7S6liABn7CwKMfdVnMgiDGG0toWd0Zq1547wJeLJ/HEtSfx/TNnANZrl+z3scle1720poV15Y28sm7fYfXeH/q4lBufWN2f3VLDiAZ3FcfJXzs9d2cik0+Iyw0DZKUnc+ykrB4fZ8GkbDbva+aNjZWMSgkwqzCTvC5rljsa20JkpgQI+H2MSgnErYh4MLHB/Z0hOG/r0p213PjE6h7LO+tagmRnJHP6rHxu+dxcxo9JpeZAB1XNHbQGIyyebc3KHju6e3AHOGlarvvaJ/l9zJ+cxQfba4DOfa1vDbFmT0PC7f1wR42e3/afiAZ3Fcc54XWqHdzH2z3LrimZQ1k8p4BI1PDS2gpOm5lHcsBHXmZyz8G9NcRoe/B2VGog4WqZ2ODu9GqfWrGH5aV1vd2l30prWvjT29vZUdXMNX9bwYtrKnh2VfflEupaguSkJ5Pk9/HtU6cyITuNmgMdbNhrnQT70gUTuGpREed/ZmxCz3vWnAK27G9mX2Mb72ypYkJWGn6f8M6WSvc2r6zbxwv2oG1Pag500NQedqt21MimwV3FcfLY6c4EJXuwNBQ5vJz2cZOz3F794jkFAORmpLirHoYiUZ5asYdgOEpjW4isdCu4Z6YEOBAME40aXlyzN+6kFV05wX1SThq7aloIRaL87Jl1fPmewRtgfXZVOXe8uY1fPL+BYCTKnLGZPPDhLlqDYZ5fXU5HOMKzK8upbQnGpbTyRlkpqdVlDfh9woLJ2dz6+XlMyEo7yLN1Ott+DR/6eDcf76zhkgXjOWV6Ls+u3EvIDtZ/emc7P3xyDS+vrejxMZxKJV2O+Z+DBncVxynfc3LuXcscEyUi3Hj2DApHp3CWHZjyRqXQ0BoiFInyxsZKfvbMOu54Y6u77C1YPXdjYN3eRm58Yg2PLitjeWkdb2zc363k0Qnux0/OZldNi1snH2t3bUuPU/f3N7a79eZdNbaG3LGCrpzJRJ/uquPkabl8e9FUSmtb+cNb2/nRk2u5/bUt/OTptazcXR8X3HNHJVN7oINVZfUcNS7TfX0TNaNgFLMLM7nnvZ34RPjGSUVctaiI/U3tvLp+H8YYyuvbEIGfPLWWZSW13R7DOWqq1+WY/ylocFdxuubc+xrcAc6aU8iyX5zjDh7m2Ssf1rUE3VPzPbF8D3Wtwc7gnmL9XmGnVl5eW8GX71nKtQ+v5NsPLicY7kwp1LcG8fuE+ZOyaA1GeH3jfgCSYurxf/DEGr7w3x9SXt9Ka7BzhcvvP7qSM3/3rpvOiXXdIys5+4733KOYWLGVLmfNKWDOOKuS5a3NlW57HV177vWtIVburue4yT2ugn1QIsLdXz+OnIxkvnjcBMaOSeXMWQVMzknnxTUVNLaFONAR5obFM5iQncYtL26Mu39rMOx+cfdlUTc1/GhwV3G65twTTRskwgny+xrb3Yk8jW0hSqpb3LTMKHvizorSegA22sH3B2fPZGlJLT97Zq1b9ljbEiQ7PYlp+aMAeG6VlW/2+8S9TVVTO1XNHXzrr8uZe8vrXPfISsBaAgDghsdXuae2cziDlLFnlgLcSpf0ZD8iVnB30lYldtCPrQbKjuu5W/veEY72KbgDTMsfxYf/tpj/e+nRgDXAfdzkLDbva2JPnfVlOW/8GL524mS2VjZTXt957tXYyWP1LSHCkajnykfVwNLgruI4PVsn5x573tT+mjtuNADryxvYVdPC9PzOowJnQDUzxQ7uu+vd66blZfDjc2fx0/Nn88KaCh77tAyA+pYg2enJ7tGFM6mqPRR1J0LVtwYpnpJNWa0V6N7bVm2fOjDKtLwMSqpbWLI1voJkZqH1ZdG1ssSpdPnxubN4+YZTmZSTzujUJPJ6WcUyNya4x650ec7cwkO/WL1ITw7EvSezx45mX2M7GyusgdpJOWnuGEds+2MHsn/7+lZm3PwaF9/1UdxjP7+6nLN+966bw1fDmwZ3Fcfpuceu1T5QJmankZ+ZwqqyBkprWjh2YhaTcqwjg9icO1jByAnaTrD6/pnTmVU4ir+v3QfgDlqOjzm6uGpREQBVTR20h6yTYSyeU8Bj15zIOUdZQXXL/iaiBq47czrjxqTy4Melce10qnW6Bn3naGNWYSafmdA587S31JVzNAKdX14Li3IYldKfUxfHcyY4vW0H8onZ6UzLy2BKbrpbMvnwJ7v5l8c769udOQHryhsJRaK8vbmSa/+2gieX76GkpiVueYSh9p+vbebhpaVD3YxhSYO7iuMG95gBv2euO5nff/XYfj+2iLBgUhYf76yhorGdorwMpuVZveTOnHtn4Lt0wQRuPHumG7BFhMVzClheWkdTe4h6O7j7fcKvvjCPR79zIufaveKq5nbqW61URHZ6MsVFOVy6wDrFr7Og16zCTM6cne8OxL6/rZr73i9xe7m7a1vdvPvaPQ3c9spmoHswd85CNcvu8Ts99o6Y8YHiKTl878zp3P314/r3InYx2wnumyvJTA0wJi0JEeGsOQV8vLOWtmCEx5eVUV7f85LBNQc6+OXLG3ljUyWflFhpqK4D0+X1rdz64oaEe/Qd4Qi3vLhhQNagf+LTPf80Z+YaaBrcVZz2YAQRSImZdWoFxokD8vjHTcl2T1IxNS/DDZTOEgRT8zI4Y1Y+x0/J5vx5Y/nRubOYmN25vMHZcwoJRw0/f3Y9exva3EHLK08pYtGMPAoyrbr86uYO9zGz7R6081xOj3ZqbgbjxqRRcyBIRzjCH97axm/f2EpTe5hpdsrICYr3f7iL7VXNXHT0uG7jEFPt215z2jQumDeWp647mQvmjeX8eZ017MkBH/92wRw39z5Qxo1JJTM1QNQQ9zqdNaeAjnCUtzZXsmV/Z7B20l5Oj7+qqYP0pPgjife31fDost3UHujgkU9284PHV/PQ0t09Dj73ZHVZA39butsd4DbG8Niysh7nOBxMfUuQxrYQ2yoPdBsXScSOqmZeXNN73f9IN3DHh2rILS+tY87YTHep2L5oDVorQg7WCTMWzy7gvvdL8PmEBZOzOHrCGF5Ys5cL7Mk8qUl+Hvp272dmPG5yFvPGj+bdrVX4RbqtDV8w2gqeVU0d7uqUWfb6OEV5VvBbs6eBnIxkxqQnuWupb9nXzOo9DThjjPMnZVFS3UJ5fStFuem8t62ai44ezx1f6X4Ec9qMfF4aW8F588by5eJJANzzjeP7+hIdFhHhgnljeXX9Ps6Y1Xku4oVTc0hP9vOHt7YRGxcLRqfQXB3mxKk57qSoXTUtFGSmMD4rjab2EM+uKufZVeVsrzwQl7Jq6KU+3hjDe9uqOX1mPj6fsMXu+TvpnV01Lfzi+fXUHujgX86emfC+OWWnbaEIZXWt3RaoO5Q/v7uT51bt5egJY9xB938m2nMfIRrbQnz1L0v50zs7Dnnbqub2HtdvOdARprK5Y1Dy7Y7ZYzNZ+R/nsvzmc5iYnU5RXgZrbjmP6Qn+8wX8Pl75wWls/PUFrP/V+XzxuPgjisyUAKlJPqqa2zt77hnWl116cmdfZt54a3B3vL1w1xPLy4gtHllgT8DaWd3Cc6v20tgWcuv1uzp64hj+8cPT3dTSkfbbLx/Lxl9fwE2fneNuSwn4OWtOATvtKp6jJ4whJyPZPbvWidOsBc2W7aojGIly02fn8ML1i+LWlu+6pENlUzt76loxxrgnYAF4d1s13/rrcv78rvXZc3L6TnB31qLfcpjr/8Tm/rfErGff2Bpyzz97MM7zdh1TCUeice2P1XXf+qKioc0Tg9Ia3EeIrfubiZrOeuuDufSuj/nMra/H/YNUNrVz/u/f5+W1FW4Z5HAkIkzKtgYTy+x/0qy0zkoVZ+lhp5zQ6bm/uKaC1KTOf4ejxo0myS/8779v4mfPriMl4OO0WXlHajcGxK++MA+wUjcvXL+I5Tef4x7FFBdlI2KNM0Bn7t5Zdx9wXz/Hk8v3cPpvl/DIJ7s57TdLWLOngUjUuKtdvrp+P+FI1A3Ezoqgzt9dTzgSiRq3HDMac9lRWtOC3yeIxN/3hsdXuSWtvQlHomyvOoDfJzy9opxGe/IcwB/f3s5Zd7zbYxB/c1Mlp/92SY/n+01kkbbGthBn3fEuD3X5QunNnrrWQVsOQoP7COHkVUuqW9hd23u1QzRq2GufROO2Vze5229+fj0V9sSivcP8fJ2//MI8dte2cvtrW4D4qpV7v1nM8pvPYVJO/CnuWoMRzpiV7x61FGSmurn146dk88oPTmN0P9JdQyF3VAprbzmPF65fhN8n+H1CwegUcjKSyR+VQm5GMjurrQDqHDndeM5M3vvpme6YS+yEsFVl9RgDDy3dDcAtL25g+i9e5RN7NuymfU3MvfV1Vpc1IGIFrmA46gbmXTEnHOkIRzjl9rf5y/slGGM4+873uOONbXHt31XTwqTsNIpyM9xSz1AkyvLSOlaW1R/05CWltdZzX3VKEW2hCIvveJdTbn+HAx1h/vbJbkIR02MAXlpSizHd5zhsq2xm/q/e4NFluw/6mq/Z00B7KOq+JgcTjRq+9ddPue6RVYe8bV8MWnAXkQtEZKuI7BCRmwbreWI1toX4/J8+ZH1544A95v/++ybueGNrt+2/f3MbP3xiNX9+dwffe2TlkE8I2bK/2T2V3VMr9vR6u+qYQa2PdlgfwEjUsHRnLV85ftLgNvIIWTQjj7OPslIoaUn+uCORnIxkNxcPVnVOpl1+efyUbKbY5zXNHZXs5qovOnocMwqGZ852THoShTErT/7grJk8eNUJiAj59uDz8ZOz3dcoJeBnSm7nQPf3zpjOX791AtPzM9y01Y4qa2mGdfb/2RsbO48WnRnEx03OJmpgT30rWyubSU3yEYkaNuxt4tI/f8SvXt5EZVMH971fwrbKA+yqaeHBj0vdtYTaghHW7W2gKC+Dk6blsHRnLaGI9UXRHooSDEfZvK/3NI/zhXLJggmcMj2XupYg1c0d3LVkBw2tIWYVjuLJ5Xu69d5XlTUA1lHKBX94nyr7bGOvrNtHc0eYm5/fwLryhl6fd3VZvf274ZAx4f3t1eysbuGiYxJbPO5wDUpwFxE/cBfwWWAucLmIzB2M54r16a461u9t5IMd1qFmY1uIG59Yzbpy64X+2TNreWtTfNri9te2dKtndkSjhqdWWKVYDy8t5cGPdvHMynJuf20L97y3kxfWVPCHt7bz2ob97qSbv6+r4L/+saVP7d+yv4nrH1sV94HbU9fKdQ+vdHvTbcEINz6xmhJ77ZNgOMrPn1vHY8vKmD8pi4vnj+euJTt7rRJwZi2eNjOPvQ1tVDW1s72qmZZghJOm5/DYd0486IDmcOHMAo0k8KXrrKm+YHI20/IzSEvyk5EScJfy7S3XPhyNHZPKMROzANzgs7iH/XOC+1HjRrN4ToFbheSIHW+vbQlSODqFWz8/lw//bTE/PX82/3KWtRb99x5ZSWltizvH4D9f3czqsgYeW1aGiHXfX71sLZVwoCPs9qZvem4d5fVtfOOkKSyeXUBzR5jlpXWsKuuc3LYqZqKb49X1+9zz8frEWpPntkuP5vKFVsfl0U92U5CZwj1fPx4R+OLdH/Pdh1fYcyIibLKPENbvbWTL/mY+2mkts7xkaxWzCkcxOjXAX94rcZ+vPRThB4+vdo+cnS+H2pYgV9y3LG6F0v/76maWbK3id69v5fWN+/nrR6UUZKZw0dHje3yv+muwqmUWAjuMMSUAIvIEcDGw6aD3Oky7alr43Rtb+Y+L5jJ2TKr7rbmruoVI1HDN31bw6a46RqcmkZmaxFMrynlhTQWPXH0iG/Y2MjU/g3ve28me+lYWz47/gL+w2hpEa24P09we5j9f20LAJzTFLEebmuSjPRQlNcnHvz+/gXnjR7vnybxi4WQm5aSzsaKRRz7ZzbgxaZw/bywf7ajhc8eM4+mV5Vx96lS3x1TR0MaVD3xKZVMHm/c18dINpwJwyV0fUdsSpLgom++cNo33tlXx4poKinIz+NG5s3hlfQWPf2r11Cdkp3H7l45mX2M7P316HR9ur+EbJ0/hmIlZPPFpGTMLM93Svs8fM54PttewqqzBXYBrwaTsw65I8KoFdnCPXYumN2PHpFFS3cLRE8ZwxcIp7gSle75xPEu2VI2Y16Qrpwfe05eXs8/Ob6cKyXHZCZMIhg0vrNlLJGoYn5XGVYumAnD94hl0hCN84djx1LUEGZ+Vxg1nzaC0toUVu+tJS/LTFrLSYPsb2/l4Zy2jUgKcPD2XO9/cxqScdF5eW8HVi6Zy9lGFtHSESfb7uP21LbQGIxRkphDwCY8s203uqGQunj+BZSW1VDS28T8f7GJjRRPZ6UkUT8khNcnP1LwMbv38PJ5cvoem9jCnTM9jWv4o/nrVQv7rH1t4fWMlS0tqyUgOEIoY5k/KcpegKKluYV9jG+vKG/nX82bR3BHmvvdLKK9vZWJ2Oh9ur+GltRW0hSL85evHs6as3r3/0pJafv3yJi5ZMIFpeRnc+34J68ob+HRXHVPzMiitbeW7p0/rdrKbgTJYwX0CEJsbKAdOHOgn8Yvw6vp9FOWm89Pz57jf6qW1Lby5qZJP7bxZWV2rG/hHpyZxxX2fEI4aN5+4q7qFZSW1FI5OpaKhjbc2V/HAR7vinqs1ZkXC3IxkPn/seMZnpbK98gBzx4/m3vdLWFpSy5TcdHbXtvLosjJyMpK4+92ddISjtAYj3PmmlVP8+7oKVpU1sLGikbuuOI6m9jDf+uuntHZE+PeLjuL/vLKZNzbup+ZAh7tErnMI7FQwWGV7hvs/3EVRbjoFmalcumACKQE/932jmO8/tpIX11TQ0Bbi5guP4ufPr+ekqbksmmFVSZw/byz//sIGHl22m7ZghJyMZDclMRIcHTOD9FDOn1fI5Jw0UpP8nDozj1NnWgOnJxTlcELMmZRGmj9evoDnV+91J1/FOntOAevLG916/wI7lZWfmUJ1cweLZuTxuWPGs6P6AGv3NLjXO1ICfv54+YK4bfdfeQI/enINV586lQc/LuVrJ06hvjXIz55Zx7GTxvD/LpvP5//0If/69FqiBi48ZhwAGSkBrjhxsls3/5XiSQT8wv0f7uKmZ9dzxqx87nxzGyt31xO2c2n1rSG+fWqR+9ypSX6KcjMoqWlhweQswErD/e3bC1nw6zd5ftVeNuxtZExaEv/xOet/cEflAdbsaeDDHTWkBHxcdMx4osbwl/dK+HB7DZctnMw79lH/W5srefDjUpraw1y1qIinVuwh2e9jydZq1u9tdGONM1HMqWI6+6i+L0VxKIMV3Hsqko47PhaRa4FrASZPntynJ5mcm855cwt5dFkZ3ztzhhsAd9W08MBHu5iQlUZxUTbLSqzDuVEpAZ657mS+9j/LyEwNuKP4u2pa+M7fVjApO53S2hZagxHmjM1ky/5mRqcGaA9bJyMWIBw1vPbD07odpjq9FoCjb32de97bCVhn2nnu+4t4YfVe7lqyg3DUuIdur6630jl3vrHNyjletZCTp+Vyz3slvLmpknXljZw0LYecjGRWldWzcncdS+zZlavL6tla2cyGvU38+uJ5fPPkIvf5x6Qn8eh3TuLfX1jPc6v22oNWVh18TkYyeaOsGu9FM3Ldx/vScRMHrbZ9KKQl+5mck96tDr4nXztxyhFokfdcePQ4Ljx6XI/XFRfl8Mh3Ovtjzuf98oWTeXhpqZv2mpidZgf3ns8oFatwdCqPXXMS0BnUOsIR7nl3J2fPKSQ9OcB1Z0znp8+sIycjmWPt9BFYg+S/tKt/HOfNHcuFf/yARz7ZzbryRjewn3NUIeX1rZw7Nz6XPXtsJiU1LRwX85lITfKzaEYuL62tIDng49HvnMjxU3J4/vuLuP6xVbyyzlrq4q4rjmNqXgbRqCE92c+W/c2sKK3jnc1VHD8lm00VTfz675sYOzqVC48ex8XzJ9AaDPO5P31Ist8XV8rpyMlIZn4vZzIbCIMV3MuB2NG5iUDcGQSMMfcC9wIUFxf3eTTymtOm8frGSr58z1JagxGOmTiGdeWN1Byo4+YLjyJqDC+uqeDdrdXMn5RFUV4GH/xsMa2hCKf/Zgk+sVfyC1mj/QDPf/8Ujp2YxYV//ICpeRluTbjfJ7R0hA/5Qf7mKVO4a8lOnv3eKRw7cQwBv48fnTuLG8+eyZfu+ZjVZQ38y1kzuGvJDn74xBr2NrRx51eOZdEMq8e4eHY+T9tTrn/5hXmU1rTw6vr9fOlu6yQUp8/Kt6fKW0cX583teUDmrDkFPPJJGY9/Wsbswky2Vjbzyvp97gfq/itPoD08eGvJDLX3f7Z4qJswYswoGEXAJ3z1hEn8+NxZ7vaJ2VZFUeHovs28TQn4efsnZ7gdiy/MH8+db27jzNn5hzz719zxozllei7/vWQH7aEouRnJjE5L4r5vHt9jR+X4Kdl8uKOGz4yPP6r73DHjeXtLFb//yvy4I7VZBZm8wj5mFY7iIvsowucTZhZm8ur6fW79/M8umM2YtCSufXgl3zltKkl2YUN6coC3f3wGBzrCnPabJcyflMW7W6uZlpdBxBhOnpZ72Gc4OxyDFdyXAzNFZCqwF7gMuGIwnqi4KIcbFs/gv5fs4KJjxvH5Y8Zx3SOryEj289WFk1hpD7qU17e5E158PmFUSoC3fnwGa/bU8+0HVwDWFPEFk7LcfO1T151MwCdETeehSDSBAbofnzub754xvVvpnM8nnHNUIavLGvjScRP5eGctK3fXs7AoJ24yzjlzC3l6ZTmXzB/POUcVsNrO/y2cmsOvL55Hkt/H2Xe8x7Orypk7brRbztfVKdM767Ifu+ZEzrnzPepbQxTZ6RefT+Im9ijVmzNn57P052fHVRpB55IHifTcexMbiFMCfl678bSE51pcfepUPn7Iqvp68rsnkT8qtdcj0G+dUsQXj5vY7UQplyyYwJmz8905AI7pBVZK6usnxR/ZzSnMZO0eq9zzmetOYcGkLHw+YcXN58SV3Tr7lpmaxDs/OZP0ZD8Lb3uLE4py+MWFR5GSNLiV6IPyn22MCYvIDcDrgB94wBiz8RB367OfnDeL02bmsWBytlvj/eXiSYxOTeKosaPd233rlKK4++VkJDOr0Jq8kZWexJPXnuyuQwL0ua7Z75Ne73v1qVM5eXouRXkZnDWngJW76+NygwDnzS3k+e+fwjETs9zFth675kSKp+S4gy/fOGkKD3+y282h9yQ1yc9bPz6d/FGpjElP4pHvnMj2ygOcPL33+yjVE6t0snvvfJLTc++lg9EXXYPswSyeXcDUvAya28NMzx910NRiwO+LO4HKoZ7zws+M44lrUzhxavy4izPh69iJWXFpv+xeHhs6T9zyzPdOIW9UCmPSB3/OhAx1fTZYaZkVK1YMyGMZY3h6RTnnzxvrvoDPrCzn5Om5PZ54Iho1zLnlHyyanstfrzqyJYBN7SFeWbePrxRPOuzDs0jU8MLqvZw7r3DYTa5RI0c4EuWZleX8r+MnDuja/4djw95GGttCblpzsH28o4Yr/mcZPz53Fj84jLVyBoOIrDTGFPd43UgL7n3x8NJSZo8dzcKpI7cyQik1MDrCEX73+lauOX1av9JRA0GDu1JKjUAHC+66toxSSo1AGtyVUmoE0uCulFIjkAZ3pZQagTS4K6XUCKTBXSmlRiAN7kopNQJpcFdKqRHIE5OYRKQaOPjJCQ8uD6gZoOYMpZGyH6D74lW6L97U132ZYozJ7+kKTwT3/hKRFb3N0hpORsp+gO6LV+m+eNNg7IumZZRSagTS4K6UUiPQSAnu9w51AwbISNkP0H3xKt0XbxrwfRkROXellFLxRkrPXSmlVIxhHdxF5AIR2SoiO0TkpqFuz+ESkVIRWS8ia0Rkhb0tR0TeFJHt9u/sQz3OUBCRB0SkSkQ2xGzrte0i8nP7fdoqIucPTat71su+/FJE9trvzRoRuTDmOk/ui4hMEpElIrJZRDaKyI329mH3vhxkX4bj+5IqIp+KyFp7X35lbx/c98UYMyx/sM7NuhOYBiQDa4G5Q92uw9yHUiCvy7bfADfZl28C/muo29lL208HjgM2HKrtwFz7/UkBptrvm3+o9+EQ+/JL4F97uK1n9wUYBxxnX84EttntHXbvy0H2ZTi+LwKMsi8nAcuAkwb7fRnOPfeFwA5jTIkxJgg8AVw8xG0aCBcDD9mXHwIuGbqm9M4Y8z5Q12Vzb22/GHjCGNNhjNkF7MB6/zyhl33pjWf3xRizzxizyr7cDGwGJjAM35eD7EtvvLwvxhhzwP4zyf4xDPL7MpyD+wRgT8zf5Rz8zfciA7whIitF5Fp7W6ExZh9YH3CgYMhad/h6a/twfa9uEJF1dtrGOWQeFvsiIkXAAqxe4rB+X7rsCwzD90VE/CKyBqgC3jTGDPr7MpyDu/SwbbiV/iwyxhwHfBa4XkROH+oGDZLh+F7dDUwH5gP7gDvs7Z7fFxEZBTwL/NAY03Swm/awzev7MizfF2NMxBgzH5gILBSRzxzk5gOyL8M5uJcDk2L+nghUDFFb+sQYU2H/rgKexzr0qhSRcQD276qha+Fh663tw+69MsZU2v+QUeA+Og+LPb0vIpKEFQwfNcY8Z28elu9LT/syXN8XhzGmAXgXuIBBfl+Gc3BfDswUkakikgxcBrw0xG1KmIhkiEimcxk4D9iAtQ9X2je7EnhxaFrYJ721/SXgMhFJEZGpwEzg0yFoX8KcfzrbpVjvDXh4X0REgPuBzcaYO2OuGnbvS2/7Mkzfl3wRybIvpwHnAFsY7PdlqEeS+zkKfSHWKPpO4Oahbs9htn0a1oj4WmCj034gF3gb2G7/zhnqtvbS/sexDotDWD2Nqw/WduBm+33aCnx2qNufwL48DKwH1tn/bOO8vi/AqViH7+uANfbPhcPxfTnIvgzH9+UYYLXd5g3ALfb2QX1fdIaqUkqNQMM5LaOUUqoXGtyVUmoE0uCulFIjkAZ3pZQagTS4K6XUCKTBXSmlRiAN7kopNQJpcFdKqRHo/wOQ7HX5jHuwtQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(-pes_data[\"channel_1_A\"][0,31400:31700])"
]
},
{
"cell_type": "markdown",
"id": "a6606c28-28c8-4d27-9f38-4a7ca88ee397",
"metadata": {},
"source": [
"Now, let's fit the model:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5690cf09-4fed-497d-a09d-0f3cdceea04d",
"metadata": {},
"outputs": [],
"source": [
"n_test = 10 # exclude some trains to validate the training"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "cb86aa32-dc1d-4684-bd62-25aa77a97245",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Checking data quality in high-resolution data.\n",
"Finding region-of-interest\n",
"Excluding outliers\n",
"Selected 15001 of 16668 samples.\n",
"Fitting PCA on low-resolution data.\n",
"Using 600 comp. for PES PCA.\n",
"Fitting PCA on high-resolution data.\n",
"Using 20 comp. for grating spec. PCA.\n",
"Fitting outlier detection\n",
"Fitting model.\n",
"Calculate PCA unc. on high-resolution data.\n",
"Calculate transfer function\n",
"Resolution = 0.78 eV, S/R = 3.83\n",
"Calculate PCA on channel_1_A\n",
"Calculate PCA on channel_1_B\n",
"Calculate PCA on channel_1_C\n",
"Calculate PCA on channel_1_D\n",
"Calculate PCA on channel_2_A\n",
"Calculate PCA on channel_2_B\n",
"Calculate PCA on channel_2_C\n",
"Calculate PCA on channel_2_D\n",
"Calculate PCA on channel_3_A\n",
"Calculate PCA on channel_3_B\n",
"Calculate PCA on channel_3_C\n",
"Calculate PCA on channel_3_D\n",
"End of fit.\n"
]
},
{
"data": {
"text/plain": [
"array([[[ 45.25033909, -1.52076639, -26.40138086, ..., 41.11148219,\n",
" -28.81773406, -4.55958428]],\n",
"\n",
" [[ 84.63051252, 58.4918049 , 34.38415664, ..., -68.71856042,\n",
" -10.15857886, 18.19808707]],\n",
"\n",
" [[ 42.7415937 , 62.99841607, 25.56760753, ..., 37.3064036 ,\n",
" -14.95242637, -55.78951224]],\n",
"\n",
" ...,\n",
"\n",
" [[ 16.59243397, 20.11136385, 34.66138075, ..., -28.25942387,\n",
" -33.72842352, -30.10383616]],\n",
"\n",
" [[ 14.56659321, 57.7321962 , 53.2570205 , ..., -37.47129771,\n",
" -44.67869095, 9.89501214]],\n",
"\n",
" [[ 24.36188951, 66.45856414, 16.32071628, ..., 1.01045004,\n",
" -56.16842253, -25.37869259]]])"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# exclude the last n_test train IDs so we can use them for validation later\n",
"pes_train = {ch: pes_data[ch][:-n_test, :] for ch in pes_data.keys()}\n",
"vik_train = vik[:-n_test, :]\n",
"xgm_train = xgm[:-n_test,:]\n",
"\n",
"model = Model(channels=channels)\n",
"model.fit(pes_train,\n",
" vik_train,\n",
" np.broadcast_to(energy, (vik_train.shape[0], vik_train.shape[-1])),\n",
" pulse_energy=xgm_train)"
]
},
{
"cell_type": "markdown",
"id": "52c038c5-d86e-4e5a-9214-5e1878dd77e8",
"metadata": {},
"source": [
"The resolution of the Virtual Spectrometer relative to the Viking has also been estimated (in eV):"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "a084b920-0006-4859-80f9-ff81f3c1f6b0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.7772695469856838"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.resolution"
]
},
{
"cell_type": "markdown",
"id": "c1f47e6e-3b62-4c8a-8573-8eb4bd40f2ff",
"metadata": {},
"source": [
"We can look at the Virtual Spectrometer to Viking response function as well."
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "f752a9e0-8484-4381-8bb5-5eb27bd82670",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Intensity [a.u.]')"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtcAAAHgCAYAAABuGUHVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABCr0lEQVR4nO3debxkd13n//enTm137dv7lk46S2dpIgRoIWHfhCQyBHFkYEZQHmhECeCoo6DOgMtvdNQZFAcSg0RFhQiKY4TIFllEEkhCICSEQHdn6U436b3vVtup+v7+OKfqVt++y6mqU1X3nno9H4/7uLXX93b1PfW+n/p8v19zzgkAAABA51L9HgAAAACQFIRrAAAAICaEawAAACAmhGsAAAAgJoRrAAAAICaEawAAACAm6X4PIE4bNmxwO3fu7PcwAAAAkGD33nvvMefcxoWuS1S43rlzp+65555+DwMAAAAJZmaPLXYdbSEAAABATAjXAAAAQEwI1wAAAEBMCNcAAABATAjXAAAAQEwI1wAAAEBMCNcAAABATAjXAAAAQEwI1wAAAEBMCNcAAABATAjXAAAAQEwI1wAAAEBMCNcAAABATAjXAAAAQEwI1wAAAEBMCNcAAABATAjXAAAAQEwI1wAwgE7MlPX03/6s3v7R+3Rkqtjv4QBAYhCuAWAA7Ts6rZOzFd32rUN681/e0+/hAEBiEK4BYAAdOlWQJL300k16+AdTcs71eUQAkAyEawAYQD84HbSCPG3HhMrVmk7NVvo8IgBIBsI1AAygw6eLGsuldcHGEUnSkalSn0cEAMlAuAaAAXT4dEFb1uS1eTwvSXpykkmNABAHwjUADKDDp4vaOjGkTWM5SVSuASAuhGsAGECHTxe1dTyvTWNB5Zrl+AAgHoRrABgwZb+mY9MlbZ3IayjraSyX1pFJKtcAEAfCNQAMmCcni3JO2romqFpvGs9RuQaAmBCuAWDAHA6X4du6ZkiStGksT+UaAGJCuAaAAXP4dLCBzLaJ5so14RoA4kC4BoABU69cb2lUrnNhqwi7NAJApwjXADBgDp8qaCyf1mguLSloCyn5NU0W/T6PDABWP8I1AAyYI1OlxvrWUtAWIklHmdQIAB0jXAPAgJkq+lozlGmcb6x1zaRGAOgY4RoABsxUyddovilch5XrJ6lcA0DHCNcAMGCmihWN5dON8+tHspKkEzOVfg0JABKjq+HazK42s4fNbK+ZvXOB683M3hdef7+ZPaPpuv9qZg+a2QNm9lEzy3dzrAAwKKaLvsZyc+F6JDw9U2JCIwB0qmvh2sw8Se+XdI2k3ZJeb2a7593sGkm7wq/rJd0Y3ne7pLdL2uOcu1ySJ+l13RorAAySqaLfWClEkjJeSvlMStOEawDoWDcr18+StNc5t985V5Z0q6Tr5t3mOkkfdoG7JE2Y2dbwurSkITNLSxqWdKiLYwWAgeBXaypUqhpr6rmWpNFchnANADHoZrjeLulA0/mD4WXL3sY594SkP5L0uKTDkk475z670JOY2fVmdo+Z3XP06NHYBg8ASTRTqkqSRpt6riVpLJ/WNOtcA0DHuhmubYHL5m//teBtzGytgqr2+ZK2SRoxs59c6Emcczc75/Y45/Zs3LixowEDQNJNFoNJi2PzwvVIzqNyDQAx6Ga4PihpR9P5c3R2a8dit3mZpEecc0edcxVJn5D0nC6OFQAGQj1AN09olKTRHJVrAIhDN8P13ZJ2mdn5ZpZVMCHxtnm3uU3SG8NVQ65U0P5xWEE7yJVmNmxmJumlkh7q4lgBYCBMhQGanmsA6I708jdpj3PON7MbJH1GwWoftzjnHjSzt4TX3yTpdknXStoraVbSm8LrvmZmfy/pG5J8SfdJurlbYwWAQTFdCtpCFuy5JlwDQMe6Fq4lyTl3u4IA3XzZTU2nnaS3LnLfd0t6dzfHBwCDZq5yTc81AHQDOzQCwABphOuzeq4z9FwDQAwI1wAwQBoTGuf1XI/l0ypXayr51X4MCwASg3ANAANkqliRlzLlM2ce/kcbW6ATrgGgE4RrABgg00VfY/m0goWY5oyE4ZrWEADoDOEaAAbIVNFvVKmb1S+bClcTAQC0h3ANAANkquSf1W8tza0eQlsIAHSGcA0AA2SqWDlrpRBprnI9TeUaADpCuAaAATJd8s/aQEaa21Rmip5rAOgI4RoABshUOKFxvrnKNeEaADpBuAaAATK9zITGGcI1AHSEcA0AA2SxCY3DWU9mLMUHAJ0iXAPAgCj5VZX92oJtIWam0VxaU1SuAaAjhGsAGBD1qvRC4VoKWkOoXANAZwjXADAg6iuBLNRzXb98pky4BoBOEK4BYEDUVwJZNFzn0yzFBwAdIlwDwIAoVILdF4ezS7SF0HMNAB0hXAPAgCiUg3A9lF340E/PNQB0jnANAANiNgzX+Yy34PWjuTTrXANAhwjXADAgisu0hYywFB8AdIxwDQADot5zPbRI5Xo46zUCOACgPYRrABgQjZ7rRcL1UMZTpepUqdZ6OSwASBTCNQAMiEblOrtIuA4vp3oNAO0jXAPAgCiUq/JSpoxnC15fn+hYIFwDQNsI1wAwIAqVqoYynswWDtfD9cp1mbYQAGgX4RoABsRsubroMnzSXC/2bIUVQwCgXYRrABgQxUq1UZ1eSD68rj7xEQDQOsI1AAyIQrm66Eoh0lzlmp5rAGgf4RoABsRspdqoTi+kHq5ZLQQA2ke4BoABUSxXNbxU5brRFsKERgBoF+EaAAZEoVJddI1ribYQAIgD4RoABkR9Kb7FsM41AHSOcA0AA6Kw3FJ8jXWuCdcA0C7CNQAMiMJyS/GlU43bAQDaQ7gGgAFRKC/dc532Usp6KcI1AHSAcA0AA6BWcypUlm4LkaR8JsUmMgDQAcI1AAyAkh8sr7dUW4gU9F0TrgGgfYRrABgA9VaPpVYLkaThbJq2EADoAOEaAAbAbNmXtHy4zmc8wjUAdIBwDQADoL6l+VLbn0vSUCbF9ucA0AHCNQAMgPqW5kttfy7Rcw0AnSJcA8AAaLSFLFu5pi0EADpBuAaAAVAPzMsvxUe4BoBOEK4BYAAUI64WMpTx2P4cADpAuAaAAVCvRkda55rKNQC0jXANAANgNqxG03MNAN1FuAaAAVBfASRKz3WxUlOt5noxLABIHMI1AAyAYgttIZJU9KleA0A7CNcAMABmy1WlU6aMt/Rhvz7hkbWuAaA9hGsAGACFSnXZlUKkpnBN3zUAtIVwDQADoFipLrv1uTS3PTpboANAewjXADAAZsvVZfutpbnt0evbpQMAWkO4BoABUChHbAvJ0hYCAJ0gXAPAAChUqspFCNd5eq4BoCOEawAYAKVKTUOZ5Q/5rBYCAJ0hXAPAACj5VeXS0dtCmNAIAO0hXAPAAChWasq3ULmepXINAG0hXAPAAIhcuabnGgA6QrgGgAEQtXKdC29DWwgAtIdwDQADoORXGyuBLCWXDt4WSoRrAGgL4RoABkCxUmsE56WYmXLplEo+m8gAQDsI1wCQcM45FSNWriURrgGgA4RrAEi4StXJOUWqXEvBRjIln7YQAGgH4RoAEq4YBuXIletMSsUKlWsAaAfhGgASrhQG5Sjbn0tSLk3lGgDaRbgGgISrL6sXtS0kl041AjkAoDWEawBIuFKLbSH5jNdoJQEAtIZwDQAJV++fpnINAN1HuAaAhGu1cs1SfADQPsI1ACRcvQqdZyk+AOg6wjUAJFy9fzr6aiEsxQcA7SJcA0DCNSrXmag911SuAaBdhGsASLhG5TodfRMZeq4BoD2EawBIuGKLlet8xmO1EABoE+EaABKuFG4ik49auU6nVPSrcs51c1gAkEiEawBIuKJf3/48+jrXzkmVKuEaAFpFuAaAhCs1NpGJvkOjJCY1AkAbCNcAkHBFv6qMZ/JSFun29Z0cWY4PAFpHuAaAhCtVapH7raW5CjeVawBoHeEaABKu6FcjbyAjzfVmsxwfALSuq+HazK42s4fNbK+ZvXOB683M3hdef7+ZPaPpugkz+3sz+66ZPWRmV3VzrACQVMVKtdHqEUWjck1bCAC0rGvh2sw8Se+XdI2k3ZJeb2a7593sGkm7wq/rJd3YdN2fSPq0c+5SSU+T9FC3xgoASVbya5HXuJbmKtdF2kIAoGXdrFw/S9Je59x+51xZ0q2Srpt3m+skfdgF7pI0YWZbzWxc0gskfUiSnHNl59ypLo4VABKrVKlGXilEmpvQSOUaAFrXzXC9XdKBpvMHw8ui3OYCSUcl/YWZ3Wdmf25mI10cKwAkVquVa5biA4D2dTNcL7Tm0/wdCRa7TVrSMyTd6Jx7uqQZSWf1bEuSmV1vZveY2T1Hjx7tZLwAkEjFSrURmKNgKT4AaF83w/VBSTuazp8j6VDE2xyUdNA597Xw8r9XELbP4py72Tm3xzm3Z+PGjbEMHACSpFiptTehkco1ALSsm+H6bkm7zOx8M8tKep2k2+bd5jZJbwxXDblS0mnn3GHn3A8kHTCzS8LbvVTSd7o4VgBIrJLfXuWapfgAoHXpbj2wc843sxskfUaSJ+kW59yDZvaW8PqbJN0u6VpJeyXNSnpT00O8TdLfhsF8/7zrAAARtVq5nuu5JlwDQKu6Fq4lyTl3u4IA3XzZTU2nnaS3LnLfb0ra083xAcAgaLlyXd9EpkJbCAC0ih0aASDhipUabSEA0COEawBIuJLf2g6NWS8lMyrXANAOwjUAJJhzLui5bqFybWbKpVMqUrkGgJYRrgEgweqtHa1UroPbe1SuAaANhGsASLB6uG6l51oKwjg91wDQOsI1ACRYvfrcyvbnwe09wjUAtIFwDQAJNtcW0nrlukhbCAC0jHANAAlWbLNyncvQFgIA7SBcA0CCtVu5zqc9lXwq1wDQKsI1ACRYJ5XrYoXKNQC0inANAAnWfs81lWsAaAfhGgASrB6QW1/nOqUSlWsAaBnhGgASrB6QcyzFBwA9QbgGgARjKT4A6C3CNQAkWEdtIVSuAaBlhGsASLC5ynU7bSFUrgGgVYRrAEiwuZ7rdtpCanLOdWNYAJBYhGsASLC220LCMF6u0hoCAK0gXANAgpX9mlImpVPW0v3qYZy+awBoDeEaABKs5NeUS3syazFch5Vr1roGgNYQrgEgwUp+reU1rqW5yjXL8QFAawjXAJBgJb/acr+1RFsIALSLcA0ACVaq1FreQEYKluKTxHJ8ANAiwjUAJFjQc91JWwiVawBoBeEaABKs5FeVbStcU7kGgHYQrgEgwdquXGfouQaAdhCuASDB2u65TrMUHwC0g3ANAAlW8qvtLcXXqFzTFgIArSBcA0CCdTqhkco1ALSGcA0ACVbfobFVLMUHAO0hXANAgpUqnW0iw1J8ANAawjUAJFj7259TuQaAdhCuASDB2m0LyXgmM5biA4BWEa4BIMFKfnttIWamfNojXANAiwjXAJBQ1ZpTperaqlxLwXJ8xQptIQDQCsI1ACRUOaw6t9NzLQWTGlmKDwBaQ7gGgISqT0Zspy1ECpbjY0IjALSGcA0ACVXvl267LSSdYik+AGgR4RoAEqreFpJts3KdS1O5BoBWEa4BIKE6bQvJpVOsFgIALSJcA0BC1Vs6Ouu5JlwDQCsI1wCQUI2e60wnPde0hQBAKwjXAJBQHbeFZGgLAYBWEa4BIKHmVgtpsy2ECY0A0DLCNQAkVKnS4VJ8GZbiA4BWEa4BIKEabSFt79DoqUTPNQC0hHANAAnVaVsIS/EBQOsI1wCQUB3v0Bguxeeci3NYAJBo6cWuMLPbItz/hHPup+MbDgAgLvWWjvbbQoL7lfya8m0u5wcAg2bRcC3pMkk/s8T1Jun98Q4HABCXONpC6o9DuAaAaJYK17/hnPvSUnc2s9+KeTwAgJjUw3XWa3+HxuBxqpIycQ0LABJt0SOuc+5jy905ym0AAP1R8qvKpVMys7bu36hcsxwfAETWVjnDzK6PeyAAgHiVKjVl22wJkea2TWcjGQCIrt2jbntlEABAz5T8WtsrhUhzlWs2kgGA6NoK1865P4t7IACAeNXbQto113NNuAaAqJaa0ChJMrP/sdDlzrnfjn84AIC4lPxa28vwSc0917SFAEBUy4ZrSTNNp/OSXinpoe4MBwAQl1IlnrYQKtcAEN2y4do597+bz5vZH0mKssEMAKCPytVaTG0hVK4BIKp2jrrDki6IeyAAgHiVKp31XDOhEQBaF6Xn+tuSXHjWk7RREv3WALDCFf2axvNRuv8WxlJ8ANC6KEfdVzad9iU96ZzzuzQeAEBMSpWq8mO5tu9PzzUAtC5Kz/VjvRgIACBeZT+mnmvaQgAgsnZ3aPxk3AMBAMSr5NcaAbkdcz3XtIUAQFTtljR+NtZRAABi1+kmMumUKWVSkZ5rAIis3R0aD8c9EABAvIodrnNtZsqlPZXpuQaAyKKsFrJL0u9J2q1gExlJknOO5fgAYAUr+dWOdmiUpHwmxYRGAGhBlKPuX0i6UcFKIS+W9GFJf93NQQEAOlOtOVWqTvkOKteSlEt7TGgEgBZECddDzrk7JJlz7jHn3HskvaS7wwIAdKLeytFp5TqXSbHONQC0IMo610UzS0n6vpndIOkJSZu6OywAQCfqK3x0MqGxfn/aQgAguihH3V9UsOX52yU9U9JPSvqpLo4JANCheiDuZEJj/f4sxQcA0UXZRObu8OS0pDd1dzgAgDjUWzmoXANAby161DWz9yx35yi3AQD0Xj0Qd7KJjFTvuSZcA0BUS1Wuf8bMJpe43iS9TtJ7Yh0RAKBj9RU+Oq9cezpdqMQxJAAYCEuF6w9KGlvm/h+McSwAgJjUd1XseLWQdIql+ACgBYuGa+fcb/VyIACA+MxVrjtrC8lnPNpCAKAFnZU0AAArUrwTGlktBACiIlwDQALFNqGR1UIAoCXLhmszW9eLgQAA4hPbJjIZtj8HgFZEOep+zcw+bmbXmpl1fUQAgI6V4tr+PJ1S0a/KORfHsAAg8aIcdS+WdLOkN0jaa2b/08wu7u6wAACdKDUq1523hTgnVaqEawCIYtlw7QKfc869XtLPKNj6/Otm9iUzu2qp+5rZ1Wb2sJntNbN3LnC9mdn7wuvvN7NnzLveM7P7zOyTLf5cADDQ5nquO1/nOng8JjUCQBRReq7Xm9k7zOweSb8i6W2SNkj6ZUkfWeJ+nqT3S7pG0m5Jrzez3fNudo2kXeHX9ZJunHf9OyQ9FO1HAQDU1cN11uu05zp1xuMBAJYW5ah7p6RxSa92zv2oc+4TzjnfOXePpJuWuN+zJO11zu13zpUl3Srpunm3uU7Sh8Pq+F2SJsxsqySZ2TmSflTSn7f4MwHAwCtWqkqnTOkOw3W+UbkmXANAFFGOur/pnPsd59zB+gVm9hOS5Jz7X0vcb7ukA03nD4aXRb3NH0v6VUlLHtHN7Hozu8fM7jl69OhSNwWAgVHyax2vFCI1Va4rtIUAQBRRjrxn9UpLeleE+y20ssj8GTEL3sbMXinpiHPu3uWexDl3s3Nuj3Nuz8aNGyMMCwCSr+RXletwjWtpbik/KtcAEM2i25+b2TWSrpW03cze13TVuCQ/wmMflLSj6fw5kg5FvM1/lPQqM7tWUl7SuJn9jXPuJyM8LwAMvFKlpnwclWvaQgCgJUsdeQ9JukdSUdK9TV+3SXpFhMe+W9IuMzvfzLKSXhfet9ltkt4YrhpypaTTzrnDzrl3OefOcc7tDO/3rwRrAIiu5NdirVwXaQsBgEgWrVw7574l6Vtm9rfOuSiV6vn3983sBkmfkeRJusU596CZvSW8/iZJtyuoju+VNCvpTW38DACAeYqVarw911SuASCSpdpCPuace62k+8ysuVfaFCx//dTlHtw5d7uCAN182U1Np52kty7zGF+U9MXlngsAMCe2CY31thAq1wAQyaLhWsEa05L0yl4MBAAQHyY0AkB/LFrWcM4dDk8ek3TAOfeYpJykp+nsiYkAgBUk9so14RoAIoly5P2ypLyZbZd0h4K+6L/s5qAAAJ0pVmqNYNyJfKPnmrYQAIgiSrg259yspNdI+lPn3I8p2M4cALBCBW0hcfZcU7kGgCgihWszu0rSf5H0qfCypXq1AQB9VqrEvEMjbSEAEEmUI+87FOzI+I/hUnoXSPpCd4cFAOhEya8pH8OExqxHWwgAtGLZCrRz7ssK+q7r5/dLens3BwUA6EzJj2ed61TKlPVSKtIWAgCRLBuuzexiSb8iaWfz7Z1zL+nesAAAnSjFNKFRCpbjo3INANFE6Z3+uKSbJP25JI6uALDC1WpO5Wo8PddS0HdNzzUARBMlXPvOuRu7PhIAQCzK1SAIx7FaiBSsGMJqIQAQTZQj7z+b2S+Y2VYzW1f/6vrIAABtqQfhPG0hANBzUSrXPxV+/29NlzlJF8Q/HABAp4phEI6tcp3xaAsBgIiirBZyfi8GAgCIR71yHe+ERsI1AESxbFnDzIbN7DfN7Obw/C4ze2X3hwYAaEe9hSO2CY3plEoV2kIAIIooR96/kFSW9Jzw/EFJv9u1EQEAOlKvMsexiYxEWwgAtCJKuL7QOfcHkiqS5JwrSLKujgoA0LZuVK6LVK4BIJIoR96ymQ0pmMQoM7tQUqmrowIAtK3Y6LmOL1yXqVwDQCRRVgt5j6RPS9phZn8r6bmS3tTNQQEA2teoXMfVFpKmLQQAooqyWshnzexeSVcqaAd5h3PuWNdHBgBoSynuynWGda4BIKooq4Xc4Zw77pz7lHPuk865Y2Z2Ry8GBwBoXdwTGvPs0AgAkS1auTazvKRhSRvMbK3mJjGOS9rWg7EBANoQ+4TGDOtcA0BUS7WF/JykX1QQpO/VXLielPT+7g4LANCurkxorNZUqzmlUiwWBQBLWTRcO+f+RNKfmNnbnHN/2sMxAQA60I0JjcHj1jSUjecxASCpokxo/FMze46knc23d859uIvjAgC0qd4fnY+xci0FoZ1wDQBLWzZcm9lfS7pQ0jcl1aeLO0mEawBYgUp+TV7KlPbiCdf1iZFFJjUCwLKirHO9R9Ju55zr9mAAAJ0rVqqx9VtLUj6TajwuAGBpUY6+D0ja0u2BAADiUfJrsYbres91kbWuAWBZUSrXGyR9x8y+rqZtz51zr+raqAAAbSv51UYgjkO9cs1a1wCwvKjbnwMAVomSX2sE4jjM9VxTuQaA5URZLeRLvRgIACAepUqtK5XrIhvJAMCyltqhcUrBqiBnXSXJOefGuzYqAEDbin5VuRgr142eayrXALCspTaRGevlQAAA8Qgq1/GvFsIW6ACwvPiOvgCAFSHuCY1UrgEgOsI1ACRMtyY0lgjXALAswjUAJEywiUyMlevGJjK0hQDAcgjXAJAwcW8ikw+DeolNZABgWYRrAEiYkl+LdbWQjGdKGZVrAIiCcA0ACVOKuS3EzJTPeExoBIAICNcAkDBxV64lKZdOqUhbCAAsi3ANAAninAt7ruOrXEvBiiEl2kIAYFmEawBIkPpGL3FOaJSCcM325wCwPMI1ACRIt8J1Lp2i5xoAIiBcA0CC1JfLq2/8EpccExoBIBLCNQAkSL0vOva2kHSqURUHACyOcA0ACVKvXOdirlwHExqpXAPAcgjXAJAgxW5VrjMpNpEBgAgI1wCQIPXWjdh7rtMe258DQASEawBIkEZbCJVrAOgLwjUAJEjXJjRmPHZoBIAICNcAkCBzlev4JzSyFB8ALI9wDQAJ0thEJhP/JjIlvybnXKyPCwBJQ7gGgASpt4XEPaExn/HknFSu0ncNAEshXANAgnRrQmP98ZjUCABLI1wDQIJ0a53r+qY0bCQDAEsjXANAgnRtQmMY1tkCHQCWRrgGgAQp+TWZSRnPYn3ceg83K4YAwNII1wCQICW/pnzak1m3wjWVawBYCuEaABKkWKnGvgyf1DShkY1kAGBJhGsASJBSpRb7ZEZprnJdonINAEsiXANAgpT8auyTGSUpn6kvxUflGgCWQrgGgAQp+bVGEI5To+eathAAWBLhGgASpOTXulK5ZhMZAIiGcA0ACVKsVLvbc03lGgCWRLgGgAQp+bWurBaST7MUHwBEQbgGgATp1oTGHBMaASASwjUAJEix0p0JjfVWkxLhGgCWRLgGgAQplKuN/ug4mZly6ZRKPm0hALAUwjUAJEjJr2qoC+FakoayngpUrgFgSYRrAEiQQrmL4Trj0XMNAMsgXANAQjjnVKh0py1ECsJ1gdVCAGBJhGsASIhytaaaC9o3uiGf8VQoU7kGgKUQrgEgIYrloKrctcp11lOh4nflsQEgKQjXAJAQxXD3xG72XFO5BoClEa4BICHqwbcb61wHj0vPNQAsh3ANAAlRXyavm0vxsVoIACyNcA0ACVEP1/kuTWgcyqRoCwGAZRCuASAhit2uXGfYRAYAlkO4BoCEqIfrbq0WkmeHRgBYFuEaABKiEC7F163K9XAmrbJfU7XmuvL4AJAEXQ3XZna1mT1sZnvN7J0LXG9m9r7w+vvN7Bnh5TvM7Atm9pCZPWhm7+jmOAEgCbo/oTF4y2BSIwAsrmvh2sw8Se+XdI2k3ZJeb2a7593sGkm7wq/rJd0YXu5L+mXn3GWSrpT01gXuCwBo0mgLyXbn0F4P7bSGAMDiulm5fpakvc65/c65sqRbJV037zbXSfqwC9wlacLMtjrnDjvnviFJzrkpSQ9J2t7FsQLAqtf1nut6uGbFEABYVDfD9XZJB5rOH9TZAXnZ25jZTklPl/S1+IcIAMlRD73dXOdaonINAEvpZri2BS6bPwtmyduY2aikf5D0i865yQWfxOx6M7vHzO45evRo24MFgNWuUKkqnTJlvC63hVC5BoBFdTNcH5S0o+n8OZIORb2NmWUUBOu/dc59YrEncc7d7Jzb45zbs3HjxlgGDgCrUaFS7VrVWqLnGgCi6Ga4vlvSLjM738yykl4n6bZ5t7lN0hvDVUOulHTaOXfYzEzShyQ95Jz7P10cIwAkRrFSU66L4TpPWwgALCvdrQd2zvlmdoOkz0jyJN3inHvQzN4SXn+TpNslXStpr6RZSW8K7/5cSW+Q9G0z+2Z42a87527v1ngBYLUrVqqN5fK6oV65LtIWAgCL6lq4lqQwDN8+77Kbmk47SW9d4H5f0cL92ACARRTKtIUAQL+xQyMAJES3e66HaQsBgGURrgEgIYqVatfWuJaaeq5pCwGARRGuASAhuh2uGz3XVK4BYFGEawBIiG63hWS8lNIp0yyVawBYFOEaABKiUKk2dlHslqGMR881ACyBcA0ACVGs1LraFiIFfde0hQDA4gjXAJAQxXJV+Ux3D+tDGY8JjQCwBMI1ACREt3uuJdpCAGA5hGsASIBKtSa/5roervNZT4VKravPAQCrGeEaABKg3gfd/QmNKbY/B4AlEK4BIAHqrRo52kIAoK8I1wCQAMVy0KrR7baQ4WyacA0ASyBcA0AC1ANv13uuWS0EAJZEuAaABGiE62yXl+LLpqhcA8ASCNcAkAD1CY35dA96rqlcA8CiCNcAkAD1anK+R9ufO+e6+jwAsFoRrgEgAerL4/VinWtJKvmsdQ0ACyFcA0AC9GpCY/3xZ2kNAYAFEa4BIAFmwrA7kkt39XmGw8o1kxoBYGGEawBIgNmSL0kayXW3cl0P7zPh8wEAzkS4BoAEmClXZdb91UJGsoRrAFgK4RoAEmC25Gs44ymVsq4+T70tZKZEWwgALIRwDQAJMFOuarjL/dZSU1tImco1ACyEcA0ACTBb9jXS5TWupblwPUu4BoAFEa4BIAFmSlUNZXtRuQ4C/DRtIQCwIMI1ACRAzyrXYYCfZUIjACyIcA0ACdCrnuuhjCczVgsBgMUQrgEgAWZLvalcp1Km4YzX2LQGAHAmwjUAJMBsuarhHvRcS9JwLs2ERgBYBOEaABJgpux3fXfGutFcmgmNALAIwjUAJMBsqYeV66zHhEYAWAThGgBWubJfU7la60nPtRSsdT1NuAaABRGuAWCVK4STC3uxWogkjWQ9zTKhEQAWRLgGgFWuvhV5LyvXbH8OAAsjXAPAKldfuaN3les061wDwCII1wCwys2EK3f0qnI9nPM0y2ohALAgwjUArHL1Fo1erRYyGraFOOd68nwAsJoQrgFglatXkXu1zvVwNq2ak4qVWk+eDwBWE8I1AKxyva9ce2c8LwBgDuEaAFa5+lJ8vaxcS2JSIwAsgHANAKvcTH2d6x5Vrkdy9XDNpEYAmI9wDQCrXH0r8uGerXNNWwgALIZwDQCr3Ey5qmw6pYzXm0M6bSEAsDjCNQCscrNlv2drXEvBUnzB89IWAgDzEa4BYJWbKVV71m8tzbWfTFO5BoCzEK4BYJWbLfs9WylEaqpcE64B4CyEawBY5WbKPa5cNyY00hYCAPMRrgFglZst9bZynUt7ynjGhEYAWADhGgBWuV5XrqVgxRDCNQCcjXANAKvcbNnv2RrXdaO5tKbZRAYAzkK4BoBVbqroazyf6elzjuXTmixWevqcALAaEK4BYBVzzmmyUNH4UG/bQsaHMposEK4BYD7CNQCsYoVKVX7N9bxyvWYoo9OEawA4C+EaAFaxyUIwqXCsx+F6PJ/RVJEJjQAwH+EaAFaxet9zr9tCqFwDwMII1wCwitX7nnvdFjI+lNZ0yZdfrfX0eQFgpSNcA8AqNle57n3PtSRaQwBgHsI1AKxi9Z7r8XyPVwsJK+UsxwcAZyJcA8AqNtXnyjV91wBwJsI1AKxik8X6aiG9X+damqucAwAChGsAWMUmCxXlMynl0r3d/pzKNQAsjHANAKvYZLHS85VCpLml/+i5BoAzEa4BYBWbLPg9bwmR5iY0UrkGgDMRrgFgFZssVno+mVGShrOe0ilrrLMNAAgQrgFgFZss9KctxMw0zi6NAHAWwjUArGKTRb8vlWspmNQ4ySYyAHAGwjUArGJB5br3PddSsHENlWsAOBPhGgBWKedc33qupWCta3quAeBMhGsAWKWKlZoqVdeXnmuJcA0ACyFcA8AqNbf1eX/aQoKea8I1ADQjXAPAKlUPtmP9qlzng9VCnHN9eX4AWIkI1wCwSp0uBCt19GtC45qhjCpVp2Kl1pfnB4CVqD9HZABAxyYbbSH96rkO3kJOFyoaynodPdbeI9P6+3sP6u5HT+jkTFm5jKeta/K6fNu4nnrOhK44d0IbRnNxDBsAuopwDQAxcc5p/7EZ7T86o0OnCjp0qqCjUyWdnC3rVKGiSrWmfNrT5dvX6JrLt+jZF6zv6Pnqkwn7NaFx7XBWknRipqwta/JtPYZzTrf8+6P6n7c/JEl65rlrddm2cZUqVR08WdAXHz6iWth18vRzJ/TqK7brNc/Y3rdWGABYDuEaADr0wBOn9dGvP65PP/ADHZ8pNy7PeiltHMtpYjijtcNZ5dIpTRV9/d3dB/SXX31UP/b07fqdV1+u0Vx7h+JTs0G4XtOnyvXGsaCSfHS61PZj/OFnHtYHvrhPL9+9Wf/fj/1Q4zHrZsu+Hjw0qbv2Hde/PPADvfu2B/UHn/6u3vz8C/Szzz+fkA1gxSFcA0CbDpyY1e9+6jv6zINPKp9J6eW7t+i5F63XpVvGtW1iSOtHskql7Kz7FStVfeALe/X+L+7T6UJFH3zjHnkL3G45x6ZLSpm0biQbx4/Tsk31cD3VXrj+t+8f1Qe+uE+v3XOOfv81T13w32o4m9YP71ynH965Tm976S5968Ap/dmX9+l9d3xfH7/ngP7Xjz9VL7h4Y0c/BwDEiXANAG345P2H9K5/+LZqzum/vuxivel5OyO3Z+Qznn7p5Zdo43he//3/PaA/+uzD+rWrL215DMemS1o3kmsrmMeh3gPdTrieKlb0Sx/7lnZtGtVvveryBYP1Qp62Y0If+C/P1DceP6lf/fv79cZbvq7XP2uHfv3ay6hiA1gRWC0EAFowW/b1zn+4Xzd85D5dtHlUn/7FF+gdL9vVVt/zG648T6/dc45u/vJ+PXJspuX7H50qndVG0UsjubRGsl5b4frDdz6mo1Ml/eFPPK2tyZDPOHetPvm25+nnXniB/u7uA7rmT/5N9z52ouXHAYC4Ea4BIKLvHJrUf/jTr+jv7jmgX3jRhfrYz12lHeuGO3rM//aKS5X1Unrv577X8n2PTpe1YbQ/LSF1G8dyLfdcz5Z9fegrj+hFl2zUFTsm2n7ufMbTu665TB9/y1Uyk177Z3fpjz//PflVlgYE0D+EawBYhnNOf/XVR/XqD/y7poq+/ubNz9avXn2pMl7nh9CNYzn99HN36p/vP6SHfzDV0n2P9blyLUmbxvI6Mlls6T4f+drjOjFT1tteclEsY3jmeet0+9ufr1c9bZv++PPf14/fdKceeOJ0LI8NAK3qarg2s6vN7GEz22tm71zgejOz94XX329mz4h6XwDohX1Hp/WGD31d777tQT33wvX6l3c8X8+9aEOsz/FzL7hAWS+lv7nrscj3cc4FbSF9Xvu51cq1c04f/frjeuZ5a/XM89bFNo6xfEbv/U9X6H2vf7qeODmrV/3fr+gdt96nB544zQ6SAHqqaxMazcyT9H5JPyLpoKS7zew259x3mm52jaRd4dezJd0o6dkR7wu0zDmnmXJVJ6bLKvpV1ZxTrSbVIrz5+jWnQrmqQsXXbLkafJV8zZSrmi75min5mi75mi1VZSZl0yllvJRGsp7G8hmN5dMay2c0mk9rLJ/WeD6tkVxanpnMTClT43vKgsld+YynNUMZZdN8yNSKYqWqO/cd1537j+s7hyb1+IlZTZd8pcw0MZzR+RtGtGvTqC7ePKYLN47qgo0jGmlaDq/kV3X3Iyf18XsP6JP3H9Zw1tNvX/cUveHK82QW/+TBieGsXvGULbrtW4f0Gz96mfKZ5XuQJ4u+ytVa3yvXG8dy+vL3o4fr+w+e1r6jM/q911zQlfG86mnb9MKLN+oDX9yrv77zMf3TNw/pok2juuqC9bp065g2jeXlpaRqTfKrNU2VfE0WKjpdqGiyUNFsuaqUmVIpUy6d0vaJIe1YN6Rz143o4s2jSsfwacUgqNWcZsq+yn5NmXRKWS/4WmziqnNOp2YreiJcH/7w6aIOnSo0zh+bLiuXToXHz4y2jue1fe2Qtk8M6Zy1Q9q+dkhbxvOLvj61mtNksaLjM2Wdmi3r1GxFp2aDtefNJJNpNJ/WprGcNo7ltGVNXrl0ZxsjYXB1c7WQZ0na65zbL0lmdquk6yQ1B+TrJH3YBWWFu8xswsy2StoZ4b4rwveenNLJmbL8mlOlWlOl6uRXa6rUgu9+1alSC777Nad0ypTxUsqmwy8vpVwYnGrOqVpzqrngdP28cwovd3KScumUhjKehrKehjKe8uHpfMZTxov+xp9JpZTPeMqlFz/gdcq5YGvk5vBZqFTlV4Ofza/VVHOucb4a/sx+tel0zakWfq/WavJrTiZTxgv+LdPh96yXUs05zZR8TZV8nS5UdHy6rOPTJR2fKev4dFnHpksq+fH3Y2Y8Cyd3pTWS8+ScVKnWVPJrjZ+71kHxbDjraWIoozXDWa0ZSmtiKKuJ4YzWDGc0nEmH/1bBv011gX87syDArR/Jal34tX4kp3WjWa0bzna8u95KUKs5fe2RE/qnbz6hT337sKaKvrJeSpduHdMVOyY0lk+r5qTj0yXtPzajL3z3iPymF2XzeE5j+YxKflU/OF1Upeo0mkvrTc/ZqetfeIE2jbW3SUpU//GZ5+i2bx3SHQ8d0Y8+deuyt69PIlwJ4Xqq6KtYqUb6o+AT3ziobDqla39o+Z+xXWuGMnrXNZfp5194of75/sP69AOH9YlvHNRMubrofcyCzXhGsp5qTqq64I/p6ZLfuM1QxtMVOyb0zPPW6qoL1+uZ562N9DOvRNMlX0cmi5osNhUGykHhoFpzqlTPPKYEx9+597PZclWF8lyhYabsa7roa6oYPFbzv1uzXDql4ayn4Wxa+UxKlarTdMnXVLGiSvXMg2Q2ndK2NXltmxjS08+dUNkP3ktOFyr67uFJHZk3kdZLmbaM57W+aR5CqVLT8ZmyTs6WVW3hIGwmbRnP69x1wzpv/bB2rB3WxHBQHBnOplWp1lSs1FSoVIP3nGIl+PlLwR8U2fB9Pp/xwmJKUGAZH5ortIzn08plPHlmSqUkz0xeKvjDrn7aC08v9R5drTmV/ZrK1Zq8lCnrpZTxLHIhwDmnUvhvOx2+fuVw3kL9ERoFIFnwx0h4OpVSkHOqtbNzUPi+7qWCglH9Z0s3/UxeypSy4LKqcyqWqyr6VRXKNRUrVRUqQREs46XmspNn4XdP2XRKO9YNaeuaocivbS90M1xvl3Sg6fxBBdXp5W6zPeJ9JUlmdr2k6yXp3HPP7WzEbXj3Pz2oO/cf7/nzxi3jmfJpT7lMSmYmNz/ozwv99dNZby6g5zOevJSp7NfCA09VM+GBuh+yXkrrR7PB10hOF20a1YbRXCNgDmfTZ1SL5x+I5n+U7KVMQ+GbwnD4h81ILgjTy1U4nAvejKaKwUF4Mvw+U6o2/mhy4b+tc2r8+xYrVZ2erehUWFk7NVvR6UJZ+49NB5WXQkXl8I+FdKrpYFw/gKVS8lLB452aLZ/15lWXS6e0biSrtcPBv83EcKZxfu1wRmvDf7O1w9nG651Lp+TXgjGW/OAPiUK5qtmyH/4xNXe6WAmqQ/U3jLF8WmuGMlozlNHWNUPaNpHXupFsy1Vhv1rTNx4/pc8/9KQ++a1DOnS6qOGsp6ufskX/4YptuuqC9YuGn7Jf02PHZ7Tv6LT2HpnWI8dmVaj4yngpbZsY0p4wQA1ne7Ni6XMv2qCta/L6+L0HIoXrY2ErRr+3BN/YtNb1cpM7y35Nt33rkH5k9+aebHwzMZzVG648T2+48jxVa04/mCzq2FRJTsHvS8psLvDk0gsGmNOzFR04Oat9R6d13+OndO9jJ3Xjl/bp/35hr7JeSk8/d0LPuXCDrrpwva7YMdHxp0zFSjXc3XN+5bYkL5Vq/O6Nh78/E8Ph11BW40NpOadGyDk+XdaTk0UdmSrpyFRJT04WdTT8PrvEHxqLSTcdW4bCQsJQxtNw1tNoLq2ta/IazaU1mqsHyLQyXqoRuEp+Nfz0rxqG86qy6ZRGc8GneBvHcto+EYTp+jrxSx0TipWqDp8u6uDJWR08WdATJws6eHJWJ2crYfiTMuFrtH40q3UjwfG/vqnTxHBGGS/VOP5OFf3g32qyqEOninrsxIwePz6rLzx8dNkVcbyUhT97Wrl0SpVaTeXwmNhpcaX5OZqDuFPwO+Uv8OBmahTvchlP+UxKuXRw7K7WnAqVudeiUK4u+BirxS/9yMV6+0t39XsYZ+jmu8ZCvxHzX73FbhPlvsGFzt0s6WZJ2rNnT8//d7zr2ks1VfSVTpnSYfU0qKSa0qm5qmo6FZz3a8FBJvgrMwgl9XBU/wsu1fTLY/W/9ppaBUp+EFzrf9XVf0GKlarKVbfgP958TkEwKfk1lSo1Ff1q47tzajyflwr+Sk3V2xUaYwz+aq2H6Hq48msu/IvdlEt7Gsl5Gs1lNJrzNJoPKrvD2bTS3pl/lXspCy6z+QExpVRKSqdSTYHRgspwWEEJDtzBv6tJGs3PHeC68RF+O8zCynYu3fY20Yup1VykTx6cc5oq+ToxXdbxmbJOzJR1Yqakk7MVnQzPn5wNvh86VdCJ8KPTOGS9lJyCP8oW+2Or/hH81om8towHgXvLmry2hh/P1l/KU7MVPXZ8Vg8cOq1/33tMp2Yrynim5120Qb92zaX6kd2bIwXibDqlXZvHtGvzWCw/Y6e8lOlVV2zTh/7tEZ0uVJYNnyupci1JRyKE67v2H9fJ2YpefcX2XgztDF7KtH0iaCNoxZrhjNYMr9Hl29founDc0yVfdz96QnfuO66v7jumP77je3rv54P/w7s2j+riTWO6aPOoNo3ltW4ko4nhrDyzRnGi/qnaiZlyo/3h0OkgUJ9o2uFTCkJSvVWhVpPK4TF3shD8kR7FUMbT5vGcNo3l9ZRt43rxJZuC8+M5rRnKhJ+4BV/DWa/xflU/TtePuyvleFqXz3g6f8OIzt8wEttjXrbI37XFSrVRlZ8p+cqGnyDnMimN5TLKZxZ/v6m3I04WKk0FloomC0GVu9ooZgWf2tY/ta6Gha1qTY3Tfm3uelNwHMulvbANMfg/Vg7fj+vfS+H7ez071AtF9U++h7NBoWgsfO8czaWVTafmQpeTnOYKPy4ssCm8LBVWy+t5p55/Ml7wvl2tnf0z1T9Vbf7ZzSz4VL7+iXz4R0EqFWSNiu9UrtYaVfpy+DPuWLeyqtZSd8P1QUk7ms6fI+lQxNtkI9x3RXjqORP9HsLAGtLq/Dg2blFbesxM4/mMxvMZ7Yz4ZuRXazpdqOjkbFknZys6MVM+44+pTMqUy6Qan3rk017jTXok5zVaZZo3OanWgo+BJ8PHPXy6qMOnCjp0uqgnThZ0+HRBX913TE9OFpes9mxbk9dLLt2kl122Wc/ftSERG4i8fPdm/dmX9utL3zuqVz1t25K3XTGV6xY2krnjoWAny+fvindCaK+N5tJ68SWb9OJLNkkKqtt3PXJcdz9yQg8/OaWv7juuT9z3ROTH2hZWa596zoS2TwR/WG5bE1RvN4/nF62GV2tOk4XgE6xTs2VNFn2ZpHQYbtaPZrVpLKfRXHrFBePVJh8Gvnb+mDWbq2pjMHTzlb5b0i4zO1/SE5JeJ+k/z7vNbZJuCHuqny3ptHPusJkdjXBfAF2W9lJaP5rT+hgDnJeyRkvIjnXDeuo5C9/Or9Z0bLqsH0wWVfZrjarf2uGstq0Z0prh1R+m57tix1qtH8nq8995ctlwfXSqpHTKNNGD9oqlNLZAX2bFEOecPv/QET3vog2rtk95MWuGM3rFU7boFU/Z0rhsOvyU6MRs8ImQc67Rr7pmKNOY89BJ4PJSprUjWa0dyUqKr3oLoDNdC9fOOd/MbpD0GUmepFuccw+a2VvC62+SdLukayXtlTQr6U1L3bdbYwWw8qS9lLasycfeRrOSeSnTSy7dpM88+ANVqrUl19E+Nl3S+tFs1yYjR7V+NKeULV+5fvjJKT1xqqAbYlrbeqWrVyrPXd/ZJkMAVp+ufkbhnLtdQYBuvuymptNO0luj3hcAku5luzfr4/ce1N2PnNBzllhPu99bn9d5KdO6kZyOTi29kcwdDx2RJL300k29GBYA9A0LdgLACvL8XRuU9VL61+8eWfJ2x6bLfe+3rtu6Jq+DJwtL3ubzDz2pp56zRpvGB+eTCACDiXANACvIcDatZ1+wTl94eOlwfXSqtGLC9YUbR7TvyPSi1x+bLumbB07pJVStAQwAwjUArDAvvmST9h0N1thdSKFc1ZNTRZ27zNJ3vbJr85gOnS4uunHIv373iJyTXnbZ5h6PDAB6j3ANACvMi8MK7xe/t3D1et/RaTknXbRptJfDWtSFG4NxLFa9vuOhJ7VlPFhjGQCSjnANACvM+RtGtHP9sL6wSN/1vqNBiF0p4XrX5mAcexcI18VKVf/2/WN6yWWbWGsZwEAgXAPACvSiSzbpq/uOq1g5e5vq7z85LS9l2rl+ZaxtfN66YWU80/cXCNd37juu2XJVP0JLCIABQbgGgBXoxZduUsmv6c79x8+6bu+RaZ23bnjRnft6Le2ldP6GkQUr1//ywGGN5dJ6zkXr+zAyAOi9lXFkBgCc4dnnr9NQxluwNWTv0WlduEJaQup2bRrT3iNTZ1xWqdb02e88qZdetkm5dLJ2ZQSAxRCuAWAFymc8Pfei9eFKG65xeaVa06PHZlZMv3XdhZtG9fiJ2TPaWL62/4ROzVZ09eVb+zgyAOgtwjUArFAvumSTDp4saN/RmcZljx2flV9zumjjygrXuzaNquakhw5PNi67/YHDGsp4euHFG/s4MgDoLcI1AKxQL7okCKWf+86Tjcvqfc0rrXL9gl0blUun9A/fOChJOjFT1v+77wldc/kWDWVpCQEwOAjXALBCnbN2WM/auU4f+fpjqtaC1pC79h9XxrMVF67XDGd07Q9t1T/dd0izZV+3fOURFSpV/fyLLuz30ACgpwjXALCCvfE55+nAiYK++PARzZZ9/cM3Duqay7dqJJfu99DO8rof3qGpkq/fu/27+quvPqprLt+iXZvH+j0sAOiplXd0BgA0vOIpW7RlPK8P/tt+HTgxq6mirzdcdV6/h7WgZ52/Trs2jeqv73pM60ay+sWXXdzvIQFAzxGuAWAFy3gp/czzz9fvfuoh3bX/hC7dMqY9563t97AWZGb62599tk7NVnThxlF5KXZkBDB4CNcAsMK9+Xnna/fWcf3N1x7Ta/fsWNHbiG8ay2vTWL7fwwCAviFcA8AKZ2Z6zkUb9JyLNvR7KACAZTChEQAAAIgJ4RoAAACICeEaAAAAiAnhGgAAAIgJ4RoAAACICeEaAAAAiAnhGgAAAIgJ4RoAAACICeEaAAAAiAnhGgAAAIgJ4RoAAACICeEaAAAAiAnhGgAAAIgJ4RoAAACICeEaAAAAiAnhGgAAAIgJ4RoAAACICeEaAAAAiIk55/o9htiY2VFJj0W8+QZJx7o4HMSH12p14fVaXXi9Vhder9WF12t1aeX1Os85t3GhKxIVrlthZvc45/b0exxYHq/V6sLrtbrweq0uvF6rC6/X6hLX60VbCAAAABATwjUAAAAQk0EO1zf3ewCIjNdqdeH1Wl14vVYXXq/VhddrdYnl9RrYnmsAAAAgboNcuQYAAABiNVDh2sx+wsweNLOame1punynmRXM7Jvh1039HCcCi71e4XXvMrO9Zvawmb2iX2PEwszsPWb2RNPv1LX9HhPOZmZXh79De83snf0eD5ZmZo+a2bfD36l7+j0enMnMbjGzI2b2QNNl68zsc2b2/fD72n6OEXMWeb1iee8aqHAt6QFJr5H05QWu2+ecuyL8ekuPx4WFLfh6mdluSa+T9BRJV0v6gJl5vR8elvHept+p2/s9GJwp/J15v6RrJO2W9Prwdwsr24vD3ymWd1t5/lLBe1Kzd0q6wzm3S9Id4XmsDH+ps18vKYb3roEK1865h5xzD/d7HIhmidfrOkm3OudKzrlHJO2V9Kzejg5Y9Z4laa9zbr9zrizpVgW/WwDa4Jz7sqQT8y6+TtJfhaf/StKrezkmLG6R1ysWAxWul3G+md1nZl8ys+f3ezBY0nZJB5rOHwwvw8pyg5ndH370xkehKw+/R6uPk/RZM7vXzK7v92AQyWbn3GFJCr9v6vN4sLyO37sSF67N7PNm9sACX0tVZA5LOtc593RJvyTpI2Y23psRD7Y2Xy9b4DKWvemxZV67GyVdKOkKBb9f/7ufY8WC+D1afZ7rnHuGglaet5rZC/o9ICBhYnnvSsc4oBXBOfeyNu5TklQKT99rZvskXSyJCSNd1s7rpaDCtqPp/DmSDsUzIkQV9bUzsw9K+mSXh4PW8Xu0yjjnDoXfj5jZPypo7VloDhFWjifNbKtz7rCZbZV0pN8DwuKcc0/WT3fy3pW4ynU7zGxjfUKcmV0gaZek/f0dFZZwm6TXmVnOzM5X8Hp9vc9jQpPwTaTuxxRMTsXKcrekXWZ2vpllFUwSvq3PY8IizGzEzMbqpyW9XPxerQa3Sfqp8PRPSfqnPo4Fy4jrvStxleulmNmPSfpTSRslfcrMvumce4WkF0j6bTPzJVUlvcU515Umd0S32OvlnHvQzD4m6TuSfElvdc5V+zlWnOUPzOwKBW0Gj0r6ub6OBmdxzvlmdoOkz0jyJN3inHuwz8PC4jZL+kczk4L37o845z7d3yGhmZl9VNKLJG0ws4OS3i3p9yV9zMzeLOlxST/RvxGi2SKv14vieO9ih0YAAAAgJrSFAAAAADEhXAMAAAAxIVwDAAAAMSFcAwAAADEhXAMAAAAxIVwDwApiZlUz+2bT1zv7PSbpjHFtW+I27zGz35t32RVm9lB4+gtmNm1me7o9XgDoF5biA4AVxMymnXOjMT9m2jnnd/gYy47LzC6R9C/OuQuaLvt9STPOud8Jz39R0q8459gBF0AiUbkGgFXAzB41s98ys2+Y2bfN7NLw8hEzu8XM7jaz+8zsuvDynzazj5vZP0v6rJkNm9nHzOx+M/s7M/uame0xszeb2Xubnudnzez/RBjPy83sznA8HzezUefcw5JOmdmzm276Wkm3xvuvAQArF+EaAFaWoXltIf+p6bpjzrlnSLpR0q+El/2GpH91zv2wpBdL+sNwe2xJukrSTznnXiLpFySddM49VdLvSHpmeJtbJb3KzDLh+TdJ+oulBmhmGyT9pqSXheO5R9IvhVd/VMFW6jKzKyUdd859v/V/BgBYnQZq+3MAWAUKzrkrFrnuE+H3eyW9Jjz9cgXhuB6285LODU9/zjl3Ijz9PEl/IknOuQfM7P7w9IyZ/aukV4a90Rnn3LeXGeOVknZL+vdwO+6spDvD626V9FUz+2UFIfujyzwWACQK4RoAVo9S+L2queO3SfrxsCWjIWzNmGm+aInH/XNJvy7pu1qmat30WJ9zzr1+/hXOuQNm9qikF0r6cQXVcwAYGLSFAMDq9hlJb7OwhGxmT1/kdl9R0P8sM9st6YfqVzjnviZph6T/rGiV5rskPdfMLgofb9jMLm66/qOS3itpn3PuYGs/DgCsboRrAFhZ5vdc//4yt/8dSRlJ95vZA+H5hXxA0sawHeTXJN0v6XTT9R+T9O/OuZPLDdA5d1TST0v6aPh4d0m6tOkmH5f0FDGREcAAYik+ABgAZuYp6KcumtmFku6QdLFzrhxe/0lJ73XO3bHI/WNZIpCl+AAkHZVrABgMw5K+YmbfkvSPkn7eOVc2swkz+56CiZQLBuvQ5HKbyCzHzL4g6QJJlXYfAwBWOirXAAAAQEyoXAMAAAAxIVwDAAAAMSFcAwAAADEhXAMAAAAxIVwDAAAAMSFcAwAAADH5/wFljycxrx3iuQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 864x576 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(12, 8))\n",
"plt.plot(model.impulse_axis, model.impulse_response)\n",
"plt.xlabel('Energy [eV]')\n",
"plt.ylabel('Intensity [a.u.]')"
]
},
{
"cell_type": "markdown",
"id": "3842cb23-a961-4a60-9e9e-d341256e1bb7",
"metadata": {},
"source": [
"## Save model"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "4e612338-401e-4fd5-bef7-a6579af0d3d3",
"metadata": {},
"outputs": [],
"source": [
"model.save(\"VS_p5576_viking.joblib\")"
]
},
{
"cell_type": "markdown",
"id": "4d7f95c2-e16d-43b2-a0c5-28a968490bb0",
"metadata": {},
"source": [
"## Apply model in data not used in training"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc56d30b-7db8-49ce-82ed-d01d8b6670d8",
"metadata": {},
"outputs": [],
"source": [
"pes_test = {ch: pes_data[ch][n_test:, :] for ch in pes_data.keys()}\n",
"vik_test = vik[n_test:, :]\n",
"xgm_test = xgm[n_test:,:]"
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "0d8054bb-8ad6-4ee4-8d0c-8ac4ee990179",
"metadata": {},
"outputs": [],
"source": [
"vs_test = model.predict(pes_test, pulse_energy=xgm_test)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "e087883a-43e3-4e19-9041-6740704d7df7",
"metadata": {},
"outputs": [],
"source": [
"vs_test[\"energy\"] = model.get_energy_values()"
]
},
{
"cell_type": "markdown",
"id": "c4f0861c-a124-4812-beb1-0b8cd56d89c1",
"metadata": {},
"source": [
"Add Viking in the same dictionary for convinience. In practice this would not be done in inference: it is done here to validate the results obtained."
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "a5bd5573-afc9-45b3-9f25-7c713e08dfa9",
"metadata": {},
"outputs": [],
"source": [
"vs_test[\"viking\"] = vik_test"
]
},
{
"cell_type": "markdown",
"id": "6e30cc51-41e0-4458-8867-f43605324fc6",
"metadata": {},
"source": [
"Now we can plot it:"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "44e5df6a-dfc9-47ab-9f37-03fdd0687698",
"metadata": {},
"outputs": [],
"source": [
"def plot(data, i):\n",
" \"\"\"Plot prediction and expectation.\"\"\"\n",
" from matplotlib.gridspec import GridSpec\n",
" fig = plt.figure(figsize=(24, 8))\n",
" gs = GridSpec(1, 2)\n",
" ax = fig.add_subplot(gs[0, 0])\n",
" ax.plot(data[\"energy\"], data[\"viking\"][i], c='b', lw=3, label=\"Viking\")\n",
" ax.plot(data[\"energy\"], data[\"expected\"][i,0], c='r', ls='--', lw=3, label=\"Prediction\")\n",
" ax.fill_between(data[\"energy\"],\n",
" data[\"expected\"][i,0] - data[\"residual\"][i,0],\n",
" data[\"expected\"][i,0] + data[\"residual\"][i,0],\n",
" facecolor='gold', alpha=0.5, label=\"68% unc.\")\n",
" ax.legend(frameon=False, borderaxespad=0, loc='upper left')\n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['right'].set_visible(False)\n",
" ax.set(\n",
" xlabel=\"Photon energy [eV]\",\n",
" ylabel=\"Intensity [a.u.]\",\n",
" title=\"Comparing with the original Viking\",\n",
" )\n",
" ax = fig.add_subplot(gs[0, 1])\n",
" viking_smooth = fftconvolve(data[\"viking\"][i], model.impulse_response, mode=\"same\")\n",
" ax.plot(data[\"energy\"], viking_smooth, c='b', lw=3, label=\"Viking (convolved to VS resolution)\")\n",
" ax.plot(data[\"energy\"], data[\"expected\"][i,0], c='r', ls='--', lw=3, label=\"Prediction\")\n",
" ax.fill_between(data[\"energy\"],\n",
" data[\"expected\"][i,0] - data[\"residual\"][i,0],\n",
" data[\"expected\"][i,0] + data[\"residual\"][i,0],\n",
" facecolor='gold', alpha=0.5, label=\"68% unc.\")\n",
" ax.legend(frameon=False, borderaxespad=0, loc='upper left')\n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['right'].set_visible(False)\n",
" ax.set(\n",
" xlabel=\"Photon energy [eV]\",\n",
" ylabel=\"Intensity [a.u.]\",\n",
" title=\"Same, with smoothened Viking\",\n",
" )\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"id": "f9bb6495-51db-4775-ba91-c7b936dc0b33",
"metadata": {},
"source": [
"These are the last 10 train IDs, which were not used in training."
