Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"id": "6386344d-b7ac-440d-9926-f03af4ff9d6f",
"metadata": {},
"source": [
"# Training the Virtual Spectrometer with grating and PES data"
]
},
{
"cell_type": "markdown",
"id": "1711c3b9-5065-4a44-8b1b-a3e861b92bc5",
"metadata": {},
"source": [
"The objective here is to use the grating monochromator to train the Virtual Spectrometer. This means that we will fit (\"train\") a model, which maps the PES measurements with the Viking measurements and use their correlation to interpolate in cases where the grating is not available.\n",
"\n",
"The following conditions must be satisfied for this to be possible:\n",
"* The PES settings are the same in the \"training\" run and interesting run.\n",
"* The photon energies of the beam in \"training\" and in the interesting run are similar.\n",
"* The beam intensities are similar.\n",
"* 1 pulse trains in \"training\".\n",
"\n",
"The following software implements:\n",
"1. retrieve data;\n",
"2. the Virtual Spectrometer training excluding the last 10 trains avalable so that we can use them for validation;\n",
"3. the Virtual Spectrometer resolution function plotting;\n",
"4. comparison of the Virtual spectrometer results in a selected set in which the Viking data was available.\n",
"\n",
"Finally, the model is applied in data without the grating. This last part may be applied independently from the rest if the modal has been written in a `joblib` file."
]
},
{
"cell_type": "code",
"id": "4a627555-522a-4c9d-b6b2-6ff77148eaab",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"sys.path.append('/home/danilo/scratch/karabo/devices/pes_to_spec')"
]
},
{
"cell_type": "code",
"id": "78bbc433-ac5e-44c3-8740-3e93800c4532",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cupy is not installed in this environment, no access to the GPU\n"
]
}
],
"source": [
"import numpy as np\n",
"import dask.array as da\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n",
"from pes_to_spec.model import Model\n",
"\n",
"import toolbox_scs as tb\n",
"from euxfel_bunch_pattern import indices_at_sase\n",
"\n",
"from scipy.signal import fftconvolve"
]
},
{
"cell_type": "markdown",
"id": "c7609899-5bc0-4211-ae97-010b3edcf676",
"metadata": {},
"source": [
"id": "95da5231-e454-4f7f-a1ce-eef7e52fe457",
"metadata": {},
"outputs": [],
"source": [
"# pes channel names to be used for reference later\n",
"pes_map = dict(channel_1_A=\"PES_S_raw\",\n",
" channel_1_B=\"PES_SSW_raw\",\n",
" channel_1_C=\"PES_SW_raw\",\n",
" channel_1_D=\"PES_WSW_raw\",\n",
" #channel_2_A=\"PES_W_raw\",\n",
" #channel_2_B=\"PES_WNW_raw\",\n",
" #channel_2_C=\"PES_NW_raw\",\n",
" #channel_2_D=\"PES_NNW_raw\",\n",
" channel_3_A=\"PES_E_raw\",\n",
" channel_3_B=\"PES_ESE_raw\",\n",
" channel_3_C=\"PES_SE_raw\",\n",
" channel_3_D=\"PES_SSE_raw\",\n",
" channel_4_A=\"PES_N_raw\",\n",
" channel_4_B=\"PES_NNE_raw\",\n",
" channel_4_C=\"PES_NE_raw\",\n",
" channel_4_D=\"PES_ENE_raw\",\n",
" )"
]
},
{
"cell_type": "code",
"id": "fd8dacae-c22e-4c20-9df9-8720a2814320",
"metadata": {},
"outputs": [],
"source": [
"proposal = 900331\n",
"runTrain = 69"
]
},
{
"cell_type": "code",
"id": "25000b87-246d-467b-b770-8cde527faec4",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"navitar: only 71.9% of trains (7176 out of 9974) contain data.\n",
"energy: only 71.9% of trains (7176 out of 9974) contain data.\n"
"fields = [\n",
" 'XTD10_SA3', # XGM\n",
" *list(pes_map.values()), # PES\n",
" # calibrated grating\n",
" {'navitar': {'source': 'SA3_XTD10_SPECT/MDL/SPECTROMETER_SCS_NAVITAR:output',\n",
" 'key': 'data.intensityDistribution',\n",
" 'dim': ['gratingEnergy'],\n",
" },\n",
" },\n",
" {'energy':\n",
" {'source': 'SA3_XTD10_SPECT/MDL/SPECTROMETER_SCS_NAVITAR:output',\n",
" 'key': 'data.photonEnergy',\n",
" 'dim': ['gratingEnergy'],\n",
" },\n",
" }\n",
" ]\n",
"_, data_train = tb.load(proposal, runTrain, fields)"
]
},
{
"cell_type": "code",
"id": "294b5f3a-1d59-444e-80ab-4834d26d62dc",
"metadata": {},
"outputs": [],
"source": [
"# transform PES data into the format expected\n",
"pes_data = {k: da.from_array(data_train[item].to_numpy())\n",
" for k, item in pes_map.items() if item in data_train}\n",
"xgm = data_train.XTD10_SA3.isel(sa3_pId=0).to_numpy()[:, np.newaxis]"
]
},
{
"cell_type": "code",
"id": "b477bf49-f5ca-4df0-b6ed-a270ee35cd28",
"metadata": {},
"outputs": [],
"source": [
"channels = tuple(pes_data.keys())"
]
},
{
"cell_type": "code",
"id": "a843e981-e57e-4163-a4e0-310de7181aec",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div><svg style=\"position: absolute; width: 0; height: 0; overflow: hidden\">\n",
"<defs>\n",
"<symbol id=\"icon-database\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M16 0c-8.837 0-16 2.239-16 5v4c0 2.761 7.163 5 16 5s16-2.239 16-5v-4c0-2.761-7.163-5-16-5z\"></path>\n",
"<path d=\"M16 17c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"<path d=\"M16 26c-8.837 0-16-2.239-16-5v6c0 2.761 7.163 5 16 5s16-2.239 16-5v-6c0 2.761-7.163 5-16 5z\"></path>\n",
"</symbol>\n",
"<symbol id=\"icon-file-text2\" viewBox=\"0 0 32 32\">\n",
"<path d=\"M28.681 7.159c-0.694-0.947-1.662-2.053-2.724-3.116s-2.169-2.030-3.116-2.724c-1.612-1.182-2.393-1.319-2.841-1.319h-15.5c-1.378 0-2.5 1.121-2.5 2.5v27c0 1.378 1.122 2.5 2.5 2.5h23c1.378 0 2.5-1.122 2.5-2.5v-19.5c0-0.448-0.137-1.23-1.319-2.841zM24.543 5.457c0.959 0.959 1.712 1.825 2.268 2.543h-4.811v-4.811c0.718 0.556 1.584 1.309 2.543 2.268zM28 29.5c0 0.271-0.229 0.5-0.5 0.5h-23c-0.271 0-0.5-0.229-0.5-0.5v-27c0-0.271 0.229-0.5 0.5-0.5 0 0 15.499-0 15.5 0v7c0 0.552 0.448 1 1 1h7v19.5z\"></path>\n",
"<path d=\"M23 26h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 22h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"<path d=\"M23 18h-14c-0.552 0-1-0.448-1-1s0.448-1 1-1h14c0.552 0 1 0.448 1 1s-0.448 1-1 1z\"></path>\n",
"</symbol>\n",
"</defs>\n",
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
"</svg>\n",
"<style>/* CSS stylesheet for displaying xarray objects in jupyterlab.\n",
" *\n",
" */\n",
"\n",
":root {\n",
" --xr-font-color0: var(--jp-content-font-color0, rgba(0, 0, 0, 1));\n",
" --xr-font-color2: var(--jp-content-font-color2, rgba(0, 0, 0, 0.54));\n",
" --xr-font-color3: var(--jp-content-font-color3, rgba(0, 0, 0, 0.38));\n",
" --xr-border-color: var(--jp-border-color2, #e0e0e0);\n",
" --xr-disabled-color: var(--jp-layout-color3, #bdbdbd);\n",
" --xr-background-color: var(--jp-layout-color0, white);\n",
" --xr-background-color-row-even: var(--jp-layout-color1, white);\n",
" --xr-background-color-row-odd: var(--jp-layout-color2, #eeeeee);\n",
"}\n",
"\n",
"html[theme=dark],\n",
"body[data-theme=dark],\n",
"body.vscode-dark {\n",
" --xr-font-color0: rgba(255, 255, 255, 1);\n",
" --xr-font-color2: rgba(255, 255, 255, 0.54);\n",
" --xr-font-color3: rgba(255, 255, 255, 0.38);\n",
" --xr-border-color: #1F1F1F;\n",
" --xr-disabled-color: #515151;\n",
" --xr-background-color: #111111;\n",
" --xr-background-color-row-even: #111111;\n",
" --xr-background-color-row-odd: #313131;\n",
"}\n",
"\n",
".xr-wrap {\n",
" display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
"\n",
".xr-text-repr-fallback {\n",
" /* fallback to plain text repr when CSS is not injected (untrusted notebook) */\n",
" display: none;\n",
"}\n",
"\n",
".xr-header {\n",
" padding-top: 6px;\n",
" padding-bottom: 6px;\n",
" margin-bottom: 4px;\n",
" border-bottom: solid 1px var(--xr-border-color);\n",
"}\n",
"\n",
".xr-header > div,\n",
".xr-header > ul {\n",
" display: inline;\n",
" margin-top: 0;\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-obj-type,\n",
".xr-array-name {\n",
" margin-left: 2px;\n",
" margin-right: 10px;\n",
"}\n",
"\n",
".xr-obj-type {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-sections {\n",
" padding-left: 0 !important;\n",
" display: grid;\n",
" grid-template-columns: 150px auto auto 1fr 20px 20px;\n",
"}\n",
"\n",
".xr-section-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-section-item input {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-item input + label {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label {\n",
" cursor: pointer;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-item input:enabled + label:hover {\n",
" color: var(--xr-font-color0);\n",
"}\n",
"\n",
".xr-section-summary {\n",
" grid-column: 1;\n",
" color: var(--xr-font-color2);\n",
" font-weight: 500;\n",
"}\n",
"\n",
".xr-section-summary > span {\n",
" display: inline-block;\n",
" padding-left: 0.5em;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label {\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-section-summary-in + label:before {\n",
" display: inline-block;\n",
" content: '►';\n",
" font-size: 11px;\n",
" width: 15px;\n",
" text-align: center;\n",
"}\n",
"\n",
".xr-section-summary-in:disabled + label:before {\n",
" color: var(--xr-disabled-color);\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label:before {\n",
" content: '▼';\n",
"}\n",
"\n",
".xr-section-summary-in:checked + label > span {\n",
" display: none;\n",
"}\n",
"\n",
".xr-section-summary,\n",
".xr-section-inline-details {\n",
" padding-top: 4px;\n",
" padding-bottom: 4px;\n",
"}\n",
"\n",
".xr-section-inline-details {\n",
" grid-column: 2 / -1;\n",
"}\n",
"\n",
".xr-section-details {\n",
" display: none;\n",
" grid-column: 1 / -1;\n",
" margin-bottom: 5px;\n",
"}\n",
"\n",
".xr-section-summary-in:checked ~ .xr-section-details {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-array-wrap {\n",
" grid-column: 1 / -1;\n",
" display: grid;\n",
" grid-template-columns: 20px auto;\n",
"}\n",
"\n",
".xr-array-wrap > label {\n",
" grid-column: 1;\n",
" vertical-align: top;\n",
"}\n",
"\n",
".xr-preview {\n",
" color: var(--xr-font-color3);\n",
"}\n",
"\n",
".xr-array-preview,\n",
".xr-array-data {\n",
" padding: 0 5px !important;\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-array-data,\n",
".xr-array-in:checked ~ .xr-array-preview {\n",
" display: none;\n",
"}\n",
"\n",
".xr-array-in:checked ~ .xr-array-data,\n",
".xr-array-preview {\n",
" display: inline-block;\n",
"}\n",
"\n",
".xr-dim-list {\n",
" display: inline-block !important;\n",
" list-style: none;\n",
" padding: 0 !important;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list li {\n",
" display: inline-block;\n",
" padding: 0;\n",
" margin: 0;\n",
"}\n",
"\n",
".xr-dim-list:before {\n",
" content: '(';\n",
"}\n",
"\n",
".xr-dim-list:after {\n",
" content: ')';\n",
"}\n",
"\n",
".xr-dim-list li:not(:last-child):after {\n",
" content: ',';\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-has-index {\n",
" font-weight: bold;\n",
"}\n",
"\n",
".xr-var-list,\n",
".xr-var-item {\n",
" display: contents;\n",
"}\n",
"\n",
".xr-var-item > div,\n",
".xr-var-item label,\n",
".xr-var-item > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-even);\n",
" margin-bottom: 0;\n",
"}\n",
"\n",
".xr-var-item > .xr-var-name:hover span {\n",
" padding-right: 5px;\n",
"}\n",
"\n",
".xr-var-list > li:nth-child(odd) > div,\n",
".xr-var-list > li:nth-child(odd) > label,\n",
".xr-var-list > li:nth-child(odd) > .xr-var-name span {\n",
" background-color: var(--xr-background-color-row-odd);\n",
"}\n",
"\n",
".xr-var-name {\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-var-dims {\n",
" grid-column: 2;\n",
"}\n",
"\n",
".xr-var-dtype {\n",
" grid-column: 3;\n",
" text-align: right;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-preview {\n",
" grid-column: 4;\n",
"}\n",
"\n",
".xr-index-preview {\n",
" grid-column: 2 / 5;\n",
" color: var(--xr-font-color2);\n",
"}\n",
"\n",
".xr-var-name,\n",
".xr-var-dims,\n",
".xr-var-dtype,\n",
".xr-preview,\n",
".xr-attrs dt {\n",
" white-space: nowrap;\n",
" overflow: hidden;\n",
" text-overflow: ellipsis;\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-var-name:hover,\n",
".xr-var-dims:hover,\n",
".xr-var-dtype:hover,\n",
".xr-attrs dt:hover {\n",
" overflow: visible;\n",
" width: auto;\n",
" z-index: 1;\n",
"}\n",
"\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" display: none;\n",
" background-color: var(--xr-background-color) !important;\n",
" padding-bottom: 5px !important;\n",
"}\n",
"\n",
".xr-var-attrs-in:checked ~ .xr-var-attrs,\n",
".xr-var-data-in:checked ~ .xr-var-data,\n",
".xr-index-data-in:checked ~ .xr-index-data {\n",
" display: block;\n",
"}\n",
"\n",
".xr-var-data > table {\n",
" float: right;\n",
"}\n",
"\n",
".xr-var-name span,\n",
".xr-var-data,\n",
".xr-index-name div,\n",
".xr-index-data,\n",
".xr-attrs {\n",
" padding-left: 25px !important;\n",
"}\n",
"\n",
".xr-attrs,\n",
".xr-var-attrs,\n",
".xr-var-data,\n",
".xr-index-data {\n",
" grid-column: 1 / -1;\n",
"}\n",
"\n",
"dl.xr-attrs {\n",
" padding: 0;\n",
" margin: 0;\n",
" display: grid;\n",
" grid-template-columns: 125px auto;\n",
"}\n",
"\n",
".xr-attrs dt,\n",
".xr-attrs dd {\n",
" padding: 0;\n",
" margin: 0;\n",
" float: left;\n",
" padding-right: 10px;\n",
" width: auto;\n",
"}\n",
"\n",
".xr-attrs dt {\n",
" font-weight: normal;\n",
" grid-column: 1;\n",
"}\n",
"\n",
".xr-attrs dt:hover span {\n",
" display: inline-block;\n",
" background: var(--xr-background-color);\n",
" padding-right: 10px;\n",
"}\n",
"\n",
".xr-attrs dd {\n",
" grid-column: 2;\n",
" white-space: pre-wrap;\n",
" word-break: break-all;\n",
"}\n",
"\n",
".xr-icon-database,\n",
".xr-icon-file-text2,\n",
".xr-no-icon {\n",
" display: inline-block;\n",
" vertical-align: middle;\n",
" width: 1em;\n",
" height: 1.5em !important;\n",
" stroke-width: 0;\n",
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
"</style><pre class='xr-text-repr-fallback'><xarray.Dataset>\n",
"Dimensions: (trainId: 7165, PESsampleId: 40000, gratingEnergy: 1800,\n",
" pulse_slot: 2700, sa3_pId: 1)\n",
"Coordinates:\n",
" * trainId (trainId) uint64 1724088331 1724088332 ... 1724098301\n",
" * sa3_pId (sa3_pId) int64 1326\n",
"Dimensions without coordinates: PESsampleId, gratingEnergy, pulse_slot\n",
"Data variables: (12/16)\n",
" PES_S_raw (trainId, PESsampleId) int16 -1 0 -2 0 -2 ... 4 -1 1 1 1\n",
" PES_SSW_raw (trainId, PESsampleId) int16 -4 -3 -4 -2 ... -3 -2 0 -4\n",
" PES_SW_raw (trainId, PESsampleId) int16 -3 -8 -5 -5 ... -7 -5 -8 -5\n",
" PES_WSW_raw (trainId, PESsampleId) int16 -4 -6 -4 -5 ... -5 -3 -4 0\n",
" PES_E_raw (trainId, PESsampleId) int16 -6 -3 -5 -8 ... -6 -2 -4 -6\n",
" PES_ESE_raw (trainId, PESsampleId) int16 -11 -13 -10 ... -10 -10 -12\n",
" ... ...\n",
" PES_NE_raw (trainId, PESsampleId) int16 -2 -5 -2 -4 -1 ... 0 -2 2 -3\n",
" PES_ENE_raw (trainId, PESsampleId) int16 -4 -3 -2 -3 ... -5 -2 -3 -5\n",
" navitar (trainId, gratingEnergy) float64 12.22 11.29 ... 12.46\n",
" energy (trainId, gratingEnergy) float64 981.0 981.0 ... 1.02e+03\n",
" bunchPatternTable (trainId, pulse_slot) uint32 2146089 0 ... 16777216\n",
" XTD10_SA3 (trainId, sa3_pId) float32 1.217e+03 ... 1.489e+03\n",
"Attributes:\n",
" runFolder: /gpfs/exfel/exp/SA3/202330/p900331/raw/r0069</pre><div class='xr-wrap' style='display:none'><div class='xr-header'><div class='xr-obj-type'>xarray.Dataset</div></div><ul class='xr-sections'><li class='xr-section-item'><input id='section-ce2f99e1-96ed-49c4-9bdf-6443016666a8' class='xr-section-summary-in' type='checkbox' disabled ><label for='section-ce2f99e1-96ed-49c4-9bdf-6443016666a8' class='xr-section-summary' title='Expand/collapse section'>Dimensions:</label><div class='xr-section-inline-details'><ul class='xr-dim-list'><li><span class='xr-has-index'>trainId</span>: 7165</li><li><span>PESsampleId</span>: 40000</li><li><span>gratingEnergy</span>: 1800</li><li><span>pulse_slot</span>: 2700</li><li><span class='xr-has-index'>sa3_pId</span>: 1</li></ul></div><div class='xr-section-details'></div></li><li class='xr-section-item'><input id='section-77f8c769-e25a-44d8-a672-27ae04292e7e' class='xr-section-summary-in' type='checkbox' checked><label for='section-77f8c769-e25a-44d8-a672-27ae04292e7e' class='xr-section-summary' >Coordinates: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>trainId</span></div><div class='xr-var-dims'>(trainId)</div><div class='xr-var-dtype'>uint64</div><div class='xr-var-preview xr-preview'>1724088331 ... 1724098301</div><input id='attrs-8be279b8-204d-427f-b568-aee9dba6e18c' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8be279b8-204d-427f-b568-aee9dba6e18c' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-de89f66f-4c9c-40c3-b7da-cb3160960477' class='xr-var-data-in' type='checkbox'><label for='data-de89f66f-4c9c-40c3-b7da-cb3160960477' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1724088331, 1724088332, 1724088333, ..., 1724098299, 1724098300,\n",
" 1724098301], dtype=uint64)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span class='xr-has-index'>sa3_pId</span></div><div class='xr-var-dims'>(sa3_pId)</div><div class='xr-var-dtype'>int64</div><div class='xr-var-preview xr-preview'>1326</div><input id='attrs-7d3757a1-5c70-4902-996c-c8c74d06d2d1' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-7d3757a1-5c70-4902-996c-c8c74d06d2d1' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-57c736a5-89f0-42d5-9fd3-2926a570380d' class='xr-var-data-in' type='checkbox'><label for='data-57c736a5-89f0-42d5-9fd3-2926a570380d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([1326])</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-38ed2ad3-b662-42e6-8ef3-5e3a850b78ec' class='xr-section-summary-in' type='checkbox' ><label for='section-38ed2ad3-b662-42e6-8ef3-5e3a850b78ec' class='xr-section-summary' >Data variables: <span>(16)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-var-name'><span>PES_S_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-1 0 -2 0 -2 2 -2 ... 2 4 -1 1 1 1</div><input id='attrs-8c13a9f8-80cc-43a4-b88a-dbc0193cb176' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8c13a9f8-80cc-43a4-b88a-dbc0193cb176' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-28d5974f-f300-4585-a8d7-4bfbb429bb2d' class='xr-var-data-in' type='checkbox'><label for='data-28d5974f-f300-4585-a8d7-4bfbb429bb2d' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-1, 0, -2, ..., 1, -4, -1],\n",
" [ 0, 4, 0, ..., 2, 1, 1],\n",
" [ 1, -1, -1, ..., 3, 1, 3],\n",
" ...,\n",
" [-2, 2, 0, ..., 1, 1, 4],\n",
" [ 0, 4, 0, ..., 3, -1, 3],\n",
" [-2, 4, 0, ..., 1, 1, 1]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SSW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-4 -3 -4 -2 -4 -2 ... -2 -3 -2 0 -4</div><input id='attrs-9be9e3fe-13af-4a91-8559-3eae946a5f7a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9be9e3fe-13af-4a91-8559-3eae946a5f7a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b9601cb4-3102-436c-8b57-d181796c8817' class='xr-var-data-in' type='checkbox'><label for='data-b9601cb4-3102-436c-8b57-d181796c8817' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-4, -3, -4, ..., -4, 0, -2],\n",
" [-7, -1, -2, ..., 0, -5, 0],\n",
" [-1, -3, -1, ..., -2, -4, -1],\n",
" ...,\n",
" [-5, -2, -4, ..., -2, -5, -3],\n",
" [-1, -3, -4, ..., 2, 0, -1],\n",
" [-3, -2, -5, ..., -2, 0, -4]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-3 -8 -5 -5 -7 ... -6 -7 -5 -8 -5</div><input id='attrs-90822846-b1c9-42c0-89cf-6728bf37eef2' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-90822846-b1c9-42c0-89cf-6728bf37eef2' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-04dfbfd6-8b07-4e5e-aec1-30c9cfeea298' class='xr-var-data-in' type='checkbox'><label for='data-04dfbfd6-8b07-4e5e-aec1-30c9cfeea298' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -3, -8, -5, ..., -10, -5, -10],\n",
" [ -6, -4, -7, ..., -5, -8, -5],\n",
" [ -6, -7, -7, ..., -6, -7, -8],\n",
" ...,\n",
" [ -6, -7, -3, ..., -4, -4, -6],\n",
" [ -8, -5, -9, ..., -9, -6, -4],\n",
" [ -7, -5, -9, ..., -5, -8, -5]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_WSW_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-4 -6 -4 -5 -5 -3 ... -5 -5 -3 -4 0</div><input id='attrs-3aec6568-8d63-4526-8fa0-8cd16d2bdcb8' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3aec6568-8d63-4526-8fa0-8cd16d2bdcb8' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4358d272-ed0b-4341-90e5-1e93862104dc' class='xr-var-data-in' type='checkbox'><label for='data-4358d272-ed0b-4341-90e5-1e93862104dc' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-4, -6, -4, ..., -7, -5, -7],\n",
" [-2, -4, -3, ..., -6, -3, -2],\n",
" [-3, -3, -3, ..., -4, -5, -3],\n",
" ...,\n",
" [-8, -5, -5, ..., -4, -5, -4],\n",
" [-5, -4, -3, ..., -3, -5, -3],\n",
" [-3, -5, -6, ..., -3, -4, 0]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_E_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-6 -3 -5 -8 -7 ... -4 -6 -2 -4 -6</div><input id='attrs-c3876bcd-7936-405e-ae1c-14d38e47dc80' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-c3876bcd-7936-405e-ae1c-14d38e47dc80' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-e46a4ff3-2a06-4aff-90e9-933421f20766' class='xr-var-data-in' type='checkbox'><label for='data-e46a4ff3-2a06-4aff-90e9-933421f20766' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-6, -3, -5, ..., -7, -8, -4],\n",
" [-8, -5, -8, ..., -7, -4, -5],\n",
" [-6, -4, -5, ..., -6, -7, -3],\n",
" ...,\n",
" [-6, -5, -9, ..., -5, -7, -5],\n",
" [-6, -5, -7, ..., -6, -9, -6],\n",
" [-5, -3, -7, ..., -2, -4, -6]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_ESE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-11 -13 -10 -11 ... -11 -10 -10 -12</div><input id='attrs-6f19ed66-b793-44d5-a770-751517f24aca' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-6f19ed66-b793-44d5-a770-751517f24aca' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-0d369472-79cc-4f19-b21e-c4b95ff08b4a' class='xr-var-data-in' type='checkbox'><label for='data-0d369472-79cc-4f19-b21e-c4b95ff08b4a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-11, -13, -10, ..., -12, -13, -9],\n",
" [ -8, -10, -13, ..., -12, -9, -9],\n",
" [-12, -12, -11, ..., -10, -9, -11],\n",
" ...,\n",
" [-13, -12, -10, ..., -10, -13, -11],\n",
" [-11, -12, -9, ..., -9, -11, -10],\n",
" [-12, -10, -8, ..., -10, -10, -12]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-7 -3 -8 -2 -3 -2 ... 1 -6 -4 -4 -5</div><input id='attrs-673cb872-700e-4470-aac4-d89931829586' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-673cb872-700e-4470-aac4-d89931829586' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-a5e5bef8-1fba-40ec-9f42-f252b4363d8f' class='xr-var-data-in' type='checkbox'><label for='data-a5e5bef8-1fba-40ec-9f42-f252b4363d8f' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-7, -3, -8, ..., -3, -7, -2],\n",
" [-6, -4, -9, ..., -6, -5, -2],\n",
" [-7, -5, -6, ..., -1, -8, -5],\n",
" ...,\n",
" [-1, -2, -7, ..., -3, -3, -2],\n",
" [-5, -6, -6, ..., -4, -8, -4],\n",
" [-6, -2, -4, ..., -4, -4, -5]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_SSE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-13 -14 -14 -13 ... -13 -15 -14 -11</div><input id='attrs-9783df67-3ec6-490d-92f8-6c2a4111588b' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-9783df67-3ec6-490d-92f8-6c2a4111588b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-98d3cdc6-a895-404d-832e-f345d2f74bc5' class='xr-var-data-in' type='checkbox'><label for='data-98d3cdc6-a895-404d-832e-f345d2f74bc5' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-13, -14, -14, ..., -14, -13, -16],\n",
" [-12, -15, -15, ..., -12, -15, -14],\n",
" [-14, -13, -14, ..., -14, -14, -15],\n",
" ...,\n",
" [-11, -10, -13, ..., -14, -10, -13],\n",
" [-12, -14, -11, ..., -9, -14, -13],\n",
" [-12, -15, -14, ..., -15, -14, -11]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_N_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-10 -9 -9 -10 -8 ... -11 -9 -9 -9</div><input id='attrs-3e92f06e-fcad-4a8d-a1d9-38b638040a4f' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-3e92f06e-fcad-4a8d-a1d9-38b638040a4f' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-4d5f3ad8-df08-42b7-916b-a50fe647100e' class='xr-var-data-in' type='checkbox'><label for='data-4d5f3ad8-df08-42b7-916b-a50fe647100e' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-10, -9, -9, ..., -11, -9, -12],\n",
" [ -9, -12, -10, ..., -10, -11, -10],\n",
" [ -9, -10, -8, ..., -11, -11, -10],\n",
" ...,\n",
" [-12, -11, -11, ..., -12, -12, -10],\n",
" [-10, -14, -10, ..., -8, -10, -11],\n",
" [-11, -9, -11, ..., -9, -9, -9]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_NNE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-8 -9 -7 -10 -9 ... -8 -8 -8 -7 -8</div><input id='attrs-4c7f41c8-d188-428b-ba96-f0386810ea4b' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-4c7f41c8-d188-428b-ba96-f0386810ea4b' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-11b7a006-bf95-4e52-92bc-ab16ac929dca' class='xr-var-data-in' type='checkbox'><label for='data-11b7a006-bf95-4e52-92bc-ab16ac929dca' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ -8, -9, -7, ..., -6, -6, -10],\n",
" [ -6, -6, -8, ..., -9, -6, -6],\n",
" [ -8, -10, -9, ..., -6, -7, -8],\n",
" ...,\n",
" [ -7, -8, -7, ..., -9, -7, -7],\n",
" [ -7, -9, -7, ..., -7, -6, -9],\n",
" [ -7, -9, -8, ..., -8, -7, -8]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_NE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-2 -5 -2 -4 -1 -2 ... 2 0 -2 2 -3</div><input id='attrs-8c5aea66-34b6-4c58-9436-8a89f857a8da' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8c5aea66-34b6-4c58-9436-8a89f857a8da' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-03c0826b-3f80-42b2-b5db-0159d271a50a' class='xr-var-data-in' type='checkbox'><label for='data-03c0826b-3f80-42b2-b5db-0159d271a50a' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-2, -5, -2, ..., -3, -1, -5],\n",
" [-1, -2, -2, ..., -2, -2, -5],\n",
" [ 1, -2, -3, ..., -4, -5, -4],\n",
" ...,\n",
" [-2, -1, -1, ..., -4, -2, -6],\n",
" [ 0, -9, 0, ..., -1, 0, -4],\n",
" [-3, -3, -4, ..., -2, 2, -3]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>PES_ENE_raw</span></div><div class='xr-var-dims'>(trainId, PESsampleId)</div><div class='xr-var-dtype'>int16</div><div class='xr-var-preview xr-preview'>-4 -3 -2 -3 -3 ... -3 -5 -2 -3 -5</div><input id='attrs-ad625186-c9c9-4b12-999e-374dad98991a' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-ad625186-c9c9-4b12-999e-374dad98991a' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c2eae30a-c31b-4a01-aae3-4dcaae29ecd0' class='xr-var-data-in' type='checkbox'><label for='data-c2eae30a-c31b-4a01-aae3-4dcaae29ecd0' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[-4, -3, -2, ..., -4, -2, -3],\n",
" [-4, -5, -3, ..., -1, -3, 2],\n",
" [-1, -2, -5, ..., -4, -3, -1],\n",
" ...,\n",
" [-5, -2, -4, ..., -2, 0, -1],\n",
" [-2, -2, -4, ..., -6, -4, -2],\n",
" [-3, -3, -5, ..., -2, -3, -5]], dtype=int16)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>navitar</span></div><div class='xr-var-dims'>(trainId, gratingEnergy)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>12.22 11.29 10.78 ... 13.06 12.46</div><input id='attrs-8d46411a-0ea1-4eac-b421-fdcf9e02b093' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-8d46411a-0ea1-4eac-b421-fdcf9e02b093' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7f6df7f7-1388-4bf8-aeac-c45ef3070565' class='xr-var-data-in' type='checkbox'><label for='data-7f6df7f7-1388-4bf8-aeac-c45ef3070565' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[12.22 , 11.2875, 10.78 , ..., 12.105 , 11.035 , 11.4475],\n",
" [10.555 , 12.405 , 11.015 , ..., 11.995 , 11.7325, 10.76 ],\n",
" [11.725 , 10.5325, 11.47 , ..., 13.3975, 11.4575, 12.4975],\n",
" ...,\n",
" [10.5275, 11.8375, 10.88 , ..., 11.4275, 11.635 , 11.5475],\n",
" [11.1775, 11. , 10.9025, ..., 11.6725, 12.195 , 10.955 ],\n",
" [11.59 , 12.0475, 12.6725, ..., 12.425 , 13.0575, 12.455 ]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>energy</span></div><div class='xr-var-dims'>(trainId, gratingEnergy)</div><div class='xr-var-dtype'>float64</div><div class='xr-var-preview xr-preview'>981.0 981.0 ... 1.02e+03 1.02e+03</div><input id='attrs-acb0ebe3-45e2-4ed5-9224-1d4f546d97d5' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-acb0ebe3-45e2-4ed5-9224-1d4f546d97d5' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-b91ec4cd-428c-4a86-a07e-ec4e51bd7eb4' class='xr-var-data-in' type='checkbox'><label for='data-b91ec4cd-428c-4a86-a07e-ec4e51bd7eb4' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 981.00375578, 981.02558941, 981.04742304, ..., 1020.23878641,\n",
" 1020.26062003, 1020.28245366],\n",
" [ 980.99653477, 981.01836809, 981.04020142, ..., 1020.23101968,\n",
" 1020.252853 , 1020.27468633],\n",
" [ 981.00375578, 981.02558941, 981.04742304, ..., 1020.23878641,\n",
" 1020.26062003, 1020.28245366],\n",
" ...,\n",
" [ 981.00375578, 981.02558941, 981.04742304, ..., 1020.23878641,\n",
" 1020.26062003, 1020.28245366],\n",
" [ 981.00375578, 981.02558941, 981.04742304, ..., 1020.23878641,\n",
" 1020.26062003, 1020.28245366],\n",
" [ 981.02541948, 981.04725402, 981.06908856, ..., 1020.2620873 ,\n",
" 1020.28392184, 1020.30575638]])</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>bunchPatternTable</span></div><div class='xr-var-dims'>(trainId, pulse_slot)</div><div class='xr-var-dtype'>uint32</div><div class='xr-var-preview xr-preview'>2146089 0 ... 16777216 16777216</div><input id='attrs-f13dbce8-1c17-4b95-bf23-35584d4a8852' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-f13dbce8-1c17-4b95-bf23-35584d4a8852' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-c4470e3b-6eb5-467b-8bd5-fe3189e21b6c' class='xr-var-data-in' type='checkbox'><label for='data-c4470e3b-6eb5-467b-8bd5-fe3189e21b6c' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[ 2146089, 0, 2097193, ..., 16777216, 16777216, 16777216],\n",
" [ 2146089, 0, 2097193, ..., 16777216, 16777216, 16777216],\n",
" [ 2146089, 0, 2097193, ..., 16777216, 16777216, 16777216],\n",
" ...,\n",
" [ 2146089, 0, 2097193, ..., 16777216, 16777216, 16777216],\n",
" [ 2211625, 0, 2097193, ..., 16777216, 16777216, 16777216],\n",
" [ 2146089, 0, 2097193, ..., 16777216, 16777216, 16777216]],\n",
" dtype=uint32)</pre></div></li><li class='xr-var-item'><div class='xr-var-name'><span>XTD10_SA3</span></div><div class='xr-var-dims'>(trainId, sa3_pId)</div><div class='xr-var-dtype'>float32</div><div class='xr-var-preview xr-preview'>1.217e+03 1.376e+03 ... 1.489e+03</div><input id='attrs-ec6f6e6f-3ecd-40f5-8f00-4d0b221822fe' class='xr-var-attrs-in' type='checkbox' disabled><label for='attrs-ec6f6e6f-3ecd-40f5-8f00-4d0b221822fe' title='Show/Hide attributes'><svg class='icon xr-icon-file-text2'><use xlink:href='#icon-file-text2'></use></svg></label><input id='data-7658532a-368b-4652-8c5a-ab36977ed842' class='xr-var-data-in' type='checkbox'><label for='data-7658532a-368b-4652-8c5a-ab36977ed842' title='Show/Hide data repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-var-attrs'><dl class='xr-attrs'></dl></div><div class='xr-var-data'><pre>array([[1217.2598],\n",
" [1375.6898],\n",
" [1362.0608],\n",
" ...,\n",
" [1517.0592],\n",
" [1555.7712],\n",
" [1489.4523]], dtype=float32)</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-ab65f70f-7644-4b87-99a0-e988baaa05f5' class='xr-section-summary-in' type='checkbox' ><label for='section-ab65f70f-7644-4b87-99a0-e988baaa05f5' class='xr-section-summary' >Indexes: <span>(2)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><ul class='xr-var-list'><li class='xr-var-item'><div class='xr-index-name'><div>trainId</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-8132cdcc-c2ac-4aca-80ee-525d936ca494' class='xr-index-data-in' type='checkbox'/><label for='index-8132cdcc-c2ac-4aca-80ee-525d936ca494' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([1724088331, 1724088332, 1724088333, 1724088334, 1724088335, 1724088336,\n",
" 1724088337, 1724088338, 1724088339, 1724088340,\n",
" ...\n",
" 1724098292, 1724098293, 1724098294, 1724098295, 1724098296, 1724098297,\n",
" 1724098298, 1724098299, 1724098300, 1724098301],\n",
" dtype='uint64', name='trainId', length=7165))</pre></div></li><li class='xr-var-item'><div class='xr-index-name'><div>sa3_pId</div></div><div class='xr-index-preview'>PandasIndex</div><div></div><input id='index-7463f89e-b1bb-419b-9abb-88cffa319ef2' class='xr-index-data-in' type='checkbox'/><label for='index-7463f89e-b1bb-419b-9abb-88cffa319ef2' title='Show/Hide index repr'><svg class='icon xr-icon-database'><use xlink:href='#icon-database'></use></svg></label><div class='xr-index-data'><pre>PandasIndex(Index([1326], dtype='int64', name='sa3_pId'))</pre></div></li></ul></div></li><li class='xr-section-item'><input id='section-7d629879-f4de-49c0-82a0-6ce5da3adbea' class='xr-section-summary-in' type='checkbox' checked><label for='section-7d629879-f4de-49c0-82a0-6ce5da3adbea' class='xr-section-summary' >Attributes: <span>(1)</span></label><div class='xr-section-inline-details'></div><div class='xr-section-details'><dl class='xr-attrs'><dt><span>runFolder :</span></dt><dd>/gpfs/exfel/exp/SA3/202330/p900331/raw/r0069</dd></dl></div></li></ul></div></div>"
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
],
"text/plain": [
"<xarray.Dataset>\n",
"Dimensions: (trainId: 7165, PESsampleId: 40000, gratingEnergy: 1800,\n",
" pulse_slot: 2700, sa3_pId: 1)\n",
"Coordinates:\n",
" * trainId (trainId) uint64 1724088331 1724088332 ... 1724098301\n",
" * sa3_pId (sa3_pId) int64 1326\n",
"Dimensions without coordinates: PESsampleId, gratingEnergy, pulse_slot\n",
"Data variables: (12/16)\n",
" PES_S_raw (trainId, PESsampleId) int16 -1 0 -2 0 -2 ... 4 -1 1 1 1\n",
" PES_SSW_raw (trainId, PESsampleId) int16 -4 -3 -4 -2 ... -3 -2 0 -4\n",
" PES_SW_raw (trainId, PESsampleId) int16 -3 -8 -5 -5 ... -7 -5 -8 -5\n",
" PES_WSW_raw (trainId, PESsampleId) int16 -4 -6 -4 -5 ... -5 -3 -4 0\n",
" PES_E_raw (trainId, PESsampleId) int16 -6 -3 -5 -8 ... -6 -2 -4 -6\n",
" PES_ESE_raw (trainId, PESsampleId) int16 -11 -13 -10 ... -10 -10 -12\n",
" ... ...\n",
" PES_NE_raw (trainId, PESsampleId) int16 -2 -5 -2 -4 -1 ... 0 -2 2 -3\n",
" PES_ENE_raw (trainId, PESsampleId) int16 -4 -3 -2 -3 ... -5 -2 -3 -5\n",
" navitar (trainId, gratingEnergy) float64 12.22 11.29 ... 12.46\n",
" energy (trainId, gratingEnergy) float64 981.0 981.0 ... 1.02e+03\n",
" bunchPatternTable (trainId, pulse_slot) uint32 2146089 0 ... 16777216\n",
" XTD10_SA3 (trainId, sa3_pId) float32 1.217e+03 ... 1.489e+03\n",
"Attributes:\n",
" runFolder: /gpfs/exfel/exp/SA3/202330/p900331/raw/r0069"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_train"
]
},
{
"cell_type": "code",
"id": "8f154e38-d208-477e-9d9c-ef2a632514c8",
"metadata": {},
"outputs": [],
"source": [
"energy = data_train.energy.to_numpy()[0,:]"
]
},
{
"cell_type": "code",
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
"id": "0c5ff2a0-0737-417d-9f57-158d4fbd8090",
"metadata": {},
"outputs": [],
"source": [
"gs = data_train.navitar.to_numpy()"
]
},
{
"cell_type": "markdown",
"id": "995e2ac0-1898-46dd-b95f-f65a24496871",
"metadata": {},
"source": [
"## Train Virtual Spectrometer"
]
},
{
"cell_type": "markdown",
"id": "9cbf75c8-fbe0-42ec-af85-6194aede91f5",
"metadata": {},
"source": [
"So far we have only done pre-processing due to experimental problems with some data not being available in certain train IDs.\n",
"\n",
"Let's finally take a look at the data before training the model."
]
},
{
"cell_type": "code",
"id": "63b35dac-ad50-4124-b6f8-e1ceea667b4d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2b4c48d719f0>]"