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "c8ffc289-c10a-48bb-b1e0-1ebeb61880dd",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABXgAAAHwCAYAAAAcpweRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xcZdn/8c+9s7O9phMChNCUEiIQDL2pIB2kijQLio+KBRA7qFh4kCKPoqLSRLoiIPAT6aEHCAFCS0hoqZvtZfr9++OcmXNmp292tiTf9+u1r8ycOWfmbFGu+c51rttYaxERERERERERERGR8aditE9ARERERERERERERIZGAa+IiIiIiIiIiIjIOKWAV0RERERERERERGScUsArIiIiIiIiIiIiMk4p4BUREREREREREREZpxTwioiIiIiIiIiIiIxTCnhFZNwxxpxijPnPKJ9DrzFmVp7HlxtjPrEez3+dMebnQz1+fRhjvm+M+fNw71vEc1ljzNZDPPZ+Y8zp7u0zjDHzc+w36n87IiIiIhsiY8w+xpg38zw+0633KkfyvIaTMWZ/Y8wHo30eoNpZRNIp4BXZiBljPmuMWeCGlSvd/9DvPdrnVYi19iZr7adG+RwarLXvwPqHsfmKqtFgrf2FtfaLw73vUBlj/miMuSHL9tnGmLAxZoK19tPW2usLPddY+NsRERERSTLG7G2MecoY02WMaTfGPGmMmTva5zUU1tonrLXbJe+vb8PDWLA+IepoUe0ssnFSwCuykTLGfBu4AvgFMBXYHPg9cNQonlZB4/kT//FgjP58rwOONcbUD9p+GnCvtbZ95E9JREREZP0YY5qAe4GrgAnApsBFQHg0z0vGvetQ7Syy0VHAK7IRMsY0Az8F/sda+w9rbZ+1Nmqtvcdae567T7Ux5gpjzAr36wpjTLX72P7GmA+MMecbY9a43b9HG2MONca85XYffN/3ehcaY+4wxtxqjOkxxrxojNnZ9/gFxpil7mOLjTHH+B47w+1kuNwY0w5cOLjj1f1k/SvGmLeNMR3GmN8ZY4z7WMAY8xtjTJsxZpkx5mu5Lg0zxpxpjLnHd3+JMeY23/33jTFzfK+5tTHmLOAU4Hy3E/oe31POMcYscjsybjXG1GR5zY8CfwD2cI/v9D3caoz5t/tzedYYs5XvuI8YYx50f9ZvGmNOyPP7nm6Mudvdd4kx5ktZfjd/M8Z0A2e42/7m2+c0Y8y7xph1xpgf+bsx/Psa77K7040x77k/8x/4nmd3Y8zTxphO92/m/4wxVbnOO8la+zTwIfAZ33MFgM8C17v3HzXGZO0kNsb8rzFmvjGmuVx/OyIiIiJDsC2AtfZma23cWjtgrf2PtXYRgDFmK2PMw24N1maMuckY05I82K3JznPrzT5jzF+MMVONc1VejzHmv8aYVt/+84zTLdxpjHnZGLN/MSdpjLneGPMd9/ambj30Vff+1m6NaYxvfIEx5kacBpJ73Br3fN9TnpKtVszyuoca571BjzHmQ2PMue72Ut+L5Hxf4z7+JbdGbndr5unu9sfdXV52v4cTfcd8x/faZw56rUvd72+1MeYPxpjaQedd8rHu4+e5x6wwxnw+189NtbPIxkkBr8jGaQ+gBvhnnn1+AMwD5gA7A7sDP/Q9Ps19jk2BHwPXAJ8DdgX2AX5s0mfUHgXcjtOd8HfgLmNM0H1sqXtMM07Xwt+MMZv4jv048A4wBbg4x/keDsx1z/UE4GB3+5eAT7vfxy7A0Xm+58eAfYwxFe7rB4G9ANzvpQFY5D/AWvsn4CbgEndswxG+h08ADgG2BGYDZwx+QWvt68BXgKfd41t8D5+M8/NoBZYkv3fjfBr/IM7PcYq73++NMTvk+L5uBj4ApgPHAb8wxhzke/wo4A6gxf1eUowx2+N0dp8CbILzO9o0x+sk7Q1sBxyE83fwUXd7HPgWMAnnb/Ag4KsFnivpBpyug6RP4Px+7s91gPt7vAbnZ/8pa21Xjl2H429HREREpFRvAXE3QP20P4x1GeCXODXcR4HNgAsH7fMZ4JM4YfEROLXR93HqrQrgG+AEs8C/gZ/j1OPnAncaYyYXcZ6PAfu7t/fDqcv3c+/vCzxhrbX+A6y1pwLvAUe4Ne4lvodz1YqD/QX4srW2EdgReNj3WCnvRXK+rzHGHIjzMz4Bp9Z9F7jF/R72dY/f2f0ebvW9drIm/gLwO9/v7tc4v4s5wNa+82N9jjXGHILzO/sksA1OLZyPameRjYwCXpGN00SgzVoby7PPKcBPrbVrrLVrcYLGU32PR4GLrbVRnCJoEnCltbbHWvsa8BpOcZD0grX2Dnf/y3AKsnkA1trbrbUrrLUJt3B6G6fwSlphrb3KWhuz1g7kON9fWWs7rbXvAY/gFBbgFB1XWms/sNZ2AL/K9Q27M3V73GP3A/4f8KEx5iPu/SestYncP7IMv3W/r3bgHt85Fesf1trn3N/TTb7jDweWW2uvdX8mLwJ34oS3aYwxm+EU0d+11oastQuBP5P+u3zaWnuX+/Mf/PM9DrjHWjvfWhvBKTIt+V3kdqC8DLyMU/xhrX3BWvuMe87LgT/ivTko5EZgP2PMDPf+acDf3b+nbII4wfYEnDcW/Xmee73/dkRERERKZa3txqnTLE5AudbtIJ3qPr7EWvugtTbs1uOXkVk7XWWtXW2t/RB4AnjWWvuStTaM08zxMXe/zwH3WWvvc2u+B4EFwKFFnGqqCQIn0L0EtwnCPZ/HSvzWs9aKWUSB7Y0xTdbaDrfm9T9W7HuRfO9rTgH+aq190f2ZfQ/nyrqZec4/6j5f1Fp7H9ALbOd2sn4J+Ja1tt1a24MzDu+kYTj2BOBaa+2r1to+MoP+wVQ7i2xkFPCKbJzWAZMKXC4zHecT7KR33W2p57DWxt3byVBwte/xAZyO16T3kzfckDTZUZocAbDQOJeLdeJ8Qj8p27F5rPLd7ve99vRBxxd6rmSHwr7u7UdxCtehFK+5zml9j98C+Hjy5+X+zE7B6QgYbDqQLBKT3iW9CzffzyTt5+cWe+uGct7GmG2NMfcaY1YZZxzEL0j/PefkFpCPA58zxjTgdATkWxhia5zO5IvcYLrk86X0vx0RERGRklhrX7fWnmGtnYFTA0/HWScDY8wUY8wtxhlP0A38jczaaXD9nase3wI4flD9uDdO12qhc1yKE0TOwemOvRdYYYzZjvLWyJ/BCaDfNcY8ZozZw/dYKe9F8r2vSXvMWtuLU+vmu2Jt3aBGmeT3MBmoA17w/YwfcLev77GD61L/95NBtbPIxkcBr8jG6WkgRP7LZlbgFIJJm7vbhmqz5A330/8ZOIXhFjgdC18DJrojCl7FuSQtqVDHaD4r3dfKOI8ckgHvPu7txygc8K7P+Q3l+PeBx6y1Lb6vBmvt2Vn2XQFMMMY0+rZtjjOXq5jXT/v5uXPAJpZ4vklXA28A21hrm3AuHzT5D0lzPU73wWeAZYO6OAZ7HTgTuN998zEUpf7tiIiIiAyZtfYNnAWydnQ3/RKnTpvt1k6fo7Taye994MZB9WO9tbbYLsvHcK7sqnK7hR/DqctagYU5jlmvGtla+7y19iickWR3AbflPyKnfO9r0h5zR6FNJL1WLlYbTrC8g+9n3GytLabJo9CxK0mvRTcv4jlVO4tsRBTwimyErDNP6cc4M5+ONsbUGWOC7uyv5Hysm4EfGmMmG2Mmufv/LddzFmFXY8yxbtfwN3FWB34GqMcp/taCs9AZXlE7HG4DzjHOghAtwHcL7P8YcABQa639AOdSt0NwCr2XchyzGpiV47FirAZmmCIWHHPdC2xrjDnV/b0FjTFzs80vs9a+DzwF/NIYU2OMmY0z7+umwfvmcAdwhDFmT/f8LmLobywagW6g1x17kS2QzudOnELxIvJ3IADOgiU4IfJ/jW+BuhKU+rcjIiIiUjTjLJr7neRl9O5orZNxamRwaqdeoNOdoXveerzc33BquoPdxbBqjLPoV/K1LzTGPJrn+MdwGjKSC489CnwdmO/rpB1syDWyMabKGHOKMabZHSvQjbOew1Dke1/zd+BMY8wc4yy89gucMRfLS/0e3KsUrwEuN8ZMcb+PTY0xB+c/sqhjb8NZDHl7Y0wd8JMiTkm1s8hGRAGvyEbKWnsZ8G2cBQbW4nyq/zWcT8fBWYBhAc6iYq8AL7rbhupfwIlAB87Mq2Pd2VOLgd/gdBWvBnYCnlyP1xnsGuA/ON/HS8B9QIwcBaK19i2cQvoJ9343zkIST+YpXv+CMx+s0xhz1xDO8WGcOWGrjDFthXZ2xy18Cmcm1wqcy6R+DVTnOORkYKa77z+Bn7hz1wpyZ5h9HWe22UqcGcVrcAL6Up2Ls3pvD87v5db8u2ecSx9eoVpUQG2tvR74KfBwgVlq2ZT0tyMiIiJSoh6cxYSfNcb04QS7rwLfcR+/CGexqi6cBdL+MdQXcj/0PwonwEvW/ufhZQKbkb8GfwwncE4GvPNxRgo8nvMIpwP5h26NfO4QTvtUYLk7nuIrOB3MQ5HzfY219iHgRzg15kpgK9Jn5l4IXO9+DycU8VrfxVkc+Rn3vP+Ls6BcMXIea629H2d0x8PuPg/neI4U1c4iGxdj7fpeWSwikp8x5kJga2vtUIuy4TyXTwN/sNZuUXBnyeDO8OrEGbOwbJRPZ0Tpb0dEREQ2VMaYhcBB1tpCay2IFEW1s8jIUgeviGzQjDG1xphDjTGV7qVtP8HpYpUiGWOOcMd41AOX4nQ+LB/dsyo//e2IiIjIxsJaO0fhrqwP1c4io0sBr4hs6AzO5W0dOJcKvY4zd0uKdxTOeIcVwDbASXbjuPxDfzsiIiIiIsVR7SwyijSiQURERERERERERGScUgeviIiIiIiIiIiIyDilgFdERERERERERERknKoc7RMol0MOOcQ+8MADo30aIiIiIhsTM9onIOWnOltERERkVOSstTfYDt62trbRPgURERERkQ2O6mwRERGRsWWDDXhFRERERERERERENnQKeEVERERERERERETGKQW8ZbL//vvz//7f/0vbdsUVVzBr1ix+9atfAXDGGWdwxx13ZBz7xS9+kcWLF4/IeYqIiIiIjCe56uyvfvWr3H333SNaaw8MDLDffvsRj8eH5fmG4rrrruNrX/vasDxXQ0NDxrbOzk5+//vfl/Q8+X5HiUSCb3zjG+y4447stNNOzJ07l2XLlq3XeRfrwgsv5NJLL827z8KFC7nvvvtS9/1/U6Vau3YthxxyyJCOFRERKYUC3jI5+eSTueWWW9K23XLLLVx//fVccMEFeY/985//zPbbb1/O0xMRERERGZdy1dknn3wyRx555IjW2n/961859thjCQQCw/J8Y9FQAt58v6Nbb72VFStWsGjRIl555RX++c9/0tLSkvf5RjJAHxzwFvM3lcvkyZPZZJNNePLJJ4fr9ERERLJSwFsmxx13HPfeey/hcBiA5cuXs2LFCpYsWZL1E/Yf/ehHnHHGGSQSCfbff38WLFgAOJ+i/+AHP2DnnXdm3rx5rF69GoClS5cyb9485s6dy49//OOsn7aLiIiIiGxoctXZe++9d85u1nLV2jfddBNHHXVU6v4ll1zCTjvtxM4775wKBRcuXMi8efOYPXs2xxxzDB0dHYDT5frd736X3XffnW233ZYnnngCgI9//OO89tprqefcf//9eeGFF2hvb+foo49m9uzZzJs3j0WLFqWdS1dXFzNnziSRSADQ39/PZpttRjQaZenSpRxyyCHsuuuu7LPPPrzxxhsALFu2jD322IO5c+fyox/9KOv3eMEFF7B06VLmzJnDeeedh7WW8847L9WBe+utt5b0O1q5ciWbbLIJFRXOW9EZM2bQ2tqa8RwzZ87kpz/9KXvvvTe33347//nPf9hjjz3YZZddOP744+nt7U2d3/bbb8/s2bM599xzAXj33Xc56KCDmD17NgcddBDvvfdexvP7/w7a2tqYOXMmkUiEH//4x9x6663MmTOHW2+9Ne1vKtfznnHGGXzjG99gzz33ZNasWWmd40cffTQ33XRT1p+tiIjIcNkoAl5jyveVy8SJE9l999154IEHAOcT6xNPPBGT5aDzzz+fNWvWcO2116YKnaS+vj7mzZvHyy+/zL777ss111wDwDnnnMM555zD888/z/Tp04fvhyUiIiIiUqSxXmdD+WrtSCTCO++8w8yZMwG4//77ueuuu3j22Wd5+eWXOf/88wE47bTT+PWvf82iRYvYaaeduOiii1LPEYvFeO6557jiiitS20866SRuu+02AFauXMmKFSvYdddd+clPfsLHPvYxFi1axC9+8QtOO+20tPNpbm5m55135rHHHgPgnnvu4eCDDyYYDHLWWWdx1VVX8cILL3DppZfy1a9+NfV9nn322Tz//PNMmzYt6/f5q1/9iq222oqFCxfyv//7v/zjH/9g4cKFvPzyy/z3v//lvPPOY+XKlUX/jk444QTuuece5syZw3e+8x1eeumlrK8LUFNTw/z58/nEJz7Bz3/+c/773//y4osvsttuu3HZZZfR3t7OP//5T1577TUWLVrED3/4QwC+9rWvcdppp7Fo0SJOOeUUvvGNb+R8Db+qqip++tOfcuKJJ7Jw4UJOPPHEtMfzPe/KlSuZP38+9957b1rH72677ZYK70VERMplowh4R4v/0qTkJUmD/exnP6Ozs5M//vGPWYvSqqoqDj/8cAB23XVXli9fDsDTTz/N8ccfD8BnP/vZMn0HIiIiIiJjTzF1NpS31m5ra0sbLfDf//6XM888k7q6OgAmTJhAV1cXnZ2d7LfffgCcfvrpPP7446ljjj322IzXPuGEE7j99tsBuO2221LnMX/+fE499VQADjzwQNatW0dXV1faOZ144ompjtpkqNrb28tTTz3F8ccfz5w5c/jyl7+cCmSffPLJ1M8u+dyFzJ8/n5NPPplAIMDUqVPZb7/9eP755zP2y/U7mjFjBm+++Sa//OUvqaio4KCDDuKhhx7K+lrJgPWZZ55h8eLF7LXXXsyZM4frr7+ed999l6amJmpqavjiF7/IP/7xj9TP/umnn0793k499VTmz59f1PdWSL7nPfroo6moqGD77bdPdYIDTJkyhRUrVgzL64uIiOSigLeMjj76aB566CFefPFFBgYG2GWXXTL2mTt3buqSq2yCwWCqGA0EAsRisbKes4iIiIjIWFdMnQ3lrbVra2sJhUKp+9banF3EuVRXV2e89qabbsrEiRNZtGgRt956KyeddFLq+Qcb/HpHHnkk999/P+3t7bzwwgsceOCBJBIJWlpaWLhwYerr9ddfz/kchWQ7j2zy/Y6qq6v59Kc/zf/+7//y/e9/n7vuuivrc9TX16de85Of/GTq/BcvXsxf/vIXKisree655/jMZz7DXXfdlXNBs2zfY2VlZWqchf/3WAr/8yZ/l8nzTQqFQtTW1g7p+UVERIq1UQS81pbvK5+Ghgb2339/Pv/5z+fsKjjkkEO44IILOOyww+jp6Sn6e5o3bx533nknQMYCBiIiIiIiI2Es19lQ3lq7tbWVeDyeCgc/9alP8de//pX+/n4A2tvbaW5uprW1NXWJ/o033pjq5s3npJNO4pJLLqGrq4uddtoJgH333Tc1y/XRRx9l0qRJNDU1pR3X0NDA7rvvzjnnnMPhhx9OIBCgqamJLbfcMtUVbK3l5ZdfBmCvvfZKfX+55sQ2Njam/ez23Xdfbr31VuLxOGvXruXxxx9n9913zzgu1+/oxRdfTHW0JhIJFi1axBZbbJH35zFv3jyefPJJlixZAjjzhd966y16e3vp6uri0EMP5YorrmDhwoUA7Lnnnmnf1957753xnDNnzuSFF14ASJuZO/j79SvmeQd766232HHHHQvuJyIisj42ioB3NJ188sm8/PLLqU/eszn++OP50pe+xJFHHsnAwEBRz3vFFVdw2WWXsfvuu7Ny5Uqam5uH65RFRERERMa8YupsKG+t/alPfSp1mf4hhxzCkUceyW677cacOXO49NJLAbj++us577zzmD17NgsXLuTHP/5xwdc/7rjjuOWWWzjhhBNS2y688EIWLFjA7NmzueCCC7j++uuzHnviiSfyt7/9LW1+7E033cRf/vIXdt55Z3bYYQf+9a9/AXDllVfyu9/9jrlz52aMe0iaOHEie+21FzvuuCPnnXcexxxzDLNnz2bnnXfmwAMP5JJLLsk5vzfb72jNmjUcccQR7LjjjsyePZvKysqsC+P5TZ48meuuu46TTz45tcjcG2+8QU9PD4cffjizZ89mv/324/LLLwfgt7/9Lddeey2zZ8/mxhtv5Morr8x4znPPPZerr76aPffck7a2ttT2Aw44gMWLF6cWWfMr5nkHe+SRRzjssMMK7iciIrI+TLGX2Iw3u+22m02uiroh6u/vp7a2FmMMt9xyCzfffHOqUBMREREZJaVd6y3j0oZeZ0PxtfZLL73EZZddxo033jgKZynjwb777su//vUvWltbR/tURERk/MtZa1eO5FnI8HnhhRf42te+hrWWlpYW/vrXv472KYmIiIiIbBCKrbU/9rGPccABBxCPxwkEAiN8ljLWrV27lm9/+9sKd0VEpOzUwSsiIiIiw0UdvBsB1dkiIiIioyJnra0ZvCIiIiIiIiIiIiLjlAJeERERERERERERkXFKAa+IiIiIiIiIiIjIOKWAV0RERERERERERGScUsBbRoFAgDlz5rDjjjty/PHH09/fP+TnOuOMM7jjjjsA+OIXv8jixYtz7vvoo4/y1FNPpe7/4Q9/4IYbbhjya4uk2Mhon4GIiIiI6mzZ8KjOFhGR9aCAt4xqa2tZuHAhr776KlVVVfzhD39Iezwejw/pef/85z+z/fbb53x8cOH5la98hdNOO21IryWSEn0P+h4a7bMQERERUZ0tG57uWyERGu2zEBGRcUoB7wjZZ599WLJkCY8++igHHHAAn/3sZ9lpp52Ix+Ocd955zJ07l9mzZ/PHP/4RAGstX/va19h+++057LDDWLNmTeq59t9/fxYsWADAAw88wC677MLOO+/MQQcdxPLly/nDH/7A5Zdfzpw5c3jiiSe48MILufTSSwFYuHAh8+bNY/bs2RxzzDF0dHSknvO73/0uu+++O9tuuy1PPPHECP+EZMwLvwax90f7LERERETSqM6WcS/RC5GlEFsx2mciIiLj1MYT8F54IRhT3NdZZ2Uef9ZZ6ftceGHRLx2Lxbj//vvZaaedAHjuuee4+OKLWbx4MX/5y19obm7m+eef5/nnn+eaa65h2bJl/POf/+TNN9/klVde4ZprrknrFEhau3YtX/rSl7jzzjt5+eWXuf3225k5cyZf+cpX+Na3vsXChQvZZ5990o457bTT+PWvf82iRYvYaaeduOiii9LO87nnnuOKK65I2y4CQKILYqvBDq0jRkRERDZQqrMB1dmyHuJdzr8KeEVEZIgqR/sENmQDAwPMmTMHcDoLvvCFL/DUU0+x++67s+WWWwLwn//8h0WLFqXmfnV1dfH222/z+OOPc/LJJxMIBJg+fToHHnhgxvM/88wz7LvvvqnnmjBhQt7z6erqorOzk/322w+A008/neOPPz71+LHHHgvArrvuyvLly9fre5cNULzTCXdjqyC46WifjYiIiGzEVGfLBiXR6fyrgFdERIZIAW8ZJWeDDVZfX5+6ba3lqquu4uCDD07b57777sMYk/f5rbUF9ylFdXU14CxaEYvFhu15ZQOR6OR//29PHni8ia+fA0cfPdonJCIiIhsr1dmyQYl3uv+2jeppiIjI+LVxjWiwtrivP/0p8/g//Sl9nxIuHcvn4IMP5uqrryYajQLw1ltv0dfXx7777sstt9xCPB5n5cqVPPLIIxnH7rHHHjz22GMsW7YMgPb2dgAaGxvp6enJ2L+5uZnW1tbU3K8bb7wx1WUgklcixDvv1HL+Tz/Fw482cswx4DbDiIiIyMZOdbbqbFk/CXdEQ6JvdM9DRETGLXXwjrIvfvGLLF++nF122QVrLZMnT+auu+7imGOO4eGHH2annXZi2223zVogTp48mT/96U8ce+yxJBIJpkyZwoMPPsgRRxzBcccdx7/+9S+uuuqqtGOuv/56vvKVr9Df38+sWbO49tprR+pblfEs0cmrb0xJ23TllXDccaN0PiIiIiIFqM6WcSPZwWsHnA85hrF7XERENg7GWjva51AWu+22m02ugCsi6yn8Bpdfspxv//iQ1KapU2HVqlE8JxERGYuUSmwEVGeLDLOOq53FjAEmng8VdaN7PiIiMlblrLU3nhENIjJ0iR6WLk9fXGT1ashyhaKIiIiIiJQi0e273T965yEiIuOWAl4RKSzRx9LlrRmbly4dhXMREREREdlQ2ATYkO++5vCKiEjpFPCKSGG2nzeWTMrYvGTJKJyLiIiIiMiGwvY7c3eT1MErIiJDoIBXRAr6/R+nsfy9zA5eBbwiIiIiIushMTDovjp4RUSkdAp4RSSvUAi+88PZWR/TiAYRERERkfVg+/PfFxERKYICXhHJ64UXIBSqTN3/0qkvpG53do7CCYmIiIiIbCgGj2RQB6+IiAyBAt4y6uzs5LjjjuMjH/kIH/3oR3n66acBWLhwIfPmzWPOnDnstttuPPfccwA8+eSTzJ49m7lz57LEvfa9s7OTgw8+GOufyyQygubP926fcdJLHHXIG6n7fao/RUREZBSozpYNxuCOXc3gFRGRIagsvMsGYu2Fw/t8kws/3znnnMMhhxzCHXfcQSQSob/f+Y/1+eefz09+8hM+/elPc99993H++efz6KOP8pvf/IY777yT5cuXc/XVV/Ob3/yGn/3sZ3z/+9/HGDO85y9SJH/Au/fH36O+Lpq6r4BXREREVGeLrIfBga4dyL6fiIhIHurgLZPu7m4ef/xxvvCFLwBQVVVFS0sLAMYYuru7Aejq6mL69OkABINBBgYG6O/vJxgMsnTpUj788EP222+/nK8zc+ZM2traAFiwYAH7778/ABdeeCGf//zn2X///Zk1axa//e1vU8fccMMNzJ49m5133plTTz11uL912cAsXOh1tew5933q6yKp+wp4RUREZKSpzpYNSkbAGx6d8xARkXFt4+ngHWHvvPMOkydP5swzz+Tll19m11135corr6S+vp4rrriCgw8+mHPPPZdEIsFTTz0FwPe+9z3OOussamtrufHGGzn33HP52c9+NuRzeOONN3jkkUfo6elhu+224+yzz+att97i4osv5sknn2TSpEm0t7cP17csGyBrYc0a7/4WM7pY/n5L6n6/riATERGREaY6WzYoGYusRbLvJyIikoc6eMskFovx4osvcvbZZ/PSSy9RX1/Pr371KwCuvvpqLr/8ct5//30uv/zyVPfBnDlzeOaZZ3jkkUd45513mD59OtZaTjzxRD73uc+xevXqks7hsMMOo7q6mkmTJjFlyhRWr17Nww8/zHHHHcekSZMAmDBhwvB+47JB6emBSMS5bLG2NkpdXZS6Wo1oEBERkdGjOls2KOrgFRGRYaCAt0xmzJjBjBkz+PjHPw7Acccdx4svvgjA9ddfz7HHHgvA8ccfn1r8Iclay89//nN+9KMfcdFFF3HRRRfxuc99Lu3yr6TKykoSiQQAoVAo7bHq6urU7UAgQCwWw1qrOWNSNPeqRAAmT3TSXI1oEBERkdGkOls2KINn7qqDV0REhkABb5lMmzaNzTbbjDfffBOAhx56iO233x6A6dOn89hjjwHw8MMPs80226Qde/3113PYYYfR2tpKf38/FRUVVFRUpBaP8Js5cyYvvPACAHfeeWfB8zrooIO47bbbWLduHYAuHZO8/AHvpAnO358WWRMREZHRpDpbNiiJwQGvOnhFRKR0msFbRldddRWnnHIKkUiEWbNmce211wJwzTXXcM455xCLxaipqeFPf/pT6pj+/n6uv/56/vOf/wDw7W9/m8985jNUVVVx8803Z7zGT37yE77whS/wi1/8ItXFkM8OO+zAD37wA/bbbz8CgQAf+9jHuO6667j77rtZsGABP/3pT4fpu5cNwdq13u3JE503PrW1UYyxWGsIhSAeh0BglE5QRERENkqqs2WDYUOD7sedL6MCW0REimestaN9DmWx22672QULFoz2aYiMa9dfD2ec4dw+5TOL+NvV/wCgYcsf0tfnfD7U3Q2NjaN0giIiMtbo+vSNgOpskWHU9nOwsfRtE8+HirrROR8RERnLctbaGtEgIjmldfBO8uYx1NV6RWiWKxpFRERERKQQG8sMd0FzeEVEpGQKeEUkp2wzeAHq67xCVHN4RURERESGYPB4htR2zeEVEZHSKOAVkZxyB7xaaE1EREREZL0kcgW86uAVEZHSKOAVkZyyLbIGUF/nFZ0KeEVEREREhiBXp646eEVEpERlC3iNMTXGmOeMMS8bY14zxlzkbp9gjHnQGPO2+2+r75jvGWOWGGPeNMYc7Nu+qzHmFfex3xpjtICHyAhI6+BVwCsiIjImqM4W2UDkHNGgDl4RESlNOTt4w8CB1tqdgTnAIcaYecAFwEPW2m2Ah9z7GGO2B04CdgAOAX5vjAm4z3U1cBawjft1SBnPW0Rc/oB38kT/ImteV4EWWRMRERlxqrNFNgQKeEVEZJiULeC1jl73btD9ssBRwPXu9uuBo93bRwG3WGvD1tplwBJgd2PMJkCTtfZpa60FbvAdIyJl5B/RkD6D1wt41cErIiIyslRni2wgNKJBRESGSVln8BpjAsaYhcAa4EFr7bPAVGvtSgD33ynu7psC7/sO/8Ddtql7e/B2ESmjWAw6OpzbxlgmtA6kHtOIBhERkdGlOltkA6BF1kREZJiUNeC11sattXOAGThdAjvm2T3bvC+bZ3vmExhzljFmgTFmwVp/66GIlKy93bs9oXWAQMD7n50CXhERkdGlOltkA5BzRIM6eEVEpDRlDXiTrLWdwKM4M71Wu5eD4f67xt3tA2Az32EzgBXu9hlZtmd7nT9Za3ez1u42efLk4fwWRDY6ucYzANTXRVO3FfCKiIiMHtXZIuNYzhEN6uAVEZHSlC3gNcZMNsa0uLdrgU8AbwB3A6e7u50O/Mu9fTdwkjGm2hizJc4iD8+5l5f1GGPmuav6nuY7RkTKJNcCa5DewatF1kREREaW6myRDYQWWRMRkWFSWcbn3gS43l2htwK4zVp7rzHmaeA2Y8wXgPeA4wGsta8ZY24DFgMx4H+stXH3uc4GrgNqgfvdLxEpI3/AO7iDt7YmlrqtgFdERGTEqc4W2RDkDHij2beLiIjkULaA11q7CPhYlu3rgINyHHMxcHGW7QuAfHPFRGSYpY1omJie4lZXewFvWCPCRERERpTqbJENRCLXiAYFvCIiUpoRmcErIuNP+oiGQQFvVTx1O6IryEREREREhiBXIa2AV0RESqOAV0SyyhjR8Npq+O18+KCL6ip18IqIiIiIrBd18IqIyDAp5wxeERnH/CMaNqtaAUdfB10h+PfrVH15r9RjCnhFRERERIYg12JqCnhFRKRE6uAVkaw6O73bcx++2Ql3AV5aQdPAutRjGtEgIiIiIjIUEbAW/vo89Pi6JhTwiohIiRTwikhWfX3Ov4YEM554PO2xacsWp26rg1dEREREpETWOh28/3kLLrgP5l4Jf3nOfUwBr4iIlEYBr4hk1e+uqzaV1VSG0lPcSUveSN1WwCsiIiIiUqqoE/LOX+7cbR+At9Z6j4mIiJRAAa+IZJUMeINE6d5757THWt9+O3VbAa+IiIiISImSC6x92OVt231z51918IqISIkU8IpIVsmA9302p+2yM+HFb6Yeq2nvSN3WDF4RERERkVK5RfSKbm/To0vhiifgtRVgE6NzWiIiMi5VjvYJiMjYlJzBC1BfF4HGutT9YGc3YAGjDl4RERERkVIlO3g/8HXw3vqy8+/EOtgnCqZ65M9LRETGJXXwikhWyQ5egLq6KNQGYUItTG8itNWm1OHsoIBXRERERKRENgLhGKzpzXysrQ/N4RURkVKog1dEMlibHvDW1sScG6+fB8awYlkr/R+vBzSiQURERESkZDacPp7Br61Pc3hFRKQk6uAVkQzhMCTcsV8/CVxE5W8fdS4Z63XS3OrqeNq+IiIiIiJSAhvJE/D2K+AVEZGSqINXRDL4u3fPTvwefrXGubPvt6CxmqqgAl4RERERkaGLpM/fnVAL7QPObXXwiohIidTBKyIZvIDXMtGu8x6Y4Cy0Vl0dS23SiAYRERERkRIlwrDWN393h2nebQW8IiJSIgW8IpIhGfA200UlbrduQxWs64f/vEXdP59jb54A1MErIiIiIlIyG4GEhaZq5/52k73H1mqRNRERKY1GNIhIhr4+599JtHkbJ9TB/W/A9+4nCHyWacxnH8JhZ1E2Y0blVEVERERExh8bhm/s7XxF4xCOw5+fcx5r74dYGKpG9xRFRGT8UAeviGRIdvBmBLyT6lN3p5rVqdsxb2KDiIiIiIgUYr05Zyvbmzny7NPprWp2NiQsrGvLcaCIiEgmBbwikiFnwDuxLnV3ivEe05gGEREREZESWK+A/v7FB3HP/9uO9yObeI+vWZ3lIBERkew0okFEMiRHNExk0AJrDdWpu42mO3U7HIaGhpE6OxERERGRcc7t4A2FKrnulo8B8G8OY2ndRzn82OVQFxzFkxMRkfFGAa+IZMjawTuxFhp9AS89qdvq4BURERERKYGNwANvsmDx1uzIKyxme87jUqpiMdp+egmNUycXfg4RERGXAl4RyZA14G2tgwZvpYdG25u6HfFGiImIiIiISCGJEJxxK3snLK/wc6oIkyBAJFLJ/Gc359NHREf7DEVEZBzRDF4RyZBzBm+918HbYNXBKyIiIiIyJJ1dzmJqQBdNRPEaKd77oBnQKsYiIlI8dfCKSIbkDN6HOIgdd1rHHrPegu0mQ30QDGCh1g4QIEacSgW8IiIiIiKlaOtM3VzHxLSHPlzZBL6r5URERApRwCsiGZIdvLdyEjscOoU9vvO492BDNfQ4iW4jPXTSqhENIiIiIiKlaO9K3WxjEgD78SiHch9z734HdtkaTjlstM5ORETGGY1oEJEMyYAXoK520PyvLAutqYNXRERERKQE67yAN9nBuzvPcT7/ywFL7oRnFo/WmYmIyDikDl4RyeAPeGtrBs3/2mVTmNnK069vRaLD+YxIAa+IiIiISJFsHDq9gruDVgB6aPT26e0ffJSIiEhOCnhFJMPAgHe7rm5QB+9fTwDgohM/x4ePzADQiAYRERERkWLZSGrkGUAnLWwytYee1Qp4RURkaBTwikiGUAgqiHMzJ7Prbe3w1gD8+JNp+1RXe5296uAVERERESmSjUBXKHW3i2bm7LiKgXX14JbYsc6Q3qyLiEjRNINXRDIMDEAT3ZzA7Ww1/yG44YWMfaqr4qnbCnhHXiIBn/88bLYZHH00LFs22mckIiIiIkWxEehOD3hnTO+makIgtS2yLpTtSBERkaz0oaCIZAiFoIVOb0NTTcY+VUEFvKPpnnvg2mud2x98AI2NcOONo3tOIiIiIlKEQSMaumhm0oR+YhMrYI2zLdGtAltERIqngFdEMoRC0Iy3sm9awPvc+/DCBxz/1ire5RTms49m8I6CwWHuokWjcx4iIiIiUiIbgWmNfDhxGyLroqxhClu1DNDW4nt73juQ+3gREZFBFPCKSIbMDt5q7/aDb8GV8zkKeJ4ZzGcfdfCOsO5up4PXb9kysBaMGZ1zEhEREZEi2Qictz8/eO9orr91DgCHtvyLqtb61C6Bfo1oEBGR4mkGr4hkyOjgbfZ18DZUpW420gNoRMNIe+EFMrqme3qgvX10zkdERERESmCdQq6jy6uxJ7QMUDPRe3teGVIHr4iIFE8Br4hkyOjgbfQHvF43bzLgjUZH6MQEgJdfzr5dC62JiIiIjAdOwNveUZva0toSon6SIYFzOVYwGoJ4POvRIiIig2lEg4hkGBgYPIPXN6LBF/A20Q1ALDZSZyaQP+DdbbeRPRcRERERKVGqg9cLeCe0DNDSGuZyvkWEKnbcrYsj4nEIBEbrLEVEZBxRwCsiGUIhm97B6x/RUBdM3azFuXRMHbwjy7+g2uzZ3n118IqIiIiMAzYC1zzLJ1dMZVum8i+OorVlgNaWEGfyGwBO2WIRRwSDBZ5IRETEoYBXRDJkzOBt9HXw+gLeevoABbwjKRaD117z7h91lAJeERERkXEl0g8/eIDLeYA4FVQSY0LLABNavLm7znzeGKCQV0RECtMMXhHJkDGD19/BW+sVmXX0AxrRMJLa2rxF7SZNcjp4k1auHJ1zEhEREZESdHakbnbRTDCYoK4uSqs/4O2sBasiW0REiqMOXhFJE49DNGq4mZN5k+349Tfvxew83dshS8CrDt6R09vr3W5qgilTvPtr1478+YiIiIhIibq8K+W6aGZCywDGQGtzKLW9o6tGAa+IiBRNAa+IpAm5deVDfIKnavfjku/3p++ggHdU+QPehgaYPNm7v2bNyJ+PiIiIiJRoUMCb7NxtbRngfH7NXJ6n9d0eWHA+fPyg0TpLEREZRxTwikiakNc4QE11lq6B2swZvBrRMHIGB7zq4BUREREZZ7p7UjeTHbzgdPDuxbMcyT0QAfvhKZjROkcRERlXFPCKSJqCAW9zDRy1A2+umMY/n98NUAfvSOrr827X10NrKwQCzmiNri5nPm91de7jRURERGSU9Xif2PfQSGuLU4DX1kYJVdRCwnks0tmHyjoRESmGFlkTkTT+gLe2ZlByG5wOLbVwzXE89bmv8T1+BaiDdyQN7uCtqHAWW0tqaxv5cxIRERGREvSmB7zNjU4BbgzEq6pSj/W39WccKiIiko0CXhFJkwx4H+QT3LT2KDjtFuiLQKAJ6g9O7ResTKRuq4N35AwOeEFzeEVERETGlR7vkqweGmlsiECgFYwhXuX17IY7FPCKiEhxNKJBRNIMDABY9udRKvvj8AAQDED1jlC5GVTUQCJEMBhPHaOAd+T4A976eudfzeEVERERGUd6vYC3lwYaG8JQ+3EILyJevTr1WLRLAa+IiBRHHbwikiYUghpCVOIGuFUB5yswEUwFVG4OQGXA6+DViIaR45/Bqw5eERERkXGoxwtue2iksTEC1TtDcBa22hvREFPAKyIiRVLAKyJpQiFoxFvZlwa3yKxocv4NNMMVT7DLzX/hL3yeSaxVB+8IyjaiQR28IiIiIuPI1hNYtMW+PMSBvMW2NDYaqKh1At7aYGq3WM/AKJ6kiIiMJxrRICJpMgNedw5YRbP7bwPc+jJbLl3HlsAlnE80OjnjeaQ8NINXREREZByzcTh2By5/9Ptc9+7HADig8QnnsUArps4LeBO9CnhFRKQ46uAVkTQZAW/9oA5eUw++zoI6+jWiYQT5RzQkZ/BOnOhta28f2fMRERERkRLYCAA9vd5iao2Nbt9VRQOmzuvBsn0KeEVEpDgKeEUkTUbA21gNFdXO4mrgdPAOCng1omHkZOvgbW72tnV1jez5iIiIiEgJUgGvN2u3scm9bYIEGrw6m/7QSJ6ZiIiMY2ULeI0xmxljHjHGvG6Mec0Yc467/UJjzIfGmIXu16G+Y75njFlijHnTGHOwb/uuxphX3Md+a4wx5TpvkY3dwAA00e1taKj2uncha8CrDt6Ro4BXREREZByzTmdEWgdvs3e7Y+Z2nMMVfIk/8eROnxvx0xMRkfGpnDN4Y8B3rLUvGmMagReMMQ+6j11urb3Uv7MxZnvgJGAHYDrwX2PMttbaOHA1cBbwDHAfcAhwfxnPXWSjlXWRtQpfglhRD3XpAW+XOnhHTLYRDQp4RURERMYJG4H/e5LTl3WzN9O4ljNpbKpNPRzdYgt+ywkA1Le+P1pnKSIi40zZOnittSuttS+6t3uA14FN8xxyFHCLtTZsrV0GLAF2N8ZsAjRZa5+21lrgBuDocp23yMYue8Db6N2vaEgLeOvp04iGEZStg7elxdumgFdEZMOnK+VExjEbgRte4MvrLucSvksrHTQ1ewFvY6P3Fr23T/9zFBGR4ozIDF5jzEzgY8Cz7qavGWMWGWP+aoxpdbdtCvg/ovzA3bape3vwdhEpg8yAt9rp2k0yQaitSd3ViIaRpRENIiKCd6XcR4F5wP+4V8OBc6XcHPfrPsi4Uu4Q4PfGmIC7f/JKuW3cr0NG8PsQ2QhFoTeSutdDI43NXjNFQ2PAe6xHS+aIiEhxyv5fDGNMA3An8E1rbTdOEbkVMAdYCfwmuWuWw22e7dle6yxjzAJjzIK1a9eu76mLbJRCIbibIzme27jn0+fCUTuAqU3fqa7Ou6lF1kaUP+DViAYRkY2TrpQTGcdsBPoHB7xebd3Y6F0p19MTQEREpBhlDXiNMUGccPcma+0/AKy1q621cWttArgG2N3d/QNgM9/hM4AV7vYZWbZnsNb+yVq7m7V2t8mTJw/vNyOykQiHYSlbcwfH88bcT8LczaCiLn2nOq+jVwHvyPLP4E128DY2QvKC2t5eiMdH/rxERGR0jNSVcmqkEBkmsQHod4rnBIZwoIbqGi/IbbW9PM4+LGBXfvHMMaN1liIiMs6ULeB153f9BXjdWnuZb/smvt2OAV51b98NnGSMqTbGbIlzidhz1tqVQI8xZp77nKcB/yrXeYts7MJh73ZVlZsUmkEBb316B69GNIycbCMaKiqckDepu3tkz0lEREbHSF4pp0YKkWHS4xVqvTTQ2BjDP/m6oamGfZjPrrzIrL7Fo3CCIiIyHlWW8bn3Ak4FXjHGLHS3fR842RgzB6d4XA58GcBa+5ox5jZgMc5csf+x1ib70M4GrgNqgfvdLxEpA3/AW50MeAd38O6xAz2f7+DSv+7LE+yjDt4REos5IzTA6dit9U3OaG72gt2uLmhtzTxeREQ2HLmulPM9fg1wr3t3va+UE5Fh0tOZutlLA40NUcBb36J+ckPqdnViYARPTERExrOyBbzW2vlk7wq4L88xFwMXZ9m+ANhx+M5ORHIJhxMkm/urq93W3MEB73670r9lAz/963kATFEH74jo8a1919REWrdHczO87158qzm8IiIbtnxXyrlXv0HmlXJ/N8ZcBkzHu1IubozpMcbMwxnxcBpw1Uh9HyIbJV9B53Twps/WapjUQAJDBZZqIs4n/JXl7MsSEZENgf5LISJpwqEEN/NZduc5Jvw6Dtt8Eg4etMiaqSYYTKTuqoN3ZPhHLzQ1pT+mhdZERDYqulJOZLzq9+Zt9VFPY0N6wNvYHGSAWurpdzaEwwp4RUSkIP2XQkTSRCIJNuc9ZrHMuUgzngCTLeD1ilEFvCPDH9wq4BUR2XjpSjmRcazX6+Dto576+vSx13X11bRTkwp4Y70hKuvrERERyadsi6yJyPgUDlvq6fM2NAyaBQBQUU1lwOvg1SJrI6PYDt7OzhE5HREREREpVZ9XZzsBb/rDJlBN2HgzeQc6QiN1ZiIiMo6pg1dE0mQNeAdbtJzqn93MPTzDy+zMT6IZDUFSBv6A1x/oDr6vDl4RERGRMWpGM68fcDhPPLIJi9k+I+DFVBEx1c6gFSDUGaJxxE9SRETGGwW8IpImHCY94K1vztypY4CKfy/mcBZTRz/xOFib2egrw0sjGkRERETGuY9M4/FDz+IrjxwBwBfr2zN2iQSqwL1YLtSpDl4RESlMIxpEJE1GwNvQkrlTrddqUINTdGpMQ/nlG9FQV+fdHhgYmfMRERERkRLZKH39Vam79fWZb8mjFdWp26EuBbwiIlKYAl4RSRMOWRrwVvelIUsHb21D6mYy4NVCa+WXL+Ct8Ua1EQ6PzPmIiIiISIlshL7+YOpufX0gY5dYpRfwRhTwiohIETSiQUTShUJUuEO/ElWVVATrMvep8SaBqYN35OSbwVvtvQ8gpPcBIiIiImNUlP4BL+CtyxLwXjvzfJa9FiREDT+ctv1InpyIiIxTCnhFJE0g1J+6bWuqwLeKb0qt1z6qDt6Rk28Grz/gVQeviIiIyBh181Mc++97mckW3MqJ1DfsnbHL25vO477XZgDwjcz8V0REJIMCXhFJEwj7At66XAFvZgevAt7yyzeiQQGviIiIyDiwYBlzlz7DXGARs6mv3z9jl7pam7rd15tAkxVFRKQQ/ZdCRNIEI17AS10QfIs8pNR68wE0omHkaAaviIiIyDjX583S6qOe+obMt+R1dV7A29+fGJHTEhGR8U0dvCKS5u3YLObyHPX08e9f3kxltg7euvrUTXXwjhz/iIZ8M3gV8IqIiIiMQdZCv1eo9VFPfX3mbnW+JTAU8IqISDHUwSsiaboi9SxgLo+xP5V7zsg+osGXJtYxAFh18I6AYkc0aJE1ERERkTHIRqDf64rIFfAe88plvM8M1jKJrR++ZgRPUERExit18IpISiIB0aj3uU9VVRxMlhENFRVQFYBI3NmPCNFolv1kWGkGr4iIiMh4FoX+SOperoC33vYxgw+dOz09I3RuIiIyningFZGUiFdvUlUVwxiyd/ACXHwcP7tsF5asnEqCCo1oGAGawSsiIiIyjhXZwWtqvcIuMaBLs0REpDAFvCKSEg5DBXESVFBd5XTnUpEj4P3iJ7jrxkN5ceV0QIusjYTeXu92Q0P6Y+rgFRERERnjbHEdvBV1vvp7YGAETkxERMY7zeAVkZRwGP6H3xGjkhW9k+Dn/80+ogHAVBEMeos+qIO3/PzBbc2g3F0zeEVERETGOBstqoO3wtfBS0if3IuISGEKeEUkJRyGevoIkKCBXrAGTDD7ziZIZUAB70hx5iN796uq0h9XB6+IiIjIGGcjGR28dXWZu1XU+ws7fXIvIiKFKeAVkZRkwJtSV5tn7yDBYDx1TyMayssf2lZV4cxH9lHAKyIiIjLG2Si2iA7eynqvBjcq7EREpAiawSsiKZHIoIC3PktLQdI3r+GPL19EBMvn+BvR6Jyyn9/GLN94BoCaineBLTL2FREREZExwkaIXnAwF/50L6fmrgoSCGTuVtnoBbwVEXXwiohIYQp4RSQlo4M3W0tB0tsr2bb3VQBa6FQHb5n55+pWDx6LbONUR24DzgMU8IqIiIiMTVG6T96PX/70fAAmNGQvoIONXpNFIKrCTkRECtOIBhFJyRzRkCfgrfFSxhpCmsFbZv7QNiPgjbdRHfTmuWmRNREREZExyEbp6/fWt6ivs1l3Czb5A14VdqPl3Xfh5z+Hxx9aCf1PjfbpiIjkpQ5eEUkJhxLpAW9jQ+6dFfCOqLwjGmKrqK6Ope1rbeacXhEREREZRTZK/4AX8GZbYA2gyhfwVsbUwTsaXnwRDjwQurqgtnYK77x4P9M+sudon5aISE4KeEUkJRyKldDB66WMNYQ0oqHM8o5oiK8mELBUVsaJxZxBbtGosxibiIiIiIwRNsJAyAt4a3OsZ1wx7+N8nGcIUUN1Qx3PjdDpiecHP3DCXYCBgQCPPdHIidv2Q0WeNUpEREaRRjSISEo4HKeBXm9DQ2PunQcFvOrgLa+8Ixpiq5ztVfGs+4uIiIjIGLDoTbb++qU8wMH8gu/lDHhrp03iOT7OInbmrciWI3uOAsALL6Tff/aFGRB9b3RORkSkCAp4RSQlHB7UwdvQlHtnX8Bby4AC3jLLO6Ih3gmQNqZBc3hFRERExpg1a2l6fQkH8x/m8jy1tdnnadXVe9v7+/WWfaStXet8+T374qYQWzk6JyQiUgT910JEUjJm8Nbn6+D1Wg40oqH88o5oSDhd1+rgFRERERnD+rw6u4966uqyB7xVVRAIJACIRivUSDHCFi/O3PbiK5sQCXWN/MmIiBRJAa+IpEQicebyPFuwnB98+g7YYvPcOw8KeFV4llfOEQ024nwBNYMWWhMRERGRMWRQwFtbl/3tuDFQVxulgji19DMwMFInKJA94A2Fgry7PJ75gIjIGKGAV0RSwqE4HUzgPbagbdIWUJ1vkTVvgQF18JZfzhENCW9mcrUCXhEREZGxq6/fu0l9zhENtLWxrreBOJW8x+b+XFhGQLaAF2DlysTInoiISAkU8IpISjjsFS3V1XEwg2cB+NSmB7zq4C2vnCMa/AGvb0SDZvCKiIiIjDEZAW+O/aqrCeJ8cF9DiP7+HPtJWbzzjnc7OSoDYMXKAFg7CmckIlKYAl4RSQmHfAFvVQxMVe6djzqcGw69mEO4nz/zRQW8ZZZzRIM6eEVERETGh2IDXt/lWgp4R96qVd7t3T7Wnrq9YmV9Wu0tIjKWKOAVkZRIKMrmvMtE2qgP9Ofv4P3IR3n7I3vx/ziEJWyjEQ1lVsyIBs3gFRERERnD+r1hus4iazn2q6wk7r5VryROf7cK7ZG0erV3e5fZa1K3V6xqhIQWWhORsUkBr4ik1KxdwbvMpI3JfPP6z+UPeE2QYKXX8asO3vIqdUSDAl4RERGRMabPK+jydvAaQ6TCK/hCnZq9NVISifSA92M7rUjdXrG6ERKdI39SIiJFUMArIh7fCg6xqpr8IxoIUukLeNXBW14a0SAiIiIyzvUXGfAC0YB3yZYC3pHT3u69r2luhlmbe2nvhysbIdEzSmcmIpKfAl4R8fjmgsWrqwt08FYRrPQ6RtXBW145RzRYL5TXImsiIiIiY1ixHbxALOA1WkS6VdiNFH/37rRpCaZP7Ujdd0Y09GU5SkRk9CngFZGUin6vYHEC3jwdvPPn85UrTmEtk7iLoxTwllnuEQ1eKK8ZvCIiIiJjlLXwlY9z9bxf8EWu4Vk+nnsGLxCr9Ao+Bbwjx7/A2rSpcaZP8zp2V6xuxMYV8IrI2FQ52icgImNHRcjXwVtTDSbP/0UkEjR2t9EItNKhEQ1llnNEgw35tivgFRERERmborDrDB6ZciS3swNA/g5eBbyjwt/BO3VKhKbGMLW1UQYGgvT3V9HbHaaxafTOT0QkF3XwikhKIOSt7JtImwOQha8irSGkDt4yyzmiIeH9zrTImoiIiMgYZSMADIS8Bop8AW8i6AW80R4FvCMlvYM3gjEwsdVrgmlvj2c5SkRk9CngFZGUgK+D19YVCHh9KWMtAwp4y6yYDt4qX8AbiYzASYmIiIhIcaxTLA8MBFOb8ga8VV7BF+tVwDtS0gNep5Gitdn7+Xd0JAYfIiIyJijgFZGUQNjrBrW1xQe8NYQ0oqHMss7gtVGw3g++KqiAV0RERGRMSga8RXbw3n3KH5nGSlro4K2Je5T77MS1dq13e8ok573RhFbvPVJ7ux3pUxIRKYoCXhFJCYa9Dl7q81SckBHwqoO3vLKOaEikd3MEfQGvfh8iIiIiY4iNwH5Xc/PL+/MSc2ihI+8ia3bqFFYzjS5a6B0IjNhpbuza273bE1r63X99AW9HVWrchojIWKJF1kQkpTIy9IBXHbzllXVEgx1I20cdvCIiIiJjlI3C8nY2j6xhcyBKMG8Hb329d7u/P/d+Mrw6OrzbrW7A2+oLeDs6ayDRB4GqkT41EZG81MErIp5YggQGANOoDt6xJPuIhsEdvN5MMP0+RERERMaQRBgGvI6IfuryBrx1dd5bdQW8Iyct4G3uBQZ38NY6Aa+IyBijgFdEUi6b/GMCxKmln87jj86/swLeEZV9REOeDt6w5oOJiIiIjBl93amb/dRiqcgb8DaaPqbzIbNYmp46SlmljWho7nH+9c/g7VTAKyJjkwJeEUmJRCoAQ4haqpoKdPAGg1jjdPsGiZGIaEZDOWUf0ZDewVtV5Z/Bq9+HiIiIyJjR6wW8fTjzF/IFvLNv/SUfMoOlbM2ey/9W7rMTV3oHr/M783fwdnTVglXAKyJjjwJeEUkJR7z/S6iuLrCYgzEkgt7sKRMJ59lZ1lf2EQ3pHbzBSn8HrwJeERERkTGjr7SAN1DvXS1nQqHcO8qwCYVgwC2vKyuhvs4Z0dDa4v38nRENmpkhImOPAl4RcdgY4bC37mJ1deE1GF++5HfM4SU+wuv0xWsK7i9Dl31EQ+4O3og6qkVERETGjkEdvJWVlmAw9+4B/4LHYQW8IyGte7cVjNtMkTaDVyMaRGSMKpzgiMjYFn4Tqrdb/+exEbbrf4VNqKKPeqpt4YAwvOMOvMwcAFrj+feV9ZNzRIO1cO0CuH4Bx3bV8iu2ZwnbEI3oFyIiIiIyZvT1ejepz9u9CxBo8JonApGBPHvKcPEHvBMmkBqH5p/B29FZoxENIjImqYNXZDxLDEDPbU7Iu75shCt7vsLz7M5idqDmgxUFD6kMev8XokXWyit7wDsATyyDC+6D19fQuuJdzuVSACIKeEVERETGjr4e7yb11NaavLtXNtSlbldoFNqISO/gtWCdNzitzYM7eDWiQUTGHgW8IuNZ5HWwcYguW//nslHqfZcbVbU2FDwk6At4Y5oIUFb+gLcqOfrYhuCZ99L225fHAYhGEiN0ZiIiIiIbqFgbxHsK71eMPq/OLqaDN9jo7RCIaUTDSGhv9263trjNEiu62fSSm3iN7fkGV7ozeNXBKyJjjwJekfEsutz5N/Ze3t2KYRMR6vCKlWBLY8FjgsEKKohTRx8JzXwtq0jEu53q4E2EYfHqtP0+yhtMYi0RBbwiIiIi6yf0AvTcOTzPNSjgravLsy8QbPR2qIwq4B0JaR28Le57m7PuoOr2BWzP6/yG71DZ1088ppEZIjL2lC3gNcZsZox5xBjzujHmNWPMOe72CcaYB40xb7v/tvqO+Z4xZokx5k1jzMG+7bsaY15xH/utMSb/9SwiG4vYGvffVWAj+fctIBKOUu8LeCuaWwoes+VXziJOJX00sEPPM+v1+pJfzhm8gwJegL2ZTzRqR+bERERERDZE1kLkNYi9n7pUf70cuAOvX/ldDuK//JLvFdHBW+/dToRJ6LP7skufwRuDUAxe+CC1rZI4e/IUPd2aTSciY085O3hjwHestR8F5gH/Y4zZHrgAeMhauw3wkHsf97GTgB2AQ4DfG2MC7nNdDZwFbON+HVLG8xYZH2wC4mu928mwd4jCoSh1+OZJ1TcXPijordNYqUvHivbSS3D88fDnPxe3v7W5RjSE4d7Pw+2nQsD73GsXXiQSUcArIiIiMmSJdoh3O+PQYoXXpiiotYq2LbflYQ7iZeYUDHiNr8W3hhADahotu/QRDRF4ey3E02vqvZlPd3elcyWdiMgYUraA11q70lr7onu7B3gd2BQ4Crje3e164Gj39lHALdbasLV2GbAE2N0YswnQZK192lprgRt8x4hsvOLrnIIzdb89975FiHT1UIFTwAxQA5UFqk7A1PhW99WlY0U7/HC44w740pfg/fcL7++fbxwIOF+A08E7pQH2mwX/e3hqn815Tx28IiIbMF0pJzICYr6rpKLrPw4NG2VgIJi6WyjgxVdnK+AdGV1d3u3mpggszmyg2Zv5dPdUg9VCayIytozIDF5jzEzgY8CzwFRr7UpwQmBgirvbpoA/6vjA3bape3vw9myvc5YxZoExZsHatWuH9XsQGXPigy7NX8+AN9rem7o9YOrAVOXZ2+UrPNXBW7wVviaQF18svH/W8QzgdPAmbep1XE9mLZGI3p+LiGzAdKWcSLn5r44bjg5eG2Eg5F39VmgGb7LODlFNggr6lSeWXY9vPb3mpjDsMBW+vQ/sNiO1fTcW0N0V1EJrIjLmlD3gNcY0AHcC37TWdufbNcs2m2d75kZr/2St3c1au9vkyZNLP1mR8STWln4/0ZF9vyJFO72KZqCiuIDX1HlpYzCutoJidAz6NQWD2ffzyz6eIeKM5kiaO4PXr/khzXRyGPc5Aa9VF6+IyIZIV8qJjIC4L+CNr1+d7TxHmP5SOngPPJBtZ62jlhBHcbc6eEdAty+taGwIw47T4IID4b4v0FPZBEAtIUIrIgp4RWTMKWvAa4wJ4oS7N1lr/+FuXu0Wk7j/Jv/L+QGwme/wGcAKd/uMLNtFNm6DA9317OCNdfo6eAP1YKrz7O0wNV5lWhnTHKpiLFuWfr+zs/AxEd/6eakO3kQIesMQdcd0NFQT33YTunE6eaOxCrB6JyAisqHTlXIiZZIW8K5fnQ3At27mxK+eRActfI4bCwe8FRXU1Xnj2NTBW37+gLepIb2OXlc3jTVMZgG7ElqX0IgGERlzyhbwuvO7/gK8bq29zPfQ3cDp7u3TgX/5tp9kjKk2xmyJc4nYc25x2mOMmec+52m+Y0Q2XvHOQffXM+Dt9j6FDgVqIXXlZm4Vdd6IhmBcIxqKsXx5+v1iAt6sIxpsGL53P2z6c/jo/8I9i6mq8t4ERCIBdRaIiGzgdKWcSJnYRHptbYehY7M/REUiTgtdWEzhgBeorfFqO3Xwlp9/RENjffoP/BeH3sBU1jCXBayo3QISCnhFZGypLLzLkO0FnAq8YoxZ6G77PvAr4DZjzBeA94DjAay1rxljbgMW48wV+x9rUytInQ1cB9QC97tfIhu3wR28iT6n+Cxmdm4WkYhlKbOop4/O4ISijqmo9c3gVcBblPXt4PVGNIRgjdt1va4faioJVnpvAqKxAFivK1tERDYs+a6Us9au1JVyIush0ZU+CgucwLeifujP2e99Yt9HPVOLCHjVwTuy0jp4G9N/4PXN3t+DFlkTkbGobAGvtXY+2bsCAA7KcczFwMVZti8Adhy+sxMZ52wMEj2Z2+PdUDlpSE/ZPusj7MdSAPbe/gOeKOKYCt/qEMFEGGtBa2/nN5SAN2cH72pfgDulgapAlBm8z+a8R2SgFRL6ZYiIbIiKuFLuV2ReKfd3Y8xlwHS8K+XixpgeY8w8nBEPpwFXjdC3ITJ2Db5SDpw5vMHNMrcXw8agz/vEvo/6wousRaPsGFlIiOUYLAMDew/ttaVo/g7elu7lcNyNMKUBtptEc+P+qce6uqudDwFERMaQcnbwiki5JLqyL6CV6AWGFvCGQ96n0tXVxS3OZXzXltUQIpGAQOHJDhu14RvR4OvgBZjaSOuv/8X7nA/AD/t/BYmsn6WJiMj4pyvlRMop2+LF6zMOzUagP5q620d94RENHR1c+czhALQxkYf62wocIOvL38Hb3P0+PP6Oc2eXTWk6yivIu3vVwSsiY48CXpHxKNdKvtm6eosUDnuXgFVXJfLs6VPrtR7UECIaVcBbyOB1aYY8oiHaB+vcWXAGmFiHmeS9U2iNrVPhKSKygdKVciJllq2DN5FvzHUBNgL96R28BQPeGm8UWjVhzeAtM2vTO3jrelZ5d6Y00Frdzf48wua8x+yFSyGx+cifpIhIHgp4RcajXJcErUfAG4l4oW5VsWN8v/xlZl14Kh0DjfRTx9mxIb/8RqNn0K9oyB28q1d5y+BMrINggMBkL3CfGG/T4g8iIiIiQ5GtmSKxHmsb2GjpHby+gLeGkGbwltnAAMTdfpfqagi2+TqmJ9cz2a7hEU4AoP3lKZD4wSicpYhIbgp4RcajeI4OgvVYVKvunSUcTxu9NDAj2ghsUfigplY6qurpHHAq1Gi0wP6SdukXrE/Au9LbOLkBgArfah0T4m3rv9qziIiIyMYo24iG9WikwIZL7+ANBr2bxAj1xQFdKlcu/iaMxkZgje9vYHIDVZt6v7DGcIfqbBEZcypG+wREZAhyXSIWH3rhuekzj3AbJ3Ifh7Hfh3cVd5AJUFnpdf4q4C1sKB28WUc0tPvmwE1wOncDU7zCcxJtJOJq9RAREREpWTzL1XLr1cGbOYO34CJrxhCtrE7dDXeH8+ws68vfhNHUBKzx/Q1MaaBhgqWXegCCNgpdXWCLHGsnIjICFPCKjEe5OgjWo7OgYiCUuh2tLlRxeoK+gDemEQ15DZ7tBevRwes/sMm5hM9Mqk9tmsxaomHvdyoiIiIiRbCJ7FfF2b7sixwXIzGEDl4gHvDmpkV7FfCWU3oHr4U1vsR3SgNNjWHWMtnb1tav9S5EZExRwCsyHuXq4F2fgDfkhYGx6vo8e/qEw2xqPmRL3mEG76uDt4C+LO8LOjsLv1fIHvD6ugqa3RltE71gfgpriIT1RkBERESkJIne7MWZTTgh71AM9KTWTghTRZzK4gLeoNfBG+vVB/fllN7Bm4B1vvB2Ul1mwLuuT2MaRGRMyTmD1xhzdxHHt1trzxi+0xGRouQKeNdjBm8g5C3NG68pouIEePRRnl91CAD/j08Rjf6/Ib/+xmDw/F1wxloMDJD3Mr2sIxrSAl63+G+pJUaASuI00017r4pOEZGxSrW2yBiVq84Gp5mioqH056w28Op3+MxJR/PGq60ARQW8iaDXwauAt7zSOngb4rDG1yjRVENjQ5hX0gLefi1oLCJjSr5F1j4KfDHP4wb43fCejogUZCOQyFHgJcJgY2BKXD/Rxgj4uj3jNUV28FZ7XQU1hDSioYDB4xmSurryB7xZO3jP3g9OngldIah2f98Vhg4zgcl2LQCxVb2wfRRMEBERGXNUa4uMRfmuiBvyHN4oTGlgqd2axUwDigx4q3wBb5+uzCqntA7exphTYyc111BfF6WNSalNtq0PYwcQERkr8qVAP7DWPpbvYGPMRcN8PiJSSDxPVwE4nyQHmkp7Thum0jeiIVFbZMBbU5O6WU1YIxoKyNbBC9Bf4MP/rAGviTqzd5tq0vZdF5jM5JgT8CbW9rl/D81DPGMRESkj1doiY1GhDt6hsM7lWP0D3ofuBRdZA6yvmSLRrw7eckrv4I1Bd3rAW1UVp71iIrjLj8RWhwiqg1dExpCcAa+19rZCBxezj4gMs0KdA7YfKDXgjVAZ8QW8xXbw+gJedfAWlquDd6DAh/9ZRzTY7F0c7YFJdMRaWMtk6gZw/x4U8IqIjDWqtUXGqLwdvEMdf+UUcwMh7+13MR28kYlTWf5eiBA19Ie0fE45pc/gjcKlhztdvD1hqHcK8O7qVnDr9tjqEEEtsiYiY8iQ/ithjDlruE9ERIpUaM7uUD5JthEqI15gmKhrLO64QSMa1MGbX64O3kIBb9YO3hwB7xdm3M4EOtiOt+jdbpZmg4mIjEOqtUVGUd4O3iHWVX3dsKKbqv5eKnEK5mIC3ld/8Re2ZDkf5Q1eD84e2mtLUfyNGE2NUThuNnxhd/jmPmAMAL01ral94msHVGeLyJgy1I8BzbCehYgUr6gO3hLZCEFfB6+tH1oHrwLe/Iajg7e6GrBxWLoalndAez/EE6nHK6us77iACk8RkfFJtbbIaMnXwTvUjs3HXoI5l7O0cwb/4iiguIC3rs77v4JC9aKsH38jRmND9kaKtobpPM087uYIerbcYuh/DyIiZVDiSkwOa+0fh/tERKRIhS4NG8qlYzZCMOqbM1VX5OrAg2bwakRDfsPRwVtVhdO9+4Xb4bXVzsaHzoKdNnEeD8ZT+0aiARWeIiLjkGptkVGUr5liyB283nP24TRSFBPw1tZ6/ViF1myQ9ZPewZs94H1t0sfZ8/2nAXjmsGvYRI0UIjKGFAx4jTE/zrbdWvvT4T8dESmoUAfvEEc0vDt5e3rei9NAL7ZBIxrKYagdvBkjGmzYmQeW1OgF7cGg180bjVaog1dEZIxTrS0yxuSrtYf6wXmf14DRRz1VVRAIFD6srs4LeNXBW15pHbz12Re0a6j3Lqvr7atSI4WIjCnFdPD62wFrgMOB18tzOiJSUKEO3SGOaPj9gZdz9XVzAfi/hjyzx/w0oqEkuTp4C3VkZCyyZsPOog9Jzd7vodV0sD9vM5m1NDz9Guy7ydBPWERERoJqbZGxwsbBZg/3gPXo4PWO66O+qO5dgKZlr3MsC6gmzLvduwNbD+31pSB/I8asJY/C3r+Dpho4cGs4dz8gS8Cb6BzZkxQRyaNgwGut/Y3/vjHmUuDusp2RiORXpkXWojGvQyBYVURLAaR18NYSIha1aGxgbsPWwRsfgG7fm49G7/ewXeQ1ruBkADpv3xrO23OIZysiIiNBtbbIGJLoB2tzPz7Ujs3+oQW8zTffwJ3cDMA5vdeggLd8/I0YzQMr4K02586siant6uAVkbFsKDN464BZw30iIlKkMi2yFo16C6tVFRvwBgJETZC4rSBMNbGBKFBV+utvJPyFY00NhNyMtuSAt7sdku896qugsgKCm0J8Hf21zal9g129KjxFRMYf1doio6VgI0XY6fI1RdbKSX1esVdKwFtZ732IbyJ5Ootlvfnr9Ppou3enyfsdNNRHOIW/MYt32Pmm52C/j8KEIfw9iIiUQTEzeF/BixICwGRAM8FERkvBRdaGGvB6c3eDweKLlM8dtYzb7toUgFvVvJtXr+89w5Qp8N57zu1CAW/GiIaOdd6G5howBppPh+476K9vST0U7O4e2qJ7IiIyYlRri4whxdRNiX4IFLleRdKggLeurrjDAvXeGK5ALEwiARUVeQ6QIfNfaVcb6fLu+APeughn8xs+xkJ4EvhwOmw3hL8HEZEyKKaD93Df7Riw2lobK9P5iEg+iQGnayDvPkMIeFev4tDX76GVWXzADIJVRxV9aMAXBmsGb34hX+NFa2vxAW9GB2+nL+BtqoaKFjBVENyCcG0jcSoIkKCqvx9CRc5TFhGR0aJaW2SsKHSlHLhXR5UY6PV7RWApHbymxkuCawgxMAD19XkOkCHzd/DWhv0BrxeyN9RHWMtk77F1fUP7exARKYNiZvC+OxInIiJFKKarIN/CELks+4BTXr+cU4DnmMuHVUcXfWgw6N1WwJufP6htbfVulx7w+i8bq4HKqc7t4OYEqztZx0SmsNbZtq4NtM6aiMiYpVpbZAwptoO3FDYBfV4xV0rAS423owLe8rE2vYO3qn9QwFu1FVR9lIb6jvSAt61/6AvviYgMsyFd4GGMuXe4T0REimCLCXijUGrjT5/XrdBHfVpoW4h/35j6jfLyj1poafFulzyioavD29BUA4Epzu3K6dRUx9ILz7W9kNDMNhGR8US1tsgoKbqDtwQ2Av1eMTfUgLeasH+tNhlG/f2QSDi3a2qgwj9XrakaqraFqm3zdPCKiIy+oSyyBvClYT0LESlOsZ8Q2xCYhuKft8/7yLqPeidELNJmPW+xB+9QTRh6dkOXKOXm78Rt9tZCG0IHb6e3wd/BawLU1FQM6ixIFp7e5WUiIjLmqdYWGQ1FNVOU+MG5jUA8kbpbWsCbOaJBhp+/e7exEejyvedqqoHAVAg00dBYyZtpAa86eEVk7BhSB6+1duVwn4iIFKHYBbMSJVZ/fd7zltrBe+YTX+cp9uIRDqThwzdLe92NjD+oLaWDNyPgjYehtRYqDDRXQ2Bi6vGa2kB6wNver4XWRETGGdXaIqOkqBENJdbZNgw3nszff3cbDfTwEAcVvcga1ergHQn++btNTRa6fb/jphqodK6Wa2hupo1J3mPq4BWRMaRgB68xZhvgl8D2+FrArLWzynheIpJNMV0FUHpnQZ9XmJQa8MYrvZVl05JIyZBrREOhYj1jRMNn94TPTHQGhkUTUOF1TdfUVA66dEydBSIiY5lqbZExpJiaaSgdvEB/uJo+nCvsiu7grc2cwSvDL72D10Kn73fc3AoVTiLf0NiQpc5WI4WIjA3FdPBeC1yNs6rvAcANwI3lPCkRyaHoEQ0lVn/9XmHSS0NJAW+s0nfpf0izXvMZthENyZm6xkB1EIzv8r3aYGbhqc4CEZGxTLW2yFhRTDNFyR28TsA7EPJ6q4oOeKu9Rgp18JZPWgdvYxx6fMX3xM1SNxsaa7TImoiMWcXM4K211j5kjDHuKr8XGmOeAH5S5nMTkcGKHtFQagevV6iWOoM3EfQKTxNWwJvPsI1osL4Npt4Jel01tUFeYxYv8jHqNwuy3eYtKjxFRMY21doiY0UZO3gHBrwOiqID3qlTebNpZ1Z1N/MGH2FXdfCWRXoHbxxuPBm6BqArBBOnpx5raKpLD3g71EghImNHMQFvyBhTAbxtjPka8CEwpbynJSJZFT2iocTqrzc94C1pRIMv4FUHb365RjQUCngzRjT431hUpC+mV1NbzQ2czg2cztcPfpbffvb+4v9uRERkNKjWFhkLEmGwscL7lRzwhuG592l+9x225U3eZhtqa4tcCueAA/jRAbdy+7+2A+AWZYllkd7BG4PdZngbqltSNxua6mnD1wmjUWgiMoYUE/B+E6gDvgH8DOfSsdPLeE4ikkvRIxpKKDythf6hB7yJoG9EQ0QzePMZtg7eJ1+H8AA0VcOOm0Gr93hNrRe4h8Lu/8Wr8BQRGcu+iWptkdFXbCdmqY0UNgJHX8eXY3/ly0A1IerqqgsellRbk0jd1gze8kjr4G0YFPL7mikamhpox3ATn6W3poUvf/V1zeAVkTGjYMBrrX3evdkLnFne0xGRvIoe0VBC9Wcj0B9N3S054K3yAt4KjWjIa6gBr7+Dt7rKwo/vhYUrnA0PbQvelWPU+K75CyVnvanwFBEZs1Rri4wR5RqFFu6DmBPSxggQoar4EQ1AXV08dVszeMsjvYM3kv6gL+Ctbwhggc9xE7Umype/dXHpHd0iImWS89oQY8yFhQ4uZh8RGSbWlqezwEZgl025q+Yz3M0RLGWrEgNe/wxetRXkYm16UDvURdaqghHo9hWSLZPS9q2p9S4bS3XwajaYiMiYo1pbZIwpVwdvr5ce9lEPmJIC3tpadfCWm7+Dt6lh0BWJvoC3thaMsYAzUzkeN2CjqTnLIiKjKV8H7xeNMd15HjfAScCFw3pGIpKdHQCbKLwflDiiIQyn7sqXf3kua0JOAVPKImu2yqtQAxF9gp1LLOaEvACBADT4RufmK9YTCefYpGBlOD3gbZ2Wtn9NrQEsZ3It+76+GC58Ci46bv2/ARERGW6qtUXGkmI7eG3IKep8i9zm1dfl3aQeKGGRtc5ODnjjZuC/9FFPf/+XizxQSuHv4N1xxYOw+cXQWA0HbQN/+3rqsYoKqK+P0dvrdMP09VfR1Bh2xqEFSngDJSJSBvkC3muAxgLHXzOM5yIi+ZRymX2pIxqAaCyQ2lRKB6+t9kY0mKgC3lwGz9H1F/b5LrdLG89QDca6K/omtU5N27+mBsBwOd+i+e1ueBv45gGQ3ugrIiKjT7W2yFhS9FoX1mmQMDWF9wXo89pDkwFvXV2R57RuHUc8/CuOAN5hS/48oIC3HPwdvC20QyjmfPVFwKQvaNxQH08FvL19yYC3DwItI3jGIiKZcga81tqLRvJERKSAUgLekjp43YA36k1sKSXgjTRO5F02J0QNfRUNhQ/YSPmD2qqq9IB3YCB3I0jaeIYqYKAbom4nd1UAalvT9q9x32u0MYlm3HaEti7YOgqmhF+siIiUlWptkTHGllprFxnw9vambpbcwVvjvUYNIc3gLRN/B29jot2701QLFekL4jU0JPjM6js4jH/T9JXn4Us7wGf1ixGR0ZdzBq+IjDGlzFEtdUQDEIkOrYP3jcO+w0ze5SO8yYPbfqX4Azcygzt4KyudL8icz5vvODrWeBuaaiCQ3gKSfB+wlsnexnX9WmhNREREJJ9yNVP0r0fAW+2Fi9WENYO3TPwdvI3xDu9OS1PGvg31ll14kTO5joanXoM316rOFpExId+IBhEZS7IVDo+9Aw8vgVN3ga0n0d1TzeV/mMeM6X18/pwiR4PZCPziIX4R6aGXBi7j2wSDzYWPc1UGvc+JohFb9HEbm4yg1v03OV83Ekmr4VMGj2iga523oakaTPo7BH8Hb0oy4NWlYyIiIiLZFTuiAUobh6YO3jHP38FbH/UFvM1ZAt6GwY0UfaX97YiIlEnBgNcYM8Fa215oPxEps8EB78puOPVmZz7UTS/CP8/gV3efwi+v3AeA7XaNs/c+gSxPNFgEe+OLfIf5APzBnE0gUHzAGwx6rxGNKeDNZfCIhuS/fX2Zj/tljGjo8AW8zTVQkX55YPYO3r7SOsBFRGTEqNYWGSNKHtFQpH7vedXBOzb5O3hrI96ieDRlC3jNoEaKgdL+dkREyqSYEQ3PGmNuN8YcakyxS4WKyLAbXDjc8YoT7gJ0h+GiB1PhLsBVVyWKe95EGPqjqbuRYLGrPjiCVd7/LcSiCnhzydbBW+VbbLf4EQ2D5oKZ9BV7swa87flHNLz7Lhx2GJx5Zu7zEBGRslGtLTIWlGtEQ996BLyVlVjjvGWvJE6oN1b860rR/B281SFfwNvSkrFvQ2NFesDb3q8OXhEZE4oJeLcF/gScCiwxxvzCGLNteU9LRDIMLjrvWJR21z77LtV4xWZdbby4542HMANewBstMeCt71rBMfyDk/k72616rKRjNya5RjRke9wvc0SDL+Btrs/YP+uIhrb8Ae///R/cdx9cdx387Gc5dxMRkfJQrS0yFgwO6ZaugyOvha/+E7oGBbqljGgIAps1s85MpJ0JANQVW24bQ6LKWxwj3ldCsCxF8we8VQO+O82tGfs2NAQGdfD2aQaviIwJBQNe63jQWnsy8EXgdOA5Y8xjxpg9yn6GIuLwFw5reuH1NWkPm3Cc3XnOt6XIgLffuyapn1oqq0pbe3Hy0mf4B5/h75zCEct+X9KxG5NcIxqyPe6XMaKhNgA7bwIzW2HTiRn75+zgzTOi4dJLvds//3nO3UREpAxUa4uMATYCNpq+7YcPwDPvOU0VJ90Ecd/VcaV08B6zA7zwTbZpfp9z+C1QQsAL2CqvIyDWl6MjQIbM2vQRDUHfSA1asgW8lSXV2SIiI6WYGbwTgc/hdBWsBr4O3A3MAW4Htizj+YlIkn9Ew2ur0x87YzcW1M3jld/vlNq0alWRz9vnfUrdRz3BYJ59szC13gzYypiKzlyGbUTDITvCAWc5G4KbZ+yfd5G1HHbaCV55xbvf2Zn1ijQRESkD1doiY8DgOmltHzy0xLs/oRba+mBqo3O/lIDXOkVe/4BXZBc9ogGw1VXgBpB2QB28w62vzwl5AWprLabbF9a2ZDZTNDSaLCMa1MErIqOvmFa9p4Em4Ghr7WHW2n9Ya2PW2gXAH8p7eiKS4r9s7DVfenvqLnDJYTzQdAydeJ8yr1xVZCduT3rAW1WVZ98s/AFvMK6iM5eCIxr60juykzI6f63vkkBTk7F/MAjG2Cyr++YuPBsb0+8/pkkbIiIjSbW2yGgbXCfd/Zp3++Obw02f9cJdKD7gtVGwCRIJQzjs9VbVZJZwufmK83i/mimGm797t7ER6Pb9bluzBLwNznumEG4hPxCD3s6ynqOISDEKdvACP7TW3ubfYIw53lp7u7X212U6LxHxs4n0YM/fwbvjNAAenp/e4LNqVTH/8wZ6vaqmh0aCwdLWd6mo9VLKyriKzlwyZukyqIO34wGIHwWB5rTjMoLhhK/orMhs/zDGedPw/sBm3MFnOOqz7xHcrjXv6r5dXen3P/ig0HcjIiLDSLW2yGgbfIn9c+97t4/aPnP/RLEBr1PIDQx4dXltrVOvFSu8/1784++GMNV0hkto/ZWi+OfvNjUl4K4vOTOXu0OwaebVcg0NAE4X7ww+dDa2dcBmMTBFvv8SESmDYlr8Lsiy7XvDfSIikkfCd+0QwCe2gZPmwE7TYPYm9PUFmf9segGyZm0lsWIW2vV18PbSUPqIhjp/B68C3lwyZukyKOANxyH8asZxGcFwWgdv9iK/psawgk05njvo/vFn4Ow98q7u6y9soYTxHiIiMhxUa4uMtsEdvIt9zRRzNs3c3xa5yJqNwHPvE7/7DQ7mAaayqqT5uwDhX3+Pk7iV07mB5eFNSjtYCkrr4G2Iw5QG2GYS7DoDqpsz9ncCXjSmQUTGnJwfMRljPg0cCmxqjPmt76EmoJjYSESGy+Duy8/s5Hy5HvvvTKLRQPoh1rB2LWxSqA7s7U3dHEoHb8AX8FYV282wESo4oiFcCdF3gb1yHldVBdy9ANZ1QXMNfGIONGS+lv+yv1DycsA8RacCXhGRkadaW2QM8ddJoRgsaXNuG+CjUzL3L3pEQxj++AxN9yzmAf7GidzCU7UnlnRqdfVeT9ZAkbmyDBJ5CypnQEVmup7ewTtokeos49CSAe+VnMN+O77JGV99C2a0uF3gmYGwiMhIyXcNwQpgAXAk8IJvew/wrXKelIgMUuAT4bo/P8Lj/IGtWcKp3MhDfAKAlStLC3iH0sHrH9EQTORYKUwKj2iIBiD2ntOp7btuLz0YtvD7x+F597LBBz8BMzNfKy3gDbn/N2+jTheJSR+ynEgo4BURGSWqtUXGCn+t/dZaiLtXzm05ARathKffhXfa4aSdYe8tSxjREIE+rwjsobHkDt6aGi/gDYchHodAIM8Bki7RC913QPX20Hh0xsPpHbzR9AezjENLBrzXcSZrpr3FGcf93X0ddfCKyOjKGfBaa18GXjbG3GStVReByGgqFPB+sJLdmQ/AtryVCnjXZF+3K91WLXx40qHcccvWvMJOJS+yFqhXB28xCo5oiAScNwvxVVC5iW+7t091VRx6fD/j5syFHyBHBy84f0eB9F9w36DpH6CAV0RkJKjWFhlD/FfL+Rcz3n4q3Pc6/PFZ5/42E52At+gO3vSAt5cGaksco2sqKqmtjTIw4HRhhEJQX1/ac2zUIm86v4fwYmg4Ekz6lEp/o8PEuh5Y3QONNVBbmXUcmv9n39Pruxwvzzg0EZGRkG9Ew23W2hOAl4wx/rf/BrDW2tllPzsRceRZIAtgeXAWu7u3t2JpantHRxHP/dGJLPvsZ/jmLZ8HYK8SO3jTAl6rGby5FBrREEmO2IilB7zpwXDMWfQhqdU3+8snGfCeznVM+fWtYNrg63vBAX0QaE3bd/ACa+B0fouISHmp1hYZQ/zNFEvWebc/MgUm+lpu32l3/rVRsEUsqmXDGQFvqR283Ho/v0q8jyXBtZxJf/8cBbylCL/p/GsjEFsJwfSZyv4O3p36n4WdLnPu7DkTnrwo4+kafOPR+vp9b5wKvF8TESm3fP9FOsf99/CROBERycNfdP7lOecysZmtcOQOMHsTlsW3SD28Te0ycOdzFQx4bQJs1AsXoeQRDYE6L6VUwJtb9hENFud9PITDyYA3ve06LRjOCHgnZ32tZMB7CA8w+d9POHcO/Qjsn9lZMHg8A8Dq1c7ohopiluEUEZGhUq0tMlb4a+3aIGzeAh90OfX2JF+auqzdu21DYLIshuBnI9DrFXM9NNJaYgcv9zzMN8L/BuAp9mRgYE6JT7ARs3GIvuPdj76bEfCmdfAGfOF+Q/ZflD/g7e3zXRmnEQ0iMsryjWhI9nC1AQPW2oQxZlvgI8D9I3FyIuLyFwxPLod7X3dubzcFZm/CkoGZqYe3rPogFfC2+2rQrKyTOkajXpJXasBb2VDDs+xOiBpiwRoOKu3wjUa2Dt6qYBhw0thUyB5PD3j9wXBt5QD0u7PBKgw05h/RUMzqvtk6eGMx529nUvYGYRERGQaqtUXGEH+NdO5+zlck7syxWulr8fQHvIkQVBQKeIehg9d3yVcNIfo1CaB48XVOp3VS7D1gz7Rd/B28Lcb3+23K3iadDHj34Cl+8975sM9bsNsMuHqXYTppEZGhKaY/63GgxhizKfAQcCZwXaGDjDF/NcasMca86tt2oTHmQ2PMQvfrUN9j3zPGLDHGvGmMOdi3fVdjzCvuY781xrf6kMjGIuEthMa7vrbcmc7l9m/0bJnaNM1619cX7uB1UsdobOgdvMG6IPN4lv15jJOb/lXawRuRbDN4q4PeUsiRSLKDd3XO4xrjvq6CxmoIZH+HkHwfsBZfh++67AFvtg5e0BxeEZERNKRaW0SGkc2SmlYFoLoSZjRDpfu2eXWv92F7MXN4h2EGLzXeAdWEGRjIs6+kG9Q4MbjOhvRauMX6au3mxqxPmQx4awixR/RJeHOtM7pDIxpEZJQVE/Aaa20/cCxwlbX2GGD7Io67Djgky/bLrbVz3K/7AIwx2wMnATu4x/zeGJNMnK4GzgK2cb+yPafIhs1fdPq7CDZtJpEwvNq5VWpTa/8awBnl19E+aPWsjOeNwO+fYpfLruB6TmMPnip5kbVK33UA0ag+f8kl64iGSq9CD0fcH2SiN22RBn/A25Ro8+4014DxDfH1ST5/WgevAl4RkbFqqLW2iAyHxIBzKX8ulRUwzRf2rXZr8WIC3rjv6iugj/rSO3h9q+eqg7dEsbXp9xOdqSsYk/wdvE3W1x2TI+BNzj9Ob6To04gGERl1RQW8xpg9gFOAf7vbCkyTB2vt40ChC8STjgJusdaGrbXLgCXA7saYTYAma+3T1loL3AAcXeRzimw4kh28sYRTQIAzunVyPR2dNXQmmunFqTYqYxFa6ASgoyOR/3ltGF78kOkvPs9p3MhmvF96B69v/2hMQ1tzyT6iwXtj4J+DTNwrRv3BcKNvO001UJE/4M3o4M3SWZBtRAMUuUCfiIgMhyHV2iIyTIoJ5qb6RjEkA95EEa20vd4n6b3UY6kovYO3Wh28QxYfFPBam7Hehb/ZoT7W6d1pbsr6lMEgVFfbLKPQlLyLyOgqJo05B/ge8E9r7WvGmFnAI+vxml8zxixyRzgkl3PfFHjft88H7rZN3duDt4tsXJIFQ1tfsjnXWdE3GGBNWz1gWMH01O7TWQFAezEdvIMuGyt5Bq/vLWgspg7eXLKOaKjyCsHUiAaAuNep6z+uIerr4G3K/e4ga8CbYwZvrg7egvObRURkuAyp1tY4NJFh4v8A/JVVzoLGD70NH/o+BZ/q7+B1Gy+K6eDt8Qe8TkhcegevV/Opg7dEg0c0ZNnm7+Ctj3Z6d1qacz5tQ4NhHb61MNoHIN6Tc38RkZFQMOC11j5urT3SWvtr9/471tpvDPH1rga2AuYAK4HfuNuzFZI2z/asjDFnGWMWGGMWrF27NtduIuNLIgzWvbRrta9wmOwUiavXOv9+6PvsIxnwdnQUCnjD0Lt+AW8wCJ/lJr7J5Xw7comSwRxCvvcAyc6NqkrfKAZ/wBvLHvDWx/xzwbIv/AC5RjRkv3RMHbwiIqNrPWrt69A4NJH15++8fGo5fO9+OPnv8H9Petv9IxpWlTCigQjsPZMPN9mOl9kZQDN4R4q1EM9S0Obp4K0J+wrjppacT93QAFGq6MLt8k1Y6OhOX9BNRGSEFbz8y13N91xgpn9/a+2Bpb6YtTY11dwYcw1wr3v3A2Az364zgBXu9hlZtud6/j8BfwLYbbfdCiRbIuOEv6tgjW+xNbeT4IMVTmGRrYO3o7NAE86glX17aCw54A0E4AdczPa8DhYSHx5FxYQJpT3JRsDfbZHs3Kiq9H63uTp4/SMaYi11cOT20BWCnb2F9QbLvchab8a+fb4/rwkTvHxeOb2IyMgYaq1trX3cGDOzyJdJjUMDlhljkuPQluOOQ3PPJTkO7f7SvguRccz/Abi/mWKKbyzDUAPeqfXwj9P5v58fxK9+uw+gDt4Rk+jNPlvZV2dDegdvTdh3p6WVXJILra1lMs24CfG6PtiqDwK5O39FRMqpmPletwN/AP4M5Jk+X5gxZhNr7Ur37jFA8pKyu4G/G2MuA6bjdA88Z62NG2N6jDHzgGeB04Cr1uccRMadtKLTH/A6lcXzC51g90rOIXHsbI75/If84/BjAejoKNCkb0MZIxpKXWTNGAjjLf4Q7wsVNftlY+PvtqitBRJhqqtyzeDN3sHbtd0suOB4505V4YA37dKxjgGI9TrdDL6rb/2dxdOne8GuOnhFREbMsNXarq8ZY04DFgDfsdZ24Iw4e8a3T3LsWRSNQ5ONXVozhe+2P+DdfTP4yjynwWKu25eUKCLgtU4hNxDyOijWZwZvDSF18BYrkeMytUEBr7+DNzjgS89bcjesJAPeNiaxNUudO8kFjRXwisgoKSbgjVlrry71iY0xNwP7A5OMMR8APwH2N8bMwRmzsBz4MoA7b+w2YDEQA/7H2tTHbWfjXIJWi9NNoI4C2bgkcnXwOpXFcy8678OeZ3cmHvc29XMHGAjUQxz6+iqIRMgd2tow9HoJ4lA6eAHCFTXgrucW6xlgCE+xwcvo4E10URX03seHw77/O050Opd4mcq0Dt7qKt/fgsm+wBp4AW+MIAPVDdSGe91Lx/ph8gAYr3XEH/Busgm86n7spoBXRGTEDKnWzuFq4Gc4tfbPcMahfZ5hGIdmjDkLZ5QDm2+++XCcq8jYkKvW9ge8e850vvyK6eC1TiHXP+BVxyV38NZ6B1QTpksdvMVJdObY3pWqsyG9g7cy5iu8WyeSiz/gTWnPvqCxiMhIKSbgvccY81Xgn0AqCbLW5r2A11p7cpbNf8mz/8XAxVm2LwB2LOI8RTZMNvdlY5FIgJde3SS1ae6cDzEGWppDrGt3isGODpg6NcdzJzI7eIcS8IaM18Gb6FNbQTb+gNfp4O2iqsoLeNM6eK11ugsqp6V18FZX+eZ6+X7mg1X7st/5u53EJw9YBpProbrSeRNTkTvgTdKIBhGRETOkWjubco5D0yg02WDlGtHgX1gtm2ICXrfLd2DAe9tdcgfvTjvx1JzjeGLhLJ5jd+ao1C5OPEcHr7UQXweVU0kk0gNe+/DZkIhCdwi22DbnU+cMeLOsdyEiMlKKCXhPd/89z7fNArOG/3REJIO/UDhhZ/jIFKe7YPfNefK5zVKdn1tu3sHkSU6K2No8UFzAGx+A/mjqbh/1Q+zgrU1dVBrvVWGTjf9yOqeDt4dqf8Drn8ELEFubEfD6O36LDXgfnHMGn/zGg96GRB/4ZvP6n98f8KqDV0RkxAxbra1xaCJD4K+11+bo4M2mmID35WXw+Nvs/YZlKX08zZ6ld/DOm8cjh36dHy7cF4Bt1cFbnFwjGsBtpJhKX5+T9wLU1cWprEwAAZhUD8Hcv3//DN6UdQp4RWR0FQx4rbW5Bz2KSPn5C4VdZzhfritOm5e6/an93flPCcsmdW0sceev9mauq+Xp9QqfXuqxVAwp4I1W+Dp4877gxitzRENPWgdveHDAG3dW+PWPaJj58H9h/jvQVAMnbeeshZ6FP+DNeN5Bl44NnsGbpA5eEZGRMdRaW+PQRIZJsjaKxp2QDpzhJZPq8x+XKNBKaxPwzDtw0YN8mQeJ0M7T7Fl6By9QV+vVjFpkrUh5A951QHr3bmNDLH2fPM0UyYD3Rk5lx9Nr+PTxK2Bmq0Y0iMioKhjwGmPqgG8Dm1trzzLGbANsZ629t8ChIjIccnwSvK69lrsf+Ejq/neOvh+2vxQ6+rk98Gem8SFQKOD1VhXoxalUSl1kDdwZvK54n6rObDJHNPRSFYzzfS7m61xFxYMV8K+94Cg3tY2vBdI7bKc+9Swsesu5s+fRxQW84UH/N59I//3kGtGgDl4RkZEx1Fpb49BEhkmy1m7r8yZQT6yHykHLBl9wHyxd54TAN58CmxRoxc2ymDEMYQYvUF/vBbx9yhCLE+/O/VjMqbP9C6w1NUbT98mz3kUy4H2F2by6xSo+vftTzgZ18IrIKCpmRMO1wAvAnu79D3BW+1XAKzIScnwSvGqNd9nQR7ZZyzZz+p3CFGix60iunZK3CKwHLjuCf925JQ8+uQ3AkDp4IwGvFSHRr8Imm8wRDb1MXLWci/mhszEEnHcvHLKdMys35nTw+gPeSn9K3Jx7Zd/8Hby5A97Jk8EY51K1nh6IRof29yAiIiVRrS0yWqwF6xZpuRZYS3pqObzhBIOs7YVpzQWeO5w14B1KB299fSJ1WwFvkRJ5Al63kcLfwTuldh08+x4010BrHUwq3MEL0Nvn645RwCsio6ii8C5sZa29BIgCWGsHyL7iroiUQ45CwV9MNDWGob4Kqp0wrzoRph7nuLwdvPUGPrcLj+xwMr/ja8DQAr1owCuArKrOrLJ18G71wKD37p0h+H9vOrcTHWAjaSMaKv0L2LXkXtnXH/Bu9eGLcOLf4KA/wkUPZnTw+gPkujpobfWdTmf+70lERIaFam2R0WL7vSGshQLeib6RDev6wcbBRjL3Sz139g7ekgPe995jnxsv4VZO4HK+qYC3GDaR0dSQJt4G1qZ18O4YeBWOuBb2vRpO+TuY3G+KFPCKyFhUTAdvxBhTi3vBijFmK3wr/IpImSULhSVtcNJNzoq+O29Cz8H/k9qloT7itF5OrIcVTqUymbX00ZA/4HVX9o1Gvc96htTBW+lVqrZfS/sOlkikd8rW1AA9XUx96rn0HT8/11lED5w3G9H3CIe3Tj0cSAt4J5GLP+AN9vfBC+585ulNXpeKa/B5tbZ683c7OpyuXhERKSvV2iKjxR/ItdTCkds7Qe9O0zL3neCbrdDuhoeJAQjkmG+WyN7BW/KIht5eNp//EJsDi/ko92oaWmEJd/W0tX3OFXLvdcIem8NPD4ZABdgYJDro7PSuiJtStcY7vjn//OWMgNdaZ+HqJv1yRGT0FBPwXgg8AGxmjLkJ2As4s5wnJSIu/6fPK3uc4uS9TggYevf2ismGerd4nFiXFvAuZ8v8Aa913j9GY95l/EMJeJfU7cxt644nRA37zNym9CfYwPlD1NpaqKgAXn+HQMSZ9dVOK0fu/Dzzf3Vj+oHRd1MBryFBRY8vnG3Nnbz6A962Ct9+a/vyzuCtroZm39WGXXnWphARkWFzIaq1RUaHP+Cdu5nzlctEXzK7zj3OhoAcoxpsGHq9gLeHRmAIHbw13pVytQyog7cY1n0D9JP/wH1vOLdfXQU7bQInzXHux9bQ1eULeINt3vFN+VP4ZMAbJMLP7zwK7lgDsQR8+NNh+gZEREpXMOC11v7HGPMCMA/ncrFzrLVtBQ4TkeHgv2xstW9I1NRGenq9gLcxFfB6nzZPxpkt1dvjzOLNfO44WCdgjPjmtA5lkbUHJ5/Mr9//HAAL9nyXIS0HvgHLHM8QgkXvp7Y9wgH0RLN0CkTfTY1oaKYLk/xbaKqGqiyXDrr8Ae8apnh32vryzuCtqUl7D5E2vkFERMpDtbbIKMqx1kVW/oC3zdfBm/O5h2mRNV8iXENIAW8xEr1O08tdr6Zvv2WhF/DG19DV5S1YPTHgW2G4JXedDV7AG6WK+nAXxGPOhs5umBQDU0wfnYjI8Co4g9cY85C1dp219t/W2nuttW3GmIdG4uRENnr+roK0uWD1afOe0jp4XcmAt6/PW3U3jQ3DPYvhwD9ywX8/zze5HBhaB29lpRcgx6I5Xm8jlm2BNRatTG17kV2IRAOZB8Y+IBx2FtWYQLu3vaU278q+/oB3tZ3q3VnbC/HcM3gHB7z+8FdERMpDtbbIKCplZmrODt4chmuRNXXwli7RC3cscrpq/Z5617kaEiD6ftp6E63Gd6epuIAXoCPoWxejrS9/6C8iUkY5P1oyxtQAdcAkY0wrXgtgEzB9BM5NRPxF52pfwDu1MXvAO8GrGFtxPoXu7Y2T9X/qNgQru+HVVXyEVWzJ3oAC3nLwd/DW1eF0iyxaldr2IrukdVGn2IQb8FakB7ytxQe8HfEWZ/G9cBwGYtDbCb46dPCIBnXwioiMDNXaImNASQGv72qrdjfEs6V38PprraL4DlAHb5ESvfDih9kfe+Zd2LwFYu/R1eld6diCr4O3tSnv0/sD3nWByWzKe86d1NVyjUM+dRGRocp37cCXgW/iFJgv4BWd3cDvyntaIgI4xUnS6vSVfXuWeyleY4ObxDVnCXh78nTwZpkLNrSA17sdVcCbIXNEQx+8tTa1bSFzmD6wFq54wunsnVAHlx6Otd74jPQO3rq8l375A95wtAomN8AH7kDd1e2weRyM87yDRzT4j1UHr4hIWanWFhlt/oD3pw9CZYWzoPGJc6AhfW6ZnVDnDT1LdvDmHdGQ2cFbW+usi1yStIA3TH+v8+G/5JHodWbuJn35486/O24Ce7vD5BJhOjsGcD5ng6a4b/GJ1ta8T+8PeNca3zi0tergFZHRkzMhsNZeCVxpjPm6tfaqETwnEUnyzwVb45vBO6WB3teydPC2egFvMhDs7R10aVJSYiBrV8FQZvBuFX6dQ7meWgaYencLHKwFBvwyRzT0wcvfpu3lMKcddSCrmMZHIu/CLx52dprlLPgQi1VgrfMuYJJpc9dXB1ryr+ybFvCGgzCp3gt42/qcbhPT4AbI6cdpRIOIyMhQrS0yBiQX47IW/vKcc7UTwPGz03Z74+1J/Oi7+3A77oK469xP7/ONaEiE4OBtCS3v56EHZtDOhNLn7wIYg60OYsLO2hnx/jDW1pYeFG9M2lZ5oxiqAvCjTzr/DtLV0UMy4G2I+gPelrxP7w94V9tBAe+g9S5EREZKMYusXWWM2ROY6d/fWntDGc9LRCD3DN6pjfT2Zwl4W7IFvJasbPaAdygdvDMi7/BdLnFO89l9Sn+CDVzWDt66IIGPNnI/hwLwRnxbb6d3OyASJxzxfsfLqreBs/aCjgHYxbdvFmkBb6QSZvoC4bV9kOiHioa0EQzV1U5HiUY0iIiMLNXaIqMoWWv3Rrxwt7YSGr1iylo47gsn0PmOVzfH14UJQIERDWH46cGsfr+Zwx/4FgAzSp2/6zK11eAGvNV2gHC4tvRRDxuTRC+cvz+8sgoSiazhLkBXp1ek14e7vQcm5O/grfeV1ivi07w7yUYKEZFRUDDgNcbcCGwFLASS115bQEWnSLnlmsE7pYGeXi/8a2xwC85PbQvPfJ35b27LqaefDZB7Tleif9hGNMSrvGq1Iqy2z8EyZ/A6G6qrvHEWndFG2LQJPuyGuIV3O4hM8toD3qjZCX74CedOMP9oxoyAd5KvCm1zA14y5+8OPlYdvCIi5adaW2QUJWttfyPF5Ia0OQpvLpnEa29MoYowZ/FHOmjlyE++z6l0Fx7RAAyEvOJ6SB28ANVe3Z9caE0Bbx6tBs7dr+BunV2+8RcDvqslJ0zKe5y/g/fD2KCAN6EOXhEZHQUDXmA3YHtrbY42QBEpm+QM3oEodLlpW2UFTKzLvshacw0011DTXUXC6SugtzfH9VvD2MEbD3rFkVHAmyHriAagyhfwRiIB2GqSE/ACLGkj3DQz9XhV0Dfb2OSv6NNHNARgsr+DtzfVWTB4/q7/38GPi4hI2ajWFhktyYB3dfooNL+Hn3Bmtkao5hrOAuCtl1dxKn/IP6LBfax/wCuua4fYwUutV9wlF1qbODHP/hu7QiFrwkKFoavbVzRPqoeeRugcgAn5f7g1NVBR4TQHfxjzNV6sVcArIqOnmID3VWAasLLM5yIigyVn8K71teFOrocKkz3gzXI/Z8CbYwbvenfwRnRd/2AZIxrefgdsB4HpzRhjsdaQSFSQ2GoiFY+/4+y4ZB2RHb3LyaqrY96TGF8xmkV6B28FHLUj7DjN6UjZamIq4PWPYMgW8GpEg4jIiFCtLTIabBSsWwsPGoXm95Ab8PotfmsykUiAqmCeDl436BsY8N5yD7mD99uf5ZcXNfP+uom0MyH3FXrizNTINibh1pfhxhfgnXVwzj7w5Xl09XiFb981Z1A/2f3BNuYfh2aM08Xb3Q1r8M3g1YgGERlFxQS8k4DFxpjngNTbfWvtkWU7KxFxJDt4pzbAQ2c5YxoiTidnT6+X4jU2pCdxaQFvX45Vdm0/9HrHJUc0DGWRtUSVVxwp4M2U0cF7wQ3w38WYgOGIyrncHT0CgNgWU0j9+Je2OeMVXP5xDqV18FbATtOcr6SE01GiEQ0iImOCam2R0ZBrrYsp6YvZPvvijIxDY7EAby2dyI475gnzVq2BSx9g+ropfJUQv+d/ht7B+8XPcPs1M3lp3SZAnhFsArafBx/ZkvdXNHPaCS9TWekuOL2uD55737m9pA1r00c0NDf5Ct+KwvMvcga86uAVkVFSTMB7YblPQkRySBae1ZWw0yawk/dQzg7e3giNXWvYmYUsYja9fdkXFRjODt5EtVetBtT2mSFjBu97bc6duGVd9RRw1swgsrk/4G13xiu4ftTxPfjik85CeudvCTvkfj1/SB+NVpBIGCoqfFf+akSDiMhYcuFon4DIRinPWhdJvb1VfLiyCYDKyjgH7bOM//fI1gC8+sYUdtzhnezPbS2saoNrF7AlcBYf8Hv+Z+gdvFRSX+fV7f3KEHO64boYk79wMxVM5T83BDn0nmkQDMDWvrm677TT3x8kHncaYWpqolRX+5sp8l8tB94c3qVsxbLrL2DLXaIwoVYdvCIyagoGvNbax0biRERkkMQA2HjOh3MGvLN/Q3NvhIX8mhY66O1rwtq0tSIcwziD1x/wVkQV8A6WNqKhxsIqb5Xetuqp4D4emjGV1FuKpW1Eol7Au0//w3D3UufO1xJ5X6+iwvk9RpPBcSRATY1vxEORAa+yehGR8lOtLTJKEr5QN8eIhiXLJqRuz9qigx90/ID/4wVa6eC+e8+FYyNkLbRtGPq8QitZZw+5g9dUUl8XTd1VB292q1bBeWdFWc0DAPS+WM/r7/ySj263zhlTlrR0HZ3dvu7dxkFFb4Gr5cALeCNUs26TLdly6gpngwJeERklOa7dBmNMjzGmO8tXjzGmO9dxIjJMEvkrt55eL+BtbPAFvK1e5TiBduLxiuxBXaIf/u8YuOEkvjnxT6zEueRrKAGvrfaKoMpoJM+eGyf/iIamyi7odgv+YAV91S3efhMnQo37uVtbP7F13i9uQmyt9yRTfeMWckifw+vr4o7EUys++/8uih7REH4T4u0FX19ERPJTrS0yymyuEQ1eB+/bvoB3m1ntbFq1iq1ZykTa6Vhm3XmvWdppBzVSJEehDVcHrwLe7O6/H2bE303dX8aW/PHGuc6dzVsg4AbxK7rpXu2F8lvVvevM6P3PW/DqqpI6eCG98SY5Ck1EZKTl7OC11jbmekxERoC/q6AvArVBqHAKEWvTCwl/wUdLLbzfBTgB7zJm0dub3pnpPMkAzNscgDsvOIEBnIpzSAFvjW9Egzp4M/g7eCeF3/PuTG0k6BudEIkFYcsJ8PoaACqXOaFuDQM0xd33+sEKmDS14GtWV0Ov+ycUDgXg0N85lx92h2DNX4EhjGiwFnrvgtq9oW6vgucgIiK5qdYWGWVFjGh4a6nX9bntrHXUrfbePkfWRrznqUif20uiH3ozr5Qbcgfvr//Mxc8+yXep4Ef8jL6+g4f4RBu2Z5+FmSxP3V/OTOY/67zfIRiALVrhHadRYWCx9zna3OBL8PW7nDv7zoJH1iPgVQeviIySYmbwisho8HcVnHUHPLIUJtfD744htOs2JBJOA351dYxg0HfJfkt6By9Af28IJvmSO2vBeuldxNfhOZRF1qiqIoGhAksgHoN4HAI5Zv9uhPwB78SIP+BtoKrLG8MRiQbgy/NgIApbT6KjZzMANvEvrD6lAQKF2z/8nbiReBDa+6HL/Z2vXQuThjCiIb7G6f6NLgMU8IqIiMg45m+m+PxcWNbudPJu2pza/PY7voB3q3U0+Opb2xkCarIvqpVjFNqQO3jffpePtL0AwDRWqYM3h2efhX34MHX/fTZj4avT6OsLUl/v1NfJgDf2Vkdqv+k1a7wnaa0FU/gNkT/g7esOOH87bX0wrREmRsEMoWtGRGQ9KOAVGasGzwWLJWBlD9QE6en10rv/z955hsdRnW34ni3qvVru3cam2YDpvXdIqGkkkEASQgqkkpB86Q1CCCkQQu8QekKH0MFgwIB777J639Vqy3w/zu6emd1ZaSWtmv3e1+VLU87MjrRr6Z1nnvO8tvxdsAm8pajCxdflB6wCbzeYWhQOhnSxOhAHr8dr8Ge+TQgPRxy1nYMiERF4LVgjGkp82/RKdSHZfp2NGwh44DML4uu+Z5W5azw7bMekkwtmj2gogMoCaIzegNQ1wB7OAm+vEQ3BqDgd3KzyoQ15jwVBEARBGKNYHbxf2M9xyDpbREMTeT369jkv0EF7RzFFRQ5qa4pmxgN28Fr6XeTiF4HXAZ8PPvkEzrMYI2qpIRx28d7SCRx16CaYrt9P98bG+PJ4z059otICh+YlyVgF3v3+9Xf4+mtq5cazYKYf3AMUeJ0c4YIgCGmQMoNXEIQRJtW0seoC2zSgwoIEm2WJFv/iDt6uBKUuYepQMKh/FQxI4PXAVfyJH/AHXj/iIvD0XRTtTlgdvMVdFoF3XCFZWQkOXgux7Fybg7e6EFz9FHiDBVBhKRQb1OfCKYO3VwdvaKv6agYh3IggCIIgCMKYxexbJd1WWxRfnjyxDVepLpRKaWHr9iLnvhmZdvDmaYE3h+54DJegWbZMTSKsSRB4Ad55f6LaYGm0lr1Nu3ZrsAi840rTej2rwNuerYVjGrsGHtPQ/RG03TGwYwVB2O0RgVcQRiuRDvU1HIEGey6YVeBNcvCWOkU0JIyJdMC6Rpj5O9jnTzzsPyu+a6ACb4xgyK06BwtxrA7ewg6rG7eALIsSa43KsK7bBd6C/jt4gwUq3iNGfTOYZv8zeK2N3sItCIIgCIIgjFkivaukkYjB9lodlT1hXEdSnb1le3G/IhoG7ODNsTt4OzoGeJ5dmA0b1FfrzLeYwLtyTYXaYBF4i+p1lENFuE6fqFqP6Q2rwNuaZTmmscsWhdcvgptUvR2WN1gQhP4jAq8gjFZiAm+zH8LRRlwlOZDtoaPTIvDmJYi3xckRDV2dCUVGpAM6AtAegNoOKiJauBuswBsKucDsST14N8Tq4M1rs4i14wrJthTsgQSBN9QZxiCSENEwEIE3P8HBqwrPfkc0RCyibqS1z2sQBEEQBEEYtTg5by00NOYRisaYlZb4ycsLQrHdwbtlW7GzEzjih05teOhACcUDdvDm6gPFwevMxo3qq9UYsYPxAKxeHxV4Z1bE95W26vq6LGAxMYzTY3rDKvA2eyr1SmOXev8HQjwObePAjhcEYbdGMngFYbQSE3jrLE9wq1VxaI9oSMPB25XgqI10OLoKDGNg0blWUVgE3mSsAq/HE4bCbCWwVxeSla1vFOIRDZc9Au9u4aLt7fyMjXYH77giMPru7GttltcTzLM7eBs6wfQTCOjPSp8RDRE/RCyKrzh4BUEQBEEYq5gRPY3+6VVw67uqke3xs+BTewH2eIaJNe1qIaGZ8dYdxRCxTO+Pn98PXcH46uAdvFrgFQevM5s2qa9OEQ2r15VjmmBUF8Cd58OMci755aXwnBpX2NWkT1RTldbrWQXeRsMi8DYM0MEb6YJw9DpCW4G9+38OQRB2a0TgFYTRSkzgrbfHMwB0dFmarBUm/DcuGbjA6/Wm1VMgCY8Hfshv2YeP2OexrfDZn8HCE/p/ol0Ua0TDzp9/k4qZh0AgBFmVZN2rFfWeUHQa4I522K5uJOaw2u7gHVea1ptkFXiD4Ty7g7fRB5Fu23X1GdGQKOiKwCsIgiAIwlgl0gVmdIbcmgZ4PeqYHFcYF3i3WwXe8ckCb9zBG9ngcP5OJRZX5vP0E1NYtmVPAPIH2jsrTx+Yi18cvA5s3AhZBKhAiaSmy8CfUwQ+aG3Lpb4hn+qqLjh5LgB17cXxY/M6LHVtzbi0Xs8q8NaZFlF4oBm8IcuDgnBz/48XBGG3RyIaBGE0YoZ1npfVwRsVeG0ZvKWTIHuuHhNtsubzFhBACcG+rgRHbbgDLLm8sWljA4lnACXwHs3/uIAH2WPjW7Bje98H7UZYHby5OdGKPNsDuVNtkQg94Wq1MFPneM1lFd/mzzx4zNVw2YEwa1Jar2l9L3tCeVBpqUKjDl7rdcVuOFJGNCRGMkRE4BUEQRAEYYwSsdTXttlyul7atkMLvBPiDl57RENdXR6YDmprpANOnwfXHMefp/2CdzkQGIzAq68rD584eB3YtAlMDM7jQWqvOAfj+0cxa5b+Qa1eX2kb39SiXNFeeshqj44zgKrqtF6vSH882BG2iMIDjWiwmifESCEIwgAQgVcQRiPWotPq4K1OFngLC13gnaHHHDwFdlzDj774AhfwIABdXeHk86dw8A4Ejwd8WELFfFJ1WrFl8GZbfjbucpvTNhCKOglm6wJ0AR+ygvl8ss+J8MuTYPrEtF7THtGQm+Dg7UoSeGOZcCkjGpIcvK1pXYcgCIIgCMKow1ZrWzJ0q7SQun2nbrAWj2jwuln7h2+zH0uYxVpq6wvt53I4f5dPF9gDFnjz7QKvOHjtRCKweTMEyeJhzqPwOwvgyiOYM1sXs6s3Trcd09Ss3NjVWBqsVeSDN703ySrwbu/JgMBr63XRph3mgiAIaSICryCMRmyuAoeIBmuTtQLAO02PcbvA4yIvV+d++RIFXrPT1vgh4wJvl1SdVqxRCHm5VoG3zC7ExgTehRPi2w7iHQCys0Jqg6vvBmuQKPDm2DN4o4WnzVkcnXGYMqIh0bFrBvtsTiIIgiAIgjAqSWWmsAq8tVYHrx6ff9JEPmA/NjKdusYCiATsfQrMkE3g6/LpomzgDl4tNouDN5naWuiJelcqyrsoiPYomTNHyx2rN0yJL5vBCMXNtSzgAwxMQqfOhwMnw34T0661rQJvvb8U8qI3Uj1haG1yPqg3rOYJMwyR9v6fQxCE3RrJ4BWE0Yi16Gy0iGgOTdYKCgBPBbjsDoL8PIvA63crMc6Vr8/fldmIBnHwpiYmpJbSTN7z70JNrsp4W1hmj2iIZfDuXQMeF4QizGU1pTSTnRUV6Y3+C7zBcPT1nv8KlOVBWS6YfrvwHH37Ukc0pHCnuAZ6pyIIgiAIgjBCRCyirkNDY4C6Bl3jjKvS4yvLdW3e0JRPKOTCE2nXwmDEbnTIiIP3gANo/vVn+fKPP8VWJonAm8AOS7uKuNsamLOH/oGvWluhFlbUwfG3sCr0S5Yxn0W5H+K5/Rx9gjRrbavA296RreLQNkcNEQ0NkF6qmibRTBFpBXex41BBEAQnROAVhNGItTC8+dPw+1NV8ekg8BbG6lBPFfToas/m4PV51VNgV75yGEQCjhENVnGvPyQ7eKXqjBEMQihqvt3H9Qner6rYDA6YBIuvtUc0BPPBcEGuF/YcB0tVtXowb5OVFW3GNgCBtyeYA1437Dteb4z0M6IhkiJfjvQaUQiCIAiCIIwa0nDwNjbr2rayQhdNXm+EivIuGpvyMU2DhqY8asrbgSr7ub/6KITC/KJ2PZfxNzooGrjAO3Ei7gsX8tiPPwVAoUyWs7HT0p+spjr6wzFczJ2nVdjVa6PT1SYWYwSVcWIWa6kpbbWfbEACbw5MzIed7Uro7Wrr77eQHH8WbgHvFMehgiAITkhEgyCMRqxFp2FAaS7MrVJfgY5OrcTGO7i6dWMuVjcwc8cHnM2j5NOpnAPh6FShWIdWhyZrAxV4vV7owlKx+qTqjGF1yY7PqtcrFUVgZCUIsS5wl6mVRfqx/385jfNu+y5sb0u76LQ1WQu6wJVrH5Aig9fjAVf0L0MopMVpxzgGJ1evIAiCIAjCaCdWw3T2gC9qish2Q5EuhhubtdhbUZlnPZpxlR0U0UYuPnbWF9in08ceij+7Cp5cwYXd92BiAINw8AL5eZH4cmenRLRaiQm8/8fP+Nd7J8KZd8BzW5k12x0fs3GjSzUeLsrBX63cvNn0cGTRYvvJBiLwdmbDYxfBlh/DB9+G+ZUpj3MkEtANtmNIvwtBEPqJCLyCMBrpQzhLimgAu8B7yUOccfPVPMqnmcomfH4vBLerfeFa9dXBwWsVG/tDckSDZLPGsIqoEzwWgbdKvV+2iIYe9Pt48QG283giIRhfBC77DUYqbMJxD+AqsA8wnTN4DcN+TXEXr6ODV4R8QRAEQRDGIGa0hrE1My5UhVCUhiaLg3ecRbD78TMsXTWBNkr4HPdQ11AAYavA2wERUwvH6Dp5MAKvx+siNzpDzzTtNebuTkzgncF6xrdvhLc3Q7tBXh5Mnqz2hcOwfotqtFY/ZU782EPcb9tPlmYGb36+/rh0dXkJe716g9nPJmsRB8evGCkEQegnIvAKwmikHwJvPKLBKvCWaLdmGc1K4A1FBd6Yg/f/ToBXvsqy637Ic5wIZDKiQYS/GFYH7zi3ReCtVDcKtoiGAOCKOninl3P//G8B0EUe759/sSoajQQnbgpsGbxBwMhXdwNt3bCxGVqaHDN4wSGmIdKtGoYkIoWnIAiCIAhjkXC0hqm31DKV+mG43++hq0tNh/J6obDMEnOV5cGNctOW0ezg4O2wibtd5BHBjdc7cDOFwktBvmUGnpRhcWqj/pVKGvTGKvWezZ2rN61ar9TeDWV7xbd9eflv4FcvwpPL1YY0Hbwul93Fa51hidndP4t1yig0QRCE9BGBVxBGI/FpYwH4cLuamh/NigLo6HRy8Fbo4y0CbyktqntvqBbMiBZ4qwtgXjVNM2bTEM0My5jA6+vnU+tdGKu7otqo0yuV6mee5LR1l8bXH5l2KYtYzN58TNecqWrjYBy8lz0Cs34PB94IL7zvGNEAdoG3uxswUziypfAUBEEQBGGsYZq6trE5eLXA29SiC6OKCjA8ViOFLpS0wGtxYIYbHWfKDca9S1sbHPwbPmjZg1Uo92mn+CnixBy8doFXxZ1ZBd7V61T9/UnuAvsJ/vImXPuqWk5T4AWHRmsxzAiYgeQDUiECryAIGUCarAnCaCT2B/3jWjjrTrW8/0R4+hIgRUSDqxgMj3JaJjh41/u9YAah7U4IW1ykQE+PzqbKmMDrlzljMawiqr3orAGcIhrK4uvdAQ/vsQiAnOxoPliaDl5bBm9M4LV8LmhqTSnwWq+pu5vUUQxSeAqCIAiCMNYwu5QAB7BoMtx2nhJ6J2i1rrHJLvDiLlczqUwzyUixvL4AQpaH+KGdmRd4s7JgzU4mAn6UACkOXk1M4K3CGoc2FbALvCvXKiPFu5H9qaOKauv442apZsdG+jdENgfv9jDUboUWPxTnwMndQJpisZOZQupsQRD6iQi8gjDaMEMQiTpgU3T17exyaLJmGOAqgnAzlNqdBZ/4o2pfcHPSywV69K+BwQi873EA3+WPTJ/bwdcv2Ok4rqsLnnkGDjoIJk4c2GuNNawxCBURa0SDmjaWFNFgcfB2d+v3Jic7GpGQ2CwtBY4O3jLLsc1taTl4VUSDOHgFQRAEQdhFsNYv4wrhtD2ShjQ0a+WushIwvOAqVFm7pXYjRUNjnnoYHo42w420Qpd2b8aaGQ9K4LUUZ7l0YxCho0Mm48ZQAq9pN1OMmwYkRDSsVgXv1voyfsjvuJ2L1Y7iHLjiMPX+WXKY+8Iq8Lre2QS/vk2tnDAbTvIDJemdyKnWjj2IMOR9FgQhPeS3hSCMNqxFZ53ztLGOLl3kxTN4QRWeAMV2Z4HPb7FzxmjxQzBMIJAZB+9K5nEd3+XJms/DYc7q7cUXw7nnwoIFduFzV8YqopaFLUVntZo2lizElsQLue6Ag8Br9D+iIRhECbyllmObOvH5dDZYrkX7TYpoSOnglRbOgiAIgiCMMdJ4QN3YqqPPKmKLsX4XCXV2Q1NUuQ3tgPBOVRtl2sFrGJCni7tc/BLREMU0VQZvIR1kE/2553mhUJkp9rDo96tWezAx2LGzkDu5iD/xHbpnjIebPqWE+zRnysWwCrxtHm3SoNmnDTvp4FRrm2Zqk4UgCIID4uAVhNGGTeC1LFdrJbfLpwVbW7HoilYZCc4C6/g4C64HX5AzvVkUcjIdFA1Y4LXGAYRCLjDDYPaAoQvRLVvgoYfUcmMjrFwJCxcO7PXGElYhuzTYqFeqpwAOEQ2GO+rEbrULvDmZcPBqgdds9qdsspYc0ZCiuDQjqktwmqKzIAiCIAjCiJOOwNuiM3ftAu/GpDq7vjEm8G4l7p/KtMALkJsNPnXePHx0dAz2hLsGHR2qXh1vde+W54NLORaqq6G4WMUYt7cb1NaPY/vOIkxcXMWfuOS5SnKKoo7rNHtdxLAKvM0uHbNGi1/VyOnS22w5d6HzPkEQhATEwSsIow3rE9x6yx/7qIPXNKGrSwt/VmEuXgAkZPAmOXhDkXh3X3coGC88B+PgjZ86HP21Eum2jbnrLvsxra0De62xRszB6yJMYU+L3lGlBN6kiAaI5/BaBd7cnKDKWDYcxHoHkgXefFtEg9nkJxxWU9A8HrtInxTRYM0Fa/XDhiYwTUwTXnwhwJIlaV2SIAiCIAjCyJNqZpKFhibtxqysjC7EBLxiXSgpB2+0GPe9Bb431LKDwFugJ+MNjDxdqOfho719kOfbRWiM+ids+bvlWhQ1DHtMw4uv74E/em9UVNhNUaGlGdogHLxNpqURX0sGHLwgcWiCIPQLcfAKwmgjYqnWrA7eaAZvIODBNJUw5/Xahbm4g7fEXnh2+SxqH0CnLmR6snMxu5Uom5UwLF1sAm8oKvCafkBXPS+8YD+muXlgrzXWiAm8ufhZNW4R88o3QiAC2eo9ShJiAVzqpiIpg7cfroKkJmuG3cEbadRFZ17CaZMjGqLfxMvr4JKH1U3LDWdwp/ElvvTNUgwD3ngDDjkk7csTBEEQBEEYGayi2YE3KvdEVQHcfWHcndvYotVY7eB1nilX35iPaSZEt3boWjtzDl5doOXho61tkOfbRWhqUl9t+bsVJbYx++4Li6P9iv9197z49r32qLe/b2nOlIthFXgbItV6pcUPoX5kaDg1WQMwJYdDEIT0EQevIIw2rAKvtclaNKIhZTwDWARee+Hp93vjbk0A2q0Crz7JYBy8VdTxEsdw87Iz4fx7kp5a79hhP6alhd2CWAxCFwXcdNoN8L+vwnu/iu9PimiAeKM1f3dCREM/XAXJGbz59gzeVv3+5CacNimiwfSrhw0X3KsdKf9czP/98ShA3Rd99rNpX5ogCIIgCMLIERN4wxHY3AKbWuDdrZCvi6fGJl0zxQXeWK+Lgmxwqbq6kE4IRWhtszwdBzhwMlx3Gu+deREPcy6QAYE3wcErAq8i5uC1CbyVZbYxixbp5dff0vnKe8+rs59sMBm8/mIoir5HJtDS6HiMIykjGkTgFQQhfUTgFYTRRjiFgzca0WCNW0h0XsYLz7I8mFjMx659WIWak9TRaVHt2nV8QndWZgRegGP4H/N9S+GTnUm5U3UJ9dPu5uAFyM2JiqMuPW3MOaIh6uBNbLI2QIFXOXhdUKaLXaMtPQdvIIBy8P5vvX3Q8joi2/RnddMmCIfTvjxBEARBEISRISaaNfkgEm0WW5YLWbrxcEOjLoaSBF6XYZstV0KrbrQWY2YFfH4/Fh90Hk9zKpB5B+/uEnfWFzEH72OczU+PuBvuugAu+5RtzIEHOh+71x4JNyiDyOBt60hoaNzYYBvr98NFFyk38U03WfoUR/yqf4kTIvAKgtAPROAVhNFGzFXQE4bmqAjnMqBCVYXWuIWUDt5pZfDBtzml+jW+wN0AdHRaFD/LtLFMCbx+LOKjr8c2/c3nUw0QrOyOAm9erso9xtA/814jGhIF3n4UnY7nLamAqJHb3dWNB3U9fUY0mH74uNbyjXjhja8TTJj+9vbbaV+eIAiCIAjCyBAzU9RZxLMqS0Cu4aKxSYu9OoPXoua9eBkn7vMxbkI0Ukl9g7N629nVS93eX/J0rS0OXk1M4G2hjJZZs+CkObDoANuYuXOh0KFX2WAdvKU6qpmWtnwotxTVzXYH79VXq54kH30EX/sa3HhjdIfpIyWpnL2CIAgOiMArCKONWERDg6XoLM8Dt/rv6vNbirskB6+9e4O1aUB7h7OD1+/VxwxU4PV6wYflYvxBCOmqM9G9C7tfRANYBF7L++QoxLrLME17Bm92dljFLKRJUgYvgKdIxXe4DIJF+RSiVPfEz1FSREPEBx9ZBN5/nUtgyjh2NhTZjnv88bQvTxAEQRAEYfgxIzrv1FprV1nUP1chjY062izu4DU8OqN1YjHZ47KIoITghibnh/C9Rqv1lwSBVxy8ikaLjlpeGjPH2NVctxuOOIKEbRH2mldv39jPDF6bwNuaa8tnpkm7WTZsgBtusB/7xz9GZ7/11oxNBF5BEPqBCLyCMNqIOV99QZhRDgVZ8fxdgK5ASXw5qVA03ODS9svCghQCr8XB68uAwOvxQBgPfqKvbQKdutrauTP5mN3NwXscL3DIew/CA0thfVN8v/VnHo9ocOUQiuQTiahf0R5PGI8nYneO9EFSBi8ogXjJt2DHNbxxx19pQUU29BrR0B2GUA8st7yJe9WwdXtx0ms+/rhlupkgCIIgCMJoI9KpRF5wbGYMYBolNtGwQke22oTDqgotvtU3Oqu3XZl08F5zKR/8+moW8AEvc4w4eKM06bKa8rJo4e1Ktut+//v29S9esNRmhgH67eC1pJ/R3JoDxZbjW1rji089lVwjb9sGzz9P7w7eVM3XBEEQHBCBVxBGE5EuMENqeVYFvP0N2PAjePbL8SG+bi2sJTl4wTb9v8gi8NozePX2LrcugAabwduBpZhq15WxOHjhLB7n0Gdug28+AS9+EN/v6OAFuoNV8eWc7OhnwqFYTYVz9EMBFKrGINYs58Qma7aIBn+PEqR9UZV4XCFUF7B5W7LAu349rFyZ9iUKgiAIgiAML5YIMVsz4ypdP7d1VhCKll6FhQn1cboC77eegOP/yVee+Bb78iFgz2sdEHvOhQMns5QFtFMsAm+UmMCbg5+K0uh7kjCrEZSD97zz1PK0Ke384acvJJ+snxm8dgdvNkwtgTmVqsleoY75eOYZPa7AcmkPPYRy8EZMOPMO+O5/4K73VQNAkAxeQRD6hafvIYIgDBuRDuftlqYPvm5dWDo6AVz5EG6CtzZxZssD7E0OD3Ee7VaBt0NHNHS6dbWZCYG3KtbBtl0/TncSeHc3B28VlilgVePjiykF3lB5fDknJybwDszBGz+voStKf3fqZn32iIYQbGnVG2YpG8umrSXk4qOHLMKWPyXLlsG8eWlfpiAIgiAIwvARsTYztohnltlyjS26BrO5d0HXYr4g090b2IdCGqlIbrK2ugE+qmUPaslB1d1OGbD9wvBQUqRreIloUMTc1quZw4Rv7oRf5cI7F8HE8qSx99wDl18Oe05+kbJ8h2iEwWTwtnrgh8eofxCfVen3w6uv6nG33AIXXqiWX3sN1etiQxO8vVn9y/OqhtmvroffnqIasBn6XlAQBCEVQ+bgNQzjNsMw6g3DWGbZVmYYxguGYayNfi217PuRYRjrDMNYbRjGiZbt+xmG8Ul0318MwzASX0sQdhnCfT+K7/Jrkc7RwRvLaf3T63zjk59wHd9lHitSNlnrdGUmogESHbxawXWKaNhdHLwxgbcyJnwDVE2ILzpGNADdQX1HMRAHr2MGryXD1+dLLfDaIxpCsM3yuZxUDFc8zrnXfBkf+ezNx7Zjt21L+xIFQRAEQRCGl5QOXl0PN7Zo1S5Z4I2Ou+F1vvynL7KUBVzMbckOXkut3Y4ShQft4DU8FFsE3rY2ycWCmIPXpJIG3MEgbG+HkkrHsV6vcvKWVaTIy3Bw/vaGVeBtbk7wzpkBME2WLo32tADmzIFPfUrPntuwAbZtDdubGfuCcPFDcOf7sKVFcngFQUiboYxouAM4KWHbD4GXTNOcBbwUXccwjHnABcD86DF/N4z4Y6p/AJcCs6L/Es8pCLsOVldBCnx+rcaldPCCLeS/jGZ7Bu+Pj4WNP4KPr+TZKZ+Jb7a6PvuDo8Db0a6eOLN7O3hjEQ02B2/1pPhiaoFXh3ppgXewGbwF0OSDj2sp/Xg5M1kL9BHR0B2GPcfBFYfCp/ZUU85a/BRFM5ZnsJ6aGn2DsXVr2pcoCIIgCIIwvKRy8FoE3oYmHUNVmagTxursYl0sldKSLPBaGhq3oc43aAcvXoqLArgIk0WA9naIRAZ7zrFPUxPk00Vu1ClNjqfvwGN3afI2V65qpNcP8vK0qSIQMPD7LcebJpjdfPih3rT//qpGP+QQve3V1/PsAq+VTS2SwysIQtoMmcBrmuZrQKKEcyZwZ3T5TuAsy/YHTNMMmKa5EVgHLDIMowYoMk3zbdM0TeAuyzGCsOthLTqfXwNPrYB3tkCnJTPXIvD2msFbogvPMprtGbyGAflZMK6QZlMXOBl18HYG4i6JhobkYzo6LMLjLoyjg9ci8NrFVMtyT6llTAiMLHCl/wY5Z/Dmwy3vwHH/5PRbruEz3Jd0DZAQ0eAPw/4T4Zrj4KZPw4ULYJq+tpmsY94eofi6OHgFQRAEQRi1pHLwVlscvM1aHExy8BrR4jvBSNHQlFCUD4WD97Z/45nxS8J4uI6riEQMOiWilcbGBCNFeaG61+kNd3J8Q3+MFDEMw95oraUtwTVhdvOBbr3BggXq65FH6m1vvl0IKyzXb3l4wMZmyeEVBCFthjuDt9o0zVoA0zRrDcOIdRGaALxjGbctui0YXU7cLgi7JhHLVPjrXoUPd6jl/1wMi5Qo6PPrP/oDdvBaCPToXwMDFXhjT65tAm9XjxKs3SUpi8+2NofCeRfD5wMXYcqxtPi1fNOpHbwl8eWc7BC4+1d0pmyyVmL/XCReAyRENAQcrCFTtMA7hc107RHgpZfVh0AEXkEQBEEQRi1WM8WTX1Qu3vpOmFQS39zYrGul5IiGmINXjymlhfoGS1EeisSb00Yw6ESJx4N28HqzwK8eqheihOq2tgwIx2MYn08ZJGxGisqSvg90lyVv60cUmpXSUj1bsW2bwfg3PoZWP+R64XI/H36o6+aYwHvggfr495cWQ7vlHvDYmfBoNOVyU7NENAiCkDZDGdHQH5wesZm9bHc+iWFcahjGEsMwljQ4WQYFYbQTTtX4QbsKunxafXPO4I1uTCg8bRm8FjIh8MYcvDdyBZ/Nug8e+CwcOg3Cahp/V4q6JNX2XQm/H8ppwhX71VWar39gJDY0U7O5ALoDOiM3JzvU76LTuclaHpTqD006Am93t8Ov3HH6TmIC25k31xdfF4FXEARheJB+F4IwAKy1dnUh7F0Dx81SYhyA4aGhURdRKQXeBCNFY3MekUj0v45l5l2HUYQZveUetMBboKMjYgLv7t5orSnqn7AJvBUO8QuJuIqTG5cNQuCN4dsEfP0xuPpZ+NtbBHu6WbZM7993X/V1v/30to8+KcG09rs4ZKpe3tQCEV1nC4Ig9MZwC7x10dgFol9jcxG2AZMs4yYCO6LbJzpsd8Q0zX+aprm/aZr7VyYFJgnCGCDm4I2Yzo0fDAOfXxedjg5eIw0H7ye1sK4RGrsIBnRxM1iB900O42HzPDhmphKlQ6rYSuXg3R2mlfl8CdPGKott+91u54Zo1rgG5eCtoj9YzxmPwjBcUKJfvxTV6S7xfbeLzg4Cb40ugCewnbmz9c1SbS2EQsmHCIIgCBnnDqTfhSD0j776XbgKaGzUq0m3lLGIhoQM3kjERXNLtPZu1wJvm6kfig/aaVuka7gCVBHd1nd/5l2a2Htld/A6uHMTMVzJObwDiGgAu8DbaNbolVY/69dH4rX9pEk6zqG8HKZOVcv5Pe0Y/mixnp8F+1jOsakFTBF4BUFIj+EWeJ8ELoouXwQ8Ydl+gWEY2YZhTEMVl+9G4xw6DMM4KOom+ILlGEHYtTBNXXQ2+9T0LoCibIurIJ8unzbWODt4o2JwwlT8ji6Lanf+vXDI32DetRR06ajswQq8AKGQ5deKg4O3wNKcdndx8NpdBSVJY5xiGmwCb04IPOP79bqODl6Acl30puPgzW2rhzPvUG6Ev7yhNtbYHbyVZR1URfXncBh27uzXpQqCIAgDQPpdCEI/ifjB7KMBhKvQJvCm6+AFdKM1S/5urMGa253c86DfFCY7eHeXpsWpcHTwpmv0SszhHaCD15rBWx+2pEm2+Fm1Uhsl9tjDftz++6uvk7B0KJ5YDFMtJ9zcAuHdwBEjCEJGGDKB1zCM+4G3gTmGYWwzDOMS4HfA8YZhrAWOj65jmuZy4CFgBfAscLlpmuHoqb4G/AtViK4HnhmqaxaEEcX0Qexjb2v6YCk2XIXxpl2QKoM3WnCmcvCapsqFitIQcc6D7Q8ul+5lYJoG4XB0JSrwWp2648bp5d3TwZvsKnBqtOb3W/Znh8DTv/jxlAJvmX6/Uwm81vWCjjp4ezP8+2OdB1ZVQDj656OaegqzWphomWuxfXu/LlUQBEHIHLZ+F4C134VFRYj3tZiA9LsQdhes7t2OADT5dDZWDFehrTlwcpM1N7hybFFoqp4ydaO1Dv2U3tpgbdDhJw4RDU1NqQbvHjgLvGnOesuQwGtz8HaWQV7UmBM2Wf+RFvvnzrUfFxN4J7NFbxxfpNzhRdFivDsEjXUDui5BEHY/hqzJmmmaF6bYdWyK8b8Gfu2wfQmwZwYvTRBGJ+FWvZwifxdXgc316ujgNaIFp2XqWBnNOoO3q0e7g/O8dIT0+Qcq8IJy8caiAEIhF253GCKtYAbp7NR5AdXVsG6dWt7VBV7TVALvZqZwC1/myye+jrFo76RxfTt4Teduv71gFXiDVrNKmS5603Hw5nVZ7hzKox84j4t6o4oaU1l1i7s2226Adnc3iSAIwihk0P0uDMO4FBXlwOTJkzN3ZYIwXFibGT+wFH78LHhd8LWD4SfHqe0JDl5HM6iRD7l+yHZDIEw2PeTi1w7eVl3EtaDUv0Hn7wIUlcQXYwKv9Vp3R5wjGsY5D07EXZ2wPrCIhnJLid7YnK/uwaJN9rav0I6NRIE3lsOb5OAFNVuuPfo9ba+F6QO6NEEQdjNGS5M1QRAirXq5rkMvV1kdvAV9O3gNN7iybQ7eUlq0g7fZYg0tySUQGHyTNVAC78k8zXqmk7XP7+CKx8E0MYO1NlG62lJL7eoRDTGxdjEHcUX2PzDuvgCu/ErSOCcHr03gzSvst+3DKdcXsAm8KoPXTJoyaF0v8FvU2kr1gTNN2GZqy25B21abe0EEXkEQhBFjyPpdSK8LYcxjbbAWmy0XjECOpWjqK6IBVENjw0iKQ2uICbyLJsEjX2DT/32F67gKyED+LkCRLrbiAm9DONXo3QJHB29VmrFmHkvWreEC98B+r1nvbeoa8m2fi/q1fQu8T3MKn3PfS+jq4+HUaI7DOMv93w7JPhMEIT1E4BWE0ULY4iqwNVizqLgJEQ2ODl5QLt6SXAL7TuVRzuZhzqU7JuS2Jgi8PbrJmtX12V+8XvAQYjobMZp9KkcYCHRuJhzW57cKgbu6g9f6XuXmRG20rmRVvk8Hb8Ek+os9FxkikdiFFMenjnkJUUBn7xEN3Ra1Nurg7erKYrtlBq+7rtaWP9bS0u/LFQRBEDKD9LsQhFREHARe0M2MgWC4kNZWtexy2evWOJYcXn92PhuZanfwluXB4dPYtvAgXuFoIFMO3kSB16SpsTv1+N2AmMB7Jk9w8/fuhVe+Ckc5ThhOxl0BRlTcd1eBMbDJzdb4uZ31OTaBt22Tfn8SBd7SUpgxI8gmpnFv+DN8dPSnVaNqgAXj4fBpcO7eUOZGEAQhHUTgFYTRQioHb7XdwWt1vTo6eEEJvLle2u/7Gp/mUb7FX7TA22IReEtzCQR00TBYB28HlmvtVLbRrjZtBMrPt1/z7iTw5uVGBV4j+U3r08Gb2/9f1YaRIqYhKv7HKKO514iGYpvAq669vTObH/B75rKSmRXb4fQ9bDdAIvAKgiAMPdLvQhD6iVXgTRGH1tSic27Ly5XIm4QRdVi88jVu+enDTGcj65ilBd4oHV26EMuIgzc7G7yqbvcSIoseGhtCGTjx2CXmtg7jIXdyLswfByU1vR8Uw3CBJ2q/7WczYytWgbeuPtsWk5flU/d0RUX2cTH2X6jvy5YstVzD1cfCI1+Av50NC6rAjCQfLAiCkMCQZfAKgtBPrLlg9dZMA3sGb7ulNi2w7LIRbbSWk6OLvu7uVA5eXbkORuD1ehMFXmVF7WzVDcYKCuzXvKsLvNZGabmx98LBwWsVVJ0zeAf2+llZOp4hGIy+v648mFRCbUsx2/zVeAj1LvAGkx287R3ZrGEOALOLG8HskogGQRCEYUb6XQhCP4mkmi2ni9PGZr3sGM8AuqGxy6CqQtfs8SZrUTo6dYGVEQcvQH5WvJYvpIPGpt37dt7aZK6i3KeMDEY/jBHeqRDcNiiB1xrRsLPOA7MTG/Ap965T2tp++3bw4MNK/V/y0Xgu4/3kQaapmnEbqW78BEEQFOLgFYTRgrXJ2vxqOHI67FGlw/YBXAXxaWOQYtoYxJ0F2Vk6l8vZwZuTMQdvssAbdfB26V8z+fl2gXdXz+CNOXj/yVf4deuVcO2r4EvuXWP9uTs5eHNzGRCOObxGHjz1JT63/yss4j02MKPXiIaSkLXJmhKn4w37gMKCHogEKCvVnzVx8AqCIAiCMOqw1tpWgdcyWy4tgdfQhZlV4I07eE1V68X7X5BBgffFb7Pm0V9RTCtNlNPY2L8eDbsa1rzk8lKfo5GiV3IWgasQsmYP+BpsGbx1LkyLg1f1u0iOZ4ix/0L90MHm4E0ksovfNAmCkBF270d+gjCasLoKvn24+pc4hEKbwFtSkuJcUWeB1xvGMExM0yAUchMOG7gtDl6zJI+eDDl4s7KgHcv8sw6lUHZapqcVFOxeEQ3KwWtyEXeS1RqEPwA/Sw46HkoHb4y4wOvKi75O6uZ61tcrtQq8FdGIBssNS1GhuuDSkgCgzi0CryAIgiAIowrT1BEN4Qg0WgSzaH2D4aahUdc4fTp4gcpyq4M3ep7z74UPt3OOq4TbqOBtDsmcwDuthpLcbtpRBpDGJq+avt8f1+ouRFMT5OJjFmupitRBJM14hhjuIii9DFwDd8fm5SkBv6MDgkGDrmmTKDihmXc3TGflOtU0LZXAu3CvBrYwiTaKaVxeQXfn0eQUJJtBiPiStwmCICQgAq8gjAYi3epfH3R0FcSbZeXn2x2aNqLOAuPtTfzKfQ1loUae5AwCAQ95zbpACBfpqWQeT4qcsTTxeqEFi6W4tRtM0ybwJjp4d3WB1+dTT+6ziAbgFuY4dsbry8GbUYE36u62NtfrTeCtiFhbSeuIBoBsupnh3gAr6ykr9RMTeCWiQRAEQRCEUUWkA2Kx040+iERFtLJcyIrWRK58Gpu0I7ayMsW5Yg7eJh8TNn3Cp/k3OxjPmsZ91fYWH7R1U8JOQtHb7ZSz7vqL4aWsVD9Jb27JJRzYjjtnYoZeYGzR1AT78BFvcwicCuw3E5Zc0r+TDELcjTFunBJ4AbYcdhzzvjSPa877HM+vU03TUgm8xdRTzDYmsY1OM5+P13yWRQu3QyAEt78HOzugIwC3nDvoaxQEYddn93zUJwijDWuDtVS4smlt04pur4VizFnwxiauDv2ar3Izh/CWimnIz1K5vi6DYL4uaAYqIsbIyoIAOXRFRT5CEejqocunrzkxg3d3iGgYx069obrYcdzwOnjVZ6O7Fwev9bgKGvRKuXbwTmIL3eRyy6vHwfn3UFqs30xx8AqCIAiCMKpIlb+b0MzYOuW/z4iG51ZT9sWb+Dfn8lVuoqk5j1DIZYtDi5kfysoGef3x187C44lQWqJewzQNWuq3ZejkY4ueHiWq2mrtykwp6f3D2kBtZ305ACvX6icEqQRe6uviiw1U6pgGtwt+9jz8/W24+wMItKU4gSAIgkYEXkEYDYTT+KPtKrQJZ70KvLHuvpU6D6GaOiXq/eBo+OQq2P4TOk45IL5/oDmvMWKiYDOWCrbFn+DgjexWDl6/P1HgdX7ThsPBGxOOMbywtZOjmp7my9zCkbySdH6XK3asyZf5F8FfngbfPVJ1BfZU0NE9kXqq9AGNXZQW6O5/4uAVBEEQBGFUYcvf7dDLlZbC1CigwfJcu8+IBkudXYVqKtzUnGtraByrizPm4O02ob6ThYXLKKYVgIbaLRk6+dgi1mDNVmuPq3IePMTYcngbS2lrz2brdmXs8HpNZsxIcWCj/sA1UMmSj6ICr8cFZZZZfw21Gb5iQRB2RUTgFYTRgNXB+0kt/ORZ+Ptb8OYmvT1B4E2ZvwuWwlMXrdXU0d1tSWVxu/BHtLI3WAdvLC7CJvC2+unyWTJ4cxp2qwzeJAfvOOe5fkPl4LUKx3GBF+CVzdxYfzG3cCmf5V7H7GX1mgYPcx6d5x8K3z8KXAbkn0RL5xQC5NAWy1wORSgzdsSPFQevIAiCIAijCquDtz0A3uhtcLVF4E1w8PYZ0VBhN1IA1NflqvNHaaUEyKCD96q7YM/reHHrIj7NIwDUbvdDePcrvhwF3uqREXjHW/qjbd5WyrKV+jrmzgnbTBc2GnSvC5uDF2wPEKjbgSAIQl9IBq8gjAasRefSHfDPxWr53L3h0Klq2WVvsNa7gzfZWRB38FqwrmciogH6cPBmb6MgvwxQavDuENFQg+WJe7XzncJQOXidhGPA9uEpo5nsrBCJfw6KiqA9aspt78imtCR6QZ6JNDSr96+OaopRg/Lat+L1QjCort3vH7wrXBAEQRAEISNYzRRn7wlnzVdRCqGI3p5uRIMrNlNOi8MxB2/LVp3h2+4uJhJW+b4Zc/CW6obGpShRd9uOIgh8DHlHZuhFxgax98om8NaMdx48xMyerZe3rPSQ9dbL/IllRHDxwZ6/IKXs0qinvTVQyYo1lfh8XvLygurztSrq8N250/l4QRAEC+LgFYTRgHXa2A491Z0JuojDVdCPiIaoslalC88aapMF3u7MCbwxB+93uJ7Fv/0/ePebcOBkm8BbkOejwLsivr6rO3iTIhqsAV0WrD/7TAq8KR28ZfrDU0oL2d7kzrzWz1dLa/Tz5C4CVw4NjepmpQ49H82oq7Ufs/sZSQRBEARBGK0kxqEZhpoCX2V18BamF9FgeMHw2By8VdRjEKFjSzi+rc0oiS9nzMFbou8NylDi4PadheBfopvI7SY4RzRMGJFrsQq8G9bnc8AL9/Ed/swl3Mpe85Pr7DiNumBuoJJw2MUHH9eoDZbPF/UNCIIg9IUIvIIwGrA6eK0C73hLU66BRDTU6CJwPDsIN/jhvg/hpbWwqn5IHLwfsS+Nk2fC1FLI9tibrOX3kO/+ML6+qwu8yRENzq4CJ6et3++8vz+kFHhLy+OLysFrebEo1s9Xa3v0Atxqulns5scq8FJXZxN4rW5zQRAEQRCEESWSTr+LNCMaQJkpcjxQqIotLyFKacG/VRdcOy11UsYcvGX63sDm4I10QGB5hl5kbOAs8E4akWuZM0cvf7ipJr5cQht7zW11Psg0oVF/LhtRTxReeOswtaFSBF5BEPqHCLyCMBqwOni3p3Lw9jOiwTAgx0OzVxULHsLkfrAOvv0kXHgffPVRm8A72On0Xq3jEgy648vtHVplzM/roSBHF2FjKaLh8cfhyith06b0j0ly8NZMdBw3VBENTucFoDxB4E3h4D2fB1jJXPb67m/gprfB04vAW99AnqUXhD9ZMxYEQRAEQRgZ0hB4TaMwvYgGSNloLbxDF7fbQ1roy1xEQ0l8Mebg3VYbvV/wvbxbuXgdIxrGTx2Ra5k4Ud9L1Tfl0hLNXgZYMHmr80FmAJp1DR4TeJ95aRa4ixMEXulgLAhC34jAKwgjTSQAEYvSucNSgA7UwWu4wFCW2voc7RrNW7lRj6kuwN+tVdlMOXgBeiwCb0OTLk4qy33k5/XE1zs71cPr0U5tLZx7Llx/PVx6afrHJTt4JzuOG+4ma6Ei3fihjGY87mSBt6QEJrKNuaymfP1a9eChVwdvk+06ReAVBEEQBGFUEPGrejvGC2tUz4s6eyHq6y6I1185OdgeXCeRqtFaXUd8fQeqBs/PJ3WTrf5SZu+jALA9JvCGW6H7Q4eDdk2Ug9eMN7gDYNyUEbkWlwtmzdLrLej3aXxOrcMRgOmDVl0wt7jUMUuWGNS1LrBHNDS0jY2bJkEQRhQReAVhpIlYnsiaZmYyeCFeeDbla4G3aPV6vb+6MKMRDTYHb48BHeqpdH2jxdlQ0YXXGyErS7kLIpEEZ+ko5ZVXIBRSyy+8kH595fPBr/gJP+S3fHLo6TB1tuO44XDwWgXeQHYFIZQIX0AXdCe7WkpLzPiNg9qQC+4yTDOVwNtsc4GPhfdVEARBEITdAKt7NxCCz94PJ9wC+/wJwrqoa2jSebwVFWoyXEriDl59zDh24mnWdXwtysGbsfxdgFJ9MltEQwz/W7uNENjUBMW0kUO0yM3PhsLCEbuePfbQy7am0831zgdE/NCqC+YJc4OAevvue2Su7bNFQyeY4p4QBKF3ROAVhJEmbFFtW/zgU3/cyc+CYouylxDR0KuDF+ICb3OBbuxVtn6t3l9dQHdAnz9TDt7TeIoLrzgfZvwOvvOUTeCtrlShuwX5Wm0cCzm8VvEaoK7OeVwifn+Ehzif3/NDPrjgEqhwbvwwVA5ep/MCBEL5NmcBzcnfUElJyC7wluTGP4Mxsbs921K8NnSQm6OnBYqDVxAEQRCEUYG1wVqtdtgyrhA80dthVy6NTdr40Gv+LmgHr8WMMZkt3Fj2A/jw26z66w+5iy8AGYxnAJtaHKvT6hoK6OmJzp4LN0NwQwZfcPTS2KgE3o1MJez1QlVR3wcNIWeeqZftdXaKeAXTBzecCU9+Ce6+gEUXhuK7br2zHNPm4O2yz/gUBEFwQAReQRhpwpY/+tstBeikYm0dcGWDkUWbZXefAm/UWbC2ZiE38E2u5Do6yyyOy0kldAe0xTNTDt5OCnBFImql1Z/k4AXVbC3GWMjhTazLVq5M7zhfly7U8vLdKccNdwZvdyDX7ixoSnYWlJb0JDt4E7pLB2I5cMU5kOMhN1d/vyLwCoIgCIIwKoi06uVay0y5Gnuvi7Tzd0E7eGeU0z11HM9wEluZxI7mUphQzPZxc9mCigvIqIO3TPdRKDea4ssbt5ToMbtJs7WmJtjCFKazkXce+Tu8+ZsRvZ6zz9bvta3ObmlyPiDih+llcNBkOHEOZ31uC/n5yn29fLmXZ9buD59fCFceDpceKAKvIAh9IgKvIIw0VoF3m0XBnWDP3wVot9SkRX09pI46C9ZMO5hvcwPXcyUhl3YmML/a5uAdbJO1mIM31iAAwKzvoqlZBZgZhkl5mVL98vOC8TFjwcGbKPCuWJHecTaBN8+TctxwZ/AGenL7LDxLigIJAm8xGB6bwLuzZh5s+TGs/QHcdh65Ofp9FYFXEARBEIRRgXW2nNVMkdDM2Frj9Cnwxhy8XzqAzme+wyk8wwNcSEOTqnubW3VhnVEHb0kpRP0fxWY7LtTsqZVrLJbjnpVgRjL4oqOTJkv5Wl7eDQWZVNL7T04O/OAHarnLa/lstbQ6H2Dae2AUFuXx5S/rXJBv/ul8un7xKfjhMXDBvmCKwCsIQu+IwCsII00kVdFpFXhVkWAVeIstux1xqQIzO1uJjNl0U9K4Xe0zgDlV+Lsz7+DdxsT4NnNHO6CeRJeX+fB4VLFpdfCOBYG3KUH/TFfg9ft1ZEFuXuruGolOW9O0C7zW/f0hpcAbzOFdFvECx/F0/png0ESktMRvF3jL1J2O9eanrArIseQ4Z+v3VTJ4BUEQBEEYFVjNFDtSOXgLbA7etCMagLJSPy6XqnFb23Lp6XGzs17np/Z5rv7gyYGiHMhy05ZbTiEqcmLlWosiHfFDKEVjr10I6/tVXuoDIz/14GHie9+DpR+aXHixpe9Jc6vz4EhCk2N3Gddco+/x1m8s4dvXnGQZLwKvIAi9IwKvIIw0IUt1st9E+N6R8Jl94RBLF9hBOHhzogLvPFbo6ISpZVCQRXdAi46ZyuBtpYQer1IWXf4eilGidSyeAcZeREOiwLtmTXrHHbb1IZawH//hVKa89kLKcYkO3h7948HrBXfqdIdeSe3gzebb3MAJvMAPJ98M85NtKqXFPrvAW14F2IvpinK7OyQ3R1+4OHgFQRAEQRgVpDJTTLTPlhtQRAPgcplUlPlwEWYPVtC4Ebbv0M2+Jji3YBggXvj4Stj6Y+7/+R20UQLAitUJKnJoayZfdNQRDhPvTWIYJqUl3eAaeYHXMGCffQ1yx1mmRra0Ow8OdaqmfzFchZSXw/XX603/umc/HnpivlqJjAFXjCAII0rqOcOCIAw9kW6IWJo9LJig/iXiKsQ07QJvn01iXXaB9zheJOjJwhvqgXkqi3coMnjBoKOwkvLmbQBMYittlFBdqZXc/Lyx5eBNjGjYsSO94yZ1rGI/PgCgrrkm5Tjrz767OzPxDInHJjp4Y2Rnh5IdBEBJUUeCg1ddf4fl41pcbFeec3P0i4jAKwiCIAjCiGOaCRENlmI6IQ6tfxEN9gJt/LgOShq3s4L5cDhcmT+B36Nq4YwKvIYXclXRPW+OvuCVaxME3uBWyD0ogy88umhpUW/tkbzChLx6PB9tgYU4zkobEfabAV9epJoUL5oEZhiMBMfG8jVw6K8hz6tMPs8cAcAXvwjPPw8PPKCGXXrV6SxasJ2ps8fATZMgCCOKCLyCMJKEG/oeA+AqxOdTT6tBCXdZqWf8K2IO3pwQ+/IhB/EOZsy0f+xMgCFx8AK0FlTFBd6JbGMZe6V08I4FgTfRwVub5qy3iu7temVi6uo+MaIhUwJvqiZrgR6vHpMVdhR4S/OaKIpO+4tg4CpVDwWs71dBoRu2tMK2VqjvpCqwEaINRUTgFQRBEARhxIl0gGlxSW5L5eAt6J+D1xLRwMvr+FbwT5zIPfFNW7zT48vjx/fzmnt9XV3D7THLKvBWEAq54nFou7qDN/Ze/YDfc3LXs3Ay8OgiOPuwEb2uOIfvBQdZMoEjPnAnuHNaokYKXxB6wvEZm4YBN90E77zdw7Gb7+Kk9mdpP2YL3HY0fPqMYfoGBEEYi0hEgyCMJP0QePsVzwC2iIZaajiSV8kKdcPFB8CF+wLQ3aNV2cE2WdMOXmjNr4ovT0IVmLtSRENLS3oCZlVAC7zuqVNSjsuzuA18vqEReG0O3oB1TAjMHvXPQmlkW3y5hVLwlgB2gbewKAt++hycdSdc+ggz6hfH94nAKwiCIAjCiGONZwDYkbqhcb8yeC0RDdyymC+uvpYadsY3fcye+mUy7eCNUlnhY9IE9f34fFm896FFSQ6379KZrbHafJzlZ07N5JG5GCeMhBsrM9lMYZsiWJobF3hB5fDef08T+xnvcw6PsHf7e2x7Lc37RkEQdltE4BWEkSQ0hAJvtPDMzgpTxzgms4Wrz3kKfncKuNV/fb9fF4mZdPA251bHlydGp6dZBd78vGB8eSw4eBMjGgB27kzeZiPSTU1YC7ze6dNSDi3QfTjo7BwegXcG6/gef+Cyrb+Hez9QNwIW8qp7ONT9JifzNBdzG4Gegvj1xa+7MAuq9MWX+LW1WZqsCYIgCIIw4oQtT+k7A9AaLVCy3VBhecLe3wxeq4B3wKSk3e92L4wvZ9bBmwUdAfi4Fp5dzaXznojveun16faxoboMvvDoIibw1mCZVlczdUSuxZGECA8iDs6HFsvDhxK7wAtw0ME5VMzRcs3Sl2TytSAIvSMCryCMJFYH79ZWOOEW+NJD8KfX7ONcRTaBt7iYvrFENAD4yKfWY7cQdAeGRuBtyh0XX+7LwTvaBV7TTHbwQhoxDaEGxke0wJs9e2bKofmWnhBdXXZxdDDO6t4E3jms5g/8gPM2/ROeWgkRu8BreLtZU7IPz3IyT3Imre3qJsgu8OZAtRZ4i/xa9RYHryAIgiAII47VTNHVA4dNhWll6p9h6H39zeB15YARvZU+MNk5GhN4s7JMyssHdumOGF54fBkc90/4wgNc2HFHfNfzr8ywjw3vugJvYyN46WEc0e/RZUDN9N4PGk5c6Th4W/VycU6SwIurkP2O1fV505oQwSCCIAgpkcdAgjCSWJ+sb26BpTvUv4ZOuFIF7WMY4CoYsIM31mQNoDtg/y9vXc9ckzWoz1FWhW5XLv6Iuo7qSq0MjqWIho4OCIWSt/fVaC28Yy25KKW2jSKKqlPbNxIFXqs4OhQOXr8fmrHkgrX67c3+ACIdlBZ309ikLq6lNZ/qiQ4ZvNX6PEVd9bbXEARBEARBGFHCFltudSE8epFaNk293ZVLOOKxzdhKS5Q1cpRwt2ACptuFEVb5t53ks4J5AIwfH8FIbK41KLwwXjs9JrINwzAxTYPX35nCqrUVzJ0V/Z53cQfvBCy9LqoK02hQMoyEPPDNJ1SN3dUDz51m3x/xQYvlJqg0F1wF9jGGh2kHaD9eabCR11/t4ZjjRtH3KQjCqEIcvIIwUkS67KJaqqYPRh4Ybtosu/ubwRuju3voBF5rTbWqdCG88lWO3nsll/N3IDGiweLg7QgP7oWHGKd4BujbwRtYuza+vN2YiOFKXdzn5moTSXe3XfQezPtiPdbqCvb5EgTeFr/dwRvxgxmipFgf1NquPk82gbcAqNF5y/md+oclAq8gCIIgCCNOqn4XCe7d1laIRPuTlZTYjQspicU05HkJHzMHgB68KtoKVYRlNJ4B1HVP0OpzdlMLp52wJr7++xsP1WN3YYG3sVHPEgRsP5NRgbcAHvkYnl0Nr2+EroTpgJFOHRcCUFaiHeEWjCpdZ1dTxxNPju77JkEQRhYReAVhpEgsuranbvoADKDJmhuMrHhEAzg4eC2CbyabrHVQCPOq2dGov4+UEQ0dFmvpKMQpngH6dvD2rN8YX06MxkjEMOwuXutrDoWD1+eLNk6LkejgjXRCOEJpkZ5O1tKqTtZhGVZQAIzTcRx5HTpLTDJ4BUEQBEEYUcwgRNr6HtffeIb4cbp49vztdK4s/ht78QkPc158+57zDacjB8d4ywVub+Oqr74ZX73jgQU8/79oVEO40e5U3oVoatJ9PgCY2FdXvGHGnatydWM0JzhDIh2q/o5RWoojNfoeopo6Xnopk25wQRB2NUTgFYSRIjEXK9MCL4Arl+ys1AKvv1sXCZl08PYE3Zgm1Ddq1bKq0lng7eocmwLvli29HxdZtzm+vD17ap+vM6ICb1s3hFr1eqQD/vgq/3l9Pjuo4XL+Smub+nOR7OCdqF+vTZ9DHLyCIAiCIIwo6QqcrkLqLGW5xTTZO9ZGayW5bDvySNYwxzZk0YFDcLtdWgJ5UWeFL8gR89dw1skr47sv/vaZtLTmRAXuFudzjHGamhIdvNWpB48ERqLAW2/fH+lUM+hilJfhyDjdwG8cO1m+wktra+YuUxCEXQsReAVhpAjttK9vbtXL1ogGl1JzByTwGnnk5eo0/i6fPbOpu1v/CshkBm8w6KazK4vubrUxJ7vHJurm5+lr6uwc3d0CrBEN1ml277/fy0FmCDZqi+/OnCl9vk6BJXbL2sV5KATeri4I4aWdaDOHiAltFutKuAlafHgjQWrYiYtIvNGvVeAtLASqJ0DUnJLV1oEb9UBBBF5BEARBEEaUxNlyt78HtyyGp1dBu2WqUYLAW52uVpjQSOuwA5Of/i9alOa5+oMrG2r0zYCxtZWbr/0PldHZcttri/jJb49RO0MpIirGOEkRDZN6ny037CQJvAmfxSQHbwrbeFEl5Kv7txwClNDKO+9k+FoFQdhlEIFXEEaKJIHX8oR9isVd6eDgLbbov73iyqW4SCt7be3Ztt3dgcwJvIkO3vqGfDwE+Sz3sCSyP8YGbUu1RzREBvfCQ4zVTXvcceCJmqBXryYueiYRbmLrBadxOK9xEXewuPyEPl9nuB28kODibbRMHQvX2XLBmiiPuwWSHLzZpVCeB4BhmlSibiRE4BUEQRAEYURJFHj/8Tb8+Fn44oOw05I55Sqk3mKwTFvgNXoXePPze5g3rx/Xmy5GNsyxRBIsq6Wqsoub//hUfNMt9+zHlm3FqTOIxzj19WZCRMOk1INHAlcOlFiK+GanDF6rgzeFwOsqhCrtAhnHTt56K4PXKQjCLoUIvIIwEpghe8EVDNubrE0u0cvuQUQ0GLkUF2mhrq3drhZaHbyZzOANhjzUN+ZzGxdzD59nfvAT+MIDsEkpojaBt9MAc/SKvFaxdeJE2Gcfvf7eeykOCjfQkVPOGxzOXVzEztI9+nydoRZ4E5usQUKjteZmCEc/g6E627SxZsocHbwFBajCs1IXnjUooVgEXkEQBEEQRhRrHFrEhB2WYnq8PQ5tQA7eBIF373l17DFb1/efOm0T7qGITDWyYV/LtLKlatbYWaes4tBFSmQOBt3c+K9Fu7TAu5R9eZmjCU+pgKkzR/qS7CQ6eFtawbQ0SIt0wBuXw8dXwqtfg0mTnc/jKkgSeBcvHppLFgRh7CMCryCMBKF6u6i5tU0VngA1hZBrUUujDl5r3lJ/MniLCy0O3o4EB2+3bvyQWQevl7qGAv7O1wkStbyubYTjboZnVpGfZ8ng9XlURtooxRrRUFYGBx2k11MWWKEGfH79Hubl9f2rdigiGqzHOjl4bQJvix9C21RWXbje5ipopozWVgiHtXBrGNGHAq4C2KMK5lfjP2Quoej7LU3WBEEQBEEYUawO3oYu6IkKbKW5UGApXAeawZsQ0eDxRHj18du54y+P8eAtD/OP694d2HX3hZEF+1gE3o/Uw3XDgB9+84345gce35NIT33i0WOeQABaW138nP/jBPeLGIu/AQceNtKXZcdIcPA6NTTO9cK4QlVHZ6e4uXMVwqUHsvNHF3Aq/+Fj9ubjj4f20gVBGLt4+h4iCELGCSfEM2yyqIhTE0L2oxm81jiAVI1WkzByyc/vwe2OEA676O72Egi4yc4Og+HG78+cwJuYwdvQlMc7HMxnuI/7XZ/BEwlBewC++CBlf9euiS5fFoTWgifdanp4sbppy8ujubNRNmxIcVBoBx2d+sYhv6Bv+8ZwRjR0Rfvd2QTeNj8Et4FnPEQCjg7eLt0nj/x8cLkAsxBu+jQAHQ35fDJ/b0AcvIIgCIIgjCCRTohYCpdtrXp5fIKYliEHL0BlhY+LLvhIrWTPSdqfEYxs2KdGry/bCb4g5Hk58eh1lJf5aGrOY9uOYt58K5vDT1N1/65Cg8WUXFnehctlxg0xowZXNpTm6fWYwOsuUeuRNvt4Iw9HXAVw+jwqwwav3HA8Pl8W7IT6+n48iBAEYbdBHLyCMBIEt9nXN1nU26kJ6u0gBV7DwDmmwcixuSwz6+D10B51C/+bc7nxzJtgUlTUNaH86nspR9lU/d0eCG5NPN2oIVHgtTZaq61NHo9pQstaurYHLcd5HQbasQq81sJ1KDN4X+Q4thx7NFxxKMwoh+B66HxS7XRw8CbFM4AqPKPkWhr6icArCIIgCMKIkdjrYkurXp5sKaQNY+AZvK4+8s2M7N73DxQjC8ryYGa5cn9efwZkKQHX641wzmkr4kP/+8LMXS6mwfpeVVV0geGy1aOjhhLLg4TWbu3gjQQg3Gofm+qzZOSD4cLtNtlzrv7GxcUrCIITIvAKwkgQShA0z5wP//48XHsanLO33m54wKWe6A5I4I0e6xjTYGRnVOC1O3i1wAvQOn0GPP3leIaUq6WLP/B9APzd3uSfxygiMaKhxmKYcBR4ww3w8BK+8NPPs5NqrubXlJX3L6LBet604zgc6Evg/SeXsfGKz8M1x8FeNSo6pGcjhCPQpj8crZTQ0gIdlpllcSez4VUuBSA3JxTf7/crrVsQBEEQBGHYSRR4rbPlppToZSMPDFfGHLz2/YMsrlOeN1rgPfx5eOWrcO7e4NG15knHrIsv/+/Nqck/izFOksDrKlBC/Wij1JLz3OrXkSHhOugMwJoGqO9U0SGpHLyGoUReYJ/5+kP60UdDddGCIIxlJKJBEIabiD85c7Y8D46YDkckjLVMNxqMwFtSnOzgDYVzCEejyNxuu0A7EOwOXjdtHbqoLS4KQHUBXH86fPZ+AL7IHfySa9gUmEakpwlXxBe/3tFEooPXKrg6CrzBLbBWOSWqqSeCi7Iyh3EJWB28VjG2uDh5bLr01WQNIM/iuo3Tqge3UEIENy0tKRy8AEYBEMDjieDxhAmF3EQiEAoN/nMlCIIgCILQbxJFzc3W2XKWwixaa2cigzeJoXTwAkxwLhKPPGQThmFimgZLlo6nrWkVxROG5lJGgrqdJqfxH47iFcrbsmBVDhwy0lflwP6z4ZcnQnEOzKxQvS5ACb3vbIHP3KfWj54BL1yV+jzuQoh0sM+8nYAJGHzyyVBfvCAIYxFx8ArCcBPamr61MRrPYJr2Jmv9iWgAe0RDa5sSXv0BrSgO1r0LyRm8VgdvUcxBfPxsOHI6AC5MLuFWAAIBNwRTBdqOLIkCb1WVNgk0NEAwUR8NboTVWsBfyR5pvV8FKWaWDUbgtb4n4TBxQd+apess8NrjGYDeBd524MGP4C9vcKXr+vhmiWkQBEEQBGFESOx3sblVL1vj0FxFdHbqh9/Z2f2YPdWng3eoBN5ezvurFyl95m323VN9/5GIizfeiKQePwapr/NxIs9xFX/iix/9Dv63ru+DRoJZU+Gyg+CCfWH/iRDaHm1mXGfrdUFpbu+fpc0+OOEWLrn287zHAQCsXj2kVy4IwhhFBF5BGG56+iFkRgXejg4tzuXl2d2yvR/vENHQrorC7h6t0GVC4E108DoKvABf3D+++CVuxyCiYhp61g/+IjJMOJwsrHs8dmeH1fGBGVE5tmt11tkK5vXbwWtlMAKvYdjf25gz2Orgzc9zEHhbkgXe1la7i9wm8DaH4YrH4Vcv8fXQ3+KbReAVBEEQBGHYMXsg3GzfZmtobBV4k/N3057tb+T0PnioHbyJPLMK/vImfO+/XDjr+fjm997PATM8NNcyAtTv7GIaG/WGqVNH7Fp6JVG0jXRDaAsEN9nMFJTkxePOHMkrhaU7yGlqYTJbAFizJvOXKwjC2EcEXkEYboIJT5mDYdX51gm3mjY2oHgGiOc52SIaotEJ3QEdh5BpB29Pj8sm8BYXWvIBTpgNsyt4MOczXMGNuIhEG62NPoF3yxZttq6sVOIu9JLDG9qmlNBaFVYbIIsNTB8xgRecYxpiAu80NlD1xwfhK/+Ga57TAxeMhxXfhbcu5zsl/4hvXrtWD7G5W8ZNjC9WmXWo6WN2IVkQBEEQBGFYCG5TD91jBEKwo10tuwyYWKL3uYsGlr8LqrlXbyLucDt4b3pHfe0Jc8l7P8eFEnWXLB0HIadcsbFJfV2AuazSG2bNHrmL6Q2nCI+2OyHUmODg7cMyXjUeos8RKmjEQ5DmZvssQ0EQBBCBVxCGl3Cr+qNu5f3tMPU3sNd1cOWT9n1RB+/ABd4cMFy2iAbt4M2swGt18AZDLt3MjQQHr9cNr3+dH1X9lcf4FGE8+P1eCLdDaHR1+V2+XC/Pm6eXUwq8PatgjX5/1zCbMJ60BN6hiGgA+3ubKPAW0kHeg+/AE8vhVYvA7nZBRT7MrKB13OT45qVL9RDrz4DiSshTCn+u6aeIdtvrCIIgCIIgDBuJzXuDEbjqSNWM7OS5kOXW+1xFA8vfjZGqORYMv4P3+tMhR7kRyrZu5EvcDsCSpeMxg6O3oXF/adzaHXfwmoYBc/Ya4StKgVOTvdiDB6uDt6yPYj+rGMqVE8SFSSXqfklcvIIgJCICryAMJz0OGVGxKWN1ndAesO8btMBrgJFri2iIZfBaHby5fUSIpYMtoiHBwWsTeKPXlWvJfvV3R62xie7mEWbFCr08f75edhR4TRO6P0mKZwBG1MFrfW/9fnWZMeE1Fr8A2BqrWamq0IG9VoF3grVZh7sQqrRCPQ6V+2bN+hUEQRAEQRgWEsXMgiz4/lHwt7Ph9vPs+1yFA3fwQu+N1lwZcFA4kUo4nl4O3zosvnq56+8A1DUUsGNLvfMxY42In6yt23BFZ4v11FRAfn/ftGHClasaqR35D9jnT9BuqbVb+iHwugpUs+oosTpbcngFQUhEBF5BGE6cYgg2Wbv6Jqi3LvUHf8ACL4Arz+7g7Yg1WdMFaeabrBn2iIaiQNL43JxQfNnfHT3YSQAfQawO3lQC785YD4/gRoh0wGot8K5kDyA9gXeoHLyJAm93t46d8GdbpoS1OgfmVpbrz45V8LYJvK4CqC7U+9gOiINXEARBEIRhxoyoyKx0cRUlZfD2i14dvMMs8AJcsgiylUN5QeRDFvABAB9+0GOPrRirBNdTWqcFfGN2Rfx+adRh5MLKOlhZr+LbrKJum0Xs7evmzpVvM1LUoNwl4uAVBCEREXgFYbgwI0oETMQm8CYogYN18AIYufYM3lhEQ0AXnZmOaAgEDNra9UmTHLxATrYSeA0i9LRGxd7gZjBT5BGPAFZB0xrRUFmplxtiem73EvV1rY5oWME83G4o1NpnSpymBLrdg3dXJwq8VtHVzMsFb/TPQHcI/NGffV0H1LaDP0hVZfJ7BwkCr5EPE3RxHWsAIQ5eQRAEQRCGldA21cwqXQbt4O1N4M3AFLn+nrckF07TRev5PAjAilUlENo+NNczjHQ2b2RKtzbMeOdX9P4ejCRGjno/YrSlcPCW9+EEcRU4zpQTgVcQhERE4BWE4SK01bng3Jyiq6/hVn/QyYSD1ymiIbMCr9erG3pFIgZdPqX4GoZJQX5P0vhF3W/yBGfQSAUT73xCbTRD0DM6mq2ZJqyy9G+wCrwVFXq5sREId6j8XUhy8JaVpdeN2SaYRiku7kcn5xT0JvDm5ZnOhef/vQD7XA9TfsOxO5/o+3pdhTBRu4FjAq84eAVBEARBGFb6U0caXnDlDl0Gb2/xDYPBla3uE1Jx9p7xxTNQ/T1WrKkcNTX2gDFNtm9uYA9WxjcZc6eM4AX1QaLAaxV1rTPnSvoQeI18EXgFQUgLEXgFYbgIrHLensrB6yqIq3vNFg24/w7ePIoLkyMaunv09K5MCLwARQ5NYAsLArhcZtL2Yk8HZ/AUZbRQssJSofSMjkCp9nbo7FTLeXl2126Sg7frWeXQDkegPA/T7SKMizXMTiueIXZOa8wFDD6eAZIFXqurNj/fhFKHwtNSdGZVO4cDjx9vWXHlw6SS+GrcwduZ/L4LgiAIgiAMGU79HC57BL7yb/jVi9BsefrsUlOshiSD1/AoAXmo6M3Fe/g0yFX9LfZgFTNZqwRep6i4UcTmzdDa2suA4Ga273DbBF7mzhzqyxo4rtwEI0UKgbfMcmPheJ4cqNI3WTGBd+1aiOwCqRuCIGQOEXgFYbjocRB4OwLQFC00s9xQY5nLb8mTiue8Ys9/TQtXfoqIBi3wZqLJGjgLvE7xDAAbx+1FBCVgF23ZpH4WAD1rdUjsCLLdMottwgS7k9bm4G3wQSAa1ut2wXNfYfFDf2UR79JDNiUl6b2ey5X83g6FwGt38ALFlgGtyQJv3vjkcODS0oTPjOGGidryMoXNAPg6Wwdx5YIgCIIgCP0g4ofQDvs204TnVsMTy+Evb9oLumgU2pBk8A5V/m6M3tzBuV44ckZ89QSeZ8XqSszg9v7FVwwT4TB885swdapyUH/3uymEy8An7NiWx2wsxpA95jsMHCUYOVBi+RzEjBSmCdkede8HUN6HwAswTt98TM1SGcTd3bB1a6oDBEHYHRGBVxCGg+BmCLckb7e6dyeXKIEwhkurpTsstarNOZkOrnxbREMsG9ffrUNzM+XgdRIkUwm8FObyEfuoSzRNeC9aoUQ6k4vzEcAq8Cb+zG0O3vpw0rGdkXw+YD8A8p0NsI4kxjQMvcBr2B28MWG3WQu8hZOTA4Sd4iSYpDfGHbxtI/8+CoIgCIKwmxDcmGwSqO8CX7THQHGOve5xq1p7UBENqfJfhyqeIUZv0RCgXLxRDmQxXb4stm4rdO4HMsL8/vdw441qORiE666DW25JGGQGoWcFO3YWcDG38Ut+wuK5p0HZpGG/3rRJlcFrGLD0O7D1x7DpashOo1nH+HHxxenezfFliWkQBMGKCLyCMBz433Xevsmav5swl9+dKYG3wBbR0NqeA4ab7oAnvm0oIxqKUwi8uTlBXuMIveFtXazQszYzFzQIEh28VmwO3ua8pHsJf7f+2fbHHT0cAm9Hh17PzzfshWdM4K3v1NcwOzljYuJEhxeaPBmOm8V7+5zBzVwGgK+jAXocpkoKgiAIgiBkGqeM2c0WM8WUhJwzVxFdXToWICsLysv7+ZqpohKGqsFajL4E5ONmwW9O4uK9/suXuB2A5asroWd0KYKdnXDttcnbv/99aGuzbAgsh4ifLXXl3Mdn+Sm/5K3PXA7uNLPQRgJXduoMXlBCb543vc/KXnPg/s/Aa1/j76fcEN+8enQk2wmCMEoYEYHXMIxNhmF8YhjGUsMwlkS3lRmG8YJhGGujX0st439kGMY6wzBWG4Zx4khcsyAMmHA79Kx03reuUS9PTyhQXCXxxcEJvIUJDt5sTHLptszQGkqBN5WDNycnlFrgDY588dmbwJvr2Ux+tHFcMOimvSPbtt/n15lref1o7DscAm9Tk14vL3dBqeXNb/ZDZwC6ok3xst1M2rMAV8JfitmzHV6opAru+wwvn/4NrudKALq6vNB+P3Q+A10vQ/vD0P4AhJscTiAIgiAIgjBATNNZvNyUopkxgKsoqd5LrHn6ZMQcvH2cf1oZfPlAshZUEUFFAaxYXTlqotBi3HmnbiZdUwNToj3T2tvh3nujg8wI+BcDsH6Tfg+nTmod3QIvQInl5qjN7zwmnTiPkio4dhbMrWLSHN28eu3Ie2IEQRhFjKSD92jTNPc1TXP/6PoPgZdM05wFvBRdxzCMecAFwHzgJODvhtFb21BBGGV0v6sKEyeafBCLApudkL/kLgEgENCinNttjwdIC1cBOTkhsrNDAIRCbvyBomETeEtLnIuZ3JwQr3O43vDhdvBHp9AFd0C4zfG44SKlwNuzEdrupqJMZx00NuVBXSf87mV4YQ3hBkuG7SAE3n6L+Q70KfAePRO+fxT8+Qw4Ybb6PmJUF5Kdm8P06fZzOgq80UYleXnB+Caf3wtmWBXlvteU+yKwCtruUg8+BEEQBEEQMkFoB0Q6krf34eDdtk2vOs5Q6osRy+BNr8CcN6chvrxiTeWoiUKL8dBDevnqq1X+boybb44u+N+EUC0Aazdoi/WsGS02Q8yopMzi1mhJkX/sSuOz4tIxDrOm6WJ+nUyUEwTBwmiKaDgTuDO6fCdwlmX7A6ZpBkzT3AisAxYN/+UJwgAwQ9D9Qer9vzoJNl4NL10GJ8+174sWLLW1elNNzQCcBYZqkmWNaWjrLLUJvJlqsubkOC0vTSXwBmmgipVEv+9gBD6wqKqpXM/DhKPAG+mCjofADFFZ3hXf39CUD+9ugT+9Dp+9nyP/9cf4vv4IvDNm2Ne//OUBXHgCvQq8FS44dg/47pHwmQUwqwJ2Wm6OxhWCK5e5CR/NOXMcXsilPmf5FoG3y5eie3S4DdrvU/8/BEEQBEEQBkuqunFTLwKvu3jwAq8rz964LcZQRzSkef55sy0C7+qoS2SUxDQ0NcEbb6hlw4Bzz4XPfU7Xrh9/DMuXbgff/wAIBl1s36IL6xnTw6rR72imtEQvxxy8W1vhxbWwZBvUtqf3Xrp00+OZ07QrXQReQRCsjJTAawLPG4bxvmEYl0a3VZumWQsQ/RqLuJ8AWPtDbotuE4TRT2AZRHy9j8nzwl7joDKhG1fUwTuoeAZQ+U9Gli2mobWjBL9Fdx1KB29ZLw5ewB7T8I4lpiGwKjMXNQB27oQnn9TrcYG36wXVoRnsDt7mPHhf3yFsGz8vvtwf8fyMM1Rxu//+8OabMHPmgC7fRm8Cb1kZyVMIEwVeI4c99rAP6dXBm5vg4E1FaCf43+r94gVBEARBEPrCDEP3Uud9VgevQ0TD4B28bme37lBHNKR5/vlz65nEFs7kcVasqVTpDMHRoQo+/TREopMcDzoIqquhpAROP12PeejeTfGZkFuWeWmNFPMuB3Bz/jfILSgZ7kvuP/vMgjvPhye/CNdGv7EX1sJn7oNTboVrX03P7R1z8IYizPRupAIl3G/caBISv4QgCFFGSuA91DTNhcDJwOWGYRzRy1iHR6I4BgcZhnGpYRhLDMNY0tDQ4DREEIaX7vcGdpwrH4wsIAMCb/R8JcUWB2/H8EU0lPXi4AXsMQ1vb9HLoS19i+NDxNe+Zl+fNg0INULgo/i2ynJ9bQ1NeTb38abK+fHl/jh4PR41Ve299+CQQ/p92Y70HtFAsmugziLwVheAkcO4cfYhjjdArkLY0MSiR2/lv5zCjXyDLl9W7xfne33E3mNBEARBEHYRAitU9IATGy0ZvFYHr+EBI2/wAi/Y3JX6/EPt4E2jwIyYjDvzt2xhCo9zNtkd7ezYWRiNs+jq+/gh5uWX9fJpp+nlc8/Vyw89MTseGdz0cgvZ9HAASzjCeB3c/c2tGwEqqtQszYOm6H4r9dZauzB+z9crrgL402sw8VfkH/5Hrsq/EYBg0GDrRovuIRFogrBbMyICr2maO6Jf64HHUJELdYZh1ABEv9ZHh28DJlkOnwg4BgeZpvlP0zT3N01z/8p+B5UKQoYJ1UFwe9/jnHDrAnSrxb8+cIG30B7R0FE4fAJvKgdvboKDN8sNbkM3fjAjIzaFbOlSvfylL6EETt+rtqYUVgdv606XyhCOsq507/hyfwTeoaBvgTfhzQ9FoCjaNK5aRTTsu699iGNMiKsIWruZ/tyznMIzHM3/enfwAphB6F6S5nciCIIgpIs0NBZ2K7rfdd7e1g0NUSEz2w0TLVlirmIwDJvAm9gLIW0cBd4hzuBNa1q/gVGhZwgexhusXFOZuiHdMPP663r5qKP08ikn1MZ7OqxaW8nyVWpib2SJzq3bMWEueKoY9Tjl69r6XZQ6R3wknacQinMgou5F5uVpF/a6j56H5hug6ffQ/Cdo/RdEUuT9CoKwSzPsAq9hGPmGYRTGloETgGXAk8BF0WEXAU9El58ELjAMI9swjGnALCDFX3FBGEX0JVy9vRleWGP/Ix/D0jBg/Xq9ObHZVdq4CuwRDW0Fw5bBm8rBmxNt+raVyfz08Lth3Q/hwc/Zi5ye4W8NG4nY83dvvBEIbobAJ7ZxlRXa+VD4yVoIhNXK7ArqPVqJz9TPdqD0KfC6cuGKx+GEW2Cv6+CCfdV7selquHgRGDkcfTR85jNQVQWPPprihVyFMEs/WJvJOvxdafyJ8b+XugmhIAiCMBikobGw6xPcAcGtzvvWWJyN08vBbalLolFoViPFgB28hoPA6yT6ZhK3g6vCiYMmxxcP53VWrq1QKz0jF4UGaoZi7B4nJ0fFkwEQbiEveA+nn7A6PvahJ9TMuNwVm+LbuudNHhsOXieh3xqHVlOR3nlc+TBZG4BmGfoead2GYgi3xGPkCG6DjgdVdIkgCLsVI+HgrQbeMAzjI5RQ+1/TNJ8FfgccbxjGWuD46DqmaS4HHgJWAM8Cl5um/LYSRjmRTuj+sPcx/3gbPnu/EtUesYuHVgevNTw/sQlX2riKKS6yOnjzRt7Bm6OzWj/K3x9yPMmDgpsyc2H9oL4egtFLKy2F/HyUezcBq4N3ypr39Y6jZ+Lr1p1uR7+DNxc+roWlO9TDhtro1K48LxRkgZGDYcC996ps4rPPTvFChgEllQTL1Icgmx4q21LccFmJdEBwg23To4/CccfBTTfZTNOCIAjC4JCGxsKuRyr3LsAeVfDoF+B3p8BlB9n3Rc0UmzbpTZMnMzCcxNyhFnijDuQ+OWhKfPFwXmdVXOBdD2bPEF1c38Saq4HK382KpRR0PgmRLs49fXl8/0NPzseMmEyuWxHfVnVi6dhw8Fqd1h0BCITs5p6aNEVqww2z9BOIib6N8eV1G8uSx/dsBN9L/b1aQRDGOA6KytBimuYGYB+H7U3AsSmO+TXw6yG+NEHIHF0vg9lH4v0nepoReyQUKFFXAdgdvAMWeN2llNgE3pzha7KWKoM3V/98/Kmm8ke6IFQ/rAVcUhZbuAmCG5PGWTN4525frHccPQPfI3o63GgTeJstUXRlZShnQU0RrIym4tR26N/QRpatO3Gf9xGuYnrmTsT7lirAZ7St6OOAKN0fQZbqKBeJwFe+oq7zpZfU+/GrX6V3GkEQBCFOrKGxCdxsmuY/SWhobBiGtaHxO5ZjpaGxMDaI+CGwPPX+gmw4bJr6l4i7hJYWaG1Vqzk5JPUcSBtHgTc/eVsmMdzKOWx29D7ugEmYhoFhmizgQ362MloYmiEl8mbv0fvxQ8R7ljYl8b4TgRVKmAROPnYd+Xk9dPmyWL2ugsWP5XNQRBWxLZQw/9T89LJrRxpXDnzjcfjvSujqUbMVrf0uxvXjHmfqJPC6IBihsLOJfDrpooB1mxwEXgD/O5C9ADxjwOksCEJGGKkma4Kw69L9gfrXG41dsD3qlMz1wOyEP7wu5eANhezOggFHNLhLbBENbe3Zo8rB6+/u5VnTMLt4rVP1Jk1CvZcONtKYg3cSW5jUFXWg5njg4Cn4urWqO5oE3rY26IyaBtzuaKSGKxcmWN649RaLr1NuWG+4iojsreMp5vo+Tu+4ntXxByINDXYR+tprIRBIcZwgCIKQiow3NJZmxsKoI/CxyvMfCK4SNlqe30+fnp4h1vlcCQKv4UqvCdpgsRhCUlKcQ89MVZu5iVC40uIc6Vmd4qCh5wPLrVI8nsH3WnxbXl6Q00/U1/fEr/XPeHXh3uQWlg/1JWYGI1fl5nZF3dLbWtV9IKjfvNX9EHizSmCqFnNno3KUHR28oCLQ/K877xMEYZdEBF5ByCShRuh8pu9xSyw20fnjwJPwXzEa0bBlixJ5AWpqonEBA8FVSqlFaG1q9g6bwFta4lcVc/4xUP4jKP4MZM8lN0c7eH1+ryp2nl0Nv3wRdlg6wAY3Z+bi0sTq4J00MQLdSx3HxTJ4T+Q5vfHgKZDrxd+tf6AjncFrFZit2cJlZdEbGSMX9q7RO37+Ary3FTp7+t8gxF2Me6E+116BPmJKYpg9cSG/tta+KxCAjz7q32UIgiDs7gxFQ2NpZiyMOvoyVPSGu5QNloSoaQ4m37RJEnjzB6EW9+d1S9Ia5j1cG/Lnt71Pa1u0vutZMyJ9EEzTLvAuXIhyYod22sade7qeCTZ9m64p22bPBHea2bUjjZEDNTq6jU926sdn5fmQVeh4mCOuYpihhe2YwLt+UxmRSIrPW2A5hPtweQuCsMsgAq8gZIpwB7Tfm56T4N0tennRJPs+w6X+gGPP3505cxDX5i6hulI3Bdu5kyFpsubUnMJbtB8UfhryjgBXNmTNhqILKBp3WHxMe0c2fO1R+MIDcOObqgFdjGEWeG3NNmoaVUyEAzEH79H8T288WmVo+PxaGB1NDl7r91Yeqw+NHNgv4Y079Tb4v+fT69BsxVWEdz/tRNgnshSzJ83I9Gg35x1JkgIsXpy8TRAEQXBGGhoLuwXBLRCqS72/OwRNvtT73ckO3gHjShDphjp/N0Y6Dl7AdbC90Vo8hzfig1BtiqOGjo0bdTRGWRlMnhSCrueTxp1y3FomT2wFTJuhYvYlJWMndsCVaxd4l1oK3eqC/s2WcxfZBN6FeaqHSyDgYXttCqHYDEO6hgtBEMY8IvAKQiYI1UPrzaqDaTostihtByZ0dHAVKZEXu5t0yhQGjuGlZpx2zNbWgs9S82ZnD+LcFrKz4eCDEzYWnArZeyaNLa7SmV9tHTmwv0VkXGL5+UQ6lTN6mLA5eKtXphxXWtKNyxXhEm7lYm4lsmcNHD8bXDn4/DpyYjQJvEHLs4d4zpwrF+ZWqaZqVuZXDyCioRjvpAI2oT6s+fgIvratj4OiRKcJJjp4QQReQRCEfiINjYVdH8t0fkcWb4E9/ggL/wy/eMG+z/CCq8Dm4B2UwJsotA6XwBs1hPTJQfpe40AWs3ql5bhhNlKA3b27335g9CyHcFvSuJycEH/+5bPMYTWTUfcGPk8B087KH1sO3nGWKY42gbewf7PlXEUwS3/fi7L0DzJlTAOoXheCIOwWiMArCIMl3AHt9yshMh38QVhqmSt/QIKDNxrPAHY344RBtjupGa9Fx9pa+7mrqwd3biuXX66X99sv9bhiS23Z3pFt/zm8lyAKBjcwXKxdq5en1CQ3V4vhcpmUl/npJpfbuZid912lnqq7q20N7EY6oiHV68cfGBi5KiJkYcIHbP9JA4hoUJ/dF7JPjm8K/2dNeseG2yC009HBu2RJ/y5DEARhd8Y0zQ2mae4T/Tc/2qwY0zSbTNM81jTNWdGvzZZjfm2a5gzTNOeYpplG1pQgjCCBldCzrvcxH0efGG9rg7Zu+76oIGttZDyoiAYjC1yWJ/rDJfB60uwKV11Ic7GK0Mqlm7Z3LGLqMPe6AHj/fb28cCHQ/X7KsWefuoobLn+Qxhx1s+I5eoqqW8eMwJvg4AU4bhaML4IpJf0UeIttsWp79iyNL69Z30smcbgJgttT7xcEYZehl85GgiD0SaQT2u5I37kL8NEOCEbzrmZVQEVCsK5LP4G1il3jxzMoaibq826xJERkZWVW4L3wQnjhBfjf/+BnP0s9LjdXNfoKh9XUosCek4kbiZfvVM0I8qPdcQPLIXdR5i4yBZEIrNBxX8yfU596MFBZ3kVDo3r/GpvyGD+uAzzVNnf0aHLwWokLvDGX7iWLlNslLwt+eDTsNa7/EQ1Rgfe14hP4Sv1NAATCXtI+S89qamuTb1acXL2CIAiCIOyGhJuh47G+x31iKR72qrHvizYzXmmZqDVnziCvy12qIg9gGAXeCUpYjr9uPhgeRzds+9yZbFlcxdsczKod41HR20BoiwrFHY7M4Cg2B+++7SpuoxdO/JkJP70M1jWRFQyr79k10MYkw4yRDZO1eYc8L9x1gRKpQ5H+O3jnVEK2G7I9dJaOI2tzgB6yWb2uD8G7ZxV4B+kWEgRh1CMCryAMBNOEnpXge1k9Fe0Pi3vJ3wVwD43Am18yncKCAB2d9jyGyZPBlUEvv8sFd9zR9zjDUC7e5qh/qM0opWpuJaxqgLCppjAdOlXtDG1Rxao7zaloA2TTJh1dUVnRRWVFL9lt4Ug8hxegoSmq5HpqxpbAGxNxT90DVnxPFZ5et9rm6qfAa2SBq4BVlftxf/0F/IHvc+tX3mUhaSq0gVXs2HFk0ub2dhUv4fU6HCMIgiAIwu6BGYKOR1Vz1r54zxL3tSChiHaX0N6uY7m8XpgxY5DX5ioBoi7JdKMTBothQNZM6P4YsudD4dmAG4LrwfcKBPWMuNZfX8iC474GwMwdTcRjtiPdEN4Jnpqk0w8Fppng4J2fZnyAYeh4Ak8GnSlDjWFAdQVMKILt7eALwsp6ZaTwuPpXa7uLVI3+zhVQU8T7/51HzyXqvm5VnwLvGsg/dhDfiCAIYwGJaBCE/mJGoP0uaH9oYNmwveXvwpAJvHgnU1MTSto8deogzzsIrDENbYkxDe9YMsFMEwJDnx+1bJle3nNuL+7ddzbD4X/nGF6Ob9qxMzr9yjPOJvCO1oiG+Ptu5GjXRnGOFncBjAGo0+5S8ooifIb7WcoC2tr7EfAcqqV2R/JnFPSDAEEQBEEQdkPMkHLuBtPI9t/epsQ0UA+u5yfMDnKX2ty7s2dn4CGyNYd3OOMDco9Q/S4Kz1Hu3ZjoW3yxEn2jzJnVhGGYAGzYXEogYKn3hjGHd+tWaIp6Y4qLTabXDKDRgnsMCbygzBQLLb1G3rd8hvvj4DWylCA8oRhcBnNn6fvQeOO8VITqHJ3dgiDsWojAKwj9pesF6Emdzdon5+wFF+wL08r6dPBut8QlDVrgNdzUjE+ezjSo5m2DxCbwtufAIVP1hjc32Qd3f6iE3iEkLYF3Zwdc9gisa+Jnb1/CFfwFgDUbysFwY7qqbBm8I+3g9Xohx6F21A5el5o+5kR/HbwA7lKKCgPx1fYOy7nDEdvQ1rYc/H77RJIdO3RfH+vNVlM/jfKCIAiCIOwimGFou1tFdqXDuxYzxX4TlVPSiqvEFsk1b97gLzEW+wCApyoDJ0wTTwXkHpAcsWC4lKPXpQwIubkhpk5qBSAScbF2gyWzdRgFXpt7d98ODLOPHiZOtf9YcvCCikPbLxqPUJQNK+r0vv72u7C4w2dOa8blUrX1pq0lSTV1Ej1p9sUQBGHMIgKvIKSLaaqOvf63B3eeT+0FfzkTFl8B0xMC8Q0jLvCGw7Bzp95Vk4GZU+McejGMHoE3Gw6xXMySbdBtcXOGW9SUsyFk1SpdRM6b3ZA8YEsrnH471HYA0J1XwGOcDaCyr9xVBENuwlGN0uMZ+VgBw0huHGIYMMn6bCGVU3cgDl5XGcVOAu+rG+CAv8BvXoKGLv526wHU7HUV4/e+iq3bi9i0pYRLrzqdbdvVeLcb9tpLn1YEXkEQBEHYDTFN6HyifyLku5Y4tMRmxgDuUpZbtOL585OH9JuYQcOVb2+4NpIYHsg9OL5qdXyutDo+g5vUDMVhwJq/u3DPPhrlrWuEw/4OtyyGdkujvLHo4N0/+jksyYWfHqf3ufrb0LgkvpidHWb6FNUHxjQNu2jvhAi8grDLIwKvIKSDGYGOf0PXy32P7QcPPj6fH/ziOJ59eaZ6QG0UgKEUwfp61fQLoLwcsvsx0z0VTi7g0SPw5kBNEUyPFsjdIXt+GiiBfQipiwq3AJMmJExj2tkBZ9wOm6MN9TwuNv7gYrahCrbV68qT4hlG2r0bIzFXrqZGNdeLk+pGZEAO3jKbg7etIweW7YQvPag6Wf/5DUIH/I3HfpRNd7eX1rZc7ntkL77+g1O55e794sftvbf98yoCryAIgiDshnQ+qTJm+4PVwes0W85VahMaMyLweieC4QZ3ZQZOlkFyFqjrAo6sWMJP+TnPcBLldz2nx0T8Q26iiGFrsLbXht4HX/sqrG2EHz8L33pSbTNcw+uQzgRGDhwwEc7ZGwIhWGZ18Paz1o45xdu64bFl/Mt/EV/j7wAsX93HZy+4Mb38akEQxiwi8ApCX5gh5RxId1pYmixfVckFl57LH/56GCdf8Dn+fPNB3P/Y/rwb7XmQ0fzdKIcckrxt7tzMnHsg2ATezqiwe+R0vfH5hCfNwS2Di8foDTNMfZ12B1RVdOl9oQh85d+wI5rnlu2G28+j+gL9xqzdWE7ENWFU5e/GSBR49947YUCqTsQDcfB6qigu0j/H9o5sqG2HHD1tzOPz8xSncxpPASre4pmXZtlOc8ABUKbTSiSDVxAEQRB2J4Kboe0eFdHVHzoDsDwqoBnA/hPt+135hM1s3ntPb1q0aFBXGn2tLPBMAo/DdLmRxJULWarGWpjzET/n/ziJ5xi3IkE0DyxzODizJDVY27uXJrzvb4PHLNf0jehNjLtCOZPHEq5cNX3u72fDJ1fBQdEeLEZWXHxPG3dU4H1iOVz2CEfu/C+/4KcU0cYnK/twNpsh6OnDNS0IwphGBF5BSEVop2qk1vxH6M5Ag68NTdCiw1mXLLWrtlf+9CQ+85UjOfBA+MUvhkbgPfVU+3pRkRLSRgqbwNsVfep82jw4Za6KsfjWYckH+d8Ymovp/oD6Bj1NqrrSIvDeshgWR6f7uQy48wI4cQ5lpX7Ky5Si6/d72bpzMl2Ww0argzfpRiaVkDsgB28lRYXaHdDWng3Hz4b3vgW3nAPjiwDIpZsnOJPzeJD/vTEt6TQHHKCc6zHEwSsIgiAIuwnd70Pr7QMTo97fDpFo5NYe1VCUMAXeXcbKldAZjX4dNy4htmow5CyEvCMydLIMkr0nAEVHa+fr9KZlyk0aI7ASIoHEIzNKbS3URbX3gvwAs6aneHofCMF3/wOx5LST5qgsZRh9Ano6pHLpDnCmHKD6uUwuAaCCJn7JNXy0PI3oisDKvscIgjBmEYFXEJzwvwutt0BgReaKnR89A3tfB5c/BptaWL+pLOXQn/0MXnlFr2dK4M3NhYsv1uvXXZfck2E4cXTwHj4N7jhfFS4VDs7SnvWZf/pshjB9r1PfqF+vsjyq1L6zWeXGxvjukXDMzPjq3Jk6z2zpJxXxwhWgcpTM0utT4HWKaDA8ylnQXww3RcU6eDiewZufBWfOh8cuojZbFekuTO7iCFuYNgAAb4tJREFUC5RtSZ4WuP9Cnwi8giAIgrC7EdwBnc8M/Hi3AftGC+cUzYwXL9arBx6YwVo4Z+/Rk79rxasepM85tIc1KDdvjtlN8F2Lg9bsgZ7MzlZMxOreXbDXTlwuhwZqpglXP6Nd2Dke+MWJer97FxJ4BzJTLubgzXLD1cfEN3+Dv7L3e//tuyF1cI1qWigIwi6JCLyCYCW4Hdofhs6n+/zj95dbDuTCyz7NKmuTglRsaoH/rYdAGP79MbgMNmwu7fWQJ57QyxMmpHPx6fG738GXvgQ//ald7B0JbAJvR1H6B3Y8DpHuPoelTfcSWpqChEJqmlRhQYDc3JBq6HDxQ+p9A5hXneQqPuQAnfP26msuai21ciYa42WCRIE3ybXtVGD2NxPMQnGJdsu0dSQ4Z6aVcXbNC6xgDwCy6eE2LsaLdv2ecNQ69pm7TAReQRAEQdidCG6G9vvVVPKBctg0eP4r8PGV8HWHbDJ3mc1EcdBBA3+pMYMrHzwVlBR380G+/oYbn0poKNy9ZEgvw5a/u8+O5AERUzl377YMvOY4mGq5Z/KMkuK6P2Sy14WrRD+ROHtPIkcr04kLk9+2XUnoxDvgoY+0iz2RSEBl8QqCsEsiAq8ggBIL2/8dde32/fT6o2XVfOvHJ/PAY3vx3f87oe/z32kpmI6dBZNLkgRew7D/IV5vMTVmysELylV6223w85+Da4R/A9gF3oL0D4x0gv/NzFyEGQTfGzb3bjx/9+GPoTEaqluZr5zFXntW1lGHboovv/IKo1LgnT4dJkZntu2/P1Ql9qZwKjwH4UApKimML8cdvBZWNk3ldJ7Chyps9+YTvspNAPz8+//j2Qfvwej5yCbwPvoo/OMf2DKOBUEQBEHYRQisgrY7IdLR99h0GFdoFwajhM0ynn1Wrx9/fGZebtTjUbmvO2fqjnLGGwlNzoI7hjSj9f33I/HlhXs55O/++Bm7uPupPeHLCdPOxmJEQ6qaeiBmCsMNrugNlGHg+ttZrMzdK77bs3QLfONxuPBe8Aedz9Gzqv+vKwjCmEAEXmG3prmxi9r170DLjf1qLvDA43vGl//7wuzeB7f67QLvRfsB2ATeTe9fT2jnr7j7rkji0UBmBd7RhE3gbfeAu9g+IGLCkm227OI4/ncg3B5f3bIF7rhjAE5P/2KIdDoLvBcfAP86B6aUwi9PdLxROOzALbhc6n1buhRWrND7RovA6/XCc8/BH/4ADz/sMCDTDt7SkvhyosDr83lp78hhAzP4GT+Pb7+GX1JIO4cduEUZE4LbKS9pje9vboavfx2uvnrAlyUIgiAIwmjDNJW42/FvMJ3r4EyyZGk1jdF0rXHjYMGCIX/J0YFXCbzhQ3XMWOX6Veo+xYrvtSG7hA/e14JjUoO1x5bBrZbOd+fsDX89256f4S4dmOt1pEnZ62KAZgq3xalRkc8/zvwr/+CrRLD8rP63Hj53v5qNaKGzM4s/XV/ARReZ/PCHsCahn7UgCGMbEXiF3Y+IH7rfZ8Xix5k3z2T8zIN49MnJ/TpFZ5c9m7StPdmlGOdXL0FndPr5nEo4fjZdXV7qGpRj1eMJM3F8Oy5vGfP3dP4vuasKvGWWGOLGRsBdxdJPxnHsp7/Ao6e3EtnzT3DKrfCfFckHm0HwvQiA3w9HHqmiJ848sx8XEOmKN21zFHgNA86YD29eDmft6XQGigoD7LePKlJNE+6+W+8bLQIvwLx58L3vwdSpDjtdDlnHg3HwlunYksT/GzvrtVP7L3yTTUxhJXP5GT9n2rRWDj9oc3x/ZVHy+/7oowO+LEEQBEEQRgtmD3S9BC3XQ/sDg4tlAFWEhfsWiO97UBefJ5008rPZho1otMHsgwMsRrli3WYYXkpw7Aa3QHBr4tGDZmdtD9t3qJowNzfI3Fm6hwXdIfiJxVZ9+jz461ngSXhzPBnMrBtOMungBfDYm6ntf2gTX+cfTGA7j07+kt6xthG6dATax8urmXvoN7jqp0dx110Gv/89zJ9vv3cRBGFss7v8SRMECLdA+0MsfuE+vnlFiPkHnRUXWa+/uX8BXCvX2LtnrV6XIof3oY/gLktHge8cDi6D9z/Wiu20ya243Sa4K5k717nRw64q8FoF0NpawFPFj397DC+/Pp3XFk/F1RhtcfxcisfLgU8gVMvdd8OmTWrTm29CKN17hM5n41m+9Q1a5Kyu7LSPy3KDK3UHjlOO14WwNUJgNAm8vZLpiAZrk7VOu8BbW6cF3r33beRXx97BPFbwL+9l/P0vL+D16puzPaa+xUEH2aNLtmb+nkMQBEEQhOEk3Kxi0Xyv22ZjDYrXN8L+N8C1r0Kt8zn9gWLuutsTX//MZzLz0mMCdyUYHhYt2M5TnB7fHH52bfLYrhcy7qZ++1UtJO+/zw517xMjxwMPfA4WjIdJxXDDGc51t3eMCrxD6eBF9wPZSQ2XtP2NyI+OgTwv3Hsh1KgeJxs3l3DMpy9ie62950koBF/4AvznPwO7FEEQRhci8Aq7B+F2aL+Pl17wc8QZF3Hjvw607X5j8RR8Pm+Kg5NZtsr+h9Wx0dr6Jvie5a/l2Xuqf8D9j2o36DGHRYPu3ZXk5sKUKfbTGAZU2x/U7jJYhevaWsBdxbsfquLtSc7QO1/bYHsCHcc0MTue5cYb7SJgXV0aL+57SwnEsWOiAu8hvMkcr0Ox2wunnuxwbYwhgdep8HQVJm9LE3v0hm6y1tySy2GnXxJfnzCug5vveZVHb3+Q9577J4ceaFdvPa5OXnp6Bd/4hv38zc0DvjRBEARBEEaKSDf43oTWf0Gooe/x/eHuD2B7O/zhFfjLG45D/nHnIbS2quUZM+DYYzN7CaMawwWeaqqruvhg3FHxzeaL6yCY0Fg6uAX8b2futSMB3n5TZysfvL/D0/q9xsHTl8CjF0FBipmRnjHqeHHlqJ9/Ihly8M6Y1kxVhTKntLbl8snx58DiK2AvdSMSDht8/vJP0dSs6v2iwm5+ctXbzJun75+++MU0758EQRjViMAr7LqYIeh+H1rvgJa/QKiBb/zoFHp6PI7D33l/YlqnbWjMizt/Y6xKdPBGTLjqKfBHraSzKuC608EwCIVcPPyUbnDw2XM+VgseJRpPmmQ/VXU1eJwvecxTWgrZ0RquowO27RxHY5MSWjcynU+ICuHdIXh1g+M53ns3xLJl9qf8O3f28qJmBDr/C13P2zav3VjOXFbyH07jqw99HT7Ynvb3sd+B1Yxz6PkwZgReVw4YCQ84BinwxpoGtrblEAioxnSP/GcP27hxVZ243SZnn7qKffZ0rirzjPe48UbY05KQYW1AKAiCIAjCGCCwHFr+rNyhkQx3TK3rgKdX6vXP75c0pLaugF9eqwN3v/Wt3SieIUZUIC09uJDNqHi6HrJgU0vyWP/rKtYuE3Qv5q13dVF88P7bnMe5XarvhROGa+wKvJDCTDFAgdddAYa+OTQMOPqwTfH1J56dC9W6jv/9jYfx5rvq/Xa7Izx937388gfP8eoLm5kQNUU3NcFPfjKwyxEEYfSwu/1ZE3YHzLCaet/8J+h4CoKbwAyxY2chq9ZWpjzsjcXp5fAuX12VtG3N+nL7hns/gLeiWaJuA276NBSo3N5VayviT1CrKzs5dFH0KbZbXVuiwDttWlqXNSYxDLsI+r/X7EK5zcX77GrHc9xyz8KkbbUOjXkB9dlovx/87yXt2vKhi6c5hVJayetshcseSXY0OGF4ceVM55JLEjYbUJX8URm9uIoS1gcu8Hq92olumgbrN6m8u01bS2zjrHm70cHwynpYZ8llC26CUAMzZuhNIvAKgiAIwhjANKFnHbTdDe0Px2OxMs4/F0MwGilwwCSYZ3c4hkIuPvf1T9HaqmrxmTPhssuG5lJGNW71czl40Xau4EYO5i2+eNTryoiSSKRbibyDJdJNT9tilnykxdm4g7e7H7nLnnHJZoSxhFMcQ6rohr4wXPFM5Rhnnbwqvvz4M3Pjy0uWjudnfziKiWzlWF7kZ999JT5jrqLwQ/71L32OW2+FlZbnJIIgjD1E4BV2LcId0H4P+N9Jcge8/V7vDt1tCZlEqVi+Klkk3rK92L7hiOlwVFSRuvwQNe0oyoef6OVFC7fjcpnqD7VbicQTEy7TKmztilhjGl7+n9u2zybwPrUC6u3ZuC++Op1b701T4DUj0PEw9CTHL3S1uvjNxq8xjU1qaF4W3HoueN1JY5PImgOGl8svV8JmjD33HGPOa3fmBF6AOXO0q3r1OvXZtuZ+nXXySj7zaR2RwYfb4ZTb4Lx74I+v2k/WvcT2/2DtWggEBnV5giAIgiAMFcHt0PmMcuy23QM9Q/hkdl0j3PquXr/8kKQh3/rxSbz8+nRAPYC/+WbIykoatuvjUfcwRx2yiac4g3c4mBfemEkolEIS8C9WPUwGg/81ln5cQiCgiuLpU5qpruqC5XWw4Hr4+1vpCb2e9GZajloy6eAF8NodQacct5asLPVz/PCTGpZ+Mo6Oziwu++oJ/C70fdYyi3u9X+BHl1tq7MBKTjohwEknqVXThD/9aeCXJAjCyCMCrzDmaalbxzlnbuK8s1bTufVv0LPRcdwLr2qF6OD9t/L9b7zB7695Ib7N2mSrN6wN0mJs3pog8E4phQc/C/86B6460rbrg0/0E9eFe0WVSHc5GEpMTHTwTp+e1mWNWWwC78v2fe9xAMuIxll09cBv7QP+749HYZrJTRhqd9gzeePCf2BV0tg7H9iHRw/axhEol0IEA+OWT8PeaeYr5KjpfjU1cNttsGgRnH8+PPBAeoePGjLo4AWYPVsvr16vnCHbdujXuOyi9+0NBQ0D3o9O2Xt8mer8GyPwMTOmazf1T3+q3NEffzyoSxQEQRAEIZP4l0DLX1UDNf9iCLcN7ev5gnDJw+orwNxKOGmObchNd+zP329fFF//6U/hmGOG9rJGLdHmXPPn1jN+nGpE19qWy3sfpog+MMPQ9bLzvnQI1YN/MW8v0eLswftvUzX91x6BJh/83wvw3TQ6fHkm9T1mNOPo4E3v3tMRj33maVFhgDNO1LMdP3f5p/j0l85n2YYaPs/d5BCgOliL50XLvZDZA4FP+PGP9aa77uoj6k4QhFGNCLyCI6YJL74Iv/89XHklHHww3HTTSF+VBdNUDQBab+Uv123lkSen8vATc/j5Hw93HP76O5P55906j+vqb7/O73/6YrzrKEB9Y99/ZP9w46Hcfv8C27ZyGvl64x8JvJzQMMAw4Iz5kGufTvShReBdEBd4tSs4UeDdnRy8W7bY95m4+D5/0Bvu/RD+8TaYJsGgyzbd65tfeSe+XLvpE9XEo2ctbTte5f9+tJRbby/md385jPF7XcW3fnwSpgnvf1TDc9/08/nmW+LHPjz/Cjjeok72hrsEvFqB/9znYPFiJe7Om5feKUYNVoHXcA982liUOZb7q1iEidUlP2FcQofrfcfDsTPVsgn82TItMOLnhKPW4rYYqtvbsU0rEwRBEARhBPG/C53/gVBj32MzxU+fg5X1ajnbDX/7FLj00+PX3p7CFVefHF8//3yTn/1s+C5v1OHKBVchhgEnHKVd1U+/NCv1MT3LlCO7v0S6oP0BMMO89Z6+uTlk4Sb42qOwKtpkL9cD3zy093MZBnin9v8aRhOJAq/hVT0wBop3MnanBFxz5Wvx5eWrqnjh1Rn0kM0/uVQPuu1d2zEEPuDQQ+HAaP/xnh74298GflmCIIwsIvAKjtx3Hxx/PPzwh3D99fDOO/C1rxHvPDvsmD3Q/YHq6Bqb8tV6GwS38vNrj4oPu/bvzgXCNb87Ju70nDG1meOOUA27Kiu64mPSEnj/ps7vIkwBHXzHuJ61zOJn/ALz5y8q4bkPPl6hc8EW7BV9RGoReHe3iIZUjcj2nqd+Ns9wMg9zjt7xs+fhtvdYvqoqPt1ryqRWDjtQq8M767yqiUfbvfzxWoOf//FwvvydM/nRr46jtq6Qv9xyEO9+MIG1TwX5F1+OH/cYZxH82hHpX3zuwUnF1ZjFKvC6Cgb9fdkcvOvKMU27g3fi+Pbkg660/Owf+QQ2NMdXZ054i3/8wz5ccsIEQRAEYQQJt6i+Fy1/h86nh/e1394Md72v139zsi0SrbMzi89ffjahkHo6vHCfBm67zdhlyrYBE41pOO34NYAyqvjvWo75mxROXdOEjkfVvVi6hOqUizvcjGkSb/AF8OkP/mLvq/G7U2B26h4p6pprwD24mWUjjmFv0I2rwHlcurjykprO7T2/jssvfjdpqPGFhaonDMAbm2BVvd4Z3IER2sH3vqc3/e1v4MtwH0RBEIYHEXgFR1JNL1++fBgvwuxRLszOZ6H1n9DxJHQ+lzTlq8oi0jqxbUcRr72tOj4ZhslT99xHTk4o6diGpt4dix2dWXQ0u/kbX6eLfDoo4k/mlZTSCkDOyi3wjHMjsBh+v4eWVpW35PGEmTQh+n14dDeu3c3Bm6qJ3L9ve4jZMxoBg69wC43jowMPmwqfXWhz7+6/zw5qqnQ+b229LgJ/fb2zYPvAv6Zx3O2/Iw/VIXg1swldfzafPfcTx/FJuAohJzn/d8xiE3gHX0RbBd51mypo78imy6cC73Jzg5QUOzRaOWASHBl1REdMuMHi4g1u4Stfqufee/WmVcmJG4IgCIIgDDWhWtU4reVG1fciVN/3MZkkEIKrntLrJ8+Fz9lrsp/87hi2bCsBoLzMx+P3vUve4CYn7RpEG62devxaJhbWs4PxXNt4OdzwBjSmuKcKN0HHI2kZWWIzLAm3ArByTWW8B8OVOTdQ/chLeuzlh8CFCxxOkkDWnL7HjHYy3OsCgKy5SZv+8ptn+OUPX2bq5Bb222cHt//lca7+48fq/0iMWxbbD+pewlln6VjAlhZ46KHBX54gCMOPCLxCEuEwvPaa875hccyF26DtPmi6Vrkw/e/0Ot0rLzdoW6+rtztx//3UvLh797gjNrDHbH2ukuJuPB6V7dnekUN3d+quWPWvdvAyx/B1/kEO9g5Pa5jFqxdcAfv13gCgoUlfW1VFl3YRWBy8FRUwdapanj4dqu2NgHc5Tj4Zx4K7pqqTy76gnBltlHB09mtEfnAM3HkB5Hh498MJ8bH777uDmuqO+HptXV9PxU0ueOwaKjrUlLMOCtjyy0s597Mb0nd2FJw4trv5JmItPF0lgz7dhAnaBFzfkMemLfqcE2vaU/+cr7II8g9+BJ9YgsD8izn3XN28bts26OhAEARBEIThIrAa2u5QjdPMyMhcQ7MPiqLT2wuy4Hcn22YevffheP5yy4Hx9T//8lkmTR2kY3JXwaNczjk5IU46cyuLUT8nwzThgaWpjwusBt9LqfcDBHdA+702t++zL6v4rcN5jT8ErtJjT9sDrjkuvWvOGmu5Zw5kuNcFANnJPxeXy+QnV77GxiU3sOSFf/LFC5aq/xpf1jnUPPgR7LDMpAssw20E+OpX9aZRFc0oCELaiMArJLF0qcq3dCJjAm+4Q0UudH+kpvGE6qFnLXQ9D61/h541aU0FMk2orbcXbFZnJ8CHn+jpWmeeZLf8GUYaLt5WP3z9MWZ86Xccylt6e66H5uLxXMW17Mky7vFcBNW9F491lkZu1ZXR1zU84K6Ib3e54LHHVDzGo4/uOgkAqSgqgnPPtW8rLAxSUNDDEQdvjm9btnEi32n+NRRm4/d7eOQ/ewCQRYDz1/2N6tCO+NiGpvw+TAYGt0cuAiCMi89zNzVH9KOTbd5RkL1n+uPHAq5S/WHzjOt9bBp4PKoRWowly/aOL0+oSfELBuCgKXBU1LYeMeEH/1VfAQIf43X7mDlTD1+zZtCXKgiCIAhCKsweZbZouQla/gHt90Mk0PdxQ0lNEfz3YvjtyfCLE9V6FNOEb//kpLi548Sj1/HZcz62mSl2ayw13jcufpd7+Fx8PXjdW0kuXtOE9o5s2tqzMbvegK4XwQwln7dnDbTfnfTZePblmYyjlgc5H7cZbZi7YDz89WxbXnJKvBPisRJjmqEQeN3l6WcTHzwF9o8akXrC8HfLPa3ZAz3L+OIXIUtNtmPxYqUJCIIwthCBV0jijTdS7xuUwBvxQ2AFtN0FzdepyIWOx1Sx2PJ3aLsXfG/1q2hsbMqju9vuorQG+QOs31QWX54zsynpHJXlOmTIMYf3ieXw74/1t4HBA3t/BzZdzbs3/54/cRVBsrjtvgV8vLx3u631/HFh2VMNhv2/4r77wm9/C/vs0+vpdhlOOcW+Pr5GFYAL9qplyqTW+PbHn1HTi269byHNLXnk08mLOScx7YHHyT/xz3zbcwMuwvj9Xn7y22M44ISvADCXlajOXZp/cin/5RQu5jaeNM5kxtRm+sRwQeEZkH/UQL/V0YsrB1zR/ysZEHjBnq98/+PaOTBjakvvB/7mJPBG/08s2Qb3f6iWzSD4FzPXMstsxYqMXKogCIIgCFbMCHS/D803qLi00E5lyhgJVtTBH1+xRwS4XXDJoqRohieemctb76nMV683zN9+91/1/FoEXoW7UplLgH32rKP91ANZh3qw7u3yUX/Os7z3Rjk3/PNAzrn4PGr2/C7FM35EycwfUT3/e1xyaRkr3r4Tul5Sjt3gZmh/WM2+jPhtL9XUnMvrb0zgIc6jhuiMrPI8uP18yEtzFlx2GhEOY4EkgTdDjvLcg9MbZxj2Xhd3vw/1Ot6O7g+orIRPf1pvuvnmzFyiIAjDhwi8QhIffaSXEwXGfokppqmmb/kXQ+sd0HwttD8EPRsycZkA3HTn/knbfvPnIzj+nM/z0BPzAdiwuTS+z0nEqyrvZH/e42YuZeZlv4e1CXEQn98PDp0KwFOcxjG8zLJjzwLD4MSj13HcEaoLbSTi4vqbD+r1ep0F3hRdxnYj9t3Xvl5ToxpiuN0mS57/Z3z71u3FvPvBBL738+MB+DSPcHj3KwAYnT1cH/o265nB45xJ1p9fYtHSx3mRY1nJPM7icdtrmLg4jf9wFxcxeWIbubkObgQrhgsKP71r5e4m4o0+2c+QwDveYqZ/6WVdyJ9xYu9Z1cysULlsMX75IjRFH8R0v8v8efq9uuEGFSsjCIIgCMIgCLcpI0ZgOXQ8per2jqcg0nuviyGlsUtl7R59E/zxVdjeywwgIBRy8aNfHxtf//qX3mPGtBYw3MrtKKh61tL74/e//B9XF1wbX69asYzST93ASz8J8uh/5lLXoIXIhsZ8brtvIXsf8SV+/WsIN90Crberz4wDj/53D/YMf8J+RJvhuQy4+dMwvshxfBKuPMjZRdwurhwwsizrGWoalzUb3KV9jwM4dqZuROgPwc3v6H3B7RDaaYtpuOceiUIThLGGCLyCjWeegdtv1+t//rOKa4hlXm7eDK2tfZzEjKg/Em23qgYMnc9AcBOYmVVhlq+q5Ke/P8Zx34uvzeBL3zqTxqY8auvUH9DJ7i1MXrkE/rUYrnkOLn4ITvoXDy0+iPdYxKXcQvGGjfDn1+0ncxnw5zP4y2HXcQZP8SpHMWm8ao5mGPDrq3XX2Qce35PmFj3VPxy2Tz1avkoXVNWV0aemIvAmNZJze7xxkbGi3Mf0KUqYN02DA0/6Sty1/e6sU/A98BWYpSMuprKZM3mSn/EL/sY3OBb1/vycn3Ho/pv43uVvWl5JvT977dGHI8WVDwVnQ/b8QXyXYwDPRFVwZshVUOPw0S4sNDnheIcGa4l8+wiYVKz+/52zN2Qr0Z+Iny+ev5jsbLX6/vsqykQQBEEQhH4SboLuD6HrZWj5qzJitD+snLsRX9/HO1BbV8D9j+7JbfctYNnKqr4PSGR9E3zhAdj/Btjvz3D3B3oS1pqGXg/91z0LWbVWOXWLCrv5yXeiTUXcZUmz5XZrPPoJ/OSJbVx+Twt/yv5ufNtM1vMkZ/IOB1HDDnJyguRaep6Ewy5+8ttjOe6cL9juexK544F9WcIBHMzbtJaOgx8dDUdMT/86cw/ctfpdWEXdTAm8hgG5i/oeFxv7HYuL981Ndld89/scfjjsoVLw6OyE++/PzGUKgjA8yF86IU59PZx2mn3b3ntDYSHsaYkbTZnHE5ui0/xHaL0FgtuG6lIB+M/zs3vd7/NlxXNav8/vWR+ejvsL98LVz6onlv9ZCR9spyRgj22I/HsZ5pZW+8mmlPKkcVZ8dfLEtvjyAQu2s3Bvlf/a3e3loSfms3lrMUeffRHlc37Aw0/OY8fOQk46/3Nc9w/tStQOXt0sbHfF7bav19dj65g7a7pzfMJff/s0eceMh5cvg+8fRafHuVgK46K9soY37vsHc2clN+w79bi1vVxcCZRcBjl79fVtjH2yZkLh6Rk7nZPAe/TRBjnVn1XFqOFOHhAjz6vy2Z7/CvzqJCjIju+aOf5/XHG5jnLpLVZGEARBEIQEejYoE0bLP6DjCfC9pmKQBoHP5+WKH53M5AXf4TNfPYdLvn0mex35dc6+6Hxa23L6PoFpwv/Wwym3wrOrYUurchnGOGpGr87PtvZsfvqHo+PrP7jiTSpiMWwSz2An4d7jyEM2c85bNdxzxDUELYLqIt5j46QFdK37JZ0bf8MbT93KIQdsie9/5c1pHHLqJWzYlOwgXfz+hHhUxkrvnnQ/fTlccVj61+gugdxD+hw2prA1NE7TxZwO2QvTN2ecMhfOnA+3ngtPX2Jv9hL4GMMMcNlletNNN9FHXxNBEEYTIvDupoTD8ItfwBVXQHNUO/vwQ4gkNMMti0ZyLrDEH33wgWWAaepc3dgUnYT8paHilbem2tbPP2sZAFPZGN/2wONKmc4mgIfUDuJO8rmLz3MsL1Jt7uT5dfsljdmyvTi+PGm8niJmGPDFC5bG17/2/dOYut93eOXNabS153Del89jwt5X8dz/ZlpPpwReVy64e8/t3V04yJJuceqp2JqYzZqenJ0MqiAFINsD3z2SK898jkN4k89yD9fzbe7gIq7m10xlE98efzuU5DJtcnL+62knpOjU5cqD4s/bC7JdGXepmuqVIcaPT942fTpqilrBKVD69d4d7AdPgb0d9pshjjhQZ8l8+OHgr1UQBEEQdikindCzSTtxzR4IblGCbvvdKkbNqVnWAFizvpyDTv4yf731QEIh+8Pbx5/Zg8PP+FLvIu+aBjj1Njj/HmhJuI+YWQ73XggPfQ7mpnYE//r6I2iIRqFNntjKdy57W+/0SK1twzMxadPkSe187t8uvP/5PJwQrQUNyP7V0biyXLhcJoceuJVXn7iD//ve/+LHrV5XwUGnfJl3P5gAnQH4xQuYJ/6La35zVHzMhWd/wrgZofSaqoGKMyg8d9dy7wK4StRXw6tc5Rk7bzbkO89qTR5rwC3nwOnzkt+PSAACH/KFL0BO9L/rhx/CkiWZu1RBEIYWz0hfgDAyXHcd/Oxnarm4GH71K1ibYGI86yy9vHChjm748P1uCGyGSJvK1w07i29DSSjk4o3Fk5nANk7geW4445+EIh4uoIJT+S8L+YBl7MUrb04D4Jf8lIP22cIpOx9URcvkEphYAhOKeG3zXhx7xRWE0EXEi69N58Rj1sfXTRO27tAin9XBC/CpU1fyzasTOoX1QXXV/7d33+FRVN0Dx793N72RUBJK6C303kVAVJQiUkRQEWygiL1XfBUVy+tr/SkKKijSe1MB6b1LJ5QAoYeQQHqye39/3E12N43QCTmf5+FhZ3ZmdpJJdm/OnHtOInhWcL9zWoSNHQt3320yxl9+GdMx17MCpB+mZPGc0wT7dN+Oh4f7HYng0nZW04bVtOYPHnR77v7WpltslYruAd62LQ8RXjaXmm7eEeB/l8kgEJcktwzeChVcFqwlIPhROPcHpB3MuXE+GkWsAsyUtC1bzM0pi9yyFEIIUZTpNPN5mrwcMo46U++U9YqXSss0Y14EDw/twfkE50yblk2OEBKcwvxF1QHYviuMvoN6M3/C7zmHvUfi4PYfIcUl2FzSn6Sv+vL9yrsZu7g1Z1/1o27EKR59YDM9u+zCYnFPKdy2M5SvfmqRtTzi7YXuvRWkHJo7a0kTRLXnUjKrWXn4vR8s2Q/7YuDuCLenPTzsDHtlKbVrnqb/0z1JTfXgdIw/795TickBbxMYewoFJHIKqI7FYuflIasu4tyKQdADN2dQ3qMssNnUQL7SJUO8G0Hq9svvdZO8hpCQ5tx/v4UxY8yqH36AZs0u/xSFEFefBHiLoNhYeO015/KkSbkHeN97z/m4cYNzgAlwbtp4Ds5dgYI8qRngZc09wKl1zvVnkuC7lRDsS9xezezEf7iVZVjQMMtscq9j05EM5hZWoF2S1Hfd25vOg8qAp3tmQbkwq1twF+Dz/2tD9PEgXnl6FY3rHyfmjF9W3degwBSCAlPdj1HmPLe2imLZ6koF/vJLFk8CzyIw7b+Aqld3/gxmXXqfxpB+mNbNjrhtG1wsmVeHriS7rLIX2VSqcJaXHIPL8uXOUb/2Cf7dWZrKFc7yy1cznBt6hIJPU/CsAh4lcz2WKLjcMnjdArxgshiC+plporac2dVuTibA8IXwUjvKVYRSJVM4HePD+fNw4ABUc0+SR2tISQHfvMvDCSGEEIWXtoMtFjIOQ+ouSD+QeyD3KgR3bTbFOyNu4+Ov2mat8/bO4NuP5/HYg5tQCsZMaMDAZ3sAcHbxGTY8FEmzBkfh1fbOA5UPhnvrwoQt4GGBrrWIergXnV55hr37nWOxI0eLMX9RdVo1PcL3n86hQV3TPyH+nDf9nuxNWpr5s7ZV0yP07bHd/WStEuB1oxR4VIC0PGawgSmJ0b5qzvVfLoe4ZO6rsZnqI7bzzdvVeSDxVzqm/QMuFdW6M5NVtOG5J9ZSr/apgp2XNQSKDTRB3ptRZmkM65VpZuxGKQjsDecmmrKJFyPNBgdjoWYpsMVB6jYGD26QFeAdP94khwUHX+mTFkJcaRLgLYJmzHBftlph2zb4+mvnuilToEEDzNSthFk0qLAbpd5Aa8XuyJIkJXni53eBWl0JaRDg5b5uYzS8Md/cEU5IM02U7qtPYrMI4ouXoaz9KIxeD/N2wfud4GGXUgnpNvjWBOlKAu3zeekoKuFHEok46xFVqRSXI7gLObNxM02YXo8lKyuxZ/W3HDnmUp6hXO4dfH/6YjY1Wz2Tz1k5lSieRO0ap8Gz2oU3LkJyxPq9aoKy0vHWg/TtsY1N/5bhpy9m06JxNN7eOf9YyS3Ae3LHZ5QonoTVarI9LBbNkhm/smp9edq3jsLfP900UfO/E7zrS0b1FZS9eR7kEuAFU7IhsCfE/2L+WM3N7J3wwiw4lwqH41DTHqZR3Wj+XmJ+h6ZPh1decW6ekQF9+5r1777rnLEghBBC3BTSoiBhOthyH8deTTFn/HjgyV4sWOr8oK9U4SxTf5pA4xJ7YHksRMcz4OgSakWMxrr7OE3YBAvAtiEAq2uAF2B4J4hLhtc7cDSkGu26PMbh6OBcX3v1hvI0uWMwTw7YQPNGR/nfyJZZTYx9fNIZ/eVM96GcJQCsV6ih1c3Eq0b+Ad7cnE2G/y3Lqo3ckFmMzr4JwTzL14ynH7e0OMTwN/7JeZzcWIMdZdFu0uAumKxk5ZHVSPqKs/hBsYchYS6kbLrw9gArDsJr8+BcCqwaCoHekLSUli3qUr++lX//heRk+P13GDr06py2EOLKkQBvETR3rvvy7t3Qrp37uurVMVO8EudDxin8/aBmtRh2R5bCbrfw784wWjZ1aaIWlwwLIk0NreR02HkSjUJNezhrE61h+3xP6m055tzvSDx8sRx/luOf/USDvN2XvXIGZ21Y2FO6KbUf8DGva1FwZw2+/eB9Eje4F5uvWin37EBPzzwCSsCJU4F8+m0bmjU8mrWuQrncB9I1qp7h16+nZ2Uq5KZmtRjefG45bZofxi8w0JQhEHmz+IJnZSx6H+NHTr3g5qGl3AO8np42SpVMzBGzDQlOocsdjnRh77qmHqzF70qdtXAoUQIiIsx7TKaKFfPY2LM8+HeChPm5P1+umLkpBLD6EHz8D51vb5UV4H3vPejXD8IdZeU++gimOn5kPv4YXn8dvL1zHlYIIYS41qKj4dtvYdEiSEoySRVPPw1t2lxgx7QDkLYb0iIvPOvlKtmwpSy9Hu3jFoDtdut2JpUciE+3LSYb0EXzbPtbzyagTyWiQl1G/kE+MLYv6ekW+tx7X9axfX3T+fKDP2nV9Ai/TW7Alz+2JD3dis1m4bufm/NdtmOP/GwOtWpka6Yr5Rlydyk9F/7Y7N74zoVdWZjidT8vpH5GnF8phjywkY/fWnjhhCAwY/HAe03w82amrODTDLxyyYC4kq8ReA9YAiF5Zf51tlMy4KlpZoYcwIh/4MO7wRaLSl3P4MEtefpp89QPP5j3KMmDEeLGdpO/ixZeGRmwYIHJgKtx5XoekZZmjpvd2WxjxGphcyF+vdu6xvWOsy8ymM7MI/aPKEg6DP/sgyUHTGA3wz1Qel4F8eSgHowbOR2lYML0usz4uhYT+aFA5/rcJ91pnBLAgL6OZko+njC4JaCZu7Ux49e0ZhEdeebRndR+frnbvs0bH2X1hvJu67LXXnXl6WkjPT1nABlgwdIqJCU5SziUL5t3pkT9Oifz/Zq+HP4nd922zyx4tcx3W+HgXRvS9hVo0+wN1Dw87GYgoqzgUR586oFHRSDdTGm0lrh6d9EFYP5odQ3wlsrvnoZvC9MMJmlpzucal4MXb4XPHc99vZKnvxrN6FqN2bYrjKQkmDDB1G9OSIARI5y7pqaa5pCtWl2RL0kIIYS4ZKNGwfPPQ6LLPemdO8006Oeeg88/Bw/Xv9C0HdL3Q9KKi596fYX9/EcjhrzWhdRU5wm+8+JS3qvyNZahG/PdNw1PJnI//3Abd87zot/AyBzbvDH8dlatN1N9rFY703+ZkNUT49NhC3jswU0Mea0L/yyv4rafl1cGX384n4fv35rjmHjmNnVIYA0Cz3BIj77wtpkGNIFS/hB1FnachD2nIMAbOlbD8nATepcJ5vb43wkMSM03gcaNVxUI7GHG6kVBQKdr8zr+HcCnESTMyztT28fDzJgd7MiIGL0e+jaEemUgaTkPPdiEV1/1JDERduyAVasKcBNKCHFdSYD3OkpIMFmtgbnMGvr4YzOt2NcX9uyB8uVzbnMp1q+H8+fz3+aOdvvxs6zPsb5x/eNMmFaHMQwg+Pd4+D3/4wTpc6ydEcCmp8vQpMFxHniyN7XYyQB+JallLSZPmQ1/7mb2S1Aufj9lOE4KPlS6x5+Ws0azfn8z9LMW+nTfYRol+HnCB+ZD8ZdH+zCV2gBUKp+zcH+Lxu6DlWJBKQQEpOV5rpN+msz9g3pTrvR5Nv/zA9t3hXJLt8cAWLcpnHWbnN1m8yrpAFCrekyezy2YPJbb27kUvveulee2woVXLVBz3evHKU8zaLEUg4wTgA2UBzVruV+b5GRPCLrPlMKwZEvflIyOa6JOHfflC9759+8A9jhIyeWPtJduha3HzGwBwOOt2bz7fEfuG/4UANOn23j5ZSv//GOmk7lasUICvEIIIa4freGNN+CTT/Le5quv4Nw5GPVjKhargtSdkLT8ujQ0zpKagd50lMnflWPa31Ym0ZMfeJJVQbfx23fT6NZpL1APDsfCp0vMFO+IUEdD42JQNgjCizFswUBG/HonALM+TqJjl+/cZl7NmBfBf79vnbX84RuL3BoeA9SsdoaFU8Yyf1F1ps6pxakYfyKqxfDYg5uJyGsM7lnpyn4/biY+jS8uwBvgDX0a5Pm0BU3xkOQ8n8/5+g3B/+6iE9y91qzBps9F4p+mMXpu7q1jMrOXHgC7hlfnwtzHgESCPNfRr18bRo0ym377rQR4hbjRSYD3Otm5E5o3N53fV6921Lt18e675v/kZHMn/6uvLv21NmyA+HjYtQvm5zH7OdMDPf/lm4/nm4624zZD73pQzTQ4aFTvBHasrKI1ncnlQI3LQfuqHDhXhk9GdWANLTlAVXZHbqF6FVN1fxe12UVtasWeNiUX7qnD658NYWd8aNZhYj79hHWznJ1w9+4vkdVIIVPUkeCsxxXD43KcSvs2UW7LZcLyj2rf23k3J3d8TmBAKlarplG9E3luW75s7jV4AXx8Mvj+0zn8b2RLt8YQgHtw1xJgmhuIC7P4gld1SHWkgSovM43Lu3aum3/xBbz4onncty/gXSfX7cS1MXiwacwQHw9PPVXAnQLudZla5tIp22qBkb2g44+mGURCGveOG0ZpdS8ndBlWrbLy4w8pLFrsk+OQK1e61+i9FKtWmUDxgAEQdhM2dxZCCHF1aG1KBX36qXNd7drw4Yfm8+Tjj2H2bLP+l18g2HsTX3zwt/tn4LWw+hCE+EJiGhyNh3m70fP3oJLT6QP0cWzWxHMzKTOepWpdlzTkl9tB64rQulKuh3679Xom/NOMqMMhxJ7146EhPZk/4XesVs2O3aUY+Oy9Wdt2vXMPrwzNmcAB5kZx59sj6Xx7zgzgnBt7gkcuHV+F4V0XEv4EnXcSzBVnDTFjeK8IU55LXF1KQcDdZoZc6rbcnx/RGdp9b8qrbDwK4zZB/yaQvJwnBzVm1CjTrXjiRHjzTagnPcKFuGFJgPc6efFF59SswYNhzZq8t92z59JfZ8ECuPPOC29XghgerzWL4XUn4fHGMZi1w5Rc2HUKxtwPQKN6xwGYSi/KcwQLdtbQkmn0xLdtaV5+YzMtm0bz9dt38SPO8gNHjwexYIn7VKqzcSYAc+q0Pzv3hLo9t3WH+5T5HXtCcwR4D0U7C/BXqhCX4+spE5bAl8Pn8/zbdwNwT6cLfxODi6VkPfbzSycoMIVz53MGim5rezDf4zw5cANPDtzAijUVaHvPowD0vy9bNqJ3bSlidDECeoB1GShf8G2Zb42uZ54xJQF27jSZMuL6Cg01N7G2boXu3Qu4k1Lgf7vJujk/E+wuN2gCvE2Qt9vPkGrD4+Bptng35b7U8SznVgY/lfN3FkxwVutL/7WLjYU77jC1Eteuddb3FUIIIfKTW3D3nntMSQY/P8CewIyx83l8SHV+Gd8QgP/90Irqlc/w1CMbLv7Fpm6DtYfh2DnTXLhDVehdH/wdjY8Px8HP68xN03dud9//w0Ww7ojbqtw+NsulR8PB9VA32832PIK7AP7+6Yz8bA6d7u8PwIKlVen9aB/u7riPdz/pQPw58/ldITyOMd/MwGK5AsFtz4qSHZof5QVe1Uym+NVmDQK/O0xQWf4GuvYCukDG4dybMlYtAUNbwxeOkocfLIQ7akBpaBLxJ50792DePPP28vbbMHPmtT11IUTBKX2t7wxfI02bNtUbNlzkoOgiRUbCZ59BVJRpHPTTT+7P2+0miBsYaGrqLloE9etDmTJgtZrnM7lehsRECHDpD1a/vgmOXIonniBrWoWrYM4yvt8n7B9/nnYspS478j7I/MegiSlREFb7ZU7FBOS6WUhwMgc3fEmbro9ldbPNlFuwNHrrf6l76xDi4n3d1r/3ymLe+6xD1vJbLyxz68Aae9aXEjVfA0zt3JQjw3MdBGoN0+bUYn9UcQYP2ECxoNS8v8Zc1Gw1NEcW7thvp9G/z78FPsYX37diz74SDHtlKWVLO4JUSkHIUFP/VQiRP3sKJM6DlGy/dzN3mJphdvO7b0fxAe/wHv/J2iQszARkM8vS7NljappfSqB35ky4917nckaGeR8XQuQgf7kXAddinH0zyC242707TJoEXl5AWhQkTAdbPBkZFu5/ojfT5pqgqdVqZ8HksXS4Jcp5sH1nTGPj2CSYuRM+7QIBXu4vWvr9rM/GLFYFlYubfha7ToJNQ8dqMP5B9+16jYXlORMZ9lGVs4RQPuAkoS19sTzbBlpe2ky0d0Z0YPgX7XJ9LsA/lWWzfsl3Jt1FCegMvtnbvAk3qdvh3JSr+xo+TcD/zpzl0sS1lR4N8b+4l73LlJwObf/P3AACaFsZJj4EHha2HuxHwxY1szZduRJat855CCHENZPnWFsyeC9DUpIzqBsRYf5ftMhkDVarZpr67Nnj3kW+ZEnYt890c89eIzLTwWzjql27TJOgi+4AbzvPpo1WwM9tdXsWM8vSncDxFyjG2zQcHm8ODZ1Tm3Q+f7edjfPl3U865AjuArlmwr783p05gruAW3AXYMTXt1C1Uiz9emzHxyeD1Ruc9XAb1DmR5x1+paBXt115nu+FlA5NyBHgbdHk6EUd48WnVudc6V1PgrtCFJTFBwJ7giUYkpY513evY+pyD5kO8SlY0BzzKg8uswxHfX+MH0aXZe5cs7xypXkfveMOOHwYmjQxdXnfe8/9plpuEhLclyMjne/7QgghRHZaw6uvmlJrmbKCux4pcG6WW+akh4ed376bzqHoYDZvDcNms/L4I7ez6vnXCIvaY+rPH8tWJuyhRjmzZq0qZ4DX5ggOuwrONgbXGmqWggNnoIQ/p62h/LKlE7/rB9lGfe66LZLZv4/H4lHA5ll5+M+rSzh33puvf3JvNlyyRCLTf5l45YK7AF5XsFP1zcqzupkZpzMu/1jWYqY0mgpw1I22gXdD8Kp0+ccWl88z3Iypz081zRtd+XrCV92h5xjQmBs97/wJH3emQZXJPND3Bf6Y4A/A00/DunXg6ZnzJYQQ15cEeC9DxYrOx1FRZlz0yCNw5IhpZpbJtYN8TAwsXOievQtm+m/x4ubxgQPuz6Wnw7Zt0LRpAU4q9QAbZ29i4c+p3FvmT57a4sMGmjCSJ5kzbhx795fAJ+kcfiM1nHXZz8MCDcpAndJQrQTULW0GjBb3gG6fe3bw3c/mTniNqjH89MVs+g3uxbETQQA5Bmv5mTC9YAV8bDYLjz53L4eOBPPeq0tYuc6ZMXBLi8MFfr2LVTo0Ice60JKJuWx5Eawh4N/58o4hRFHkfxtYgkyjiMw/Qu6oAcueghdmg5eVkWOO0GvJb/xvZEt6dd1F17Zb2LZtAHPnmjfrlSthyhQTnAVTtmHVKti7F2bMAIsl75c/mu3ezqZNJsCbkgKvvWbepz/99MKBYjA1F//4A5591pToETnNmQM//GBmoRS4tIcQQtwgbDZTd951dl/37ppJv+/DK+VfSNuTa91TP790lkT0IWDrSk4QRon4M3j+J5/A28ajOQO8TctDq4pQJ8z01Bi/BfaeNkGbTG0qQd+G7vspBR/dDR/dzdbtYdzS7VEStMkuaVTvOJNGTcbjMoO7ABaL5qsP/6TL7ZGMGteYmFg/WjSO5pnH1zlnu10JHmGmyZTIn8XbUaZht/t6ZQVrSTPmsp1xlLqwmz94LX6mn4hOM/97VjPBdI8yUn7hRuddB+znIOGvnM+1qQQv3gr/dSRUjF4P99SBVhX54OXfmDZjMCkpii1bTHLEhx9ew/MWQhSIBHgvQ3Cw+RcXZ/7IP3rUBHcvZOpUk5HrascOaNvWPN67N+c+GzZkC/DaUwFtstsyjf0G/cqbNDmVQBPHqppAMeJYULEPXe6IpMsdjshG5U6mzlbv+qYhQpNwZ22u7LyqmQ94ZeXtN84y758kEhIUU0ZPol7d8xzaNomI5n3YfzDowl88UKpkIqdj/N3WVat8hn0H889qnbuwOi8PWcXocY2y1rVpXoBv+CUqE+Ye4PX0tFEsKCWPrQtAWSCwt/s1E0IUnG9T8KwACbMh3fG7XyYIxj8ASemgFHd22M+dHRxdt1cdou++l3iHCdjwYPTo3A87e7ZpHNGvX94vfeyY+/LGjfDAAzByJHz9tVlXurSzQWZe9u0z9csAnnzS/H+9g7yRkfDCC1CrlglSF/RvM5sNHnzQ1JD/6SeTGX2pbDYTNK9Z05Q1evRROH0a5s41JTZyC5yPG2dupr75pqn1LMzN4m++MdeyT58Lby+EuPJSU6F/f5g82bnu3q6nmfj973glu9S/TLOZjNxKIW77BzQMgolQGvf+EwAE+5h6mX5eUMo/9zIJMwe6Lw9pbZqmHYiF1AwoF2Q+O/Nw8FAwXR58kIREE9wtXy6eOeP+IDDgyjbicvu8vhq8al29Y99svOu6B3gtvhD8BFgd2Uc6w5Hlm25KZ1kCJJBbmPm2MtcyaXHORo6vtIfdp2HhXnj3Dmhh3mOqVDjBB28s55VhtwLw0UemSbyMNYS4sUiA9zJVqgRbtpjH5QvYCHT8+JzrlixIp23pSDYeKMH/vgjFtayGBRsp0+exL3oru+rfTtc7D6Bsh8yHrU9rsDWFaWPh0WdzLaDgQwrNGmWLTtxbBzpHgLfjR0BZQPkAjpo8liDwqgPeNc3dWIfS1WDffrDbNB4ej4PywgN4+12TvZypZElNTEzuH/yffnyeR55wD/CO/XY6vj4ZNOr4ZO7fNODfnWG88G6nrBrASmnaNL92GbyhJRMvfSyjvCCwO3iWu/wTE6Io8wiF4McgaRUkLTRTzJTKeYMqIQ2enUnlQ2c5qsIZpx9gIvezmwjOUSzHYSdNyj/Amz2Dd/Nm8/+rrzrXDRt24QDvnDnuyx99lH+Ad+NGuO8+UyKiVy/49tsrX/v38cdh2TITTO3SBdq3v/A+sbGm6/vEic5jHDp06efw5JOmXnyNGqbU0enTzud69DCB38GDnZ2bFy6Ehx4yjyMjySrDca2tWQOzZsGAAeYcrySbzfxo55dZnt2wYeZnBKBsWbjllit7TkKI/CUmQs+e8PffznUP99nC6C9nmezXDDtExcL07TB6HRT3g6VPmWZomVpWdDvmGlowh65EFq9Pl3dS6dE9ksCANOx2xbETgRxcE8yBqBD2RxXnwKEQDh8tRvw5b+LP+5CRYcHPN50yYeeJqBZDq2bR3FFuP+XIPVN2z74SdOw1gKPHTQA4KDCFeX+Mu7KZtdeKtwR4C8wrwpSQS9sNvi3Ap7EzuAvO5sbKE6wyL/+m4Her+Rv//Aywu8xQtSj4ohucOA+13O+evzBoMQuWlOfvxZUBc5M/OdmMgYQQNwZpsnaZevQA7xkTaMkaJnMfq2hNMeJpzCZ6M4XWrKI4sVh9rexIrs67vM9anGUMujGLT3iNSkThi8kOTcOTw1TgBKXxI4lwognlNCtoQ1tW8OXw+Tw3aK05wPzdMGBijvPaRCP2UY1VtGa3pRbvzIymTQuXbFevauDb0pQMUP6XnVVqt5s/LHfuNG/yd90Fo0ebYEfr1vDXXyaj4a23zHTmsDBnDWKLRXPu8K/4eR6iQqMXiD7mDL7MnziZx57rlFUCwtXzg1fzvw9ymV5yhYyZ0ICBz/bIWm5U7zibFo10nLQf2JMufBCvauDbxmQdShdfIa6sjBOQvAbSD4HtrPtzX6+A4Yty7GJHsYM6xBFMFc9DpKVb+YtOvOPzGYfOBJqO5g6JiSbw2aSJabC22qWkdqVKpl66r6+ZwZHJ9SM1Otpklnq5xJ7vuMMEJ12dPm3qs7se47ffTHmfjz9233bWLOjWLd/vStYxUlLM+V1oO9cA4tChJgMUTP330aPN1+4aKExMNMHM7EHvo0dh+HA4ftx8HjRseOHzBJOhG+TyFj9oEPz4Y87t6tSB7dvNOTdtajJ+Mx0/bjKoL8eJE+Y6eHiYIPOwYabTvWsQ31VCAlSoAGfPXloz1JgYs2/16jmfO3gQ2rUzn63LlkGVKgU7putNyIYNnTcirjFJ6yoCpMlaTrGx0LWr+2fFG/3/ZHj7X7CsiYLVh2HPKUjPVuZgRGd4tJlz2a5NI7XDcfy0pAODPsp599HHJx2bzUJ6+qWNLZs2PEqvrrvo3DGSiOoxZGRYmDizDi+/dyexZ80Hobd3BvP+GMdtbXM2XbvheYZD8OPX+ywKn0vpQisKN3siJMx1qweep92nOFM8nFt6DGJ3pHPgOnQofPIJbmNoIcRVlecbtQR4L9MLL0CtLwcxCFNk6xyBBOVxVxzgFpazEvOXcvPG0Vg3HWYVbQr0WpkBXoBnHl/L3t3F+GljZ8onOwdeR/0rUztxs1uG2gfvxfD2m4lgTwadampSeVzmX8IXaetWMzW5WzcT7Pjf/0xX4YwME/D96CPAnsC776TzwUfOqWpbNmuGf5DMlGnunxgWi530k19h8Qg2Bf3xhIxDkBFjMvy865upJ8piPrhscaaLrkdZsMeD7ZypJ5VxDOzngQywhJggrD0JrCXZvS+MWo0aZr1m+7anWDx3LXhHgFd1E1xKizR3s7Ga5YxjZmBkTwDf1iaILoS4+mznzXuAPRkyjkPiZvi/FTByDZzKWU/b1R5qEMFupv+xlnt7hpj3EFWMdh0s/LvsLFW8oqmWtpMTlGY1rUjHC6vVBFCLFTMNNzNlfqR+/TU895wJ8P72G9x5pwnolS1r6vW6WrAAbr/dufzbb/Dww7mf66uvmkH0pEkmANmvn7mR9vHHZr833zTT5Tp0MKV9ypc3JQ+KFzdlFLIHCnfvNtP5M73wAnzxhXlct64pH+TnZ7Jkyzr6bc6Zk3uQuWdPmDbNPFbKBLJvu80sHztmjhMcnHO/adNMdnJBnDtnMoUzM3ldrV+ff616rWH5cggJybn/99/DkCEmcL1pk2m+9++/5rkNG0yQf/lyE3ju399cz3nzTMZzpsOHCz6T58ABExROTITffzdZMK4GDoQxY8zje+4xU72/+AL8/U1zE9eg/I4dJtu3du2cDU+Sk8Hn2lcFkuhAESABXhf2VI5ExdCpSzC7dvsDmj5M4qtSb1L69IH89y0bZGpePtwkz03m/F2DR5/vnqO82ZVisdjRWqG181fX3y+NWb+NL5zBXYCg+yWDV4iLkbQCEhfm/fzJ89Due6gYQsyjd9H+24/ZsceZ4Vuxohmn9Ogh9wiEuAby/C2TEg2XqVIlCCc6azm/4C7Aw68eprvP33S+PZI6Ead584MORH9TjnCOcopSeJFGMPE59ouhBPO5O2v5m1EtaMsyyuMceMUTRLfEKW7B3fLl4aVXS4JnSa6nBg3Mv0wvvGD+mE5Pd6mtaAng7WGweBmsWGGysSJqKVq29mPKNPfjNWliwVLyBfeV2g46ydSFyo/Fz63sRF5qNnBf3rU3FAJdohoepa95oFwIkQdrIFjrOpf9OsBrbWHICuJmHWLO4FSas46q7MeKe/bUKB4HFDNm+nDv7aaGTsIzi5i+bAfFOQsuZQdPU5LltOWkLYzEZ9J5Or0OY+nHScx7QUb8YjwyNGc+2oOFQcSdyuC+Tins32Nj8vgMyqQnU4IzWLBTniPspyrDhtWnbVvwNuUOs4KkuVm71gTtBg2C+HgT5LVY4J13zPNDhpjA86pVZnm/S3nDqlUhPNwcv1kz8/67cqX78Q86PlKiokzgEEwAu1w5ZwA189jZTZ/ufKy1CTRv2WKO07mzCTRu3Gia07nKXrYiP3v3mpkiuXnvvfyP9dtvZoaJxWK+lsaNnc8NGWL+37PHBFYzg7tgspgbNDClMk6eNA35jh6FxYvdj798uanLXBDDh5vgbuZruwZ4Z850BnfBZG1/8omz/MeUKaZ50/33m+0yyyPlVqd42TITjBZCXEG2M+ZGYlo07FvO/o0ZdHjndY6cMAFYT9L5vtQrFD+dR5+IMoFQrSR0qQUDmoA1/zosXe/cS+Sar/nu5+ZMmlmHbbtCsdvNPqVKJlK5wlkqV4ijaqVYqlQ8S6XycZQISSYoMBUPDzuJSZ5EHQlmy/bSLFhaleVrKpCR4cz8zTxWpgrhcUz8cQotm0ZTKHlHSHBXiIvld4sp15g4z/xN7UpreHE2xCZDbDIln/mZrY0X8lz7H/huiYlPHDpkbta3aGGSDjp0uA5fgxBCMngv16xZ8FX3RfRhEn2ZQDHOkYYncWWrUvz2enjc/xDUrg8J8bBvF3RuDfYzWdOJMwjl1d7w85/hxBMMwIJZydxeejMkxKF9/di0xYOubzbjxFnvHK9/DzN5nFHYsPIWH7KTOlnP1a1r6iPWrn3Vvw1XVEoK/PmnCUCUK2emwYaFuWfJPfII/Pzz1T+XNm2cwYyHHjIBAiFEIaLTwXaWqjWKceCgN8GcpRr7WDltMV4ly7B7i+KWZ+/iDCUpHpLEyR2f4+Fh50z9XylxomBFZeuyjR2Y4PLBDV9SMu4IAbd/QQreeJGGhbw/Z2dyD/cyk6ef2M+3X+zCrgN4oGw89RLWEcQ50vGklXUtjWwbiacYi+lAyJM96PZDD9LxJPsN3ADO8yYfcYLSTKE3x3Cv++1BOkNLT+ahBut4bfX9LDrXyu35Bg1MUHbMGBg4UFOeI1TkEMWJJS6sJouP1qR9B8Xy5QX61vDmmyZDef16s3zHHe61KTMyoEwZk92cl4gIk2kM5j14+3YT8MyuZEk4dco9c+TMGVPfV2vT4DRTx47OUhnZy1TcdZf5DMpUrpz5LHUtU/HrryZL27VMRI8eJhs3vymKP/1kAt7ffWe+9kyZjeSmToXevfPe39XChfDZZ6YEUl6++84ZvL6GJHenCLhRMnjT0sxNn717zTjR09PMNihXziQ5XKhMzUWb8z1MHg0HY2H/GdMkDQjmLPEE4+lpY+y30+lbbj50+9kEbxuWNQ2NW1eCpuEQlEdavfICXN4YsgdZHGw2RWqqB0ppfH0zct0mP2fjfJj9V01mzI9g8/bSRB02M+dq1TjNg73+5ZnH1xEUmHqBo9ygrEEQ/JRpEiaEuHjpR+D8VDP7NZNdw3erYMQ/biVmdKA3S+95ivvmf0RMrPvv3B13mBm6+c2sEkJcssJfokEpdRfwFWAFRmmtR+S3/bUaeCYnQ4P66RyM8uCFZ1IplhFPxQbBPPRYzmBsXk6eNNNmk5LMdN7o6JzTLJOSTHbQgw+aP1hdWSwauz3nNY6JgRIlLuWruvGkprpPM82cpny1HTwILVuaOoj//JP7tGAhxI2vXTuTzZgp86PPbjd1VDPryS6e/TfLF/ryxlcd8MBGEr6cJYSd1KYWuwjnaI5jB3KOBAIBeGrgetqkLOHBCXkUbs3mS57jBb4kJDiZ07s+ZdfeUhxvN507yGeanIMdRWtWudV1v50FLMCkbNqwEEUlNIpkfEnEn5rsIYQ4AJ7mW/6Pp92+ju88nuWhXsdZt9aP4Kid1GSv22umh5Vi/anqbNYNGcHr+FYPJzLSfP5UI5IOLKYCh6nJHvxJxC/Mm8iTJYmhJGtpwSzuISPVTuxZzf99n8LJEzb+b2QwAHcxnwoc5gBVSMUbT9LpObQcp7zL89F/vcjAfDDWqmEjam8qyfgxbpx79uvu3absT3xMOmNHJjNuqg9vDMsZCA8ONvVvwQSFw8Kcz3l7m88cV/Xru2f1tm5t6mxmH0J5eMDnn5vyHNktXZp3A7t58+Duu025jMxg9oU89JAJ8p44kfc2r7wCn35asONdQRLgLQKuaYDXngw6zVGSy1ixAkaONDdFMns65CY01EwdLlPGjCN9fMzvuLe3KRkWGGjqYNevD3Ui0rGQCDoW7OcgbY8pyeXdyNw5+s+r8N5nub5OaY6TFBDC9F8n0PFWx1SIWTugbRUIySPYqCxmJphPc1NaTFlA2wALkA4pW8x21pJm9pnyA4s/2ONMFrE9GTwrOkuE2eMd36sE0yzZngS2mAv2jEhJ8cBqtePpmXtAudBQnlCsv+l7IYS4dDodkpZB8gr3gc7BWNMc8tcNkGbLWp3WPoJf/Qbx/MKnSU5zb3rcq5eZtZR99pYQ4rIU7gCvUsoK7AXuAKKB9UA/rXWe1cCv5cDTZjONFUqVuvRjLFwI48aZTuRt8inJm5RkmqaEh5vptRUqmGmef/8Nffs6t6tc2dT4u5k88ojJmgJYt85k+F4LNpv5Xl+HOoZCiCvkyy9NaRjI+f44ZIipwQrmffz0afAngWDiOE4Z7JiprH7eNh5psoUzq/YSwllKcIZg4niZ/7q8kqYH0xnLwwSQiB1FAgFk4EEGHibr1s+bsgFn2G2rxX/OPM9EzJv3qrmj2LK9NNVe+6pAAV5wZo1leo9hDOP9Au37FsP5iLeylq1kkIQfXqTns5dTm/LbWLlpKn0e683kWXXoz1jGkn8r5aOUpVRAAiMafMWwlQPdnptFN7qRd42Fw5QnBR8qEcXXPMsrfM7WdXt5/tWK7F9ygv8wjIaBeylx/ghlOZZViuM4pZlDV/ZRjf1UZTt12WepQXLcVjw90li1JoC5t83gHmZxlHIcpRyxFKc8R/AlGYXmJGFMok+BauY3KHaQzb+vQ4VXhWoRpHkF4OVl6irnNQvk5ZdNULigNXzB1P+dOzf/bXr3NvV7rzEJ8BYB1zTAm34a1gyHho+z51g9XnrJ/Ox7kUoHFhNONP4kEk04u4lwm82msNOeJTRmE/XYhi/JnKA0xynDbiKwYCeQ89zOQnoyjc9uG0nDAR7c2X6/Mzv2x/1QPAyG/DfHqZ0ngEiqM7D4JMZMXkijei53XKzFTbMvSxAoXxOkxQJowA5eEY51V5FOh6QlkLwW9MVn+xYK1hBTksG7XoFKsAkhCihtr2nAZstWPnLrMXhsMhyOc1ttKxnE+MpDGLDxQ7fSL6XVCbr1D+HtD7ypIPdfhLgSCn0N3ubAPq31AQCl1ASgO1CAdo9Xn9V6ecFdMA12XJvs5MXPL2cA2MsrZ8ObOnW46Xz+ucmyqlXr2gV3wVxf66U1KRZC3CCefNIEunbudAZzM915p3Pd6dPm/0QCSCSAgADz3jN3Ljz/vJVdu5owdFXezXBAMZ2elKALpTlBDCVJwr0xzifDzCyEWoD/Y4Cj3EzfJx/m8BEvnieSTTSmWZcAbmtyEirU5HSLPrw+8DjVNk6kLxOoTBQnCXUL7gIsoT0eZHAb/9CKNbmeYSwh/EZ/ltLObb0NDw5QhQj2ZK1LwJ8TITU4fDaYJmykGGY68iEq0PSuBNCaO9vvZ/KsOsRSPJ/vi1GOY5AAYStXAwPdnyt9DvLJRq2As57lCm7BYrFTo/QkmtbpwJYltRjIGHIrg1+GEzzBqKzlSdzH/fZJbF2znqYNj7F/Z30OUZEWrMv33J/jaw5SiepEYnMZPkWEnuI/vh+x6lAlujKH2+MXgeMz2YaFjaol/ve0JmRZXW6hCito63bcQYyk16/TUZNPMZKm/EZ/VnALOcdumTfkzfoLBXfBWVNZiELtTCzc+jXJfr/yT8pDNLGH8gSbaM0qSuFe32VX8cY8UX0O0ceDiD7qi7ZpxtOPME4V6KXm/1Od9/5piZ9fGp07RvJogz+5e/jvbtts9GzG++lvsZca7Kcqlaqm8OfUhVSpXAxsdlPH0rse+DQ2zXuvJ+UJ/neYxr+pOyH9EJABnpVM0Bk72GIh/YAJjtrOQFoB3jiU1ZSU0BmANv9bvMGnGegUExCyx5sM4jxKTZgyCipnhrHFz2Q1K09I2WQaRGe+H9pd3uSVAr/24NvWZD8LIa4srxoQUh0yjkJGNKRHQcZpaOQDS56C9/6GsRuzNrfGnOOhvsto+uX/8c6IDkyZbQISw/VbdB07h7G/DyT1ocfo9mIN6teXZmxCXA2FJYO3N3CX1vpxx3J/oIXWemi27QYBgwAqVKjQ5NChgtVPvFm4vklKvVghhMjJZst5wyY+3kzZzy483NRMvesu57o//zRT6S+H6wyEyZNNM7LczJ4NXbs6l7U2TSuWLtVU8z7CmJkBPPVqEP/+60HbttCvH0yaBE88AVu3wvefnqM0J6hcRTHlx5Mkx55jW1w1ujxZGZvFkxEjTMOucuWgeIjmp1GKu5lHcWJRaI5Qnu2+zXlzuB8vvWSy5WqxizBOEsh5nppTk47tjnLoaBkqRTSgJrt5hc844xFGYng1NkaFEsh5ihFPPbbxCL/gh5lLvY261OdfQOHpaefZp47RP+EnNv98iOpEYseCHQstSkfiHXsae5rdrTleOaIJrObN7lXfMmF6XfoN7k0k1aiGs6tcAv74kZSjBnIqXpThOE8M3ckn7y5k2Cft+eW/VThMxQJdv4cZw288nLU8tO9yvplwa4H2PUBlqmLSx0OCU0wtTLrSFfdo7VmC8fTUHE0P4zhlKMNxwonmFlawhUZu2z7Bj9iwUp1IGrEZL9JIwo9E/Mnw8uOBYeHw5vACnd8VIn+yFQHXMoM39u8lFO9UwI499zeAb+4FTK3aYycC8XhjNmX+XFKg3VuzktW0BsCCjT+5y21GxXFKU49tnME0L+7e3cwuy+0zpNCyxZmgr042QVxrCVDeJoibstGs82nobGqsNdhjXbKUXeg003fEnmQCupZipiEyHs6SG+lHTaagZyUTZFaeuQfGtTalKHSKCfpai0uzYyGuB60hPRKSlsPWDTBhC0zdBqcTYdgd8LR5D924tQxvDr+Nn5e2Nzf4HVbTkgM+EcSVrUE5r1MUTz1GxbjteNjT+K3FZ0SWu4uQEC/KhVsoV86U0alZE/w802HXTkhOhCrVLz/DDlPiJybGJHicMzkMeHmZpLIyZfLvqyDEdVToSzTcB3TKFuBtrrV+Jq99bpTmD9fSY485G49dyxIGQghR2N1yC6xc6Vx++214//2c2QUpKaZxxIoVZrlNG7Ndhw6mjqprQNbDwzy/dKlzXalScOyYeQ7MwLJ6dWcNYFf79kHVqu7rzp83wYSWLc17fHo6bNxo6ke6DkLtdlPyZ8MGU6eylUsvtd27zddVs6ZzXXy8qQUfG+v+elWqwLffQufO7uuDgsxg2MtRai0iAvY4En9r1IC2bWH0aPd9fEmiBntJxJ/9VEVjoWFDU2KoVCnTsKxJtuToAwdMSY0929JYP/Uw/8xPZdK6imR4B/D9/2XwSP/jbN54nsatanMnf6FRHKAKRyhPGt5YsNGOpdRjG1U4QDX2UZX9vM4IlhS7h+ioGJ4cEsiE8Z60YC3hRFOOo4RxkmjCqdi4GFs3KXoxlXuZac7JWpVqtr1oTMbYx28v5PX/u8d0l8bURj5SvA4kJFM+7YBbgHkG3enBDPp0387Hby2iRqtnGGr7mi95IecPQC7G3fshD81402WNxoY130Z+GY2r4bExskDHv0IkwFsEXKtx9vz58M2Dq/jp7H1uAYIspUPgtubg7wOHj8NdDWFgU5NlptNMVummdJiwAWrUhLBQ0/wiKgr2R4GPF1hAly3HzhbPMm53K6ZOs7J3r/kxHso3fMOzgCkT05l57KAupUrBhx+asbdFkkeFEEVV2n5I2w2pJ2H1GigTABWCzHPKA876kdpqON5nzl7wUOcIpCzHSCQga11PpvIFL3KMstS07KW43QxUtVIcbt6Ns5XrwqmTJGb4sajKQHYnluf4CQsnTvqQnKL45MxT+Ohk1vp2YGVAJ855h5LmEUB8nEbHxhKb4kcpTlORQzlmWAEUK2bKZ4WHQ/lwTVV1ALu3L0nBZbPKOGb+s9lM/6OyZaF+PU2jiGQCvNJuuDuAWkNkpOlNsmcPHD5s/r7x8IDSpaF2bWje3IzJ5fPthlXoA7ytgPe01p0cy28AaK0/zmufohjgPX7cNB6rV88MOIUQQhTM6tUwcCDUrQtjxkBAQN7b2mymsc/RozBoEPg7KjCcPQvFXaoU1K9vOgi7Bn3ffx/eecf9eL/9ZuqzZpeRcW3Lw8yaZbLRXLVuDb//bgK9rjp3di8R8Oyz8M035nHHjmYWySOPOJ/38jLlMYYPd9ZSB5NB3KuXeXz6tGmIlMnT0wSefbP1J0pMNAPOzPXnzpkBeH78/U0zJX9/k6kR7ygn99VX5l9mTebXX4cRLi1cFy82wXuACHYx7dm/+HZnZ/5vYY2sbSaMPcj9p0dzcv6/zFxYmp95NKvxXQli6MRfNGIz4USzuVgbXlxXkrDQREBTvUlfMg7EcCd/c4Ty3MMsHlLjCNAJuX4dGZ8+guerPzu/r6SSSv4F4k/XaUSp7Zvy/wZdWRLgLYRuxGbGZ89CpUrmd9yCjY4s4rXGM2jX6jwejZtC8w5Qq07eb5RaX9IcYK1h1y6YNs28L57be5SA+ONEedekRuNAevY0MyUu9L4jhBBFkj0JsJhsf2WB9FT07F859eEYSm1ai4Xcy7Z8xxCG8p3buif5nu8ZUqCX7c4MZuE+kD1JKKGcdlsXQwks2CmOM+hsZpZtc9uuN5OpRBR7qUEz1jOQX7OaLafhyQZHWa1YirOYDpzGOYityza2UR+A+MAw0ho2IOTxfnh07moGskrByeMwewKEWmFAGzMLwrsWWENJiLOyYYsHa9ZZ2LjRfB6mpkJIiAk2N696hjblIqlS2xdrhYoXDCKfPQt//QVz5pjG8cePX/j7GRoKPXuahJHsCRjiuiv0AV4PTJO1jsBRTJO1B7TWO/LapygGeIUQQlxfrrGEdu3MIKpJE9iyxQR/9+41d/ddaQ0//mjqBGdffy0dOUKO5hc9e5oyEqGhcOaMc332QPXSpdC+vXn8xhvwn/+Y5VWrzLrnnjON7gDWrDE3IevXN8HtzGxmrU0WckqKWX78cVMioyBCQ531k3Pz3HPwxRfm8Q8/wNNP59wmMNAcY9EiZ2D+9ded2d3h4Sbj4auvzPpMa9eaTIeUFJOJnJB7bJZixUxD1aZNneu6ds1ZS/exh9MZ9WksWK1kbN3K1LGJpJSqTP83y2MJKYayOH/IvEkh4ZGH8EhPhrBy0OxWKBHKe68ls3tTMn4kcYpQjtTvyrvvOoPpV5kEeAuZG7mZ8dixMGCAySr69Vfo1Omqv2SuMm+4Sc1IIYS4DEd2YVu/nNhVe0naHkWiDuJcaA3OB1fhZLU2pPlkYEs9TcwZxdFjvrRYMpr++77I2v0koZwn0K0kV6bH+YnRPJ617E8CCQQW6LTsKO5uto1UT3+Skj05edqfd4+9zGP20RfeGWjPYpbSPms5nCMcoWAd5VLb1WLL6y+wbVcY6zeXZc3GcJrumst/9UvsJoJg4jhHEGl4UYIzhHKKEjin3P1ftXc40f1umjdPp3yVmoTYEvH74j94rluDJSaWpDQvktM8UWgUmjiCOUwFfEghEX8GM5KTOMvd1GcrvZnCKUJZTlu2UY8Gjaw8OTCFvi0OEnRqJxzYAccOQZUK8Eh/R133bOm+qalw4oTJ2Dh5AqL3Q9mKUL4SlCwJaWkcjdas2OjL9u1m5mJMjNnN19d87leubMbNzZu7J4FcirQ02L8foqNNks6xY2ZCT1KSGcOnpJhtPD1NYkrmP19fM74PCzPZ2TVrmvO6zj2aCneTNa11hlJqKPAXJrPg5/yCu0IIIcT14OFhAgFgyiJYLOaO+fjxprRD9uAumIDB4MFmm8xyDmFh1+6cM4WHm/FWjEvPotKlzdfQoweMcvYpcyv5ACaYPW6caeo1dKgZHE2ZYh57eJiAcKaWLWFHLp/gSsEDD5hSQ82amUBqQVWrlneA18fHHDdzmtmAAaYEx9lsswU7dwZvb/O/a0mKKVNg5kyTmezjAy1auO9XqZLzdbp2hQkT3J/v0sVkhL/5pglqu/L2dl8OC4NX3/LM+gHw6NiR+zvm/XVnWH3w+HlKjvX2LjDRNWn3X1O2Q4g83LDNjPv3NzeXHnroipRbvGQeheIvJiGEuMGVr4W1fC1K9cxvI5eeCKkfwaHHSIvaz+H40my2NWbnbgvBK2ZR6+AMLLZ04ktWJsgjidtqB3Jrm0OUKetL6bBkAnz8OL71b7w3LcZ/zkSsp89gjU9AZdgA0D6eoDXKrrHc2oi/vj8CYQmQthO0Hf37KXjR/czSPH1QWuOZkeq2/rnHV3Nf1URiYv04eDiE3VuKkbrHC43CB/dts9u51JuWS59wW/c0awkmnpasvdB3lHX7qjDmv86BeQUOcYixWcvZQ9wVOOKWrZz03z74lrCSmmbl0JFgvP/+l+fWOns3xBPEqc2hVNl8wK0fBgDtqkBPbeqve4SBJRD+2QMj/oCNuyDdlus5Z1g8UXYbLzCeyTibkfiSxAP8QUUOEUUlvqYHZykOaCIiFLe1TmGAbST1Dk7A954GMOQR8KoNVudXabPBoUOwfTts22b+Hdx6Du/IbZy0lSSS6lll1i6Vt7cJ9NaqZf5FRJjSFvXqXdZhr4hCkcF7KSSDVwghxLU2aRL07WsCETt2mIBpQW3ZYu5S22wwcWLezdeups6dTc3LTJmZun//7Z45Fx9v6vBeaVqbGsFVquQMfuanf39TSsLVgw/Ce++ZzNnsgaH334dhw9zXjR9vrt2FnD/v/Nr9/c1yZlbf1KnQu7dz22rVTH2zvGqY/fGHOU8w2bWTJ184Q9D1+bAwkxyR3fz57kFqT08TuL8a1ywXkuNYyBS0mbErGWcLIYQodGw2OLbLPC5X2wzQspfzscVDyiY4sB2+nAv7DkFwcXh4KNzT26RuHjsGY76BbeshLR1e6we1Spq6wx7lwbsxZ+OtLF6QwY5J2/FbNIvOceOpwgFOUwqNIhF/ttCQqfRiCve5neZi2tOepeQlxerLQaqgbBm8yBfMx7VZhuYMJdxKUOSppD/sfNl93fYTcNvIC+8L/OPfiW9u/R8VwuMpFphKgH8aHZeMpMnyqQXavx9/MIF+WculOMVsutGCdYBpjHyMspTjKOcIwp9EfDFT/UYEv8eyJg9QskQSdu3LuQR/eq/9iLS4dE7aS5GKN16kcSvLaMVqPDEZOAeozEgG8ymv4jpkrce/3MWflOAMifhzkjBm043jlM3apgQxVOAwpylFNOXdvpYaNZz9SK6Bwp3BK4QQQhQGffqYBmMhISaj82I0bGjqPp47d/1qXbVp4x7gLe2YsXXbbeau9LZt0K3b1QsUKmXuhF+s8u5jLH77zWT85eXNN03Zhb//NstdurgHZvMTGGiCyaNGmdIPrn8TdOli7uLv3m2mb/30U/4NKnr3NnV+T582zewKMv27b19nlvCQPMrStWzpvty8+TUL7orCKbefvBwZIEqpQcAggArZ67kIIYQQNzqrFcrXdV+XffBlLQb+HaBeBxj9TO7HCQ+Htz7J96VCQqBnHw969mkINGT//nf5+S/NgoWKHTvMDfrUVDOurBMGdepAgwZmDNek6WKIOQibV0FQKdA28PKGkmFQogQ+YWFEKAtRUfDwWqi+GrZts3PyRArnzyu+T3+X2NBaBDStTf16mltbZ1AqVJlB6aH9cOYE+AaAskGxBqBTwX4e7AlQ1w4vpZlmpCu3wAkTKLajOERF9lOVg1QmmnB2JtZmxnz3gfsMviXzz5hjlAEgDS+iqEQJzlCOo1nBZ+VloUOL47RseoIalY9Qxb6XFs+vyzqWN2lUJgqAkpxxfRk2xNVh/qLqbuu+4K9cy3e4qsJB3vYagf3xWygTlkBAQDo+XunUXjefpr+514b7Xg3hfLEwkqwBWFNSCE08AsAE7qcf7lP2IiLyfdlrRjJ4hRBCCAG419IF02CoWzfzOC4ONm40QeCLDV5fbVOmwH2O5IcLZc1mSk01GbRlypjs5CtVWzMlxXQkrlbt6nQfPnDANOUrVcpkHed1LVy/nnffNXWRrxHJ4C1kpJmxEEIIIXLQ2mQrx8VBhQrsPR7IxInm74MtW5xl6VzdzgLCiWYRHXPUIQ4LMw2cb22SSOtWmoa3BODl5XjSFgv/GQpjFkGn22DjZtiUMyU22erHCMtbfJc+iDO4TpXUJOObZ0kMe5WyWM7EQXwSFPOByNfcN1gUCf3+KNC3JbV3UzYOfJKde0uxZ18J9hxqRLsOfrz0UoF2vxIKd5O1SyEDTyGEEOLiJCWZsgOZli0zGck3urQ0ePRR0zRh5EgzTaqo+/xzeOUVZ7mQa1i/VAK8hYw0MxZCCCHExUhKMnVuDx40jcsSEsy/5GRngzI/P9PAuWJFU36tQoWLTKiIioLkJKhQ0aQ8nzkFteuR7h3Av/+a2POZMyYx29/XTp3o2VRIWI9vRrzJ5MiwQ/1W0Kmb6dKWkgKTfofl8+DLZwANGSdM7eBjNvh2KoSWMvXXVqyF1dvcz8fLA6qWhd5t4ZVeoNMBC/i1B4+LqMt3+STAK4QQQogL69YN5syB4GCTiRpYsAbE4gajtQnslitnpgleQxLgLYSUUp2BL3E2M/4wv+1lnC2EEEKIm1pSkokiJyWZ5YgInCnH15XU4BVCCCHEhY0ebab+t2snwd3CTCmoW/fC2wkBoLWeB8y73uchhBBCCHFD8PMzNdcKEQnwCiGEECJLaKhpHiaEEEIIIYQQonC4Cu0/hBBCCCGEEEIIIYQQQlwLEuAVQgghhBBCCCGEEEKIQkoCvEIIIYQQQgghhBBCCFFISYBXCCGEEEIIIYQQQgghCikJ8AohhBBCCCGEEEIIIUQhJQFeIYQQQgghhBBCCCGEKKQkwCuEEEIIIYQQQgghhBCFlAR4hRBCCCGEEEIIIYQQopCSAK8QQgghhBBCCCGEEEIUUhLgFUIIIYQQQgghhBBCiEJKArxCCCGEEEIIIYQQQghRSEmAVwghhBBCCCGEEEIIIQopCfAKIYQQQgghhBBCCCFEISUBXiGEEEIIIYQQQgghhCikJMArhBBCCCGEEEIIIYQQhZQEeIUQQgghhBBCCCGEEKKQkgCvEEIIIYQQQgghhBBCFFJKa329z+GqUEqdBg5d7/MoZEoCMdf7JMRVJ9e5aJDrXDTIdS4aCtN1jtFa33W9T0JcXTLOviSF6fdYXDq5zkWDXOeiQa5z0VDYrnOeY+2bNsArLp5SaoPWuun1Pg9xdcl1LhrkOhcNcp2LBrnOQhR+8ntcNMh1LhrkOhcNcp2LhpvpOkuJBiGEEEIIIYQQQgghhCikJMArhBBCCCGEEEIIIYQQhZQEeIWrH6/3CYhrQq5z0SDXuWiQ61w0yHUWovCT3+OiQa5z0SDXuWiQ61w03DTXWWrwCiGEEEIIIYQQQgghRCElGbxCCCGEEEIIIYQQQghRSEmAtwhRSkUppbYppbYopTa4rH9GKbVHKbVDKfWpy/o3lFL7HM91uj5nLS5WbtdZKTXRsbzF8fwWl+3lOhdCeVznhkqpNZnrlFLNXbaX61wI5XGdGyilVjvWz1ZKBblsL9e5EFJKBSulpiildiuldimlWimliiulFiilIh3/h7hsL9dZiBuQjLWLBhlrFw0y1i4aZKxdNBSVsbaUaChClFJRQFOtdYzLug7AW0AXrXWqUipUa31KKVUbGA80B8oCC4EaWmvbdTh1cRFyu87Znv8vEK+1fl+uc+GVx+/z38D/tNbzlVKdgVe11u3lOhdeeVzn9cDLWuulSqlHgcpa63fkOhdeSqkxwHKt9SillBfgB7wJxGqtRyilXgdCtNavyXUW4sYlY+2iQcbaRYOMtYsGGWsXDUVlrC0ZvOIpYITWOhVAa33Ksb47MEFrnaq1Pgjsw/yAi0JMKaWAPpg3LJDrfLPRQOYd5mLAMcdjuc43l5rAMsfjBUAvx2O5zoWQIyvkVmA0gNY6TWsdh7meYxybjQHudTyW6yxE4SJj7SJExto3PRlrFw0y1r6JFKWxtgR4ixYN/K2U2qiUGuRYVwNoq5Raq5RaqpRq5lhfDjjism+0Y5248eV2nTO1BU5qrSMdy3KdC6/crvPzwGdKqSPA58AbjvVynQuv3K7zduAex+P7gPKOx3KdC6cqwGngF6XUZqXUKKWUPxCmtT4O4Pg/1LG9XGchblwy1i4aZKxdNMhYu2iQsfbNr8iMtT2u9wmIa6qN1vqYUioUWKCU2o35GQgBWgLNgElKqSqAymV/qedROOS4zlrrzDuQ/XBmFIBc58Ist9/n3sALWuupSqk+mLuUtyPXuTDL7To/CnytlHoXmAWkObaV61w4eQCNgWe01muVUl8Br+ezvVxnIW5cMtYuGmSsXTTIWLtokLH2za/IjLUlg7cI0Vofc/x/CpiOSTOPBqZpYx1gB0o61pd32T0c5xQUcQPL4zqjlPIAegITXTaX61xI5XGdBwDTHJtMxjmVRK5zIZXbddZa79Za36m1boL5I3K/Y3O5zoVTNBCttV7rWJ6CGYSeVEqVAXD8f8ple7nOQtyAZKxdNMhYu2iQsXbRIGPtIqHIjLUlwFtEKKX8lVKBmY+BOzFTD2YAtznW1wC8gBjMnaq+SilvpVRloDqw7jqcurgI+VxnMHeXd2uto112ketcCOVznY8B7Ryb3QZkTg+U61wI5XWdHRkGKKUswNvAD45d5DoXQlrrE8ARpVRNx6qOwE7M9RzgWDcAmOl4LNdZiBuQjLWLBhlrFw0y1i4aZKxdNBSlsbaUaCg6woDppu4/HsAfWus/HR0Ef1ZKbcdMPRigtdbADqXUJMwPfgbwdGHoGihyv86O5/riPmUMrbVc58Ipr9/nBOArRwZJCjAI5DoXYnld5+eUUk87tpkG/AJynQu5Z4Bxjs/kA8AjmJvwk5RSjwGHMTXg5DoLceOSsXbRIGPtokHG2kWDjLWLjiIx1lZmfCGEEEIIIYQQQgghhBCisJESDUIIIYQQQgghhBBCCFFISYBXCCGEEEIIIYQQQgghCikJ8AohhBBCCCGEEEIIIUQhJQFeIYQQQgghhBBCCCGEKKQkwCuEEEIIIYQQQgghhBCFlAR4hRA3JaWUTSm1RSm1XSk1WSnlp5SqpJTafpHHGaiUKnu1zvNG4PgaTyulRl1gu4NKqZrZ1n2plHpVKdVWKbXzYr+/QgghhBCicJFxdsHJOFsIca1IgFcIcbNK1lo31FrXBdKAJy/xOAOBG3rgqZTyuAKHmai1fvwC20wA+rq8rgXo7dh3OdD5CpyHEEIIIYS4sck4++LIOFsIcdVJgFcIURQsB6o5HluVUj8ppXYopf5WSvkCKKUaKqXWKKX+VUpNV0qFKKV6A02BcY4sBV+lVEel1Gal1Dal1M9KKW/H/lFKqf8opTY5novIfhJKKatS6jOl1HrH6wx2rG+vlFqilJqilNqtlBqnlFKO55oopZYqpTYqpf5SSpVxrF+ilPpIKbUUeE4p1cxxzNWO19ju2G65UqqhyzmsVErVz++bldd5AuNxGXgCtwJRWutDF3c5hBBCCCHETULG2c5zkHG2EOK6kQCvEOKm5rjrfjewzbGqOvCd1roOEAf0cqwfC7ymta7v2HaY1noKsAF4UGvdENDAr8D9Wut6gAfwlMvLxWitGwPfAy/ncjqPAfFa62ZAM+AJpVRlx3ONgOeB2kAVoI1SyhP4BuittW4C/Ax86HK8YK11O631f4FfgCe11q0Am8s2ozDZESilagDeWut/L/Bty/U8HfvZlVINHNv1xQxGhRBCCCFEESPjbBlnCyFuHBLgFULcrHyVUlswA8fDwGjH+oNa6y2OxxuBSkqpYphB3FLH+jGYu+bZ1XTsvzeP7aa5HjeX/e8EHnac11qgBGYgDLBOax2ttbYDWxz71wTqAgsc+7wNhLscbyKAUioYCNRar3Ks/8Nlm8lAV8cg9lHMwPlC8jvP8UBfx4C+u+P4QgghhBCi6JBxtiHjbCHEDeNK1JMRQogbUbIjGyCLYzZWqssqG+B7EcdUF3g+89g2cn9/VcAzWuu/sp1X+1zOy8Ox/Q5HtkBuEi90XlrrJKXUAswgsQ9mKtyF5HqeDuOBv4GlwL9a61MFOJ4QQgghhLh5yDgbGWcLIW4sksErhCjytNbxwFmlVFvHqv6YgRXAeSDQ8Xg3JhOhWi7bFcRfwFOOu/wopWoopfzz2X4PUEop1cqxvadSqk4u538WOK+UaulY1TfbJqOAr4H1WuvYyzlPrfV+4AwwApk2JoQQQggh8iHj7IKfp4yzhRCXQzJ4hRDCGAD8oJTyAw4AjzjW/+pYnwy0cqyf7Jg6tR744SJeYxRmStgmR3OH08C9eW2stU5zNKD42jG9zQP4EtiRy+aPAT8ppRKBJUC8y3E2KqXOYeqHXYnzHA98DEwv4PGEEEIIIUTRJePsgp+njLOFEJdEaa2v9zkIIYS4TEqpAK11guPx60AZrfVzjuWymMFohKP2WPZ9BwJNtdZDL/McKgFztNZ1L+c4QgghhBBC3ChknC2EKAykRIMQQtwcuiiltiiltgNtgeEASqmHMQ0c3spt0OmQDNytlBp1qS/umHY3G4i51GMIIYQQQghxA5JxthDihicZvEIIIYQQQgghhBBCCFFISQavEEIIIYQQQgghhBBCFFIS4BVCCCGEEEIIIYQQQohCSgK8QgghhBBCCCGEEEIIUUhJgFcIIYQQQgghhBBCCCEKKQnwCiGEEEIIIYQQQgghRCElAV4hhBBCCCGEEEIIIYQopP4fu2K4VzYAMI0AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 1728x576 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot(vs_test, 0)"
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "8c61b6fe-111f-4c2f-91b6-2fb83c56c9d7",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABXoAAAHwCAYAAAAYUtesAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xcZdn/8c+9bWZbNrubQhqEDgFCpIYaigoIKCBVBPFRsaHYUNRHKQoqiiL6iIIiRZQiAuIPFOm9k4QOaSQhPdt3+sz9++PMzDlTdndmdnY3u/t9v1555cx9ytwzu4RrrrnOdRtr
Loading
Loading full blame...