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzSklEQVR4nO2deZxkZXX3v6fW3mftGWaBWWBgQJABRhAFFIiouIAbwbijwTVRkzdvwLhFo1EMMeY1akhAUQGXKBE3EJFFEBhmWGfYZt+Z6Vl6eq31Pu8fd6lb1VVd1VXVVV23z/fz6U/ffu6tqsNl6lenfs95ziPGGBRFUZRgEWp2AIqiKEr9UXFXFEUJICruiqIoAUTFXVEUJYCouCuKogSQSLMDAJg7d65ZunRps8NQFEVpKdatW3fAGNNb7NyUEPelS5eydu3aZoehKIrSUojI9lLn1JZRFEUJICruiqIoAUTFXVEUJYCouCuKogSQsuIuIjeIyH4RWe8b+7GIPO78bBORx53xpSIy6jv3nUmMXVEURSlBJdUy3wO+CXzfHTDG/Ll7LCLXAkd81282xqyqU3yKoihKFZQVd2PMfSKytNg5ERHgMuCCOselKIqi1ECtnvu5wD5jzEbf2DIReUxE7hWRc0s9UESuFJG1IrK2r6+vxjAUJcf9Gw+w9cBws8NQlKZSq7i/HbjF9/de4BhjzGnA3wA3i0hPsQcaY64zxqw2xqzu7S26wEpRquKd1z/M+f9yT7PDUJSmUrW4i0gEeDPwY3fMGJM0xhx0jtcBm4Hjaw1SURRFmRi1ZO5/BjxrjNnlDohIr4iEnePlwApgS20hKoqiKBOlklLIW4AHgRNEZJeIvN85dTn5lgzAecCTIvIE8D/Ah4wxh+oZsKKMh24bqSg2lVTLvL3E+HuLjP0M+FntYSlKdaSzKu6KArpCVQkYqazV7BAUZUqg4q4EimQ62+wQFGVKoOKuBIpkJpe5q/+uTGdU3JVAkfKJe8ZScVemLyruSqDwZ+5p9d+VaYyKuxIokpmc566VM8p0RsVdCRR5toxm7so0RsVdCRR+n109d2U6o+KuBArLJ+j+LF5Rphsq7kqgyBrN3BUFVNyVgJFny6jnrkxjVNyVQJFny6i4K9MYFXclUORn7mrLKNMXFXclUFh51TKauSvTFxV3JVD4J1R1EZMynVFxVwJF1vKLu2buyvRFxV0JFFn13BUFUHFXAoZ/QjWrde7KNEbFXQkUlrYfUBRAxV0JGP4JVUs361CmMSruSqDIqi2jKEAF4i4iN4jIfhFZ7xv7vIjsFpHHnZ+LfeeuFpFNIvKciLx6sgJXlGKouCuKTSWZ+/eA1xQZ/7oxZpXz8xsAETkJuBx4kfOYb4lIuF7BKko5VNwVxaasuBtj7gMOVfh8lwA/MsYkjTFbgU3AmTXEpygTIk/c1XNXpjG1eO4fE5EnHdtmljO2CNjpu2aXMzYGEblSRNaKyNq+vr4awlCUHH5B18xdmc5UK+7fBo4FVgF7gWudcSlybdF3mDHmOmPMamPM6t7e3irDUJR8slkVd0WBKsXdGLPPGJM1xljAf5GzXnYBR/suXQzsqS1ERakczdwVxaYqcReRBb4/3wS4lTS3AZeLSFxElgErgDW1hagolaMTqopiEyl3gYjcArwSmCsiu4DPAa8UkVXYlss24IMAxpgNIvIT4GkgA3zUGJOdlMgVpQh+QddFTMp0pqy4G2PeXmT4+nGu/xLwpVqCUpRq0T1UFcVGV6gqgSKbNURC9ry+2jLKdEbFXQkUWWOIRex/1paKuzKNUXFXAkXWMkTD9j9rtWWU6YyKuxIobHEXRHRCVZneqLgrgcIyhpAIkZCo565Ma1TclUCRcSZUQ6LirkxvVNyVQJE1hlBICFeYuT+xs5+12yrti6corUPZOndFaSWylp25h0NSUVfIS/7jAQC2feV1kx2aojQUzdyVQJG1Jpa5K0pQUXFXAoVlDGERwhV47ir+SpBRcVcCRSZrCFeYuQ8m0t6x0bJJJWCouCuBwjKVi3sqY+WOs9Y4VypK66HirgSKzAQmVP2CnsyouCvBQsVdCRQTmVDNy9xV3JWAoeKuBArLOJl7BROqad+WfJq5K0FDxV0JFJms3X4gHJKyvWX82bp2kFSChoq7Eij8E6qZbOWeu3aQVIKGirsSKDKWLe4hsTP3p3Yd4V/vfL7otf7MPWupLaMECxV3JVBYjrhHwrbnfum3HuDf79pY1H/3Z+5aCakEDRV3JVBkTa4rZMYynqgn0mP3aU9n/LaMqrsSLFTclUBRakK1mLjnZ+7quSvBoqy4i8gNIrJfRNb7xr4mIs+KyJMicquIzHTGl4rIqIg87vx8ZxJjV5QxWMYQCefq3MXeK5tEkVLHtIq7EmAqydy/B7ymYOxO4GRjzIuB54Grfec2G2NWOT8fqk+YilIZGcvJ3J06d0fbGU2NzdyTGRV3JbiUFXdjzH3AoYKx3xljMs6fDwGLJyE2RZkw7oSqm7mHnNS9qOeupZBKgKmH534F8Fvf38tE5DERuVdEzi31IBG5UkTWisjavr6+OoShKPaEql/cwyFb3JOZIp67LmJSAkxN4i4i/wBkgJucob3AMcaY04C/AW4WkZ5ijzXGXGeMWW2MWd3b21tLGIrikc06/dydxmGuuI+mxvfcNXNXgkbV4i4i7wFeD7zDOM2wjTFJY8xB53gdsBk4vh6BKkolZPMmVPHEvWi1jHruSoCpStxF5DXA3wNvNMaM+MZ7RSTsHC8HVgBb6hGoolRCNm9C1SLiinsZW0bFXQkaZTfIFpFbgFcCc0VkF/A57OqYOHCn2BNWDzmVMecBXxCRDJAFPmSM0a3llYaRt0G2ZQiH7PwlkR5ry6R8vWfUllGCRllxN8a8vcjw9SWu/Rnws1qDUpRqyTiCbi9iwsvcR9WWUaYZukJVCRRZK+e5ZywrVy1TphSy3K5NitJqqLgrgcJdxBQSwfJNqBZbxOTvJ6NdIZWgoeKuBArXc484nrvBzsiLbYDt34mpXO93RWk1VNyVwGCM8RYuhUJ2V0hXtIvtkZrOWsTC9lug1K5NI6kMB4aSkxe0okwSKu5KYHDnRO1qGVuwXV+92B6pmawhHrXfAqWqZd5+3UOs/qffT07AijKJqLgrgcH10EMhIRIKkbWMZ70Ut2Us2qJhoHS1zBO7jnjXKkoroeKuBAZXoN3NOmxxt0W5lC3T5mTu5UohhxKZcc8rylSjbJ27orQKrkCHHVsmY1m4RTDFxD1jGdoi42fu/msVpZXQzF0JDP7MPRwKYVk5O6Z05m6Leznx1m34lFZDxV0JDBlf5h4JSZ7PXqoUslJbRksllVZDxV0JDDlbJuQtXnIpastUMKHqXau2jNJiqLgrgSHjs2UiFYh7OmuIR8YvhfSeW6tllBZDxV0JDJZ/QjWcL+7JEqWQ0bDTZKyMuKfVllFaDBV3JTAUeu5+SlXLRBxxL5a5+60a7RqptBoq7kpgcJt/hZ1qGT+pIpt12Jl7bmOPYue9Y62WUVoMFXclMPg9d78rU1g545LOWkRDIafJWOnnA62WUVoPFXclMLgCbHvuuX/anfFIUVsmlbGIRmx/vljmnsnbQFszd6W1UHFXAoPb2bHQc+8qIe7DqSyd8QhhKe65a0tgpZVRcVcCQyav/UBO3Dti4THins5apDIWXbGIsyXfWPH2Z+uauSuthoq7Ehhy7QdCeZl7ZzwyxnMfSdoTrB3xCJGQFM3MM5q5Ky2MirsSGPI89wJbJp01ebXsQ6mMcy5MyNm1qZB0nueu4q60FmXFXURuEJH9IrLeNzZbRO4UkY3O71m+c1eLyCYReU5EXj1ZgStKIfmeu39C1W4x4M/eR5K2uHfEnMy9iHj7x7Sfu9JqVJK5fw94TcHYVcBdxpgVwF3O34jIScDlwIucx3xLRMJ1i1ZRxqGU594Ztztb+8V9KOlm7rbnni3iufsFXRcxKa1GWXE3xtwHHCoYvgS40Tm+EbjUN/4jY0zSGLMV2AScWZ9QFWV83HLGwt4yXa64+yZVR1K2597pinsRT12rZZRWplrPfb4xZi+A83ueM74I2Om7bpczNgYRuVJE1orI2r6+virDUJQcpTz3ziLiPuTZMmHCoVBxW0ZXqCotTL0nVKXIWNGUxxhznTFmtTFmdW9vb53DUKYj2RK2TPHMPWfLREqUQvozd7VllFajWnHfJyILAJzf+53xXcDRvusWA3uqD09RKsf1zQttmc7Y2AnVIa8U0q6WKT6h6svc1ZZRWoxqxf024D3O8XuAX/jGLxeRuIgsA1YAa2oLUVEqo1TmXsyWGUnmZ+7F2w/4PXe1ZZTWouwG2SJyC/BKYK6I7AI+B3wF+ImIvB/YAbwNwBizQUR+AjwNZICPGmPGtuNTlEnAFeNIKEQkPNaWSTriblmGf/7tswC0R8P2hKrWuSsBo6y4G2PeXuLUhSWu/xLwpVqCUpRqcAU6FCKv5W9h5r7r8Kh3TkSc3jLF+717x2rLKC2GrlBVAkPOcy9sP5DvuRcKeSRcqnGY9pZRWhcVdyUwuL54KGSXOLrEwo64O5l7Im3//s47zwAouc1enueutozSYqi4K4HBrWiJhUOeFQMQczbB9sTd2ZWpLWqPl2r5m9cVUidUlRajrOeuKK2CK8aRcIiIb7MOT9yztqgn0q642xl96QlVU/RYUVoBFXclMKSzuTr3aDFx92yZfHGPhIuLe0Z7yygtjNoySmBwPfJoOJRX5x4Lu5m7fd713D1bJhQqLu7OWFs0pBOqSsuh4q4EhoxlERLyhB1KZ+7tri0jxSdM3br4zlhEbRml5VBxVwJDKmvlee0u8QJxHx3juRfP3F1xb4+F1ZZRWg4VdyUwZLKGaGhs7zrPlikohWyLOJ57iQnVZDpLPBIiFg7pZh1Ky6ETqkpgyBRk7n/8v+czms4SchqJFVbLxB3PvVTjsGTGoi0athc51WjLJNJZ75uCojQCzdyVwJC2DFFfT5mjZ3dw/PxuwJ5kdTP3ZDqLSM6uKdXyN+Fk7qX6vVfKj9bsYOVnbmdP/2j5ixWlTqi4K4Ehk7XySiD9xCKhPM+9LRJGxP4gCIek6CIlN3OPhov3nqmUGx7YCsC+gUTVz6EoE0XFXQkM6azJ6wbpJxYJeb1lEmnLK4OE0ouY3Mw9EqrNlnl+3xCQm8hVlEag4q4EhnTWIhoqkbmHQ171S6H/HSmxQbbnuYfqU+c+nFRxVxqHirsSGDLjZO7xAlum3SfuZTP3OkyoAgw7G4QoSiNQcVcCQ8ayiJTK3H3inkhbxAvEffxqmRDpOtS5D6q4Kw1ExV0JDKmsIRoZR9wdzz2ZyY7x3I1hTNtfv+debBu+iaKZu9JIVNyVwJDJWkUXMYHtufvbD7gLmABvY49C3z3nuVdvy/j3bR1KqLgrjUPFXQkM43nuflumMMMPueJeInOP1rBCdTCR9o6HNHNXGoiKuxIY0laZOnd3m72CDD9SQtyTGdubLzXhWglHRnPirraM0khU3JXAkMmavL1T/fhtmcIM391M2z+pmrUMiZTtzUfCUnVXSH/5o2buSiOpureMiJwA/Ng3tBz4LDAT+Eugzxn/lDHmN9W+jqJUSrrCFappK78HjavzbnY+lMxw8ufuAGDnoRHmdMarrnNP+ewcFXelkVQt7saY54BVACISBnYDtwLvA75ujPmXegSoKJVSTtzdRUxZKz/DDzuPccV924Fh79zAaIZ5PW1VT6h6m3aL2jJKY6mXLXMhsNkYs71Oz6coEyZjlVnElPXZMr56+ELPvX8k55Nfe9mpREvUwVeCa+fM7Ihp5q40lHqJ++XALb6/PyYiT4rIDSIyq9gDRORKEVkrImv7+vqKXaIoE6JQtP34PXc7w/dl7k4DMdd6OTyS8s4dPbuDSDhUtLFYJaSd5+yKR7xvDorSCGoWdxGJAW8EfuoMfRs4Ftuy2QtcW+xxxpjrjDGrjTGre3t7aw1DUcaIth+/516Y4bvHrvXS74j7jVec6Z2vdoWq+5yd8UhezbuiTDb1yNxfCzxqjNkHYIzZZ4zJGmMs4L+AM+vwGkqASaSz7Dw0UvPzlJ1Q9ZVC+jN8b49V57xbvnj28jkAREM1ZO5ZN3MPa+auNJR6iPvb8VkyIrLAd+5NwPo6vIYSYN733Uc495q7MUU6M06EcRcxhe19ULOWsTN334Rq4TZ8yYy90bYr+pGwYJmxdfCV4Iq7Zu5Ko6lpmz0R6QBeBXzQN3yNiKwCDLCt4JyijOHBLQcBu1tjR6z6f5LlFjGBLeD2h8DYzD3pE/e4rz2B+5zprEU4NLGt8tzn7G6Lksxoy1+lcdQk7saYEWBOwdi7aopImbYMJjI1ifu4i5h84m5/CEjRc+BsjB0dW01TTcXMiFMhM6sjSjprsCzjtTtQlMlEV6gqU4bBGhprGePYLWUy90QmizHkee7xAs/dztx94u48ZzW++4iz+9KsjljeayjKZKPirkwZ/E22JopbTx4rVefuCLS7kMjvzcfCttWSKmHLxAtsm4kwkswSEuhui1T9HIpSDSruypShlszdrVEvlblHI7aYj6TsTDpvQrXQlslk8zL3nvaoE1/pD59Sk8HDqQydsYi3OYj67kqjUHFXmoq/le6m/UM1PI8trqUbh9ni6ol7kQnVVNY+l0xbeZ57j5N1HxnNsH73EV7zb/cxUCD0y67+DZ+/bcOY1x1JZumIh71vDloxozQKFXelqfg3sDg4nKz6eVw/vFy1zHAq41w3Xuaeb8t0xm1xH0ll+MZdG3n2hUHuez63qvrwsL3o6Xt/2jbmdUfSWSdzr97aUZRqUHFXmoq/33kyXb3wuZUs423WAXYmDfbWet65gqw6lbG8McDbtSmRtlg0sx2APf2j3vlv37u5ZFwjyQwd8fCY11CUyUbFXWkq/mZaiRr8aFc0S2buzviIm7kXWaGa9HvuPlvG3W81kc4yw/Hf/d84rrtvCwCnHTNzzOsOpzJ0RDVzVxqPirvSVPwTjPXI3MfrLQN+zz13nTt56vr2haWQbVE3c896cwRJ31zBkjkdgL1QqZCRVNbJ3PMrchRlslFxV5qKX9ATNQif67mX6goZHyPuueuiRdoP5JVCupl7xvImUv292Y+ZbYv7aGpstc9IqtBz12oZpTGouCtNxZ8BJ9LVC5+bdZfP3J06d/9mHSEhHBJftUy2aOaeTGf53YZ99vP4ts8bdT4w3A8OPyPJDB0x9dyVxqPirjQVV+xi4VBNfrRX5z5OP3coXufuns/L3KPFJlSzXi2+f65gNF1a3IdTWTpiYfXclYaj4q40lVxjrUiNmbszoRopIe4FmXvhxKu/3/vYxmFCSOxqGWdfjzwhdzP3YtvojaaydMQjmrkrDUfFXWkqrtj1tEdrymo9W6ZM47Dh5NgJVfd8rrdMvi0jIrRFwwwlM56oV5K59w0mSWUtOqJhXaGqNBwVd6WpeOLeFiFZQ+bu7nhUrnFYznMvyNwdWyhrGdJZ413v0h4Nc2Aot8hqxDd5OuJ57pm8NgRb+uwVt7O7Ypq5Kw1HxV1pKm4mW3Pm7vWWKdV+YPzMPe7YMq74+m0ZgBntUXYdzi1cGvZPqDofSpbJ99Rdf/6URTPUc1cajoq70lRymXu0Js8949ky40+ouu0HYiU8d/fDJl6Quc/qjLHD2Qpwblfce56sZUhlLOZ22S19/b67a910t0W911NxVxqFirvSVHKee6RGz92dUC2euYdCQjQs9I/YdertsfzM3PXcvcw9mv/WWD63k0NOD5n5PXFPxN2sfU5nHMj33d0ukl3xSK5nvIq70iBU3JWmkszYFSgdsfpUy5QqhQT7NVyBbiuwXdxSyGQJW6a3O+4dz+9pI521M3bXe5/jZO554u5l7hFEpOZyT0WZCCruSlNJZe2l/m3RGuvcyyxiAjuDdq2StmhxW8b9gCm0Zbractv/ze+xhX44mSGRsmOe2+WM+SZaBxMZomHxnivuK7dUlMlGxV1pKm4HxrZI2KlUqU78ym3WAdAZz2XjbSVsGTfz7ig4726TB3C0025gKJlhJF2QufsmWocSGbrboohTHB+LhLQUUmkYKu5KU0lmLGKR2ldwlqtzB7uc0aXQlomEhCd3HfEy70JP/uJTFnjHy+d2AnZm7i5gcjP3kbzMPU1XPJfxxzRzVxpITeIuIttE5CkReVxE1jpjs0XkThHZ6PyeVZ9QlSDiLhjyd170k8lafOP3G9l7ZLTYwz3SZTbr8J8LO5Orfp7bNwjAt+62e7N3xiJ552e0Rzlr2Wze9dIlzGi3s/T+0ZQn7nM6x3ruQ8mMt3cq2LaMeu5Ko6hH5n6+MWaVMWa18/dVwF3GmBXAXc7filKUlNNe1/WlC8X9+w9u5+u/f54b7t867vMknO6ShRm3H7e2vS0S8qwSly+88WQA7t90ABhrywD86MqX8sVLT/Z6ug+Mpj0xn1PEcx9IZDRzV5rGZNgylwA3Osc3ApdOwmsoASGVsYj5MvfCzPYLv3oagMMjpTenBrvdrsjYiVA/buZe7APg/JXz8pqJFbvG/UCY2WGLe/9Imj3ON4rlvbZV89wLg971rufuEo+E1XNXGkat4m6A34nIOhG50hmbb4zZC+D8nlfsgSJypYisFZG1fX19xS5RpgHJMpm7y6yOsRth+BlNZ2mPhsdk5H5ccS8sc3R51UnzveNCW8aPm7n3j6Y5MGSXVi5xJlm//+B2z3cfTKbzbBl//xpFmWxqFfeXG2NOB14LfFREzqv0gcaY64wxq40xq3t7e2sMQ2lV3Mw9XiJzd9m0f2jc5xlNZ73svxSuz15YBunit1DGs3c6YmFE4HcbXiCRztIWDeVV6bjllnbmXuC517DblKJMhJrE3Rizx/m9H7gVOBPYJyILAJzf+2sNUgkuqawj7kUy90w212J33fbD4z5PMm3RNo4lA7kyyVLC3emIe6iMvSMiGAOP7ujnuvu2eH7/mctme7EYYxgs5rlr5q40iKrFXUQ6RaTbPQYuAtYDtwHvcS57D/CLWoNUgotdLRMu6rn3j6Zxmyz6RbIY7ofEeLj9XQrLIF3c1+iIRca1d0rxzpcuAez/hmTGImOZvMVPmrkrjWT8d8z4zAdudd4EEeBmY8ztIvII8BMReT+wA3hb7WEqQcW/iAnIa/u7tz8BwOzOGMNFdjka8zxlxN21Ywr7xri4mXsVum4/r6+tsNsRsjsvcw9r5q40jKrF3RizBTi1yPhB4MJaglKmDznPfewippse3g7A4lntPLX7CFnLEC6xSKkScb9lzU4AHtx8sOh5N8v2tWSviL88dxkA/SP25Op3H9jGxy9cAeQ+MMDN3CdeLTOYSOdV3ShKJegKVaWpJAtKIf2euzsZ+cZTF2IMHBktXQ6Zylpj2vgW8s9vPgWA4+d3Fz3f5bQnyFrl1f1nHz7bOz5uXhcA559gF4YdNaPNm1TtrNFzv+e5/Zzy+d/x8JbiH0iKUgoVd6WpFC5i8mfuA6MZ5nXHvb4ubgvdYiQz1rirUwH+fPXRvPvsJXzm9ScVPd/b1Qbk2viOx6mLZ3rHbuuB3u64V5HjinvXmMx9YuL+6I5+AK78wboJPU5RavHcFaVmChcx+TP3H6/dyTGzO7zs1/WxSz2Pv+ywGKGQ8IVLTi55/sQFxTP6YvhLH926eRGhuy3KYCLt9XsvzNyTE8zcZzo19eN9a1GUYmjmrjQV15bxMncns3X3H91xaMQT7eFkhk37B/nhQ9vHPI/7DaAW3BYClfL4Z1/Fxy9cwUuXz/bGetoiDIxmfJl7rjInHgmTylh5+6yWo98R9e4y1UKKUoj+i1GahjHG6eceJhoOEYuEvA0u9h5JeNe52e9wKsO7/30NyYzFyYtmsOromd41lZRCVsIvP3ZO2W8ALjM7YnzyVcfnjfW0RxlIpBlIuOKemwh1q3USaWvcRVJ+Bhxxd/eIVZRK0cxdaRru5KKbcc/tjHFwKIUxhnf898MAzOuOe9nvUDLrefL/56dP5D9XpvyEaiWcsngGS52WvtXQFY8wlMhwYDCJSK7Pu3sOcn58Jbh2TCJtYVUw0asoLiruStNwhdoV5TldcQ4OJ/P85Zs+cFYuc09mvOZefisEKiuFbASdzm5PfUNJZnfE8iZ53X41w1WIO8D/Pr67foEqgaf57wZl2lK4GfVsJ3O/8Np7Abhs9WJWzO/OZbyJjNeKV8ivd0/XyZapla54hOFUhr7BZN6+q5BvL1WKX9wPOk3KFKUSmv9uUKYtqTGZe4xDwykOOptYv+/l9uKgrniEcEg4PJLyLI3CckXblqnMx55MOuNhhpNZjoykvdbALl3eN5DKFzK9cCThPc5v8ShKOVTclabh2TKu594VZ3e/3R+9PRrmxAU9gF1iOLM9yu7+UVzbuXBnpuQUydw74xGGkxkGk5m8yVT7nP3hU6ktY4zhhYEEr3+xvcXfRLx6RWn+u0GZtni2jFMnflRPm3fuwhPztwGY2RFl+8ERADpjYf60+aDXN90YM3U891iEZMbiyEgqrwwSJj6hmsxYZC3DUTPs+zKgte7KBGj+u0GZtqQKMvdjnA0vAN5y+uK8a2d2xNiw5wgArzihF2Ng92E7e3c3x661zr0euAK+50giryMk2P8NkOtBUw73Q2B2Z8wuEx1nEZeiFNL8d4MybUllbe/ZFXf/as7zV+Zn7j1tEU/Ez1o2B8htRu2WVNajFLJW3D4zkP/fA/ZuUiJ4uzeVY8Tx5jtiEXtxlIq7MgGa/25Qpi3ualQ34y6cgPTjr/BeMsfO8N1WBYXfAJrJwpk5a6lwq75IOMSsjhgHh5MVPZd/lavb1kBRKqX57wZl2uL2WXFF+cQFPXzj8lV5HRddtvQNe8duRvyf922xnyeT/w2gmcz1tTBYMKNtzPlDwyl++NAO1mw9VPa53JLJzriduWt/GWUiNP/doExbCkshAS5ZtYgzlswec62/u6JbbfKHZ+0dHF3Rczeubib+GArnDfxc9p8Pln0u97+zIxZh6dxONpfZR1ZR/Ki4K03DLYUstWG1nx998KXe8SmLZuSdOzIydcRdRDh18Qz+/jUrCRXZWOQKp3YfKNtAzK2H74pHOKqnzav/V5RK0MZhStPIZe7lFx/1tEX51jtOZ+HMduZ0xbls9WLuea4PyHVOnAriDvCLj51T8py/rXDfYJJ5PWOtG5dc2+AwPe1RkhmL0VS24qZjyvRGM3elaQw5E4SFJYOluPiUBV4nyKNmtNM3lCSdtaaULVOOt56xmKtfuxKAXf2j417r7eYUi3iTyJvUmlEqRMVdaRiHh1N5k4JuaV+lLXb9HNXThjGwfzDJgSG7+mRW59Rfni8ivOKEXiBXp1+KAd+Hnzs5e6jCGnlFUXFXGsZpX7yTs778e+/vI6NpOmLhstvjFcMVu837h9jaN+y0Bm4Nl3HRzHYA9pTJ3PcNJJnTaXeW7HDKKke0BYFSIVWLu4gcLSJ3i8gzIrJBRD7ujH9eRHaLyOPOz8X1C1dpVdxe5Im0f4/UdNVWirsk/5o7nmUgkfb2WW0Futui9LRFvD46pTg8nGK2823E7Yb547U7Jz0+JRjUkupkgL81xjwqIt3AOhG50zn3dWPMv9QenhIUbnlkh3d8YCjJ3K44A4k0PW3VifvKo+yJyeN6u3hhIFGVtdNMFs5sL2vLDCUz3n+Xe5/cSWRFKUfVmbsxZq8x5lHneBB4BlhUr8CUYOHvhLj1gL0gaWA0Q097daIsIhw9u50jo2ke2nKItdsP1yXORrF4VnvZzH0wkabbEfVZnTHvA+3pPQOTHp/S+tTFcxeRpcBpwMPO0MdE5EkRuUFEZpV4zJUislZE1vb1aTYSdCKh3D+1BzYdAGzPvZYKl7ldce52Mtk3n9ZaecWimRWIezKTV0nkNlb7xl3PT2psSjCoWdxFpAv4GfAJY8wA8G3gWGAVsBe4ttjjjDHXGWNWG2NW9/b21hqGMsXZN5ggFg4xpzPG/kG7uqUWWwbyl/q/52VLaw2xoSya1c5gIuNVxBRjMJGh2zdJ/Nk3nATAHRv2TXp8SutTk7iLSBRb2G8yxvwcwBizzxiTNcZYwH8BZ9YeptLq7OlPcNSMNjriYUadbo4Do2l6asjcT3I28wDGbGk31Vnoq5i5ff1ePvO/68dcM5TI5M0lLJ6Va4msm2Ur5ailWkaA64FnjDH/6htf4LvsTcDYf7XKtGNv/ygLZ7ZxcCjFrY/tJpWxGExmahL3M5bkHL/546z0nIq45ZAb9w3xoR8+yg8e2s6jO3LzBumsxWg6O2Y3J/dx/dpETClDLZn7y4F3ARcUlD1eIyJPiciTwPnAJ+sRqNLa7OkfZeHMdq8H+/Gf/i3G2D3Oq+XsY+fwjrOO4YGrLiBcpI/LVGbJnE5CAv/72G5v7L03rPGO3Qnowiqgq5zVreUqbRSl6voxY8z9QLF31G+qD0cJIpmsxb7BJAtntPNXFxzH//vDJu/c6ccUnW+viGg4xJfedEo9Qmw4sztjHD+/m7uczpZA3mYc7q5Lha0ZXPvpBw9t45q3ntqASJVWRVeoKpPO/sEkWcuwYGYbf3vRCSzv7fTOner0ipmOuKWNLv774q5eLbSbzlxqt0N2d6Xy88zeAW57Yk/ZbpPK9KC1Vn4oLcm+gQSQaxkwv7stb/ON6cqSOTkx/9j5x/GtezaRzlo8sbPf24hk+dzOvMeEQsKZy2az49DImOd77Tf+CMD+gQQfOHf5JEautAKauSuTzr4Bu/RxXrct7p+6+MRmhjNluOIcu7f7V99yCvN74lgGPviDdbz1Ow96G5G4VTV+ju3t9BaCuWw/mPv7n379zCRGrbQKmrkrk86WA3abWtdiOGXxDD5wzjJOLth0Y7oxoz3Ktq+8DoBfPrEHyO0uBfYmJsUmiud1t3FoOMX9Gw9wzoq5AKwrWKGbzGSJR7Tv+3RGM3elbiTSWW/Tapc9/aNcc/tzLJrZzhxfS95Pv/4kLm2xVaWTyetOWTBm7KYPnFX02rizc9U7r3+Y0VSWOza8wNfueC7vmlsf3V3soco0QsVdqRsrP3M7Kz9zu/f3SCrDy77yB8DeKq7YtnOKjf/e/OMbX8S2r7yu6F6yABeddJR3/LU7nuODP1jH3iP2vIb7NDev2VHsoco0IpDift19m3lq1xHv75FUhpFUrsysfyTFcDLDrsNjJ6W2Hxwmk7XGjCul2bR/kKVX/dr7e+lVv2bpVb/mpM/e4Y0dN7+rGaG1FP962amctWx22VYKx83r4v2OX3/DA1vzzm3+8sWcuWw2T+464u0tq0xPAuG5G2NIZw07D4/wmf9dz582HwTs3XpecCo1SnHOcXPZdnCYXYdHOXfFXP648QDvPnsJ7z57CcfM7uTBLQeZ2xXjpAU97Do8ygObDnDu8b185KZH+fKbTmbZ3E7u33iAi150VMnXSGctfvjQdv7irGP4+aO7ecvpi4lFQliW4Xt/2sbbVi8mHBLao2FuengHF5+ygNmdMQ4Pp8gak9dDxbIMA4k0M6voX26MIZG2yu7BOZzM8M27N/HXF6wglbGY0RGlfyTFsy8MsnrJLCLhEMYY/rjxANsPjRRdOu9n5VHdfLlF69EbyZtPX8ybT19c0bUfeeWxXH9/vrBfumohIsJFJ81nzdZDvOTLv+c3f30Otz2+h8d29nPFy5cxpyvGixfPLPqcWw8Ms8xXnbNu+2Fue3w3n3/ji7AXpE8/fvH4bs4+do5XDDAeiXSWQ8MpBhJpVszr5pFthzhxQQ8z2qP84y83EIuEOP+EeVjG8LJj57K5b4gLr72Xmz9wFi87bm7dY5epUBO7evVqs3bt2qoeu6VviO8/uJ3v/WlbfYOqA59+3YmcfewcvvDLp3l466G8cx+/cAWRkHDtnc+zcEYbe47kfwh98y9O42M3PwbA61+8gGN7u5jXE+cfbrWF9FMXr6QjFuHTjrAeN6+LE+Z3k8pa3Pl0rrHU3736BHYcHGHxrHa+fe9mRlJZ3n/OMkZSWT518Uo+d9sGfl7Gn33P2Uu48cHtVd2DJXM6uPfvzq/qscr47Dw0wrnX3A3AJ/5sBX99wQpCIeHAUJLV//T7ko87Y8kszj+hl5+u28X2gyN86x2n0xEL897vPsLZy+fwD687kQNDSd773UcA+MkHz+bMZTmLaCiZYc3Wg1ywcj7bDw7z5K4jvOHUhXmv8YvHd3PBynley2LLMhXbcrsOj7Bp/xCvPGFe3vizLwywtz/B+SvnMZBI0z+cZk5XjHBIaItObPLYsgwi5H1ojaQy/Nm19/LFS0/mlMUzSKQszvuafX+f/PxF/ODB7XztjucQgf/4i9O5/v6tYyayq8WdWJ8oIrLOGLO66LlWFve12w7x1u88OAkRKdXwb3++iktPW5Rn0RQKg1JfRlNZ0pY1prvmV29/lm/fs7lur/O2MxYztzte9jlv+9jLEYQ3fPN+wK7f/+bduRXJbzh1ITsOjbB0TgdnLJnFZ3+xAbCTkMPDKW7f8AK7nNYKx/Z2cty8LtqiYZJpi9s3vADAr/7qHD5y06N5tf4vWtjDpasW8aXf5JeBvvdlS7np4e1FF32BnRRNhU3HVdwL2HV4hHO+enfRc6cdM5PHdvTnjZ13fC+PbD3EaEFFh1Ib7zjrmLw2AM/sHeBzt23g71+zMq+5l9JY/B+yytTl5x95WdVtOMYT95b23BfMyC3wePlxc/j+FWdhGUNYhFTW4r//uIUPnLu86Fe2vUdG2XpgGEF4+389BMBTn7+IrGVY9QV7t8Dzju/lzKWzSKQtQgId8Qhf+e2z3nM88dmL+PBN60ikszxa8EECsGJeFxt9WcGZy2azpsCeqRdnLZvNjPYov3t6HyuP6uaSVYv46u3Pln1cPBLiw688loe3HKIjFubFi2fyH/ds4oT53Ty1Ozcp/d33vYT9Awk27huipz3K21Yv5vBwmuFUhpcszc/MT1zQw08+eHbd/xuViXH7J85FEI6b18VtT+zmdacs5F/vfJ6n9w5w3/P2Jidf//NT+T8/fZKsthCuiredsZirLz6R9313DU/sOsKime3c+pGX8ftn9rNoVjv9Iyn2DyQ5edEMT2feffYSth8c4TvvPINQiElbj9DSmTvYkxh3P7uf1xapE66U4WQGEbwd5tdttydC3L/9/GnzATbvH+JdZy/NG1+/+wjX3PEcn7p4JSuPsvuMW5bhW/ds4rKXHO1NyAwnM9z44DZeefw8TlzQzaHhFBnL0NsV576NfczvaeO13/gjR/W0cdlLjuaTf7YCEWFP/yjff3A7x/Z2MprO8tLlc4hHQqzZeoi/+58neeJzF9EZC/PU7iOc5mQBtz2xh9OOnsnOwyMsn9vlbSr9xM5+5vXE6e2KIyIlOyq61RZ3PP0Cl60+uur7q0w9LMswnMrQ3RZl30CCe57bz/LeLn7yyE7eesZiTlzYw4s//zvm98T55V+dw8NbDvFXtzzGzR84i9ue2MNZy2fTP5Lm1S86ike2HeL8lfN47w1rvCTna299MX/3P096r/e5N5xEVzzCghntvHT5bDb3DTO3K0Y6a0hlLGZ1RvnsLzZwq69L5qdfdyL/9OtnOGF+N1ecs5S5XXG++KunefPpi7n8JUcTDgn3Pt/HcDLDZxx7x8U/T/S3rzqef//DRtJZw00fOIvv3LuZNVsPkcxYvGTpLF510nz2HkmwaGY7bzx1IaPpLItmtvPFXz3Na05ewA8f3s5fnrucUxfPQEQwxrDt4Ah7+0fzJkL3DyRoj4W9eYZC3FXE/rYTtRJYW0ZRlKmFW0YcCYdIZSxikYlXW9+yZgfH9nZVNVdzZCTN9fdv4a8vtJOirGWqiqFVUHFXFEUJIOOJe3A/0hRFUaYxKu6KoigBRMVdURQlgKi4K4qiBBAVd0VRlACi4q4oihJAVNwVRVECiIq7oihKAJkSi5hEpA8Yr6fsXOBAg8KZKFM1tqkaF2hs1TBV4wKNrVrqEdsSY0xvsRNTQtzLISJrS63CajZTNbapGhdobNUwVeMCja1aJjs2tWUURVECiIq7oihKAGkVcb+u2QGMw1SNbarGBRpbNUzVuEBjq5ZJja0lPHdFURRlYrRK5q4oiqJMABV3RVGUADIlxF1EPi4i60Vkg4h8whlbJSIPicjjIrJWRM70XX+1iGwSkedE5NVTJTYRWSoio8744yLynQbHdaqIPCgiT4nIL0Wkx3d9s+9Z0dgm+56JyA0isl9E1vvGZovInSKy0fk9y3eu6H0SkTOc2DeJyL+LSPG9CZsT2z3OmHsP5zUyNhGZIyJ3i8iQiHyz4Hnqet/qGFez79mrRGSdc2/WicgFvsfU554ZY5r6A5wMrAc6sDfs/j2wAvgd8FrnmouBe5zjk4AngDiwDNgMhKdIbEuB9U28Z48Ar3CuuQL44hS6Z6Vim9R7BpwHnO5/DeAa4Crn+Crgq+XuE7AGOBsQ4Lfu//8pEts9wOom3rdO4BzgQ8A3C56nrvetjnE1+56dBiz0vWd21/ueTYXM/UTgIWPMiDEmA9wLvAkwgJt5zgD2OMeXAD8yxiSNMVuBTcCZTA4Tja1RlIrrBOA+55o7gbc4x1PhnpWKbVIxxtwHHCoYvgS40Tm+EbjUNz7mPonIAqDHGPOgsd993/c9pqmx1RpDPWIzxgwbY+4HEv6LJ+O+1SOuyWKCsT1mjHF1YwPQJiLxet6zqSDu64HznK9QHdiZ8NHAJ4CvichO4F+Aq53rFwE7fY/f5YxNhdgAlonIYyJyr4ic2+C41gNvdK55mzMGU+OelYoNGnPP/Mw3xuwFcH67X8lL3adFznHh+FSIzeW7jr3wmXpYRhOMrRSNum8TjctlqtyztwCPGWOS1PGeNV3cjTHPAF/FzuZux/7qmQE+DHzSGHM08Engeuchxf4nTEo9ZxWx7QWOMcacBvwNcLP4fO8GxHUF8FERWQd0AynnIVPhnpWKrSH3rEJK3aeG3b9xGC+GdxhjTgHOdX7e1bCoxmcq3LdSTIl7JiIvwn6/fNAdKnJZVfes6eIOYIy53hhzujHmPOyvNRuB9wA/dy75KbmvoLvIz/oWM4m2yERic74yH3SO12H7osc3Ki5jzLPGmIuMMWcAtzivD1PgnpWKrZH3zMc+5+uvax3sd8ZL3addznHh+FSIDWPMbuf3IHAzk2fXlIqtFI26bxONa0rcMxFZDNwKvNsY43+v1uWeTQlxd2eqReQY4M3Yb/49wCucSy7AFlWA24DLHX9qGfZk3ZqpEJuI9IpI2Dle7sS2pVFx+cZCwKcBt/Kk6fesVGyNvGc+bsP+gMb5/Qvf+Jj75HydHhSRlzpf39/te0xTYxORiIjMBRCRKPB6bAuskbEVpYH3bUJxTYV7JiIzgV8DVxtjHnAvrus9q3WGuB4/wB+Bp7G/wl/ojJ0DrHPGHgbO8F3/D9gZ3nPUoWqhXrFhe2cbnPFHgTc0OK6PA887P1/BWYE8Re5Z0dgm+55hfxjvBdLYWdH7gTnAXdgfyncBs8vdJ2A1tgBsBr7pv7fNjA27ImQd8KRzH79BHSqhqohtG/a3tCHn+pMm477VI66pcM+wE5xh4HHfz7x63jNtP6AoihJApoQtoyiKotQXFXdFUZQAouKuKIoSQFTcFUVRAoiKu6IoSgBRcVcURQkgKu6KoigB5P8DTdA4LixcTdUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(energy, gs[2])"
]
},
{
"cell_type": "code",
"id": "d0b70fef-5e27-4cb1-90e7-2653989cf48a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2b4c50e8d030>]"
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA2k0lEQVR4nO3deXicZbn48e89M5msbfa2adI26Qpt6UYoS4GiIBRUyk7Vc+zPDRf0CAfPEQ5H5agoKosbyEHkiIqyiCgiqxUKAt33vematGmz78tsz++P953JpE2azGSSmSb357pyZfLmncmTN5N77rmfTYwxKKWUGl4c8W6AUkqp2NPgrpRSw5AGd6WUGoY0uCul1DCkwV0ppYYhV7wbAJCXl2eKi4vj3QyllDqtrF+/vsYYk9/T9xIiuBcXF7Nu3bp4N0MppU4rInKot+/1WZYRkRQRWSMim0Vku4j8j308R0TeEJG99ufssPvcJSJlIrJbRK6Iza+hlFKqv/pTc+8EPmiMmQvMA5aIyHnAncAKY8w0YIX9NSIyE1gGzAKWAI+IiHMQ2q6UUqoXfQZ3Y2mxv0yyPwywFHjSPv4kcI19eynwtDGm0xhzACgDFsay0UoppU6tX6NlRMQpIpuAKuANY8xqYKwxphLA/jzGPr0QKA+7e4V97MTHvEVE1onIuurq6gH8CkoppU7Ur+BujPEbY+YBRcBCEZl9itOlp4fo4TEfM8aUGmNK8/N77OxVSikVpYjGuRtjGoC3sGrpx0WkAMD+XGWfVgFMCLtbEXB0oA1VSinVf/0ZLZMvIln27VTgMmAX8CKw3D5tOfAX+/aLwDIRSRaREmAasCbG7VZKKXUK/RnnXgA8aY94cQDPGmNeEpH3gWdF5DPAYeBGAGPMdhF5FtgB+IBbjTH+wWm+ipeWTh9/33Gca+af1J2ilEoAfQZ3Y8wWYH4Px2uBS3u5z73AvQNunUpYr207xh3PbWZhSQ7js1Lj3Ryl1Al0bRkVFY8/YH32BeLcEqVUTzS4q6j4A9YAKF9Ad/JSKhFpcFdRCW7P6NfgrlRC0uCuotKVuWtZRqlEpMFdRSWYsPv8mrkrlYg0uKuoBIzW3JVKZBrcVVQCWnNXKqFpcFdRsUdCas1dqQSlwV1FRTN3pRKbBncVlUBwtIx2qCqVkDS4q6iERsto5q5UQtLgrqLiD5VltOauVCLS4K6iYnQopFIJTYO7ikqwI1U7VJVKTBrcVVSCMd2rHapKJSQN7ioqAa25K5XQNLirqOiSv0olNg3uKio6iUmpxKbBXUVFJzEpldg0uKuoBBN2zdyVSkwa3FVUgpOYvNqhqlRC0uCuohLaZk/LMkolJA3uKio6WkapxKbBXUVFa+5KJTYN7ioqAc3clUpofQZ3EZkgIm+KyE4R2S4iX7WP3yMiR0Rkk/1xVdh97hKRMhHZLSJXDOYvoOIjtIeqXztUlUpErn6c4wPuMMZsEJFRwHoRecP+3kPGmPvDTxaRmcAyYBYwHvi7iEw3xvhj2XAVX35dz12phNZn5m6MqTTGbLBvNwM7gcJT3GUp8LQxptMYcwAoAxbGorEqcegMVaUSW0Q1dxEpBuYDq+1DXxaRLSLyhIhk28cKgfKwu1XQw4uBiNwiIutEZF11dXXkLVdxpTV3pRJbv4O7iGQAzwO3GWOagF8AU4B5QCXwQPDUHu5+UgQwxjxmjCk1xpTm5+dH2m4VZ7oqpFKJrV/BXUSSsAL7U8aYPwEYY44bY/zGmADwS7pKLxXAhLC7FwFHY9dklQiC/ai6toxSiak/o2UE+BWw0xjzYNjxgrDTrgW22bdfBJaJSLKIlADTgDWxa7JKBAHdZk+phNaf0TKLgH8FtorIJvvYfwEfE5F5WCWXg8DnAYwx20XkWWAH1kibW3WkzPCjHapKJbY+g7sx5p/0XEd/+RT3uRe4dwDtUgmua/kBrbkrlYh0hqqKitHlB5RKaBrcVVR04TClEpsGdxWVruUHNLgrlYg0uKuodI2W0Zq7UolIg7uKii75q1Ri0+CuoqI1d6USmwZ3FRWj49yVSmga3FVUQhtka4eqUglJg7uKSrAfVRcOUyoxaXBXUdG1ZZRKbBrcVVR0bRmlEpsGdxWV0GgZrbkrlZA0uKuoBBN2ncSkVGLS4K6iomUZpRKbBncVFZ3EpFRi0+CuohJa8ldr7kolJA3uKiqauSeWh98sY3N5Q7yboRJIf7bZU+okWnNPHIGA4f7Xd1Pf6mHuhKx4N0clCM3cVVSCwd2ro2Xirs3rxxjo8OlWxaqLBncVlWDCboyVOar4aenwAdDh1Rda1UWDu4pKeDlG6+7x1dzhBaDDq5m76qLBXUUlWJYBrbvHW3Onlbl3+jRzV100uKuoBLpl7hpU4qk5VJbRzF110eCuohIw4HZaTx9dXya+gjX3Tq25qzAa3FVU/MbgdtnBXcsycdXSadfcdbSMCtNncBeRCSLypojsFJHtIvJV+3iOiLwhInvtz9lh97lLRMpEZLeIXDGYv4CKj0CgK7hrzT2+tCyjetKfzN0H3GGMORM4D7hVRGYCdwIrjDHTgBX219jfWwbMApYAj4iIczAar+InYExXWUZr7nHVrEMhVQ/6DO7GmEpjzAb7djOwEygElgJP2qc9CVxj314KPG2M6TTGHADKgIUxbreKI2MMAQNJLgE0c4+3ltBoGc3cVZeIau4iUgzMB1YDY40xlWC9AABj7NMKgfKwu1XYx058rFtEZJ2IrKuuro6i6SpegqMgg5m7bpIdX13j3DVzV136HdxFJAN4HrjNGNN0qlN7OHbSf78x5jFjTKkxpjQ/P7+/zVAJwG9H9ySn1twTQTBz15q7Ctev4C4iSViB/SljzJ/sw8dFpMD+fgFQZR+vACaE3b0IOBqb5qpEEJzAlOzSmnsiCNbcO30BjNEXWmXpz2gZAX4F7DTGPBj2rReB5fbt5cBfwo4vE5FkESkBpgFrYtdkFW/BWK6jZRJDMLiDzlJVXfqz5O8i4F+BrSKyyT72X8B9wLMi8hngMHAjgDFmu4g8C+zAGmlzqzFG3y8OI8HMXce5J4ZgWQas0kxKkg5OU/0I7saYf9JzHR3g0l7ucy9w7wDapRKY1twTS4tm7qoHOkNVRcwEyzKh0TIaUOKpucNLdloSoJ2qqosGdxUx/wllGc3c48cfMLR6/OSPSgZ0OKTqosFdRUxr7omj1WOVZPIygsFdM3dl0eCuIhZc7jc4FNKvk5jiJjhSJleDuzqBBncVsWCinuTUzD3egp2p+XZw1w5VFaTBXUUsVHPXhcPiLrjcb94oN6CZu+qiwV1FLFiW0Q7V+GvqOKHmrpm7smlwVxE7qUNVa+5xEyrLjNKau+pOg7uKWDBT10lM8RecnRqquWtwVzYN7ipiwVierEMh4y643G/XUEgtyyiLBncVscAJyw9oh2r8NLZ7cTqE7HRrhqpu2KGCNLiriGnNPXHUNHvIy3DjdjpwiGbuqosGdxWxYI3drTX3uKtu6SQvIxkRISXJqR2qKkSDu4pYaJs9rbnHXXVzZ2ikTEqSkw4tyyibBncVsZNHy2gpIF6qmztDI2VSXA4ty6gQDe4qYl01d2uZf83c4yMQMNS0nJC5a1lG2TS4q4gFg7vTYXXiaYdqfDS0e/EFTCi4Jyc5dW0ZFaLBXUUsmKg7RXA5HJq5x0l1cydAWObu0MxdhWhwVxEL1twdAi6naM09TkLB3a65J7scdGrNXdk0uKuIBcsyDofgdIhm7nFS3dIBoKNlVI80uKuIBRN1p0NwOUTHucfJSWUZl3aoqi4a3FXEguu5O8TqVPVqh2pcVDd3kpLkICPZBQRr7lqWURYN7ipiobKMBDN3DSjxEJzAJGINSU1JcuraMipEg7uKWCAQFtydWnOPl+DSA0HWOHd9oVUWDe4qYqGhkHbNXce5x0f47FSAZB0KqcL0GdxF5AkRqRKRbWHH7hGRIyKyyf64Kux7d4lImYjsFpErBqvhKn6CHagi4HI6dMnfOAlfVwYg2WVNYjJGX2xV/zL3XwNLejj+kDFmnv3xMoCIzASWAbPs+zwiIs5YNVYlBhOaoSokObVDNR68/gD1bd4TyjLWv7POUlXQj+BujHkbqOvn4y0FnjbGdBpjDgBlwMIBtE8lIH9Yh2qSU/D6NZgMtbZOq/wyOjUpdCw1ycqjtDSjYGA19y+LyBa7bJNtHysEysPOqbCPnUREbhGRdSKyrrq6egDNUEMtWHO3grtDa+5x0Oqx9k5Nd3e9MQ4G93YN7orog/svgCnAPKASeMA+Lj2c2+N/vjHmMWNMqTGmND8/P8pmqHgIhC8/4BA8mrkPuTY7uKfZY9wBUu1A3+bR4K6iDO7GmOPGGL8xJgD8kq7SSwUwIezUIuDowJqoEk0grObudjnwaXAfcq12WabHzF2DuyLK4C4iBWFfXgsER9K8CCwTkWQRKQGmAWsG1kSVaPyB7pOYtEN16AXLMmnukzN3rbkrAFdfJ4jIH4BLgDwRqQC+BVwiIvOwSi4Hgc8DGGO2i8izwA7AB9xqjNFn2jATHGnnCI2W0cx9qAU7VNOTuzL3NC3LqDB9BndjzMd6OPyrU5x/L3DvQBqlElv42jIa3OOjp8w9RTtUVRidoaoiFqq520MhdfmBoRfMzrtn7lag15q7Ag3uKgqh0TIOweV04NVJM0OutbOHmrtm7iqMBncVsfAO1SSnA69m7kMumLmn9TBaRmvuCjS4qyiE76GqM1Tjo9Xjw+1ykOTs+hfW0TIqnAZ3FbFgzV0c6AzVOGnr9Hcb4w6Q5LS2PQxOcFIjmwZ3FbHwDlWXU2eoxkOrx9et3g4gIqQlOWn36N9DaXBXUQjGcocIbqfOUI2Htk5/t5EyQSluJ+1ezdyVBncVhdA2ew5wORwEDLpJ9hDrKXMHq4NVh0Iq0OCuohC+zV6Sy1orTjtVh1abp+fMPTXJqaNlFKDBXUUhfLSM2x6tocF9aLV29py5pyQ5dZy7AjS4qygElx8Qe8lfQBcPG2Lt3pNHy4BVltGhkAo0uKsoGGNwiDU6I8llPYW0U3VotXb6u63lHqRlGRWkwV1FzB8wOMTK2JMc1lNIh0MOrTaPr8fMPdWtZRll0eCuIhYw1royQKhDVScyDZ1AwNDm8fdYc09N0tEyyqLBXUUsYJdlwBoKCdqhOpSCmXlPo2XSNHNXNg3uKmKBgMEZLMuERsto5j5UelrLPSjF3b3m3tDm0eUIRigN7ipifhNWc3fqOPeh1tMuTEGpSU48vkBoUtm//Go13/3bziFtn0oMfe7EpNSJAgHTVXO3M3dfQIP7UAlm7qlJPc9QBat0k+JysKuymczUpCFtn0oMGtxVxAIGnHZwd9mZu8enZZmh0tMuTEGhDTs8fupaPPgChrpW75C2TyUGLcuoiPnDOlTdmrkPuZ52YQpKDdtq72BtKwB1rZ1D1ziVMDS4q4iZsJq7S5cfGHL9yty9fg7Zwb2+1Ysx+s5qpNHgriLWbRKTU5cfGGwnBuZg5p7ey6qQYE1yOljbBlgTzFo6dcTMSKPBXUUsvOaepJn7oKpv9TD7W69x46PvsWp/LdDz/qlBKT1k7tbjaN19pNHgriIWCBjsxL1rtIxm7oPiWFMHrR4/mysa+dxv1uH1B0KjZdJ7WlvG3dWherC2jZQk6+9Tq3X3EUeDu4pYwJiu0TL2Z11bZnAEs/TrFxTS3OFj4+EG2jr9OASSXSf/+waz+ZZOH4dr25hTlAVAfZtnyNqsEkOfwV1EnhCRKhHZFnYsR0TeEJG99ufssO/dJSJlIrJbRK4YrIar+PEbQjV3t0sz98EUXL730jPG4nQIK/dUsft4M7kZyUjw7VOYYIfqwZo2PP4A8ydmAVDbosF9pOlP5v5rYMkJx+4EVhhjpgEr7K8RkZnAMmCWfZ9HROTkwqA6rYWvLaM198EVzNzHjk7h7InZvLDhCH/feZybSot6PD9Yltl1rAmA+ROsvEsz95Gnz+BujHkbqDvh8FLgSfv2k8A1YcefNsZ0GmMOAGXAwtg0VSWKQCB8KKQuPzCYguvCpLqdLJ6Rz9HGDlwO4ZPnF/d4fjBzX3PA+pedOyETt9NBbasG95Em2pr7WGNMJYD9eYx9vBAoDzuvwj52EhG5RUTWici66urqKJuh4iG85u7WhcMGVbAsk+p2snh6PgBXzy1k7OiUHs8PBvfaVg8XT8+nIDOV7PQk6jW4jzixXn7g5CIg9Phfb4x5DHgMoLS0VCPDacQfIFTvDXao6k5MgyM07DHJyfjxo/nO0llcMWtcr+c7HEKyy0GnL8DnLioBICc9mToN7iNOtMH9uIgUGGMqRaQAqLKPVwATws4rAo4OpIEq8ViZu3Xb6RBEtCwzWNrDMncR4V97KceES3M7KclL58KpeQDkpCdpcB+Boi3LvAgst28vB/4SdnyZiCSLSAkwDVgzsCaqRBMIW35AREhyOPAG9M3XYGj3+JFehj325psfnckPb5gTenelmfvI1GfmLiJ/AC4B8kSkAvgWcB/wrIh8BjgM3AhgjNkuIs8COwAfcKsxRreFGWbClx8AawkCr08z98HQ5vGTluTscdhjb66d330kTU6aZu4jUZ/B3RjzsV6+dWkv598L3DuQRqnEZgyhoZBgLR6mZZnB0e71h4Y3RisnPZmmDh9efyA0dFUNf/qXVhHzB7pGy4A11l3LMoOj3ROL4G5t1qFj3UcWDe4qYuE1d9CyzGBq8/hI62HHpUjkpCcDaGlmhNHgriJ2cnB34NPMfVC0ewOkDDBzz81wA1DTrMF9JNHgriIWvuQvWLNUdeGwwdHu8ZGWNLDgnpdhZe41Lboy5EiiwV1FzB+25C9Ys1R1EtPgaPf6e1y3PRL5GtxHJA3uKmLGmJMyd11+YHC0efwDLsuMTnXhdjqo1uA+omhwVxHz91Bz16GQg6PdHuc+ECJCboZba+4jjAZ3FbFAgO7B3aHBfbDEoiwDVt1dyzIjiwZ3FbHw9dwBklyim3UMkliUZQDyMty61d4Io8FdRSxgepjEpJl7zPkDBo8vMOBx7mBn7lqWGVE0uKuInbi2jMvh0A7VQdC1IuTA/03zRiVT29qJMfp3Gik0uKuIBYy1bniQ2yWauQ+Crl2YYpO5e/2GxnbvgB9LnR40uKuInVhzdzl0hupg6PBYL5gDHS0DVs0ddKz7SKLBXUXMHzA4TxgK6dG1ZWKuzdu1f+pABScyVWvdfcTQ4K4iZgzd1hdPcgq+gAb3WAtusReL4J43SmepjjQa3FXErCV/u762RstoWSbWOsL2Tx0oXV9m5NHgriJ24qqQ1vIDmrnHWiwz96zUJJwO0eA+gmhwVxELGNN9tIyOcx8UbfZQyFjMUHU4hNx0XYJgJNHgriLS4fVT1+ohN90dOuZy6gzVwdARytwHPhQSdAmCkUaDu4rIvuoWAgZmjBsVOhbcrEMnyMRWaJx7DGruAPmjkqlq1uA+UmhwVxHZc7wZgBljuwd3QDtVY6zda49zj0FZBmDMqGSqmjti8lgq8WlwVxHZfayFJKdQnJceOpbktOrvWnePrXaPDxFIdsXm33TM6GRqWjz4dcLZiKDBXUVk97EmpuRnhLJ1sGaoggb3WGvz+ElNcnabUzAQY0al4A8Y3Sh7hNDgriKy53hLt3o7QJKdWf5xfQVv7q6KR7OGpVit5R40xp7IpKWZkUGDu+q35g4vRxramT62e3B322WZ7/5tJ4+t3B+Ppg1L7R4/KTHqTAWrLANop+oIMaAxViJyEGgG/IDPGFMqIjnAM0AxcBC4yRhTP7BmqkSw53gL0L0zFbrKMoC+5Y+hVo8vxpl7CgDVTRrcR4JYZO4fMMbMM8aU2l/fCawwxkwDVthfq2Fgrz1S5sTMPSmsw6+uTYN7rDS0eclKdfd9Yj/la1lmRBmMssxS4En79pPANYPwM1Qc1NpZ+djM5G7Hs9OSAFgwMYv6Vo+Od4+RxnYvWfa1jYWUJCejU1xalhkhBhrcDfC6iKwXkVvsY2ONMZUA9ucxPd1RRG4RkXUisq66unqAzVBDobXTh8shuJ3dnzaLpuTxjzsWc9VZBfgChqYOX5xaOLzUt3nITotd5g4wZnQKVVqWGREGGtwXGWMWAFcCt4rIxf29ozHmMWNMqTGmND8/f4DNUEOhtdNHerLrpKF5DocwOT+DHHtJAq27x0ZDW2wzd9CJTCPJgIK7Meao/bkKeAFYCBwXkQIA+7OOjRsmWj1+0k/RwZetwT1m2j1+On0BsmKcuY8dnaJlmREi6uAuIukiMip4G7gc2Aa8CCy3T1sO/GWgjVSJobXTR1py7wOscjW4x0xDu3UNBydz142yR4KBZO5jgX+KyGZgDfA3Y8yrwH3Ah0RkL/Ah+2s1DLR6/KSfIrgH68P1YcFdZ632T21LJ196aj219qqN9a3WRtbZMQ7u+aOS8fgCNLVrv8hwF3VwN8bsN8bMtT9mGWPutY/XGmMuNcZMsz/Xxa65Kp7aOn2nLMvk2pswB0fV7DnezKxvvcam8oahaN5pbc2BOl7eeozXdxwHoMEeUpoZw6GQYHWogg6HHAl0hqrqtxa7Q7U3qUlOkl0O6u3A9OKmo3h8ATZrcO/T0UYr2K7aXwtAQ7uduafHNnMvyLSCe0V9e0wfVyUeDe6q39r66FAVsXb7qW2xgvur248BcLC2dUjadzqrbLCC7er9dRhjQi+QsZzEBF3r8O+obMIYw3tlNbpK5DClwV31W2sfmTtAToab+jYPZVXNlFVZyxUcqm0biuad1irtzP1YUweHattoaLMy91h3qI5OSWJCTio7K5tYc6COjz++mtfsF2E1vGhwV/3W6uk7uGenualt9fDadqt2PG9CVr8y96rmDnYda4pJO09HlY3tjLdLJqv219LQ5iElyRHThcOCZhaMZkdlE+/us0pA2icyPGlwV/3i8wfo8AZI72M/z9x0N/WtHl7ddoz5E7M4d3IO5XVtvb71N8bwvZd3cuF9b7L05+/SYW8KPdJUNnZw/pQ88jKS7eDujfns1KCZBZkcqGnlzV3WFBTtExmeNLirfmmzg2568qkzyex0N0cb2tl6pJEls8ZRnJuO12842tBzB15Ni4fH3t5PQVYKnb4A+6sTvz7/0xV7uePZzTF7PJ8/wPGmDsZnpbCwJJsNhxuob/PGfAJT0MzxozEGth5pxCGw7UgjAa27Dzsa3FW/tHZa46L7Ksvkprvx2YHiilnjmJSbBsDhup7r7ofsks3HFk4EoKy6JSbtHUyv7zjGS1uO4ovRGP7qlk4CBgoyU5lTlMXhujYO1raSlRrbenvQzPGjQ7eXzB5Hq8fP/prEf1FVkdHgrvqltdPK3PtaXzy4BMEZ40ZRnJdOca6112pvdfeDdmfrB2aMwSGEOmETVSBg2FfVSqcvELNRQEcbrM7UgqwU5hRmAtZ1iPUwyKDxmSmMTnHhEPj0ohIAth5pGJSfpeJHg7vql2DmntGPzB2sjBBg3OgU3C5HryNmDtW24nQIJXnpTMxJY1+CB/ejje202yWq7Udj0wFc2WiVrAoyU5hlB3eI/QSmIBFhwaRs5k3IYt6ELFKTnGwub+zXfZ9dWx5a118lNg3uql9aPVZwT+ujQ3XW+Eymj83g2vmFgLVi5KScNA728rb/YG0bhVmpuF0Opo7JSPjMPbx9Oyqt4N7h9fMvj69m3cHoJmNXBjP3zFQyU5MoybPe7cR66YFwP755Hr/8ZCkup4NZ40ez7lBdn+vNvL+vlv98fgvf+Mu2QWuXih0N7qpfgmWZvjL3CTlpvH77YibZ5RiAyfnpbCpv6HEkzKHa1lBdfsqYDA7UtEZcy/YHDL9ffXhIRtoEg/v4zBR22Jn7zsom/llWwzNry6N6zMrGDtLc1kYaAHOKrOw91mPcw2WlucnNsDZd+cicArYdaeKt3b3vqxAIGL77tx2IwKr9dWw70r9MX8WPBnfVL23BzL2P0TI9+eT5xVQ1d/J/7x7sdtwYw4Ga1lBdfmp+Bh5/gPIIp8avPVjHf72wlec3VETctkjtq24hOy2JRVPz2FlplSeCGfzKPdVRrbZY2dhOQWZKaJ38swqDwX1wyjIn+vi5kyjJS+fel3eGXlibOrzdfpcXNx9l+9Emvr10NhnJLh5/J/Ybobd0+nTUTgxpcB+m1h2sY38MR5609LPm3pNFU/O49IwxPPxmGTUtXWuJN7R5ae7whTL3qWMygMg7VYMln7f3DP6OXmVVLUwdk8HM8aOpaemkqrkjlMFXNXey61jk9ejy+jbGZ6WGvl4wKRuw1l4fCm6XgzuvPIOyqhb+tOEI5XVtLLz37zy7ruudyFOrDzE5P51PLJzIsnMm8OdNR/nsk2s5EKNRNs0dXi74/gp+u+pQv++zpaJhRE9864sG92HqK3/YyHf/tjNmj9fWz9EyvbnrqjNo6fSFyidfe24zf1xvZdrBzH2KHdz3VkUWIA/ZwyzfLauNaonh77+8k1e39W8Kfii4F1jDCbcfaWJHZROT863foT8vMLUtnRxv6sAfMDR3eNlZ2cz8CVmh7y+YmM0fv3A+F03Ni/h3idblM8dyxrhR/PKd/Tzx7gE6vAH+vPEoYL14rj1Yz41nT8DhEO64fAb/9sGprN5fxzft+rvXHqvf3OGN6uf/Y1cVTR2+iF6gb3tmE1//45aoft5IEHkaphJea6ePysYOvP4AxpiTtsWLRjBz76tDtTdTx4zi/Mm5PL+hgtwMdyiwA6HMfXSK1Zm45kAdX7qk/48dHCvf0ulj4+EGFpbk9Pu+TR1eHntnP/MnZIVG+PSmtqWT+jYvU/IzOKsokzS3k5e3VrKrspllCyfgdjpYuaeazy+e0utjvLK1ki8+tQGAG84u4sNzCvAHDOdNzu12Xmlx/3+HWBARPnfRZO54bjP7qltIdjlYfaCWulYPz2+owCGEOslT3U7+/fIZIMLP/rGXw7VtfOF369lR2YTb5eBXy0u5aFpkW2cG17fZcLi+X8/Zpg4v+6tbcYiV9Y9KGbz+idOVZu7DUPCtck2LJ7Qg1UC1eXykJjlxOqJ/objh7CIO1bbxg1d2UZKXTkqSAxGrEzZo8fR8Vu2vjahz9GBNG6WTsnE6hJV7rCn1z6w9zC/e2tfnfTcdbsAYa32VxrZTZ51b7U7EM8aNJs3t4qqzCnhh4xHavX5mFoxm8fR81h6sCw0b7cmr24+Rm+7mg2eM4a+bj/LGjuMkOYX5E7P7/fsOlo/OHc/Y0ckEDHxn6WwCBv64vpw/rq/gwmn5jMvsXia6fkEhxsCnn1zLjsom/u3SaUzKSeO2pzfx21WH+PLvN1DV1Pfzr8Pr581d1WSnJVHf5u1XqSfYoRswsO5gfXS/8DCnwX0YCp9tuKUiNqMaWjpPvQtTfyyZPY40t5OmDh+3XTaNH988n88sKum2ONbi6fl0eAOs7eewQmMMh2pbmV2YydmTsvnt+4f43G/W8fXnt3L/67tPGWgB1h+yAkPAwD/Lak76fiBgWLmnmkDA8PaeGpJdDkqLrUB8w9lFodm4Z9rB3es3vG8vyHUif8Dw9p5qFk/P56uXTqPTF+DpNYetseZRlrtiye1y8M2PzOKLl0zhxtIiirJT+d7Lu6ht8fCFxZNPOn9SbjoLS3Ioq2rhoml53H7ZNB75xALaPH6+8edtvLSlkh+8ujt0fkV9G2sPnjzkcuWeatq9fr7ywWkAbDjc0Gdbg89rl0NYdaDn6z3SaXAfhg5UtyJiPfG3VDTE5DHbPL4+15XpS3qyi+sWFFKcm8ZVZxWwZPY4/vsjM7udc+7kHNwuBytPMSwvXE2Lh1aPn+LcNL537WzOKc7hjR3HObckB3/AsO7QyVldeHDZcLieaWMyGJXiCmX94V7cfJTlT6zhhY1HWLmnivMm54ZejBYW51CUnYrLIUwbm8HZxdmkuZ2s7KVuvO1II/VtXhbPyGdOUSbTxmQQMJxUkomnD88p4OtLzkBEuPHsCWSmJvGbzyzkgik91/8/ce5E3C4Hd3/4TESEaWNH8fvPnctTnz2Xz188mec3VLDtSCPGGL74uw3c+Oj7XPmTd/jj+go6fda7s3/srGJUiotPnDeRUSkuNhzuOxPfWtHIhJxU5k/MYtX+6Dd7e/CNPfzy7f00RdlXkMg0uA9D+2taGJ+Zyoxxo0KlhIFq7fT1uSJkf/zP1bN59baLSXL2/NRLc7s4tyQnFCA9vgAb7X/29/bVcPZ33mBP2AzJYL19Ul46U8eM4lf/7xy23nM5//epc6ysbn9XVufzB7j7ha0s+M4b3PfKLmpaOtlk1+gvmpbHyj3VJ3XIPrfeGjHy4Bt72FfdysXTu2rJDofwH1fM4DMXlpDscpLscnLBlNxQ233+AEt+/Db/9+4BwMpQReDCqXmICDecXQQkVnAP95UPTmXt3Zedsn1L5xWy8Rsf4oxxXevVzJ+YzaKpedz6wankpLv5xl+28W5ZLVuPNHKdXcr52nObWfbYKowxrDpQy7kluSS7nMyfmM26g3UEAoa6Vk+vE8O2HGlgTlEW503OZduRxh47cjccrqexvfegveNoEz9dsZd7X97JpQ+sPOW5pyMN7sPQgZpWJuenM6coky0VjTHZ6b610z/gzB3A6ZA+1yhfPD2fvVUtlNe18dtVh7j2kfdYuaean/+jjNpWT7dRQMFlDYrDJk2NSkkize1i7oSsUHAPBAxfemoDT60+zOT8DB57ex9LfvwOzZ0+FkzM5opZ4zje1MnFP3yTv2w6AsCRhnbe21fL9LEZHLFXtVw8vXtH4dJ5hdx11Znd2n64ri00wmTXsWaeePcAgYDhrd1VzCnMDE0e+uT5xfzohjmcn6DB3eEQ3K6+Q0Rv5brRKUncc/UsNh5u4Au/W09uupvvXXsWr952EV+7fDobDzewck81h2rbOG+y1YF88bQ89hxvYfH9b3L+91dww6Pvc98ru7qNf69v9VBe186cwkwWTc3DHzC8uPlot5+97Ugj1z3yHhd8fwUPv1kWOm6M4Rdv7WPH0Sae31BBklP4ybJ5VDd38tKW7o8R9KcNFbwewYYmGw7X82v7BT2ehlVw33WsacRPgjDGcKC6lcl56ZxVmEVju5fNMai792ejjli5fKY1auW17cd4ZWslAHc+v4X39tVyxrhRvL2nOpQdB9emKQwbJx503uQctlQ00trp48+bjvD6juP811Vn8PwXL+D5L15AwH7RWzApm6vnjudXy0sZOzqFrz69iftf280jb5ZhDDzyibPJy0imMCuVKfnpJ/2ccIunjwGsjtPgCJDyunZ+/mYZGw43cNVZBaFzU91Obiy1hhcOV1fPHc/HFk6gpdPHv5w3iZQkJyLCTaUTEIF77Rfq4LuDTy0q4acfm8/EnDSuW1DIzaUTeHTlPu54bjMen/WuKjjS6qyiTM4tyeGc4mweemMPf9l0hA/c/xabyht4eWslToewsCSHH722m/WHrHcAb++t4Qev7uIzT67lzxuPcNmZY7l67nhmjB3VbQTXgZpWjjV28NbuKv792c3c9swmjjd1cPszm/ji79aftD9BY7uXsqpmjja08+lfr+Wev+5gX5xXOB02QyE3lTdwzcPv8oPrz+LmcybGrR27jzWzck8Vn7tocq/Ducrr2nhuXTmfvrAk5rMQa1o8NHf6KMlL58rZ4/jJij3c/swm/vqVC6OagBTU2uljQnZa3yfGwMTcNGYWjObpteXsq25h/sQsNh5uIN3t5HefPZfrHnmP+1/bzcXT8jgQtjbNic6bnMvDb+7jD2sO86t/HmBOUSafvdDqGJw/MZs/f2kRG8vrQ2u5XHrmWC6als/Xn9/Cz+1sb9HUXKaOyeDhj88nYOhziN7E3DQWTc3l0ZX7cDsdXDQtj42HG3jwjT2Mz0xh+QXFsb1Yp4FvfXQWc4uyuHre+NCxMaNTOHtiNusO1TM6xcWZ9rwBp0O4eu54rp5rnWuMYWJuGj96bTcHalopyEzhlW3HuGRGPguLcxAR/vvDM1n68Lt89elNAPxsxV4O1LRy/uRcHv7EAj5w/1t8+6WdvPDFC3j8nf1kpyVR2+LB4w9ww9lFiAjXn13I917exVOrD/Hy1kreLavF6RCSXQ4m56dTXtfGDY++R3md9Q7uZ//Yy22XTQ/9Pnc8u5m/7zzO6BQX/oDB6RCeX1/B0nmFrNh1nM9eOLlf74Jiadhk7s/Zs+n+trX726eWTh/XPPwuL9sZYFBlYzvLHnufJ/7Z/e2TP2D4yh82cvszm/o9HO/xd/az/Ik1eP0Bvv3Sdr738i7e2HG82znGGDaVN/Da9mNc+8h7/PQfZdzw6Pvc8+J2Ln3grZM6PtcdrOOKh97uNkuwL0ca2kObUpfkZ5Cd7uany+ZzqLaVe17cftL5331pB5/6vzU0tHlobPOGNtRo6vCGVioMilVZpr+WzB5HWVULxsB9181h6bzxfOXSaeRlJPP5xZPZeqSRl7ZUsmLnceZPzOrxMUon5TB9bAbf/dtOKhs7+O8Pz+yWJU/MTWPpvMJu93G7HDx401xe+epFvPClC/jFv5wNwLmTczl/Sv/KJ3dfNZPGdi9VzZ1cO7+QD9vZ+n8smTEo2+YlupQkJ8sWTjxpjkRwXsHCkpxeh9iKCLd+YCr33ziXmpZONhyuZ/n5k0KLngHMnZDF5xdP5pp547nl4sms2FXF/ppWrpg9jjS3i69dPoPN5Q3c8tt1vLO3hs9eNJn7rj+Ly84cE+pDuWZeIU6HcPcL2yirauE/rpjBpxcVU5KXzi8/Wconzy+mvK6dJbPGcd38Qn78973M//brfPF369lzvJm/7zzORdPyKMpO44Gb5rJ4ej7Pb6jg079eyw9f3c2nfr2GVftr2WlvTN7p87P+UB2r99dSFuGkvf4aFpl7h9fPi5uP4nII75XV0NjuJdPe6OAXb5WxqbyBB17fzZJZ43A4hD3Hm1n+xBoqGzvYeLiBJbPHhaZ/P/xmGX+163eHalv57jVnddvc4ET/3FvDvS/vxBj4xp+3hV7xv//KLi6ZMSb0av3tl3aE1lYpzErlhzfM4Tsv7eB3qw6R5nZy6+838NJXLiIlycFz6yr4zks7MMB//nEL75XVkJNu1WnzRyVzY2kReRnJ+AOG375/kIKsVAIBw23PbKLTF0AEpo+1ZnueOzmXWy6ewqMr9/HJ8ycxpygLsN7aPm6/sF31k3eoa/PQ4Q2wsDiH7UetMs6bX7uEMaNTqGruoKnDG/UEpmgsmT2OB9/Yw+S8dKaPzeAny+aHvnf9giIeeN16RyICt4dlUOFS3U5e/reLeHX7MZo7fP2e3CQioUwyGjPHj+bm0gm8sPEIl54xloUlOUwbm8HSuYV933kEuWLWOO57ZVe/JjzdcHZRqAO6J3ddafV71LR08uv3DuL1B7hi5ljAer7srWrhd6sOkZHs4hPnTiQrzc11C7oeb8zoFB64cS4icOXsgpOy7Ns/NJ2CzBRuOmcCLodQlJNGeV0bL2w8wtqD9bhdDh66eR55dn+KP2DNuk1yCrd+YAr/u3I/75atAmB24WiON3VS3WwtxfGROQX8/OMLIrhy/SOx6GwbqNLSUrNu3bqI79fm8bG/upXVB+r4zks7+Nrl07n/9T08dPNcrp1fxJGGdj54/1vkj0qmor6dJ/5fKeluF5/7zTqSk5x879qzuPX3G/jwWQU8dPM83t9XyyceX8XVc8dz+axxfO25zbR5/NxUWsQPrp/DQ3/fy9GGdn54/Rwe/+d+nnzvELWtnRRlp5Gb7mb1gTrS3E7uvXY2tz+zmfxRyeRlJHNuSQ6/fu8gy86ZwNVzxzOrMJPM1CSON3UgQHl9Ozf/7/uMSnHhCxiaO3ycU5zNwx9fwEN/38tLYZ1FzZ0+3C4H1y8opL7VG8rUAeZPzOKOD80gN8PdLTg1d3i55EdvMTk/nW98ZCYrd1fzyFv7mFOUyVcvm8Z//Wkr55bkMi4zhb9uPsrM8aOtdxjzC5mSn8EDr+/BGwhw/w1zuf4U/2CxZIzhs0+u4+Lp+T2WMh58Yw8/XbGXTy8q4ZsfnXnyA8SZxxegsrG92+qY6mSHalspzEoNZeGx8ODruymvb+ehm+d1O97Y7qWl09dj/0y07nx+C0+vLedjCyfw/evmhI53eP0sf2IN184vZNnCiRysaeVoQzv7qlv4w5py8kcls+wca6hpbkYyM8aNiurni8h6Y0xpj98brOAuIkuAnwBO4HFjzH29nRttcN9c3sDSh98FrGx45X9cwoU/eJMpY9L5/rVz+PIfNrD7WDOv334xyx5bRZvHT2O7l8n56Tz5qYVMyEnjh6/u4pG39nHbZdP4/erDZKS4+OuXLyQ92UVjm5efrNjLE+8e4MrZ43jFXn/killjeW37cc4pzmba2FHcctFk2jx+PvKzd1h+QTHf/MhMnnj3IDsrm9hb1cLm8gbmFmXy3Bcu6LXu9tr2Y/ZsRQcfPquARVNze6zvllW18MS7B3h+fQWdvgB3X3Umhdmp7DjaxK0fmNrrZJinVh/i7he61uG+ZEY+P7x+DmN6WZzquy/tCGX2S2aN4+tXnhGqTSeCxnYv/7tyH59fPCX0Lk2podbh9fP4O/u56ZwJjBk1NAu9hRvy4C4iTmAP8CGgAlgLfMwYs6On86MN7o1tXtbY42Cnj81gUm46P1uxlwfe2ANASpKDhz++gEvPHMsf1hzm5/8o48bSIj51QQmZ9lrZHV4/tz+ziVe2HSPZ5eDPty7qlvUGAobP/mYd/9hVxfyJWRRmpfLSlkrOGDeKP9+6qFsNddexJopz00+qq+442kRhVmroZ8ZCXauHY40dpywZhTPGsPZgfejFbUp+xinPb2zzctP/vs8HzhjDf14xY1iP6FDqdBWP4H4+cI8x5gr767sAjDHf7+n8aIN7b9YfqueFjRXccPYE5oWtttcbf8Dw2Nv7mTomgw/Zdbpw9a0efrFyH59aVMyolCR+tmIvHz93or7lVkrFVTyC+w3AEmPMZ+2v/xU41xjz5bBzbgFuAZg4ceLZhw71fx1npZRSpw7ugzUUsqf38N1eRYwxjxljSo0xpfn5kS0PqpRS6tQGK7hXABPCvi4Cep7bq5RSKuYGK7ivBaaJSImIuIFlwIuD9LOUUkqdYFBmpRhjfCLyZeA1rKGQTxhjTp4iqZRSalAM2pRDY8zLwMuD9fhKKaV6N2zWllFKKdVFg7tSSg1DGtyVUmoYSoiFw0SkGhjILKY84OTdjeNP2xUZbVfkErVt2q7IRNuuScaYHicKJURwHygRWdfbLK140nZFRtsVuURtm7YrMoPRLi3LKKXUMKTBXSmlhqHhEtwfi3cDeqHtioy2K3KJ2jZtV2Ri3q5hUXNXSinV3XDJ3JVSSoXR4K6UUsPQaR3cRWSJiOwWkTIRuTOO7ZggIm+KyE4R2S4iX7WP3yMiR0Rkk/1xVRzadlBEtto/f519LEdE3hCRvfbn7Di0a0bYddkkIk0icls8rpmIPCEiVSKyLexYr9dIRO6yn3O7ReSKIW7Xj0Rkl4hsEZEXRCTLPl4sIu1h1+3RwWrXKdrW698uztfsmbA2HRSRTfbxIbtmp4gRg/c8M8aclh9Yq03uAyYDbmAzMDNObSkAFti3R2HtHzsTuAf4Wpyv00Eg74RjPwTutG/fCfwgAf6Wx4BJ8bhmwMXAAmBbX9fI/rtuBpKBEvs56BzCdl0OuOzbPwhrV3H4eXG6Zj3+7eJ9zU74/gPAN4f6mp0iRgza8+x0ztwXAmXGmP3GGA/wNLA0Hg0xxlQaYzbYt5uBnUBhPNrST0uBJ+3bTwLXxK8pAFwK7DPGxGWvRWPM20DdCYd7u0ZLgaeNMZ3GmANAGdZzcUjaZYx53Rjjs79chbURzpDr5Zr1Jq7XLEhEBLgJ+MNg/OxTOUWMGLTn2ekc3AuB8rCvK0iAgCoixcB8YLV96Mv2W+gn4lH+wNre8HURWW/vWwsw1hhTCdaTDhgTh3aFW0b3f7h4XzPo/Rol0vPu08ArYV+XiMhGEVkpIhfFqU09/e0S5ZpdBBw3xuwNOzbk1+yEGDFoz7PTObj3uU/rUBORDOB54DZjTBPwC2AKMA+oxHpLONQWGWMWAFcCt4rIxXFoQ6/E2qnrauA5+1AiXLNTSYjnnYjcDfiAp+xDlcBEY8x84N+B34vI6CFuVm9/u4S4ZsDH6J5EDPk16yFG9HpqD8ciumanc3BPqH1aRSQJ64/2lDHmTwDGmOPGGL8xJgD8kkF6K3oqxpij9ucq4AW7DcdFpMBudwFQNdTtCnMlsMEYcxwS45rZertGcX/eichy4CPAJ4xdoLXfvtfat9dj1WinD2W7TvG3S4Rr5gKuA54JHhvqa9ZTjGAQn2enc3BPmH1a7Vrer4CdxpgHw44XhJ12LbDtxPsOcrvSRWRU8DZWZ9w2rOu03D5tOfCXoWzXCbplU/G+ZmF6u0YvAstEJFlESoBpwJqhapSILAG+DlxtjGkLO54vIk779mS7XfuHql32z+3tbxfXa2a7DNhljKkIHhjKa9ZbjGAwn2dD0VM8iD3QV2H1Ou8D7o5jOy7Eesu0Bdhkf1wF/BbYah9/ESgY4nZNxupx3wxsD14jIBdYAey1P+fE6bqlAbVAZtixIb9mWC8ulYAXK2P6zKmuEXC3/ZzbDVw5xO0qw6rFBp9nj9rnXm//jTcDG4CPxuGa9fq3i+c1s4//GvjCCecO2TU7RYwYtOeZLj+glFLD0OlcllFKKdULDe5KKTUMaXBXSqlhSIO7UkoNQxrclVJqGNLgrpRSw5AGd6WUGob+P29bzk0hAa4lAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(-pes_data[\"channel_3_A\"][0,2600:2800])"
]
},
{
"cell_type": "markdown",
"id": "a6606c28-28c8-4d27-9f38-4a7ca88ee397",
"metadata": {},
"source": [
"Now, let's fit the model:"
]
},
{
"cell_type": "code",
"id": "5690cf09-4fed-497d-a09d-0f3cdceea04d",
"metadata": {},
"outputs": [],
"source": [
"n_test = 10 # exclude some trains to validate the training"
]
},
{
"cell_type": "code",
"id": "cb86aa32-dc1d-4684-bd62-25aa77a97245",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Checking data quality in high-resolution data.\n",
"Finding region-of-interest\n",
"Excluding outliers\n",
"Selected 6439 of 7155 samples.\n",
"Fitting PCA on low-resolution data.\n",
"Using 600 comp. for PES PCA.\n",
"Fitting PCA on high-resolution data.\n",
"Using 24 comp. for grating spec. PCA.\n",
"Fitting outlier detection\n",
"Fitting model.\n",
"Calculate PCA unc. on high-resolution data.\n",
"Calculate transfer function\n",
"Resolution = 0.77 eV, S/R = 5.69\n",
"Calculate PCA on channel_1_A\n",
"Calculate PCA on channel_1_B\n",
"Calculate PCA on channel_1_C\n",
"Calculate PCA on channel_1_D\n",
"Calculate PCA on channel_3_A\n",
"Calculate PCA on channel_3_B\n",
"Calculate PCA on channel_3_C\n",
"Calculate PCA on channel_3_D\n",
"Calculate PCA on channel_4_A\n",
"Calculate PCA on channel_4_B\n",
"Calculate PCA on channel_4_C\n",
"Calculate PCA on channel_4_D\n",
"End of fit.\n"
]
},
{
"data": {
"text/plain": [
"array([[[12.22 , 11.2875, 10.78 , ..., 12.105 , 11.035 , 11.4475]],\n",
" [[10.555 , 12.405 , 11.015 , ..., 11.995 , 11.7325, 10.76 ]],\n",
" [[11.725 , 10.5325, 11.47 , ..., 13.3975, 11.4575, 12.4975]],\n",
" [[11.2575, 12.1375, 10.1275, ..., 10.4625, 11.55 , 12.4175]],\n",
" [[10.2325, 11.135 , 11.3725, ..., 13.3375, 12.365 , 11.015 ]],\n",
" [[12.3775, 10.4575, 11.6425, ..., 11.6075, 11.1875, 12.3825]]])"
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# exclude the last n_test train IDs so we can use them for validation later\n",
"pes_train = {ch: pes_data[ch][:-n_test, :] for ch in pes_data.keys()}\n",
"gs_train = gs[:-n_test, :]\n",
"xgm_train = xgm[:-n_test,:]\n",
"\n",
"model = Model(channels=channels)\n",
"model.fit(pes_train,\n",
" gs_train,\n",
" np.broadcast_to(energy, (gs_train.shape[0], gs_train.shape[-1])),\n",
" pulse_energy=xgm_train)"
]
},
{
"cell_type": "markdown",
"id": "52c038c5-d86e-4e5a-9214-5e1878dd77e8",
"metadata": {},
"source": [
"The resolution of the Virtual Spectrometer relative to the Viking has also been estimated (in eV):"
]
},
{
"cell_type": "code",
"id": "a084b920-0006-4859-80f9-ff81f3c1f6b0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.resolution"
]
},
{
"cell_type": "markdown",
"id": "c1f47e6e-3b62-4c8a-8573-8eb4bd40f2ff",
"metadata": {},
"source": [
"We can look at the Virtual Spectrometer to Viking response function as well."
]
},
{
"cell_type": "code",
"id": "f752a9e0-8484-4381-8bb5-5eb27bd82670",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Intensity [a.u.]')"
]
},
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAHgCAYAAAB5O9EcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABOaElEQVR4nO3dd5ycZ3nv/+81bXvflbRNXbIsF9lYLrExoRlsY2zgxGBIiIGAQ3ECJ4QfpBxCDueXEEjgQHDsGGKCA8ExoTlgMMSY5i4X2ZLV6zZJ23uduc8fM7Nay9u0mmeeKZ/367Wv3Zl5Zuba1Wr3u/dcz3Wbc04AAAAAvBPwuwAAAAAg1xG6AQAAAI8RugEAAACPEboBAAAAjxG6AQAAAI8RugEAAACPhfwuIB1qa2vd6tWr/S4DAAAAOe6pp57qcs7VnXp9XoTu1atXa9u2bX6XAQAAgBxnZkdmu572EgAAAMBjhG4AAADAY4RuAAAAwGOEbgAAAMBjhG4AAADAY4RuAAAAwGOEbgAAAMBjhG4AAADAY4RuAAAAwGOEbgAAAMBjhG4AAADAY4RuAAAAwGOEbgAAAMBjhG4AAADAY4RuAAAAwGOEbgAAAMBjhG4AwKymojG/SwCAnBHyuwAAQGb52x/v0r1PtmhkIqq/v3GL3rilwe+SACDrsdINAJj24+c79M+/PKiLVlVp04oyffTb2/X00V6/ywKArEfoBgBIkrqHxvUX39+h8xordPvvXaSvvfsSrSgv1J9+e7ucc36XBwBZjdANAJAk3butVT3DE/rcjecrHAyouiSiD79mgw52DuvRg91+lwcAWY3QDQCQc07fe6Y10VZSPn39G86vV0VRWP/++FEfqwOA7EfoBgBoZ/uA9h4f0psvbHzR9YXhoN7yskY9sPOYuobGfaoOALIfoRsAoO8906ZIMKDrzq9/yW03XbxSk1GnB3Ye86EyAMgNhG4AyHPOOf1kxzG9YmOdKosjL7l94/JS1VcU6jf7unyoDgByA6EbAPJcS8+o2vpG9YqNtbPebmZ6+fpaPXKgW9EYU0wAYCkI3QCQ5x5LTCb5rbU1cx7z8g216h+d1PNt/ekqCwByCqEbAPLcowe7VVsa0fplpXMec8X6+Cr4b/Z1pqssAMgphG4AyGPOOT12sFuXrq2Rmc15XG1pgTbXl+vX9HUDwJIQugEgjx3pHlFH/9i8rSVJl6yp1vbWPk1FY2moDAByC6EbAPLYk4d7JEmXra1e8NgtzRUam4xp34khr8sCgJxD6AaAPPZ8W79KC0JaWzt3P3fS+U2V8fu0cjIlAJwuQjcA5LEdbf3a3FCuQGDufu6kNTUlKisIaXtrn/eFAUCOIXQDQJ6aisb0QseAzm2oWNTxgYDpvKYKPcdKNwCcNkI3AOSpA53DGpuM6bym8kXf5/ymSu0+NqDxqaiHlQFA7iF0A0Ce2pHY6Oa8xsWtdEvSlqYKTUaddnUMelUWAOQkQjcA5Knn2/pVHAlqzSJOokw6ryke0HewMyUAnBZCNwDkqR1t/dpcX67gIk6iTGqsLFJpQUj7jrPSDQCng9ANAHnIOac9xwa1uWHx/dySZGbasLxUewjdAHBaCN0AkIc6+sc0OD6lDcvLTvu+Zy0v055jg3LOeVAZAOQmQjcA5KHkrpIbly2+nztpw/Iy9Y5MqmtoItVlAUDOInQDQB5K9mQvdaV75mMAABZG6AaAPLT3+KBqSyOqLomc9n03roivjtPXDQCLR+gGgDy078SQ1i+htUSS6koLVFUc1l5CNwAsGqEbAPKMc077jw9p4xJaS6TkBJP4yZQAgMUhdANAnjmTySVJG5eXat+JISaYAMAiEboBIM8kJ5dsWGJ7iSStrS3V4NiUuoeZYAIAi0HoBoA8sz8Rupfa0y1Ja+pKJEmHuoZTUhMA5DpCNwDkmUNdQyorDKlmCZNLktbWJkJ3J6EbABbD09BtZleb2R4z229mn5jldjOzLyVuf87MXpa4vtnMHjKzXWa208w+POM+nzKzNjN7NvF2rZefAwDkmsNdI1pbWyIzW/JjNFYWKRw0HWSlGwAWJeTVA5tZUNJtkq6S1CrpSTO7zzn3wozDrpG0IfF2qaTbE++nJH3UOfe0mZVJesrMfjbjvl9wzv29V7UDQC471DWsi1dXndFjhIIBrawu1qGuoRRVBQC5zcuV7ksk7XfOHXTOTUi6R9INpxxzg6S7XdxjkirNrN451+Gce1qSnHODknZJavSwVgDIC2OTUbX3j2p1oj3kTKytK6WnGwAWycvQ3SipZcblVr00OC94jJmtlnShpMdnXH1roh3lLjM7s+UaAMgjR7pH5Jy0JhWhu7ZEh7tHFI0xNhAAFuJl6J6tWfDUn8zzHmNmpZK+I+kjzrmBxNW3S1on6QJJHZL+YdYnN7vFzLaZ2bbOzs7TLB0AclNyZToVoXtNbYkmpmJq7xs948cCgFznZehuldQ843KTpPbFHmNmYcUD9zedc99NHuCcO+6cizrnYpK+ongby0s45+50zm11zm2tq6s7408GAHJBMnSnor0kGdw5mRIAFuZl6H5S0gYzW2NmEUk3SbrvlGPuk/T7iSkml0nqd851WPyU+n+RtMs59/mZdzCz+hkX3yxph3efAgDklsNdw6otjai8MHzGjzU9q7uTkykBYCGeTS9xzk2Z2a2SHpAUlHSXc26nmb0/cfsdku6XdK2k/ZJGJL07cfcrJL1T0vNm9mziuj93zt0v6bNmdoHibSiHJf2hV58DAOSaQ13DKWktkaS60gIVR4I62kN7CQAsxLPQLUmJkHz/KdfdMeNjJ+lDs9zvN5q931vOuXemuEwAyBuHuof1yo2pabkzM62sLtbRHtpLAGAh7EgJAHlidCKqzsFxrawuTtljNlcX62jPSMoeDwByFaEbAPJEa288HDenMHSvSoTu+AuXAIC5ELoBIE+0eBC6V9YUa2wyps7B8ZQ9JgDkIkI3AOSJlsQJj83VRSl7zGSryhFaTABgXoRuAMgTLT0jKgwHVFdakLLHTIbuo92EbgCYD6EbAPJES++ImqqKFd8KITXij8dKNwAshNANAHmipWdUzVWpay2RpEgooIaKIrUQugFgXoRuAMgDzjm19Iyk9CTKpJXVxTrSzaxuAJgPoRsA8kD/6KQGx6fUXOVN6GZWNwDMj9ANAHnAi8klSc3VReoamtDYZDTljw0AuYLQDQB5wIsZ3UmNiT7xtr7RlD82AOQKQjcA5IHkiY6ehO7K+GO29hK6AWAuhG4AyAMtvSOqKAqrvDCc8seeXukmdAPAnAjdAJAHWnpGPennlqTlZQUKBUxtfZxMCQBzIXQDQB5o6R3xZHKJJIWCAa2oKKS9BADmQegGgBwXizm19o560s+d1FhZRHsJAMyD0A0AOe7E4LgmpmIp341ypqaqYqaXAMA8CN0AkOO8HBeY1FhVpGMDY5qYinn2HACQzQjdAJDjvBwXmNRUWSTnpGP9Y549BwBkM0I3AOS45G6UjZVetpfEH7uVCSYAMCtCNwDkuJbeES0vL1BhOOjZcyRndTPBBABmR+gGgBzX0uPduMCk+ooimbFBDgDMhdANADnO63GBkhQJBbS8rJAJJgAwB0I3AOSwyWhMHf2j0z3XXmqsYlY3AMyF0A0AOez4wJhiztuTKJMaK4s4kRIA5kDoBoAc1t4XH+HXkIbQ3VRVpI6+MUVjzvPnAoBsQ+gGgBzWnuixTkfobqwq0lTM6cQgs7oB4FSEbgDIYW3TobvQ8+dKtrAwNhAAXorQDQA5rL1vVFXFYRVHQp4/V1NiLCEnUwLASxG6ASCHtfeNpqW1RDq50s3YQAB4KUI3AOSw9r6xtIXuokhQNSURtfYywQQATkXoBoAc1t43mpZxgUlNVUX0dAPALAjdAJCjBsYmNTg+lZaTKJMaq4poLwGAWRC6ASBHpXNcYFJjZXxXSueY1Q0AMxG6ASBH+RW6x6di6hmeSNtzAkA2IHQDQI5qS+xGmc6e7vrEcyV3wgQAxBG6ASBHtfeNKhw01ZUWpO05GRsIALMjdANAjmrvG9WKikIFApa250y2snT0E7oBYCZCNwDkqPa+UTVUpK+1RJKqisMqDAem+8kBAHGEbgDIUe19Y2nt55YkM1NDRRE93QBwCkI3AOSgqWhMxwbStxvlTA2VzOoGgFMRugEgB50YHFc05nwK3YX0dAPAKQjdAJCDTs7oTt9ulEkNlUU6MTiuialY2p8bADIVoRsAclCyvSPdPd2S1FBRJOek4wP0dQNAEqEbAHJQ8kTGep96uiVmdQPATIRuAMhB7X2jqigKq7QglPbnTra00NcNACcRugEgB7X3jfpyEqV0cqWbsYEAcBKhGwByUFvfqBp9OIlSkgrDQVWXRGgvAYAZCN0AkIP8XOmW4i0m7EoJACcRugEgxwyOTWpgbMrf0F1RpA7aSwBgGqEbAHJMR3887Pq70l3ESjcAzEDoBoAcc3JGtz893VK8vWRwfEoDY5O+1QAAmYTQDQA55uRulP6udM+sBQDyHaEbAHJMe9+oggHTsjI/V7rjoZu+bgCII3QDQI5p7xvTivJCBQPmWw0NFexKCQAzEboBIMfEZ3T711oiSXVlBQoFjPYSAEggdANAjonP6PavtUSSggHTigpmdQNAEqEbAHJINOZ0rH/M15Mokxoqi9TeT083AEgeh24zu9rM9pjZfjP7xCy3m5l9KXH7c2b2ssT1zWb2kJntMrOdZvbhGfepNrOfmdm+xPsqLz8HAMgmnYPjmoq5zAjdrHQDwDTPQreZBSXdJukaSZslvd3MNp9y2DWSNiTebpF0e+L6KUkfdc6dLekySR+acd9PSHrQObdB0oOJywAAzZzRnQGhu7JIx/rHFI05v0sBAN95udJ9iaT9zrmDzrkJSfdIuuGUY26QdLeLe0xSpZnVO+c6nHNPS5JzblDSLkmNM+7z9cTHX5f0Jg8/BwDIKpkwozupobJIUzGnzsFxv0sBAN95GbobJbXMuNyqk8F50ceY2WpJF0p6PHHVcudchyQl3i9LXckAkN1Ohm5/T6SUTq62t/fTYgIAXobu2QbEnvoa47zHmFmppO9I+ohzbuC0ntzsFjPbZmbbOjs7T+euAJC12vtGVVYYUllh2O9SVJ8I/vR1A4C3obtVUvOMy02S2hd7jJmFFQ/c33TOfXfGMcfNrD5xTL2kE7M9uXPuTufcVufc1rq6ujP6RAAgW7T1jWVEP7fEVvAAMJOXoftJSRvMbI2ZRSTdJOm+U465T9LvJ6aYXCap3znXYWYm6V8k7XLOfX6W+9yc+PhmST/w7lMAgOwSn9GdGaG7vDCssoKQ2tkKHgC8C93OuSlJt0p6QPETIe91zu00s/eb2fsTh90v6aCk/ZK+IumDieuvkPROSa82s2cTb9cmbvuMpKvMbJ+kqxKXAQCK909nQj93UkNlESvdACAp5OWDO+fuVzxYz7zujhkfO0kfmuV+v9Hs/d5yznVLek1qKwWA7Dc8PqW+kcmMWemW4n3dnEgJAOxICQA5o6M/c2Z0J8VXumkvAQBCNwDkiLZEuM2kle7GyiL1DE9obDLqdykA4CtCNwDkiEzaGCepgbGBACCJ0A0AOaO9b1QBk5aXFfhdyrT6iuTYQFpMAOQ3QjcA5Ii2vlGtKC9UKJg5P9obmdUNAJII3QCQMzJpRnfS8vJCmbEVPAAQugEgR7T3jWVc6I6EAlpWVsBKN4C8R+gGgBwQizl19GfeSrcU7+umpxtAviN0A0AO6Boe12TUqTGDdqNMamRXSgAgdANALmjPwBndSQ2JXSnjmxADQH4idANADsjEGd1J9RVFGpuMqXdk0u9SAMA3hG4AyAGZHLobGBsIAIRuAMgFbX2jKi0Iqbww5HcpL5Gc1d1G6AaQxwjdAJAD4jO6C2VmfpfyEsmt4DsI3QDyGKEbAHJAJs7oTqouiaggFFB7P2MDAeQvQjcA5IBM3I0yyczUUFlEewmAvEboBoAsNzYZVffwxHTvdCZqqCzkREoAeY3QDQBZ7uTkkszbGCepoaJIHexKCSCPEboBIMtNb4xTkbkr3fWVRTo+OKbJaMzvUgDAF4RuAMhymTyjO6mxslDOScc4mRJAniJ0A0CWa+sblZm0oiKD20sSfxB0ELoB5ClCNwBkuba+US0vK1Q4mLk/0tmVEkC+y9yf0ACARWnrHVVjVea2lkgn+80ZGwggXxG6ASDLtfWNZvS4QEkqigRVVRxmpRtA3iJ0A0AWi8WcOvozf6VbireY0NMNIF8RugEgi50YHNdk1GX8SrcUD92sdAPIV4RuAMhirb0jkpQdK90VhfR0A8hbhG4AyGLJENuUJSvdg2NTGhyb9LsUAEg7QjcAZLHW3njozoqVbmZ1A8hjhG4AyGJtfaOqKg6rOBLyu5QFJUM3LSYA8hGhGwCyWDbM6E5qqIzvmMnJlADyEaEbALJYNszoTlpWVqhgwAjdAPISoRsAspRzLr7SXVnsdymLEgyYVpQXqqOPnm4A+YfQDQBZqndkUqOT0axpL5GkxsoieroB5CVCNwBkqbbE5JKmLArd9ZWFau8ndAPIP4RuAMhSbX2JjXGypKdbik8wOdY/pljM+V0KAKQVoRsAslRrFq50N1QWaTLq1DU07ncpAJBWhG4AyFJtfaMqiQRVURT2u5RFa6iIjw2krxtAviF0A0CWSs7oNjO/S1m05AY57UwwAZBnCN0AkKWyaUZ30snQzUo3gPxC6AaALNWaRbtRJpUXhlRaEGKCCYC8Q+gGgCw0ND6l/tHJrNkYJ8nMVF9RyEo3gLxD6AaALJSc0Z1tK91SvMWEnm4A+YbQDQBZKBtndCfFQzcr3QDyC6EbALJQNu5GmdRYWaju4QmNTUb9LgUA0obQDQBZqLVvVJFgQHWlBX6XctrqK+J/KHT002ICIH8QugEgC7X1jqq+slCBQPbM6E5ibCCAfEToBoAslI0zupMaCd0A8hChGwCyUFvvaFb2c0vS8ooCmbErJYD8QugGgCwzPhXVicHxrJvRnVQQCqq2tICVbgB5hdANAFmmI7FCnI0zupMaKovYlRJAXiF0A0CWaUusEGdrT7cUHxvISjeAfELoBoAsk80zupMaKuK7Ujrn/C4FANKC0A0AWaa1d0QBk1ZUFPpdypLVVxZpdDKqvpFJv0sBgLQgdANAlmntG9Xy8kKFg9n7I7yxMv4HQxstJgDyRGiuG8zsvkXcv8c5967UlQMAWEhbb/bO6E5KbpDT0T+mcxsrfK4GALw3Z+iWdLak985zu0m6LbXlAAAW0tY3qotWVfldxhlhV0oA+Wa+0P0XzrlfzndnM/vrFNcDAJhHNOZ0rH8s61e6a0oiioQChG4AeWPOhkDn3L0L3XmhY8zsajPbY2b7zewTs9xuZvalxO3PmdnLZtx2l5mdMLMdp9znU2bWZmbPJt6uXahOAMgVxwfGNBVzWT2jW5LMTA0VhfR0A8gbSzoLx8xuWcQxQcXbT66RtFnS281s8ymHXSNpQ+LtFkm3z7jtXyVdPcfDf8E5d0Hi7f7TLB8Aslbr9LjA7NyNcqamquLpzwcAct1ST323RRxziaT9zrmDzrkJSfdIuuGUY26QdLeLe0xSpZnVS5Jz7leSepZYHwDkpJaeEUlSc5avdEvxOeOEbgD5Ykmh2zn3z4s4rFFSy4zLrYnrTveY2dyaaEe5y8yy+2wiADgNLb0jMsvuLeCTmqqK1DU0rrHJqN+lAIDn5juRUpJkZp+c7Xrn3P9e6K6z3W0Jx5zqdkmfThz3aUn/IOk9L3nyeAvMLZK0cuXKBR4SALJDS8+olpcVqiAU9LuUM5ZskWntHdH6ZWU+VwMA3lrMSvfwjLeo4n3Yqxdxv1ZJzTMuN0lqX8IxL+KcO+6cizrnYpK+ongby2zH3emc2+qc21pXV7eIcgEg87X0jqi5OvtXuSVNfx4ttJgAyAMLrnQ75/5h5mUz+3tJi9k450lJG8xsjaQ2STdJescpx9yneKvIPZIuldTvnOuY70HNrH7GMW+WtGO+4wEgl7T2jOiytTV+l5ESJ1e6Cd0Act+CoXsWxZLWLnSQc27KzG6V9ICkoKS7nHM7zez9idvvkHS/pGsl7Zc0Iundyfub2bckvVJSrZm1Svor59y/SPqsmV2geHvJYUl/uITPAQCyzsRUTB0DY2qqzv7JJZJUV1qgSDCg1t4Rv0sBAM8tpqf7eZ3ssw5KqpO0UD+3JCkxzu/+U667Y8bHTtKH5rjv2+e4/p2LeW4AyDXtfaNyLjcml0hSIGBqrCpSaw8r3QBy32JWuq+b8fGUpOPOuSmP6gEAzKElsSLcnCMr3VJybCAr3QBy32J6uo+koxAAwPxaEivCuRW6i/XT9mN+lwEAnlvqjpQ/THUhAID5tfSOKBw0rSgv9LuUlGmqKlL38ISGx3kBFUBuW+qOlO9LaRUAgAW19IyoobJIwcBiNgXODslV+7Y++roB5Lal7kg571g/AEDqtfSOqilHTqJMSn4+9HUDyHULhm4z22Bm/2lmL5jZweRbOooDAJzU2jOi5qrc6eeWZoZuVroB5LbFrHR/TfGt16ckvUrS3ZL+zcuiAAAvNjw+pe7hiZw6iVKKz+ouCAXU0sNKN4DctpjQXeSce1CSOeeOOOc+JenV3pYFAJgpuRKca+0lZpYYG8hKN4Dctpg53WNmFpC0L7HDZJukZd6WBQCYKbkSnGsr3VJ8bCChG0CuW8xK90cU3/r9jyVdJOn3JN3sYU0AgFNMb4yTYz3dUnz1voUTKQHkuMVsjvNk4sMhSe/2thwAwGxaekZVFA6qtjTidykp11RVrL6RSQ2OTaqsMOx3OQDgiTlXus3sUwvdeTHHAADOXEvviJqqimSWOzO6k5qr433qzOoGkMvmW+l+r5kNzHO7SbpJ0qdSWhEA4CVaekZysp9biq90S1Jrz6g2rSj3uRoA8MZ8ofsrksoWuP9XUlgLAGAWzjm19Y7q0jXVfpfiieREFvq6AeSyOUO3c+6v01kIAGB2/aOTGhyfytmV7pqSiIrCQSaYAMhpS9oGHgCQPi09yRnduRm6k7O62SAHQC4jdANAhjvSMyxJWpmjK91SfP54CyvdAHLYgqHbzHKziRAAssTRxArwyprcDd0rq4vV0jMi55zfpQCAJxaz0v24mX3bzK61XJxVBQAZ7mj3iGpLIyotWMwmwtmpubpYQ+NT6h2Z9LsUAPDEYkL3Rkl3SnqnpP1m9jdmttHbsgAASUe6c3dcYNKqxOd3lL5uADlqwdDt4n7mnHu7pPcqvgX8E2b2SzP7Lc8rBIA8d7RnZDqU5qpk68yR7mGfKwEAbyz4WqWZ1Uj6PcVXuo9L+iNJ90m6QNK3Ja3xsD4AyGsTUzF19I9qZXWj36V4qjkxmYUJJgBy1WIaBB+V9G+S3uSca51x/TYzu8ObsgAAktTaO6KYk1bWlPhdiqeKIkHVlRXQXgIgZy2mp/svnXOfnhm4zexGSXLO/Z1nlQEApkPoqhyeXJK0srqY0A0gZy0mdH9iluv+LNWFAABeanpcYI73dEvJsYHM6gaQm+ZsLzGzayRdK6nRzL4046ZySVNeFwYAiE8uKQwHtKyswO9SPNdcXazvP9umiamYIiH2bgOQW+b7qdYuaZukMUlPzXi7T9LrvS8NAHC0Z0Qrq4uVD9skrKoulnPxPnYAyDVzrnQ757ZL2m5m33TOsbINAD442j2SF60l0smxgUd7RrS2rtTnagAgteZrL7nXOfdWSc+Y2cx9eU3x8d3ne14dAOQx55yO9ozoivW1fpeSFsk/LhgbCCAXzTcy8MOJ99eloxAAwIt1Do1rdDKaF5NLJKmutEAFoQATTADkpDl7up1zHYkPuyS1OOeOSCqQtEXxfm8AgIeOdufP5BJJCgRMzYwNBJCjFnN6+K8kFZpZo6QHJb1b0r96WRQAID65RDrZ65wP4rO6GRsIIPcsJnSbc25E0lsk/aNz7s2SNntbFgDgaM+IzKSmqiK/S0mbldXFOto9LOfcwgcDQBZZVOg2s9+S9LuSfpS4bjHbxwMAzsDRnhHVlxeqIBT0u5S0WVldrOGJqHqGJ/wuBQBSajGh+8OK70D5PefcTjNbK+khb8sCABzpHs6r1hLpZP86fd0Acs2Cods59yvn3PXOub9LXD7onPtj70sDgPx2tGdUq6pL/C4jrWbO6gaAXLJgm4iZbZT0p5JWzzzeOfdq78oCgPw2PD6lrqHxvFvpbq5iVjeA3LSY3uxvS7pD0lclRb0tBwAgnVzpzZdxgUlFkaDqygpY6QaQcxYTuqecc7d7XgkAYNqRPJvRPdPK6uLpzx8AcsViTqT8LzP7oJnVm1l18s3zygAgjx3pHpYkra7Nr55uSVpVwwY5AHLPYla6b068/9iM65yktakvBwAgSYe7h1VdElFFUdjvUtJudU2Jvvt0m0YnoiqK5M+4RAC5bcHQ7Zxbk45CAAAnHe4a0ao8O4kyadWMCSZnrSjzuRoASI0F20vMrNjM/tLM7kxc3mBm13lfGgDkryPdw1pTk3+tJZK0JtFSczjRYgMAuWAxPd1fkzQh6fLE5VZJ/8ezigAgz41NRtXeP6ZVeRq6k7PJjxC6AeSQxYTudc65z0qalCTn3Kgk87QqAMhjyZMIV9fmZ3tJRXFYVcVhHWaCCYAcspjQPWFmRYqfPCkzWydp3NOqACCPHepKTC7J05VuSVpVU6LDXax0A8gdiwndn5L0E0nNZvZNSQ9K+riXRQFAPpseF5jHoXt1DbO6AeSWxUwv+amZPSXpMsXbSj7snOvyvDIAyFOHu0dUVRxWRXH+jQtMWl1boh9sb9fYZFSFYcYGAsh+i5le8qBzrts59yPn3A+dc11m9mA6igOAfHS4azhvT6JMWl1TIuek1l5WuwHkhjlDt5kVJnaerDWzqhm7Ua6W1JC2CgEgzxzpHpkem5evkrO6D3cRugHkhvnaS/5Q0kcUD9hP6eTEkgFJt3lbFgDkp/i4wNG83RgnKdnPzqxuALliztDtnPuipC+a2R855/4xjTUBQN5q6RmRc/l9EqUkVRaHVV4YInQDyBmLOZHyH83sckmrZx7vnLvbw7oAIC8lZ1OvzvP2EjPTmtoSJpgAyBkLhm4z+zdJ6yQ9KymauNpJInQDQIodnp7Rnd/tJVJ8VvczLb1+lwEAKbFg6Ja0VdJm55zzuhgAyHeHu4dVWRxWZXHE71J8t7qmWD98rl0TUzFFQovZVgIAMtdifortkLTC60IAAPHQne/jApNW1ZQo5qQWxgYCyAGLWemulfSCmT2hGdu/O+eu96wqAMhTh7tGdPHqKr/LyAjJvvYj3cNaV1fqczUAcGYWE7o/5XURAABpfCo5LrDJ71IywmpmdQPIIQu2lzjnfjnb22Ie3MyuNrM9ZrbfzD4xy+1mZl9K3P6cmb1sxm13mdkJM9txyn2qzexnZrYv8Z4lIQA5YXpcYC0nUUpSdUlEZQUhHWFsIIAcMN+OlINmNjDL26CZDSz0wGYWVHwTnWskbZb0djPbfMph10jakHi7RdLtM277V0lXz/LQn5D0oHNug6QHE5cBIOslV3Tp6Y4zM62qLZ4eowgA2WzO0O2cK3POlc/yVuacK1/EY18iab9z7qBzbkLSPZJuOOWYGyTd7eIek1RpZvWJ5/+VpJ5ZHvcGSV9PfPx1SW9aRC0AkPEOJcYFrs3zGd0zra4pmf66AEA283IGU6OklhmXWxPXne4xp1runOuQpMT7ZWdYJwBkhINdw6ouiTAucIa1tSVq7R3R+FR04YMBIIN5GbptlutOnfW9mGOW9uRmt5jZNjPb1tnZmYqHBABPHewc0hpWuV9kTV1ibGAPLSYAspuXobtVUvOMy02S2pdwzKmOJ1tQEu9PzHaQc+5O59xW59zWurq60yocAPxwqGuY0H2KNbXxUYEHO2kxAZDdvAzdT0raYGZrzCwi6SZJ951yzH2Sfj8xxeQySf3J1pF53Cfp5sTHN0v6QSqLBgA/DI1P6cTguNbWEbpnSv4RcpC+bgBZzrPQ7ZybknSrpAck7ZJ0r3Nup5m938zenzjsfkkHJe2X9BVJH0ze38y+JelRSWeZWauZ/UHips9IusrM9km6KnEZALLaYU6inFVFUVi1pREdYqUbQJZbzOY4S+acu1/xYD3zujtmfOwkfWiO+759juu7Jb0mhWUCgO8OdA5JOtlOgZPW1pYywQRA1vOyvQQAsEiHuoZlJq2qYWOcU62pLdHBriG/ywCAM0LoBoAMcKhrWA0VRSoMB/0uJeOsqStR19CE+kcn/S4FAJaM0A0AGeBQ1zAnUc4h2ed+mBYTAFmM0A0APnPO6WDnMCdRziH5xwgtJgCyGaEbAHzWOTSuofEpZnTPobm6WAETE0wAZDVCNwD4LBkm19QxuWQ2BaGgmquLmdUNIKsRugHAZ4eY0b2gNbUl7EoJIKsRugHAZwe7hhUJBdRQWeR3KRlrTW2JDnUNK769AwBkH0I3APjsYOewVtcUKxgwv0vJWGvrSjU6GdWxgTG/SwGAJSF0A4DPDnUNcRLlApKtN5xMCSBbEboBwEdT0ZiO9oxoLSdRziv5RwknUwLIVoRuAPBRa++oJqOOle4FrCgvVFE4yMmUALIWoRsAfMTkksUJBEyra0t0iA1yAGQpQjcA+OhAZzxEstK9sLW1JbSXAMhahG4A8NGBzmFVFYdVU1rgdykZb11diVp6RjQ2GfW7FAA4bYRuAPDRgRNDWsdJlIuyblmpYk463M1qN4DsQ+gGAB8d6BzS+mWE7sVIfp0OnCB0A8g+hG4A8Env8IS6hydY6V6ktbWlMpP2n+BkSgDZh9ANAD5JnkS5bhknUS5GUSSoxsoi7e8kdAPIPoRuAPBJMnSvryvzuZLssX5ZKSvdALISoRsAfHKgc1iRUECNVUV+l5I11tWV6mDnkGIx53cpAHBaCN0A4JP9J4a0trZEwYD5XUrWWL+sVONTMbX1jfpdCgCcFkI3APjkQOeQ1jG55LQkJ5jQYgIg2xC6AcAHY5NRtfSMMLnkNK1PfL0OcDIlgCxD6AYAHxzuHlbMxXdZxOJVlURUXRJhpRtA1iF0A4APkhu8sDHO6VtfxwQTANmH0A0APki2R6ytJXSfrnXLSrW/c0jOMcEEQPYgdAOAD/afGFJjZZGKIkG/S8k66+pK1DcyqZ7hCb9LAYBFI3QDgA8OdA7RWrJETDABkI0I3QCQZrGY08HOYSaXLNF06GaCCYAsQugGgDRr7x/V6GRU65YxuWQpGiqKVBQOTp+MCgDZgNANAGl2oDMxuYSV7iUJBExr60pY6QaQVQjdAJBmyV5kdqNcuvXLSnWAnm4AWYTQDQBptu/4oKqKw6opifhdStbasKxUbX2jGhqf8rsUAFgUQjcApNne44PasLxMZuZ3KVlr4/IySfE/YAAgGxC6ASCNnHPad2JIG5fTWnImToZuWkwAZAdCNwCk0fGBcQ2OTU2HRixNc3WxCsMB7WGlG0CWIHQDQBrtTYTEDcsI3WciGDCtX1Y6/fUEgExH6AaANEqGRNpLztzG5WWEbgBZg9ANAGm07/iQakoiqikt8LuUrLdxeZmOD4yrf2TS71IAYEGEbgBIo70nBrWBVe6USL5asPcEq90AMh+hGwDSxDmn/ceHOIkyRZJfR1pMAGQDQjcApElH/5gGx6e0gdCdEo2VRSqJBBkbCCArELoBIE2mT6Jk+/eUMDNtWF6mPcdY6QaQ+QjdAJAmyRVZVrpTZ+PyUu2jpxtAFiB0A0Ca7DsxqNrSiKpLIn6XkjM2Li9T19CEuofG/S4FAOZF6AaANNl7fIhNcVLs5MmU9HUDyGyEbgBIA+ec9p8YYlOcFDtrRTx002ICINMRugEgDdr7xzTE5JKUW1ZWoPLCECdTAsh4hG4ASIOT278TulPJzHTWijLGBgLIeIRuAEiDfdOhm/aSVNuwvEx7jg/KOed3KQAwJ0I3AKTB7mODWl5eoMpiJpek2qYVZeofndTxASaYAMhchG4ASIPdHYPatKLc7zJyUvLruqtjwOdKAGBuhG4A8NhkNKb9J4a0qZ5+bi8kv667jhG6AWQuQjcAeOxQ17AmojGdzUq3J8oLw2qsLNKuDiaYAMhchG4A8Fiy7YGVbu+cXV+u3bSXAMhghG4A8NjuY4MKB01ra5lc4pWz68t0sGtYY5NRv0sBgFkRugHAY7s7BrSurlSRED9yvXJ2fbmisfiunwCQiTz9DWBmV5vZHjPbb2afmOV2M7MvJW5/zsxettB9zexTZtZmZs8m3q718nMAgDO1+9igNq2gtcRLya/vC7SYAMhQnoVuMwtKuk3SNZI2S3q7mW0+5bBrJG1IvN0i6fZF3vcLzrkLEm/3e/U5AMCZ6h+ZVEf/mDbVcxKll1bVlKgwHNBuTqYEkKG8XOm+RNJ+59xB59yEpHsk3XDKMTdIutvFPSap0szqF3lfAMh4uxNj7Fjp9lYwYDprRTmzugFkLC9Dd6OklhmXWxPXLeaYhe57a6Id5S4zq0pdyQCQWruPxVdez2al23NnryjT7mMDbAcPICN5GbptlutO/Uk41zHz3fd2SeskXSCpQ9I/zPrkZreY2TYz29bZ2bmoggEg1XYfG1BVcVjLygr8LiXnnV1frt6RSZ0YZDt4AJnHy9DdKql5xuUmSe2LPGbO+zrnjjvnos65mKSvKN6K8hLOuTudc1udc1vr6urO6BMBgKXaldj+3Wy2tQSkEidTAshkXobuJyVtMLM1ZhaRdJOk+0455j5Jv5+YYnKZpH7nXMd89030fCe9WdIODz8HAFiyWMxpz7FBNsVJk02JHT85mRJAJgp59cDOuSkzu1XSA5KCku5yzu00s/cnbr9D0v2SrpW0X9KIpHfPd9/EQ3/WzC5QvN3ksKQ/9OpzAIAzcbRnRKOTUU6iTJOK4uR28Kx0A8g8noVuSUqM87v/lOvumPGxk/Shxd43cf07U1wmAHji5OQSTqJMl02JkykBINOwPRoAeGRXx6DMpI3LWelOl7Pry3Wgk+3gAWQeQjcAeGRn+4DW1paoKBL0u5S8cU5DfDv4vcfp6waQWQjdAOCRne39Orexwu8y8so5DfGv9442WkwAZBZCNwB4oHtoXB39YzqngX7udGquLlJZYUg72vv9LgUAXoTQDQAe2NkeX2k9t4GV7nQyM53bUKGdbYRuAJmF0A0AHkiG7s2sdKfduY3l2nVsUJPRmN+lAMA0QjcAeGBne7+aqopUWRzxu5S8c25jhSamYjrQOeR3KQAwjdANAB7Y2T5AP7dPOJkSQCYidANAig2OTepQ1zD93D5ZU1ui4khQO+jrBpBBCN0AkGK7OuIzos9pZKXbD8GAaXN9uXYywQRABiF0A0CKJcMeK93+ObexQjvbBxSLOb9LAQBJhG4ASLkdbQOqLS3QsvJCv0vJW5sbyjUyEdWh7mG/SwEASYRuAEi5+E6UtJb4KfkqQ3J0IwD4jdANACk0NhnVvhNDtJb4bMPyUkWCATbJAZAxCN0AkEJ7jw8qGnOMC/RZOBjQpvoytoMHkDEI3QCQQsnZ0Oc2stLtt3MaKrSjbUDOcTIlAP8RugEghXa096u8MKSmqiK/S8l75zaWq390Ui09o36XAgCEbgBIpe0tfdrSXCkz87uUvLelqVKStL21z9c6AEAidANAyoxNRrX72KDOb6K1JBOctaJMBaGAtrf0+V0KABC6ASBVdrb3Kxpz0yus8Fc4GNC5jRWsdAPICIRuAEiRZ1vikzIuaK70txBM29JUqefb+jUVjfldCoA8R+gGgBTZ3tKn+opCdqLMIFuaKzQ2GdPe40N+lwIgzxG6ASBFnmvto7Ukw3AyJYBMQegGgBToG5nQ4e4RbaG1JKOsqilWRVGYkykB+I7QDQApsL013s+9pZnJJZnEzLSluXL63wcA/ELoBoAU2N7SJzPpPHaizDgXNFVo7/FBjUxM+V0KgDxG6AaAFNje0qf1daUqKwz7XQpOsaW5UtGY0872Ab9LAZDHCN0AcIacc9re2kc/d4Y6P3kyJX3dAHxE6AaAM9TWN6quoQlCd4aqKytQY2WRniV0A/ARoRsAztD25KY4jAvMWBc0VzI2EICvCN0AcIa2t/YpEgrorBVlfpeCOWxprlBLz6i6hsb9LgVAniJ0A8AZeupIr85tKFckxI/UTHXhyipJ0tNHen2uBEC+4jcEAJyBscmonm/t18Wrq/0uBfM4r7FCkWBATxG6AfiE0A0AZ+D5tn5NRGO6aFWV36VgHoXhoM5tLNc2QjcAnxC6AeAMPHm4R5II3Vlg6+pqPd/ar7HJqN+lAMhDhG4AOANPHe7V2roS1ZQW+F0KFnDRqipNRGPa0caW8ADSj9ANAEsUizltO9Kri1fRz50Nkq9G0GICwA+EbgBYogOdQ+ofndRFq2ktyQa1pQVaU1uibYcJ3QDSj9ANAEv0ZCK8Mbkke1y0qkpPH+2Vc87vUgDkGUI3ACzRtiM9qimJaHVNsd+lYJG2rqpSz/CEDnYN+10KgDxD6AaAJdp2uFdbV1fJzPwuBYu0NdEK9BQtJgDSjNANAEtwYmBMR3tGtJWTKLPK2tpSVRaHte1Ij9+lAMgzhG4AWILkBIytnESZVQIB00Urq5hgAiDtCN0AsARPHu5RQSigcxoq/C4Fp+mi1VU62DmsnuEJv0sBkEcI3QCwBI8f7NGFKysVCfFjNNtckpg288Shbp8rAZBP+G0BAKepe2hcL3QM6Ip1tX6XgiU4v6lSxZGgHjlA6AaQPoRuADhNjx6Mh7UrNhC6s1EkFNDFq6sJ3QDSitANAKfp4f3dKisI6fxG+rmz1RXra7T/xJBODIz5XQqAPEHoBoDT9MiBLl26tlqhID9Cs9XlidYgVrsBpAu/MQDgNLT0jOhI98h0aEN2Oru+XBVFYT1yoMvvUgDkCUI3AJyGZEh7Of3cWS0YMF22lr5uAOlD6AaA0/Dw/m7VlRVow7JSv0vBGbp8Xa1ae0fV0jPidykA8gChGwAWyTmnRw506/J1NTIzv8vBGbp8XY0k0WICIC1CfhcAwF8TUzG1942qpXdEY5MxmSQzqba0QKtrSlRRHPa7xIyx9/iQuobGmc+dI9YvK1VtaYEeOdCtt1280u9yMsLYZFTtfaNq7R1Ve9+oos4pFDAFAwE1VBRqbV2plpcX8EcnsASEbiDPtPaO6NED3Xr8UI+2He7R0Z4Rxdzcx1cWh3V+U6VesaFWV26o08blpXn7C/fh/fEVUeZz5wYz0+XravTIgW455/Ly+zoac3riUI8eOdClRw50a3tLn6bm+4EgqSQS1AUrK/Xy9XW6ckOtNteXKxDIv68dcLoI3UAeONQ1rPuf79CPd3RoR9uAJKmqOKyLV1fr+gsa1VxVpObqYpVEQnJyijnpxMCYDncP61DXsJ483Kv/86NdknZpdU2xbtzarBsvatKy8kJ/P7E0e3h/l1bXFKuxssjvUpAil6+r0X3b27XvxJA2Li/zu5y02Xd8UP/5dKu+/0ybjg+MKxgwnd9Uofe9Yq02LCtVc3WxGiqLFA6YpmJOE1MxtfWN6mDnkPadGNLjB3v0dz/Zrb/7idRYWaQ3bmnQmy5s0KYV5X5/akDGInQDOWr/iSHd/3yH7n++Q7uPDUqSLlxZqT+/dpN+e+MybVhWelqrU+19o/rV3k5975k2fe6BPfr8z/bq9ecs14detV7nNOT+JjFjk1E9cqBbN25t8rsUpNCVG+skSb/a25kXofuJQz267aH9+uXeTgUDpledVae/emOTrtxQq7LC+VvJVteW6Ir1J1/lOTEwpl/v69IPn2vXV359UHf88oA2rSjTDRc06oYLGtTAH6fAi5hz87+MlAu2bt3qtm3b5ncZgKecc9p/Ykg/SgTtvceHJEkXrarStefV6+pzV6RshfZQ17DuefKo/v2xoxocn9Jrz16mD79mo85ryt3w/dCeE3r3157U1959sV511jK/y0EKXfX5X2pZeYG++d7L/C7FM08c6tHnHtitJw/3qqYkove8fI3eurVZdWUFKXn87qFx/ej5Dv3g2XY9daRXknTpmmq9+cJGXXNevSqKODcE+cPMnnLObX3J9V6GbjO7WtIXJQUlfdU595lTbrfE7ddKGpH0Lufc0/Pd18yqJf2HpNWSDkt6q3Oud746CN3IRc45tfSM6pmWXj28v0u/2del9v4xmUkXr6rWteet0NXn1mtFhXctIP2jk/r6I4d118OH1DcyqRsvatLHrj5Ly8pyr+3kkz/YoW9va9Uzn7xKheGg3+Ughf7m/l362sOH9MwnX6fSgtx6AbilZ0R/++Nduv/5Y1pRXqgPvHKd3rq1WUUR776Hj3aP6AfPtul7z7bpYOewIsGArtxQq1duWqZXnVWnpqpiz54byARpD91mFpS0V9JVklolPSnp7c65F2Ycc62kP1I8dF8q6YvOuUvnu6+ZfVZSj3PuM2b2CUlVzrmPz1cLoRvZamwyqp7hCXUPTejE4JgOd4/oSPewDnQOaUfbgPpHJyVJ5YUhXbG+Vlesr9VVm5dreZp7rQfHJvXlh/brrt8cUkEoqD9+zXq954o1ObNNunNOV372IW1aUaav3nyx3+UgxR450KV3fOVx3fnOi/S6c1b4XU5KTEzFdMcvD+jLP9+vYMD0/t9ep1tesdbTsH0q55x2tA3oe8+06We7jqmlZ1SStKqmWBc0V2pLU6U2N5RrVU2xlpcVcjImcsZcodvLP+kvkbTfOXcwUcA9km6Q9MKMY26QdLeLJ//HzKzSzOoVX8We6743SHpl4v5fl/QLSfOGbsBvzjkNjk9pYHRS/Ym3gdGTl/tG48G6e3hC3UPj6h6eUM/QhAbHp17yWGUFIa2pK9G1563QuY0VOr8x/osr6OMvrLLCsP7smrN108Ur9ekfvqC/uX+3fvRchz77O1t01ors75Pdf2JIrb2j+sAr1/ldCjywdVW1SgtCemjPiZwI3c+39utj/7ldu48N6g3n1+t/vWGzp694zcXMdF5Thc5rqtD/uu5sHewa1kO7T+jJwz16/GCPfvBs+/SxBaGA6isKVVkcUWVxWJVFYVUUhVUUCakgFFAkFFBBKKCCcFAFwYAKwoHp64OBgAImBcwSI09NAZv5Pv5x0EzBgCkw/V4qCAVVWhhSWWFI4RxZJEDm8jJ0N0pqmXG5VfHV7IWOaVzgvsudcx2S5JzrMDOaK1PAOafxqZiGx6c0GXUKB03hUEDhQEDhoKV8xTIWc+obnVTP8IR6Rybi74cn1Dsyqd6R+MdjUzFNRWPT9RSGgyoMB1RRFFFtaUR1ZQWqLS1QXVmBlpcVqrwodMYjv5xzGp6I6sTAmDoHx3VicHz6fe/whEYnoxqdjGos8TYxFa9vMhrTVCzxPnE5ed1U1GkiGpv3eYMBU3VJRDUlEdWWFqipqlg1pfGPa0oiqiktUG1pRKtqSlRVHM7Y0WZrakv0Lzdv1Q+f69Bf3bdT1/3jr/Xh12zQB1653tc/Cs7UT184Lkl6zablPlcCL0RC8faHn+8+oVjMZe2K61Q0pi8/tF//+PP9qimJZNTKvZlpXV2p1tWV6r1XrpUkHR8Y097jgzqSeAWvo39M/YnfCwc7h9U3MqGxydiCPz9TpTAcUHlhOP6zuDSimpKCl/wcrimNqDZxfXEkuODP4uSCS+/whLqG4osqyffdwxPqH53U6ET898pULKZgIKBQwFQQCqiyOKKq4rCqiiOqStS0rCz+O6+mpCCrf6bmKy9D92zfDaf2ssx1zGLuO/+Tm90i6RZJWrky/Zse7D42oAd3xX+AR118BFss5hRz8cvOxeejRmNOzs1yTCz+n1UmRYLxv+aT78PBk3/1z7w+GouHu4mp+Nv4VEwjE1GNTkxpeCKqkYkpDY/H349MRDUyEdXwePLjqXlnNYcCpqJwUEWRxFs4qMJwUMXJjxPvk5claXwqpvGpqMYnYxpNtEkk33pHJuZ8vqJwUJXFYRWFgwoF45syTEVjGpuKamwypr6RCU1GX3rnwnBAy8sLtby8UCvKC7WsrEBlhWGVFARVUhCSSYo5KercyRXmkQn1jcR/yCcD9uhkdNbPv7ok/kO2MByc/gOgsjgS/wMlGFAoGFA4YAolLoeD8R+eoWBAkaCprDC+clNeFFJ5YhWnvDCsiuKwSiOhrP1Ffyoz0xu3NOjydTX65H079fc/3atf7+vS/73pAtVXZOc0g5/sOKYLV1b6slqI9HjdOcv14x3HtL21TxeurPK7nNPW3jeqj9zzrJ443KM3X9ioT11/TsafvJj8eX3lhvmPiyV+tyV/pyR/v01MxTQ2GVUs8Ts15jT9sUv8Tk2OQI05F/99nPgdG0v8Dh6fimlwbFKDY1MaHIu/AtkzEg/F23v71D00oaFZXnGU4r9zakriCyLlia/1ZGKhqG9kIvE7ZnLOueflhSFVFIdVHA6pMBz/HRKNRRWNOY1NRtU7Ev8dNdv9AybVlBZMh/Dk+7rSAtWWFaggFP/9GQ4EFArGf7eMTUYTX8P41210IqrhiSmNjJ/yfkY2GJ6Y0vhkTGaafpVg+hWCgpBKC0MqKQiptCCokkjy4/jnUxAKJl6RSLwPBuQSX6NozGkyGv/3mIrFXvRvOhGNaXwyponoi/+tnZMCAUts1pR8xUIKBgLx92YKzHglo7I4rN+9dNXivyHTwMvQ3SqpecblJkntizwmMs99j5tZfWKVu17Sidme3Dl3p6Q7pXhP91I/iaV6oX1An3tgz4uuCyS+aZMvcwUs/g108hvZpo8JmCkQkGKx+DfozDC90MYFM0VCARVH4v8ZiiNBFReEVBwOqr4irOJISCUFQRWF4++Tl0OBwPR/guQq7tiMFd7RRGBPXh4Ym9TIRFRjietGJqKyxH/K5B8HheGgqorDWltXoq2rq1VTEpleTaguiaiq+OT7hXoOnXMaGJ1S51A8JHcOjevEwJiO9Y/p+OC4jveP6dmWPp0YHNPY5NwrJAWhgKqSL2UWh3VBc+WLfngtKyuM/xArK1BlUThnQnG61JQW6Mtvv1CvOmuZPvmDHbrmi7/W535ni67anF2rxS09I3q+rV9/ds0mv0uBh1591nIFA6afvnA860L3z3cf1//8j+2aisb0hbdt0ZsvzK2xloGAqTAQTJzAnP4/JMYmoydb/4Ym1JVYpZ6+PDyh/pEJBQLxkFsQCuisFWUvWqmuLI6/QltbGn+FtqokrILQwv31zjkNjU+pd3jy5O+8wZe+Eru7Y1BdQ+OnlQ+SAiaVFITiOSERnosiQdWWRrSyoFgFoYCU+MMlmlgcHJuMamh8SicGxzTcFf84GdRTJTAjR0RCgcTCmZtesIw5aSoWUywWX0yLnvK5r6opzqvQ/aSkDWa2RlKbpJskveOUY+6TdGuiZ/tSSf2JMN05z33vk3SzpM8k3v/Aw89hya7f0qA3nF+fCNeW0sCW/Kt/ZhCfmIopGLAXrXwnV8VzjZmpoji+Qrx+Wem8x05GY9N/vUua/sOmvCjMBIo0MDP9zkVNetnKSv3Rt57R++7epltftV7/86qNWfPS6AM7j0mSXp8hL9PDGxXFYV22tloP7Dymj1+dHX9gxWJOtz20X5//773aXF+u297xMq2uLfG7rJxTGA6qsbLIl02xzOKvkpYVhrWyZv6pL7GYU+9I/Nyg+KJZfOFsKtGeU5B4hbYgFFRBKKCSgvhiXEEokLKWxVjMxVfHE6vpM9+PT8YUMCk0/SqwKZRYiY8EZ7x6n8gxS2lrdclQnnjFI9N4Frqdc1NmdqukBxQf+3eXc26nmb0/cfsdku5XfHLJfsVHBr57vvsmHvozku41sz+QdFTSjV59DmciFAx49sV98V/9mE84GFBFcUAVxZn9MmuuW1tXqu9+8HJ98vs79eWH9mtHe7+++LYLs+Lf5cc7jmnTijLCTB54/Tkr9Mkf7NT+E4NavyyzTwAeGp/SR+99Vg/sPK43X9iov33LefxOyHOBgCX6zlMze32pNZQVhuXX/x6zRJj36fkXwuY4ANLGOad/f+KoPnXfTjVUFunOd27N6OkmLT0juvKzD+ljrz9LH3rVer/LgceO9Y/ptz7zoD78mg36yGs3+l3OnA53Det9d2/Twa5h/fm1Z+s9V6zO2JOrgXw018jA3Os9AJCxzEy/e+kq3XPLZRqZiOpNtz2sn+zo8LusOd23PX4qyfVbGnyuBOmwoqJQl66p1n3b25WpC1KPHujW9V/+jbqGxnX3ey7RH7x8DYEbyBKEbgBpd9Gqav3wj16uTfVlev83ntbtvziQcSHHOafvP9Omi1dXqbmaHfTyxfVbGnWwc1g72wf8LuUlvvt0q37/rse1rLxQ9936cl2xvtbvkgCcBkI3AF8sLy/Ut953ma47v15/95Pd+vh3ntPEVHrm8S7GCx0D2ndiSDdc0Oh3KUija85doXDQpl/lyATOOX3xv/fpT+7drq2rqvWdD1zOH4JAFiJ0A/BNYTioL910of741et177ZW3XzXE+ofmfS7LEnSPU+0KBIK6Lrz6/0uBWlUVRLRb2+s0w+ebZue+uCniamYPvafz+kL/71Xb3lZo77+nksyfv42gNkRugH4KhAw/cnrztLn37pFTx3p1Zv/6WEd7hr2taaRiSl9/5k2veG8elUWR3ytBel349ZmHR8Y1y/2dPpaR//opN79r0/oP59q1Udeu0H/cOMWRUL82gayFf97AWSEt7ysSd9476XqHZnQm/7pYT1xqMe3Wv5re7sGx6f0jkvTv5st/PfqTctUV1age5486lsNrb0juvGOR/T4wR79/Y1b9JHXbuSESSDLEboBZIxL1lTrex+8QtUlEf3uVx/Td59uTXsNzjl947Gj2rCsVFtXZdfOhEiNcDCgGy9q0s93n9Cx/rG0P//zrf168z89oo7+Md39nkv0Oxfl1g6TQL4idAPIKKtrS/S9D1yhi1dX60/u3a7PPbBbsSVsbbxUjx7s1vNt/br5cmYf57O3XdwsJ+kbjx1J6/M+uOu43vrPjyoSDOg7H7hclzOhBMgZhG4AGaeiOKyvv+cSvf2SZt320AF96N+f1sjEVFqe+45fHlRtaYTVxTy3qqZEr9u8XP/22BENj6fne+/rjxzW++7epvXLSvW9D12ujcszd+MoAKeP0A0gI4WDAf3Nm8/TX77hbP1k5zG99Z8f9fyl/p3t/frV3k69+4o1bKkN3fKKdeofndS3t7V4+jzRmNP//q8X9Ff37dSrNy3Tf/zhZVpWVujpcwJIP0I3gIxlZnrvlWv1Lzdv1aHOYd1w22/0fGu/Z8/3uQf2qKwwpN+7dJVnz4HscdGqKl20qkpf+fUhjU9FPXmO0YmoPvCNp3TXw4f0rstX65/fuVXFkZAnzwXAX4RuABnv1ZuW6zsfvFyhQEA3/vMjuv/51G8d//D+Lv1iT6dufdV6VRQzBxlxH3ntBrX1jerfHk19b/eJwTHddOej+tmu4/qrN27Wp64/R8EA5xEAuYrQDSArbFpRrh/ceoU215frg998Wl/++b6UbR0/GY3p///RLjVWFunmy1en5DGRG67cUKcrN9Tqyw/t18BY6jZu2nd8UG++7RHtPT6kO9+5Ve++Yk3KHhtAZiJ0A8gataUF+vf3XaY3XdCgv//pXv3xPc+m5CS3239xQC90DOh/XXc2vdx4iY9fvUn9o5P63E/2pOTxfrm3U2+5/RGNT8X0H394ma7avDwljwsgsxG6AWSVwnBQX3jbBfrY68/Sj55r1xu//BvtPjaw5Mfb0davLz24T9dvadDV57LlO17q3MYKvevy1fq3x47o0QPdS34c55xue2i/3vW1J9RYWaTvf+hynd9UmbpCAWQ0QjeArGNm+tCr1usb771Ug2NTuuHLD+ubjx857Xnex/rH9N6vb1NtaYH++vpzPKoWueBjrz9Lq2qK9aff3q6uofHTvv/A2KQ+8I2n9bkH9uiN5zfoux+8XE1VxR5UCiBTEboBZK3L19Xq/j++UhevrtZffG+HbrrzMe07Prio+x4fGNO7vvaEBscmdde7LlZVScTjapHNiiMhfemmC9U9PK733b1NY5OLn2byy72dev0XfqWf7Tquv3zD2friTRcwoQTIQ4RuAFmtrqxAd7/nEv3d/zhPe44P6tov/Vp/e/8udQ7OvRr52MFu3fDlh3W0Z0R3vPMibW4oT2PFyFZbmiv1f992oZ5t6dPvffVxdS+w4t03MqGP/+dzuvmuJ1RaENJ3P3C53nvlWnY6BfKUpers/0y2detWt23bNr/LAOCx7qFx/c39u/XdZ1oVDgb0mk3L9KqzlmltXYnMpAOdw7r/+Q79Yk+nGiuL9JXf30rgxmn74XPt+ui921VVHNFHX7dRb7qwUeHgyTWsI93D+o8nW3T3o0c0MjGlW16xTh957QZO0gXyhJk95Zzb+pLrCd0Acs3BziH96yOH9eMdx16y4r28vEDvvGyV/uDla1UUIQRhaZ5r7dNffn+HnmvtV3EkqHMayhUJBXSke0StvaMyk16/eYX+51UbddYKtnMH8gmhm9AN5J1YzOlw97COdI8oEDCtKC/UxuWlvLyPlHDO6aE9J/TQ7k7tOTaoqVhM9ZVFurC5Um84v171FUV+lwjAB3OFbs7kAJCzAgHT2rpSra0r9bsU5CAz06s3LderNzFnG8DCOJESAAAA8BihGwAAAPAYoRsAAADwGKEbAAAA8BihGwAAAPAYoRsAAADwGKEbAAAA8BihGwAAAPAYoRsAAADwGKEbAAAA8BihGwAAAPAYoRsAAADwGKEbAAAA8BihGwAAAPAYoRsAAADwGKEbAAAA8BihGwAAAPAYoRsAAADwmDnn/K7Bc2bWKemI33V4qFZSl99FICvwvYLTwfcLFovvFZyOXP9+WeWcqzv1yrwI3bnOzLY557b6XQcyH98rOB18v2Cx+F7B6cjX7xfaSwAAAACPEboBAAAAjxG6c8OdfheArMH3Ck4H3y9YLL5XcDry8vuFnm4AAADAY6x0AwAAAB4jdOcYM/tTM3NmVut3LchMZvY5M9ttZs+Z2ffMrNLvmpBZzOxqM9tjZvvN7BN+14PMZWbNZvaQme0ys51m9mG/a0JmM7OgmT1jZj/0u5Z0I3TnEDNrlnSVpKN+14KM9jNJ5zrnzpe0V9Kf+VwPMoiZBSXdJukaSZslvd3MNvtbFTLYlKSPOufOlnSZpA/x/YIFfFjSLr+L8AOhO7d8QdL/J4lGfczJOfdT59xU4uJjkpr8rAcZ5xJJ+51zB51zE5LukXSDzzUhQznnOpxzTyc+HlQ8TDX6WxUylZk1SXqDpK/6XYsfCN05wsyul9TmnNvudy3IKu+R9GO/i0BGaZTUMuNyqwhRWAQzWy3pQkmP+1wKMtf/VXxxMOZzHb4I+V0AFs/M/lvSillu+gtJfy7pdemtCJlqvu8V59wPEsf8heIvDX8znbUh49ks1/HqGeZlZqWSviPpI865Ab/rQeYxs+sknXDOPWVmr/S5HF8QurOIc+61s11vZudJWiNpu5lJ8XaBp83sEufcsTSWiAwx1/dKkpndLOk6Sa9xzA3Fi7VKap5xuUlSu0+1IAuYWVjxwP1N59x3/a4HGesKSdeb2bWSCiWVm9k3nHO/53NdacOc7hxkZoclbXXOdfldCzKPmV0t6fOSfts51+l3PcgsZhZS/ATb10hqk/SkpHc453b6WhgyksVXer4uqcc59xGfy0GWSKx0/6lz7jqfS0krerqB/PNlSWWSfmZmz5rZHX4XhMyROMn2VkkPKH5S3L0EbszjCknvlPTqxM+TZxMrmQBOwUo3AAAA4DFWugEAAACPEboBAAAAjxG6AQAAAI8RugEAAACPEboBAAAAjxG6ASALmFl0xki2Z83sE37XJL2oroZ5jvmUmf3tKdddYGa7Eh8/ZGZDZrbV63oBwC+MDASALGBmQ8650hQ/Zigxl/tMHmPBuszsLEk/ds6tnXHdZyQNO+c+nbj8C8U3y9h2JvUAQKZipRsAspiZHTazvzazp83seTPblLi+xMzuMrMnzewZM7shcf27zOzbZvZfkn5qZsVmdq+ZPWdm/2Fmj5vZVjP7AzP7wozneZ+ZfX4R9bzOzB5N1PNtMyt1zu2R1Gdml8449K2S7kntVwMAMhehGwCyQ9Ep7SVvm3Fbl3PuZZJul/Sniev+QtLPnXMXS3qVpM+ZWUnitt+SdLNz7tWSPiip1zl3vqRPS7ooccw9kq43s3Di8rslfW2+As2sVtJfSnptop5tkv4kcfO3JN2UOO4ySd3OuX2n/2UAgOwU8rsAAMCijDrnLpjjtu8m3j8l6S2Jj1+neGhOhvBCSSsTH//MOdeT+Pjlkr4oSc65HWb2XOLjYTP7uaTrEr3XYefc8wvUeJmkzZIeNjNJikh6NHHbPZIeMbOPKh6+v7XAYwFATiF0A0D2G0+8j+rkz3WT9D8SrR3TEi0ewzOvmudxvyrpzyXt1gKr3DMe62fOubefeoNzrsXMDkv6bUn/Q/HVdgDIG7SXAEBuekDSH1liydnMLpzjuN8o3l8tM9ss6bzkDc65xyU1S3qHFrcy/ZikK8xsfeLxis1s44zbvyXpC5IOOOdaT+/TAYDsRugGgOxwak/3ZxY4/tOSwpKeM7Mdicuz+SdJdYm2ko9Lek5S/4zb75X0sHOud6ECnXOdkt4l6VuJx3tM0qYZh3xb0jniBEoAeYiRgQCQx8wsqHi/9piZrZP0oKSNzrmJxO0/lPQF59yDc9w/JaMMGRkIINex0g0A+a1Y0m/MbLuk70n6gHNuwswqzWyv4idwzhq4EwYW2hxnIWb2kKS1kiaX+hgAkOlY6QYAAAA8xko3AAAA4DFCNwAAAOAxQjcAAADgMUI3AAAA4DFCNwAAAOAxQjcAAADgsf8Hd7dEb9smYXcAAAAASUVORK5CYII=\n",
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
"text/plain": [
"<Figure size 864x576 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(12, 8))\n",
"plt.plot(model.impulse_axis, model.impulse_response)\n",
"plt.xlabel('Energy [eV]')\n",
"plt.ylabel('Intensity [a.u.]')"
]
},
{
"cell_type": "markdown",
"id": "3842cb23-a961-4a60-9e9e-d341256e1bb7",
"metadata": {},
"source": [
"## Save model"
]
},
{
"cell_type": "code",
"id": "4e612338-401e-4fd5-bef7-a6579af0d3d3",
"metadata": {},
"outputs": [],
"source": [
"model.save(\"VS_p5576_grating.joblib\")"
]
},
{
"cell_type": "markdown",
"id": "4d7f95c2-e16d-43b2-a0c5-28a968490bb0",
"metadata": {},
"source": [
"# Validation: Apply model in data not used in training"
]
},
{
"cell_type": "code",
"id": "dc56d30b-7db8-49ce-82ed-d01d8b6670d8",
"metadata": {},
"outputs": [],
"source": [
"pes_test = {ch: pes_data[ch][n_test:, :] for ch in pes_data.keys()}\n",
"gs_test = gs[n_test:, :]\n",
"xgm_test = xgm[n_test:,:]"
]
},
{
"cell_type": "code",
"id": "0d8054bb-8ad6-4ee4-8d0c-8ac4ee990179",
"metadata": {},
"outputs": [],
"source": [
"vs_test = model.predict(pes_test, pulse_energy=xgm_test)"
]
},
{
"cell_type": "code",
"id": "e087883a-43e3-4e19-9041-6740704d7df7",
"metadata": {},
"outputs": [],
"source": [
"vs_test[\"energy\"] = model.get_energy_values()"
]
},
{
"cell_type": "markdown",
"id": "c4f0861c-a124-4812-beb1-0b8cd56d89c1",
"metadata": {},
"source": [
"Add Viking in the same dictionary for convinience. In practice this would not be done in inference: it is done here to validate the results obtained."
]
},
{
"cell_type": "code",
"id": "a5bd5573-afc9-45b3-9f25-7c713e08dfa9",
"metadata": {},
"outputs": [],
"source": [
"vs_test[\"gs\"] = gs_test"
]
},
{
"cell_type": "markdown",
"id": "6e30cc51-41e0-4458-8867-f43605324fc6",
"metadata": {},
"source": [
"Now we can plot it:"
]
},
{
"cell_type": "code",
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
"id": "44e5df6a-dfc9-47ab-9f37-03fdd0687698",
"metadata": {},
"outputs": [],
"source": [
"def plot(data, i):\n",
" \"\"\"Plot prediction and expectation.\"\"\"\n",
" from matplotlib.gridspec import GridSpec\n",
" fig = plt.figure(figsize=(24, 8))\n",
" gs = GridSpec(1, 2)\n",
" ax = fig.add_subplot(gs[0, 0])\n",
" ax.plot(data[\"energy\"], data[\"gs\"][i], c='b', lw=3, label=\"Grating\")\n",
" ax.plot(data[\"energy\"], data[\"expected\"][i,0], c='r', ls='--', lw=3, label=\"Prediction\")\n",
" ax.fill_between(data[\"energy\"],\n",
" data[\"expected\"][i,0] - data[\"residual\"][i,0],\n",
" data[\"expected\"][i,0] + data[\"residual\"][i,0],\n",
" facecolor='gold', alpha=0.5, label=\"68% unc.\")\n",
" ax.legend(frameon=False, borderaxespad=0, loc='upper left')\n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['right'].set_visible(False)\n",
" ax.set(\n",
" xlabel=\"Photon energy [eV]\",\n",
" ylabel=\"Intensity [a.u.]\",\n",
" title=\"Comparing with the original Viking\",\n",
" )\n",
" ax = fig.add_subplot(gs[0, 1])\n",
" gs_smooth = fftconvolve(data[\"gs\"][i], model.impulse_response, mode=\"same\")\n",
" ax.plot(data[\"energy\"], gs_smooth, c='b', lw=3, label=\"Grating (convolved to VS resolution)\")\n",
" ax.plot(data[\"energy\"], data[\"expected\"][i,0], c='r', ls='--', lw=3, label=\"Prediction\")\n",
" ax.fill_between(data[\"energy\"],\n",
" data[\"expected\"][i,0] - data[\"residual\"][i,0],\n",
" data[\"expected\"][i,0] + data[\"residual\"][i,0],\n",
" facecolor='gold', alpha=0.5, label=\"68% unc.\")\n",
" ax.legend(frameon=False, borderaxespad=0, loc='upper left')\n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['right'].set_visible(False)\n",
" ax.set(\n",
" xlabel=\"Photon energy [eV]\",\n",
" ylabel=\"Intensity [a.u.]\",\n",
" title=\"Same, with smoothened Grating\",\n",
" )\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"id": "f9bb6495-51db-4775-ba91-c7b936dc0b33",
"metadata": {},
"source": [
"These are the last 10 train IDs, which were not used in training."
]
},
{
"cell_type": "code",
"id": "373ca950-0378-4d7d-96ca-57ad951ebbf3",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABXEAAAHwCAYAAADgsixbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hb1f3H8ffx3naGsychIWQaEsIqEAirjFIoYZSyR6G0pe2vUEoHtIxCBxRoC4WyS6GMMgqUQtkbEhJGgEyyvfe2JZ3fH1fWlW3Zli3JQ/68nidP7r2648gJ4fjjr77HWGsRERERERERERERkcEpYaAHICIiIiIiIiIiIiJdU4grIiIiIiIiIiIiMogpxBUREREREREREREZxBTiioiIiIiIiIiIiAxiCnFFREREREREREREBjGFuCIiIiIiIiIiIiKDmEJcERmUjDGnGWNeGOAx1Bljdunm9c3GmEMjuP+9xphr+np9JIwxVxhj/hbtc8O4lzXG7NrHa/9jjDnTv32WMebNLs4b8L87IiIiIvHCGHOAMWZtN69P88/xkvpzXNFkjFlqjNk+0OOAyObLURxDt3/mIjIwFOKKxDljzDeNMSv8gWShPwj7ykCPqyfW2gettYcP8BiyrLWbIPLAtbvQcSBYa6+z1p4X7XP7yhjzV2PM/SGOLzDGNBtjRlprv2qtva+new2GvzsiIiIyvBljvmKMedsYU22MqTDGvGWM2Wugx9UX1to3rLW7te1HWsgwGAyGoLSvjDGHGWNeMcbUGmPKjTGrjTE/McakRXDPdl+Pjn/mIjI4KMQViWPGmB8BfwSuA8YCU4C/AMcN4LB6NJR/ij8UDNKv773ACcaYzA7HzwCesdZW9P+QRERERHrPGJMDPAPcCowEJgK/ApoHclwy9BljlgOPAf8AplprRwEnA5OAyV1cMxjn/iLSBwpxReKUMSYX+DVwsbX2X9baemttq7X239baS/3npBpj/miM2en/9UdjTKr/taXGmO3GmMuMMSX+Kt6vG2OOMsas81cUXBH0vKuMMY8ZY/7p/6nwh8aYhUGvX26M2eh/7TNjzPFBr53lr064yRhTAVzVsXLV/9PhC40x640xlcaYPxtjjP+1RGPMH4wxZcaYL40x3+3qI13GmLONMf8O2t9gjHkkaH+bMaYg6Jm7GmMuAE4DLvNXNP876JYFxpiP/VUW/wz1E3BjzO7A7cC+/uurgl4eYYx51v91ec8YMyPoutnGmBf9X+u1xpiTuvnznmCMedp/7gZjzPkh/mz+boypAc7yH/t70DlnGGO2+H+a/4vgCovgc437cbkzjTFb/V/znwXdZ4kx5h1jTJX/78yfjDEpXY27jbX2HWAH8I2geyUC3wTu8++/aowJWRFsjPmdMeZNY0xurP7uiIiIiIRpFoC19iFrrdda22itfcFa+zGAMWaGMeZl/7yrzBjzoDEmr+1i/zzsUv8cs94Yc5cxZqxxPlFXa4z5nzFmRND5+xin6rfKGPORMWZpOIM0xtxnjPk///ZE/xzoO/79Xf3zSmOCWg0YYx7AKQz5t39ee1nQLU8LNT8M8dyjjPP9QK0xZocx5sf+4739/qPL72X8r5/vnxdX+OfJE/zHX/ef8pH/PZwcdM3/BT377A7P+r3//RUbY243xqR3GHevr/W/fqn/mp3GmHO6+boZ4Ebg19baO9uKHKy1a62137PWrvefF2ru3+UcPdTXw3RoL+H/O/lj08X3Pf4/s7b3cJ4ZwpXOIoOZQlyR+LUvkAY80c05PwP2AQqAhcAS4OdBr4/z32Mi8EvgTuBbwCLgAOCXpn3P2OOAR3EqDv4BPGmMSfa/ttF/TS5OJcLfjTHjg67dG9gEjAGu7WK8xwB7+cd6EnCE//j5wFf972NP4OvdvOfXgAOMMQn+5ycD+wP430sW8HHwBdbaO4AHgd/6WywcG/TyScCRwHRgAXBWxwdaaz8HLgTe8V+fF/TyqThfjxHAhrb3bpyK1Bdxvo5j/Of9xRgzt4v39RCwHZgAnAhcZ4xZFvT6cTg/tc/zv5cAY8wcnArt04DxOH9GE7t4TpuvALsBy3D+HuzuP+4FfgiMxvk7uAz4Tg/3anM/TuVtm0Nx/nz+09UF/j/HO3G+9odba6u7ODUaf3dEREREwrEO8PpD0q+aoMDVzwC/wZm37Y5TQXlVh3O+ARyGEwgfizMfugJnjpUAfB+c8BV4FrgGZw7+Y+BxY0x+GON8DVjq3z4IZy5+kH//QOANa60NvsBaezqwFTjWP6/9bdDLXc0PO7oL+La1NhuYB7wc9Fpvvv/o8nsZY8whOF/jk3Dmt1uAh/3v4UD/9Qv97+GfQc9umwefC/w56M/uBpw/iwJg16DxEcm1xpgjcf7MDgNm4sx/u7IbTsXt492c06bj3L/LOXo3X4+OQn7f438PP/KPfVfcv0MiEmUKcUXi1yigzFrr6eac03B+kltirS3FCRNPD3q9FbjWWtuKM+kZDdxsra211q4B1uD8D7zNSmvtY/7zb8SZgO0DYK191Fq701rr808M1uNMtNrstNbeaq31WGsbuxjv9dbaKmvtVuAVnIkQOBOKm6212621lcD1Xb1hf4/bWv+1BwH/BXYYY2b799+w1vq6/pJ1cov/fVUA/w4aU7j+Za193//n9GDQ9ccAm6219/i/Jh/iTNhO7HgDY8xknEnzT6y1Tdba1cDfaP9n+Y619kn/17/j1/dE4N/W2jettS04k0pL937lryr5CPgIZ+KMtXaltfZd/5g3A38l/IncA8BBxphJ/v0zgH/4/z6FkowTXo/E+UaioZt7R/x3R0RERCQc1toanLmZxQkhS/2VoGP9r2+w1r5orW32z8FvpPN86VZrbbG1dgfwBvCetXaVtbYZp0hjD/953wKes9Y+55/nvQisAI4KY6iB4gac0Pa3+Isb/ON5rZdvPeT8MIRWYI4xJsdaW+mf5wa/Fu73H919L3MacLe19kP/1+ynOJ+Km9bN+Fv992u11j4H1AG7+Stgzwd+aK2tsNbW4rSrOyUK154E3GOt/dRaW0/nMD/YaP/vRW0HjDEP+6trG4wxXc79I5yjt+nq+56297DGPx//VS/vKyJhUogrEr/KgdGm+4+FT8D5qXSbLf5jgXtYa73+7bbgrzjo9UacytU229o2/EFoW2Vo28f1V/snGVU4P3UfHerabhQFbTcEPXtCh+t7uldb1cGB/u1XcSYxfZmsdjWmSK+fCuzd9vXyf81Ow/kpf0cTgLZJYZsttK+m7e5r0u7r5598lfdl3MaYWcaYZ4wxRf6Pb11H+z/nLvkD1teBbxljsnCqYrtbyGxXnCqDX/nD516Pl97/3RERERHpkbX2c2vtWdbaSTjz3gk4a1VgjBnjD992+OdLf6fzfKnjnLurOfhUYHmHOeNXcKpPexrjRpywsQCnyvUZYKcxZjdiOy/+Bk7IvMUY85oxZt+g13rz/Ud338u0e81aW4czv+3u02blHQpg2t5DPpABrAz6Gj/vPx7ptR3nosHvp9P4/L8H/myttaf4P+X3IZAYdG67OW0kc/Qgmk+LDDCFuCLx6x2gie4/Hr4TZ+LXZor/WF8Fmun7f6I/CWciOBWnCuG7wCj/RONTnI+Stemp8rM7hf5ndRpHF9pC3AP826/Rc4gbyfj6cv024DVrbV7Qryxr7UUhzt0JjDTGZAcdm4LTYzac57f7+vl7dI3q5Xjb3AZ8Acy01ubgfOzPdH9JO/fhVOB+A/iyQ2VGR58DZwP/8X+z0Re9/bsjIiIi0ivW2i9wFnGd5z/0G5y52QL/fOlb9G6+FGwb8ECHOWOmtTbcTxe9hvOprBR/1e9rOHOxEcDqLq6JaF5srf3AWnscTsuwJ4FHur+iS919L9PuNX+rslG0nx+HqwwnPJ4b9DXOtdaGU7zR07WFtJ9/TunmXl/4x39CGM/t+GcU6Ry9O5pPi/QThbgicco6vUF/idOP6evGmAxjTLK/L1db76qHgJ8bY/KNMaP95/+9q3uGYZEx5gR/9e8PcFbgfRfIxJlIlIKzuBjuJDYaHgEuMc6CDHnAT3o4/zXgYCDdWrsd5yNqR+JM7FZ1cU0xsEsXr4WjGJhkwljky+8ZYJYx5nT/n1uyMWavUL3FrLXbgLeB3xhj0owxC3B6cT3Y8dwuPAYca4zZzz++X9H3SV02UAPU+VtUhAqdu/M4zsTvV3RfhQs4C4bgTEL/Z4IWheuF3v7dEREREemWcRan/b+2FlH+1len4syLwZkv1QFV/p62l0bwuL/jzOOOMM6CrWnGWZSq7dlXGWNe7eb613AKLdoWt3oV+B7wZlBFbEd9nhcbY1KMMacZY3L9LRNqcPq19kV338v8AzjbGFNgnMXOrsNpSbG5t+/B/wnDO4GbjDFj/O9jojHmiO6vDOvaR3AWHptjjMkAruzmXhb4P+BK4yzaNsI4ZgJjexhKT3P0SL7XeQTna727/z38sqcLRKRvFOKKxDFr7Y04TeZ/jhOgbsOZpD3pP+UanJ5ZHwOf4HwM55oIHvkUcDJQidOP6gR/X6jPgD/gVAcXA/OBtyJ4Tkd3Ai/gvI9VwHOAhy4mhNbadTgT5zf8+zU4Czm81c1k9S6c3l1Vxpgn+zDGl3F6eBUZY8p6OtnfGuFwnH5ZO3E+vnQDkNrFJacC0/znPgFc6e+J1iN/f7Hv4fQdK8TpGVyCE8L31o+Bb/rvcSfQ1cIIXY2lHjfIDSuEttbeB/waeLmHPmeh9OrvjoiIiEgYanEW7X3PGFOPE95+ihPAgfPD6j2BapxFyf7V1wf5f5h/HM4Ptdvm+5fifq8/me7n3a/hBHxtIe6bOB//f73LK5xK4p/758U/7sOwTwc2+z/WfyFOJXJfdPm9jLX2JeAXOPPKQmAG7XvYXgXc538PJ4XxrJ/gLEL8rn/c/8NZaCwcXV5rrf0PTpuNl/3nvNzFPfCf/0+cHrTfwvmzLsMJUe/AWWC6Kz3N0a+id1+P4DH9B7gFZ92JDTjf80HfvpcQkW4YayP9hLCIiPNTfmBXa21fJ2HRHMtXgduttVN7PFk68fejrcL5uNWXAzycfqW/OyIiIhJPjDGrgWXW2p7WOxCJCv8nBz8FUm33i2yLSC+pEldEhjxjTLox5ihjTJL/I2lX4lSjSpiMMcf6W25kAr/HqWbYPLCjij393REREZF4Zq0tUIArsWaMOd7fKmMEzqcH/60AVyT6FOKKSDwwOB9Lq8T5SPznqBdTbx2H04phJzATOMUOj49q6O+OiIiIiEhkvo3TzmMjTluy3q6LISJhUDsFERERERERERERkUFMlbgiIiIiIiIiIiIig5hCXBEREREREREREZFBLGmgBxCJI4880j7//PMDPQwRERGR4cYM9AAk9jTXFhERERkQIefaQ7oSt6ysbKCHICIiIiISlzTXFhERERk8hnSIKyIiIiIiIiIiIhLvFOKKiIiIiIiIiIiIDGIKcaOguLiYb37zm+yyyy4sWrSIfffdlyeeeCLs66uqqvjLX/4S2N+5cycnnnhiLIYqIiIiIjJkRDrPhtjPtZ988kl+/etfR+1+fbF06VJWrFgR8X3uvfdevvvd73Y6/uqrr/L222+HfZ/NmzczadIkfD5fu+MFBQW8//77rF27lqVLl1JQUMDuu+/OBRdcEPHYwzVt2rQeW4Xce++97Ny5M7B/3nnn8dlnn/XpeX/605+45557+nStiIhIMIW4EbLW8vWvf50DDzyQTZs2sXLlSh5++GG2b9/e7jyPx9PlPTpOLCdMmMBjjz0WszGLiIiIiAx24c6zYWDn2r/97W/5zne+E7X7DUa9DXGnTZvG5MmTeeONNwLHvvjiC2pra1myZAnf//73+eEPf8jq1av5/PPP+d73vtft/bxeb5/H3hcdQ9y//e1vzJkzp0/3Ouecc7jllluiNTQRERnGFOJG6OWXXyYlJYULL7wwcGzq1Kl873vf495772X58uUce+yxHH744dTV1bFs2TL23HNP5s+fz1NPPQXA5ZdfzsaNGykoKODSSy9l8+bNzJs3D3AmECeccAJHHnkkM2fO5LLLLgs856677mLWrFksXbqU888/P+RPzUVEREREhqLu5tnAoJhrr1u3jtTUVEaPHg04lcPHH388CxcuZOHChYHg88Ybb2TevHnMmzePP/7xj4BTrbr77rtz/vnnM3fuXA4//HAaGxv5/PPPWbJkSeAZmzdvZsGCBQC89NJL7LHHHsyfP59zzjmH5ubmduO57bbb2r2He++9N/D1+vvf/86SJUsoKCjg29/+diAYveeee5g1axYHHXQQb731Vqf3uHnzZm6//XZuuukmCgoKeOONN9iyZQvLli1jwYIFLFu2jK1bt3a67tRTT+Xhhx8O7D/88MOceuqpABQWFjJp0qTAa/Pnz+90/auvvsrBBx/MN7/5TebPn4/X6+XSSy9lr732YsGCBfz1r38N3OvAAw+koKCAefPmBYLjhx56iPnz5zNv3jx+8pOfhHxfbX8PAH7/+99z1VVX8dhjj7FixQpOO+00CgoKaGxsbFfp3NV9s7Ky+NnPfsbChQvZZ599KC4uBiAjI4Np06bx/vvvdxqDiIhIr1hrh+yvRYsW2TYQu1/dufnmm+0PfvCDkK/dc889duLEiba8vNxaa21ra6utrq621lpbWlpqZ8yYYX0+n/3yyy/t3LlzA9cF799zzz12+vTptqqqyjY2NtopU6bYrVu32h07dtipU6fa8vJy29LSYr/yla/Yiy++uPvBioiIiETHgM8D9Sv+59rdzbOtHRxz7bvvvtv+6Ec/CuyfdNJJ9qabbrLWWuvxeGxVVZVdsWKFnTdvnq2rq7O1tbV2zpw59sMPP7RffvmlTUxMtKtWrbLWWrt8+XL7wAMPWGutXbhwod24caO11trrr7/eXn311baxsdFOmjTJrl271lpr7emnnx541kEHHWQ/+OADW1JSYmfMmBEYz5FHHmnfeOMN+9lnn9ljjjnGtrS0WGutveiii+x9991nd+7caSdPnmxLSkpsc3Oz3W+//UK+zyuvvNL+7ne/C+wfc8wx9t5777XWWnvXXXfZ4447rtM1hYWFdty4cba1tdVaa+3s2bPtJ598Evi65eTk2COPPNLeeOONtrKystP1r7zyis3IyLCbNm2y1lr717/+1V599dXWWmubmprsokWL7KZNm+zvf/97e8011wS+5jU1NXbHjh2B99Xa2moPPvhg+8QTT1hrrZ06daotLS3t9Pfid7/7nb3yyivbfT3btO13d1/APv3009Zaay+99NLAWK219pprrrG///3vO71HERGRLoScm6kSN8ouvvhiFi5cyF577QXAYYcdxsiRIwEnML/iiitYsGABhx56KDt27Aj8hLY7y5YtIzc3l7S0NObMmcOWLVt4//33Oeiggxg5ciTJycksX748pu9LRERERGQgdZxnw8DPtQsLC8nPzw/sv/zyy1x00UUAJCYmkpuby5tvvsnxxx9PZmYmWVlZnHDCCYFq0enTp1NQUADAokWL2Lx5MwAnnXQSjzzyCAD//Oc/Ofnkk1m7di3Tp09n1qxZAJx55pm8/vrr7caTn5/PLrvswrvvvkt5eTlr165l//3356WXXmLlypXstddeFBQU8NJLL7Fp0ybee+89li5dSn5+PikpKZx88sk9fr0A3nnnHb75zW8CcPrpp/Pmm292OmfcuHHMnTuXl156idWrV5OcnByofD377LP5/PPPWb58Oa+++ir77LNPp6pigCVLljB9+nQAXnjhBe6//34KCgrYe++9KS8vZ/369ey1117cc889XHXVVXzyySdkZ2fzwQcfBN5XUlISp512WqevVV90d9+UlBSOOeYYoP2fJcCYMWPatWcQERHpi6SBHsBQN3fuXB5//PHA/p///GfKyspYvHgxAJmZmYHXHnzwQUpLS1m5ciXJyclMmzaNpqamHp+Rmpoa2E5MTMTj8WCtjeK7EBEREREZXHqaZ8PAz7XT09Oprq7u9pzu7tXx2Y2NjQCcfPLJLF++nBNOOAFjDDNnzmT16tVhjenkk0/mkUceYfbs2Rx//PEYY7DWcuaZZ/Kb3/ym3blPPvkkxpiw7tudru7R1lJh7NixgVYKbSZMmMA555zDOeecw7x58/j0009ZtGhRu3OC/3yttdx6660cccQRnZ7z+uuv8+yzz3L66adz6aWXkpOT0+OYk5KS2i28Fs7fle7+LJOTkwNfh7a/R8H3Tk9P7/H+IiIi3YmbStxYfsirO4cccghNTU3cdtttgWMNDQ0hz62urmbMmDEkJyfzyiuvsGXLFgCys7Opra3t1ftdsmQJr732GpWVlXg8nnYTXBERERGRaBqIuXZv5tkwMHPt3XffnQ0bNgT2ly1bFhiv1+ulpqaGAw88kCeffJKGhgbq6+t54oknOOCAA7p9/owZM0hMTOTqq68OVMfOnj2bzZs3B573wAMPcNBBB3W69oQTTuDJJ5/koYceCly7bNkyHnvsMUpKSgCoqKhgy5Yt7L333rz66quUl5fT2trKo48+GnI8Hb+G++23X6Df7YMPPshXvvKVkNd94xvf4LnnnuOf//wnp5xySuD4888/T2trKwBFRUWUl5czceLEbr8mRxxxBLfddlvgunXr1lFfX8+WLVsYM2YM559/Pueeey4ffvghe++9N6+99hplZWV4vV4eeuihTl+rsWPHUlJSQnl5Oc3NzTzzzDNdvt824dw3lHXr1rXrvysiItIXcRPiDhRjDE8++SSvvfYa06dPZ8mSJZx55pnccMMNnc497bTTWLFiBYsXL+bBBx9k9uzZAIwaNYr999+fefPmcemll4b13IkTJ3LFFVew9957c+ihhzJnzhxyc3Oj+t5ERERERAZKb+bZMDBz7QMPPJBVq1YFKjRvvvlmXnnlFebPn8+iRYtYs2YNe+65J2eddRZLlixh77335rzzzmOPPfbocQwnn3wyf//73znppJMASEtL45577mH58uXMnz+fhISEdou+tRkxYkSgLUTbAmlz5szhmmuu4fDDD2fBggUcdthhFBYWMn78eK666ir23XdfDj30UPbcc8+QYzn22GN54oknAgub3XLLLdxzzz0sWLCABx54gJtvvjnkdXl5eeyzzz6MHTs20BYBnNYI8+bNY+HChRxxxBH87ne/Y9y4cd1+Pc477zzmzJnDnnvuybx58/j2t7+Nx+Ph1VdfpaCggD322IPHH3+cSy65hPHjx/Ob3/yGgw8+mIULF7Lnnnty3HHHtbtfcnIyv/zlL9l777055phjAn9fAM466ywuvPDCwMJmbcK5byhvvfUWhx56aI/niYiIdMcM5Y/lL1682LatEjoc1dXVkZWVhcfj4fjjj+ecc87h+OOPH+hhiYiISPyL/PPXMuhprh3eXPuSSy7h2GOPVUgnIa1atYobb7yRBx54YKCHIiIiQ0fIubYqcYewq666ioKCAubNm8f06dP5+te/PtBDEhERERGJC+HOta+44opu2zzI8FZWVsbVV1890MMQEZE4oEpcEREREektVeIOA5pri4iIiAwIVeKKiIiIiIiIiIiIDDUKcUVEREREREREREQGMYW4IiIiIiIiIiIiIoOYQlwRiTvPPQdHHAEPPzzQIxERERERERERiZxC3AglJiYGVq1dvnx5RCvTnnXWWTz22GMAnHfeeXz22Wddnvvqq6/y9ttvB/Zvv/127r///j4/WySefOMb8MILcOqpUFc30KMRERGRvtJcW2SQ8lYO9AhERIYdhbgRSk9PZ/Xq1Xz66aekpKRw++23t3vd6/X26b5/+9vfmDNnTpevd5xYXnjhhZxxxhl9epZIPGluhqYmd/+LLwZuLCIiIhIZzbVFBiFvLdT9e6BHISIy7CjEjaIDDjiADRs28Oqrr3LwwQfzzW9+k/nz5+P1ern00kvZa6+9WLBgAX/9618BsNby3e9+lzlz5nD00UdTUlISuNfSpUtZsWIFAM8//zx77rknCxcuZNmyZWzevJnbb7+dm266iYKCAt544w2uuuoqfv/73wOwevVq9tlnHxYsWMDxxx9PZWVl4J4/+clPWLJkCbNmzeKNN97o56+QSOyVlrbfX79+YMYhIiIi0aW5tsgg4dmuSlwRkQEQXyHuVVeBMeH9uuCCztdfcEH7c666KuxHezwe/vOf/zB//nwA3n//fa699lo+++wz7rrrLnJzc/nggw/44IMPuPPOO/nyyy954oknWLt2LZ988gl33nlnu5/2tyktLeX888/n8ccf56OPPuLRRx9l2rRpXHjhhfzwhz9k9erVHHDAAe2uOeOMM7jhhhv4+OOPmT9/Pr/61a/ajfP999/nj3/8Y7vjIvGirKz9fnn5wIxDREQk7miuDWiuLYK3DHw1Az0KEZFhJ2mgBzDUNTY2UlBQADjVAeeeey5vv/02S5YsYfr06QC88MILfPzxx4EeXNXV1axfv57XX3+dU089lcTERCZMmMAhhxzS6f7vvvsuBx54YOBeI0eO7HY81dXVVFVVcdBBBwFw5plnsnz58sDrJ5xwAgCLFi1i8+bNEb13kcGoY2hbVTUgwxAREZEo0FxbZBDyloP1gq8REtIHejQiIsOGQtwItfXp6igzMzOwba3l1ltv5Ygjjmh3znPPPYcxptv7W2t7PKc3UlNTAWeRCI/HE7X7igwWzc3t9yv1SS8REZEhS3NtkUHG+sBT5Gz76hXiioj0o/hrp2BteL/uuKPz9Xfc0f6cXnzEqztHHHEEt912G62trQCsW7eO+vp6DjzwQB5++GG8Xi+FhYW88sorna7dd999ee211/jyyy8BqKioACA7O5va2tpO5+fm5jJixIhAD64HHnggUCkgMhz4/zMLUIgrIiISJZpra64t0rrJDXFt/cCORURkmFElbj8477zz2Lx5M3vuuSfWWvLz83nyySc5/vjjefnll5k/fz6zZs0KOQHMz8/njjvu4IQTTsDn8zFmzBhefPFFjj32WE488USeeuopbr311nbX3HfffVx44YU0NDSwyy67cM899/TXWxUZcB1D3BDff4mIiEgc0VxbpB/5qoO2GwduHCIiw5Cx1g70GPps8eLFtm1VWRERgH/8A047zd0/7jh48skBG46ISLyK3ufPZdDSXFtEOql/BRpec7azvwZpew7seERE4lPIuXZ8tVMQkWGvYyVuS8vAjENEREREJO746oK2VYkrItKfFOKKSFzpGNoqxBURERERiZLgPrhWIa6ISH9SiCsicUWVuCIiIiIiMdKuErdh4MYhIjIMKcQVkbiiSlwRERERkRgJbqGgSlwRkX6lEFdE4ooqcUVEREREYiQ4uFVPXBGRfqUQV0TiikJcEREREZEYsU1B2wpxRUT6k0LcCFVVVXHiiScye/Zsdt99d9555x0AVq9ezT777ENBQQGLFy/m/fffB+Ctt95iwYIF7LXXXmzYsCFwjyOOOAJr7YC9D5F40TG07RjqioiIyNChubbIIGJbwPqC9hXiioj0p6SBHkBUlV4V3fvl93y/Sy65hCOPPJLHHnuMlpYWGhqc5u6XXXYZV155JV/96ld57rnnuOyyy3j11Vf5wx/+wOOPP87mzZu57bbb+MMf/sDVV1/NFVdcgTEmuuMXGYZUiSsiIhIjmmuLDG++pu73RUQkplSJG4Gamhpef/11zj33XABSUlLIy8sDwBhDTU0NANXV1UyYMAGA5ORkGhsbaWhoIDk5mY0bN7Jjxw4OOuigLp8zbdo0ysrKAFixYgVLly4F4KqrruKcc85h6dKl7LLLLtxyyy2Ba+6//34WLFjAwoULOf3006P91kUGLS1sJiIiEh801xYZZGyH0LZjZa6IiMRUfFXi9rNNmzaRn5/P2WefzUcffcSiRYu4+eabyczM5I9//CNHHHEEP/7xj/H5fLz99tsA/PSnP+WCCy4gPT2dBx54gB//+MdcffXVfR7DF198wSuvvEJtbS277bYbF110EevWrePaa6/lrbfeYvTo0VRUVETrLYsMeqrEFRERiQ+aa4sMMrY5xLEmMBn9PxYRkWFIlbgR8Hg8fPjhh1x00UWsWrWKzMxMrr/+egBuu+02brrpJrZt28ZNN90UqCAoKCjg3Xff5ZVXXmHTpk1MmDABay0nn3wy3/rWtyguLu7VGI4++mhSU1MZPXo0Y8aMobi4mJdffpkTTzyR0aNHAzBy5MjovnGRQUyVuCIiIvFBc22RQaZjJW5Xx0REJCYU4kZg0qRJTJo0ib333huAE088kQ8//BCA++67jxNOOAGA5cuXBxZbaGOt5ZprruEXv/gFv/rVr/jVr37Ft771rXYf02qTlJSEz+d8TKWpqf3/JFNTUwPbiYmJeDwerLXq+SXDlipxRURE4oPm2iKDTKhKXJ8WNxMR6S8KcSMwbtw4Jk+ezNq1awF46aWXmDNnDgATJkzgtddeA+Dll19m5syZ7a697777OProoxkxYgQNDQ0kJCSQkJAQWKwh2LRp01i5ciUAjz/+eI/jWrZsGY888gjl5eUA+oiXDCsdQ1yPZ2DGISIiIpHRXFtkkAnZTqG+/8chIjJMqSduhG699VZOO+00Wlpa2GWXXbjnnnsAuPPOO7nkkkvweDykpaVxxx13BK5paGjgvvvu44UXXgDgRz/6Ed/4xjdISUnhoYce6vSMK6+8knPPPZfrrrsuUInQnblz5/Kzn/2Mgw46iMTERPbYYw/uvfdenn76aVasWMGvf/3rKL17kcGnY+WtQlwREZGhS3NtkUHEF6J1gk8hrohIfzHW2oEeQ58tXrzYrlixYqCHISKDyPLl8Nhj7Y95vZCgzx2IiESTPks+wIwxdwPHACXW2nn+Y/8EdvOfkgdUWWsLjDHTgM+Btf7X3rXWXtjTMzTXFpF26l+ChjfaH8s8DDL2H5jxiIjEr5BzbVXiikhcCdUD1+OBlJT+H4uIiEgM3Qv8Cbi/7YC19uS2bWPMH4DqoPM3WmsL+mtwIhKHQi5spp64IiL9JWa1acaYycaYV4wxnxtj1hhjLvEfv8oYs8MYs9r/66iga35qjNlgjFlrjDkiVmMTkfjVsScuqKWCiIjEH2vt60DIZqzGWXXrJKBz7wARkb4K1U4hVLArIiIxEctKXA/wf9baD40x2cBKY8yL/tdustb+PvhkY8wc4BRgLjAB+J8xZpa11hvDMYpInAlVievVvyIiIjK8HAAUW2vXBx2bboxZBdQAP7fWvhHqQmPMBcAFAFOmTIn5QEVkCAkV2IYKdkVEJCZiVolrrS201n7o367F6cM1sZtLjgMettY2W2u/BDYAS2I1PhGJT6rEFRER4VTaV+EWAlOstXsAPwL+YYzJCXWhtfYOa+1ia+3i/Pz8fhiqiAwZNsQiZqrEFRHpN/2y1I9/MYU9gPf8h75rjPnYGHO3MWaE/9hEYFvQZdsJEfoaYy4wxqwwxqwoLS2N5bBFZAjqqieuiIjIcGCMSQJOAP7ZdsxfJFHu314JbARmDcwIRWTI8vo7uFQ0wOqd0OJViCsi0o9iHuIaY7KAx4EfWGtrgNuAGUABTlXAH9pODXG57XRA1QEi0o1QlbhqpyAiIsPIocAX1trtbQeMMfnGmET/9i7ATGDTAI1PRIYiX7PTOmFNMSy+GQ6/E752D3gbBnpkIiLDRkxDXGNMMk6A+6C19l8A1tpia63XWusD7sRtmbAdmBx0+SRgZyzHJyLxR+0URERkODDGPAS8A+xmjNlujDnX/9IpdF7Q7EDgY2PMR8BjwIXW2pCLoomIhGSdsPbz63ZAXQvNCWn4Shtge/EAD0xEZPiI2cJm/lVx7wI+t9beGHR8vLW20L97PPCpf/tpnP5cN+IsbDYTeD9W4xOR+KR2CiIiMhxYa0/t4vhZIY49jlNYISLSN75GqmtSKXqpjqmk82vfL9l9jwTOnBhi8i0iIjERsxAX2B84HfjEGLPaf+wK4FRjTAFOq4TNwLcBrLVrjDGPAJ8BHuBia60+BC0ivaJ2CiIiIiIiUWabeP3tKXzFt4oMGrmen7Ls45WcaZ8G6wETy2hBREQghiGutfZNQve5fa6ba64Fro3VmEQk/qkSV0REREQkymwja55L4FiqAChnJC9v3oPqmv+SO6oJTNbAjk9EZBiI+cJmIiL9ST1xRURERESizDazzwv3B3ZXsggwrNs4CmzzwI1LRGQYUYgrInElVCWu2imIiIiIiETA10R2bXlgdxxFHM+/aPjPVvA1DeDARESGD4W4IhJXVIkrIiIiIhJdTY2tjGvdEdhfwCf8i2+wy+NPqRJXRKSfKMQVkbiiEFdEREREJLq+XO9jPIWdjifV1CnEFRHpJwpxRSSuqJ2CiIiIiEh0bV/TSAK20/GM+mqFuCIi/SRpoAcgIhItXi/4fJ2PqxJXRERERKTvigsNz3IUI6kgMSORJQ1vAZDtqQJPw8AOTkRkmFAlrojEjVCtFEAhroiIiIhIJL5sHMsxPMt+vMOtR/2ZCkYAONW5FeU9XC0iItGgEFdE4kZXIa7aKYiIiIiI9F1Rsfsh3vm7l1DByMC+r7xiIIYkIjLsKMQVkbgRqh8uqBJXRERERCQSxSWpge2pk6uoScgN7NduqRmIIYmIDDsKcUUkbqidgoiIiIhIlFlLUXF6YHdsfj0NqTmB/eqtdQMxKhGRYUcLm4lI3FAlroiIiIhIlNlmZm55n4N4gApGMrV2G5vSs6DReblue/3Ajk9EZJhQiCsicUM9cUVEREREosw2sqT8FS7iLwA0fnE067Iywd8Kt7FQIa6ISH9QiCsicUPtFEREREREoquupolsT3VgP218MrWjx7F660IqGUFrwshurhYRkWhRT1wRiRtqpyAiIiIiEl3FRa2MbCu7BcyIdN7f9yT2YDWH8AorpywbwNGJiAwfCnFFJG50FdaqnYKIiIiISN8UFXnbhbjkpTMirzGwW1WtWEFEpD/oX1sRiRtdhbWqxBURERER6ZvycssIKt0DI9LJy2kK7FZWJYO1AzAyEZHhRSGuiMSNrsJahbgiIiIiIn1TUWFDVOK6IW5VdRrYphBXiohINGlhMxGJG11V4qqdgoiIiIhI31SU+TqEuGmMTq7gLO5hBJXssqYa7PeB9AEbo4jIcKAQV0TihtopiIiIiIhEV31xA4n4AGhOTic1OZFRiRXcw08BKN46DnznQ+JAjlJEJP6pnYKIxA21UxARERERia6W4trAdnNmFgCZE9zENttTA7ah38clIjLcKMQVkbihdgoiIiIiItHlKal2t7MyAcgbb/H4S28zbAM01gzI2EREhhO1UxCRuKF2CiIiIiIi0bW1aQw3cBnT+ZK951QwEsjLa6aCkYyhFABbXorJHdhxiojEO4W4IhI31E5BRERERCS61jZO4x/cAMB7P7qTqewgJcVLlcljjHVC3IYdlWTuMpCjFBGJf2qnICJxQ+0URERERESiq6IyJbA9Mq8xsF2X5Jbe1m6v6s8hiYgMSwpxRSRuqJ2CiIiIiEh0VVSmBrZHjggKcVPcELdxRzUiIhJbCnFFJG6onYKIiIiISPR4PFBdkwaAMZa83CYwBpJG05SWFTivqah2oIYoIjJsqCeuiMQNtVMQEREREYmeqiq4hp8xnkIaUrJJ2JkA0+dAxkG0ZLwL5c55nrK6AR2niMhwoBBXROKG2imIiIiIiERPRXkrx/EU81gDzUD1hZA0ERJG0pzhVuLaclXiiojEmkJcEYkbaqcgIiIiIhI95WUeplDpHshLg6RxkJhL6djp/Gvt8VQyggmjZ7Bg4IYpIjIsqCeuiMQNtVMQEREREYmeinIPI6lwD+SlQ9J4MMlsmLeUb/AvzuMuPpm2dMDGKCIyXCjEFZG4oXYKIiIiIiLRU11UTzpNALQmJEPudCfEBbKz3fNqaxMHYngiIsOKQlwRiRvBYW1ycujjIiIiIiISnoYdbhVuY2o2JI0O7LcLcesU4oqIxJpCXBGJG8GVuKmpoY+LiIiIiEh4WorcfrhN6dmQkBvYz842ge3aWi23IyISa/qXVkTiRscQt67O2VYlroiIiIhI73nL3BC3NTMTEtzy21Gmlmv4GTnUMOW9erB3gTGhbiMiIlGgEFdE4kZwWBtciasQV0RERESk92yFG+J6szMhISuwn5Pm5WdcB0DFtnygFUjp5xGKiAwfaqcgInFD7RRERERERKInoaoqsO3LTW8X4qaNzQtsp3vqwLb248hERIYfhbgiEje6CnFViSsiIiIi0nuJtdWBbZOXBgmZgf3M/Gy8/kgh3dcILQ39Pj4RkeFE7RREJG6onYKIiIiISPS8lXwA67iRkVSwfJ9qMBmB17JzU6ghhxFUOQdqKiEtf2AGKiIyDCjEFZG4oXYKIiIiIiLR837rItZzEAAnHf5nMO4kO6djiFtdCWMGYJAiIsOE2imISNxQOwURERkujDF3G2NKjDGfBh27yhizwxiz2v/rqKDXfmqM2WCMWWuMOWJgRi0iQ01VtVv3lZsDGBPYz85Jo5pc9+SaSkREJHYU4opI3FA7BRERGUbuBY4Mcfwma22B/9dzAMaYOcApwFz/NX8xxiT220hFZMiqrkkObOfmmnavpaWnUUtOYL+1TCGuiEgsKcQVkbihSlwRERkurLWvAxVhnn4c8LC1ttla+yWwAVgSs8GJSFxoaoKWFufnPcnJXtIyktu9bhLTaEhyFzprLK7t1/GJiAw36okrInFDPXFFRET4rjHmDGAF8H/W2kpgIvBu0Dnb/cdERLpUXQ2P8Q1GUkETmZjiw2FE0AkmmcbkLPAXTDSX1gzIOEVEhgtV4opI3FA7BRERGeZuA2YABUAh8Af/cRPiXBvqBsaYC4wxK4wxK0pLS2MySBEZGqqrYV/e4WBe5autzwKpnc5pSskKbLeUqxJXRCSWVIkrInFD7RRERGQ4s9YWt20bY+4EnvHvbgcmB506CdjZxT3uAO4AWLx4ccigV0SGh+pqmEBQdW3uiE7nrBp1AFuqx1BNLsunzlSJv4hIDCnEFZG4oXYKIiIynBljxltrC/27xwOf+refBv5hjLkRmADMBN4fgCGKyBBSXdZIFvUA+DAkZOV1OmfFlK/yv03nAXDAuE9Y2J8DFBEZZhTiikjcUDsFEREZLowxDwFLgdHGmO3AlcBSY0wBTquEzcC3Aay1a4wxjwCf4XSvvNhaqx9xiki3GopKAtuNSZlkJmZ2Oic7yxfYrlU3BRGRmFKIKyJxQ+0URERkuLDWnhri8F3dnH8tcG3sRiQi8aYxKMRtSs4kMyG90zk5OW7XFYW4IiKxpYXNRCRuqJ2CiIiIiEh0NJe4IW5LWiaYziFudra7bmJtXag1FEVEJFpUiSsicUPtFEREREREoqO1tNTdTkuHhIxO5+zSsoF/cBk51JD/6Ei49IH+HKKIyLCiEFdE4obaKYiIiIiIRIenojqw7c1Ig4TcTueMSK7nVB4GYPuWuf02NhGR4UjtFEQkbqidgoiIiIhIFPjq8VU3BnZtVugQNzEvJ7Cd0lTXL0MTERmuFOKKSNxQOwURERERkSjwlEBts7ufkwGmc8/bpNF5ge3Ulvp+GJiIyPCldgoiEjfUTkFEREREJAp8FbyRdggvMp8carj4sEJ2CXFa8sgRge30ltr+G5+IyDCkEFdE4obaKYiIiIiIRIG3hnUtu7GSAwC4aN9nQp6WPjobLwkk4iPF1wwtLZCS0p8jFREZNtROQUTiRnDFbVpa6OMiIiIiItIDXy3VNW5VRG5e6OggMzuVGty+uNSqGldEJFYU4opI3FA7BRERERGRKLD1VNe6VRG5uYkhT8vKTqaaoAXPampiPTIRkWFLIa6IxI3gEDf4U1xqpyAiIiIi0gu+xg6VuKFD3MyspPaVuNXVsR6ZiMiwpRBXROJGcMVtx5641vb/eEREREREhqKmxlYebDmFL5nGxywg/dP1Ic/LzKR9iKtKXBGRmNHCZiISN4IrbpOSICEBfD73tST9iyciIiIi0qPqassktjONLf4jySHPy8pSiCsi0l8UaYhI3AgOcRMTndC2pcV9TSGuiIiIiEjPqqshh6BANmdEyPMyM+F2LuTfHEt9Qhb3L1zQTyMUERl+FGmISNwIbqeQlNQ+xPV42rdYEBERERGREKyP6uoExgeHuHmjQ56akgL/SToGjycBfPC3/GZSQp4pIiKRillPXGPMZGPMK8aYz40xa4wxl/iPjzTGvGiMWe//fUTQNT81xmwwxqw1xhwRq7GJSHzqWImbGLT+QnDAKyIiIiIiXbBNVNekta/EzR0T8lRjIDPTnWjX12vSLSISK7Fc2MwD/J+1dndgH+BiY8wc4HLgJWvtTOAl/z7+104B5gJHAn8xxoReAlNEJIRQ7RRCvSYiIiIiIl2wTVRXJZNDrXssJ7/L07My3Yl2Xa1CXBGRWIlZiGutLbTWfujfrgU+ByYCxwH3+U+7D/i6f/s44GFrbbO19ktgA7AkVuMTkfgTqp1CqNdERERERKQLviaaKmxgtzEpA5Kyuzw9M8MNcevrfDEdmojIcBbLStwAY8w0YA/gPWCstbYQnKAXaPtcxkRgW9Bl2/3HRETConYKIiIiIiIRsk00V7iT5+aUTEjoenGJ4zz/4n324hPmkX3zDf0xQhGRYSnmC5sZY7KAx4EfWGtrjDFdnhrimO10kjEXABcATJkyJVrDFJE4oHYKIiIiIiIRsg14gkLcltSMbk/PT6xkL1YAULijIJYjExEZ1mJaiWuMScYJcB+01v7Lf7jYGDPe//p4oMR/fDswOejyScDOjve01t5hrV1srV2cn991Xx4RGX7UTkFEREREJEK+OjxVLYHd1vTM7s9PT3MvrW+M1ahERIa9mIW4xim5vQv43Fp7Y9BLTwNn+rfPBJ4KOn6KMSbVGDMdmAm8H6vxiUj8UTsFEREREZEI+erw1bghrjej+xDXZKQHtm2DQlwRkViJZTuF/YHTgU+MMav9x64ArgceMcacC2wFlgNYa9cYYx4BPgM8wMXWWn0AWkTCpnYKIiIiIiIR8tXxUcZeFLCKHGr48Qkb6a6RYUKWG+LS2BTz4YmIDFcxC3GttW8Sus8twLIurrkWuDZWYxKR+KZ2CiIiIiIiEfLVUda0Gx+xOwDfn5fS7emJmW6IaxobYjo0EZHhLKY9cUVE+pPaKYiIiIiIRMhXS21damA3O7v72CAxx223kNCkSlwRkVhRiCsicaO7dgoKcUVEREREwuCro7berb7NyenqA7aOpJyswHZCi0JcEZFYUYgrInGjYzuF4Epc9cQVEREREemB9YJtIK9iJ2k4i5RlZ3ffhTElz63ETWzRwmYiIrGiEFdE4oYWNhMRERERiYCvHrw+HtlyGI1ksJXJ5Hpru70kOS83sJ3UqkpcEZFYidnCZiIi/U09cUVEREREIuCrgy9KyLU1AKTQQvKU0d1ekhpUiZvSqkpcEZFYUYgrInHBWvD53P2OIa4qcUVEREREemAbsJ+V0NYF91324ajclG4vSRudxfH8i0bSKVjUzPWxH6WIyLCkEFdE4kJwSJuQAMaonYKIiIiISK/4GvGsrSTZv7s+cRbJKWndXpKRk8STHA9AS2ppjAcoIjJ8qSeuiMSFjq0Ugn8HtVMQEREREemRbcSzsTqwuyNtKiSkd3tJVpa7XV+viEFEJFb0L6yIxIXgkLatAlftFEREREREesE2wZbKwG5J5mQw3VfiZrotcalvSOz6RBERiYhCXBGJC6EqcYPbKagSV0RERESkB75GknZWBHYrc8aD6b4nbnAlbl2dQlwRkVhRiCsicaGndgqqxBURERER6UF9NcnlTjsFD4nUjxgNJrnbSzIz4X8so5TRrNk2Dtas6Y+RiogMO1rYTETiQqh2ClrYTERERESkF7ZtD2xuZQoZOT1fkpUFuVQzmnLnQENDjAYnIjK8qRJXROJCp0pcbzmJCW6yq3YKIiIiIiI9KCsPbBYxjuysnifR6enQiLv4mbeuMSZDExEZ7hTiikhc6BTi1r9IoqkP+bqIiIiIiITQUEdzurNSWQUjyc7qeRJtDDQnuiFuU6UqcUVEYkEhrojEhU7tFFq3kJTYGPJ1EREREREJYeku/Pnyx0nEw8n8k+xsX1iXtSalBbZbFOKKiMSEQlwRiQvtK3G94GskMaE55OsiIiIiIhKCbaa2LgUfiTSQSXZWuCFuRmC7uUrtFEREYkEhrojEhXYhrnEmjgpxRURERER6wTZRW5ca2M3ODu8yT4rbTqGlqi7aoxIRERTiikicaNdOIbHF+T0oxFU7BRERERGRbtgWsD5q61ICh7JzwrvUl+qGuK3V9d2cKSIifaUQV0TiQvt2Ck5iq0pcEREREZEw+Zph5XYmf7maBXxEJnVkZ4cXGXhT3XYK3hpV4oqIxIJCXBGJC+1C3AQLQFKSJ+TrIiIiQ50x5m5jTIkx5tOgY78zxnxhjPnYGPOEMSbPf3yaMabRGLPa/+v2ARu4iAxethlueJWfv3k+H1HAV3iT7GwT3qXpbojrqdfCZiIisaAQV0TiQnBIm5TkLMCQmOAuxKB2CiIiEmfuBY7scOxFYJ61dgGwDvhp0GsbrbUF/l8X9tMYRWQosc1Q4QawFYwMuxKXNLedgq1TiCsiEgsKcUUkLgSHtImJ/hA30QaOqRJXRETiibX2daCiw7EXrLVt/0d8F5jU7wMTkaHLNkNRbWC3kPFkZyeGdemqeaezBx+yG1/w7kE/iNEARUSGN4W4IhIX2vfEbWunoEpcEREZts4B/hO0P90Ys8oY85ox5oCBGpSIDGItdVDq9LP1YShiHNk5SWFd6h0zkdXswTp2o8LmxXCQIiLDV3j/IouIDHLt2ikEKnF9IV8XERGJZ8aYnwEe4EH/oUJgirW23BizCHjSGDPXWlsT4toLgAsApkyZ0l9DFpHBoKgI/B9kK2EMHpLJzg4vMsjMcnvn1tXbbs4UEZG+UiWuiMSFUO0UkhTiiojIMGOMORM4BjjNWmsBrLXN1tpy//ZKYCMwK9T11to7rLWLrbWL8/Pz+2vYIjIY7NzhbjIBgOzc5LAuzcpyt+sV4oqIxIRCXBGJC6HaKQT3xFU7BRERiXfGmCOBnwBfs9Y2BB3PN8Yk+rd3AWYCmwZmlCIyaAWFuDuYCEBWdnpXZ7eTmQkJeMmkDm9ldUyGJyIy3KmdgojEBbVTEBGR4cQY8xCwFBhtjNkOXAn8FEgFXjTGALxrrb0QOBD4tTHGA3iBC621FSFvLCLD184id5MJZGU2k5CUHdalu+x8Ey9Ou+21zy4B3ovFCEVEhjWFuCISF9ROQUREhhNr7akhDt/VxbmPA4/HdkQiMuTtLHY3mUB2ViuY1LAuTc5OC2wntTRGfWgBdf+BjAMhITN2zxARGaTUTkFE4oLaKYiIiIiIRKCwNLC5g4lkZ4c/gU4dkRHYTvY0RXVYAdZC0ypo3Rqb+4uIDHIKcUUkLqidgoiIiIhIBMZmUb/rFDYxna1MITsr/AXK0ka4vXNTPDGqxPVVg20BT3HP54qIxCGFuCISF3pqp6BKXBERERGRbvzyON69/tfMYBMvcjjZOSbsS9NGupW4Kd4YVeK2bnN+95bF5v4iIoOcQlwRiQs9tVNQJa6IiIiISDdsC7V1bg/c7OzksC9NH+lW4qb6YlSJ69nh/O6rjM39RUQGOYW4IhIX2rVTSPK1+73j6yIiIiIi0oFtprYuJbCbnRN+iJsxyg1x02yj07822rz+NgrequjfW0RkCFCIKyJxoV07hYTOPXHVTkFEREREpBsRVOJmjUimlSQAEvFBS0vUh4e33PndVw9Wk3sRGX4U4opIXGirtE3E47ZTSFA7BRERERGRHtXXwy0vM/2NlziaZwB61RM3IwMacatxffVRbqlgPeCrdfd9ddG9v4jIEJA00AMQEYmGtpB2PTMZ80QFbB3Bgvz9+D5buZ0L8XpTu7+BiIiIiMhwVbgNfv0iX+VFZvMEz3IM2dnhX56YCI1kkIMTtDZVNJAxMi964/PVtm/R4KuDxCjeX0RkCFCIKyJxweOByWxlOpuhBXinhgK2cDMP8SxH4/HsOtBDFBEREREZnMqLA5sVjAToVYgL0JSQDv5uZg3ljWREc/rdsfI2uCpXRGSYUDsFEYkLXi/sxQchX5vMNrVTEBERERHpSnlpYLOvIe43JrxOHpWk0kTN6F2iOboQIW5VdO8vIjIEKMQVkbjgafUymy9CvjaFrVrYTERERESkK5WRh7jNuaOpJo8WUqmrD7+fblg6Vt56q6J7fxGRIUAhrojEBU9rCxPZ4R5Id7vFqBJXRERERKQbFeWBzUpGAL0PcTMz3J619fVRGZWrY+WttzLKDxARGfwU4opIXGhtaWECO90De0wMbDohrg1xlYiIiIiIUFHmbvaxEjcry51v19V1c2JfdKy8VTsFERmGFOKKSFzwtDYznkL3wILxgc1xFOFp9Q3AqEREREREhoCKCnezjyHu2OQKdmEjc/mUluIoV8r6qtvvq52CiAxDCnFFJC54Wlu6DHHHU4jXqxBXRERERCSkyip3s4/tFL6z9sdsZFc+ZT65bz0bxcEB3g4hrm0BX2N0nyEiMsgpxBWRuOBtaWof4s5vX4mrEFdEREREpAtVbkhaRR7Q+xDXpqYHtr01UWyKa1vBhrhfx+pcEZE4pxBXROJCSm0pyXgAaErLgil5gdecdgpa2UxEREREJKTqWneTXKAPIW56RmDbW98QlWEB4CkBG2J9C19t52MiInFMIa6IxIXk2nIq/VUD9VkjIT0ZT6ZTDZBCK5nNZd1cLSIiIiIyjB20AN/Rc3mBwyhkPImJkJbWy3tkuJW4vrooVuL6uuivqxBXRIaZpIEegIhINBRmTWUklaTRyM3nPMEFrKNu7q6sfD+fQsZDa+tAD1FEREREZHC67EQqd+zOEc/+BIC8bDCmd7cw6W6ISzQrcbsKa3110XuGiMgQoBBXROKCx+O0S2gindYRzkfANl13MYce+m0AChLUM0tEREREJCRfM7V1qYHd3rZSAEjIzgxs24YoLjrWVVirEFdEhhm1UxCRuODxuAuXJSU520mJ7jGvN0QfLRERERERAVqorUsJ7PUpxM10e+KapmhW4irEFREBhbgiEg9sKx6Pu9sW4iYGhbgej0JcEREREZGQbAs1tZFV4ibluJW4pimalbhdtVOIYt9dEZEhQO0URGTo89UzvfBjDqSWQsaT4msGIDHRDW69CnFFRERERDqrrob/u5fxZVl8j3pu5fvk5PT+Nsk5biVuQnNT9MannrgiIoBCXBGJB756zlpxDT9nIwDPF10HQFpxKT/kRsZTSH1lPnDZAA5SRERERGQQKi2Fu15lF+AHrOFWvt+nStzkHHdhs8TWfqjEtVF8hojIEKAQV0SGvuZKxtdtBsCHoWHKJGAjqTtLuJFfA/Bu/f7g+z4kpA3cOEVEREREBptqdwHgapwFgvsS4qbkptNCMg1k0OCN0pzbtoCvi6pe2wjWgjHReZaIyCCnEFdEhr6d20i0XgCKGQuZ/kUZxrizz3xPMdgGQCGuiIiIiEhAUIhbg9NHoS8hru+wI0ilBYBdRzezPhpj89Z0/Zq1YJvApHd9johIHNHCZiIy9BXucDcZ7yxslnkoTJwcOJ7vKwGfPnIlIiIiItJOjRuURlKJm5XtVsTW1UcparA9LF6mlgoiMowoxBWRoa9wp7vZFuKm7UHCmF1pIRmAHFsD9ZUDNUIRERERkcGpqjywGUmIm5npbtfVRSlq8DX08HoUF1ATERnkFOKKyNBXVBzYLGQ8SSm5kJBJUupIihjnnle4fQAGJyIiIiIyiMUgxK2vT8DaSAdG+0rbe1fAgX+B7z4JTR7/681ReIiIyNCgnrgiMvQVlribjGdG1mwAElNyKSWfKWxzXiwtht0HYoAiIiIiIoNUjftptUh64ibZVg5KeZfElhYSrI/GxsPIyIhwbG2Vtlsq4fLnwGfhi1KYlAuXH+z0xBURGSa6DHGNMU+HcX2Ftfas6A1HRKQPisoCm4WMJynVqb5NTM6ljNHueWUlHa8UEREZEJpri8igUe2GuJFU4lJfz6stB/rvk0N9fXXkIW5bJe5rm5wAt81/1/pDXFXiisjw0V0l7u7Aed28boA/R3c4IiJ9UOR+BMwJcbMASErJah/ilpd1vFJERGSgaK4tIoNDVVVgM6IQNz09sJlBAxV1kJ8f4djaQtwv2hdj2LVl4PFhFOKKyDDSXYj7M2vta91dbIz5VZTHIyLSe8Vu9YCzsJmznZicRSlBM8eyin4emIiISJc01xaRwaGmyt2MoJ0CKSn4MCRgScZDfbWHiDs4trVTWNl+bQvj8XLOiQdx2zPNpKaHuE5EJA51ubCZtfaRni4O5xwRkZjbLZ/P0+ZRxFh2MsENcZNMh3YKCnFFRGRw0FxbRAaNY5fCxfvxcM4ZfO5fQKJPIa4xNCW4/RMayhu7OTlMtgm8Pvi0qNNLO972cPudkZb6iogMHV2GuN0xxlwQ7YGIiPSJ9cCfvsbyaS8xniK2MYXkZOelhAT4gL24g/O5jp/i23+3gR2riIhIGDTXFpF+tfxguPIwfpx5K6vZA+hjiAu0JKYFthsrohTiJhh453vcfeKNNJEaeGk31nLzbVPw+SJ/jIjIUNDXzzaYHk8w5m7gGKDEWjvPf+wq4Hyg1H/aFdba5/yv/RQ4F/AC37fW/rePYxOR4cTnTA49HvdnUm2VuMbAS4mH8YL3CAAuPfD+vv3kSkREpH/1ONcWEYka2wJAbV1K4FBfQ9zWxDRodbabq6IU4hqDb9IIfvnWuTzMXPbkQ7YziXfZhy83Z/Lpp7BgQeSPEhEZ7PqUZ1hr/xrGafcCR4Y4fpO1tsD/qy3AnQOcAsz1X/MXY0xiX8YmIsOMf7GD1tbOIa6z7a5i621t6bdhiYiI9FWYc20RkeiwLVgLdfVRCHGT3Erc5sqGSEcW6In70Zqx7CjM4UUO528jv0/j0XuykV0B+N//In+MiMhQ0GMlrjHml6GOW2t/3d111trXjTHTwhzHccDD1tpm4EtjzAZgCfBOmNeLyHDlD3E93tAhbmLQj4M8ra39NSoAVq+Gmho44ACnKlhERKSjvs61RUSixrbQ0JCMz+fMp9PS2s+ne8OT4q4y1lITpUpc4IVXZgQOHb50Iwfv/yX/enYOAK+/Dj/6UeSPEhEZ7MKpxK0P+uUFvgpMi+CZ3zXGfGyMudsYM8J/bCKwLeic7f5jnRhjLjDGrDDGrCgtLQ11iogMJytXwJ/e4oSaf7AnK4GuQ1yvt/8qcT/8EPbYAw46CB59tN8eKyIiQ0+059oiIuGzFk78JQkXPcodnA9YcnL6fjtviluJ21odYYhrW531L4pref3lCYHDhx20kX0WbQ/sr1oV2WNERIaKHkNca+0fgn5dCyyli4A1DLcBM4ACoBD4g/94qBo1G+IY1to7rLWLrbWL8/O1EqXIsPf66/Dr/3FTzcWcxb0AgYXNAJISLX/iYv7JSWR880/g9fbLsC6+2N0++eR+eaSIiAxBUZ5ri4j0TkMD/HcF6c9/xGk8CJg+t1IA8KW6Ia6nNsIQ199KwZ7zGM++PY9CxrEX73PogZuYPbOM1FQPAFu3QkVFZI8SERkK+tITNwPYpS8Ps9YWW2u91lofcCdOywRwKm8nB506CdjZl2eIyDBTVuRuMhroUImbZPgm/+AkHiX53Q1QWdYvw6qr65fHiIhI/OnzXFtEpNdqatxNnBLcSCpx60dNYi2zWM1CalvTer6gO/5WCp4vqwEYRzGpY1OYfMMDJB/2F4o9+UxhCwAffRTZo0REhoIeQ1xjzCf+9gcfG2PWAGuBm/vyMGPM+KDd44FP/dtPA6cYY1KNMdOBmcD7fXmGiAwzpT2EuIkJlBJUtV+yo1+GlZLS8zkiIiLRnGuLiPRaUIhbi1OCG0kl7uun38Js1rIHq/k07yuRjc02QZOH5DInxPWSwJiFibC+FD4rJtdbxVR/iLt+fWSPEhEZCsJpV35M0LYHKLbWenq6yBjzEM7HwUYbY7YDVwJLjTEFOK0SNgPfBrDWrjHGPAJ85n/Gxdba/vnMs4gMXd5aKHMra0OFuElJhjJGMwv/zC4o9I2l1NR+eYyIiAx9fZ1r3+2/tsRaO89/bCTwT5yeupuBk6y1lf7Xfgqci9N39/vW2v9G8T2IyFBVWxvYbKvEjSTEzcxyF6Sor+/7fQBnAeMd1YHd7UxiYUEZrM2DlU5hxlS28AawYUOEzxIRGQJ6DHGttVv6cmNr7akhDt/VzfnXAtf25VkiMky1boQKd3bYVnHbridukhvuAlBW3C9DU4grIiLh6OtcG7gX+BNwf9Cxy4GXrLXXG2Mu9+//xBgzBzgFmAtMAP5njJmlogkRCVWJG0k7hawsd7mbiNuL+ZpguxvibmEqey4ohDp3gG2VuApxRWQ46EtPXIwxz0R7ICIivda6DSoaAruhK3E7hrgl/TI0tVMQEZG+Cmeuba19Hei4lM9xwH3+7fuArwcdf9ha22yt/RLYgLs2hYgMZyF64kZUiZvpRgyRV+I2YXe649vGZArmFcHkvMCxKWwFFOKKyPAQTjuFUM6P6ihERPrCsw3K24e4xkBC0I+nkpNp3xO3tH9C3I4VDNaCMaHPFRER6aCvc+2x1tpCAGttoTFmjP/4RODdoPO2+4+JyHAXop1CJJW4Y8rWcyrrSKcRU7gQWNz3m9lGGjY2kunfLU4az8TxNTAxN3BKcCWu5tsiEu/6VInbNjkUERkw1geesnaVuOWMaleFC06I274St7xfhpeY2H6/omOtlIiISBdiMNcOFWvYkCcac4ExZoUxZkVpaWmUhyEig06UFzYb/97T/IPTuIvz2LfoicjG5muidl1zYLc1P88Jacdmuc9LdNa7aGyEQqUUIhLnegxxjTEzjTGPGWM+M8ZsavvVH4MTEemSrxqq6sHrfA9aQzYtpA6aELe5uf1+Uf+spyYiIkNMlOfaxcaY8f77jgfaPn6yHZgcdN4kYGeoG1hr77DWLrbWLs7Pzw91iojEkyi3U0jJSnN3Ok6Ie8s20rrVbaybNNk/sNGZgWPjEtz1LjYppRCROBdOJe49wG04q+UejLN4wgOxHJSISHfq6+HWWy3/e2Js4FhbUNtxQbHOIW7/lMQ2NbXfb2zsl8eKiMjQE8259tPAmf7tM4Gngo6fYoxJNcZMB2YC7/d5xCISP2qq3M0otFNIzs4IbJuWyEPcxBJ3YbOsmf6J/ig3xB3hKaftgwXbt0f2OBGRwS6cEDfdWvsSYKy1W6y1VwGHxHZYIiJdu+km+P4PR3L2T5ZTetQBNB06jxc5DOi8oFinnrj9FOIGtRcDoLW1Xx4rIiJDT5/m2saYh4B3gN2MMduNMecC1wOHGWPWA4f597HWrgEeAT4DngcuttZ6Y/JuRGRo+frR8NujeWD2j3jZ/09PRJW42W4lbkJrhCGurwnb6Ansjp7n/8hdRrLzC0i2HnJxgl6FuCIS78JZ2KzJGJMArDfGfBfYAYzp4RoRkZj5xS+c37czmSkvv8S6d27lwj1+BIQOcb9gBj/lOs64cD27HzWrX8bYsQeuxxP6PBERGfb6NNe21p7axUvLujj/WuDaPo9SROLT4vmwy2L+/ty3ePeLXYHIKnFTctyPxSW0Nke22Jht4qip77Dus1wmsJOHFv7PfW10JmytAiCfUqrJY9u2vo9bRGQoCKcS9wdABvB9YBHwLdyPaYmIDKimpmSKStzFDZKT27/utFPI53p+ypalh8DB8/tlXOUdWu+qEldERLrwAzTXFpGBYp1Jam2dG75GUomblOHeJ4XmyNri2ma27siliXQ2MYNpU93+vfzxa/D0WTz7qz+ymWmAKnFFJP71WIlrrf3Av1kHnB3b4YiI9N5rb08LbIeqxG3T2poANsKPdYXB2s6VuApxRUQkFM21RWRA+UPcmiiFuMELVKTSTF0dpKV1c343amp8VFWn+2/rIX90vfviV6YDkEs2HpwJvypxRSTedVmJa4y5qqeLwzlHRCTaJk9uv19RlR7Y7j7ETQTbEsORORoaOrdPUDsFEREJprm2iAwK/rlxcCVuJO0UOoa49fXdnNvtuCzbtrvp7+QJ1SHbMkye6C58pkpcEYl33VXinmeMqenmdQOcAlwV1RGJiPSgbWL5bW5nIR8x5ZVW5jKCNczrPsT1JIBtjPn4WkLkxKrEFRGRDjTXFpGBd+L5sOMLHih8ldO5j61MjXolbp/YFireqWYpr7CdScyYELoiYsK4WoyxWGsoKnLm4R2/HxARiRfdhbh3Aj39831nFMciIhKWtp/oH8nzfJ2n4GO4i6O6DXHv5mwOveYNuKEWntsHZsVugTOFuCIiEgbNtUVk4H30OWzdyYHsIAEfEP12Cn1imxj55Ju8whUAPNTwI0L9k5nsaWbW6O2sLZ2MtVBYCFOn9vGZIiKDXJchrrX2V/05EBGRcDU0WMAwmrLAsTJGA123U5jDZ4zautHZ6diwNspCBbZqpyAiIsE01xaRQaG+IbBZRxapqRFWso4axeqcfSmuyeZT5rFHn9spNJFQ5LZKSJiUA1j39Wc/h+8+CfUt/DF3DV/lSQCKihTiikj86nFhMxGRwaYtxJ3KlsCxQsYDXYe4NQQ196qtjen4VIkrIiIiIkNCvdtqrJ7MyKpwAebO5Rf7Pcozz08E4KkIKnETq92Ls6YmA0GT7NQkqHf285PKA4eLivr4PBGRIaDLhc1ERAarlhZIo5HJOKsXeEhkM9OA9j1wg/drgz9+VdNdC8LIhQpsFeKKiIiIyKDi9UJTMwA+DI2kR7aomV9mhi+w3eeFzXxNpDa4F+dN6fB6jrvo2QgqA9sKcUUknvUY4hpjRvbHQEREwmEttLQkMI9PA8e2mGl4cNLasCpxYxzihqrEVTsFEREJRXNtERkwQQlrPZmAibwSF8jKckPcSHriZrS4c/bcKR2iizw3xM32uecpxBWReBZOJe57xphHjTFHGWNMzEckItKNtjD0QF4PHPvALg5sdxXitq/ErYrR6BxqpyAiIr2gubaIDIxOIS7RqcTNjEIlrm0m2+v2xB3R1uc250RIGgO56e7zWhTiisjwEE5P3FnAocA5wK3GmH8C91pr18V0ZCIiIbQFpMfwTODYixwW2A6vEreSWFI7BRER6QXNtUVkYASVydaRBRB5JW5TE0d8dieZZOEjgbq6y/t0G1tfTRpOq4dmUhg9sQWMgZRZ0LoDcncGzk1rqsNZ9MwoxBWRuNZjJa51vGitPRU4DzgTeN8Y85oxZt+Yj1BEJEhLCyTgZTErAsf+yxGB7bBC3OrYhrhqpyAiIuHSXFtEBkyIStyIQ9zWVo567Tdcx8/4BVf3uZ1C9eaqwHaVGUFqmg8SRoJJgaRxkJbk/AISvF4yaACguDjC8YuIDGI9VuIaY0YB3wJOB4qB7wFPAwXAo8D0GI5PRKSdlhaYwUaycWaERYxlBxMDrw+GdgqqxBURkXBpri0iAyZEJW7E7RRSU91NmvvcTqHqy1ry/Nu1iTmMBUie7BxIHO38npMGTc57GEElDWRSVORD67eLSLwKp53CO8ADwNettduDjq8wxtwem2GJiITW2uJjD1YF9lexB+C2EGwLbTvut6vEre3/hc0U4oqISBc01xaRgRGLStygyXgSXuprvEBir29Ts80NmBtS/fP4JH/hRqJ/Pci8NChxQ9wdTKKoyGCt03lBRCTehBPi/txa+0jwAWPMcmvto9baG2I0LhGRkFqaG/kPX+UQXqKA1WxnUrvXw+uJW00shQps1U5BRES6oLm2iAyMRYvgke/x8P2juOOZA4AoVOIagzc5hcRWp6qhpbYZyOj1baqqE/iUuYygktrMUc7BpLHO7wnpkJDqVOL6jUst5dNmaGw01NZGZ4E2EZHBJpzPGYTqRP7TaA9ERCQcLU2N1JLDKxzCTfyIRzmp3etdhbgfsBd3LrsBHj0drvlebMeoSlwREQmf5toiMjBGj4ZDZ/HexMN5hUOAKFTiAr5kd0LuhLi9t3ZkAfP5lEns4K5l1zsHE0e5JyRkQ156YHd6TmFgW4ubiUi86rIS1xjzVeAoYKIx5pagl3IA1ZSJyIBoaW7q9vWuQtwixvPh5CPgoAbImtj5wihST1wREemJ5toiMijYFmrr3D620QhxbXIq+Nev6GuIW1rmRhX5o+qdytuETPeEhBz4wzFO34TcNNZ84ytQ6rxUVASzZvV19CIig1d3lbg7gRVAE7Ay6NfTELQUvIhIP2ppauz29a5CXIBWj/9F27fJZCg//jEsXAj/+597TJW4IiISBs21RWTg2VZqat0QNyptCFLdCXlrXV9DXHcSnz+qwQltgyXkwvgcGJcN6cmMG+v29y0sREQkLnVZiWut/Qj4yBjzoLVW1QAiMii0NDcCluDFzIJ1H+L6d2yIlLUPXn0V/vAHZ/vUU6HU/9P/UCGueuKKiEgwzbVFZFCwLdTWuRPoaFTiBoe4nvq+hrhusOxU4ma1PyFxRLvdsfluiFtS0qdHiogMel1W4hpj2hZYWGWM+Tjo1yfGmI/7aXwiIu34SktpIo3NTOW/HN7p9eDQtuN+q8f/cytf9y0ZwvXf/7rbZWVBz1E7BRER6YHm2iIy4K64Ana/nrvePISzuRuITiWuSXMDWG9DH0Jca5m0biXf4gGO4d9MStzh9MANltA+xB0z2g1xi4t7/0gRkaGgy0pc4BL/78f0x0BERMKRWFRIKi1MZSuNpHd6vetKXMuNzy2FWcVQ2wKNTZ0T317atCn0cbVTEBGRMGiuLSIDq6IMyhqYQANpOEUO0ajENWlB7RQa+vAJONvC4Zsf5hCeB2BD4QWQsHv7cxLzwOODigaobmJmwnpgKaAQV0TiV3ftFNo6yZQBjdZanzFmFjAb+E9/DE5EpKPE4p2B7ULGd3q96xDXkNVSBQ3+KtzaWhg5MqKxbNwY+niowFbtFEREJJjm2iIy4Opq3E2cdgVRCXGPOoz7PtmTZlLZ2TgSa531x8JmW0hrqgvsZo1PcHrgBkvIg/+uhbOdDzUcXLAIOB9QiCsi8au7hc3avA6kGWMmAi8BZwP3xnJQIiJdSd22NbC9gV07vd5dT9yGpKBeWjU1RKqoKPRxVeKKiEgvaK4tIgOj3g1K68kEIC8v8tsmXvtzzk++m29zBxu802nuZUcFa1vIaK0N7OdONk7lbbCELBiRGdjNbHHn9uqJKyLxKpwQ11hrG4ATgFuttccDc2I7LBGR0DJ2bgtsr2dmp9ezOqx5kBT0eYOGxKDSgiiEuF1V16onroiI9ILm2iIyMEKEuNHoiQvJZGW6VQ11dd2cGkJdrYdcWx3YTx+bBAkdBmYM5Lmfqktrdh+iSlwRiVdhhbjGmH2B04Bn/ce666UrIhIzmYXbA9vrmNXp9fz89vvBlbj1wQsi1NYSqY7BrLXO76EqcdVOQUREuqC5togMjKB0tY4ssrLaF0D0mUkiO8stv+3ttLu0xEMeVe6B3LTOIS7AiDGBzeT69gubtc3LRUTiSTgh7iXAT4EnrLVrjDG7AK/EdlgiIiFYS1bxjsBuqErc0aPb7weHuHXBk78ohLhNTe3320JdVeKKiEgvaK4tIgOjvsHdJJPc3G7O7Q2TRHaWW9XQ6xC32EMubiUueXmQkNb5xPyx7iMr6klNcSbcjY0QlOmKiMSNHn/OZq19HadXV9v+JuD7sRyUiEhITZVkVZYC4MPQNC4fOvSlDbsSN8J2Cl4vNDS0P9bUBClmJy31XmByu9cU4oqISCiaa4vIgKlzk86ohrgPPcqVFS9SQQr3cwa1tfv36vLKrTUk4JTSNiRmkpE6NvSJ2aMhIxkaWjEtXnadsJM1O6cCTjVuxzZrIiJDXY8hrn+V3B8D04LPt9YeErthiYiEsPFzEqwPgK1MYczEZjYFhbiJiTBiRPtLgkPcWhM0M62pimgoHQNccELcnMQvaGnMo2OIq3YKIiISiubaIjJggia0dWQxPS9K933pJZaX3AvAChZTU9O7ELdmm1uF25iSRUZCF+lyQhaMzoStVQDMytvWLsSdMaPXIxcRGdTC6XjzKHA78DfAG9vhiIh0Y9umwOYWpjJxfPtVEkaNgoQOTWLahbgEV+JWRjSUUB/RamgAktfR2rqk02uqxBURkS5ori0iA6O+0d2MZiVuaqq7SXOv2ynU73AvaEnPdMLaUEwm5Lsh7owsdwHkkpLePVNEZCgIJ8T1WGtvi/lIRER6UrQzsFnIeCZMaP9yx1YK0D7ErTFBPXEjrMQNtcpudUU9ZBbR0pLY6TWFuCIi0gXNtUWk/1kLdTHqiRthiNtU5F7gyczoOsRtq8T1m5rqfq9QXNy7Z4bFUwaJedCyFlLnxuABIiLdCyfE/bcx5jvAE0BgiUlrbUXMRiUiEsopy7hh5ZM88OcZtJLMqaOS272cnd35knaVuDbWIW4JTIZWT+c1IxXiiohIFzTXFpGBsfI+Hr27glv/tAdeksjLi9J9O4S4vV2Koqg+h6c5ljyqGDU1p5sQN7NdiDsx2e2zFvUQ11cH1fdCYg74mhXiisiACCfEPdP/+6VBxyywS/SHIyLSDdtIddJI1jAPgJS0UqZMga1bnZcPPrjzJcEh7qNpp/OTl7+ErFTY5YKIhhIqxK2qcGaooSpxW1o6HRIREQHNtUVkIBgDs8azPmcCb3AgQEwqcVNo6XUl7gpfAb/maQCePP8h5nYX4o7KAAPMGEXKGHfiH/V2Cp4iJ8j1+b8J8NZCYogKEhGRGOoxxLXWTu+PgYiI9Mg20tLiTuJS0rK55BK47DLYbz+44orOlwSHuDt8E2DBVOen59kpEQ0lZIhb6RRQtXo6h7jNzZ0OiYiIaK4tIgPHtlBd435SLVaVuBW9DHFLy9x5ev6ohm564mbAhfvCDw6ErBRq/jUPHnZeinolrqeow/52SNw9yg8REele58/8dmCMyTDG/NwYc4d/f6Yx5pjYD01EpANfIy2tbkCakpbGj34ENTXw+uuQFWJ+FxzitrYCxj+ptJGlqiHbKVR7AFXiiohI+DTXFpEBY1uprkkL7MaqJ25v2ymUlbsT+PzR9ZDQRcWrSYX8bMhyQt+x+e7Kw1EPcVu3tN9v2RDlB4iI9KzHEBe4B2gB9vPvbweuidmIRES68ulaMqrKSMQJS1P8P6TPyOj6kv4McRvqmgDaBc1tYlmJe9ttcNFFUFgYu2eIiEjMaK4tIv2vtRXqaqiqdgPXwbKwWWm5e33+6Ean4jYUY8CkB3bH5rsT9KiGuE2roGV9+2O+6ig+QEQkPOH0xJ1hrT3ZGHMqgLW20RhjYjwuEZHODvsl19c3cx2GEVSSktLzTDM4xPV4AF8SVDdBXSFE8AHW+vrOxxobnZ+LtbZ2/vlYrCpxP/0UvvMdZ/vzz+HVV2PzHBERiRnNtUWk/73xBiw7g39gOJMjOIr/xKydQm9C3KYm+Grdk8zmC+oTssgtq4IZ3fyTmJAOPmdiPnZ0HVnUUkc2JSUWp1luhLzVUPdM5+O+EBUdIiIxFk6I22KMScdZYAFjzAyCVs4VEekXtbVQ7/zT00wqNeQEKnG7ExziTm1ZD6MvdHZ2eQA27ujzcJqaOh9rbHL+Se3PStyVK93t115zguqkcP5lFxGRwUJzbRHpf/6PlSVg8fhjgcFQiVtaCst5lOU8Bj7g8wtg724uMGlQ2QirdzLy4yJ+Y7bxPfsnqqoMzc3thtI3LevBejsfV4grIgMgnG/1rwKeByYbYx4E9gfOjuWgREQ6CfpMVBHjANMuoO1K8DkVnqB+WjUhSml7IVQo29DoPKw1RIgbq0rcjl+DmhoYOTI2zxIRkZi4Cs21RaS/BX2srJ5MIIoh7vz5FJ6ynDsfns1qCnrVE7e0FHIIuiCnh0GZNFhbAif/nQTgO7zE5VxPPVmUlMDkyX16By7P9na71jpdHPDVORXACZkRPkBEJHw99sS11r4AnACcBTwELLbWvhLjcYmItFda6m6SDxBWJa4xkOjPVGsJCnHrGiMaTqhQtrHJSVRDVeJ6vc6vaOvY1qG3PcdERGRgaa4tIgMiaIGHOpzVgaPWTmGPPaj58Tlcya95ghN6V4lbYjuEuD0MyqTCPlNhshP2JmAZj7NQRElJL8cdise518drxrLgoIvImn4Fl151GD6fAU+0V08TEelejyGuMeYla225tfZZa+0z1toyY8xL/TE4EZGAkp2Bzd6EuOBWqzaQgU3w/7PX1OJf6axvuq/EDf1PayyqcRsa2u8rxBURGVo01xaRARHLSlwgJ8cGtnsX4raSS9CiYbkjur/ApDm/j3WLNdpC3IgXN/M1gLcEr9dw4rkn8cnnY2loSOH3f9mfux7cA3yVET5ARKR3ugxxjTFpxpiRwGhjzAhjzEj/r2nAhH4boYgIRBTiuucZvOlBq9tGkHiGrMRt7LonLsSmL64qcUVEhibNtUVkQHWoxE1IgKys6N0+O8sNcXvXTsHboRK3hz5hCZ1D3HEUARGGuNZC9T1gLU/9ZzbrN41q9/IvbziY1qbqLi4WEYmN7ipxvw2sBGb7f2/79RTw59gPTUQkSJk7C+ttiBu8oEFhfZ67E0HiGSqQbWunEKonLqgSV0RE2tFcW0QGTodK3Nxcf6/XKMnMMhjjBLmNjc7iu+HoFOLmjur6ZHDaKQCMcXvTBtopFPfxU3fWB82rweO0c3v4yXmdTikqyebZ59L7dn8RkT7qMsS11t5srZ0O/Nhau4u1drr/10Jr7Z/6cYwiIlDS9xA3+Lx2fXGjHOK2tVMIrsRNTvZ1e02kOlbiVupTXSIiQ0Ks5trGmN2MMauDftUYY35gjLnKGLMj6PhRUXw7IjLUBFXitoW4UfPll5gzfsO/E77GLXyv4+O6VVbiJYegOXp2mO0UxrhlxIFK3KKmsIcc4K2Emgeg9iln12v43+u7BF4+9oi1ge3Hn8rv/f1FRCKQ1NMJ1tpbjTH7AdOCz7fW3h/DcYmItBe0sFkZowG3121Pgitxa8gJbDeX1ZIa4vxwhF7YzN9OocUNcbOyvFRWJnR5TaQ6VuJ++CGcfHL0nyMiIrER7bm2tXYtUABgjEkEdgBPAGcDN1lrfx/hkEUkHnRopxC1Rc3a7v3kGxwNfIJTxVpTE97CabWFboDbmppGclJmN2fTfU/coj5Mvls2QsuXgd2PPxtLZZVTcTtuTC2/+NFr/Pu/uwHw/EsT8HrdRZRFRGKtxxDXGPMAMANYDbStrW4Bhbgi0n/KygKb0arErdxSw7g+Dqfbhc087occsjI9VFYmd3lNpBob2++/8Ub0nyEiIrET47n2MmCjtXaLiebnpEVk6Kt3w9KoV+IGVVCk4kyAw/0AXGOx+zEzX2YaJPTQsqCtJ+5oN+zNxyn+KC72hbqiey1r2+2uWO22KP/K3ltZtLCQsfl1FJdmUVaewQcfwD779P4xIiJ90WOICywG5lhrbY9niojESpKBjGRoaI2oJ25wiNtYEuWeuI3JWOv83iYnuwVwJp/9UYm7cqXTcywpnH/dRURkMIjlXPsU4KGg/e8aY84AVgD/Z61VEx6R4arOnQdHvRI3aJLe2xC3uTyo70J2qltp2xXjD3lHuosXj6IcgJKS7pYACsFbAa0b2h1a+ZEb4i5aWEhCguWoQ9dzz0N7APDiC1722UeluCLSP8L5V+1T6HOxmohIdPzzF7D5CnaftIMVLAYir8RtrmwIcXZ4QgWyGfVV+L75EB/YxXyLB0hJ8ZCR7p4Yi0rcjiFuSwts2BD6XBERGZRiMtc2xqQAXwMe9R+6DafitwAoBP7QxXUXGGNWGGNWlAa1MhKROPP4vfzjN/czma28zCGDphJ3W9UIbuF73MuZeJfNDiPE9b8+yg1xR+N8gq+4JBU8ZaGu6sx6ofpB6PDztFWfuv88L1qwE4CD93fbLbz5pmrdRKT/hFOrNRr4zBjzPhCIIKy1X4vZqEREOvI5H62q9Wbh9f/T1ZdK3O9zC9/nFurI4qn9Epndx+GECmR/UX0FiS+tYxFwD2ezOnVvUlPcRRZiUYnbsZ0CwJYtMLuvb0xERPpbrObaXwU+tNYW++8XWCHUGHMn8Eyoi6y1dwB3ACxevFjphEi8SjYUt+aznclAeP1qwxYixK2p6fmy1lZYU7MLl3ALCQk+zrju6jDaKfhfH5MFF+yNNzeTa3/3LQDKKjLwNqwgMWdpzw9v/gy85e0OWQufr3MXL1swx/ln9Ct7bw0ce/udBH0KTkT6TTj/1FwV60GIiPTIH+K2etyPK/WlErcGt8ygptpHeB9I6KxjiJuAlyM9zwHwGbtzHVdQkz6KMcl1XV4TDR0rcSG8SbKIiAwaV8XovqcS1ErBGDPeWlvo3z0epwJYRIYr20pFlRuQjhwZxXv3sRI3aAkMRo1sJCHRgOlhwt/WTiE7Fa45kkTg6b+dDJXg8yVQXrSZMW3rGrdudXrepsyB5Int79O8qtOtC4uzqa1z3ktuThNj8p3vR6ZNqWLi+Bp2FOZQV5fAxx/Dnnv2/P5ERCLVY4hrrX2tPwYiItIt65SctrT0PsQNrsQNVl3lpa8hbseq2q/wJrk46Wk2tTzIaczIqCQ1paXLa6IhVCWuQlwRkaEjFnNtY0wGcBjw7aDDvzXGFOAsmra5w2siMtzYVioqYxTiBk3SU3AmwOGEuMEdXPJH1ffcSgHAJIJJBtsaODRmdD0VlU57heKiRsbsWg8mFWoeBl8DNLwFyRMg8xhIHOncw1Pc6dZrN4wKbM+eWUbb+pDGwAH7bOHhJ+YDzsLCCnFFpD90GeIaY2pxJnmdXgKstTYnxGsiItFXWgrPvwcjfIxr3k4VuwKQnNzDdX5dhb0lpX1YsdavY1XtUl4NbD/L0YAhI72VlGRvl9dEgypxRUSGpljOta21DcCoDsdO7+v9RCQOfbGWhB2GfEooJZ+RI0307p2U5CSd1pKElwS81NT0vPhX+xC3IbwQFyAhA7zVgd2x+fV8sd5pg1Bcksn8mkcArxPgtmndCdX3QNJ48NUFPvUX7Iv1owPbs3dt31v3K0u2BkLcN9+ESy4Jb6giIpHoMsS11mZ39ZqISL9auRLOuAuAW81WDuN/QN/aKaTTwAR2kk0tvs+TgPl9GlLHQHYhHwW232Uf51npraSmegLHt2yBpiZIC3M+Gg6FuCIiQ5Pm2iIyoPY6jltbWrkVZ348cmQPvWd7wxhITYEmZ8KcSjO1tRk9XOSEuMt5hKN4jjGFrfD6GPh6OM9LB4JDXLedWUlZJrR+Evo62+q0WOjCFxvcEHe3XcvAZ+Gv78LaEpYt8wFHA/DOO2GMUUQkCvr2OWIRkf4U9GP5UusuLhDuAgIZQXPGI3meDcxkFXvy1dd+1uchdWyNEBzifsRC57kdKnF/+EOYNw/K26+ZEJFQ7RSieX8RERERiTMeD7Q47Qd8GJpIi247BXBC3LZNmsMqMigt8bKE9zmL+zjqy3/AJ4U9XwROJS7A/Svh9If43VvLOYZ/A1BcmtnbkQesDQpx507YBgf+Ba58Af6xmt1+fjMj0p0eETt2wLZtfX6MiEjYFOKKyOBXVuRu4kymUlII9KXqSVaWu12LW/iU3BRGc64uBFfi5lDNDDYB4E1IZBEreZajeGjlgRy04+l2123cCJdf3ufHdhKqEveTLooNRERERESCJ5ANZAAm+iHutT/hvZPO51z+RiPpVFf3fElpiYccgtLe7DC7yrQtbvZ5Mfx3HVPKvmBXNgBQXJrVzYXd27wtL7A9c9ROmDvOfWRhDd+ZFlg7UtW4ItIvFOKKyOBX5i40UO5v8RduKwVoH+LW4E4G01rrQpwdnuBK3H0yVrrjGzWZqWzhKP7DuKbtTK7d0OnalSs7HeoTrzf0Ymlvv62WCiIiIiLShaAQtx6nUjXqIe4FZ1Jy7FLu5lyaSaOqqudLSku97UPcnDBD3LZK3LFuscZ4nCrekrK+VeJaC1u25wb2p7/+P3ji03bnHJPyfGBbIa6I9IeYhbjGmLuNMSXGmE+Djo00xrxojFnv/31E0Gs/NcZsMMasNcYcEatxicgQVO4uJBBpiBtciZvmiU4l7uLkVYHtbXmz+Iw5gf2JtZs6XRtuG4ieBLdSyMyEggJnu6UF/v3v6DxDREREROJMvbuIl1OJC3l5UX6GSSQvtymwG16I62sf4uaO6PrkYAn+yf5Yd9LfFuL2tZ1CcUkWTU3OKsoj8hpJ+8UB8Ptj4CvTAufMLX2PtvUpFeKKSH+IZSXuvcCRHY5dDrxkrZ0JvOTfxxgzBzgFmOu/5i/GmJ6XrxSR4aHM7Ykb3E4hXJlBc7fgEDfTG50Qd0xyGXX+KoZNWbuzhrmB18ZXxi7EDW6lkJ4ORwb9i7t+fXSe0ZWWFrjsMrjwQqisjO2zRERERCSKOlTi5uVBYtS/+04iL6e3IS4dKnHzwntUIMTtXInb13YKba0UlvAeh41+CxIT4IxFcP+pkO5M5rN37mQiOwD48ENnAWMRkViKWYhrrX0dqOhw+DjgPv/2fbhrTR4HPGytbbbWfglsAJbEamwiMsSUu/+UtFXiJieHf3lXlbiZvr6FuNa2b2PwjykXk00tk9jGs/knsZbd8ODMhEfV7CSD+nbXR2uSHFyJm5HR/hNnwSFzLFx/Pfzud/DXv8Kf/xzbZ4mIiIhIFHWoxB0RZsFrr/SlErcsoUOIG+bAjL9iY4w76Z/ATqDvlbibt+WRQzXPcRR/2/IN+NAJa8lKgZnuQsv7TlgDQGurE+SKiMRSf/fEHWutLQTw/z7Gf3wiELye43b/MRERqHBD3L5U4nYZ4to6J5HtJY/HvSwx0UdGeitg2MEktjeOo4VUNrBr4Pzd+bzd9QlR+pc3uBI3IwNSU939WFcCXHmlu/3gg7F9loiIiIhEUYdK3Kj3wwW4+FImnHUTqyiggFVhVuImdWinEObAEvxBbRc9cfsw3WfztjzO4l5GUUF2aw2c8TB4fM6L49znHDBtTWA74pYKrTvAUxLhTUQkng2Whc1CrTEf8p9aY8wFxpgVxpgVpaWloU4RkXhTXuVu9qEnbvDE1Eci9f7eXwlYbF19F1d1LbjKNSXFS2qKN7BfWZ0GwBfMDhybwcZ214dajKwvgitx09MhLS30GGOtqKj/niUiIiIiEQqqxI1ZiPvFOhI/2k4BH5FHFQ0N3c+BvV6oqEzuEOKOCu9ZbQubjcqAJCfiGEEVaTTS0pJEdU1aNxeHtnlrHst4yT1w9OzAvYN77y4e+VlgO6IQt/lzqH8Rmj/t+VwRGbb6O8QtNsaMB/D/3vZjpu3A5KDzJoH/8w8dWGvvsNYuttYuzs/PD3WKiMSbCEPcUR3mf20LOAA0VTbSW8EBaWqKh9RUT2C/siodgC1MDRybwtb2z28gKoInwikp/VeJ25dqBhEREREZJIImow1kxCbETXYnpqk4k+fq6q5Pr6gAn69jT9wwQ1zjn9snGMh32yeMw6k06EtLha1bszmQ190D5+/tbs8Z6wS5X53N+L3dHm/vvNPHebKnFGofg9bN0LKuDzcQkeGiv0Pcp4Ez/dtnAk8FHT/FGJNqjJkOzATe7+exichg1NoKe82G3cfQPHYs9f4FxKIW4lb0PlENDnEXm5UcXPpvClhFOg2BStzgEHcqW9pd39j73Dik1lZ3Ozm5/ypxOy5k1p9VvyIiIiISIZ+P5rRMPCTGrhI3aGKaglN50F1LheJiSKeRJPyfcEtNhNTsri8IZtLA+MPU8e4iEdPYDDgtFXorY8M28nBS59ZRuTAj6BuKsxbDxz+C+05mynnjyMp0JsM7d8K2baHu1oPmT8H637e3GHxaIU1EQotZiGuMeQh4B9jNGLPdGHMucD1wmDFmPXCYfx9r7RrgEeAz4HngYmutN/SdRWRYSU6GZ6+G1y5ixQOP0dZ9pTch7ujR7fcrGEkZo9jKZBprPaEv6kZwaPkNzyP8YOVlrGJPLuO3VFU7lbhbmRI4p2MlbqxC3P6qxC0sbL/f2Bi99yQiIiIiMXbqqdzwwzdIppXz+FtsQtxUN8Rtq8TtWAgQrKQELIYfciN3T/oBXLyfE86GwxhI8n9Kd6Y78Z+L06+2uDQr1FVdshb+b8cv3f39pznPaJOYENhPTLQs2XNH4KU+tVTwBCW/1oKnsOtzRWRYi1mIa6091Vo73lqbbK2dZK29y1pbbq1dZq2d6f+9Iuj8a621M6y1u1lr/xOrcYnIEGSdRLKl1a2g7U2Im50Np57qbJ93Hpy867vkU8ZUtlI7ZkavhxMc4u7qWx/YDu6D210lbrQqVweqErdjiAvt1p4TERERkUGuojIJMPhIjFGI27mdQneVuCUl0EQ6f+SH/GeP8+DyQyAhtesLOkr0h7gnLYTfH8Nvj/gb93MGAMUlvavELV3jYy/rfjA45eAp3ZwN+y7eHtjuW4jbfnLdWFvMli1qYSYinQ2Whc1ERLrWFuJ63JQyObmrk0N78EHnY1p33gkZGe6MqL7365q1C0hneEKHuF8wmxXf/R4vXXENh/NCl9dHYqAqcYuLOx9TiCsiIiIydFRUupPpESNi8IBehrjB88ux+fVgEsD0omoj0Z9EHzAdzlhE3dxdqcVprdDbdgrNd3/ktnUAOH5+t+fvu9itpO11iOutAJ/7kbYXXpnB5Fl7MG0aLFkCZWW9vJ+IxDWFuCIy+Fln4tfSmh441JtKXHA+8TRmjLOdGTSP68siY20LiiXTwuSWzYHj65gV2K4jm+qli6ifvQsljG13/VCvxK2r63wsWou1iYiIiEjslZa5E8eYrBceFOKG0xO3pMTdHjO6vncBLkBi+/5pY/PdCWuv2insqGby358O7N64x+8gI0T1yMrtcNs78JNn+Yp9I3B41apeFlN43PXcN2waydfPOoXyCudrt2IFfOc7vbiXiMQ9hbgiMrh9+CHc9l/450ekr3erXnsb4gbLyHB7WvUlfGwLSHdhU+Cn9JuZSmPQgmkA6WkeUlM699xtbo7Ox6O6C3FjGaqG6n+rnrgiIiIiQ8SnnzJl80r24n1GUt5p/Yio6G0lbpEvsO2EuGH2w22TPK1d39qxY9yP2xWW9CLEffZz9zrGUbR4r9DnPfoxXPkC3LOC3C83M2uGUzLb2gorV/Zi3J6iwOaPrzqcxsb2gfGjj8K6db24n4jEtaSBHoCISLdefhmueByASUeMBw4HIgtxZ/rWYSgkgwbYXABM69X1bSHuRNxFDIJ74LbJSG9l5IjQ6WZra2Tvoe0ebZKTadfPLJYfvQoVEKsSV0RERGSI+N3v+OvG+wE4m7vJzz87+s8ImuiG1xPXy1H8h8v4LbMerAMzE37ci+clZELydGjZBMCk8TWMogwPSWzbkRv+fS7Yh8s//C7j/vU/vmQ6M6Z1MckdExQMF9ey317bWLfRScPfeQf23z/M57U6/XQ/W5vPU8+7rdkmTvSyY0ciAPfeC9ddF/5bEJH4pUpcERncgpaxbUwfFdiOJAA9cfNNvMARPMnx5Lz/Yq+vbwtxx+MuQlDI+E7nZWS0MnN6GTlUk0VtyHtEomOIOzaoa0NRUewWQ1CIKyIiIjKEBS0KUU9mzNsphBfiWnZhEwfxOuM/+hA+L+n65K4k+xcs/tNb7PWtH1JGPmdwP9sLc3p1m1UVs/khf+QWLmH6lMrQJ40NDnHr+r64mddpBvy7P+8XOPS1I7/gzzd9Gdh/9tle3E9E4ppCXBEZ3CrdFbMa06IT4vrSgpri1vc+fWwLYMfhfvwpVIg79v5nSdzlWqrJ4+rxvwt5j0gEh7hJSZCV5fwCp29vdxPlSIRqnaAQV0RERGRo8Na6IW5LYgbZ2TF4yCmnwH3n88rFv+IffBPoaWEzw0iCVsod2Yvq2TaJef7fE0iscHrizmUNpWWZNDWF/yHkzdvyAtvTJleFPmls0BetpK7T4mZhFVP4GsHXyPadOTz4+ILA4Z989y2WHfBlYCHnjz+GwsIu7iEiw4pCXBEZ3KrKA5sNKW6ImxxifYFweVPd3rU2SiFuEeM6nZeR44MmpyfuD47/H+PHutW4sajEBRgXNIyiImJClbgiIiIiQ1drlbvoV3JeZnAr2eiZOxe+tpiG/eexkV2BHipxSxMZhTvvZ1Re75+Z4K+4nT0mcKiA1QBs39lDNa4/dfX5DFu2u8+eOrk69PnBlbgldczZrZTsLGeCX1gIW7eGMV6v837/+Nd9aG11Wifsv2Qr+y3ZRlZ6Ifu5xbm89VYY9xORuKcQV0QGtyr3I0z1yXmB7Yj6yaYHLUDWh/Qx3BA3eWLQc0rqSU11Fznr1aq1XRioEFeVuCIiIiJDV3AlburIzG7OjFQiebnuxLGrELeuDhoaEjqEuCN6/7i2EHeB+wm5AlaTTEvPLRWufAFO/js1d6whvdkpvBg5ooGc7C4qLzr0xE1MtOy9yF0vI6yWCt4SysozuP2+xYFDP/nem86Gp5h993VP/eCDMO4nInFPIa6IDG5BIW5dsjuZi6idQnCI29j3EHcNc/l83F7YWflsZUrnE8e0/wl9aoq30z0ioUpcEREREektW+dO3NJHZXRzZqQSGZHrBsbl5aHPKvG3v20f4o4KfXJ3ErLAGBiVAdOc7xtSaWEhH7FtRzch7idFcOd78MpG8n75KPvxNtBNKwWA0ZmQ4C9hrmiEFi/7LmrfUqFHnp3c9Nd9qG9wvrGZt3sxRx+23nnNV8/iPdwq4BUrwrifiMQ9hbgiMrhVuZOXuqS8wHZElbgZ7mQ1IYIQ93p+yp+P+hPmze+wKmffzifmB1U2lNaRmuJW4sYqxA1emKKriXKkFOKKiIiIDGFBE7f00TGsxDWJjB7pthOLeYhrEsH45/mLJgUOH88TbNvp77G7tQru/gA+KYSaJvD64PtPgtdpp1A8cw7PcRTQQ4ibmOAEuYE3Uce+e/UuxC3aXsqtf9sbgNGU8vCu3yXhZ89CufPns9cebkXGihXg8/V8TxGJb+F39xYRGQiVVYHN2rbFCogsxDVBIa5pDtEboAfBAWxbMJuX20R1TVrg+C9/Xte+Ere0jtTJsa/EzQguMu79WwuL2imIiIiIDF0JTe7ELXtsjCpxn34aLv4h+c3N3MEXXMCdVFSA1wuJie1PbVu0q32IO7pvz03IAl89HDcXHv8EgLO5h2u3H+u8/uaX8NPnINTCY4mGJw/5P1jvVNh2G+KCM9cv8fcXLqljn0XbAy+tWuXMmdPTu7jW18Slv9yT2roU/soFXMCd8G//ay1e+MOxTJ5QRH7+bpSWQk0NbNgAs2aF9VUQkTilSlwRGdyq3Z/e1yTkBbYjCnEz3clqYlPfK3EBUlOdYDYvp32T28MOT4fR2dC2UER5AxnJ7jn9EeLGKlgNdd9YBcYiIiIiEl1JzUEh7rgYVeK2tMD2ckxpHeOSnXDWWqio6HzqDn8r2fYh7pjOJ4YjwT8ZPnQmTbl5AIyniJGfrnGOf3MP+Mc3ITPENxNfm8uHDQsCu9OmVHX/rPHZ7vaOakbkNTF7lvO9i8cDb77Z9aXP/buavz+6kKW86gS4wZ75HDw+jLeUggL38GefdT8cEYl/CnFFZPBqboZGf9qZlEg97iQzkhA3ISsoxG2p7+bMrofVJrgSN9jkKYmQOs7pyQVgYYwpDXmPvgoV4gb/tD9WwaraKYiIiIgMUT4fKR53kpg3vqtS0QilpgY2s1PceXJZWedTd+yAJFrJpcY5kGAgrw/tFACM//0kJVB10J6BwwdseAp8FtYUw81vQn1L52uPncPmbXmB3ZCVuAmpkLbI2T5kVzhtD7j8YJjl9DQ74pCtgVOfeir0ELduhdPPcd7fRdzW+YTKRnhvK3hLmDPHPawQV0QU4orI4NXaCqceCkfuBoftQ0urCbzUFlr2RWK2G+ImtfStEncKW/gNl7P/qn/C/9azT9BqtACTJwNJYyDfbakw1ha1u0ekBqoSV+0URERERIaolha+zJnLenZlE9MZPTax52v6IijEzUxyA9PS0s6n7twJIwkq0R2RDol9DJcT3Mlw8gm7BbaTGhpgTRHMHQtPnw0bL4fT94Rx2c46Fr86HI6e3XWIa5Ih91uQ913IXAYmAc5dAjd9DX50IOzmhLjHHfFR4JKnnnKqj4NVVsJXvwoVFUkk0cpR5j+h38eL68BbwZzd3RsoxBUR9cQVkcErKwv++l1oWgXZx9NyiftSRAubjRjBGubQQAbl6TOZ18vLm5thdz7ncm6A/wHN0/nJfcu479H9KSqC446DhAQg0R/ifu6s1jDGV9zuHpFSJa6IiIiI9EpaGqfPfZu33skB4NX8Hs7vq6AQNyPRnfh2VYlbQw5H8wzXXfRvFu5eBCat84nhMG4BxcivjuHy5Bu4uvVn7Od5k5odM8iZ738xOxX+cGy7S30+w5bteYH9qZPdBZZJmggpuwbtj4fW9kUcAAfsvYERIyyVlYbt2+Hll2HZMue1xkbn+4S2MDYxybLhhh9SkPwxbKmE+ePhrH86L364A6yH3XerA5y2DZ9/3pcviIjEE4W4IjK4Wf/HrxIyaQn61FMkIW7LvD2Zh9MX6/BZLRzZy+ubm2EMJe6B/CxGjMrhvffgvffgqKP8xxNHu4ubJSeQnVDX7h6RGqiFzRTiioiIiAxdpWVuDDC6j+uH9SgoxE1PcNsphK7EtTSRznMczXXLt8K8cU7bgr5IdPvUGgPP7nom935+BgDPjHuaxezs8tKikiyam52vzYi8RnKygybsyRPbn5wyO2SIm5Tk47RTavjTbbkA3HKLE+LW18PX/p+9uw6P4tweOP6dlbg7BIfgrsWtSqm76217q7feW/df3Xvr7t5CnXqhVHB3DyFGXDYr7++Pd7Ozm2wMYsD5PE+ejLwz825Kk9mzZ845Gn7/3Rz76tOzGXqCBRiqN2SXwMTuMDwdRncGoH+fbPyDuB6PN1lECHFAkv/9hRDtm/LePBkRzRbEDfP7YH9PAp0OB6RiZtWSHAm2FLp0gZNOgsjq0r3WBLh5Giy7BrbfypLu0wPOsbcaysRtzXIKZU0vLSyEEEIIIdpAdo5ZlywtrYUu4hfEDbM0nIlbLb2Dt6mxsYdBXEt0wGqPrgVkk0Y2aWzcEl/voes3JfiWe3X3K+9gGGDvGTjYllr7BB5d+uDyi826uLNmwaOP6kDuTz+ZQx++43tOP2F54PGp0fDJ2XDLdDikNwCJsbtI9mZLV1ToerpCiAOXBHGFEO2bLxM3vNmCuHtbcqCqKlgQN732QGscdIrVtbYshq8JGuy75RQ8HqisrL29pbJ+hRBCCCFE86mogKIifeNotyvi649r7jm/m/VQVXcQt7QUiosN7yEuEhO8WQjNFMTt2bXAt7xxS0LN0QHWbTSbqfXukW/uCBsJIT1qXEeXo+CH9XDhRzDiCXj1bwD69MzkhBPModddp5/Wq3bf3bu57rI/Gn4tAK4saW4mhPCRIK4Qov36+We46V146Bf4cX6LBHGDBSQbEjQT1xqkg64RApZI32poqDvgHHsrWBDXP8u4Oa5RU13BWimnIIQQQgjR/uUt3s55vMpJfMjhcfNb7tF8v0zcEL8gbs1yCjv9qht0TCvBMNBNw4w97GJcM4jbzcyobTgT1y+I29MbxLVEQeShQa4Tp79v3g2zVsH2IljkfTHuXJ5+GtJr5HhYrbq8ws3XrdMbcstqdz6ryZ1Lv37m6po19Q8XQuzfpCauEKL9+usveOFXvaxG4nTO8O3aq3IKIR7O5B0iKKfTrlLg2iYdXzuIG2N+Gl+TNR48utZAi2fiugsItYUAkc12jZrqCuJKOQUhhBBCiPavfN5iXuUCAH6vOhL4smUu5BfEtXvqDuJu3aq/381t/DvrRZgMXDEF/r2H1zUidRBYeQDo0c3MxN20tf4gbkAmbnUQN6RP8ICyJUwncQzzi9Qu8daFcO2kQ5pi/nyD226DRYugd2+48UYYNQoo2QVlVTDgEYgP1zWAPz5Ll23w5/KAUUhGhrlpw4YGfwJCiP2YBHGFEO1XYaG5nJAQkIlr38MP5wHCIwxe51yseCAfcF0Ftsb/OnRUegIbm6Wm6ZvFYCxxULQBthcydMcvGIxFYaGywsPePgxRK4hb9iMhjkLgQj3PFgji+mfcxsZCUVHt7UIIIYQQon0q3mk22vVERtczci/5BXGtHvMmPisrcNjmzfp7B7JIcubAaqDCs+fXNQydPesuBqBntyaUUwiWiWvvXPcBtmQdgLVZdMB1Qz4UVUIs4NpJ587pvP56jWOUB6o2wDpvNLugAnJKzQCuUnDLt7AoE9bmwqrryOhZAehHCdevb+D1CyH2a1JOQQjRfhX4NRSIi2u+cgoRBuVEmBuaWNDV4XAHZuKmdap7sDUGxj8L017gjFm3MoSlAJSV7kEdhxoCgrg2Bc7NhNrNjS2dievfzbi8vOGnwYQQQgghRNsqyzGDuEZ0VMtdKD4efnoJ5vyLoo/e9m3esSNwWHUQNxG/GrQJdTzh1lgW83V161yIYeib1B07Y3A4rEEPcbsNNmw2g7wZ1TVxbR3rvo41EcJs0N+vydkSb0kFV2bwY5wbwFMKa/wSQvqmmMuGAb9u0kHcsipYsYtefiUhJBNXiAObBHGFEO1Xod/NXDMGccPCoAK/wrhNTCOtqnSTjN+zYKld6x5siYEJ3X2rh/I9AKUle98JzGVWZ8DOJvCUERrqX7LBFeSoveP/o4qONpMslGqZoLEQQgghhGg+lblmENcW24JBXLsdxg6HIR1JGN/Z9xRdQUHg/eSWLfp7QBA3MW7vru1XFzckxE2XTvrRMaUCA7X+tm6Pw+nUAd4OqSVER1WBJRSsyXVfx+o911C/QO/S6iBuVu3xAI7V+vsq/yBujWv4n29xJj26ZvkSdbdtk3tuIQ5kEsQVQrRfhebjT8TFBWSBhu5hw1rQjc38M3FVWdOCuKHl+djQTcpckeEQkVr3YEs0TDG72V7Gsxh4KClu3kxcm3OenluIX/O0yuZPjfW/6Q4Ph4iI4PuEEEIIIUT7U7XbDOKGJLRgEBcAHRS1GG46+sUlM/2SVINn4tZfu7ZBNXpV9Mswky9WrQselA1aSiFiWu06tQHX8R4zwO+9wFrvtRzLQTkDx5f/AY5lermuTFyA4X51dhfvJNS6ky5d9KrHY/7MhBAHHgniCiHaL/+auPHxvvqrAHFxe35aqxUq/IK4zqKmRR8rqyw8wI28zAUUTx8BlnpuNC1RMNkM4nZhO+fwBqUlzrqPaaTAcgo6eBuYidv8QVz/QHpEhARxhRBCCCH2Ja5CM4gbltTCQVyjunSBi05+1ccaDOIm7m0QN/D4AX3MIO7KNSk1RwOwfJW5vU/PPB28DR1U/3Ws3uv08ztndXBWucC5WZdOAHAXQfmPoNyB42oeD4HN0hZngmsHvXqZm6SkghAHLgniCiHar4JCczkuLiCmuzdBXIAKixl9dBQ0LfqY64rnvzzAv3iZ/JtPCnhkqxYjAjrEwEmDfZum8RMlJR7w7N2zUEGDuP6ZuC0QxK0vE7esrNkvJ4QQQgghmpGnxLxhi0hp6Uxcm665VVlOekfzvrS6Lm55OeTkAKgambj1NyBrkLVGELevGTBduTZ4Ju6yVWY27ZAB2WDrBH7vF4Kqrr3bxy8Iuy4X3N7GbKXfQMGz4CmHygVmAHd3OWR7g7thNuhaI2g9IBXs3lDNpt2Qv42MXuY9vjQ3E+LAJUFcIUT75Zd664mJo7jY3BWzl/0OHFbzpqyqsGlBXP86VKEh7vqDuJZI/f3Uob5NPdlISWkIuHYEP6aRnE7zZthu93jn45eJW9X8v+L9g7iSiSuEEEIIsY8pMzNxo9JaOIjbbRKk3g3xk+iTZAZpq4O4a9fq79GUYMd7Dxtug4jYvbtujTq2/pm4dZVTWLoyzbc8ZMAuCOnb8HUMqw70xodDmvf9gMMNW7wl4dwF4KmAoreg4k/zuLV+vTV6J4O1xj17qA0GmPNhcSa9upvviyQTV4gDlwRxhRDtk1JQWOJbLTLiUN6YZXS0LomwN/yDuE0tp+BwmLWxQkPdAR1wazHCwbBAN/MT9p5spKLCvvdBXIeZSWGWU/DPxLWCu6TWcXtDyikIIYQQQuyblAJruRnEjenY0uUUzHvmTslmFkR1OYVVq/T3gCzc+Agw9qL5BeiGY4bNt9qvtxk0XbcxUd8j+3E4rKxen+RbHzSwEMJHNe5a1ckc/nVtN+QFjnFlBdbHXR2kHq5hhdD+YPOuD+5gjlmVTUYP85ySiSvEgUuCuEKI9qmyEqr0zU4lodz/eLhv195m4QI4beb5nMUV9YyszVHlF8QNC9FB2roYhi6p0DEGZdM3jKnkYKusAOe2pk3aN4FVUPQuzipz3tWZuFarB8PQ0W6Px4LLkRP0FHuqZjmFyMjg+4QQQgghRPtSUAARqhVr4oaG+BbTk6t8y1u26O8rV+rvgUHc8L0P4hoWHcj1io6qokfX3QC4XFaWrw5sSrx6XTIul75P796lgJiEjmCE0CjVTdSumwyzzoW1N8Bhfeo/ZnW2udw3Wb9fiDkLomZC2DC9PaDObi69umf5ViUTV4gDl63hIUII0QaUYutZF/PZW2FYcfPII+ausLC9P73TbqaQukuaFn08o/xVJvIr+SQSviwCejRwgCUKrKW4OiZg36YzAZLLduggrnIFZAo0SHmg9CvwlOF0Hu7bbLfrDFzDgJhoB0XF+odUkFdEcpcmvbx6STkFIYRo/wzD2AKUAG7ApZQaaRhGAvAB0A3YApyslCpoqzkKIVpfZiYsZAQGiqSwIoanBG/y1WzsZiC0e0czE3fdOv09aBA3oRkycQGsKeAykxlGD89k01Yd2P17UTojh+707ftzodl1bdigLAgb24TreEs/jO7c+GMqXbrmrdOjg7UhvSGkm94XOgjKvoc+fmUf1ubQI309hjEZpWDrVqiqgpBGxpmFEPsPCeIKIdqniAiO+PsRVlM7Q6A5grgbo4fxVUEh5UTQN7ZTwwd4KQUjXX9zGu8D4Nl6fsMHeeviejrGgTeIm1SZrR+rcm6FkJ6Nn3jFn+DRZRScLjMD2G7z+JbTOxT7grg7dzqbNYhbXzkFaWwmhBDtylSllP8zvTcBPyqlHjAM4ybv+o1tMzUhRFvYsQNu4X4Aph+Uyw/DgteHbTahZjDWP4i7caMOQlYHcX9nImtevY2+Sdt1PdjmCOLa0sCxwrc6elgm7382CIC/F6dzKf/49s39y7xZnjA2H0L6N/46lj14RPDpY+Gxo3TTsvRYsPtlhFiiwJoGfc2MabYXEmbLpHNnxbZtBh4PbN4MfRpI+BVC7H8kiCuEaLe2ZwaP1jZHEPezntfx87brAJjTDwY18jhnlYskzPfElpSkekZXD9KBaNfRg3nwz1PZTmeWegYBy6Hir8YHcSuXQPkccy5Os55XdSYuQHpaCavW6syKzB1uhjTu7I1Ss5yCZOIKIcQ+4xhginf5DeAXJIgrxAFlh187hk4dq+oe2Fz8grjhFgedO8P27eB2w9KlsGmT3uewhNHt4BAI66o3NEsQN7Bkwuhhmb7lvxalB+yb+7dfEHe8iybZkyAugN1qZtvaOtTY1w2SsuDt0yAjCbrGA4pePSrYtk3ffG/YIEFcIQ5EUhNXCNFulZYG/5wptBnu6/a0lqujojggiEtSat2Dq3kbHhinD+MO7uZl/sVGV3e9r2qdbnZQzb3bl2kbwFMKZd/i6+5G3Zm4aSnmJ/c5OWZwty6ZmXDaaXDrrQGnD0oamwkhxD5BAd8bhrHQMIyLvNtSlVJZAN7vQZ+jNgzjIsMwFhiGsSA3NzfYECHEPirTjGPSKd1Z98Dm4n/T7nDQt6+5+sIL5n3n4P7ZhIX5BU+bpZxCWsDqsEG7sHkbAa9Zn0xWtk6y2J4Zw9btcQBERFQxdHgETVIziFtYAX9ug7xGPqJmGGCt8X7C3k1/P7Q3dE8Ai+7H0auH2bBYmpsJcWCSIK4Qol1SCmx+gUl/zZGJ6x/ELS2te1xNVRUlNYK4HeoeXM2biRsaat6cVlbazYBp5ULv90Ww+ynY/QgUvgTlv+qSC+4CqFoPnsqA09aViZuUYEZT83IbDuJecAG8/z7cdx98+WX9Y2vWxJXGZkII0S6NV0oNB44ALjMMY1JjD1RKvaiUGqmUGpmc3MKPWgshWlVAJm6nJmac7olQv5t2h4PRo83VV14xl8eP3h54nKU5grjRvpJmABERTiaMMZsKf/tTLwC+/iHDt23cyO3YI3s18Tqx5vIVn0Pvh+Do1+CXjY073hJf+/Xau+jgbg0ZPcz3INLcTIgDk5RTEEK0SwWvfc4nrlcpJI4vmclHnOzb1xxB3Ci/UrtNCeI6agZxkzs2fJA3E9dqVdjtbl/w1em0EhLi1kFc53ZwezOelAJnpv6qXASeYsBe67S1MnG3FEBmEScsf5pKFvM8l5CXbwNVVW+H3e++M5ePPrr+bFwppyCEEO2fUmqn93uOYRifAaOBbMMwOiilsgzD6ADk1HsSIcR+Z+d2N3dzJ6VEMX55OXBXy17Qv/OWw8H48cGHTRu8Sjf7CvOGJ+q5b20SWweoMqOdM6av55d5+mm4r3/I4LzTlvDZ1/18+486IhOsTehVAWCJ0wFXpSDdLyt3VXbw8d+tBY+Cvim6TEJokIciLOF67s6dAZt7dcsEBgASxBXiQCVBXCFEu7T561UczWwAdtKx2YO4fcoXcxuzCaeCjvOGw0UnNeo4R2kxaRQC4MHAktiYTFzzhi40xOUL4lY6bDqIqxS46rjRcxd5F2rXLauViXv5Z/D3dsYD43mPKErJ232wzuS1BS/74F8eoVpJCURHB5+ONDYTQoj2zTCMSMCilCrxLh8K3A3MAs4BHvB+/6LtZimEaAv528q4jXsBcL8TDi+1cBA3PNxcdjgYNx3sdnD6VXIIC/Nw9Kf3w3/WQ4Qd3jgVjm+GTFzQGa3+QdyD13PD3YcC8PWPGSxbmcqcX82mYsccF7TKTP0Mq86mde+G/n732yvruLd/9DdY4g3OfnI2HFbHgxK2rjqI63TDxnzILCKjq5k8IuUUhDgwSTkFIUS7VLS1yLdcTGCtqeaoidujeAl3cwf/5QE6L/uq0ce5cnKwoFNViyzxYI9t4Ah8mbh4FK84z+UPxpJJRxx7EfRUqkYQ1+qCz8+Fid19227gIQpy7fqmsg7Byh2uWFF7WzXJxBVCiHYvFZhrGMZS4G/gK6XUt+jg7SGGYawHDvGuCyEOIEWZ5uNnRlQTa7/uCf9yCpWVxMbCyScHDjn2qAJsxd6b4nKnDuQa4TQLW+eA1f59chncf5e+VHkIQ6b+G49Hh0QOmZpD1z59a52icdfxNkrzD+Ku2FV7nEfBWr+HIPql1Jlogb0zlFZBt/th0nNwzgf06GD20diyBapaoTedEKJ9kSCuEKJd2r7CDOIWERgobY5MXGuUeXNoVDQ++ujeZd6QFdniffVu62WJAcMCFoNJrl8Yy590JAvn1ibUcag5D7f569ti8WBxuuCUt+H3zb7tSeSTsfkvcNf9xGywIO7SpXVft2ZNXAniCiFE+6KU2qSUGuL9GqCUus+7PV8pNV0pleH9XvcnfEKI/U5JCXhK/IK40ZH1jG4mTz0Ny66BjY/CiScCcPvtEB+vd6ekwP13boTdfjeRiTE6u7U52LuA1UwGMQy46qK/gg699vo6HkNrDJs3g7d7gg5CA+SWQXZJ4Lh1uVDhrUWcFKm/ajY18597dCgke99rVLkJ35ntq2Xs8ehArhDiwCJBXCFEu1NSAiGVdQdxw5vhw3lbjBl9NCobH3305JoB0SJ7PBiNyGIwLL6SCtvsZqas2lTQ6OvW5HT61cO1eyDcDu+cDnMvJf+kqb5947O+BeeOYKcAYFeQJIHVq+u+bn3lFCSIK4QQQgjRPmVmQhT+mbitEMRNSYEO8RAf5quP27s3bN2qezJs2gTduxZCod8NZkJ8813fsELocHM9bAjn/HsSEycGNoA45RTFYUfsxRuM6mxaqwUGppnbl2UFjvvRr5DtGG/zMmsdr9cSBbZOtc7Xu5f5KN+6dXs+ZSHEvkmCuEKIdic/H2Ixg7id+gcGcVP2oFxVTf5BXKujCdHH3HzfYrE9Pmjn2KC8N2iZoV19m4wte54E5XTpDIUZfEW01XtDHmaD3slYj+rtG9e5YhM4t4ByBz3P9u21t2XXUcILoLzc41sOD4dIv/v/pjSIE0IIIYQQrWfHjsAgLtGNeJqsORhWUK6ATdHRcOih3vvIqjIodnjHAvEJzXv9MG8Q1xIFUUdhDYln9myDK6+E4cPhxhvhzTcbeT9fF1sX8z3BYL9+GX9tCxz35Spz+ZAMMCLBqKdNka0jDPE739Kd9O5Z6FuVIK4QBx4J4goh2p2aQVx7UmAQNy2t5hFNZ4/1C+JWNTKI63GwO70LF/M8t3Avv6Yd3fgLejNxd4Z3MTdty69rdIOcTgsDWc5XzGRTeRe46WvfvqjB5uNgvdzrcJdXgisr2GnYtq32tg8+CDLQlQdVGygvLfZtioiAuDhzSGFhE1+EEEIIIYRoFVu31gjiRu1F+YAmsQGuunfvzjOX48LB1sy1eq0xEHU4xJ7pC5jGxsKTT8LChfDAA74k4T1nCTPLIvj1pwjIvP1jCyzM1Ms2CxzRF6wNBKxt6TAs3VxfkkXvHmYtNAniCnHgkSCuEKLdqRnE7T40MIjboUPNI5ouNM58ZMrmrKhnpB9VSlF8Gi9yMfdzC390Pq7xF7To15AdaQZxQ7bVXau2IU6nlXN4A4BoSqDAfA22DhFssXQDIIoySn7JBcfKoOcJFsQNur3sayh+h4oKM1sgIsKsaQZQsOfVIYQQQgghRAvavLlmELcVMnErKiCnDLbmQF5e8DH5fkkN8eFgaaamZv7CDwJbM2SB1MfeSX8f183ctjIbiivB5QlIuGBCd/1arYkNnDMdBvnNe3U2vbua/S8kiCvEgUeCuEKIdqdmELffQS0QxI03P+UPcTY2E7cUh8MMYoaGNuGCNj3p7XEZvk1RazeDUnUdUf9UthZwHY+aG04cZC4bBgsjx/pWHQtyWPRPHrfdBmvXBp5n69bg558712/FvRuqNoFSlFfYfZvDwyHBL4Fgt7TIEUIIIYRol2oHcWPqHtxcHn8c+t8Fwx+ERx8NPsb/BjI+HIwWCOK2Bu+9PrFhusFZtY+Xw8fLYI1fN+HrJuvv1uT6z2lJgNQESPS+bymtYkDECt/umvf1Qoj9nwRxhRDtzu7dgUHchO4tG8S1uysbd5CnFEeV2S03NLQJ9bPsOgM3J64r+egbu5DiEtiwByUVlCLuvk99q/mWRJjSM2DItvg+AGynE8WloRx9xlHcey+cdlrgqfxr4vbtay4HlFSoWu9brKisPxN3D2PSQgghhBCiBW3eDDGYZbGIjq17cHPxz3hwOIKPKTTv+YkNByOsZefUUmzm03acMQx6J8EFo3SN3HcXm/tunAKjO3uPaSA72DDAngb9zIYgnQvXY7PpG+6dO6UnhRAHGgniCiHanfxcDzGU+NaTewZmCqSm7v01whP9grjOcjyeegZX85ThqPLPxLXWM7gGSyRYYwgJ9TCXCeb2P+tIha3P/T8RMX+Nb/Xx5NvAHjiXfzKOIIlcurCdr3qcQ2aW/hkuXgxuvx5nOX4VHa691lyeNQuWL/eueIO4TqcFl7ehms2msNv1vXn1/bnLpZ+aE0IIIYQQ7cuWLRBHobkhLr6uoc0nzC8gW9dNYoFfEDcurGXKKbQGaxIY3ifWrhgPcy+D/5sBw9Ph1oN1HVy7Bc4dZR7TmBIPtg4wwHzzY12+g57dzfdJ69cHO0gIsb+SIK4Qot0pyPdwDq9zJU/y++E3E59kZeJEve/II8Fur//4xohJNW8QIyjno48acZCnlEkvPcx8DmI2M+nk2NK0i4YMICzMxe9MNLfNr6MobV3eWABPmrUOnuMSvkk9qdaw8FQb+SQB8M/ijgH7FnuTASoqzPtpux1GjQoYxh13oLsJO3WgObCUghkJjvDrPyFBXCGEEEKI9qWiArKyYAEjed64GM+xg2Ho0Ja/cEAmbpCbRKWg2AxIEhsGRjM3NmsthgG2FHO5msXQmbc3TIETBpulESxRYGnEa7V1gpGdzfWFmfTuke1blbq4QhxYbA0PEUKI1pVXaONtzgFgxIk5TDTg++9hwQIYPbp5rpHSJYzXOJdyIigngmdvUJxySgPlETwlJGZuoge7AFgUcnvTLho+ltCQTYFB3K1N6AaWWwa3fhuw6WbuZ0BYSa2hSQlmnd93Px0csO/22+HrrwP7SCQmQu/egefYvh1wbgblBKDCL4gbEV5F9Z+Q8HCzqZkEcYUQQggh2pfqHghfMZMVnSZwycuvQOIJLX9h/0zcymBB3Eo4fxScNlQ3ALNaGhfYbK9s6eDMDL7vivHg8HsczprUyHOmwcA0SIqAjGQY3pE+VTnMRvfZkLq4QhxYJIgrhGh3/IOLCQn6gYGwMJgwoY4D9oBhtXBV9MuUlOjyAIMaUxbMXUREsRl0rYpvYpdbawxh4XYWMYCzeYOKoT346Ms5jT/+u7UBN3892UAh8YSH1e4o5h/Erembb/T3mkHc8BpPr6WkAM4dvvWATNwwB3gsYAkLyMQtb2SPOCGEEEII0Tq2bDGXu3cpACOkdS4ckIkbpAeF8gZ2w+36C8CIbPl5tRRbet37rBaI8HsQ2tbIIK41HnomwqrrfZt6v2XexEsmrhAHFimnIIRodwKDiy33WdOsT8xHkRrVkKsgG7tLN2UoJRIVndDAAbUlJFhwYectzubjJROodDShNsRi85P9FSefziZ0M7PwcFetof375JJMDlP4mQt4mREs8O0bMUJ/L/brbREXp78/95y5LTcXcAUP4kaEO8G1zXt98xjJxBVCCCGEaF82bzaXu3cpbL0gbkOZuJ4ggd19OhO3Cd2XLXGNG2fYwRqYbdK7pwRxhThQSRBXCNHuBARxk5uhAG4dOvuVlyora8QBmWZAM5N0QsObfgM8eVLgzerGLU1oKvHITLjnMEiLZu2Yg32bw8OctYaOH72dq3iSn5nGy/yLY/nct6/6tfp3s430Jj0cf7y5bdUqhara7luvqLRh4PFe0wVV+q5RgrhCCCGEEO3Xpk3mcrfOhW0TxK0vE9efsY82NgOwJoLRyBCLNa4J500OWK0ZxG1UMooQYr8gQVwhRLszetcsljGI35lA+rtPtdh1IqOsvuUGg7geB2SaN0yZpBMa2vQs4UMOCVzfsNmbzetwwaWfQcpd+mvgo3DCm3DNLFiTo8cYBlx8EPx5BUVWMws4PKx2Jm5cbCUVHVJ86z3Z6Fve7a2+4P+ao6L09+Rkc7mszKCoyAIlDrjtW0YddjEX8rIeH1kFVRsApJyCEEIIIUQ7Vp2t+SRXcvof98Htn5g3hC0poJyCo/Z+Vanvc9fnQU4puD37diauYQVrI5/Ua2xNXDAbpnmlpZQSHaV/nkVFkJPT+FMJIfZtUhNXCNGuuN0QV5bJIFYA4Nk1oMWuFf/ys7xMJhGUc1/xveAtTxCUpxh2mQ3EMkknNKzpn4NZbHFceOZCXn5b1zQoXFcFX38OHywNHJhTqr9+ByJC4N7DzX0RdioqzF/fEeG1M3EBrD3jIEsvZ7Det72oSAFGQCZudeDWMHQgt3rflm1xDH3pA3h/CQCPcB0vcRGREVXgLgRPKeHhUb7zSCauEEIIIUT7Ut386nTeJWluPswFbq2dBNDsAsopBMvErYSLP4HV3ijkz5dDmrX2uH2JNQVcefWPMQydtdtYto6QVwbfroV1uRjRofTueRELl3YEdJA+NXUv5iyE2GdIJq4Qol0pKIAYinzrlvjGdBzbMyHffcsFvMppvE9s5S48nnoGe0ohyywiu5OOtRqBNYo1hrQUHSGNo4BTH/p37QBuTYkRtZ6Tqqj0bzLmF8Q1DAjtC5ZIVE/z0asBrMSCbormcBg4HMHLKUBg3bQXbkr3BXABYighlV1ERniv6dwacKz/OYUQQgghRNtyOmHjRgBFrN89NrEtd4/tU52JazXACLLfUwlFfsHd+CaUGWuvbI1ofGyJ07VuG33OjjqZ5JrZ8Pyf8NEyqYsrxAFKgrhCiHYlP59Wu8E0/OoARFBefykAT0mtTNyYmD24qCWGtGQd6SwknlWpo2sNeZjrOI138czoD51j9XVLAh9Bq6g0M3F9jc0ip0H8NRB9CkRMYMikEnagu+SGU8n0mLm+Y4qKgpdTqKnHP78FrN/G3WSTpsspADh3+JqiARQW1vPahRBCCCFEq9qyBVwuiKQMO957xrCQwFIHLWXQICj8ErJuh9/err1fVUKh32Nc8U0oMdBe2To2PKYppRRAl2jISDcD4dsK6d8ly7dbgrhCHDgkiCuEaFd27269IC7hZgppOBX1Z5F6SpsniGvY6dXTvFk90/0mXDgausSxocNQIijjBh7mfU6jx/J5bP70TnjwSIgJCzhNeUWQTNzQwWCN9mbjDuaYGZtYmXqQb9zRxmzfclERQcspABx7rLk83fjRtzz7zDu4l9sAdDkFANf2gKSJgoJG/hyEEEIIIUSLqy6lkIBfDdyEVsjCBbBYwFYdLA5SvqGqFMq997FWA2L3hyBuJ30vXu+Y5Pr3BxPVCbp4b7o9ihFRy327Vq9u+umEEPsmCeIKIdqV1szE9a8DEEE527fXM9ZTAlnNEMQFpk0pI9xbx3ZVVhd2X3886p+rOMgxjwrM7OCt2+M46cKTg54jsJyCC0IHBna5tURiC0vjsPvNX/MHO771LRcVqjrLKTz6qP4eQxFDlLfUgwHrUoZ5Ryh6la2CdxeDK4v4OPOmXIK4QgghhBCtSLmh/Df9PYjqIG48fjdpCXt4E7tHvDVuVZAeDgV+geXYMLBEt86UWpIlrOF6t9Y9COJak6C3GeTuhxm5Xb1aBTtCCLEfkiCuEKJdyc+vcZPp/6x+cwsPLKewcmU9Yz2l8MIJ/KvLh5zD66yh7x4Hce1h8fTuYdaxWrshka3b48jfXbsb78KlHdldULv4rn9js/CoOIg+rvaFbMkwtSfY9a/6vpUrSWcHAEUFhXWWU+jcGex2N+OZhxVvoeCBaez2xBNKJVvoxlXvn6/rcuWVEB9j3oC3RqNjIYQQQgjhVTobyn6C8l+D7g6aiRsf1/LzqmZ471mDBXF3m/fDxIaDJbL2mH2RtYEuY/aue3DOROhtBn/TSzdhGDp4u2mTNBcW4kAhQVwhRLuye3eNIG5LNjjwq4kbTgWrVtUz1lMCPRP5gYN5k3MoIm6Pg7hYE+jTy+xau2ZDEjt21n2yOx6aUmtbQCZu3AAwgnTytfeAqFAY1823aSZfAlCUv6vOcgp2SzH9e+cyCb96uOO6UlYegoMwdtBJb/Mo+HE98THmDbhk4gohhBBCtBJXFji8T01VzAdVVWvImjX6e5sEcZWCpRth4Q6Yt6j2/oJCczk2DCx70jW4HbLVE8S1pegat3tyTr9MXPumbHp01TfeHo8hdXGFOEBIEFcI0a7UysRN2IObnMYKN28UIyivv56UpxiA4hKzCUT0nj7xZU2gj39H2Y2JZOXU0VkMeOaVMbW2BTQ2i6zjWFtn/f3Q3r5NZhB3Z0Amrn85BSrm07VzIZPxy+g4qCulZSEAfMlMc/uc9cRHZ/tWJYgrhBBCCNEKPBVQ+qUOlILOdK3aFDBEKVi2TC8H1sRtwSSJmhMYdx4c8QocdpU512r+N46xYWDUfiptn1RfczN7zz08ZwfI8CvDsDaX/n1yfaurVzqCHCSE2N9IEFcI0a4UFrZNJm4E5eTl1TPWU4JSzRXETSS9Q7FvNW93BBu31B2sTkmq3XEtIBO3rqQFazRYY3QQd1xXPht9BdeiC94WFTopLTFr2foycT3lULmA5PhSSomiEu/rPagrZeX6mgFB3J82kBC22bcqQVwhhBBCiFZQOhucmYHbKhcGrG7dqpvZAqSHmQE/Ehqo2dpcLBawV5dTUOCsUVKh0K8PRlz4/pOJa+9ilpGoKbTvnp3TEgEDMsDmDeGszWVMupmBsmrZzj07rxBinyJBXCFEu1JaotqsnEJhYe0hDgds3VyBKq+gshhcLl22IDTUQ2ho7fGNYk0gOtq8iS0tC2HOrz18668++Tk/f/a6bz0nL4qqqsByCf6ZuBH1JS3Y0qFrPHx+LksnHc86+njPGUlpsdmoLSoK/UhewXOgnGzclsihzCGOQkbzFyohgrJynYm7goGUJ3kf5ypx0GGz+XicBHGFEEIIIVqYuwSqNtTeXrUeXGZWwtKl5q4+STvMldYK4gKEhpjLlZWB+wrMpAadibufBHGNEAjpVXt72JA9q4dbLbYzjOniW53s+Mm3vGqVK9gRQoj9jARxhRDtSmkpTOMnjmIWf13yGISFtdzFapRTKCoK3O10wqBB0K1HOFd1TSE84y52kcrN3EdMzF50gTXsRMeYEeDs3Cjm/mXekB0yeRPDB2cFHLJsVWBtrYqKRmTigu5k69Wru/kY3Zr1SZSWmjd7kREeKP5Y1/4FJh20FQAHYfzDaLbtiPWVUwCD/BFDfMcm/rPYt5yTAx5PPfMRQgghhBB7zl0ExW8FrX8LQJVZHHXJEnNz3ojBcPvBcOV4GDeuZefoL8wv68Hh98i/8oDFAylREGqFuP0oiAu1SyoYBkRM3rtzWhN102Kvfpl/+pZXrY0DV26Qg4QQ+5M6cvyFEKJtlJYZzGMCAJcekdnA6L00diyOa47nlsfGspARtYK4//wD69fr5XT0XFLJwUARE2Ps1aWjYuJ8yz/P7e5bHtA3h04di2uNry5lUK3CYd4Q1x/ENTOZ/ZupbdicQGGReY44y3vgNuv0/vvcBdz96BTfemZWTMAcSscPhO9+BCB07hpSksvJyY2gvBw2bIDeZhleIYQQQgjRHDxlUPSqDuTWpeI3CB8DhjUgiBt7cCqcMl6vJE5t0WkGqCsTV1XAuSP1F4DbA5YWTN5obWGjofw3UN6kCXuvPWto5s+aqMukbcyHgzMIGdEHhupd6zclUFX6JyFxyfWeQgixb2uTTFzDMLYYhrHcMIwlhmEs8G5LMAxjjmEY673fW6nauhCiPSn1K/8aFd3CnzONGUPIbcfxuOUafmEq5eVQ5ZfUsGWLuVwdxAXIJH2vg7jRcUlBt48aal7n8GnrfcvVpQyqlVfG+pbrD+Kaj8t1Sdc3/KnsYufOSAqLzRvluMitAYelpZZyxHTz+nlFHSmriPGtu8d0gxBd4sHYkM+E7it8+zabJXKFEEIIIURzKf2q/gAugKcSqnStVP8g7pABu8wVoxWDpaF1ZOJ6ygPHWS2tO6+WZgmDkAydgQsQOmjvz2lNhL4p8OQxcFR/ojta6dKpENAl3zas3rL31xBCtGttWU5hqlJqqFLK+9EbNwE/KqUygB+960KIA0xAEDcqpO6BzcSw2ElMqPCt5/o9hfT66+ZyzSBudPReBnHjU4NuT4gz5xIZYdbNDcjEtadTUWn+bOoP4pqfxqe8NJu19GEXHehatJZyb2DYYvEQFekXvV6WBbd9x6GVX5KAzs7NLxtBabkZxI2IN2BYum99nHuebzlYbWEhhBBCCLEXqjaDY1XjxlYuJi9X+RIS7HY3/Xp7n8gyQsBoxTCAfxA3IBO3RhDXsNfdDGxfFTkD4q+ByGkQNnjvz2etXcu4f2/zzcvq1TZwF+79dYQQ7VZ7qol7DPCGd/kN4Ni2m4oQoq2Ulpi1ZqOi7fWMbC420tPM8gU7vY1dd+2COXPMUf5B3J10JMaMZ+6R9C5x2O3uWtvjYs2b28gIM7AakIkbMZmKCjOIXG8Q1xKhvwBjeyG90XXSJvFbwDUN/5j0nHXwwp/8Z941POD9PC0zO4WyMnNIVGQVjDMbMwwrNWtySRBXCCGEEKIZuUug7LvGj6/ayPx55v3tiCFZhIR47zuNPe3Mu4fqqolbMxPXsh/Vw61mjdZfEZOa53yW6FqBbv8g7qp1yeBY1jzXEkK0S20VxFXA94ZhLDQM4yLvtlSlVBaA93tKG81NCNGGZua9ThkR7CCdDs/e0/IXNOx0TCvxrVYHcbcGVBdQQcop7N1lo6JgxNDaj8P5Z98GZOKWeQPahg3s3agwE3brD+KC2dxsrF83W371LcfF1OgUPH+bb/FXdAOGZ58NDM5GxsTAhO46kHvNJFYNnObbV1DQwHyEEEIIIUTjKBeUfACuXQ2P9TPvN3P8+JFb4YhX4IQ34YJ3AuuHtbQ6M3Er4If1+uuf7eBojeSNfZxhBPS7oNzJjPLP6YB+A7NqXTJUrW2jyQkhWkNbPa8wXim10zCMFGCOYRhrGnugN+h7EUCXLl0aGC2E2NeEVRYQQQURVFDlqmz4gL2xcSNcei+PLlecxADO43VfEPeNN8xhsRQRic4WKCecQuL2OogLkJpqrbUtJclMd/UvcVBa5s3EDR2IIqRpQVxbCji3wbhuvk2T+A0LbjxYSUr0y4RwumHBdt/q36FjwaEzk/2Fx/WDiVkwUTdlK36il2+fZOIKIYQQQjSTsu/AuaPJh/0x36wvO3nAGnjee46oUAhp+ZJlPmF+dW79g7ieCrj+S8j0ZgwveQQ6tN609lmWeCAXnp4Hj/7K9HInV2FwEw+yam0yODN15rY1uq1nKoRoAW2SiauU2un9ngN8BowGsg3D6ADg/Z5Tx7EvKqVGKqVGJidL50Uh9iceD0RWmWmctuQW7m9YWQnf/0Pf7AWM4S9AZ+I6HPDcc+awjt5Pt0Fn4YLRLEHchKTIWtsOnrTJt+xfWiEnLxIsoRAxCadT/6wArFawN5S4YPPeEfdKpDBM19JKoIAhLAUg2T+IuzQLyr0ZwF3iGDGjxqNuQGQkWMKHBGyLjzWjypKJK4QQQgjRDByroOKfuvdXuuDCj2DS/+CnDb7N5eV2/l5s9i4Y22m1eUxaK/cPT02BjjHQLR5sfgkMqgIK/YK6dTT9FTVUZ+J2jvXds09gLgBrNybhclnAuamuo4UQ+7hWD+IahhFpGEZ09TJwKLACmAWc4x12DvBFa89NCNG2ysshHjMCaElKaNkLRkSYi95M28xM2Lw5cFjNUgoA0c3w4XZiUuDDED277SYt1ezs1r2L+bPYtC0FYk4Ha0JAFq7fS6ib3Zslaxhs6TrMt/lgfgAgOdGv2O0fW8zlg7rSu1fwIC7WWLB39G3zDzhLJq4QQgghxF5QCpzboeTj4Pt3l8NNX0OX+2DWKliTC6e94wvk/jq/Kw6Hvs8c0DeHpKps89gOtZtjtah3XoUlV8PfV8LE0eb2qlIo8z51ZgDxEsRtFEus/j7W7E0xnMVEUorDYWPjlnipiyvEfqwtMnFTgbmGYSwF/ga+Ukp9CzwAHGIYxnrgEO+6EOIAUloaGMQlvoUzBSLNTNhIdCAzP19XWfAXLIjbHJm4ffsGrh80cgfYu+jmBzEn02PgRN++rTs7gV3frDWplALogKs1DoDcgYN8mw9DN8jwlXBQCj5Zbh43oRvxCbWjxFFR3oXQob5t8XGVJKK7HksQVwghhBBiL5TPgaLXQHlq73trIfR9GF6tkaGrgL90X4NvfzLLXB02ZQNkm/0f6NjarWf8s2/9Mm8L883lmDCwRSEawXtPT2o09NFPJodTwQl8AsDSlWk6E9dd2DbzE0K0qFYP4iqlNimlhni/Biil7vNuz1dKTVdKZXi/727tuQkh2lZJSdsFcaszcXfvhpkzA4eN6rTOt9ycQdxJNRrVHnRQCMSdD5HTILQ/KR1Tffvy8s16Yk0O4gKE6Ihx2WgzcjyJ3+hIpllO4f0lsNpbySbCDjP6EpdQ+wK+SjahA3WDhcd+Y8Ktt5BDCh3J5PvvGzknIYQQQggRqHIxVMyvHcDdXQ4jnoBrvwx+3Ipr4b/TUAq+/iHDt/mwqRshq9gc16GVg7iG35NnHr8gbkGeuRwbBkZjb2oPcFa/JxWPH+hbvI17MPCwdGWqTsxwrGiDyQkhWlqb1MQVQohgVq9u5SCuXwQ0ggoMPMydW3tY5/sHEUUJvVnLU1wJNE8Qt+bLS+3cJ2A90e9pt3y/ZIU9CuKG6pu8pH42fmcCAHZcnMdrupzC2ly4ZrY5/qzhEBNGXHztF5pSfe9viQBbJ5i3hagN27CgOBQdwc3KauS8hBBCCCGE5imH0m90EK6m/8yC7UW1tz98JOTcASk6k3XRsg5s2KxvIqOjHEw8aCvs8svETW/l7mH+QVz/TNzdfjlbceH6vlI0zJqokygAzh2lA+BALzYylvksWZGm91X+E/zfkRBinyZBXCFEuzFvXisHcS0WCDczXKuzcf3d+t9CBvTJoYwo1tObTDoBzRPErXmO+AQjYD062mxaVl5uBm/L/abZ6CCuLR0sEfTNyOMjTvJtPo33SI0tgn99BG7vjV64DS4ZC4aFbr1q/zdI8U/gCMmAyT18q1P4BahdkkIIIYQQQjSgdDaoqtrb3R44sl/gtnNHQvbtcM7IgM3vfWqWzjr2iDWEh7sgyy+I26EjrWr1Ovh6DXy+AlavNLf7d8KVTNzGM+xg9dYPjg+Ho8x/FzfwEEtXeJ/kcxdB1Zo2mKAQoiVJEFcI0W5s2ACJ+KWcJrRwYzOASP9s3NpB3Msu3kVsjKPW9uZobBYSErgeGhq4bhjBs3H3KBPXMCCkL0mJ5XwZdyKlRLKavhzNLBJTKuH6KdArEUKt8MapkB4LtnQGDLTXmlcH/wQOew8Y3823Oo2fAEV+nruRExNCCCGEEFStB8fq4PusFjhlCDx3PEzvpTNvHzrSzMj0crsNPvhiAKHojNfTjvf2OvCvidupc0vMvm6vvwHnfgAXfQKz/Wpu+TdRiAuXIG5T2Pz+G54y1Ld4DLNI2rWZvHxvVnNljbrJQoh9ngRxhRDtxvbNLl8QVxkGJLVCl9pI89Gt6uZm1fr3h7SUAuLjKoiOCgzk9uzZ/FMJFhj2/xHkeUuH7VEQFyBEZ8x27O3iNN5jLPPZRE+SkyvhqP7w26Xw7b9givfF2Xtgt8OQIYGn6drVb8XWEYb1hDid0dyZHQxnEXm7djVhYkIIIYQQBzBPhS6j0JATBsE7pwff53Cx5vqNPLnzPHaRxoC4DRw8aZN+pH6TX+mCzt2bZ86NFWY+9UalN2HCUw4FfvfdcWFgkSBuo9n9bsbHdIFDe/tWT+EDXRcXoGoTOHe28uSEEC1JgrhCiHbD2J2PBf1Ivyc2Fmy2Bo5oBhF1B3GXLgXcJVgXbuPN618h3JupO2pU88WXr7lGfx83rnawFJoxExfA3hMMC3165fElR1FEHICuiQtgs8CAVL/x+lP+/v0DT9Ojh9+KYYHw3jDN7II8gbnkZ+9owsSEEEIIIQ5gFX+Bu5F9vS1G8O12K3Ef/8rxfEYcRTzY7zHsdg9sLoAiby3ahHDo3CP48S3FP4hb4b3n9BSbcwKIkXIKTeIfxAXdy8IrlWyWrkwz91WtQwix/5AgrhCi3dhcmkwyOQxgBUWv/q91LuoXxPUvp9CzpzeGXJgDM1/l2DsuozgsgWsvX8Hbbzff5R99FNatg99+q/VEHNDMQVxLONg6k9Ej8E1CZKQz+Hibrpk2daq5qXNnmDy5xjh7RxhlPtY1nnnk5brAsbYJkxNCCCGEOAC586EiSGddgJ82QHZpo06zan0KD1Ze61ufXv6tXugeD39dAS+eALdMB2srNxDzu9emzPtaPCW6EdvITpCRBJ3iwAgNergIwhoHtmRzfUpPMrsN5DC+5QJeNTNxARxLW316QoiWI0FcIUS7oBQUFhvkkcwqBhAxfVTrXPiWa+HpY1l0ze1sxKyR4Atc7sr0bbOlRfDI/evo3ZtmlZEBVmvwfcGCuJnmlJqeEWzvysxD1mGxeAC47Py/g4+zxvi6BJ98Mhx1FAwfDt98E2Sutk4wuotvdTzzyMsPB8fyJk5OCCGEEOIAojxQ8gkoV+19WcW6luzwx+Hfn0JxZe0xfu54aArvcRoedFZA2NLNsCFPZwl0T4BjB8JZI8AIq/c8zS4y0lwu99bmde+G04fB1xfAvMvgX5ODZzOIuoX0MZdDbWx88hq+5zCAwExcd4Fk4wqxH5EgrhCizS1fDr16gdOpb95CQlyEhbfSDebRx8ApQ7AfP4TdmBHTww/3LvjXdk2JAktM68zLK8bvcqXe5IUNG8xtvXrRNPYuDOyXw9zZr/LRKx/y1P111F+zpfsWw8Jg1ixYuBAGDAg2tiMM6ITT+7hcOjuxZBWAcz0eVyW//w5btzZxnkIIIYQQ+7vyX4LXLFUKhjwOlS5wemB9HkTXnam6cGkHPp49gDyS+Z2J5o63FwUONELAqCNzoKUEy8R1FwSOae3A8v4gdGjA6pAB5nuWlWuTKS+3mzvLftL/poQQ+zwJ4goh2tzFF8OmTeZ6bIzDlwXa4gx9g9O7Zw4pKXpTSIiuUQvArhxzbEoUWIJ0H2tBUVHmcnUQd+NGc9ueBHExrIwdtYMTj1qFxVLHDZ2tCZ2LDSuE96K0j1ljLX37KvA4uODcPCZNgt69vTWGhRBCtCjDMDobhvGzYRirDcNYaRjGVd7tdxqGkWkYxhLv14y2nqsQB7SKf6Di9+D7PlsRsDp3+rlsy4wLOtTlsnDJ9TN96yuGHOp34JbA4F1bNA8LyMQtA+XUJST8SVOzprMlBfzcYmMc9M3IBcDlsrJoWQdzrGsXODfVPIMQYh8kQVwhRJsqLYX58/VyRzLpSCYVpRYwWjeIGxpSyR9/wH33wfffQ4cO6JvebL/6sSlRYIlrnXl5+d/3NksmrhGiA7kNsTchiAsQkoFrmG6ysJMOuErdKAWvv9MJgKoqePLJJs5VCCHEnnAB1yql+gEHAZcZhlHdovJxpdRQ79fXbTdFIQ5wVZug7Lvg2ZE/b4RLPg3YNOnxe+k6/GoOPeks5vzSI+Cw/947nQVL9BNUoaEuDrsXsHpLEyzL0udy6TJaWCJpdQGZuFXg2gnuvMAxkom7Z6ypAatjR+4gklLO4XWSb3wd3B5zZ9n3OoAuhNinSRBXCNHyPJX6K4gffzSX7+dmMulEUWUkvP1h68zNsOkaXMpBz55w881+jbtUOeSUmGNTonQjgVbkn4lbVqaDodWlCQwDeuxJg+GQfvXvN2xg61D/mJrs3TDOGU43NpNOJi+4LiJ/d2AgfpMkAAghRItTSmUppRZ5l0uA1UB6/UcJIVpN1RYofj94HdzMIrjo44BNPdiI8r5tn/NrTw49+WyGT7+Yp14aw9mXHccj/xvvG3vHdb/Qa4wTLj7IPMFnK6D/w/DB0tZLkvAXkInr1DWA3QXw8l/wyt/w8TKoaOUSD/uLkMBGHQcN384yBvM659Fn9e/wjV+TYVc2VC5u5QkKIZqbBHGFEC3LlQeFL0Hh/8BTXmv3d9+Zyx3IAsCCCuzo1ZKeegom/A+GPQDPPhu4z1MGOWXmehtk4tYsp7B1K3i8H6qnp+t6tU1mbyDyG9JTB3KbwpJAXL8YttINMCgoDOOH3wKvk58f9EghhBAtxDCMbsAw4C/vpssNw1hmGMarhmHE13HMRYZhLDAMY0Fubm5rTVWIA4NyQfG7oKqC7FNw3ZdQZCY+XMQLRPSNYuqEzb6mtABLVnTgqluO4K2Phvi2HXP4Gm64fJ5euWGqbmZWrcoNw9Nbr1yZP/9M3AonuIv18gM/w3+/gUs/A4cEcfdI2HCwmG8Gxo7awQec4ltXj/xqZmGDNDgTYj8gQVwhRMtRVVDysa575S6Gsm9rDfn5Z3O5OogLQMeOrTBBYPduWJsD2wshe1fgPk855JSa66nxYKm7qURL8E9eKCuDO+4w13v23MOT2pLAWk+DtrCD6t5XF8PAFt6VuNgKADweC59/0zdgiARxhRCi9RiGEQV8AvxHKVUMPAf0BIYCWcCjwY5TSr2olBqplBqZnJzcWtMV4sBQNid4ABdg1ir40ayZdTIfsGP6VBbOeYGfPn2D9X+/wGWXVhEepHzs6Sdn8u7zn2C1eussRNjh1ZNhaEeY2hNmnwcZSWC0QTmF+HgY3A1Gd4bB3ie93B4odphj4pJaf177A0tYQB+L/n1yeSXiEirR71eMVdlw8Sfm+KoN4FjZ2rMUQjSjJqZaCSFEI3lKofBVcPvVlHWshIjJYNVZtk4nrF9v7u4fuwmKvCsdmvg4/57yzw4oLwncp0oDg7hpgXWnWkNsrLn8+eeB+8rK2HMhA6Bifu3t1kSwd9vDc/aiT698/lqo6+B+NKt/wO6sLKis3MPsYSGEEI1mGIYdHcB9Ryn1KYBSKttv/0vAl200PSEOTI61UPFX8H3bC+HqWb7V57iEeWmHs+K5/xEa6gagR0Yyzzwbwp13wauvwqpV+omtY4+F6dPTMcqGB55/QCp8/6/A67Ryg14AunWD3x8Ax2pzm38ANyoEQtpgXvsLe2eo0m+orFZFrzFOnv75Cq7nEb1/9ipdG7k6gF72ky6tZkg+nxD7Ivk/VwjR/FQVlH4XGMAFUG4oNfuobN4Mbn1fSs/0EqxF3nILFgNaK/snINW1RhDXUzOI20qBZT+9e9e9r6qORI5GCR9Te5slDGLP1MV294S9GyMG7ySBfP7D4/zpGUM0xQFDfvhhz04thBCicQzDMIBXgNVKqcf8tvv/ETsOWNHacxPigOVYCaVf1L2/Qwy7rzyabFLIJoVbuI9H7vye+DhvaQXDgHD9pFRSEtxwA7z+OjzzDBx8sPfWLfKQhssltEUQF6iVO1ZYYS7HhYMRJL1YNE7o4ICA7CGTN3I3tweO+d8f5rI7Hyrr+DBBCNHuSRBXCNG8nDuh8DVwLK9j/ybfp8Xr/Moyjerkt5IaD9ZWqo3lH8QtDQw44i6BxAiIDwcDSGn9IG6nTnXv26sfkTWuVjMEIqaDNWiJxMaxJBAX5+JbDudxrmEUC/gXLwUM2bE9SBdmIYQQzWk8cBYwzTCMJd6vGcBDhmEsNwxjGTAVuLpNZynEgcJTDmXfBe0N4WOzcPuu68lgPQfzA/1GlXLqcX6fs4QOA3s9N4Wg+xk01Ly2rYK4NXstFPs1PI4NA4sEcfeYNQ7CzeZ2h0zeRCnRXMJz5phv1sAuv2SVivng8cuGFkLsMySIK4RoPq4sKHpNf6+LUlD6LShPQBB3WKLfjWpaKzU1gxrlFEoD96kS+PXfsPYG2H4rhO1FgHMPGQYcdljwfdVZzHss8hCdfWsJA1syhI3Yu/MZBjGxYbzBOb5NN/IgBmZDhbzs7GBHCiGEaCZKqblKKUMpNVgpNdT79bVS6iyl1CDv9qOVUvX8sRZCNJvSWWYzrzpkZkXz0tvDKSGGFQzijut+NR+MMiwQMaFx14qcDkZI3fvr64nQkmoGcQv9griSibv3wkb4nqQb1D+b1ORSXuBiVjBA769wwQ1f6fdhoP89BiurJoRo9ySIK4RosuJiuOYamDwZ/vc/+O03UO5yKP4AlLPhE7jzoWI+u/z6iPUM32SudEhp/knXJaCcQo0grv8Nd4gVLFGtM6cazjwz+Pa9LhtsS4aE6yHuEog9v1lqY8XGRfAKF1CC/lmlkMtwFvn252ZJp3MhhBBCHCAql4FjTfB9O4thuf4s5eFnx1NVpQOdY0bs4JApG81x9l5gTWjc9SwRENKjnv1tlIn73i/w4p/wxO9Q7oQiv3IKkom796xxEDEV0LHcgydtAgzuwq8j8rdr4Uq/kh7lv+gnKIUQ+xQJ4gohmuzmm+Hxx3Xw9rLLdDD3qw++AXdh409SMZ+8HPOxng5uv4SgDmnNN9mGBARxa3QK89SokWtpm+yFLl1qb7NY4Mknm+HkhlXf+DXTzbOyxFJJOLM42rftdu72LefmAVWbghwphBBCCLEf8ZRD2dfB9723GIY9DjNfZfcnO3jhTfNpqNuu+TWwPUH4yKZdNyxI3wPQAV7D3rRzNZfbXoVbv4P7f9KlFAIyccMkE7c5hI8FSygAx87QHxx8zIl8H3mk3t8lDnrX6DlS/EbtHiZCiHZNgrhCiCZ79tna206/eGbwwSt2wTWzdEH9Kr/n/z2l5Gdn+lZTSrab+3rUk0HQ3ALKKdSoVVYziGuNbfn5BNG5c+D677/rpnB9+rTJdOrVtZvOwH2Ua33bjmY2A9E1kvPyI6SZghBCCCH2b8oDJR+BpzJw+6psGPgoXDULFFDhIuqKt4mp1IG04YN3MuPg9eZ4a4zOxG0KezewRNbe3kbJCABEhpnL5VVBGpuF1T5GNI1h95VGmzF9PZERVYDBGWWvkX/keJh/OVwxPvAYjwOK3pRArhD7EAniCiGaxFFHDfyS0lC/QS546Bfo/n8w7QV4ezHcOQeOfCXgpi0v3wyghoc5Idp7jj4NNGVoTgGZuH5BXFUFizbDp8th7mbILm2zm9/Onc0GZ4MHw4QJwbNz24NDDtNB3MUM5ytm+LafzIcA5OZH6MZ2rrw2mZ8QQgghRItSCsq+harNgdu3FMCU5yEnsHzXBZbXyCEVgNuu+S0wCzdsdNPLXRkGhPavvb2NkhEAiPDLtC1zQpF/Jm40gS9a7LGIKWCEEBHh5OjD1wKQRzLPpt2o38sE4y6Eij9bbYpCiL0jQVwhRJPU25dqYz6MfQY63weP/AplVYH748Ihwmy2kF9gBnELbzwONtwIK6+DQ2fQavyDuOV+WQGeEh3AveRTOP5N+HhZm9URs9lg9my480746KM2mUKj2UMMBvTVn+b7Nzi7lkfpzVpy8yN1dkr5j201RSGEEEKIllO1Gir+Dty2owhOfDNwW1wYT536Mm9XnQbA4P67fIE3QDeeDT9oz+ZgD/JUm6WRdXVbgn8Qt8IJA9PghEFwcAb0Tm+7ee1vjBCImAzAacct921++vNpVCb5NY4uccASv3q4lf9A5dLWmqUQYi/YGh4ihBCmj97LBxJrbR/CEtSMVzAKKmofVO3Z4/j8hwHc8n/TOOmoVeTtNoO4SQnl+lP4lGiISq77HM0tLQ0+vQ+s6yG+m7ndXQw5fjVyUxN1/dg2MnSo/toXTJpQwso1CXzCCWwMyaBn1XoiqOBJruKYvNkoBUbVGnBmgl1u3IUQQgixn3DuhNJZgduemgv31v7wOn/ubdwyxuxee9u1v2GxKL1iGDoYZ+zh2/WQvroGrsfvKTNb0p6dqzlE+gVxy6vguIH6C8C2t516RYDw0VDxB0dM30Dn9CK2Z8aSlx/JB58P4JxTl8Jf2+Cyz2BbIXx7IQxP19njpbPA3gWs8W39CoQQ9ZBMXCFE47myuO6m2gFcG04+4qTaAdz0GHjxBMi6DZZdg0qO4rhzT2XV2hTuemQK+X5B3IR477FGZNMfG9sbYWFw2HgY2xUG+GUoeIoDH3dLTWm9Oe3jbr25irSUEqx2yLrjbLDoR+QO5ztGOv/WpTeU0s0+lKuNZyuEEEII0QzcBToQ5l8H96cNtQO410yC7Nt5/JUJlJbpUmID+uZw/JGrzTHh43Wjqj1lGGBLDdxm67jn59tb/pm45c7AfRaph9usDDuEj8Vm83DZeWZG+GPPj8VT7jIDuACHvwybvPVwlRuKPwgM/Ash2h0J4gohGsdTirvgg4BN40Zt47gZq3Fh40muwmPx/ko5dgCsuBYWXw3HDgSrBdKi+e+9B9d5ervdoxesbVGywNupV/kFbT1FgUHcNMkSaKyO3bqxdfGz5Kx6mAn/csEZw9hi684xfM4fjCMn11vCwpkJlQvadrJCCCGEEHvLsQYKXwLXrsDtU3rCBaPM9QdmwE1TyS+I4KmXxvg233bNr2YWri0ZIibt/ZxC/HpMWMLBmlr32JYW4Ve+rKJGEFeamjW/8PEQksGFZy4iIkKXt1u2Ko33vh4Gdx8WOPagp+EHbzM91y4o+ViSLIRoxySIK4RomHJB0Rvs2K4CNt9/y49MPGgrYPAsl/P4tGfh4SPhxRMhJSpgbEWFjQefnlB9QibxK1GUAHA5T8PLf8Hm3WAEHtcqDG8Q1+PQDc0A3PmBQdyOnVt/Xvsqw05IVAZxsd5MlDsP5cyBc5jFMYBBTp5/HeLfQDmDnkYIIYQQot2r+BOK3w+ewWgx4P4j4JGZsPm/cL4O6N71yBRfU+B+vXM58ahVerxhQNRxurbp3godaJYCs3dv3SfdagroQVGjZ4YEcZufYUD0iSSmpXH1xWbTslsfmEbZ5EFmM+lqp78LT/yul6s2QcmngRnlQoh2Q4K4Qoj6VT9a48pl87bAGkmTx21lUL8c3/rrmcfBOSODnmbtBl2H62i+YDHD+JUpXMWTgOL/Yu6Cm7+FMU/Dwp1Bj29R1TfKLg84vY8UlWWZnXNtFkhMa/157cvC/f4dRIcSl+z2rQYEcT3lUPFXK05MCCGEEKIZeMqh9Gso/dbcVlwJp74Dz8wztxkGnD0CIvX95up1SfzvNTM7977//ojV6k2UCBsB9mYqe2CJgNDBetnevXnOuadqllP479dw+3fw6K9Q1XY9J/ZrllCIPpnrr9pCYoL+gGHLtniuveMw3Uz6koMgyu/Dgvt/ghf/1CXPHKug9CvdjFgIAZ7Shse0EgniCiHqVh3ArdKP2GzeFufbdfPUD+DDpYwdtBm7XQfoVqxOpaQ0eObAGm8QtxM7GIrufnoTDzCeeUQV5+tBsWEwYlgLvZh6HHwBdLsfOt4Dq/7WNyxZm8z9yZFgi2n9ee3L7F3BbmYvpySZTeJy8yPA45fVXf4zuLJbc3ZCCCHaG3dJW89AiMZRCpw7dPmECrPmKLvL4aJPdB3cw/oEPdTjMbjspiNxu/Xb8KkTNnPsjDV6p60DRM5o3rmGj4WQHjorty3F+N1HF1fCawvg+T/hwV/AFlHnYWIvWcKJTT+Ux++Z49v0wpsjeeHNkbqswvwrIN4vwH7rdzojVylwLIfSL9pg0kK0Q+W/tfUMfCSIK4QIzlOmb06r1vk2bd0eB8CpvMd9P58Kz/5B5KpNpCabn0wVFIbXPBOZWdGcdvGJALzGeRSj695GUcZcJpoDp/SEkNgWeDENqHKaTRbyN4I7B7ILzf0pUWBpgzIP+7qwob5FM4iriPtjCUx4FrYUeDe59U2ix9HaMxRCCNFeVK1q6xkI0TB3kb5nKXxZNzIDKKuCL1dD34d1ALdfiq4xujqn1uHPvDKan+fqrFiLxcNjd32HYQDWOIg5qflLHthSIPZsXRO3LQ3sD4f3gZOHQOc488P8CDuEyD12i7KlceZFkzjx6I2+Tf++YSb3PjYJR1wsfHU+9Ek2xz81DzKL9XLlUih+T78vFOJA5c6Hqg1tPQsfCeIKIWqr2gCFL9RqzpCdG8lVPMF7nK43rM6B49/koNB/fGMKiwLrWpWUhtBpyLW+9Qoi+Lz/RcGve2hvsLZBENc/O2D3Wv14v3893JQosLRFw7V9nD3D92akQ6rOsHqAmzjpkztgQz5cPQvc3se0nDt1R2chhBAHJk9Ju3pcUYgAnnKoWAAFz0DlEr1NKf34eff/g/M/NMeuzoGdRdA3OeAUc//swnV3Hupbv+HyeQwdtEv3Zog+HqwJrfBC2sgpx8Obp8Izx8K4bub2uHCpidsKDFs8r7zZlVEjigBQyuC2B6bRc/RVXPnqWXx+9aM4+6XrwU8dA5383o851nr/3S+ShmfiwOTc1tYzCCBBXCFEoMolujmDu7jWrk5//cETXB248eUT2ZWS4VvdUTQD4i6AyEMhpDvP+dX8qjb2xXS+sB4TuLFbPBzdHyxtEMSN9btmYR5ULg4SxJVyCk1mjYHwcQBMGbcFgC84Bnf1n555W+CKL/SbIADHSnBub/15CiGEaB+K3pBArmh/yudC8dtQ+iV4qmDuZki5C1Lv1o+f13TVBLjncF0L12v9pgSOO+8UnE5d/3XIgF3cecOvOlM27kKwd2mtV9NGbOZiYYW5HBsGRmjt4aLZxcTa+PbbUCaMK/Jty8yK4emXx3DcJWeRuHoVlyW9xlnf3MKr7w6jtLpEXoUTHKVQMkv/jnZmttErEKINOHdA+a9tPYsAEsQVQpgcq3SDhiCfsjo/XMUta/4TuPGTs+HoAWRmmQHOa2/y1kKNGMfKHedw4z2HBBxy+7W/kNG7iFF/HkTBlBEQZtOPV318NoTa2j6IW+x9pD81Gg7OgMEdoFeSlFPYU2G6wVmPbvqRw/mM4z5uMfd/vAz1n9nmevF7UhdRCCEOVK5cHSQQoj3wlOn7krIf9BNDAG8tguPfDD7+rOHw27/h5mkBm9esT2LyMeeRl68buyYnVfL5hxsJTTkP4i4GW2pLvor2wfAL4uaXm8tJkWCRTNzWkpAUxs+/xvLYQ7mkpgR+YFZCDP/LO5e3Px7CBf85hvQh13DlzUdQefjbkH6v/uDio2+g6E0o/giUs41ehRCtqGwOuAvbehYBbA0PEULs95SCivlQ/qOuT1rTrJXYL//Yt7qavqQvOJGYLjqbICmxnM3b4gFYswbWroU+feDMM2uf6q4bfwGgY9dK+HAmqCPNTAVLlO6k2tpi48zl4kr9/fA++gt0Rmlz1yg7UFjjILQPUWotISEuqqps3M3tHMVshrEEAOO9xTjPOwj70BT9uGLJBxB7buANvxBCiAODKxfKvoeI6WBI13rRBtxF+qms/B/g+T9g7haY2B2uGA9nDoeYUPi/n2Hzbj1+Ynd4ssYj6F7f/tSLM/59PLsLdPOu8HAPn38RRrf+41vxBbUDAUFcv/qqiRFSTqGV2Wxw9fXJXHZZLr/9tJYffgjhj7/i+GdJGpWVdt+44pIwlr9cThh+j5Jf9Alc8ikM6QD3/QBT/w0hfSUQL/ZPzkxwbm3rWdQi75CFEPrNUsX84Pu+W6v/WHttphv3jHqBd7v85Nt2/y2/cMiJZ/jW+/YNfqpnn6nSgVr/RyX9HjVrs1pgcfHmckmQ5lqShbt3oo7DcD1HVZX+k+PGxlHMZgedfUMKTpxNyp+n6owM5w6d9RJ1eFvNWAghRFsq/wOsHSBsUFvPROzvVBVgB+cWcOdC5S747XN4Zq5uTgYwtSfM7AdW7wf60zNgYSZ8uQp+ugTiA5uGVVVZ+WtROs+8MpoPvxjo2x4ZCV99ZWHcuFZ5Ze3L7mJ44GcoqYQ3F5rbEyLAaOOmaweokIhkDp6ZzMEzgapNVBW9z+KFlfz6RzdefW8YazckMZhltQ/0KFi8E2a8CLwIxwyH116B+KGt/AqEaEHuEij7uq1nEZQEcYU40JX9WHcAd846OPt98JYszSWJQ5hDn1hPwLCDZ/Rp1KWOmBEC0cdC0dvBB1iTGjnpZhYTZy5XZ+L6k6Zme8cSBpEzAjZl0okJ/M5cJgKQUrwD+j8Cs8+DMV2g4k9dJy5seFvMWAghRFsr+0r//Q3pVv+4wkKdWlZcDB06BH44LEQwBQXwzZM6gDiuJzizYOI9uiFZMD9vhHHPcm/o7dxn3IpSBtFRDmKiHEQdV0VoqJuwUBdVTiv5u8PZlhnr++C6WseO8NlnMHp0K7y+9sjhgsd+q709MUKyONuDkB6EJPdgzJTFjDloAddfPo8ffu3B068cTvp3O3ifU5nI3ODHfrEIrr8IHr4Awg+C0MHye1js25QTyn9ot/WfJYgrxIGs/Dco/73u/RN76JqwS7PYaU9nkvMXNtKLF//tV6/OlgphIxg1Cv75p/7Lde8OqJ4Q0h2qNtce0FZB3Fi/DODiIJm4hmTi7rXQPlz/nx08/EQn36Z5TOBynuYZrjDHHfUaLLgKusRB6WxwZUPkYVLOQgghDjSeSih+E+yDIfpoqKig0BnJJ5/ATz9B4ZpdnLX+dk4teSno4dlJA3j7PwuISgojLg7iQ8sZ+tJlJH//Do6ph2Md1B9bl44YYw+C6GjweHQgePRosAYp4+B2g8UiwYl9SUkJ7NwJxUWw4Ge48R4o8XuUf1AafHMhZJfUHcAFFjOUJ/gPnzmOoxL9uLnDYfPVuG3IySfDU09B6gFQ+rZOcYnBtydFgxHSunMRdQsbBmHDMJw7OWTGKg6ZNpsNG0J45tWHOfLdYUSV5nM/N3Mu5nvBb5OPZ2Pns5m6cgd9en2Ode2bMOUxuORcOOYUmDQJIiLa7jWJA4/brf9Wz5kDDgdMnAhxcQF/v5XSX5ZgbzFLv4HKpa023aaSIK4QByKloPxnHcT1V+KAaL+atGE2eOVkuON7Jv76HZuc+vH37l0KzDGR08EwePhhmDKl7kt+Xf00gmFA+KTgQVxb8h69nL0WF2culzj0z+f27yEpAlKi4LyJbTOv/cxNt3bg4ScCtz3L5SSwm7u5A2WzYJw2FEK9b56Vgoq/wLUdYi+Q2ohCCLG/c3tgVTYs2QnvLYEFO3y7diX3Y0bpRyyuGABAPCE8QB1PEgGxeRt4+NZCskkDYCp/8hGzMHASNmc2zJld65idYd15fuTLbO81jYGOhVz73shaY/IHTaZs4EGEleRgxMXhGjEG97EnEB5tIzwcwtYuxfLIQxAWBueeC0lJsGyZ/t6pk26mmpxsBorXrdNjO3duvQBxfr4OXIfso8GznByoqIDwcP3z274dbr4ZMjNh1ucwPAkuuB2+/K7OU6jIEP7419V8+dBYcr7K5xWerDXmJ6byH55gOYObPMVu3eCQQ+DCCw/g7Ft/ERG6HIU78Gk+EtugobFomL2j/gqfQK+hm3ji8ULuvnMer7+VzL3PP8m/Nr/EObzBzdzPd7kTePrOI3HfaSM01MXNCU9wO8Dzr+svoDy9K9awcGyRYVhPPB6GDdOBtVj57y8a4HLphju7dun1jRtRmTupyi3CvWEz1hVLqIxNY/6/XiYrtg8JS3/gmKdn1Hm6eREH84ztaj4uOwLDYnByh995Ou9U4st3moN6JsL2QkiLBqcbskrg1XPhvBZ9pY0mQVwhDjTKoxtHOdaa237fDLd+C2VVcN1kOH4QhHjfXHSJI/vB89g00KxfGhfrLTkQPhZCegMweTI89BDccEPtS44aBYf7lzcN6a4Dtq7cwIHWNkpR8L+BKK7UgdwX/tTrEXa48Ja2mdd+JiHRisdZyKX/2szyVYn8360/MOno87mH20ljF8OmlDL24e5gqfEm1rkTSj6FqKPbpvGdEEKIlrVoEZx6HqzfUeeQjbnxxJIDDCCKEr5kJoNYUef4MBzczP1cxVMA7CKNRHbXO42YyhyemzuIvLkAI5jFL3zBMcRR5BuTuPxXEpf/6lvf9nZnhlx9KIXo+vr/4Sce512989VXg14nK6IH1x65is7ubfzfZ/2wKE/QcQC7x82k5OgzcB13Eha7FUtpMUn/vZDQpf9QMeVwQpf8hVFagqvPAIzKCuzLF+EcPobKE87EceTxGKEh2DasIfKRuzDKy7Bu3oB13WpUdAxlL7yNpSAfS84uVFoHiI7Gc8xxGBYDwwAjexeWZUuwrFkFpSUY2bugSxeYPAVjx3aMkmKMIYN1lDI/Hz7+GLZt0wHilBT9pjsxEYqKYMECqKrSj2Vdfjn07AmrV8Oxx+pAbMB/iBidFQ0waBAs/gssIXDc8fDFrHr/G3rOP4OdT1+Gp2ciMX16Ebd2Q9BxRlkV1185gfmMow9rWMEABrKSe7iVX5jCqoSRTD94N1dPc9NnQAWd0t1ExUQSFq7vUUpK9FdpqU70qqzUVT0SEyEtLTA/QKA/oEiIgFxvX4wzh4HdCn27tO28RP0sYRDaH4CYCLjyBrj8Ovj2W3jxhXPo/dUFuN3mfbvDYWVY1q+1ThOR6dccatkSAG4Y8R2lIybQo1c4PXp4GLH2PdJ/eRfbtk3698SwYfp3QVKS/p2Sng5Dh0KUPCG5T8rN1ZmxS5eiUtOoCo8l5PJ/YXjMv39/XPImSweeQWGxhaIicO3M5pG30mqdygD83xE+knUGt147ADC4nb85pp5pRJXn8BtDcGGAGz7eNoohnM71PGIO2pivv28rNLdVBWn+3kYkiCvEgUS5dD1a5xa9XuGEW76BtxebY678Ar5YCe+Zjco+/yawU1lsjANC+0LElIDt118PdjtcfXXgZUeNCpJcEj4JSj4x161xYI3Zo5e118aMgXk3QZQDYsIgq9jclxwFVqmJ21wMWxzPPR8CxYFvbC/jf/ADKMudesOiTHhmHpw9Aqb0pDBnI+eels0XX3dh7Fh4+WXo37/Vpy+EEKIl5OXVG8AFGM8fnM+r5A6YyqUnVtBt6TD4fD7ODl0oGnc4VU4LeSn9IXsX4dvXsT1xGJWdj+MCq44hZmzYCkv0uTwYWKoL/vuJoozbuZsreZrj+YRPOLHeObmxcDrv+gK4AD8ztcGXe3r5y/zyUSiQwcvkcBd38G+ew0rtYG7CH1/yrz/O5dOb9IfrFiL5mV1MYgvRbz/vG2ffYgYrrT98xXE/XMZPKKqAaWQyhw8CXrNRUkzU6UcHXGsRwxjB8b717pSziSPqfS0v8i9upgcubBRySYOvvcgaz+l/Xo87uow4m51xCZdzmXE1VuX3BrnYvA8rLijil3d+o6yyig4xfZjSwPkfyrqYl048j1kcTRfMn8l2OtGZHZQSyWucxzucwV8cBMBa+jLUupyxBzk5/NAyHjw8guEjDCzW7nVeJyLiAC+PsCdSY8wg7tkjYWhHsKe37ZxEk1ksMGMGzJhhZ+dO+PxzHZv76y9FVpbB5xzLUXxJNimkUneZktULHXy5sLrMgpWz8PAm3+jVtWt1pDiIheMu48+THscSYmAxLPT/42UG/fA4cbvW1BpbHt8RQ3nYMv1C1px2FxabhbCSXLr89DpxGxbQ4fcP9bgOPXBFxxOzbiH5Y4+kdMAYdh9yKlVdM7BYwGpRpHz4DJ0eupLSMdPwRMcRseQPbHk6O7ToxAtwde5O2WHH48roh2FA2JolxL3+BEZiPNZOHbEtXYiRmADHHAPx8fpNc36+fvJw2jTz6Yxly+DXX/WTGyEhutSPzaafPkhP108epKXBhAl6vFLw0kvw4oswcyb88ov+dCklBQ47TH93OmH3bjjySMjIMI+79149fssW6NoVysr0h2+9e6O698Dt9OBM7UTRVbdT6TCorARnQSlJz9xJ/A8fEpaz3fdzLkvojMVRSXlEIuEFWSzrcQzvD/4/CguBnGxuX3A0A8v+BmoHYat98fxOHsKsb9CDUh7EEvRvY7X3OJUHuRELHjxYuZ6H6xwLMIRl/MlBTOdH8khiN3WUeqkpKlSXaQhWbqmVGUrVvoHZV4wcOVItWLCgrachRPunPOBYqQt0u73ZJEt2wiWfwKYaWSlTe8LDM3VNUq+Lr53Ji2+ZjxSq4i8gur7PuODMM+Gdd/TyokX6w9QAnnIoeErXvAOd1Rt12B68uGZS8JyuvwrwxxY41lvraXRnmDsP7J3rPFTsgYr5UPpdrX9bu9c9QHxcJZQ7YcKzsKMIJnbnm55nMuP1u33jJkyA3+sp5yyEaHFSGPQA0Gr32p9+Co/dCfOW+zY5O8SzIacD37sPZjHD+Dt0Elc/2Y0LL7I0W9WBynIPxZkllGwvZHdoBwpLbWYG0JYd9Jz3JlHZG0nPXkixLRGLy0El4dhd5Qwq/oPZsWfyRMztrHFnUFEBrvIqznK8xLNcXu91M1jHBjKIpZA/OYi+rK13/GKGMpxF6P/tFOlkspQh9WYWr6Ifx/AFG9Bv2O/jZm7m/+q9zm3czb3cBsAwFvEZx9GVbXWO30R3XuECXudcdpLOlTzJk/yn3mtcxRM8xVUAHM0XfMGx9Y4HGMhyVjKQbmxmGYOJpjTouB+Zxsl8iB0nD3M9IVTxGcfxESfhIfCNt8UCffvq2Mn06bokmGTPtrCD+8OPq/XyG6fAEX0hpCfEntW28xLNpqAAVq6ErVt1dZOdO6FwcwGDV7zL5Mx36OjYTDwFhOHgT8YwlvlU306kkO0rf1MXJzYe4gYe4CZK0Uk2k/mFbzmcMIL0NfF6iOt5nkvYTA9S2cU8xtOTTfVe6xC+5wcO8c3tAl7hfup/OnMYi1iCftP7DqdzOu/VOx5gUdhBXND7d7BYiXDs5oLs+zl/92P1HuPERofEKpSCZHcma4oa9z7166QzuTfjdVBVhJXl8tra6XStCv60QrVfmcQU/LOrFe9xGqfyQb3Hnca7vM9pAMSzm/c5lUOZU+8x/zCS0ZhNdh7jaq7miaBjtxpd+T3icMJDPSzoeDRrM2YSEwPx9lIG5P1Cr9w/yes+khh3IVV9BxMb6SKldBOR0RYi4kKIOHkmTmUj89H3iXrm/zDy8/iLMfzNaI5iNkOjVhE5PgXW5uokr2uOgHNeqXf+LSDo3Y4EcYXY3zl3QOlX4MrS69sK4Yav4KfAX9jOvh3JO/1gos/oTVS0E4/H4N/XHxkQYAP46qPfmHHCxAbrtu3YAfffD4MHwyV1JWaU/wplP+vl+H/rJmltpfBl/bMC+HwFXOTNEp7ZDz6fB9b4uo8Ve8axml2bfqVDf/MfyK9fvMaksVt1HcQ/tsC9P/r2PcmV3MQDVBIOQFaW/iBaCNEmJIh7AGi1e+2yMjjzCMjcAscPxHHaGA6aeRFLVnQAdHDtu+/2jdqiHo9+vL6iXOFctJzSpG5UOG0484spIxLLujXkpg6kzBNORQVUlroI376OhM0LGfzPKzhUCIbTQWLxZoqtCawPG8g6Sz+eD7+aciKwepycVvIi4x0/EufeTZxnN/1cOvi91tafPq5VAGy1dOeL0JO5J/IBlEdxiuNNni07l3WWPvT2rMWNhZWWQcSqQuw4qSCcS0JeY55lIkrBka4vuNt9Mz3UxnqDI+WEczSz+JXJ3Mmd3ML9AfuXMYhiYhjMMhYzjFN5n13o/65pZPE4V9ObdewijRnVWXh+PuQkTuV9FBbCqOBs3iSCcr7gGJLIYwedKCHaF9CJitJJbtVfSUm6BHH1V0oK9O6tA7jh4c3yn1w01vmT4DXvJ/C3HQxXjIfQARBzUtvOS7QapXSgd+eaYnasLWN1QRobNxls2gS71hVzxuZ7mOmZRTgVRFNCHklkUDvIeAnP8QKXMIhlzGUCMZTUe93lDGQmX1JIHL8ymaE03LSqN2tZjy4bOJyFLKR2jXR/2aTQgSyUN5M0jAp+ZioH8Vedx7iwMozFrGAgYGDDyUJGMJjldR4D+kO6AazyrcdQxAecwuHUXQf8AW7kZu73zS+USgqIJ5zKeq91Kc/yHJf61hvzYR3AKP5mEcPxYOFLZnIkukFOETFUEoYLO+lkApBvT+Xv1KPZ3HE8y4aeTWycQVwcxEW56OzYgL1rR2I6xRAfDwkJ+p6guUu6r10Lp5wCS/3+aXz+xnscc4T3Q1ZrAiRc2bwXbZgEcfeaUtKRVuw7XDlQ/iNUbdRlFJSCj5fD7d9BfrlvWBkRXMWTvMIFNOY9+a6sKlLTmum3pnJD4fNgRELcuc1zzj1V9CZUeT+RffFPuNX7R/D8UfDyXOmc21I8ZZx7xlbeeF/XRhgxZCcL5rwImUVw49fwfWCdvKUM5t88x3zGce0VG3jkyS7y30YITyW4dkFIt9a8qtwQHQBa9V677AconwvA9XcewiP/Gw/oN2o//KB74Ih2wP9xUu97o+ou30qBclShrDaUYaGqSj8BXFGha8b6f6+ogPJy/VVWFvhVc5vFossXVH+Fh5u1Z6u/UlP1tn21V9sB4Ymz4eq39PIxA+ClEyFsBEQf1bbzEu2G260zeHfs0BUBysr8vpco7Ds2Q34+62JH6SoDjjImrnyehNJtGB4XvXf9RlrxOpanHcrq5EnEVuxi3Lb3WZJyKG8MeIgySzSTt7/N+J0f4jRCSajcSUbJIlbFHET/Yt0PJd+exjfJZ/Ni+l1UEobHA0fmvs5d2+ruarXF3os3Yq7kjZgrfL8Lk6p28nrODAa6aweMM+nIbhJIJpdZHM31PEwxsRzJl3zESYRTSTHRdQand5FKTzZSTiRWXHzL4RzMj7XGZdIRCx5iKeJaHuV5LqH69q0bm/mKI+nP6lrHzeFg/SGZpQu3RD5JTkQ3QkMhOsTBw7nnMqL8d+JcuYSoKgDWJI6nU8kqnLYINqVPZHOP6WQPPQxrt87ExUFCpIO0so2EZ3QiplMMsbG6n2d7U1SkS4X88Ydej4p0sOjHF8josVuCuM2l1YO4Ff9A+KjWu54QTaVcULUBKubqzFv/+mI5pTB/K/zrY9+mkoQUxu7+kZUMbPwlmvtXRnUzD8NS/7iWVvAOZC2B/DJ4dzE8721sdtPB8H/1P/oh9s6jj1Rx3fXmu65Tjl3Bm898RkiIG5bvoujkL4jN3xVwzO9M4EFu5OT/hXL2+R0gpH/b/xsSoq2UfgW2jhBWs25Ni5Ig7gGgLYK4S5anMfzgi1FK/xN76im44orWmYIQogX9chdMvdNcf+MUOOF8iDy0zaYkRKtQCoVBlUPhqDJwOAj4qvQmw9ps5pfdrj8vs1WUYKAgJgbD5cQIsevGk35fHo8ue1vzy+3W+5TS36u/lILQUP2hV7CvsDD93XIAvrXKz9f9fDZv1uuTxm7h58/ewGKPbzdBXGls1lhKgWMZhPYDy951RHS74c8/YeBAiI1tpvmJA0ZxMcyerXtxPfUU5OTA44+U0CH+b6hcDus2wNdrdCDyhEFw/RQAVu7uTtFqG+O859kw5VB6//KN75GKxjipJZ52ai+Bt9E3wIadenmEX5OFtEYWOxd77MSTQrjuenP9g88HYrEo3n3+E0q7d6Fj/gYu5X88wE2+wvYTmctE5jL30vGs73IkGQd9A+HjdUaHJVipfCH2U+4iXfPc1rGtZyLEXlMK/nPb4b4A7sEHw+X1l5cVQuwr+neDmFAodoDNAh1iwJB7NnEAMAzdzCvMILTJGaj+DbbtzTcnEVRiInz8sS7f5HbDb/O78dJbw7n4/M1tPTWfdhI92Uc4t0Phi/rx9D2Qna2DtzfcoJvyDByoP3kRorGUguOP103DMjLg6adh/gdb+bbzlRB1MCRdDeOe1XVEN+2GpEgA5v/TiYGTLuO+xybyESeSQjYZv3zXpAAuwGP111jftyXGmMvLsszltJTWn8sBpmtXOPXUwG3vfToII+VOonvcTDmRPML1DGYZS/oeEjAuilJuf/4I8JRB2fc4VtyNc/6LUFj70SAh9juuPCh4RjeKFGI/8OmX/fj1j26AzkR66impZCbEfiMsEp4/AY7uD++dAUM7ShBXCNHuDB8ON95ort/x0FRKS9tPAF2CuE3lLobSL6Byca1dpaXw00+6jhPo4sj33KODtkccoes1jR1rBsJ27ICjj9Yp7QDbt8Mvv8CaNbBkid62D1e7EM3MWeVhzBj48Ufd1fhJrqSQWLbSjfN4PfhBA9NQTg/jjrwQgK85kpP5iFyaFph8/XWoqoJOnfbuNbRrSX6Ny5wec7lLeu2xotkdfXTDY1YxgMjXZ/LXbTcD4MHgXF7n/S+HEtH1FoyUOzlmyETs4y6G+P4URKaRmzECx8p1VFYoLr4YzjoLdtdo5q2U+XtbiMZyOsHlap5zeTy6BlxDiop012dAl6IpnQXK2TyTEKKNeTxw1yNTfOuXXw79+rXdfIQQzcywwcEZ8PJJMLmHd5sEcYUQ7c+tt0K6NwyQnRvFY8+1asmyekkQd0+4i6H0K4pzV/PvS5SvFkliIkyfDpGRer1vX/jf7VlkP/wG9m9nMZWf6McqJvIbY/mDvqwm+/slpFlzOOvQbLp0galT9Q3rsGH6HBYLXHZZYDB39Wp4/nndmf3bb3VgbexYHSROSIAPPjDfWK5YoYsz33EHzJ8Phx8OQ4fCiSfC8uX6Tag/jwe2btXXczrhkEP0a7rvPvjwQ3MelZWBc/J4As/z2mtw/vk6IP377/qR/6a47z447DBYXDtWXsvvv8Ndd+mg+N5yOps3cN5QpvX338OVV8L99+tMbSor4Z9/4IF74boLA4rd/BB6JKv/0cXNT+ATruRpYimu89x5JHLRkWOwpN/dqLke5e0pEBOjf2GFhMC//61/Hueco+vy7NeSE4Jv79SldedxgEqo48cfOMZJ9x4hdDguCQNFR3aylKEAVFTof6BJ5PnGx5dnk7xhEaED+xAWYeGIF48l4+3bmZa4hNBQ+PprOO00/Xs2MlIHkq+5Bv7v//Tv0KIieOYZ/eHc1q3wxhu6o66/NWtg06bm+inUTykoLGyda4n6bdyoM8jT02GDX9NkpfSHsXPmwKGH6l/fV14J77+v1598EubO1f+W/vlH/w1/4AH9iX+nTuavfItF/22r9vvv8O670KuXfornicedlOx4B1W1jcXL05j9Xe9mCygL0Va+/CaJ5atTAf07+dZb23hCQojmZQR5MyFBXCFEOxQeDnf7hVEefno4+fltNx9/0tisEZSCOd8rLvv3bv57xW988klvds8r5nC+pR+rGcFCerKJUiJJYxdlVNfMVbzIRfyLlxu8xnY60Zc1lBMJKJYwlIGsIIcU8kgi2tuZsBtbAfiMY1nJAL5kJn9xEACp7GIGX5NPIuVE0KWDi9+zegJQQDzhVBBDMYXEkUk6/nWSTzgBnJVuZn9loLAQggMXNjxYiKDcOy8d1J3j1+Pp4Yfhem8ty3vu0cHnhAQYN45aJk7UQZIRI2DKFPj7b4iP1xnL5eU6iBgRoQO3w4frYzp0gHnz9Dn/+QcWLoTvvoPfftM1So46SteHrXbDDfDggzp4umqVDgb36qVrmnTvDkOG6DfNF1+sg74XXggXXQQjR+rXddhh+jzz5sGgQTqwunKlfo3HHKNfb102bYIvvtDjund0cPEVIbzysoc0ax4XXGQl7sUHyYjLY2TSZtTQ4Rw67w5W7ojlYp7nQl5mJAvr/TdyE//Hg9wEQAgOVjCQDDYEjHmY6/gfl7KVrk0qlfDuuzqYBb5Gw1RVHWAdfm84Gx72dswNt8EpQyGvDN57BqKmtenUDgSVldC7t34ioS5z58L48YC7gH/9y8PLrwXWKzbwcBd3cBv3Nuqa0RRT6q0zFU657/fnCgZSQjQOahetmj4d3ntPB3ZnzdL/7xiG/pBszJja11i2TP9/1LevflojKspsPhASUvdjwk6n+cGJw6F/L15xhf4d+PDDcO215tiSEv2zmThRn7+aUvrDuu7dITqaZldSon9nVzcpB91tXCm9HfTP5cUX4ZRT9IeIDocOYKanw5FHNu16Dod+vNpq1b+/k5KCd7Z1OPQc/Pd5PIHNGXJz4dVXITlZ/3244Qb45hu4+Wb9d6OyUv8+HzxYZ8impem/V+npOnBfMzvwrbdgzrduvnknH4VBOpmksYuebGQ88zid93xjH+J6buQh33pPNnANj+HGym4SiKOQyfzKNrqwk46MZAH/MIovOIbvOdT3uz2OAk7iIzqyk2JiGHL5QM55ulWbw8hD7geA1rzXHjOqiH8W6mYR111X/z2XEGIfVPY9lP8RuC32LAjp2TbzEUKIerjdOn5U/RTc7bfr5MFWFPxeWym1z36NGDFCtYZTT/Go27lTKX2PWeeXA7uaxg8Bmy/j6QaPKyNcjeTvgM3vcUqDx93J7QGbRvNng8coUBvprjJYG7B5EEsbdeyt3O236lFn8Yb6khlqIcPUj0xVn3CcmsVMtYOO6i3OUL8zXs1iZq3XdwZvqR10VArUu5yqFjFUfcch6m5uVX8xSuWRoB7iulpTOJZP1c3cq/7DY+ox/qOu5Al1I/+n3uRMtYbeahV91c3cG/D6EslV1/CIms2R6mXOVyvpp57nIvVf7lMvcYG6hXvUffxXXc2jAdcycKsHuEEpUJvoplbSTylQu4lTWzKm+waWRCSr4/lYgVKd2aqWMqjBn+NnHKPCKVOg1BAWN+pn358VAZtO4T31DJeqyfysDNyNOYXv67XXlPr7b6UqKlrlf6F9w8NXmz+gc0YolXOH/ir/u61ndsDIzFTqkUeUOvTQ4P9ua7rjjuDjrDjVubyq/mJUnf8T3MI9AZtiKag1ZhPd1F+MUgsYrr7iCPUBJ6l3OVUdz8fKitM3NIE8dQ2PqHN5Vd3Q4yP1y9WfqwuGL1JT+EnFUqDAo6IoVqFU1JrKf/9T7ts+fLhSKxZXqTGjPcpiUeqmm5Rat9ajLLhqHbd4sVK33Vb7pYWHK/Xpp0q53UqdemrgPsNQato0c/2kk5R6802lXC6lfvhBqeefV2rVKqXy85X64w+lbr5ZX+ePP/Tczj5bn3fXrsDzvvSSUiUlSl14obntjjuUerqBP3/XXqvUBx8oVVam1M6dSnk8Ss2fr9SSJUrdeKNSxxyjVHa2vt4ZZ+hjQkOVGjrUPMfttyv1zjtK/fyzUgsWKPXjj0p17ar33XSTPmewfydTRxSpNHaqvqwK+PmGUqFu5l51OU+pzzlaKVBr6K2ySFV/MlrNYbraTrqqJERN5ceAcz7I9Y36BfwoVwdsuojnlRujweO+52AFnoC5riXDt/8/PKYKClrr/1allGr7+0D52n/utb//3vznHhqqfycIIfYzpT+Z99fVX1U72nZOQghRj/feM+9P4uKUKipq1csHvTdr85vDvflqrRvLm29W6ioeV415c6ZAJZHjW72Fexoc/zvjVU/WB2yuDh7W9+XEqg7iD9+mKIobPcfXOdsX+LPibNT1yghXg1jq22TFGfAGsr6vE/go8E0/FzR4TCYdAjalkqUu4X+Nut55vOJb7camRh1TSkStYOid3N7gcTvoqIaxUIEO/M5nTL3j19NTnc/LAf9O3ufkWuOySfYtf8Nhqjsba51u8mS3io9XavBgpY46SgdEliyp+/LR0Urde2+r/G+z7/noCb8fbA/z5rJyVVvP7ID1ww/mfxKbLfiY2/3+F73iiuD/7juxTd3NrWoLXVQmHdQOOqqubA4YY8HV6N+fQ1kUsCmO3Y06bgcdVQq7AjavoXfQsdtJV+WE+dYP5+uAIXdxm1pB/6DHFhOlXFiUAvULkwJ2P89FvpUFDFcK1Er6qRySfNvf5dRav7PjyVevc7ZawmD1NYer1zlbvcz5ajkDlAL1F6PUu5yqvuII9QjXKP9g44l8GHSeOSSp3xmvVtNHbaar+o5DAn4vdmGLKiGy1nFOrGorndUmuqnNdFX38d+AQKwFl5rBl77xu0hRhcSoQmJUBaGqgtCA8x3J7IBjq392DX2dwVsBmw7jm0Ydp3+2+udzK3c36phCYlRHdgRsvoM7AsacxjsKlNq2rdX+F0W+9v+v1rrXnjzZ/Od86aWtckkhRGsr+712ENeZ27ZzEkKIerhcSvXqZd6jPPhgq14+6L2ZrVWTgfdRXbrAXBJZQx/6sta3vcRbNiGTdPqylse4mke5ljySfWPu4xYe4CYMFC70s7FWXHiweB+JVIRTQQURvmMMPHzFkeygEyM652LbvonNdGcQyzmWLwDIIZk8kujDWv5kLAClRLGW3lQSxhCWkU8CLmykkkMloTgI9dVQncZP9GID6+nNpfwv4NHOurzMhRRgNn86g3fozfpG/Qw30SNg3dWIf3odyQpYzyaVCcxt1PU20Mu3vIs0vucQDmVOPUdAJOWkk8kOOgNwGu9yBw3Xkz2eT1mMrv+gsHA5z7CAUXWO78VGurGFPJJ8267nYd7kbLJJZQlDcdfz88nI0DWRY2NhxIjgJRP++19dZ1EpvR4eDps360eHLVIJO7hefo9yrcvVPzzDAEtk283pADdtmi598ssvujZtMHfd5S0H49SlWv75B/78M3DMDjpzO/dwO/cA+jF0B7oG22mn6eOuv84gnwTsOInxlq+py3U8wpm841svJI5SIomirN7jYikijkJySPVtW08GfVhXa2wnzC5X2+nEDxwcsH84ixjAqqDXiaYUgArC+DfPBezbgdmdcASLAOjP6oAxp/E+CxgZsC2SMs7gHWy4GcKyWtcczT+M5h8APuAU/J/+2UEnHIQQSlXAMcnkkexXw3gOhwT8XiwnIujP1IabLph1N87iLe7kTjzoug4erHj8ysmkUndR9tc4l6+Y6Vv3YGUXaaSzs85jzPnnBqz/zsSA9YUMp4B4xvEHEVQA4MZCBeFU/3w+5GRCcRBOBb3YwC7SmMrPvr+tJUQRTSlfMyPg76+dKnqzjr8ZxQgWspOO7KQjoEvhCLEvmTsXfv1VL9tsuryJEGI/FKwmriVIXSQhhGgnrFa46SZdhjMhQcdV2poEcRvh5JPh1Ut6s5QhfMyJzOYo/mY0YWFuKiv1j7BbN9iyJdjRRkBA7q234OOPbaSkwKmngsdjMG1aBIahG+koBf37W/h94yR6nTeJs1+G227TNQUBjssLPPtjjwHXmNfyDzKbFP5vqMMpp5IwjpxpYf2X8DRXMIdDMFDEU0AE5ez2BjPCqCSJPOw4CaEKA+U7z2a6cxP/RyxFJLCbnmzkF6YwlZ+Jo5CfmEYYlXRih+/NZTUdIHjBt76cgeykI/kkkko2o/mbr5kRcEwHskhjF0XEsJxBDGEpWXTAgyXgdZcSyVr6+Nad2DFQFBET0AjsFyZTSRiZpBNHIdmk4sYs7vg1M3iCqxjOIhYxnEOYwwBWkUuSb555JFFGYJAviw6MZy5O7LiwoTDYSlcKSMDAE7RW7Xa6sJ2GG2g9/LD+d9OpU/3j7r9f12ypqIB33oFRoyA1tf5jDngZvSEqBEqrIKsENuRDRpIEcduQYegPLBoyeLC5/Oab8Prruu72tGn6D++mTbrL+Tff6DFX3h5PcbFuEHXuuXpM//4WkmboavUGHgawkliKSCGHAazEhY0C4unEDiIoD/h/2UCRTSo5KHqwuc55RlHGM1zOoXxP9e/kAaxs8PVFUUoE5RQT69uWUk9gstr3HEoq2aymn+96RX7nqE+u34eRAJfwPDbcDR73HJfwJuf41tPZwY9MrxXArelvRnE5z+D/t6oxPxuAzuzgDN7hdc7zbRvlDSg3JBQHvVjPBjJ8257gPwxhKQnspg9riaeAtziLZQzGQFFMDHaczOGQgHOVE4mBBwseFAYJifrfh9sNL7yga7xv3Qpfn6XHH3IIuFx9sB16L6eeBW+/revJZ7qgTz1luEeOhAULQjiDdwF4/uHZPPj0BMoqo5jzDvSU0oJiH5OWBmedpWuMn3WWbhoohNgPBW1sJkFcIUT7dtZZOq5y7rmB/UfaijQ2a6QN6xVHz8wjLaWUs09eyoxD80jJOBUPUb7MRpcLFizQTVAOO0z/B16/XgcKnE744QcdVGhIUREsWqQb+Pg3lnK59D+cd97RN7zr1+trXHopPOdNtpo7VzfDiY2F117TDcJeeQW+/143+LrmGr1/6FC9b9gw3XgHdNOW8nKYNAluuUUXcL7sMr1v0iTo2FF32G6sLl1g27a690+cGNh929/pp+ub+Wrnn68byuTm6uW1a+GTT+Dzz2sfGxurG+bs3q3fJB9/PHz6qdkIKCJCBzWrsz6CSU+HCy4I7Ei4N667TmfQVlbqZjpZWbrR0JQpumP56afrN/qgg00ZGTow9cor+o19Rob+b9itW/PMRwTh3AnHTId5m6HcCdN7wSsnQ4dbJEtgP1GdXF0fjwfuuAPuvVcHEt57L7BRY1oaHHQQ/PGH/v353XeBx08YnScd3QAAFYdJREFUr5g7T19kwgT4Y66bGIopIpaebGQTPXwZowBhVHAMX2DHSQXhOLGzgV5EUI7FGxDMJJ3tdCEkxMyyHMk/DGAlBopC4ujCNkawkBxSWMJQoiglhxR+YhpFxPmu14nt3MNt7KATVYTQj9WsZADpZBJLEUsZgsLgA05hG2Yk5QQ+5iD+JIpSVtGfImIJxcFxfEY0JXzPocRSRCFxvMVZbKUbAEnkci6vcyIf8zejURh0IItiYljMMAqJI4HduLHyFmdRQkzAXE/iIyIpYycdCaGKLmxjEz1YwUAiKMdBKB3ZyRr6shwzmj+EJQxhKVbcZJNKGZFUEUIkZeygE+vJwI0NG05c2OnaFT7+WP/3fuaZwGzWDh303+Pp03XW9tSpUFam/7Zv3aobvIF+yuHzz3XDzfr+3c2fr487/vi6m0e6XPDkk3r5qqt0duKWLfpvk92ur7lmeSYjer2OxXCiFLjCj8EePSz4CVuGNDY7ALTmvfamTfrfd+fOrXI5IURrc6yA4o/NdcMGSbe23XyEEKJ9C3qvLUHcxlIK8ryt6CyhEHcRWBPrP8YrL08H7xrKnmys1at1gDTSmyBYVaU7pQ8b1vRsy8JCHYyYPNk8XzWl9KPJnTrpAK7/9j//hF279JvQah066C7fb72lg5QZGfqNa1mZfnNbnXrudtfuZv7ll7Bunc4wOvhgHUg591wdyO3RA5YurftTD7dbB4MHDtTdyuuyaJEOQp92mv5Zge5iHhoK2dm61MD77+vXdfHF5s+jokJ3OS8thRhvfCExEXbu1K/jxx/h1lvhmGN0qv24cfD333rcww/rgHLNTubBFBbqa9prfEhd/b9oQ8EnsZfc+fDWpXDeh3r9/FHw4ExIur1t5yXaREGB/qDFZtMBs6VL9Yc/oaG1x37xBaxZA5dcoj9EAv17o7qMyfLl+oOw776DQYOgf3/9u2flSkhJ0b97QkLg+uvh6af1mKOP1r/boqJgzBgdRLRa9e+WMWPMa//yiw7uPfmk/pBn5kwdIBw3Tv8edrvhvPP0fBwO/UFeRAQ88YR+bcuW6Q+78vLglFP0B4IeD5x4oj739On692LXrvpDvmqdOsFTT+kPC2fMgIsu0sHtf2okwD70kH5N27frvyMPPKDn9cUX+oO20lL92g45RJ9z7lw9r8MO078TY2P179uSEnj0UR1kBfj6az2nb7/Vf2smTIDFi2HWLP3h4ezZeltxMaxYoX8HL12qjz3pJP03aeZM/d+0Uyf9M2ns79jcXMjJgQEDzG0VFfrnk9i424LmU7kcSj/Vfyiij4EwCeKK5tWq99pCiP1b1Too8svSsURD4rVtNx8hhGjfJIi7V/yDuDEnQ2j/1rluO6aUzuhdtkxnHs2a1fzXKCrSQQz/oG9bczprB1r9eTw6KNyhQ+vNSTQDTynkPwI/b9T/uKf2BGs0JF7X1jMTIsALL+ig8U03tWyZlJq/60pL9e/jujKaldIB5J9+0h+GTZqkA6mrV+sM1ZNO0k+E7I2CAj2nhh5lqp6jUvqDztBQMyi8330gVjYHyudJEFe0CAniCiGajXMrFL5mrttSIP7StpuPEEK0b0HvtaUmblOFDZEArpdh6JIEc+c2rkzEnqjOamtP6gvggs7wkgDuPsjwplhO9SsoaWkHlcuFqOHii1vnOjV/11UHTusKghqGzgY+//zA7f36Ne5phMaIj294TPVcqr9XZ0/HxTXPHNqdiKn6jbEQQgjRnhk1aggZEcHHCSGEqJP0qW8KaxxEHtHWs2hX4uL0I6kR8jdY7OsMOxg1fiUa0tRMCNHOGTaIOhZoR4+sCCGEEDUZNWpSSbKEEEI0mWTiNpZhQNRMaXAkxP7MCAVVYa5bJIgrhNgH2JLA2sg0ZSGEEKIt1AziGhLEFUKIppJM3KYI2ctifkKI9q1WhoAEcYUQ+whDMnFFwwzDONwwjLWGYWwwDOOmtp6PEOIAUrOcgiRHCSFEk0kQVwghqhk1biYliCuEEGI/YRiGFXgWOALoD5xmGIY0ehBCtA7DHviBY837biGEEA2SIK4QQlSrWZvLEt028xBCCCGa32hgg1Jqk1KqCngfOKaN5ySEOJD4Z+NKEFcIIZpMgrhCCFGtZm0uCeIKIYTYf6QD2/3Wd3i3CSFE6/AvXSZBXCGEaDIJ4gohRLVaQdyYtpmHEEII0fyMINtUrUGGcZFhGAsMw1iQm5vbCtMSQhww/IO4NZ+AE0II0aB2F8SVhgtCiDZjiaixHtU28xBCCCGa3w6gs996J2BnzUFKqReVUiOVUiOTk5NbbXJCiAOAf/atZOIKIUSTtasgrjRcEEK0Kf8grmEBI6LusUIIIcS+5R8gwzCM7oZhhACnArPaeE5CiANJQE1cycQVQoimaldBXKThghCiLfkHbY1wMII9eSqEEELse5RSLuBy4DtgNfChUmpl285KCHFAkXIKQgixV2xtPYEagjVcGOM/wDCMi4CLALp06dJ6MxNC7P/8M3GllIIQQoj9jFLqa+Drtp6HEOIAJY3NhBBir7S3TNwGGy5InS4hRIvxz8S1RLfdPIQQQgghhNjfWLxBXEsYGNa2nYsQQuyD2lsQt1ENF4QQokVIJq4QQgghhBAtozoTV/pOCCHEHmlvQVxpuCCEaDuSiSuEEEIIIUTLqG5mZpEgrhBC7Il2VRNXKeUyDKO64YIVeFUaLgghWo0lVD/apdxgiWnr2QghhBBCCLH/sEQGfhdCCNEk7SqIC9JwQQjRxixR4C4Ca2xbz0QIIYQQQoj9R3W5Mktcm05DCCH2Ve2tnIIQQrSt6ptKS0KbTkMIIYQQQoj9SnUQ1xrftvMQQoh9lARxhRDCnzUeDDtYJYgrhBBCCCFEs7HEgWEBiwRxhRBiT7S7cgpCCNGm/r+9+4+RrazvOP7+eC9BsCiK0oJoLkTBAspvI6mA0dQWfxRbaEtiRApthLQN2DQtRJum6S+tbWIppqQCiomgwUiqbVqgpvdKLQhcuIV7LSgIVpQUUEsBKSh++8c8W6frObt3l2Hn7Mz7lUx2ePY5Z5/98IX57jNzZjb+BDz14KjBlCRJkjQZ2TDayPWVuJK0Km7iStK4XQ6A+t60VyFJkiTNnmcfBhv2mvYqJGldchNXksZt3Ht0kyRJkjRZu58w7RVI0rrl9cKSJEmSJEmSNGBu4kqSJEmSJEnSgLmJK0mSJEmSJEkD5iauJEmSJEmSJA2Ym7iSJEmSJEmSNGBu4kqSJEmSJEnSgLmJK0mSJEmSJEkD5iauJEmSJEmSJA2Ym7iSJEmSJEmSNGBu4kqSJEmSJEnSgLmJK0mSJEmSJEkD5iauJEmSJEmSJA2Ym7iSJEmSJEmSNGBu4kqSJEmSJEnSgLmJK0mSJEmSJEkD5iauJEmSJEmSJA2Ym7iSJEmSJEmSNGBu4kqSJEmSJEnSgLmJK0mSJEmSJEkDlqqa9hpWLcmDwNdWcegLgYcmvJxZYC79zKabufQzm27m0s9suplLt2nn8lBV/ewUf77WwCp77WnX5pCZTTdz6Wc23cyln9l0M5du5tJv2tl09trrehN3tZLcXFVHT3sdQ2Mu/cymm7n0M5tu5tLPbLqZSzdz0VBZm/3Mppu59DObbubSz2y6mUs3c+k31Gx8OwVJkiRJkiRJGjA3cSVJkiRJkiRpwOZ1E/dvpr2AgTKXfmbTzVz6mU03c+lnNt3MpZu5aKiszX5m081c+plNN3PpZzbdzKWbufQbZDZz+Z64kiRJkiRJkrRezOsrcSVJkiRJkiRpXZjJTdwk5yTZnmRHknPb2OFJbkiyLcnNSV49Nv/8JHcluTPJz0xt4c+wleSSZFOSx9v4tiQXTXXxz7CebA5Lcn2S25N8Nslzx+bPc8105jLrNZPk0iQPJNk+NvaCJNcm+Ur7+vyx73XWSJKjWnZ3JbkgSdb6d5mkCeayuY0t1M/ea/27TNpKskmyV5J/TvJokgsXnWdua2aZXOa9Zn46ydZWG1uTvH7smJmqGQ1LT28w93022Gv36cll7vtssNdeMMF+cuYe/yaYzUz1TRPsJ+e6ZpbJZp5rZrh9dlXN1A04FNgO7A5sBP4JeDlwDXBim/MmYHO7fzDwb8CuwP7A3cCGaf8eA8hlE7B92uuecjY3ASe0OWcAf2jNLJnLTNcMcDxw5PjvCPwZcF67fx7w/uVqBLgROBYI8A8L//2t19sEc9kMHD3t32eK2TwHeC1wFnDhovPMc80slcu818wRwL7t/qHAN2a1ZrwN57ZEbzDXffYqs9nEDPdNO5HLXPfZq8xmZmtmhY9/c9NnTzibzcxQ37TCXOamz55wNvNcM4Pts2fxlbg/CdxQVd+tqu8DW4CfBwpYeIb3ecA32/2TgE9U1RNVdQ9wF/BqZs9Kc5knfdkcBHy+zbkWOLndn/ea6ctlplXV54FvLxo+Cbis3b8MeNvY+I/USJJ9gOdW1fU1egT42Ngx69IkclmLdU7DSrKpqseq6l+A/xmfPO8105fLrFphNrdW1cJj9g7g2Ul2ncWa0aDYZ/ez1+5mn93PXruxz+5nr93NPrufvXa3WemzZ3ETdztwfHtZ+O6MnvF+CXAu8IEkXwf+HDi/zX8x8PWx4+9rY7NmpbkA7J/k1iRbkhy35iteO33ZbAd+rs35xTYG1kxfLjA/NbPgx6vqfoD2deESk74aeXG7v3h81qw0lwUfaZfq/N4sXMrUoy+bPvNeM8uxZkZOBm6tqieYn5rRdNhn97PX7maf3c9ee2n22f3stbvZZ/ez1+627vrsmdvErap/B97P6FnLf2R0OcH3gbOBd1fVS4B3A5e0Q7oKsdZgqWtqFbncD7y0qo4Afgu4PGPvVTVLlsjmDODXk2wF9gCebIfMe8305TI3NbMT+mpkLmpnCUv9/m+vqlcCx7XbO9ZsVcM27zWzFGsGSHIIo/9Xv2thqGOaNaOJsM/uZ6/dzT67n732qtln97PXXhlrZmlzXzND7LNnbhMXoKouqaojq+p4Ri+X/grwTuDTbcqV/PCygvv4/89u7seMXua0klzaJRjfave3Mno/nQPXftVroyubqrqjqt5YVUcBVzDKAOa8Zvpymbeaaf6zXVKxcDnOA228r0bua/cXj8+aleZCVX2jfX0EuJwZvfSL/mz6zHvN9LJmIMl+wFXAaVU1/hg1DzWjKbHP7mev3c0+u5+99pLss/vZa3ezz+5nr91t3fXZM7mJu/CpeUleCvwCowe/bwIntCmvZ9RUAXwGOLW9v8X+jN5M/sa1XfHaWEkuSV6UZEO7fwCjXL661mteK13ZjI09C3gvsPAJsHNdM325zFvNNJ9h9McZ7evfjo3/SI20SzQeSfKadjnKaWPHzJIV5ZJkY5IXAiTZBXgLo0sJZ1FfNp2smW7WDCTZE/h74Pyq+sLC5DmqGU2JfXY/e+1u9tn97LWXZJ/dz167m312P3vtbuuvz64BfErcpG/AdcCXGF2S8oY29lpgaxv7InDU2Pz3MHom805m4NMIJ5ELo/f92NHGbwHeOu31TyGbc4Avt9v7gFgz/bnMes0w+kPsfuB7jJ6BOxPYC/gcoz/IPge8YLkaAY5m9AB4N3DheF2tx9skcmH0qahbgdtaDf0lM/BJ1KvI5l5Gr8J5tM0/2JrpzsWaKRj9Yf8YsG3stvcs1oy3Yd2wz55INsx437QTucx9n73SbGa5ZlbRG8xFnz2pbJjBvmkVudzLHPTZk8pm3muGAffZCw8IkiRJkiRJkqQBmsm3U5AkSZIkSZKkWeEmriRJkiRJkiQNmJu4kiRJkiRJkjRgbuJKkiRJkiRJ0oC5iStJkiRJkiRJA+YmrqR1K8lTSbYl2Z7kyiS7J9mUZPsKz3N6kn2fqXUOQfsdH0xy8TLz7kly0KKxDyb5nSTHJfnSSvOVJEnS+mOvvfPstSWtBTdxJa1nj1fV4VV1KPAkcNYqz3M6MOjGMsnGCZzmk1X1q8vM+QRw6tjPfRZwSjv2OuBNE1iHJEmShs9ee2XstSU9o9zElTQrrgNe1u5vSPLhJDuSXJNkN4Akhye5IcltSa5K8vwkpwBHAx9vrzTYLckbktya5PYklybZtR1/b5I/SHJL+94rFi8iyYYkH0hyU/s572rjr0uyOcmnktyR5ONJ0r53VJItSbYmuTrJPm18c5I/SbIFOCfJMe2c17efsb3Nuy7J4WNr+EKSVy0VVt86gSsYayyB44F7q+prK/vXIUmSpBlir/3DNdhrS5oKN3ElrXvtmfMTgdvb0MuBD1XVIcB/ASe38Y8Bv1tVr2pzf7+qPgXcDLy9qg4HCvgo8MtV9UpgI3D22I97qKqOBP4a+O2O5ZwJPFxVxwDHAL+WZP/2vSOAc4GDgQOAn0qyC/BXwClVdRRwKfDHY+fbs6pOqKq/AD4CnFVVxwJPjc25mNErHEhyILBrVd22TGyd62zH/SDJYW3eqYyaTUmSJM0he217bUnD4CaupPVstyTbGDWG/wFc0sbvqapt7f5WYFOS5zFq0ra08csYPfO92EHt+C/3zPv0+Hk7jn8jcFpb1xeBvRg1ugA3VtV9VfUDYFs7/iDgUODadsx7gf3GzvdJgCR7AntU1b+28cvH5lwJvKU1qWcwaoyXs9Q6rwBObQ37Se38kiRJmi/22iP22pIGYRLv+yJJ0/J4e0b//7Srpp4YG3oK2G0F58wy318491N0/z80wG9W1dWL1vW6jnVtbPN3tGf8uzy23Lqq6rtJrmXUBP4So0vWltO5zuYK4BpgC3BbVT2wE+eTJEnSbLHXxl5b0nD4SlxJc6GqHga+k+S4NvQORo0TwCPAHu3+HYxeTfCyjnk742rg7PZMPUkOTPKcJebfCbwoybFt/i5JDulY/3eAR5K8pg2dumjKxcAFwE1V9e2ns86quhv4FvA+vLxLkiRJy7DX3vl12mtLWi1fiStpnrwTuCjJ7sBXgV9p4x9t448Dx7bxK9slTjcBF63gZ1zM6NKtW9qHKTwIvK1vclU92T7w4YJ2GdpG4IPAjo7pZwIfTvIYsBl4eOw8W5P8N6P38prEOq8A/hS4aifPJ0mSpPlmr73z67TXlrRiqappr0GStBOS/FhVPdrunwfsU1XntH/el1Gz+Yr2PmCLjz0dOLqqfuNprmET8HdVdejTOY8kSZI0JPbakobOt1OQpPXjzUm2JdkOHAf8EUCS0xh9YMJ7uprK5nHgxCQXr/aHt8vjPgs8tNpzSJIkSQNlry1p0HwlriRJkiRJkiQNmK/ElSRJkiRJkqQBcxNXkiRJkiRJkgbMTVxJkiRJkiRJGjA3cSVJkiRJkiRpwNzElSRJkiRJkqQBcxNXkiRJkiRJkgbsfwGUEMmQcSHG7wAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 1728x576 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot(vs_test, 2)"
]
},
{
"cell_type": "code",
"id": "cb587a4d-dbf6-4f96-9c71-62a72619cbfa",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABXEAAAHwCAYAAADgsixbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5xcVf3/8deZ2dnek00nhU4KBAihiBAEBBWkSC+iNLGi/sSCBRSwIti+VJEmgghSVECQjjQpoRNIIAmpm+19dsr5/XFn5t6pO9t32ffz8chj59Y5s8R49r2f+znGWouIiIiIiIiIiIiIjE2+0R6AiIiIiIiIiIiIiGSnEFdERERERERERERkDFOIKyIiIiIiIiIiIjKGKcQVERERERERERERGcMU4oqIiIiIiIiIiIiMYQpxRURERERERERERMYwhbgiMiYZY042xjw4ymPoMMZsneP4amPMQYO4/w3GmIsHev1gGGPON8b8cajPzeNe1hiz7QCvvd8Yc1rs9eeMMU9lOW/U/+6IiIiIfFgYYz5qjFmR4/jc2ByvYCTHNZSMMcuMMetGexwwuPnyEI4h539zERkdCnFFPuSMMScZY16IBZIbY0HYvqM9rr5Ya2+x1n58lMdQbq19DwYfuOYKHUeDtfan1tozh/rcgTLGXG2MuSnD/p2NMUFjTK219hPW2hv7utdY+LsjIiIiE5sxZl9jzNPGmFZjTJMx5r/GmD1Ge1wDYa190lq7Q3x7sIUMY8FYCEoHyhhzsDHmUWNMuzGm0Riz3BjzHWNM8SDumfT9SP1vLiJjg0JckQ8xY8w3gd8APwWmArOBK4AjRnFYfRrPv8UfD8bo9/cG4GhjTFnK/s8C/7TWNo38kERERET6zxhTCfwT+D1QC8wEfgwER3NcMv4ZY44F7gD+Asyx1k4CjgdmAVtluWYszv1FZAAU4op8SBljqoCfAF+21v7dWttprQ1Za/9hrT0vdk6RMeY3xpgNsT+/McYUxY4tM8asM8Z82xhTH6viPdIY80ljzDuxioLzPe93oTHmDmPMX2O/FX7JGLOL5/h3jTGrYsfeNMYc5Tn2uVh1wuXGmCbgwtTK1dhvh88xxrxrjGk2xvyfMcbEjvmNMb82xjQYY943xnwl2yNdxpjPG2P+4dleaYy53bP9gTFmsec9tzXGnA2cDHw7VtH8D88tFxtjXo1VWfw102/AjTE7AVcBe8eub/EcrjHG/Cv2fXnOGLON57odjTEPxb7XK4wxx+X47z3DGHNv7NyVxpizMvy3+bMxpg34XGzfnz3nfNYYsyb22/wfeissvOca93G504wxa2Pf8+977rPUGPOMMaYl9nfmD8aYwmzjjrPWPgOsBz7juZcfOAm4Mbb9mDEmY0WwMeZXxpinjDFVw/V3R0RERCRP2wNYa2+11kastd3W2getta8CGGO2McY8Ept3NRhjbjHGVMcvjs3DzovNMTuNMdcZY6Ya54m6dmPMf4wxNZ7z9zJO1W+LMeYVY8yyfAZpjLnRGPP/Yq9nxuZAX4ptbxubVxrjaTVgjLkZpzDkH7F57bc9tzw50/www/t+0jg/D7QbY9YbY74V29/fnz+y/iwTO35WbF7cFJsnz4jtfyJ2yiuxz3C855r/53nvz6e816Wxz7fZGHOVMaYkZdz9vjZ2/LzYNRuMMafn+L4Z4DLgJ9baa+NFDtbaFdbar1pr342dl2nun3WOnun7YVLaS8T+Tn7LZPm5J/bfLP4ZzjTjuNJZZCxTiCvy4bU3UAzcleOc7wN7AYuBXYClwA88x6fF7jET+BFwLXAKsDvwUeBHJrln7BHA33AqDv4C3G2MCcSOrYpdU4VTifBnY8x0z7V7Au8BU4BLsoz3MGCP2FiPAw6J7T8L+ETsc+wGHJnjMz8OfNQY44u9fwD4CEDss5QDr3ovsNZeA9wC/DLWYuFwz+HjgEOBecDOwOdS39Ba+xZwDvBM7Ppqz+ETcb4fNcDK+Gc3TkXqQzjfxymx864wxizI8rluBdYBM4BjgJ8aYw70HD8C57f21bHPkmCMmY9ToX0yMB3nv9HMLO8Tty+wA3Agzt+DnWL7I8A3gMk4fwcPBL7Ux73ibsKpvI07COe/z/3ZLoj9d7wW53v/cWtta5ZTh+LvjoiIiEg+3gEisZD0E8YTuMYY4Gc487adcCooL0w55zPAwTiB8OE486HzceZYPuBr4ISvwL+Ai3Hm4N8C7jTG1OUxzseBZbHX++PMxfePbe8HPGmttd4LrLWnAmuBw2Pz2l96DmebH6a6DviCtbYCWAg84jnWn58/sv4sY4z5GM73+Dic+e0a4LbYZ9gvdv0usc/wV897x+fBZwD/5/lv9wuc/xaLgW0942Mw1xpjDsX5b3YwsB3O/DebHXAqbu/McU5c6tw/6xw9x/cjVcafe2Kf4ZuxsW+L+3dIRIaYQlyRD69JQIO1NpzjnJNxfpNbb63dghMmnuo5HgIusdaGcCY9k4HfWmvbrbVvAG/g/B943IvW2jti51+GMwHbC8Ba+zdr7QZrbTQ2MXgXZ6IVt8Fa+3trbdha251lvD+31rZYa9cCj+JMhMCZUPzWWrvOWtsM/DzbB471uG2PXbs/8G9gvTFmx9j2k9baaPZvWZrfxT5XE/APz5jy9Xdr7fOx/063eK4/DFhtrb0+9j15CWfCdkzqDYwxW+FMmr9jre2x1i4H/kjyf8tnrLV3x77/qd/fY4B/WGufstb24kwqLbn9OFZV8grwCs7EGWvti9baZ2NjXg1cTf4TuZuB/Y0xs2LbnwX+Evv7lEkAJ7yuxflBoivHvQf9d0dEREQkH9baNpy5mcUJIbfEKkGnxo6vtNY+ZK0Nxubgl5E+X/q9tXaztXY98CTwnLX2ZWttEKdIY9fYeacA91lr74vN8x4CXgA+mcdQE8UNOKHtL4kVN8TG83g/P3rG+WEGIWC+MabSWtscm+d6j+X780eun2VOBv5krX0p9j37Hs5TcXNzjD8Uu1/IWnsf0AHsEKuAPQv4hrW2yVrbjtOu7oQhuPY44Hpr7evW2k7Sw3yvybGvm+I7jDG3xapru4wxWef+g5yjx2X7uSf+Gd6Izcd/3M/7ikieFOKKfHg1ApNN7sfCZ+D8VjpuTWxf4h7W2kjsdTz42+w53o1TuRr3QfxFLAiNV4bGH9dfHptktOD81n1ypmtz2OR53eV57xkp1/d1r3jVwX6x14/hTGIGMlnNNqbBXj8H2DP+/Yp9z07G+S1/qhlAfFIYt4bkatpc35Ok719s8tU4kHEbY7Y3xvzTGLMp9vjWT0n+75xVLGB9AjjFGFOOUxWbayGzbXGqDH4cC5/7PV76/3dHREREpE/W2restZ+z1s7CmffOwFmrAmPMlFj4tj42X/oz6fOl1Dl3tjn4HODYlDnjvjjVp32NcRVO2LgYp8r1n8AGY8wODO+8+DM4IfMaY8zjxpi9Pcf68/NHrp9lko5Zaztw5re5njZrTCmAiX+GOqAUeNHzPX4gtn+w16bORb2fJ218sa+J/7bW2hNiT/m9BPg95ybNaQczR/fQfFpklCnEFfnwegboIffj4RtwJn5xs2P7BirRTD/2G/1ZOBPBOThVCF8BJsUmGq/jPEoW11flZy4bY++VNo4s4iHuR2OvH6fvEHcw4xvI9R8Aj1trqz1/yq21X8xw7gag1hhT4dk3G6fHbD7vn/T9i/XomtTP8cZdCbwNbGetrcR57M/kviTJjTgVuJ8B3k+pzEj1FvB54P7YDxsD0d+/OyIiIiL9Yq19G2cR14WxXT/DmZvtHJsvnUL/5kteHwA3p8wZy6y1+T5d9DjOU1mFsarfx3HmYjXA8izXDGpebK39n7X2CJyWYXcDt+e+IqtcP8skHYu1KptE8vw4Xw044fECz/e4ylqbT/FGX9duJHn+OTvHvd6Ojf/oPN439b/RYOfouWg+LTJCFOKKfEhZpzfoj3D6MR1pjCk1xgRifbnivatuBX5gjKkzxkyOnf/nbPfMw+7GmKNj1b9fx1mB91mgDGcisQWcxcVwJ7FD4XbgXOMsyFANfKeP8x8HDgBKrLXrcB5ROxRnYvdylms2A1tnOZaPzcAsk8ciXzH/BLY3xpwa++8WMMbskam3mLX2A+Bp4GfGmGJjzM44vbhuST03izuAw40x+8TG92MGPqmrANqAjliLikyhcy534kz8fkzuKlzAWTAEZxL6H+NZFK4f+vt3R0RERCQn4yxO+//iLaJira9OxJkXgzNf6gBaYj1tzxvE2/0ZZx53iHEWbC02zqJU8fe+0BjzWI7rH8cptIgvbvUY8FXgKU9FbKoBz4uNMYXGmJONMVWxlgltOP1aByLXzzJ/AT5vjFlsnMXOforTkmJ1fz9D7AnDa4HLjTFTYp9jpjHmkNxX5nXt7TgLj803xpQCF+S4lwX+H3CBcRZtqzGO7YCpfQylrzn6YH7WuR3ne71T7DP8qK8LRGRgFOKKfIhZay/DaTL/A5wA9QOcSdrdsVMuxumZ9SrwGs5jOBcP4i3vAY4HmnH6UR0d6wv1JvBrnOrgzcAi4L+DeJ9U1wIP4nyOl4H7gDBZJoTW2ndwJs5PxrbbcBZy+G+Oyep1OL27Wowxdw9gjI/g9PDaZIxp6OvkWGuEj+P0y9qA8/jSL4CiLJecCMyNnXsXcEGsJ1qfYv3FvorTd2wjTs/gepwQvr++BZwUu8e1QLaFEbKNpRM3yM0rhLbW3gj8BHikjz5nmfTr746IiIhIHtpxFu19zhjTiRPevo4TwIHzy+rdgFacRcn+PtA3iv0y/wicX2rH5/vn4f6svxW5592P4wR88RD3KZzH/5/IeoVTSfyD2Lz4WwMY9qnA6thj/efgVCIPRNafZay1DwM/xJlXbgS2IbmH7YXAjbHPcFwe7/UdnEWIn42N+z84C43lI+u11tr7cdpsPBI755Es9yB2/l9xetCegvPfugEnRL0GZ4HpbPqao19I/74f3jHdD/wOZ92JlTg/88HAfpYQkRyMtYN9QlhExPktP7CttXagk7ChHMsngKustXP6PFnSxPrRtuA8bvX+KA9nROnvjoiIiHyYGGOWAwdaa/ta70BkSMSeHHwdKLK5F9kWkX5SJa6IjHvGmBJjzCeNMQWxR9IuwKlGlTwZYw6PtdwoAy7FqWZYPbqjGn76uyMiIiIfZtbaxQpwZbgZY46KtcqowXl68B8KcEWGnkJcEfkwMDiPpTXjPBL/FurF1F9H4LRi2ABsB5xgJ8ajGvq7IyIiIiIyOF/AaeexCqctWX/XxRCRPKidgoiIiIiIiIiIiMgYpkpcERERERERERERkTFMIa6IiIiIiIiIiIjIGFYw2gMYjEMPPdQ+8MADoz0MERERkYnGjPYAZPhpri0iIiIyKjLOtcd1JW5DQ8NoD0FERERE5ENJc20RERGRsWNch7giIiIiIiIiIiIiH3YKcUVERERERERERETGMIW4Q2Dz5s2cdNJJbL311uy+++7svffe3HXXXXlf39LSwhVXXJHY3rBhA8ccc8xwDFVEREREZNwY7Dwbhn+ufffdd/OTn/xkyO43EMuWLeOFF14Y9H1uuOEGvvKVr6Ttf+yxx3j66afzvs/q1auZNWsW0Wg0af/ixYt5/vnnWbFiBcuWLWPx4sXstNNOnH322YMee77mzp3bZ6uQG264gQ0bNiS2zzzzTN58880Bvd8f/vAHrr/++gFdKyIi4qUQd5CstRx55JHst99+vPfee7z44ovcdtttrFu3Lum8cDic9R6pE8sZM2Zwxx13DNuYRURERETGunzn2TC6c+1f/vKXfOlLXxqy+41F/Q1x586dy1ZbbcWTTz6Z2Pf222/T3t7O0qVL+drXvsY3vvENli9fzltvvcVXv/rVnPeLRCIDHvtApIa4f/zjH5k/f/6A7nX66afzu9/9bqiGJiIiE5hC3EF65JFHKCws5JxzzknsmzNnDl/96le54YYbOPbYYzn88MP5+Mc/TkdHBwceeCC77bYbixYt4p577gHgu9/9LqtWrWLx4sWcd955rF69moULFwLOBOLoo4/m0EMPZbvttuPb3/524n2uu+46tt9+e5YtW8ZZZ52V8bfmIiIiIiLjUa55NjAm5trvvPMORUVFTJ48GXAqh4866ih22WUXdtlll0Twedlll7Fw4UIWLlzIb37zG8CpVt1pp50466yzWLBgAR//+Mfp7u7mrbfeYunSpYn3WL16NTvvvDMADz/8MLvuuiuLFi3i9NNPJxgMJo3nyiuvTPoMN9xwQ+L79ec//5mlS5eyePFivvCFLySC0euvv57tt9+e/fffn//+979pn3H16tVcddVVXH755SxevJgnn3ySNWvWcOCBB7Lzzjtz4IEHsnbt2rTrTjzxRG677bbE9m233caJJ54IwMaNG5k1a1bi2KJFi9Kuf+yxxzjggAM46aSTWLRoEZFIhPPOO4899tiDnXfemauvvjpxr/3224/FixezcOHCRHB86623smjRIhYuXMh3vvOdjJ8r/vcA4NJLL+XCCy/kjjvu4IUXXuDkk09m8eLFdHd3J1U6Z7tveXk53//+99lll13Ya6+92Lx5MwClpaXMnTuX559/Pm0MIiIi/WKtHbd/dt99dxsHw/cnl9/+9rf261//esZj119/vZ05c6ZtbGy01lobCoVsa2urtdbaLVu22G222cZGo1H7/vvv2wULFiSu825ff/31dt68ebalpcV2d3fb2bNn27Vr19r169fbOXPm2MbGRtvb22v33Xdf++Uvfzn3YEVERESGxqjPA/Xnwz/XzjXPtnZszLX/9Kc/2W9+85uJ7eOOO85efvnl1lprw+GwbWlpsS+88IJduHCh7ejosO3t7Xb+/Pn2pZdesu+//771+/325ZdfttZae+yxx9qbb77ZWmvtLrvsYletWmWttfbnP/+5veiii2x3d7edNWuWXbFihbXW2lNPPTXxXvvvv7/93//+Z+vr6+0222yTGM+hhx5qn3zySfvmm2/aww47zPb29lprrf3iF79ob7zxRrthwwa71VZb2fr6ehsMBu0+++yT8XNecMEF9le/+lVi+7DDDrM33HCDtdba6667zh5xxBFp12zcuNFOmzbNhkIha621O+64o33ttdcS37fKykp76KGH2ssuu8w2NzenXf/oo4/a0tJS+95771lrrb366qvtRRddZK21tqenx+6+++72vffes5deeqm9+OKLE9/ztrY2u379+sTnCoVC9oADDrB33XWXtdbaOXPm2C1btqT9vfjVr35lL7jggqTvZ1x8O9d9AXvvvfdaa60977zzEmO11tqLL77YXnrppWmfUUREJIuMczNV4g6xL3/5y+yyyy7sscceABx88MHU1tYCTmB+/vnns/POO3PQQQexfv36xG9ocznwwAOpqqqiuLiY+fPns2bNGp5//nn2339/amtrCQQCHHvsscP6uURERERERlPqPBtGf669ceNG6urqEtuPPPIIX/ziFwHw+/1UVVXx1FNPcdRRR1FWVkZ5eTlHH310olp03rx5LF68GIDdd9+d1atXA3Dcccdx++23A/DXv/6V448/nhUrVjBv3jy23357AE477TSeeOKJpPHU1dWx9dZb8+yzz9LY2MiKFSv4yEc+wsMPP8yLL77IHnvsweLFi3n44Yd57733eO6551i2bBl1dXUUFhZy/PHH9/n9AnjmmWc46aSTADj11FN56qmn0s6ZNm0aCxYs4OGHH2b58uUEAoFE5evnP/953nrrLY499lgee+wx9tprr7SqYoClS5cyb948AB588EFuuukmFi9ezJ577kljYyPvvvsue+yxB9dffz0XXnghr732GhUVFfzvf/9LfK6CggJOPvnktO/VQOS6b2FhIYcddhiQ/N8SYMqUKUntGURERAaiYLQHMN4tWLCAO++8M7H9f//3fzQ0NLBkyRIAysrKEsduueUWtmzZwosvvkggEGDu3Ln09PT0+R5FRUWJ136/n3A4jLV2CD+FiIiIiMjY0tc8G0Z/rl1SUkJra2vOc3LdK/W9u7u7ATj++OM59thjOfroozHGsN1227F8+fK8xnT88cdz++23s+OOO3LUUUdhjMFay2mnncbPfvazpHPvvvtujDF53TeXbPeIt1SYOnVqopVC3IwZMzj99NM5/fTTWbhwIa+//jq777570jne/77WWn7/+99zyCGHpL3PE088wb/+9S9OPfVUzjvvPCorK/scc0FBQdLCa/n8Xcn13zIQCCS+D/G/R957l5SU9Hl/ERGRXD40lbjD+ZBXLh/72Mfo6enhyiuvTOzr6urKeG5raytTpkwhEAjw6KOPsmbNGgAqKipob2/v1+ddunQpjz/+OM3NzYTD4aQJroiIiIjIUBqNuXZ/5tkwOnPtnXbaiZUrVya2DzzwwMR4I5EIbW1t7Lffftx99910dXXR2dnJXXfdxUc/+tGc77/NNtvg9/u56KKLEtWxO+64I6tXr068380338z++++fdu3RRx/N3Xffza233pq49sADD+SOO+6gvr4egKamJtasWcOee+7JY489RmNjI6FQiL/97W8Zx5P6Pdxnn30S/W5vueUW9t1334zXfeYzn+G+++7jr3/9KyeccEJi/wMPPEAoFAJg06ZNNDY2MnPmzJzfk0MOOYQrr7wycd0777xDZ2cna9asYcqUKZx11lmcccYZvPTSS+y55548/vjjNDQ0EIlEuPXWW9O+V1OnTqW+vp7GxkaCwSD//Oc/s37euHzum8k777yT1H9XRERkID40Ie5oMcZw99138/jjjzNv3jyWLl3Kaaedxi9+8Yu0c08++WReeOEFlixZwi233MKOO+4IwKRJk/jIRz7CwoULOe+88/J635kzZ3L++eez5557ctBBBzF//nyqqqqG9LOJiIiIiIyW/syzYXTm2vvttx8vv/xyokLzt7/9LY8++iiLFi1i991354033mC33Xbjc5/7HEuXLmXPPffkzDPPZNddd+1zDMcffzx//vOfOe644wAoLi7m+uuv59hjj2XRokX4fL6kRd/iampqEm0h4gukzZ8/n4svvpiPf/zj7Lzzzhx88MFs3LiR6dOnc+GFF7L33ntz0EEHsdtuu2Ucy+GHH85dd92VWNjsd7/7Hddffz0777wzN998M7/97W8zXlddXc1ee+3F1KlTE20RwGmNsHDhQnbZZRcOOeQQfvWrXzFt2rSc348zzzyT+fPns9tuu7Fw4UK+8IUvEA6Heeyxx1i8eDG77rord955J+eeey7Tp0/nZz/7GQcccAC77LILu+22G0cccUTS/QKBAD/60Y/Yc889OeywwxJ/XwA+97nPcc455yQWNovL576Z/Pe//+Wggw7q8zwREZFczHh+LH/JkiU2vkroRNTR0UF5eTnhcJijjjqK008/naOOOmq0hyUiIiIffoN//lrGPM2185trn3vuuRx++OEK6SSjl19+mcsuu4ybb755tIciIiLjR8a5tipxx7ELL7yQxYsXs3DhQubNm8eRRx452kMSEREREflQyHeuff755+ds8yATW0NDAxdddNFoD0NERD4EVIkrIiIiIv2lStwJQHNtERERkVGhSlwRERERERERERGR8UYhroiIiIiIiIiIiMgYphBXREREREREREREZAxTiCsiMkyuuw4++Ul48snRHomIiIiIiIiIjGcKcQfJ7/cnVq099thjB7Uy7ec+9znuuOMOAM4880zefPPNrOc+9thjPP3004ntq666iptuumnA7y0iQ2vDBjjzTLj/fli2bLRHIyIiMj5pri0iIybaM9ojEBHJSSHuIJWUlLB8+XJef/11CgsLueqqq5KORyKRAd33j3/8I/Pnz896PHViec455/DZz352QO8lIkPvtdfc19Ho6I1DRERkPNNcW0RGTOcDoz0CEZGcFOIOoY9+9KOsXLmSxx57jAMOOICTTjqJRYsWEYlEOO+889hjjz3YeeedufrqqwGw1vKVr3yF+fPn86lPfYr6+vrEvZYtW8YLL7wAwAMPPMBuu+3GLrvswoEHHsjq1au56qqruPzyy1m8eDFPPvkkF154IZdeeikAy5cvZ6+99mLnnXfmqKOOorm5OXHP73znOyxdupTtt9+eJ/WMt8iw6e4e7RGIiMiHmTHmT8aYemPM6559vzLGvG2MedUYc5cxptpz7HvGmJXGmBXGmENGZdCDpLm2iAyr4BsQWjPaoxARyerDFeJeeCEYk9+fs89Ov/7ss5PPufDCvN86HA5z//33s2jRIgCef/55LrnkEt58802uu+46qqqq+N///sf//vc/rr32Wt5//33uuusuVqxYwWuvvca1116b9Nv+uC1btnDWWWdx55138sorr/C3v/2NuXPncs455/CNb3yD5cuX89GPfjTpms9+9rP84he/4NVXX2XRokX8+Mc/Thrn888/z29+85uk/SIytAbxtKeIiEg+bgAOTdn3ELDQWrsz8A7wPQBjzHzgBGBB7JorjDH+fr+j5tqA5toiH0rRTrAhCK0b7ZGIiGT14QpxR0F3dzeLFy9myZIlzJ49mzPOOAOApUuXMm/ePAAefPBBbrrpJhYvXsyee+5JY2Mj7777Lk888QQnnngifr+fGTNm8LGPfSzt/s8++yz77bdf4l61tbU5x9Pa2kpLSwv7778/AKeddhpPPPFE4vjRRx8NwO67787q1asH/flFJLPUENfa0RmHiIh8OFlrnwCaUvY9aK0NxzafBWbFXh8B3GatDVpr3wdWAktHbLCDoLm2iIyIaOwxutDqUR2GiEguBaM9gPEu3qcrVVlZWeK1tZbf//73HHJI8pNr9913H8aYnPe31vZ5Tn8UFRUBziIR4XC4j7NFZKAaGpK3w2EIBEZnLCIiMiGdDvw19nomTqgbty62b8zTXFtERoSNhbjRllEdhohILh+uStwLL3TK3fL5c8016ddfc03yOf14xCuXQw45hCuvvJJQKATAO++8Q2dnJ/vttx+33XYbkUiEjRs38uijj6Zdu/fee/P444/z/vvvA9DU5BRcVFRU0N7ennZ+VVUVNTU1iR5cN998c6JSQERGzpqUdlrB4OiMQ0REJh5jzPeBMHBLfFeG0zI+I2KMOdsY84Ix5oUtW7YkH9RcW3NtkQ+rRIirnmgiMnapEncEnHnmmaxevZrddtsNay11dXXcfffdHHXUUTzyyCMsWrSI7bffPuMEsK6ujmuuuYajjz6aaDTKlClTeOihhzj88MM55phjuOeee/j973+fdM2NN97IOeecQ1dXF1tvvTXXX3/9SH1UEYlZuzZ5OxiE8vLRGYuIiEwcxpjTgMOAA61NNPNZB2zlOW0WsCHT9dbaa4BrAJYsWTIumgFpri0igxZvp2C7nF8yDWGFvojIUDHu3G78WbJkiY2vKisiMpbstx94F6Vevx5mzBi98YiIDDH9dDsGGGPmAv+01i6MbR8KXAbsb63d4jlvAfAXnD64M4CHge2stZFc99dcW0QmjO7noON+5/Wkb4OvdHTHIyITXca5tipxRUSGQU9P8rbaKYiIyFAyxtwKLAMmG2PWARcA3wOKgIdifV6ftdaeY619wxhzO/AmTpuFL/cV4IqITCjWM1m3PYBCXBEZexTiiogMA4W4IiIynKy1J2bYfV2O8y8BLhm+EYmIjGNJIa4m7iIyNn24FjYTERkjFOKKiIiIiIwTUc/kPaqJu4iMTQpxRUSGQWqIG1swW0RERERExhpV4orIOKAQV0RkGCjEFREREREZJ2yv53VP9vNEREaRQlwRkWGQGuKGw6MzDhERERER6UNSiKtKXBEZmxTiDlJLSwvHHHMMO+64IzvttBPPPPMMAMuXL2evvfZi8eLFLFmyhOeffx6A//73v+y8887ssccerFy5MnGPQw45BGvtqH0OERlaqsQVEREZPM21RSQrO5QTbM+9FOKKyBhVMNoDGFJbLhza+9X1fb9zzz2XQw89lDvuuIPe3l66uroA+Pa3v80FF1zAJz7xCe677z6+/e1v89hjj/HrX/+aO++8k9WrV3PllVfy61//mosuuojzzz8fY8zQjl9ERkUkkh7aqhJXRETGPc21RWSwQmvBVwn+6sHfq/s5KPkIDMX/tr2BsNopiMgYpUrcQWhra+OJJ57gjDPOAKCwsJDq6moAjDG0tbUB0NrayowZMwAIBAJ0d3fT1dVFIBBg1apVrF+/nv333z/r+8ydO5eGhgYAXnjhBZYtWwbAhRdeyOmnn86yZcvYeuut+d3vfpe45qabbmLnnXdml1124dRTTx3qjy4iOQQz/PJeIa6IiEj/aK4t8iEUrofu/w7NvSINEG0fmntZVeKKyNj34arEHWHvvfcedXV1fP7zn+eVV15h991357e//S1lZWX85je/4ZBDDuFb3/oW0WiUp59+GoDvfe97nH322ZSUlHDzzTfzrW99i4suumjAY3j77bd59NFHaW9vZ4cdduCLX/wi77zzDpdccgn//e9/mTx5Mk1NTUP1kUUkD5laJ6idgoiISP9ori3yIRRthUjjEN2rDaId4K8c/L28IW5UlbgiMjapEncQwuEwL730El/84hd5+eWXKSsr4+c//zkAV155JZdffjkffPABl19+eaKCYPHixTz77LM8+uijvPfee8yYMQNrLccffzynnHIKmzdv7tcYPvWpT1FUVMTkyZOZMmUKmzdv5pFHHuGYY45h8uTJANTW1g7tBxeRnDJV3aoSV0REpH801xb5EIo0D12la7RjCFsfqBJXRMY+hbiDMGvWLGbNmsWee+4JwDHHHMNLL70EwI033sjRRx8NwLHHHptYbCHOWsvFF1/MD3/4Q3784x/z4x//mFNOOSXpMa24goICotEoAD0pqyUVFRUlXvv9fsLhMNZa9fwSGUWqxBURERk8zbVFPoSizUNX6RrtHLrA1XoqLmzv0NxTRGSIKcQdhGnTprHVVluxYsUKAB5++GHmz58PwIwZM3j88ccBeOSRR9huu+2Srr3xxhv51Kc+RU1NDV1dXfh8Pnw+X2KxBq+5c+fy4osvAnDnnXf2Oa4DDzyQ22+/ncZG5zEVPeIlMrJUiSsiIjJ4mmuLfAgNVfBqo2C7hqYS14bBRjzbqsQVkbFJPXEH6fe//z0nn3wyvb29bL311lx//fUAXHvttZx77rmEw2GKi4u55pprEtd0dXVx44038uCDDwLwzW9+k8985jMUFhZy6623pr3HBRdcwBlnnMFPf/rTRCVCLgsWLOD73/8++++/P36/n1133ZUbbriBe++9lxdeeIGf/OQnQ/TpRSSTTIGtKnFFRET6T3NtkQ8Z25McmA7qPnaIQtyU0FaVuCIyRhlr7WiPYcCWLFliX3jhhdEehohIknffhe23T953zTVw1lmjMx4RkWGgZ8knAM21RWRIWQuNP3G+Tv4hGP/A7xVpgqbfQekyKFs2uHHF7xXnK4NJ5w3uniIig5Nxrq12CiIiQ0yVuCIiIiIiKWyvE+ACRNNbm/TvXsHkr0Nxr8S2KnFFZGxSiCsiMsTUE1dEREREJIW39YEdZIgbHcIQN3WhNRtyeu6KiIwxwxbiGmP+ZIypN8a8nuHYt4wx1hgz2bPve8aYlcaYFcaYQ4ZrXCIiwy1T1a0qcUVERERkQvMGrmO5EhecIFdEZIwZzkrcG4BDU3caY7YCDgbWevbNB04AFsSuucKYwTTIEREZParEFRERERFJ4Q1LB1uJO5QhbrQjw06FuCIy9gxbiGutfQJoynDocuDbgHdFtSOA26y1QWvt+8BKYOlwjU1EJNWLL8J3vwuvpz070H8KcUVEREREUnh7zY6lStxMIa764orIGFQwkm9mjPk0sN5a+4oxSQutzQSe9Wyvi+0TERl2kQgsWwYdHfDnP8O6dYO7n9opiIiIiIikGNJK3N70ew74Xp0Z9mnyLiJjz4iFuMaYUuD7wMczHc6wz2bYhzHmbOBsgNmzZw/Z+ERk4mpudgJcgPXrnUVzTaZ/lfKkSlwRERERkRRjtSduprEoxBWRMWg4e+Km2gaYB7xijFkNzAJeMsZMw6m83cpz7ixgQ6abWGuvsdYusdYuqaurG+Yhi8hE0JvytFR39+DulymwVSWuiIiIiExoQ9pOYSgrcTNM/tVOQUTGoBELca21r1lrp1hr51pr5+IEt7tZazcB9wInGGOKjDHzgO2A50dqbCIysaWGtp0Znqjqj0yBrSpxRURERGRC8wajtmdo7mWDzmN0g6FKXBEZJ4YtxDXG3Ao8A+xgjFlnjDkj27nW2jeA24E3gQeAL1trI8M1NhERr9QQtyPTArX9oEpcEREREZEUSSHuIB99S7RTsIOvmlUlroiME8PWE9dae2Ifx+embF8CXDJc4xERyeaXv0zeHmwlrnriioiIiIik8Fa3RocoxE28Lhr4vTKORSGuiIw9I9kTV0RkTLr55uTt4WinoEpcEREREZnQhrSdgjfEHcS9bCRz1a3aKYjIGKQQV0QkxWBD3EiGZjCqxBURERGRCW0shrjZFlhTOwURGYMU4orIhJYpXA0OcpHbTCGuKnFFREREZGLzTIhtZHDVrkNWiZulrYNCXBEZgxTiisiE1pthfjbYqtlodOjvKSIiIiIyrqUGo9HBhK+eEHdQ98lyrUJcERmDFOKKyISWqep2sIGr2imIiIiIiKRIrbwdVAXtELVmsFkewVOIKyJjkEJcEZnQMoW4g219oHYKIiIiIiIpUoPRgYavNgTW8+jbUIXB+ewXERlFCnFFZEIbjkpctVMQEREREUmRVok7wIUoUu8TzdLXNq97qRJXRMYPhbgiMqENR09cVeKKiIiIiKRIq8QdYFA6VBW9ucagEFdExiCFuCIyoaknroiIiIjICBiyStzUEHcwlbiee4UimfeLiIwRCnFFZEIbjp64mdopqBJXRERERCYsa4Fhaqcw0PuAG9b+6N8w82L46t3J+0VExhCFuCIyoakSV0RERERkuIVjQa7HkFXiDibEDcKbm+GqZ53tv74C9709uHuKiAwThbgiMqGpJ66IiIiIyDCLZuhbO+Bq19SFzQZZifv6puR9ZYXp1b4iImOAQlwRmdAyhbjD0U5BlbgiIiIiMmFlWnxswAubpbZTGETrAxuENc3u9lc/AvtvDYTSK4dFREaZQlwRmdAyBbaqxBURERERGUIZQ9wBTpCHtCduEDa2uduzqmL7LaAqDBEZWxTiisiENlIhripxRURERGTCGu5KXJthAp7XvXqhqdvdnlyWfExEZAxRiCsiE1qmcFXtFEREREREhlDGnrgDnXRnmFhH2wd2KxuEpi53u6bEc0whroiMLQpxRWRCUzsFEREREZFhFm1J3zdUlbgA0bb0ffmI9kCzpxL3ymfg3Hvg5he1uJmIjDkFoz0AEZHRlCmwHWyIq0pcERERERGPSHOGnQPtiZupErdjgPdKCXEfejd2P6tKXBEZc1SJKyITWqYK2cFWzaoSV0RERETEI1O7g6GsxM3Uc7fP+4SdP50ZxtHao0pcERlzFOKKyISmhc1ERERERIaZ7c6wb6AhaaZ2CgMJcYNgLew2E3adkXysrSfz+4iIjCK1UxCRCW2k2imoEldEREREJqxMlbIDrsTNMFkfUCVuDxgDd37W2X5lAxx8rfO6LahKXBEZc1SJKyITmipxRURERESGWaZK2YGGpEMV4qaOqbLYfd3Wo564IjLmKMQVkQlNPXFFRERERIZZxnYKYaedQb9laqeQ4f59SQ1+00JcTeBFZGxRiCsiE9pItVOIRjPvFxERERH5ULMhsBmqHGBg1a4ZK3E7BnCfYPJ2ZZH7ui0IUVXiisjYop64IjKhjVQ7hfh9CwsHd28RERERkXElNSxNEgKKchzPdL8Mk/VoZ//uAU4l7ppm+MebUF4Ec2ugNABdIYhaaG+Dsv7fVkRkuCjEFZEJLVNgOxztFOLvpRBXRERERCaUTP1w4wbUdzZTiDvAStwVW+An/3G2D9rOaanQFfthoLUZpg1geCIiw0TtFERkQhuOStxsbRO0uJmIiIiITDi5Fh0bUDuFTD1xu/rfwzbaAx2eKuHywuSWCi2t/R+biMgwUiWuiExoI9lOQYubiYiIiMiEk6udwlD1xAWItEBBXT/uE4QOz/uXFcKJu0Jrt1ORO0m9FERkbFGIKyIT2ki3UxARERERmVCGuhI3UzsFgGgb0M8Qt9Pz/uWF8OV93O3iigGMTURk+KidgohMaCPZTkGVuCIiIiIy4eSsxM216Fm2a8LQE4Z734DnP3D393dxMxuEds/7l6UssNbf9gwiIsNMlbgiMqFlCmyHq52CKnFFREREZMIZjnYK59wJ970NBnj0HJg/FewAQtzWbne7ujj9fURExhBV4orIhJapOna42imoEldEREREJpxornYKA6jEjYacABfAAo+tiu3v6t99bBCaPCFuTWnKcU3eRWRsUSWuiExoI9lOQZW4IiIiIjLhDGUlrrWwpT1536rGAd4rCC3eELcEHlgBty6Hrl749N7wzc/1754iIsNIIa6ITGgj2U5BlbgiIiIiMuEMaU/cMGxOCXH3mRu7Vz8n8TYIzSkh7svr4f5Yle8Os/s5NhGR4aV2CiIyoQ1HJa564oqIiIiIxNhYO4WohUdWwjtbPMf6GeLaCGzyhLjLtoHPLIpt9LNiItqTHuKWFrrbnd3p14iIjCKFuCIyoQ1HT9xs7RRUiSsiIkPFGPMnY0y9MeZ1z75aY8xDxph3Y19rPMe+Z4xZaYxZYYw5ZHRGLSITUjyo/dVjcMItsO8VcMnDzr7oACpxN3pC3GkVnvfpR8WEtUAIPrkjHLkA9t8aJpVBmSfE7cjRy1dEZBQoxBWRCW0k2ymoEldERIbQDcChKfu+Czxsrd0OeDi2jTFmPnACsCB2zRXGGP/IDVVEJrR4JW5xgfMH4LdPQTA8gErccHIl7vSBhrhBJ8i94GC45hj426mxStyAe06XQlwRGVsU4orIhKZ2CiIiMh5Za58AmlJ2HwHcGHt9I3CkZ/9t1tqgtfZ9YCWwdCTGKSKSqLY9ciH0eCbEb27u/2JkRKCx092sK/Mc60+Im+V9ve0UumJBr4jIGKEQV0QmtEzBqtopiIjIODXVWrsRIPZ1Smz/TOADz3nrYvtERIafDRIO+/jNA5/g7Zme3x81drlVunnfKwztngD2/Afgs7c5/XZtPybbWUNcTyVuZ+8AQmYRkeGjEFdEJrThrsQtKhq6+4qIiAyQybAvY3mZMeZsY8wLxpgXtmzZkukUEZH+sT1ccvlH+cYPD+Wl9du4+5sGGOKeuRSuOMrd98AK6Aj2s51ClnDW2xO3q7f/7R5ERIaRQlwRmdCGO8QtLs79XiIiIkNoszFmOkDsa31s/zpgK895s4ANmW5grb3GWrvEWrukrq5uWAcrIhOAjRAORfndH/cEoJFJ7rGmrgGEpBHYbSYcszPMqHR3twXpdzuFVzfCN++FnzwE977h7E9qpxBSJa6IjCkKcUVkQhvudgqqxBURkRF0L3Ba7PVpwD2e/ScYY4qMMfOA7YDnR2F8IjLR2B5eenU685tf5Decy1f5g3usudtdYCzv+3km1JWeiXZrT/8qcemFFVvgzy/DH56G+952dictbKZKXBEZWwpGewAiIqNpJNspqBJXRESGijHmVmAZMNkYsw64APg5cLsx5gxgLXAsgLX2DWPM7cCbOKVqX7bWZlmGU0RkCNkgL782jT34H+fyu+RjTV1go061qynKfH0azz9dlZ5H3tr7GeLaXmjpdrerYvfyVuJ2KsQVkbFFIa6ITGjqiSsiIuORtfbELIcOzHL+JcAlwzciEZEMoj28+uZUpmUo/u/ZEKIYYn1x8wxxkypxPSFuaw/9a6cQgjZPP954iFtSAJcc6lTklhZCtJ89e0VEhpFCXBGZ0EaynYIqcUVERERkQrFBXntrKjvRnHaoKynErcrzhhHY6/fgM7Cy0d3d33YKNhjroxtTEQtxjYGz9vScqJ64IjJ2KMQVkQktU7BqrRPE+gbYNXzYKnHDDc7E0j+p73NFREREREab7WHFyq2opiVpd5BCOnqKqAWIdme6MrNwEN5rSt/fPoCFzdo9VbaVWSqBtbCZiIwhw7awmTHmT8aYemPM6559vzLGvG2MedUYc5cxptpz7HvGmJXGmBXGmEOGa1wiIl7ZgtXBBK7D1hM3tBo6Hx3kTURERERERkZ3V5D6hnIqaUvsO4WbKaaHn3/0GmeH7UfLgo6OzPtbe5xKjHzbfdteaPcEtN7WDEnnqSeuiIwdwxbiAjcAh6bsewhYaK3dGXgH+B6AMWY+cAKwIHbNFcYY/zCOTUQEyB6sDiZwzdZOYdCVuJFG6F3Rz5V3RURERERGxwcfWAAqaE/s28h0wPD2ysnOjv6EuG1tmfe3xu6R7zzZ9ib3xM1aiasQV0TGjmELca21TwBNKfsetDbxr+qzwKzY6yOA26y1QWvt+8BKYOlwjU1EJC5bWDtUlbiFhZn3D0i0w1mEIbRmkDcSERERERl+a9c6kYM3xG2nAoD311Y7O/rTsiBbiJtojdCfEDdDT1yAb/0TDrgKlv4OXngt/7GJiAyz0eyJezrw19jrmTihbty62L40xpizgbMBZs+ePZzjE5EJwBvW+nxuFe1QhbiBQOb9A2I7YzdKXxhCRERERGSsWbvWecA2U4i7bkMlkYjBb/vxCFy7ex8CPvj6R51WCAumOvv6U4nr7Ylb4anEXd0Mb2x2Xjdr3i0iY8eohLjGmO/j/IrslviuDKfZTNdaa68BrgFYsmRJxnNERPLlrcQtKYHOWE46mBDX205haCtxY4OLtuc+T0RERERkDFi3walo8Ia486o2UtXayqRwI/Vvw/Q9+lGJ6w1x95oD5y1LOSHfEDeYXInrbadQ6qnC6NC8W0TGjhEPcY0xpwGHAQdaa+Mh7DpgK89ps4ANIz02EZl4vGGtN8QdTE/c4Wun0BX7mmVBBxERERGRMaS+3okcvCHuL0PfYiEvA/DWE+cyfY9+TLzbPPPg8gx9bPuzsNmX9oaGTmgLcvsTu3P+5Z+ktqabByf9i+r4efEfDkRExoARDXGNMYcC3wH2t9Z2eQ7dC/zFGHMZMAPYDnh+JMcmIhOPtclhbbGnFdbYbKfQHfvalfs8EREREZExoH6LMxm+jG9y/MdeZMfpG2h9ZCrEprOtayLOmg/5aveEuBWZFiPrR4h7zt4AvP7WFE4+8ETCYT+rVsMDlfM5gRec8zo17xaRsWPYFjYzxtwKPAPsYIxZZ4w5A/gDUAE8ZIxZboy5CsBa+wZwO/Am8ADwZWvz/RWaiMjAeENVnw+KPPPAMddOwfa6Pb6i3YO4kYiIiIjIyKjf4kyGL+THrP/SsXD5p4nUlCeOd60L9W9hM2+IW16YfjzvnrhuK4VLr9iHcNif2N7QNsk9r0MhroiMHcNWiWutPTHD7utynH8JcMlwjUdEJJU3qC0ocP7Ejbl2Ct7g1irEFREREZGxr77BrZKYMtlpTRCY7D6q1rOlv5W4nvYGxQVw6q3Q2gPdIXjo7P61UwB6e/3c88AOSYc6KXM3ujTvFpGxY1QWNhMRGQu8QW0gkBzihsPwyivwn//ASSfB9On533dY2ilYz+q5CnFFREREZBzY0uD2K6ub5FS1lk51q15DTf2sxD1lGexZ5IS2s6pgvysgFHsMricMVf0LcZ99cRYtrSVJh5JC3E7Nu0Vk7FCIKyITVmqI6w1cm5vhM5+Bhgb497/hwQfzv++wtVNIvIEmkyIiIiIytoXD0NjkhriTYyFu+TST2Gfae/oX4k6rhBrPmuhVxdAQa3nQ1gNT85hw2yi8tg5+8h/qNs3gO2zmF3yXk04McttfC+mMeitxe7LfR0RkhA1bT1wRkbEuVzuFBx5wAlyAhx5yFkHLV1Ilrq814/5+805ubah/j52JiIiIiPRHfya/WTQ2grWGXVjOvwKHU/C1O+GqZyif7lbiFnR19S/ETV24rMKzMnFbT37tFGwvbGyDx1ax09tPsh9PAHDQQQF22D5MB27PXjoU4orI2KEQV0QmrFztFNasTl4Uobk5//t6K3EDZnPi9eBC3GDytqpxRURERGS4hFYP+hb19c7X2azlk6F/wh2vwpPvUzXTDYiLg53YaD9C3NSFy6o8IW5rT34Lm9leaHPn1q1UAbDX3j4WL07tidub/2JpIiLDTCGuiExY3krc1HYKrS3Joen69fnfN2lhs4C7oq033O231AoF9cUVERERkeEQDULv24O+zZYtztcK2t2d5UUUT3ErJypsG62t5C+aEqiWe3qXdfSSVqmbiQ1CuzvXb6OSoqIw220HixYV8BT7cjj38ofD/gDnf0whroiMGeqJKyITlrcSN7WdQnt78rnd/chMk0Pcnoz7+y01xFUlroiIiIgMh0gDRPuTrGZWvzkMFKSEuIVQ6VbPVtPC5voA1VvnedNjfw1PvQ0lAfjjsVBe5B7rCJJfiNvrtF6IaaOSnbZvo6Cglm23M2xkBv9kBvSu4Cvbbom1MSvOfj8RkRGiEFdEJqxc7RRSQ9xwP34Bn9ROoWCoQtyUdgpW/blEREREZBiE10O0Y9C3aWiIAAWU47lXaSFUFdMQmMKWUC3vM4+yzcXsYC0Yk/VeCV1BCEacP35fcojbHsy/J25HcjuFhfM7gFq22cY9bdXq2tgrrUUhImOD2imIyISVurCZt51Ce0fyP4+hfszdkipxhyzETam8VYgrIiIiIsMhtBainYO+TWuLU9mQVok7pZyzD36M+bzFp7iPzVvK81/crMdzXkkAKjztFDrzbaeQ3BO3jUoWznfm2t4Q9701NUSjRgsKi8iYoRBXRCas3JW4AwtxrU1ezDdQ4F44qBA3tX2CeuKKiIiIyHCIbB6SELclY4jrVM5OrXOrczdvKUt/6iybrpQQN60SN5+FzYJpIe6C+c59q6pgUq1zLBgsYMOmCvXEFZExQyGuiExYqQubJYW4Hf6s5+bibaXg80Xx+90dQ1qJG1UlroiIiIgMMWsh0uxUqw4yvGxtdebB1bS4O6uc3rLTpnhD3PL8Q9zulBC3ytOrtrEr/xC3IznE3W47d84+f8Ym1jGTFqqYut8FqsQVkTFDPXFFZMJKXdjM206hq6sg67m5eINanw/8fpvxWL+lVeLmOdEVEREREcmX9QSh0W7wVwz4Vq2xtdEyhbhT69xK3031/WinkBriHrgd1JTAjErYrg7IL8SNtvcmKto6KGfuXLe+rXaGn5mvbwAg2ulHPXFFZKxQiCsiE1audgq5zs3FG9T6/VH8viGqxI2mrLSmEFdEREREhlq0zX1tu4CUELd3JQS2yWsRsniIW0OzuzMW4i5oeI6TaKWcDjrXLRpYO4XSACyY6vxJjDmfELeH3uYo8RrekjofRSVuW4apM/2E8VNABF8kAsEuKMx8KxGRkaQQV0QmrNSFzYYixPW2U/D77RBW4rYlb+dbrSAiIiIikq9ol+d1hjUYet9xgtzyQ/u8VWurE/RmqsRdfM9fuIX3ADhjw91ga/sem7XQ7U7KV2+ZzBWX7cWO2zXw+RNfdnLlPNspvH74sVz95vZU0I5vThXelHbmLEsnZVQRm393tKdl2SIio0EhrohMWP2pxM23J25SOwUzRD1xoxn6e6kSV0RERESGmncdBpthDYZII4Q35BfitjktCn7MBVzxtb8wo2QLzKoGwF/lTryDzZH8ChR6eyHqFEjYgJ99jzqL9RsrAWhqLuFbX36a/Nop9PJ8zTL+yKcAOH37l8C4fdVmzjDJIW5nW4abiIiMPC1sJiITVmqI6+2Jm+vcXJLbKQxRJW60I32fQlwRERERGWre6ttM881Ii3OOt2I3i9ZWJ264hyOJfH4v+H/7w6RSAAqr3UWEQy0RbDSPELfT7aMb8hclAlyAS6/Yh2jU5F2Ju2p1TWJz6znNYNxK3BkzDB2Ue943w1xcRGQUKMQVkQlr+NspDFFP3IwhrtopiIiIiMgQ66sSN75OQ+p6DRm0trmT66rK5EC4oNKtnigKd9PZkUf42u3OibtsSeL10+zNi1t2wM75KbS09n0f28vqD6oTm6kh7sxZfjopc8/v6PuzioiMBIW4IjJhpbVT8FTNphpQOwXfUFXidqbvUyWuiIiIiAw17xwzdb4Z7XELCVLXa0gRCkFnpxPiGmMpL0spQChzQ9wK2mloyGNsUybD8m9gn/0qhxQ/nNg9gw3MZAP+YC8059H6wAZZ56ninT2zNbmdwqyAQlwRGZMU4orIhOUNZp12CtlT1gG1U/DZAffEDYWctRsAsG7VwaNPzeXiy/Zj0yZ/5gtFRERERAbK+7RXaiWu9+mwTE+KebR5stSqyh58vpRiiTK38rWcDhoa8xibH5hRycbSOTzfuktidxOeRdGa86jE3dLIra8s4wV25+8cxawZbUmVuLWTiug2pYnt7sYMC7yJiIwCLWwmIuOStTgr0A6CN5gtKIACf4Rs/ywOuJ3CACpxn3gCjj4a5syBp56CktgkeUtDKZ848RSCwQJef3sKt92V3/1ERERERPLiDXGjKeGl9fTB7aOdQmssSz2U+/lt5zfhkx1w4LZOX1yA8qLEueV00NiYx8TeOpPp19+akthVU91NU4s3xO27EjfU2M7WkVXO9TQzfdruYNyfAYyvmFBRMcQy7LZNQUoy3UhEZISpEldExp1nnoEZM2CvvZJ/y99fae0UCrL3TBhwO4UB9MQ99lhobISXXoKLLyZR6fDPh7YnGHQmmH+9e6H64oqIiIjI0EqqxE0JcaP9D3FnsIHtw2/DC+tgdbN7QmolbkM+0YQzmX5jRV1iz9Gfeot2f1Viu/n9vluONaxxJ+XdBWUUFhUmn2AM0WI3ZO6sVxszERkbFOKKyLjzi1/Apk3w3HPwjW8M/D5pC5v5h7idgn9gPXHr693XP/0piQlzaUnyIGwkw2ITIiIiIiIDlXclbu4WA/EQtwpPe4NKNxhNb6eQR6uwnk6o7+CDtwopxAlWF+5YDzVunWz9O31UXtgoDWvc+XmoqARMcdppf9vpayzkNebxHm8vOKjvsYmIjACFuCIy7txzj/v6T38a+H1SK3F9vuxJ7YDaKfiiSf2/BrywWawfmbXJj5m1NKsSV0RERESGUM5KXE8f3D4W2c0Y4lZ4wlJPiOssbJZHp8cn/gsLf81ltx7IPzgcgHmzmymoc8PhltV9TNptkOb1bgwSLS0CU5R2WnRWHW+wkNXMY3N7WdpxEZHRoBBXRMadffdN3rY283l9SQ1x/b5haKfgWdjMG/D2h406IW5be/IEs6lRIa6IiIiIDKGkStzO5GMRTyDbV4jb4kyes1biTq9g/dwF3McneJldaWgM9D22brcSOIhzr9mzWimZ4V7bvb6PJ9VsD20b3cIIU14IvvRK3Cl17ufb0pDH2ERERoBCXBEZd0pSVhbIt0o2VWo7Bb9vGNopDKASd/fdk7d7e5w3b+9I7tfV3p5nsiwiIiIiko+kStwusLEqBGsh0uA5ljvEbWnOFOJ6wtJ95vLk9y7kU9zHL/kOjU15BKVBtzI4EeLObKV6rqeydktX2mVJbA8dm935ub8yACZ92bK6ye7kv35LYdpxEZHRoBBXRMadYMqcsauPuVo2aZW4/iFup+CPJlXi5hvipr5XT48zCW5tS64S+MklVYiIiIiIDBnrmYha61bjRuohtMZzrK92Cs4cuBLPKsSVyU+VTa51J/ENjektDdIE3SrbHoopK+2ltqabuu3dU/ytnRku9IgG6Wlw5+dFtX7wlaedVjcpRCFBamiic0Pu/r8iIiNFIa6IjDu9KV0Eugc4r/JW4gYC4DPD0U6h/5W4PSlPgcWfHKtvSO7Hddc9CnFFREREZAjZlIl2+IPY1425z0sRD3GzVuKSEuI29S/EDVLE7FmtGAPTdnIn2WU9LXR35Zh02x5Cze7EvqTOZAxxd1vxL4IU08Qkjn36Z32PTURkBCjEFZFxZzgqcZ12CoOvxE1qp5DSE3egIW5P0FnoYVO9M8GcRANT2ZTfzURERERE8pYy6e16EqJdENmSvL/PENcpZMgV4k5KqsRNb2mQpie5J+7srZwfCgoXTubEqfcynzf4BPfz3qpcIW6QSJv7GcunGPClL1xWNtkTKndrHQoRGRsU4orIuDNUlbjpC5tlfyxswO0UBtATN60St6cAa8G8vJZ7+DQbmc63+WV+NxMRERERyYcNpa8YHN4IrX+CnldTzg27/XIzaI1lt1kXNuuNMPXvD/N9LuZCLqChqRQb7ePRN08lR5Ai5swpBF8RlBfStNNOvMV8Gqhj5crsk+5wqBfT6d6nYhpgStPOK5/mBs7+1Mm5iMgoUYgrIuPOUFXipi9slj3EHXg7hf5X4tbXJ2/39Pj5YF0l3ZujfJp/ECDMx3gkv5uJiIiIiOQjW3VtuAGi7fmfT5YQt8JTiWug8KL7uJgf8n0uIRTy0dGeu89uajuFWVv5wVcNwLbzmhLHVq7MfotNmyy/4jwO4iE+V3ELgY9vDb70ELdqulsZXBhST1wRGRsKRnsAIiL9NWyVuDkWaBhQOwV//3vivvlm+j7zdj0z/99P+RvuyrizWUt1dS+g1XJFREREZAjYPCe8ifN7geKMh1pbnXqxI7mbP11wGztNWwc1npYJAT8U+SEYoYAIxfTQsCVERa4lH3qSFzabOa0AjHPPfEPcdesMq9iWVWzLbvM2wNx3EvfwKp3i9sktiXbR3Q0leXR8EBEZTqrEFZFxZzgqcZ2FzbKnwQNqp+CL9rsS9/33M+zc3IE/2EsFHYldtTRjOgb4wUVEREREUg0oxM2stc2JGp5lb6IHbg+fWQSF/uSTytxihHI6aNjSx/untFOYNr0QfE6IvO3cRorooYoW3ltps92BdevdCGSrGW3OiwwhrvGkyWV00tyU52N5IiLDSCGuiIw7qSFuvgFrqqSFzXwh/CZ7KDrgdgr97ImbWmUMQENHhp0wKbyFTVrfTERERESGQn9D3NRF0DxaWtyooaoyy9NuaSFuH5Pl3uQQd+q0IjBOiHvId86lhxJaqKF7xbqst/jgA/dh5FnxENeXocS2rNJ9qRBXRMYIhbgiMu6kBp0Zg888JLVTKOjC78u+OMPA2yn0rxI34/u0Zl5MYRKNPP10fuMSEREREcmtn0FlzkpcNyytqsyyMFhqiNuQfS4OwM++xJypDZTTzhV8iWnTfYkQt6DMJE5r2hBKK/qIW7c+kHg9a0YbmACYDF0my6uTxtbUmOfiFiIiw0ghroiMO6mTsoGGuEkLm/l7kvrXphpIOwVnYTNvJW72+8dl+iymLfPEdzINA+4HLCIiIiKSZIjaKYRC0N3ttE7w+aKUl2WZrKeFuLnnytFolA2N1XRSTpBipkwhEeL6StwgttAGWb068z3WbSjiPebRRA1f/b8ToT7LZ/aEuGV00qRKXBEZAxTiisi4EomkV7QOSSWuP4jPl33iOJB2CgPpiZspLPa1Z05qJ9GY97hERERERHLqd4ib+fzWVufrx3iY9mg5ZtGv4at3p59Y6oa4FbTT2Jj77ZqbDeGwEw5XVQYpLgZ8Rc7BIjfELaYn6+Jm69aXUEsTNbRQ1twAJRWZTywsJ+Rzqnb9RGndnKWaWERkBCnEFZFxJVNgOzTtFLqTAtdc5+aS1k7BN/hKXJ9nAbNOShOvJ9Mw4H7AIiIiIiLJhqadQjzEraaFUrqhvgPaMvQ3qChKvKyilYZGk36Ox6bN7sJo06bGQtVYJS7F+YW4H6wro9yzWDCeBcySmCJ6A8WJzY5NmdeoEBEZSQpxRWRcydTfKlvPq74kt1MIJgWuqQbeTsFbiTuwEDfQ6Ya4q9gm8XoSjQpxRURERGRoDHElbhWt7s7KWGBbMBVK9oqd4IakVbTS0OCGtJm0vbyBnXmFHXibOZOanJ0m/0rcSARaNvnw48zPbVEBBErTT4zd98qzb6SMDnxEWB+szTk2EZGRoBBXRMaV4avE7clZiTugdgr+aEpP3P6NKTG2LjfEXcm2ideTaSDUq0UWRERERGQIDFFP3HiIW0mbuzNedVswHQp3iJ2QWombYYExj7m/+TWvsJi32Yn9/LHVffsR4m7aaCmNdia2TUUhmML0EwFMgOIZRXRRhsVHU1PuKmERkZGgEFdExpVMVbdDsbBZwN+dc2GzfN8juSeuTeqzO9BKXNvqfugb+Bxnz7+bbXmX/8evCYXUFFdEREREhoDtbzuFzKFvS4vzNWOI668BX5nzeteZNB20lN/zFV5hlz5D3Ei3O76KSbGq3X60U/hgbS8VtLs7yorcEDiVKaC2xp2DNzXlHJqIyIjI/a+kiMgYM1yVuAX+7pwLm+X7HmntFHzRjMfyGVOcbXUXUniLnSiYG2bVm05FbjjUlX6BiIiIiEh/ZamszS53JW5yYBqrePXVgC/WwuDoRXTvvQ9f2+X/ATCtKfNivonhdbsT5cq6eIibuRJ39WpnXh0IuNd/8EE4eUzlOSpxgdoa9/2amlWJKyKjTyGuiIwrQ1mJm9ROwd+TFLjm876ZpLVT8Hl74vY9+cv0WT7GI9TSRDUtfMBWfGzS64ljoVAeybCIiIiISJ+Gtp1CcmAar8StBVMKxoC1TKpxg9uGxiKsdQ5lfLugO76qKbHwNUuIGw7D2rWwjbucBOs+iKaPKUeIO8XXzPasoJwOIlsmA1kWQRMRGSFqpyAi48pQVuImL2yWu51Cf0PcSlr5/nNfoGjBJXyBq2LHBhbirmUOy9mVxziAIMXUTXarb0O9CnFFREREZAgM8cJmaVWvAL4KMD4wJQAUF4cpK3UmwOGwj7Y2sjK97vvVTouV2Poyt1MA0loqfLDOZqjEzdJOAdju6j+xgh15kSUs2PRE9oGJiIwQhbgiMq4MVyWuE+JmD0T7207hZG5hcf1/MR1BLuYHgCUS8YHNvRBZpnYKqUqKeimnnTmsJtSrnrgiIiIiMgSGamGzFqcwImNPXF9J7GtF4tDkSW6BwpYt2d/OH3LfryYe4pqAEwqftwzePo8vHvcUv+VcIEOI+4GhnA53Rx+VuIVV7jHb0ZP1PBGRkaIQV0TGlUwhbr5Vsqm8PWoLfMGcPXH7W4m7He86LxZN48dcADhVuNFI7l5ffYXFX//CM3zzN0fTTiWrmYe/uz33BSIiIiIi+RiySlxnkp3eusDvhqa+StjcDj98gN91nsOlOH1xc4a4EXeiPHmWp4LWFDshcW0ps7frJorTLzc1xF23ztevStxAtXvM192d9BSfiMhoUIgrIuNKppAzkru4NSvvdc4iZIMPcePB8BzWOC9e20STqXXfM5x7cpxaiVtKJ3XUY3Bu/K0vPU2kwH1czNehEFdEREREhkB/FzbL2hPXmVOnB6al7ravHDpDcPVzfLrprxzFXUD2EDcahUDUE+LOLHEPeoLYbec1JV6nt1MI8BdOYhtWsu7P58G5HwVf9hDXV+6+RxmdtLRkPVVEZEQMW4hrjPmTMabeGPO6Z1+tMeYhY8y7sa81nmPfM8asNMasMMYcMlzjEpHxLVOYOtDfinsrcf1+i98f5f/4EhbD3zkqEZyCEx7b7BlvQjwYnsf7iX1r/XPc4+Hck+PUkPpI7qaeqYQIcDVnM7Wuk1CxOwEu6Grte1AiIiIiIn0amkrcllg7hcP4J09e+nO4/wzYvs7tXwtOiFvhBqjxwDdbiNvYCEW4PwgUVpa7B41732whbjgMGzcF6KKM99iGuv0rYG5NzkpcyssSL8vopKkp+6kiIiNhOCtxbwAOTdn3XeBha+12wMOxbYwx84ETgAWxa64wxviHcWwiMk5lqsQdaIibWolbsXotX+JKWqjCR5Q6kmeR+fSrzRTirgu4IW44lHuwqZ9vKpsB8BOlh2IKCqKEit2qgOa1XYiIiIiIDJrt56Q6ayWu00ZsE9Mp2GkS7D4LygqTwlZ8Fc6+mHiv2vrNmasmNm1yFywDoNjtqYuvGLpC8EEL20XfYRYfAPDee+7cfM0aiEadcU2f2k5RUexAjp64lCnEFZGxZdhCXGvtE0DqP3NHADfGXt8IHOnZf5u1NmitfR9YCSwdrrGJyPg1fJW4UcrWOBO+aloJU0A9U/t870z3LKODamIVskV+WgtqKYxVDvS1EFlqUBwPcQE2x8YTKnErcV97Fpqb+x6XiIiIiEhO/Q1xs1TutnrWM6uq9Eygk0LcMigpiC8bQQk9+AmzZUvmhYY3b4iwmak0UkunvxwCntYMphj+8Sbs/lvKD76cy4q+DTjFEevWOaesWuWe7q3WTRpTqjL3PcrpUIgrIqNupHviTrXWbgSIfZ0S2z8TYr8uc6yL7RMRSTJslbjGUrp2Q2J7E9PSzs8nxI1EoNb7+6tghC3tlfyEHzlj7aOcN1slLkB7idOBJlziVuJW0sbTT/c9LhERERGR3EJw52uwfANEMoepSfqoxAWoqvRUz3oDU1MCxiRV45bRSX195vfdtMXPTDYwmUbOOPyZ5NYMpgSK3TUjJpW6KXK8pUL8aw1NLJyxxv18udoplLktG1SJKyJjwVhZ2Mxk2JfxOQpjzNnGmBeMMS9sybV0pYh8KA1nT9ySDzYmtp9i37TzMwXIqSIRqCG5NNZPlEk0AhDqo51CasY7jU2J158+ZT0A5dPcfzIractrXCIiMnEYY75hjHnDGPO6MeZWY0xxrrUpREQA2NwMX/w7fPxamH8pNPbRtitLT9zWVoOPCHXUU13Y7i4skdQTN1aUkNJSYcuW7O0U4qZPbU9ug+ArhiI3xK0p7ki8joe38UrcGzmNK/6+P0y/CP69oo9K3OR2Cnr6TURG20iHuJuNMdMBYl/rY/vXAVt5zpsFbCADa+011tol1toldXV1wzpYERl7hjLETe2JW7SpIbH9Dtvn9d6potH0EBdgMs69B9oTF6BuR+frpNlu+lxJG93dfY9LREQmBmPMTOBrwBJr7ULAj7P2RMa1KUREEp73rATWEYSX1uUOcm3E+ePR2ws9PT6ms5F6plK2049ht984B1MrcQHK3UpYJ8TNVN+VHOJOm9IJxg1tUytxqwrTQ9z41/gCaoDTLsHkiETK3L675XTQ2JDHKsciIsNopEPce4HTYq9PA+7x7D/BGFNkjJkHbAc8P8JjE5FxYCjbKaT2xC1odid1p3Izv+abTPYsbpbvwmaZQly3EjeSdswr9fNNSfyuC/zTY325PCv5KsQVEZEMCoASY0wBUIpTHJFtbQoREccKT1IaisLJt8IrGWurXCktFVpjy0IkhaUlAeert3WByVyJW581xHUD1GlTe5IPpoS45QE3eH73XedrvBI3aVwVnsXRMikvJxQoop462qikuTmPFhMiIsNo2EJcY8ytwDPADsaYdcaYM4CfAwcbY94FDo5tY619A7gdeBN4APiytTZ30iEiE9KwVeISwdfSmdj+Or/lm1zOXFYn9uUb4r7FTnyXn/HW7L0T++MhbriPEDf5PWziOoBwfKJZnhzidvXxpJuIiEwc1tr1wKXAWmAj0GqtfZDsa1MkUesykQlsdUP6vobO9H1eKS0V4iFuJZ7VzeJz16SFzYqcKti0dgr+RPcFr7Z1rRzOvXycf7ND22vJB30lSe0Uyv1uhcPLLzs/K2SsxO0rxN17CX++9DamUs/R3KUQV0RGXUHfpwyMtfbELIcOzHL+JcAlwzUeEflwGK5K3IL2Lkw0fcY4HbdPbj4hbjQKK9iRX/BdKg7ake//6SjAbacQ6s2/EreEbopxUuseipg+N1Z14KnELaWLTlXiiohITKzX7RHAPKAF+Jsx5pR8r7fWXgNcA7BkyRI9OywyUVgL61vS9/fZFzd5ct4Su0VSWFoeC2pTFxEzxUkhbgXt9PYa2tuhsjL51MAH73EnRwDQ/cet4HvfS76PJ8QtMd2UlETp7vaxdi088YRbCFLla4P4zwAVVbk/mwlQU+VW/TY16Z9EERldY2VhMxGRvAxXJa6/LXOVgXdhsXwrceN6St3ZZy1NGKKEI/n3xPVW4TZRy9SpsUn0sTvzsy/fSwEhvsL/qRJXRES8DgLet9ZusdaGgL8D+5B9bQoRESAMbT3pu/usxM2jnUK8EteXGuKWwJEL4Fv7c0nVT3gbZwGI+gz/OrU3uO9TUJZSi2aKktopmGCY3Ra7E+Rrr3VPrTDeSty+QtwCamvcagktbCYio00hroiMK8NWiduZOQn1hriZ3juVN8Sl0J+oPCggQhWthHpzP4blDYqvOP9OwvgBqJnn6Q9WVoipKSESe5iiq1PdZ0REJGEtsJcxptQYY3CegnuL7GtTiIiADUNrhhC3sa8QN7nCIu92CuC0QThuF/j2Mu6edzqr2BaA1E4uvb3Q05YrxC1MqsQlGGbp7i2Jzdtui51GlNKIZ85fnlLumyZATZU3xM3cr1dEZKQMWzsFEZHhMFyVuKYsgP3Ejjx6/3Q+xqOJ/QNppxDn91moLYUOZ9I5icY+e+J6g+KdPu2j6aSfYjp6qCtrTTqvtMQdTHd3GGJhr4iITGzW2ueMMXcALwFh4GWc9gjlwO2xdSrWAseO3ihFZMyx2Spx+2qnkHxN5krceDuFwqRzvaHulMluWJxaiVtfD8W472OKAin3KUoLcfdcUg/MSjqtDE8gXRqAgpL0z5N03wDT3n+DQ7mfMjp5qumI3OeLiAwzhbgiMq4MZYjrDVzNjlMwNx7PwdN+xNHRO/kbxwEDa6dwGd9gPm8y858h2OxOYCfTQCiUfyVuIBBhypSu2NIzyQsveENcVeKKiIiXtfYC4IKU3UGyrE0hIoLtzVKJ21eIm7kSN7+euO523ST3fVIrcTdtgiI871OcGgbH2in4jPO1JMDHl60hENgtaW49KdAM8e2ywvTxpDIBJp9zDfdzBQDVze1YG8CoIFdERolCXBEZV4aynYK3EtfncxYqKCyMsLFnemJ/fytxIxHYi2fZm2fhbZwJYtB5o0k0Eg7n/o1/coibJfCNRJncuZ5FvEoRQbq7d+p7YCIiIiIi2XS2QaZig1bPCrpdIfj7a7DdZNhztrMvn3YK8UV586zE7TPELcwQ4pYXwaYfJXbVFLZx6KHwj3+4px2yx5vwdGyjvCivEJeyAASdHzYKQ110d5dTWpr7MhGR4aKeuCIyrgxXJa7f72wUBiJsxA1xZ/S3nUIkSg2eVQ+uPJrPLf0PNTRxP5/osxI3abE1X5ZzW3o48odf4lV24QEOpatLK+WKiIiIyCD0dMEeW8EOdVBX5u5v8VTnXvIf+OY/4Kgb4fXY02p5VeLGQ9yU0NRXBI+shFNu5Sv//BLf4ldAejuFjRtTQtyi1IpeA76UZDXaxYUXuqcWFkY59+SnPGMqTF9oLZUpxJS5gXEZnTQ15b5ERGQ4qRJXRMaVTJW4+YSrmWSqxA0EomxiWmL/VDYBFjB5LmyWEuIunkF9xWxaqAEgHModuHrHFFhbDxtboboEppRDSaz/V7k7maykjW6FuCIiIiIyGLXl8K/Tndc9YZh9ifO6tRusdabD1z7v7AtH4Qt3wlNfctoweLS0OF9L8FTwlheC8YFJXZCs2Gk99uA7zAYW8AaQHuKmVeIWpVTiAvgqIOpp/WC72W03eOEFePBBOPITb7L15AI4+odORXFvJI9K3CIoTQ5xm5th1qwc14iIDCOFuCIyrgxbJe4/XoN3NvPV3kJu4yi6KaaEHoropYxOOinPr51COEo1Le6OymICATeZDYVzB67ez1J23aNw54vOxuWHwym7x1bfhWigAF8oTIAw4Y4eoK/VdUVEREREsrCeSWhxAcyqchYLqy52WoNt6Ug+/90GeGk97Jsc4sYrcc/kOqquOJBj9n/ZKUTIFJjG2yDElOO8x8aNyaf1WYkL4KsENrvbUac9w8KFzh+6mqAT8Puyt3dIG18gY4grIjJaFOKKyLgyVD1xrXX+xJn734J73uACnmQFc7mZU7EYqCnBNDsn5hPimrAT/AJEfT58JQUU+N20uD+VuL5Wzwq61SUQ2BrKDoWWK4mUluBrjT2m1tZBbPUzEREREZH+sykT6pe+nrz9bkP6Na9tgo9kbqcAUFEbcVszePrfJphCZ/2I+PmxFgzr1yef9sEHsE2fIW6J0+KhrcepJN5zNtR2O/sBou3p1/RViQtQ6p6jdgoiMtoU4orIuDJUlbjeKlyfL4ppc/t9tVDNF7gGgF1nbaSjuQLIL8T1d7tVCqHCEoqActPBHFbjI0qoXyGu5zG0mhIomAoFdRDYhmh5EcRC3LVvRYhEwO/ve3wiIiIiIun6mOiub828z2auxAWoqvRM3LOFuJ5K13gl7rp1TrGFMc7+tWuhmkm8xK7sNHsTJTMyFC+YIjjrDljV6Gw/9SWY1eEJcTsyX9OXsuQQV5W4IjKaFOKKyLgyVCFuWj/clBA3rqzUnZjm0xM30OOuxBsqLKboyfe58Z97AvAoy1gX/k7e4zKtnr5e1SXgq3Ve+ydjKtwJZRWtLF8Ou+/e9/hERERERNK8sQL+8z+n9cH2dbDbzOTjmzyVrEcvclp9lQSyLmwGUF3lWRTN13clbpVpAwtdXc59qqud/R98AK9yKn/mVDb+61JKtt47w72KnTYQcT1hiLYBdc52tMMJnRu7nHYKdeVQ00c7BYASd9wKcUVktPlGewAiIv0xVO0Ukvrh+m3SyrvNsUXIAMpK3aqEfCpxC3vdCW6ouASq3IlfDc19VuJ6P4tpSanE9VXEBlxLYa07Sa2kLW0BCBERERGRvD3+HHznPvjaPXDb8vTj3hB3j1nugrtZFjZbwv+YtGUNbGyDqM2rnUKl362WjbdU6OwkEZwGAhGm1HU6vWrT7lUMxZ793SGIeHofRDvhphfhoGtgz9/D1c/kWYlb4r5UOwURGWWqxBWRcWXYKnFbM1filpb0L8QtCHrbKRQ7FbQxNTTnHGtyn14L3hC3ugT8scXLfOXuggw4IW5DhjZlIiIiIiJ56fHMO4sLnB64b26G+g7YYyunx2wo6oS52012z/VU4lobD3EtT7MPgSNjE991PwBTmv6ephDKPT1xjRsUr18PCxY4Vbhxs6a3OfN2kyHGMEVQklKJmxTidiQ9eUdl8YBCXFXiishoUogrIuPKsFTimkhaO4WDeIjPcCe7vbKKck7lZj6bXyVujzv5DBenh7i57uENlstNB6Y3tqO4ILaqb7mz7StLWslXIa6IiIiIDEq3J8QtCTjVuL//r7P9vQPgG/vBcbukXxd159Dd3U7RQwndBIhN0IsLoNDvPlHmlVKJWxp1F/Vdt8756g1xt5oZ79WQIcbwlSRX4vaEIBLrjxtpdyqG2zzVIBVFzvv3ZdZUWqZvxYqN02lkElYhroiMIoW4IjKuDEclbpmvC2KBaa8ppMcWs5DXOYerYT0sYSdu5rN59cRdV7k9J3EL5XRwwrL3mVFRSBSDD0sl7USD4eSVGrKMaUpBo7u+RFWxc74vVsGQoRI3/uiaiIiIiEi/pYa43v6y9SmLgrUHnX31HbDH1ond8floNS3uufE5qz9DiEshlAbAABaKIj34iBDFn2insHat8/UAHuGU4KNw22tw4J4wf+fkW5mS9J64kXpn3h3Z5I47rqo0c0Vvqm8cy3+3/SSHnXwyAIeonYKIjCKFuCIyrmSqZI1EsuaiWXkrcet8bhlrS0ENhExSS4UqWrO+d6qmwincykkA7LvLXeB7hfbSWqq6nEqA4sZmnHQ2/Tf/3jC61ueZIdaUOH2+jN/ZNmVQXUxPURn1wVp6KcwYbouIiIiI5KUrpZ3ClHJ3+72U5HKfP8DmWLD70tdhWhSMLxHixufOgNO2ANwnyrxMwJnAlxVCh1MtUU4HbVQlKnDjIe5p3MhpL90ELwHX7gXzP5F8L19php64LRB8xemHC0nt06jMFCpnYAqpqWpMbKqdgoiMJi1sJiLjSrYg1VvFSqTv2ZX3/Dq2JF5vCE0DoJWqxL7+hLje+/r9TlLcVDUjsa+8cRPYzDfyXltrPJ+hsthpoRDnK4LvH8qV37+DOazlWs6mxzMnFRERERHpl27PZLI4AEu2crcfXQU/fdjd9izcS0cw0Rc3c4gbq8T1ZVnYDOCSQ+H3R/Li18+lB+e8VaucQ+++63wtwlOxUJTpXiXpPXEBOh+AUOxm3p64VRlC5UxMETXVbsCtEFdERpNCXBEZV7IFqYkqVtsLbX9JXsggg6RKXE+I24CzUMNAK3Gj0cTKZPj9zuu2qqmJfWVNDXmFuH6fhbk1UFsCtaXpCy/4yikuckt3FeKKiIiIyIB5JpOvr5nBfl/5Bu/XzHeP/+YpeGMzBMNJazPQ2Zs7xK2IV+JmWETM+JwnzU7cFY7fhfLjtqEX57yVK51T3nnH+Zoc4paQxlea3E4hGJsnR3ug9z3ntbedQt6VuEXUekLcJrVTEJFRpBBXRMaVbH1pEyFueIvzJ/h6zvt4A9PVga3h28vg6EU8zT5AciVuvK9XPj1xIxE3xPX5nNedZTWJfcUdrVlDXG87heeL94HnvwZvfxtuOiFDiFtGcbFCXBEREREZAp52Cr+49gCefHYOVzefmnzOGbfD2/VJi5HR0QvWmYhm7Ikbr9o1GapnIWlxsblbteDzOZUWH3zgzG8zV+JmCHFNAIo98+WeDPPtpErcyszjSbWhhUn/eZZzuJJPcw8tLU4bNxGR0ZC1J64x5t48rm+y1n5u6IYjIpKbtxq2pCREd7fT+yoRgEZi/W3DW8jFG+KuL5wL39ofgAv+fiEw8HYKR795KRdzFx2UE/7fvnBEDT0V7r1KOrOHuMmVuNHkg6khrilVJa6IyDimubaIjCndbkja3OtUqd7BMfyc77nnrGuFHackh7h9VeLG2ynkDHGdALmoKMLsWa2sXluDtfDMM9DW5pxW6u+B+Fy5OEOIC1BXDXNqnLYKVSnnWJuysFkVeXnrAwq+/neu5O88yMHcGzmC9naozDMDFhEZSrkWNtsJODPHcQP839AOR0QkO2uTg86S4gwhbrQl+WsW3kA2EIikHc8Y4vZanH/6sqvt3sAOOM99Le9ZDNTQU+7cq5FaItaPs7BZuuR+uim/4k+d+HbArFXLOYICeiimp+eQPscmIiJjiubaIjJ2eELcbpwAdBXb8hvO5ev81jmw1xwoKoDSlBA3mlyJm9xOochZvCxTOwVIqsQF2HHbBlavdZ5iu/FGd39NSSfE1lKjqDTzvb5yKJyzW+ZjnSGIPzFXXACFWYLgVGVuWluGs0BaU5NCXBEZHblC3O9bax/PdbEx5sdDPB4Rkay8wWtBQYRAgVut6lbitsS+5l51wNsaoTCvENcSCkXI/c8mBMJuSawtcgLmd3ZdxhH//BlhAnx96TMsy6cS199HJe7qZj76q0v4KPAyizm/52DAn3NsIiIypmiuLSJjx9JtsEUhnnh0JvWRKYnd3+Byqj5Sy+cX/xs+v4ezsyzgXtdnJW6xM481WYoNTCH8/FG47y3o7OXUnf08wA+B5BC3urir7xDX5Ahme0Iwu9qpxi0uSAuPsypPD3Gbm2Hu3PwuFxEZSlnTCGvt7X1dnM85IiJDJbl6NkpBphA32u58tZ1gw2Ay/zPnvVdhoZue3nPTrRzx2RMJmwDRwgC+YIgCIpTRSW9v35O9QCQ9xPUV+wkTrxj25dUTd5/wU3DvG86jYAumwuyUStzKSe5L2ujpUXMuEZHxRHNtERlTfnAU77/bxrKl56YcMPxfx5l8/gJPgYF3YbOOYFpP3F4K6ayooSza6fTEzVaFC06YWt8Obzut0HZctjbjaRWFXe5GUZbWDL4s+wEml8ELsc9mbf4hblm1+9IT4oqIjIbcJWVZGGPOttZeM9SDERHJJSnELYj0EeJaiLaC3w07vbyVuL/Y+CX4wjtQXcynz+/h1ceaqawI4vtEEdQ7b1pFK6FQ5nt5FYbdRSFsSSAxVvcz+PPqiXt6x5Vw5r+cjeuOhbkplQWV7mJpCnFFRD5cNNcWkZEXZvnr0xJbu+28gZdenQHA629PIRTyEQjE5t5pPXGd+W88xL2IHzH/0vmccFRsoeFs/XDBCXjL3JB368mbM55WVuANcbNV4uYIi5POM/0Iccvdl552CiIio8E3wOvUeFFERpw3eA0EohT4c4S4AFE3UM11rwPa7oe7XofrXwCfYdH8euZs1Qpf3oc3jz+RL3AV7VQQ6o1mvV9coacSl1glblLYHPGB7U29DEgOcauinsfQqorBpExWq1IrcfscmoiIjB+aa4vIyLJhVqxy55f77b2G2bNaAAgGC3j73cnuuakhbtQJWOMhLkB1lWdymjPELUy6X7W/jd12SU5Jd9gBiqxnUbLiLCHu5i645w24bTk8sjL7ewKYQO7jceVuizVV4orIaBtQJa619uqhHoiISF+SWiAEMlTiRnsSk0ggURWQSTzELaKHknjYW+CDcs+k9It7s+bhbbnmr6fE3r+zzzF6Q1xbHKvEDUTZlnfZig9YsvJZaF8KGVp2eUPcSpsS4vpSJqslldgCPyYcoYheIl09QJ6TURERGdM01xaREWfDvL/WfdJr6znN7Dx/M2vXVQPwxoopLJpf7xwsK4SSAudrUUFaJS5AdaUnxM3V5sAUJc+/O3s5+dhVvPRKbWLXKacAb28Dm1qgNwKV1Znv9epaOOsO5/UB28DHts3xvvlW4qaGuJbmZv2eTURGR58hrjHmR5n2W2t/MvTDERHJLrknboYQN7Q6+YJo9vLUeIhbi+c3/dUlaYsueBdPC4XyqMT1vmex809sgT/K3RzJAt6E54BV18KU9Gu9PXGroi3uRmUx+MqTT/aVEC0rxt/qBMuB7jagos/xiYjI2KK5toiMCZfcy75PrKSah7mMbzJvdgs7btvAPx/cAYB333NDVU7bHT63xN3usxI3V0/couTK3o4gXz5jOf97fQ/+9jc4/HD4f/8P6DzSaUlmCmByXeZ7lXjmwj3h5GMrG+Cteqgogrm1sDDPELeozCn0CEcpIEIhvTQ15dm2QURkiOXTTqHT8ycCfAKYO4xjEhHJKLknboZ2Cj3PJ1+QRyXuJBrdnbXp5bHeRc96M3dBSD7f206hxAlxA4EIG5nu7t9UT2srabyVuBWRNnejugR8lcknm2KsZ1GJQE87IiIyLmmuLSKjy1q47D98ds3v+CXfIYqPebOb2X4bd578jqfVQmrRA1Fn3trS4qzR8HH+zZTlL8N/VzvtFvpa2My7UFpniKLCDm69FYJBuOsuKCm2QCyUzbJoMQClnifXelLWoPj3O3DG3+C4P8N1z+dfiWsKodR92q2MTrVTEJFR02clrrX2195tY8ylwL3DNiIRkSxyVuKGLITXJ19gs1fixu+VFOLWpPfXSl6UrO/Fw4q8fXiLAuAvpcAfTQpxb/ltAaccDZ/9LNx4o3t6PMQ1RCmPekLcynLwpQTMvhKnkiCmUCGuiMi4pLm2iIw6z+IKQQqx+Jgzq5WGJndu/M57ORb4jbZirVuJ+3u+Su2X33U2/vtlqOujEjepnUIwsa6F3x/bZ3udoNnZm/1eJWWez5RSidvu+bmgsqgfIa4PSgqhzenJ64S4tX1cJCIyPAaysFkpsPVQD0REpC9plbjeVgetj0A0mHyBTdn2yFiJW5MSlP71FRb84Nc8zx6cwR/zCnGT2imUlUDJ3gQCySHum487H+Smm6C+3j093k6hgnZ8xN6rvBAKq9PfyBRjKt3JZ1FvR59jExGRcUFzbREZWd1uEUI3JdRN7qS8vDetEtdmmwpHg3S1bSYUcip04wuAORuFuQPTtHYKvbHQ1vOImndOn6sSN2eI67lHRVH+C5sBfHQb6ndbzK2cQIgATU19XyIiMhzy6Yn7GuD9tVcdoB5dIjLivO0MAoFIcjuF7jXpF/Q3xE1tp7C+lcqX32YP4EE+zvMpT2Vl8q2tb+SDdwopoZsf1fSAv46CgveSQtypbE68fvVVOOgg53W8EreaFveGVRn64QKYAnyV7iIRJb3tWJv+dJuIiIxtmmuLyKjrchcG7qKUebOdfgHTpnRQXhako7OIltYSGhpLqZvc5QSkyzdAV2xC/bFtaVz3IvBJACpMh/uvWllhP9spxO5pe8DEQtlgO/z0YSgsgIpq+ME3Mt+r1NMTtztl4t7m+bmgshjIsxIX4KpTWP1CJScdehYAM9VOQURGSZ8hLnCY53UY2GytDWc7WURkuHgrcQvTFjbL8GBBHgub5WynUOlOKKtpobe374R0efESXmYqABcUPwSmlEBBhHbPomOluBPlzW6emznErSwGn6eqwMNsM4Xl/ymhlUraqaC3F4q0zoKIyHijubaIjK4ud7GGbkqYM8vZNga227qJl19zihHeWTXJCXEbOuHT1zsXzKiE5d+gYdMHsTtYyqznCbHSQP8WNkuEuEEgNgfuaIbfPOW8riyBH2S5V0VV+n3iUitxff2YNJsCaqvdamX1xBWR0ZJPT9wM5W0iIiMvuSdu6sJmGULcwbZTqHArXatoTXr/bKJRN+j1B0rBV0ZBQZQu3IDY+4iZ957xELcGz8wwWyUuwM9OYL9bzqC9w5mE9vQoxBURGW801xaRUdflhq7dlDBjmrvWwnZbNyZC3FWra/nInh9kDF0bm5x5dDE9+InN0Yv8EPD3HeLOqoK/nOS0EauKzcejPW772x5PKFyUI8LwhrgdQZIeU0trp9CPSlwToKba/Z6onYKIjJaB9MTFGPPPoR6IiEhfci5sFulniBt0rq3FMwtLDXE9lbhOiNt3JW7E077LX1AGvlICKSGutxLX+5niPXG7KOXF6o/A4hmwfV3WSlxMMUVFbrFWMPvHFRGRcURzbREZUV1uQNlFKdOmuKHpNnPd4oKV78cW9EoNca1NLIJWjrcKN3ZePpW4B20He82BnaY4+70LFHtD3ECOELegGEpixy3Q6Zlop4a4/WmnYAJUV7njaW1NnvOLiIyUfNopZHLWkI5CRCQPuRY2628lbigUBgq5jjOo/Ogkjtn3RdhtVvJJlamVuPmEuO45voJiMAEKAiZriOvt8xufDP6PpXx/1xt44K9/dnaYLCGur4RiT4jbk717hIiIjC+aa4vIyEmpxJ0+xQ11t53nFjysWl3jvCj0O396IxCOQjBCY3OGELcsnxC3OPN+b4gb9Fbi5liQzASgrAi6Y/PjzqBT3QuDq8R9+G38z73Ibwpb+WvvMTzDPrS2Qm1t/rcQERkKAwpxrbUbh3ogIiJ9Sa3E9fvcJXL73U4h6CSmT/MR9ts1yjHfyBCUekLcGprpDfXx8ML77/Hyu/PppJR32B5/wa3OWAsDeVXiJlXxelpF5KrEVYgrIvLho7m2iIyo7uQQN7kS1w1xV672pJZlhdAb6xPb2Ztop+BtG5ZXiJutN222Sty+QtylW0FbT2yxNE8BRpvnfpXF/QtxH3wNrnmcc3mcVczlGfahqUkhroiMvD5DXGPMdsDPgPlAItGw1m49jOMSEUnjrVoNFESTgs5+t1PodcPPgKeiF4DC7SH0PtS67RUm0Ugo5Hf6c/myVAx0tlFkgxQRpJI2/AXOpLQgUEgL1bzFjnRRygp2SFySLcT1VhljUto8xK1t48Sem2gHVjOXnp6jsn5eEREZmzTXFpFRl1KJu81Udzu5EjclxG12Q9yM7RTiIW62uTM4YarxgY3NfaPWyV69CxQH3QIICnOFuAVww/GZj3V4K3HL3F65+Sh3izHin0+Lm4nIaMinEvd64ALgcuAA4PMk/UpLRGRkeAPPwsIIxgy+Ejd+ryRlB0Pn/VDjThidENfEqgKyTEQ9/cS6KaHI74S4gUCAN1jIfN5KH4cnmA571iL3Vhlnnfi+soafbLwAgLs5QiGuiMj4pLm2iIyuuTO4tvAL+HpDvMyufGRqt1PVakNMn9pBcXGInp4AjU2ltLQWO/1hU/riDridQvz4wb+Dd7ZAVwj+9zXYyVuJ6wlxc1XikuVY1MKSrZyWCh1BKM+yaHA2ZQpxRWRsyCfELbHWPmyMMbHVcy80xjyJM9kUERkxyT1xk4PXzCFuFGzImYSm6O31hLgBz72MH/yTwFcBpQFscQGmJ0wRvRSGenIGw6lVDJPilbiF2R/XylSJewx/44j3n4Gb3oX9t4baLCFuVXXiZSVtaqcgIjI+aa4tIqMquNOOnN37acBp6fW7Oa9BZBX0vIrPZ9lmbjNvvO0sOLZqdQ2777IxLcRtaHSCzi5Kad5+O2oK2mBujVNlm2EunsQUQTDsBLgAHb0pPXE9LRqKcrRBMFniDZ+BOz/r2e4jVE5V5rY2i4e4TU3ZThYRGT75hLg9xhgf8K4x5ivAemDK8A5LRCRdck/cKNZTrJqxnQI4oWumEDcYpZhulrOYqusN/A+46QQnwDU+J8QFqCmBjU6FbXW0mWjEhy/bv5wp/cT8gXglbvaJYqaFzU7mFo586x74FnD9cbBblhC3ssZ9SRtNCnFFRMYjzbVFZFRt2uS+nlrXga94B+huSOzbZm5TIsRd+X5txhC3sdlp//UM+/Du785j6W7rnWPZFi7zMkVQmny/5J64+bZT8Ce3Zsh6Xh+hcqry9BBXlbgiMhryCXG/DpQCXwMuwnnM67RhHJOISEah3gjgB5xK3Kh1nzbNWIkLscrZ9EemQqEoNTSzA+/AOiAYm5z5JztffZUAmJ8cwonnHMPmSB1bqCPUu4GibJlst1sl0E0JPr8zQSwozB7ieoPpeDuFalrcndUl2R9Bq0oOcTd0u98fEREZN76O5toiMoo2bXLn1NOmdjvzYF9VYt+2czP0xc3STgFgcq0ndO2rlQI4Qa/3fh3B5J64PXlW4gI8sw5eXO20TjhgG9hzdob368eiZpDUfkEhroiMpj5DXGvt/2IvO3B6dImIjIpQKEwixA1EiUTyCHGjwYy5Zm+vTQ5Lq2JVAr7YJM1f7Xw9YgH//PqRdHQ6E9Ce7l6KKrIMsCs5xPXH3jdeiXsif6GMTkrp4vd8FYsvYzuFGjyzwqrK7AsvVE1OvKykjZ7uXiDLImgiIjImaa4tIqOtwS26Zcrk2OTU5054t5nrzk1Xvh8LcWdXww51UFaILQ2wpdENcSf1O8QtgvIclbhbVcBpu0NvBHbdLfe9HlgBVzzhvC4vHJoQtyI9xFU7BREZDVlDXGPMhdbaC3NdnM85IiJDxbsYWSAQwXn61JGznUKme/XalLA0Fn76YhW5vurEodKSUCLE7e4K4dYlpOjOHOIWFDoB8bWcRRnOpPaPnEkXZRnbKSRX4rrjSFM1KfHSCXFDKMQVERkfNNcWkbGi6v57+ROv000JzZGPAicmhbjbzvNW4saeBLv40MS+9vYiurqcYLSkJERlhWf+nU87BV9xWmVvUoi7sA5+dZjzunTf3Peq9MyF22PjeLcB/r0CKopg+zpYtmPfY/Iqc78XqsQVkdGUqxL3TGNMW47jBjgBuHBIRyQikkUolGUxMvpqp5AuLcStzlKJC5SVuuWynR3h7APMEuIGYiFuF6WJELeULrooy1iJm3eIW1ZN1Pjw2SildBPs7AIqs58vIiJjiebaIjImlL/xCp/nZgDuCE11dvrc6tNtPO0UEpW4Hhs2uSHnUZX3Ya57zglll2wFC3foewCplbgdweQQ13Z7Tu6jdVitZy7cGKsIfmUD/OQ/zuujF8IBn+57TF7lCnFFZGzIFeJeC2R7aNh7jojIiHB64joCgSjRaL49cdP19pK5nYKJPQpmCsFXAtFuSj0hbldnrhDXnWB2U4IvNqRAkVMR0IX7mFlpLMz1VuKGQxYfUarw/ExflT5RTvAV0xMoo7TXWXitd0srMC37+SIiMpZori0iY0Kkw50vFyZajLmLec3ZqpWCggjhsJ8Nmyrp6gokzY83bnYD32PsHXD+A87Gzz4Biw7sewAmAOWetgsdvRCNzaujPe5rANNHR0hviNsUC3HbPD8PVBTl1+LBqyI9xFU7BREZDVn/BbTW/ngkByIi0pdQyF1pNlAQSe6J2892CqFQau/Z+ITVDVrxVcEtT/Pv9/agmA6u5gt0dh6efYDdbv+vLkrddgqB7CFuciVuiEo8CzdUFEGBO4FO4yuit7gkEeJ21+cq6BIRkbFEc20RGStsl1v1WhR/Os34nTYH0R4KCqLMmdWaWNTsvTU1LNypPnGNtxK3trDVvXFZYZ6BacCZ98Z1BMGGnLUtoi0p5/ZRiVvnaXwWr8TtSA1x+9kTd3IdnLiY+p5q/nTXIYAqcUVkdPS5sNlwMMZ8AzgTsMBrOIs4lAJ/BeYCq4HjrLX6p1FEEkK9UZbyHJuYRiAQJRxxQ93+V+KalLYFsf5ZxhvilkEwwszetQBMopGurhyVuF88loU//zK+YIgGJvPNRE9cJ4j1hrhlsbA2qSduOJReHezL0ePWFBIuKSVeuBvc0p79XBERERGRDGy3OyEtrvHMPU0p4AS8285rSoS4K9+vZWHpCnhuLXT2UvSqG4pWF3iKCvINcU1hcjuFeC9b2wHRdmexsgfehsICOKwSPrNP9ntNqnZfJypxPa0ZBlKJO6kOfnsEXWur+cVdX3durUpcERkFIx7iGmNmAl8D5ltru40xt+P0+5oPPGyt/bkx5rvAd4HvjPT4RGTs6u21fJefcwj/5qWnj+WxXU9KHOtviBsMmuRK3MpMlbjlUOlO8qpopbPTDY7TVBaxku0Ixv5pjbdT8PmL8fmidEX7qMQNh9Org72hcgZb5i/i8c270UYlW7rKc54rIiIiIpLK1+OGnKWTPSGurxQiTlrp7Yu7anUNdH4AX7kbgHnbhoHzAag0nqKCvEPcDO0UACLtEO10etr+Zbmzb8au8Jkc95pc7b5ujD3h1uoJcSuL+x/imoBz61r3qbuGBrAWjMl2kYjI0OszxDXG1Fprh/r3TAVAiTEmhFOBuwH4HrAsdvxG4DEU4oqIRyhk2ZenKKWbfR+7iTnvvkgF9/F1ftvvdgq9vaQvbGYMGO/EtcwNd3FC3LZOm32ANpzU4iHeTgFjCAQidAVzh7jhjJW4uUPcVWd9nmMePQqAQ8Nbcp6bya9+BY8+ChddBLvv3u/LRURkkIZpri0ikjcTdOfLZZM9rbw88+Jt56UsbjbXrZy1HW4lb5m3NVhpPypxD90BnvqSE+bG59/RNoh2gGddDIr6uJ83xG3qhqh12yoATCrtfzuFWIhbVtZLUVGYYLCAnh7o6oKyHJ3PRESGWpbUI8lzxpi/GWM+aczgf89krV0PXAqsBTYCrdbaB4Gp1tqNsXM2AlMyXW+MOdsY84Ix5oUtW/ofWIjI+FXcVk8dDYntrda/wWe4ExiCdgrx38obz31MWVJ/ripa6e3NFeKGiHjCZL+nZVdBgaUTd5aXaWGzSDhMPVO4mrN5dbsDYJ+5yaFyBhUV7ng6O/v3T/Srr8K3vw333w+f+ES/LhURkaEzpHNtEZH+Kgi58+XyKZ71Fj1tvbbb2g1x3145Oan9gelyJ7QlEU+IW1aYX2BqAk5rs+3rYEale+9oqxPk9nramRUVZ75HXKDYfZIuaqGlGxo8Y5pcNuAQ1xiom+TeS3GEiIy0fELc7YFrgFOBlcaYnxpjth/oGxpjaoAjgHnADKDMGHNKvtdba6+x1i6x1i6pq6sb6DBEZByqal6Ttm8am/AR6X87hV4f5/NTDuEB1vzwdNh9VnpgmlKJW00Lvb3Z2ynYllYqbBsFOOW13h/FAwXRvhc2C4d5g4Wcw9XcftiF8O1luXviAqWl7pt0deXzT7rrqafc15qEioiMmiGda4uI9Fcg3J14XTnV057LuPPgBTu4C5m99tZUbKkbhBYEPQujhT2tC/IOcbOcE653/gS9lbh9hLimACZ5ymMbOlMqcQcY4v7sEfjq3VzXcSp1ON+LhoY+rhMRGWJ9tlOw1lrgIeAhY8wBwJ+BLxljXgG+a619pp/veRDwvrV2C4Ax5u/APsBmY8x0a+1GY8x0oD7XTURk4inpTH/atIAIU9mcvZ1CtCfj7t5eH++wE2+zE92HvgszGtIDU19pWk/c3mCOnrhn/IxWnNYGR5q7MeYId5wFNmOIm1SJG3EnqH5f7H36qMQt83Rb6OxniOvvY3FfEREZfsMw1xYRyVskAkWe+XLF1Er3oGceOmerVsrLgnR0FtHYVEpDsJp4SVXAE+IWBN1AeNAhbu9bQCSlErev9gwF8MkdnUXN6sqc9gyNnkrcgbRTIAD3vgmrGvk4r1BLE1uYoiIIERlx+fTEnQScglMdsBn4KnAvsBj4G05FbX+sBfYyxpQC3cCBwAtAJ3Aa8PPY13v6eV8R+ZAr6WrMuH8m6wmFsiSStjvDPktvyA08CwOx8DQ1MDXpPXFDoRyVuF09xOtigymBcCAAr7GI+zmUTspYy2wgpSduyA1xCwryC3Fr3nmHi/gBlbTxRuOewMk5z/dSiCsiMvqGYa4tIpK35mYowZ0v+yuq3IM+dx7s81kW7ljPsy9uBcBb62cmQtxynMXMpkzuwOdprdCvENda6A5DRxB6wjC7GmwsvE2qxM09N8YUwAUHu9vhqNMbF8AAtQPsiVsaSGzGizFUiSsiI63PEBd4BrgZONJau86z/wVjzFX9fUNr7XPGmDuAl4Aw8DLOI2TlwO3GmDNwgt5j+3tvEflwK+3KvO7LdDYSjszMfFE0U4jbSzDo/vNXVBSbIJqUx7N8JVBWSBSDD0s5nYR6omCjyb1z47rd1g2pIW5BgeUPfJU/8NWk/UntFCIhz/mxELePhc3K33mXH3AdAFd3ROhPiOt9b4CeHiju4wk1EREZckM61xYR6Y+mJvgd36eGZmZUNfHF6hr3oEmehy6a74a4r62dxX6x/eV0ALDt7AZ4yTPBLA3kGeIWQWsPbP9LZ7uiCFZ91z0e6mc7Ba/eCJy+h9NWoTcCBb4BhLgFUOKGuPHF21SJKyIjLZ8Q9wfW2tu9O4wxx1pr/2at/cVA3tRaewFwQcruIE5VrohIRuXdmUPcOrYQDm+V+aKMlbg99PYWABYwnkrclEmhKQWfIVhYRkmvMzk1HT1On90MFbLWG+L6k+8VCKSe7fC2UwiHwnyRK9iZV1n8aAscXAP75Z6oFk5y+5aVhjtynpuqvT15u6UFpk3r1y1ERGTwhnyuLSKSr6Ym+D++AsAeW2/ki2WefrIpRQk7z9+ceP38inl8OfY6HuJuN7sB5i6Crl6nAtZnnIC2L6bQaXsQ19nrVObGF5jo7UeImxpxlAbg559Meb88xpR0vipxRWRsyKeB4ncz7PveUA9ERKQv5T1uiBvylIxOoT59YbMbXoB3tjiPYdlw8jEbpLy3lSBFbGYKNSf83tnvSw1xi8D4CBa5k1lfew/YzH126XET2d6UCtqCgsz/3KYubHYoD3AOV7PX03+FtR2ZK349ApPdFYRLIx1Ec7TsTdWRkvn2ZPlYIiIyrDTXFpFR0+Spkait6U0+mFKJu+du7sMCj7+4jVPVChQSIkAvc7bpgKuOhptOgL+cFLtHnu0UCnxQHAtgoxa6PJPkoGcuX5xHO4U+36+fIS5AqXuNQlwRGS1Z/4UzxnwC+CQw0xjzO8+hSpw2CCIiI6o86M4yO2fNpHrlKsCpxF0TX9jMWrj8Sfj5o/CJHeHG453Q1XhW2rW9lPZ2UEiIKWwh2hx7bCytEteAKeGuo37AH27am1aqOLFkbdYQ13hDXH9qT9zMYWxSJW44RDUt7o7qyrTzU/mqqhOvq2ilu8tSVm6yX+ARDCZvK8QVERk5mmuLyFjgDXEn1aaEuClFCYsXbqK0NEJXl58162qIVhTha3eeeiung10WbCZNviGuMVBe6PTDBejodXrqQkolbl8hbgBWNsCf/ue0UJhXC9/7mOe4P7+gN1WJG+KqnYKIjJZc/3ptwFlw7NPAi5797cA3hnNQIiKZVPa6s8zuraYnQtykSty3tzgBLsDTq53f5Ed7wOeGuDYapCLUmtg2tbHJYKb+s6aILXN24CV2B6AnshmiwfTzILkSNyXELQj42IG3+Qx3UkYnK9iBmzjNrcS1vUTCUWpodi+qrs78Pl6V7jkVtNPZ0UtZeX7VBb0p8/TUUFdERIaV5toiMuoaPesGp1filiVtBgJR9lwa5tHHnNVx1223C2+/Vk1TyFkMbfHCTSnX9yMwNYVQVgQNTpUrnUGcZXOAExfDR+ZCbxjm9bXWY4HTX/ePzzubO01JCXEHuABEmXudKnFFZLRk/RfVWvsK8Iox5hZrU59FFhEZeRdu/Qfef6WAcjq4ZvdbmP7oU0C8J24sxN2xDqqLoaXHmcBt6YDa5BLTcCjIZNxZVyLENRlCXF8xhYXub/97Q/682imE0nriGuawgkv4AQD3cnhyiBtpIRLxJVfiVtXQp8pa9yVtdHWGgPxC3NTQViGuiMjI0VxbRMaC3jUbeZQT6aaEuufLgDvcg74ip7LVxiasxrDvvgU8+pizeXLgNp4KzQGgsqKHubNbkm/enwXETJGzoFlchydQPm4X93Xt1n3cJwDbTna336qHM/8GC6bCJ3eC+bXZr82lxJ3bqxJXREZLrnYKt1trjwNeNsZY7yHAWmt3HvbRiYh4rDVzeJmpAPQs+C/vfupwrvzXMt5mR0p6Q3D49bBVtRPgxn3QCtsnh67BnhCT8JQd1MTCW19ytQEApshd+AwI5QhxTdDt3dXrT++J24l7//jkL1ENG20lHPElj2vSpIzvk6TKPaeCdlo7IzlOTpZaiat2CiIiI0dzbREZC4KbW1jG4wA0r5+TfoKvDCItsdcVfOowPxdd7Gw+9Zx7/n57r8H3xka4fblTUbtwGhyxV/4DMYVOO4W49izVBX1V9poCqCqGKeVQH1sA4t43nT/zamHBAP9pVU9cERkDcv0LeG7s62EjMRARkb70htxer3Z2De+efDyX/+tkAM7s+Dc8t9b547W+FaLdyffpCaaEuLHfrGcMcYsJBCIYolTQjukKpi+UBhCJYMJOgBrFEPEnVx4EAmQMcUMhCxiItuEL9lKKM9aIvwB/RXW2b4Wryq00qKSNjZ2hHCcnUzsFEZFRpbm2iIy67qbOxGtbnKFy1j/JE+JWsnQpzJkDa9Ykn3bYwe/Ainq4+jlnx9EL4cj98x+IKQJvS7CObBNTfx/3CThft5/shrhxO0wZ2KJmAKVuq7R4iNvUBJEI+PsYkojIUMm67Lm1dmPsZQPwgbV2Dc4zurvg9PASERlRwaA7QyouClPgjya26zrXZ77ogxawKSFub296Ja4x4KtKv94UseQ/txKmgFaq+dgbtzo9dlN5yli7KcFfkLy4WEFB5hA3EaSG6ynuanc/a1l55h69qSrcStxK2ulsz/+JXIW4IiKjR3NtERkLuhvdebIpzRBwFkx3X/sqMAa++c3kU4qLQxz5ibeTq2fLCvsXmKZW4nb0Zjmvr8Q0Vqe2dHb6oW0mOS0iBmLfBfDdA+DHH+fJ8oMAZz1l78JwIiLDLWuI6/EEUGyMmQk8DHweuGE4ByUiksZaCno6MTjBbVFhhIICN8Sd0rUu83XrW9NC3GBPSohbWwKmPPPjWaYISgrw4TzpWhzsyNxOoayM1c9eSgVtzGV12m/kS0uTQ9xynMqAaNQQiQChtZQE3RC3t6wCfHksvBAop9vTuiHY1J7j5GRqpyAiMiZori0ioybY2pV47SvLMPf0T3Vf+yoAOOcc2O8jDRzEQ/yAi3hmyXFMff+t5OC1vKh/i4ilhbieQPizt8GJt8Dpt0N7V/q1SfeJVeJ+aW+npULc7rOg0D/wStx9FsA394Mv7s37UxcldqsvroiMpHyWijT/n737DnOjuvo4/h11afu694ILGGwM2PRuOgGbnpAQQgkk9BICJHkDhBJIAoFQQwKh996L6dVgjLExbrj3sn1XWtX7/jFazYw02pW2yvb5PI+fna5ZF/nuT2fOVUoFNU07C7hTKfU3TdO+7eobE0IIi4Y6vl+t993aSB+i3itTIW4pdVyy5Brj2J0HwHfJAqf1jZCwDvYiYZueuI5ibGleEsXG41PecFPG9QBQUeKai0ZKaKSE0rSPyIqLoRHjNVoqcQGiTUtwxjcSCBkD10hxcW4DX83HO8NOYfHSSuopZWJQtX1Oy2tIJa4QQhSCTh9ra5pWDvwX2AlQwJnAQuBpYDiwHDhZKVXTkdcRQmz5YvVGsYOz2CbgdA8ylp16Gy+PB95/YxYbfv43Br72HnwKHH64NXgt8eYZmHr0XroALgdETfM8fLQEQsmnzRxt1KG1FGWU+uCJU+Gnj+nnXnNocn8ek61Zrmt8L70rgyxaoi9LX1whRHfKKcTVNG0v4OfAWXmcJ4QQnafB+DkzgQOvJ46/oZb7OJdzud967N7DjRC3vjmznUI4lhbi+rO3LtC8qBIjxPWHG0A1Zh6nosQTxqAyvRK3uNi+nQJAtPo5fEVxAs21xrbi4twGvpqT5yddyqNL9YqAhxKr2j4nSUJcIYQoCF0x1r4DeEspdaKmaR4gAPwBeE8pdbOmaVcBVwFXdvB1hBBbuFiDMU52l9iMPZ2V4KyARD24jYnMnK5iBo4xzcVQ12wNcYvb0U7h6oPhj1PA69RbnYHesyBkahfm99ufb3wXxuKEATDncv0a7uTgvL2VuKbz+vQyCjokxBVCdKdc2ilcDFwNvKiUmqdp2kjgg669LSGESNNQm1pspBivN4YWcPEznrQe53PBUdsb6/XNGRObhdMrcSsDoLUS4pYaFbGBaCMk7ELcCImE0QfXLsQNYrxGEcFUa4hoMkxdHhjL77mFW/g963fbLedBZiBgtJUINsVbOdIqPcQNtvF0mhBCiC7RqWNtTdNKgf2BBwCUUhGlVC0wFXg4edjDwLQO3LMQYisQj0Oiyein5S7L8hSYZzR4RoHL3FohAObj65sz2ynk039W80DArY/lNdPcEmHT2NbtbHsWMc1tXXc5jAAXOiXE7W0KcaWdghCiO7X5Kb9S6mP0Xl0t60uBi7rypoQQIkNTvbFIEV5PHEeph4c5nQu5yzjuwn2glymQrQ+DymyncCQf0JvN7DdmPg+O/hIcWT7V17yWAao/2gCJpszjGmpwLVzDaBZRRxkORz/L7uJiUDgI4ieAHir7CRGkiEhEH1iu8I/idY4C4JUDnmC3HAeZRQGjhUJTU+7tFNIrbxtyb6crhBCik3TBWHsksAn4n6ZpOwPfoAfF/VomU1NKrdM0rW8HXkMIsRWordXHoy0cRVmKGnyTIZY232LaGJm6Zmgyhbj5tlPI1uag2VTt63fbH2O5ThvHtDfEXbYZLnsCGsJcUPMZD/AuABs2tO9yQgjRHm2GuJqmjQF+h94/K3W8UurgrrstIYSwitfV0fIZeiPFuN1xXM4E/8f17MK37Mtn+mQFx4+HIeXw6Xl6L6wSb0YlbiQcp5YKaqmgf4UHimZlr8R1+NBKjcFeUbRBb8+glLVKYOZMRp15M4u4mY/YnwudH1kuU5xsh9tEUSrELaaRIEVEY/pDEfG4cT2XK5HzZBAB060Hg4nsB6ZJr8Stq8v5VCGEEJ2kC8baLmBX4EKl1AxN0+5Ab52Q6/2cA5wDMHSozezuQoitRnW1NcTFn2U87Oqj/zLTvPpYu0VdMzSb2h60p52CnVBnh7h5TLZmFnPAu4sBGNbbqA6WEFcI0Z1y6bf1LHAf+uQIuT+nK4QQnSha25AKcYOOIjQNPJ44dZSzPx9z4qB3eOaVt/QAF2CMaaCZXokbMQaYHk/ybS1rT1wfWrkxAC2O1+sBrmoGzVS9GzTKWEP4bdspADzKafhopokiIniS96MfHIuZeuo6VM6PoO2x6GUe52+UUs+GeccD2+V0XnqIW19vf5wQQogu1dlj7dXAaqXUjOT6c+gh7gZN0wYkq3AHABvtTlZK3Q96s/lJkybl/niHEGKLk3OIa0fzgqnQgYYwhM0hrje/wFRzQzAKK2v0tgxeJ4wfYO2H68tlUrJkOwaV5e2rvSFuSblxGxHjqbz169t3OSGEaI9cQtyYUureLr8TIYRoRazGCEmbk60PPG79Z12Fg6+de8CQL+1PTjSDioPmhESIcNioeG25RmshrrPCGDAWxxuSIW4IMIW4IaNPbmsh7uXclvES0Zh+sHliNL0SN7cQd+imH5jAMwA8u3G3nM4BiEat61KJK4QQPaJTx9pKqfWapq3SNG2sUmohMAX4IfnrdODm5NeXO+s1hRBbpupqeIlpLGc4k8Ys55KpE3I/2a6dQsz0OVRxvu0UvDB7DUxLtu7eYyi8ekZaO4UcQlxNQ485ovb7He0McUsrUoueiBF8SyWuEKI75RLivqpp2nnAi0Cqg6JSqrrL7koIIdKEqxpI5qCEnEWAqYoWiEbbmOQg0QTOUkjUEWtKMJA11FGG1538dF/L1hPXhyvgpBkvPsK4VVSvCEiEwPySIeMT+RB+vGlj1qKi7LcWjerh7eULr+JqqqmiF0UbJ+Y88E20JMSAo8lm0rWsr2tdlxBXCCF6RFeMtS8EHtc0zQMsBc5An9D4GU3TzgJWAid14PpCiK1AVRXMYyfmsROJnebC7r1zPzm9nUJ9M5y9O6yp06ty+xTlGeK69eC3RWPy7TCUZ4jbci2VJcTthEpcZ3MYB3ESOCXEFUJ0q1xC3NOTX68wbVPokyYIIUS3WDYvQq/ksqNYf+tKVdECkfQQtzmmVwTUN8PgMkg06iFuvA7Pj+tYw2AAfpyxI3Bi9kpchx+PJ04t5fQnOUpraAaVNrmZKcRtxocnbYxpylkztNz7jg3fMJwlAMyK79R2T68WpcbFXUGbSdeyiMWs6+kTnQkhhOgWnT7WVkrNBibZ7JrS3msKIbY+1aaPiirLQ0COY0/Q236lV+L+Zi/rMfn2xC02DaAbk32/mvNtpwBorcQc7Z3YzOmHIk9q8rZiGqmnTNopCCG6VZshrlJqRHfciBBCtKZhnfHYUq/B+mDOXInb0lc25ZgH4bt1+vJbZ0O/WmAgxKvYsMR0bFFyIJftU3nNhccDk5hJE0VUDE6wtN+deihsFjL67obw5xXitlQRl8aMUlhVUZb9hHSmMl9PJPcQN70SN71HrhBCiK4nY20hRE/JCHFzLSAAwG0NceubIaHAYZr4N5/WBZrHWonb0Kx/zbedQsu9ZX2ddoa4LSFzMsTt5a6lPlpGYyMEg9aJhoUQoqu0GeJqmhYALgOGKqXO0TRtNDBWKfVal9+dEEIkxeqMkNRdpr91uV2tVOKmz5Ybr9KX4xupXW0MLt29koO8bO0UAI/Hlarc9UeTvXkTaWFps7WdQrYQ95c8zP58TBFN3Mtv+ZgD9HtXitJYbep4VV6e9X7SqdLS1LI33NDKkVYS4gohRM+TsbYQoqdYQtyKUOsVrOk0DVw++Pku4HfrY+9YAjymMXleE5t50tozhPV5KMb1g7um6W0VBo/J8VpdEeJ6ocQLG/RCjhEVG1m2cRig98UdIR/HCSG6gaPtQ/gfEAH2Tq6vBm7osjsSQggbT4+6nAqqGcwqlh12GNBGJa55ENjQDOF5+kAwsgS3qWpWn3TB0eqAzu01EtlUWJwe4oZyC3H352PO4kF+ytOMYRGQ7InbGMGFXmHcSBHOotwHvY5yI8T1RdrfE1dCXCGE6BEy1hZC9IjqavgPZ/MDO3Da/efD51/ndwHNA/88Fm46Eq46yBrgQv4hrs+l/wI9EA5GYUApnLwznD4Jjpqc47WyhLiaSx/3t0dapfCQsk2pZWmpIIToLrm8g22nlPobyekdlVIhQGv9FCGE6FwbarzUUsEaBlMyWB/cuVyJ1P543EEiYXprKjWFsvVhiK2Hxtcg0YA3bASu8SKfPsDUsr+teTzGQLBlEjJU0HpQsPWeuC0dDxooMW6Rev2aMSfUGO0iqqnE6cz1cTHQyowQ1x+VEFcIIbYwMtYWQvSIqioYwTJ2YAG9Vi21TiKWC800Xv1mNZz4KFz4Ejw+KxmYtjHxsN210idLs8jxellD3HZW4YJ+fyXG+YNKNqeWZXIzIUR3ySXEjWia5kefYAFN07bDNHOuEEJ0h6Ym4+2qtER/C9I08HiMyQ5SAStYQ9y6lp5a3wDgCRsBrCr2tVkl4PN7KKKR4SxjdHAeal0DJNJC3JARwtpV4raEuDVUpLaVUwskq4hrrSGuy5N7TzJHRbnxOtEGULmlsekTm0mIK4QQPULG2kKIHlFdDX6MMWjejV3NIe6PVfDxUnj6O/hkWf6Bacu10idLsxyTY7uHLglxnZZK3EFFG1PLEuIKIbpLLiHutcBbwBBN0x4H3gOu7MqbEkKIdM2mMZzXFNx63Fn64qa3UzDxm1oOqBIfOLL3wwXw+r3c6P4zyxjJzPgkQo/+ACpkPcgDzYESgvgJEsga4tZSntrWEuJGo47MSlxX7iGus5dxzaJ4AyRy+9lfKnGFEKIgXIuMtYUQPSAjxPW3PibOYA5x19cby/1LrPtyvZamZc5rYZFrZW+WcXQ+E63ZOXsfvT/vw6dQv/12qc3STkEI0V3a/ChLKfWOpmnfAHuiP9p1sVJqcxunCSFEp6qsX8UIammkGJ/bCCndbqOlgqUvbisDQEvf2FJfq5OaAaD5iRX5SWauhNbHCaRX4v75SB7ofyEXXH00AOeljVtdyXdbuxA3Es2sxB2aRzsFl7kSN94AqhlMbRvsxON6i2AzCXGFEKL7yVhbCNFTqqshgGlM255K3I+Wwivz4NFZxvb+Je2retW81krc+mb495fw6Df65Gnnngy/nZrDdbJV4uYZUqc7cBzE9bA6sNq4T6nEFUJ0lzZDXE3T3lNKTQFet9kmhBDd4sblZ7MzMwFYuuQy2FUPKbNX4qb1xDUJmPrGaiWetgd0Dj9aqTcV4jZvjmX2xFXNltdPr8RtYW6nUEENANGoE+qM61XRC5c79xDX3bcXV3MTdZThKvfwL9V2JW56FS5IiCuEED1BxtpCiJ4Qj0NNTSdU4q5vsAa4AEPK86/EBT3E7VMEfYv1MNfpgNW1sCj5uVZtsNXTLfdlu72DlbimCt/+fY2fJyTEFUJ0l6whrqZpPiAA9NY0rQJjgoVSYGA33JsQQqT44sagzVWanChBxfF4TCGuuRK3xNxOIS3EjZlC3DJvm+0U0AIkSoxjVF2z3rJAxfTeXErpIW6k7RA310rcfNopeEsC3MzVAPRzNvIv1fYzXen9cEFCXCGE6E4y1hZC9KS6On0I27EQ1w0HjszcPn5A+0PcO6dZt70yz1guKcr9OnbaGvO3eV3je+rXx/h5QtopCCG6S2uVuOcCl6APIr/BGFjWA3d37W0JIYSVP9GUWnZXVkD5r6DmPlxOo51CLKa3+VYKmt3FpIZpaTPbuuNGWuko9+ZUiRsrMh4vc7T02E0EwVmqty9QqgOVuA6YuiNn330GjvoQc5jAr9x5hLg+49hwxJk56ZoNqcQVQogeJ2NtIUSPqa7Wv3Z4YrN+JdA7AJtN488hZe0PcdM1mgaoxcW535ft9g5W4pquK5W4QoiekDXEVUrdAdyhadqFSqk7u/GehBAiQ8AU4nr6jgFnP9DcuFxGiBtPOAiHnex55Nn4F67gcx4Er1N/FMvklH6vs3JFCaXU89VOD+VQiesnUWwM+pyNycGuCgKl+tcvVzJk8Sz2xc1sJuLxZPakHToUaleWp9ZTE5vFnDCyFy+7j2czeoWB0zW/7d+UJH/AGFAGQ25QTa0crZMQVwghepaMtYUQPUkPcZW1J257Jzb7+0/gjGf05SPG6hOUtasnrk34ag5xS1uf88G4TpbXbs89mb07D/7vEahvZvgBOwAXAnolrlL6ty2EEF0pl4nN7tQ0bW9guPl4pdQjXXhfQghhETAFk57eQ/VRkrMSZ1ol7lmXTGX29wNw0BcvzYRX/TXjWpGokxhuqumFp0jLaWIz8yQLrmBysNtS8Zpogv97i1999z9+BUzmKzyeyRmXee01uPWaBLyor7dU4ra0YYjHjbDZ5c59kOnzu3C54sRiTiIRF+FQEG8b35JdiJtI6P3RnLlO/CuEEKLDZKwthOgJ1dXgIYKD5Ey3bmf+g8CW0PWo7eH6w+G7dfC7A5L72jmxWTpzW7SSXCtxuyjEjQALNwHgqanD748TCjlpaoL6eigr69jlhRCiLblMbPYosB0wG2hpPqkAGVgKIbrFgnlxtjc96uXr3V9fcJRZKnGra/w8/vwEABI4iWA/ELX0rnXH267EdfjRTCGuJ5gMlFXynhJBaDaazIbw27ZTGD8eHnq8Fv6wL298PZ4XPtsVUESTbSBa2kEAOF25P4KmafB311XsGfuEMuoIvXMG3p+2Ph+OXYgLejVuvkUYQggh2k/G2kKInlBVld4Ptz3tD5LnaBqcu6f9vryu54WqIHy7BuqaocIPjeYQtzS/+7K7fkeYKoG1xjCDBob5cYnegmLNGglxhRBdr80QF5gEjFNKqa6+GSGEsPOfO4LcmlxupIgif7m+4izH6TDemj78fHhO17P2ro2D1kb/L82v985N8jYnQ9xUJW5DTiEuAA4P/GEKX958EA98plcqpCpxE8YzWE5Xfj27xmoL2ZMZAGxYWcWKFfD887DvvrD77pnH201spt+LhLhCCNHNZKwthOh21dXQRBH78gmnHDaLC8/d1I6rtDKHQ3srcb9bC6c+oa/vPxKaTO0Uynq4nYI5pa1vZvDAoCXEHTeuY5cXQoi25BLifg/0B9Z18b0IIYStujXGxAFNFFHsSM5M6yixVOI6HDn8/BuOsVvoSzbSixoqcLsSOfTE9eIudxHDiYs4nlgzROKQSN5XfDM0G6WtrYa4mj7YdbvjqU3RmBP2vZs5wceoopIjeROXJ78Qt9lbTEsxRfOmJg49FBYvBq8XFiyA4cOtx7dWiSuEEKJbyVhbCNHtqqshhpvP2JeDdorDYQ35X6S1atv2hrimp9+oC1nbKRTnWInryDKO7nAlrun1G8IM2qEJ6A3A6tUdu7QQQuQilxC3N/CDpmlfAal3UKXUsV12V0IIYaIajEGlr9JpzBqQFuLW1lkHbPv2mQVfrYKGZthzGBR5UGsbmB45GIDlDMPvPyOHnrgaRcWKaipxEyVeFKB3MAKltfr+eJWlErcZX5shrscc4kY0WF7DdmxmO5YQJJBXOwWAiM/oEVazIsLixfpyOAxvvAHnnWc9XkJcIYQoGDLWFkJ0O31iM11leYjcooE0nR7ievQWCi1qQtZ2CqU59ivQuirENb1+Q5hB/etTq2vWdOzSQgiRi1zeqa/t6psQQojWxOqMSlxXqemxLUcJTocR4takhbgPVv8UfpJMMz85D8b2Ibw5SstR9VopThdth7hAcVGC/qxH4eCnh83lyfLnIV6r70zU516JS0slrnHfWjCsV/YCQfw049fvKw/mELdpvTWJnTs383gJcYUQomBc29M3IITY9lRVGcuV5SHQcqxyNdNaaafgaG+Ia2pztqEBoskxs9tBmzP3pq6T5bXbc09mZRXGckOYQQNqU6sS4gohukObMYFS6qPuuBEhhMimuT5MDeWU0IBWbBq8OYpxuYwJGWpqrQO76rhpoFXfDEB4cywV4jY5S/TBoqbRlqIiUOgTjzUFkwltokb/Gq+FsFFZ22Yl7lsLOeGxVzmEK3iKn+KrH53avY4BaJrC4Wj7nswifqNHWGRz2LJvnc0DuhLiCiFEYZCxthCiJ5grcXtVhkCrzP8inV6J69bbKTg0SCh9fP3yryAUhXAMHK2ExpbrdFElrr9ID5OjCYjEGdprY2qXtFMQQnSHrCGupmkN6DPjZuwClFKqHR/VCSFE/j6N7EElNYBi5WMvkPp83lGE0xlMHVedFuLWYX3kCSBSZYSteoibW+/ZIqPQlaZgcgCZaIB4NQSbUvtC+ACtlRDXBVVNDFs8C4Bv2YXqeiNsXsvAZIsIZ5YL2Iv5ilLL8XprEmsX4rY2sZkQQoiuJ2NtIURPqq6Gw3ibl5iG67dOeHUfeOqA/C7SaoibX2uw1DkOTW+pUJUc42/XC/q2DMRzHB9rDv1aKm1g29EQ1+GGEi9U60UkQ0qN8lupxBVCdIesIa5SKsepH4UQomvV1rYsaZT3MQ2+tIClJ+6Cxb0t51lC3GQlbrTaGMyF3MW5h7hFjtRyqhJXKWh8PaMfLtB6Je4A4+fyQawh2rg5tb6GQTid+U9QHvMbIa6jqdmyb+PG9KOlElcIIXqajLWFED2puhoG0oSfZmgAguE2z8nQWjuF9lbigjXErQkZIa6WR78xhx/ipoGt5mz9fnPihhJfKsQdFDAqJaQSVwjRHRxtHyKEED0nGoVgUH+rcjgSFJeYBl+aA6fTaDuwboP152FLiFunB5vxWlPvWk9xzgPM4mKNIazkIN5nr/Vvw6JN+o7Ikox+uNBKiIs1xB3CKkrSQlyXK/8QNxEwSoVdzdYQNxhMP1pCXCGEEEKIbVl1Nfgx2pLhz7HfrFlXTGwG1r641aaBbD4hrhZIW29HZXDGNd1Qanxfvd3VOBz6uH3TJn1CYSGE6ErtmIJSCCG6T12dsVxWGkZzWitnXa7svWNrKTdW6vVRVbzWSCnD3qI8KnGdnM/dXMnfYA3w1hQY08c4YMIAli0qYmXzQKCNStyBRog7mNUsD25Kra9lYLsqcRNFRiWuJ2pNbUOh9KMlxBVCCCGE2FYlElBTkxbiBtoR4tJaJW57QtPk9XqZAtjNTab9ebQbc6R9PzlMZNwmzQW3HA3xBJR4cY2opH9/xdq1+s8j69bB8OEdfxkhhMhGKnGFEAWttha240cO4n0O8H4K65ss+12u7IM5a0/cZHVqvfERecQbAEduIa7P77aGwrWmQe+AUph+Didv/yEHos9Pkz3EdUBZEVGv/rpFBBlUtyS1ew2DcLbjnVkVG8FwIG79PZIQVwghhBBCtKir04PcAKYP/juzEldztK91QaoS13QvZz0LO/4D7v+yY5W46aFue2humDQY9hgK4/qB382QwcZ8GytXdvwlhBCiNRLiCiEKWl0dnMajvM8UXtxwGDz4imW/s5XE09oTVw9vHY1GotmcRyWux+u1hrh1zdQ3eDnjoqmccdFUGho9RCJGoJy9nQLg8BCqNGYAHl09J7Xc3nYKof5DOZmnOZI3OJMHLftisczQViY2E0IIIYTYNlVX61+t7RQC9ge3RtPsw9r29p5tOW90b9htsLF9U0uBQj49cYus651RiWtTeTx8mDHIXrasE15CCCFaIe0UhBAFrbYWimk0NhRbJ+t2uXOsxE2GuM4Go+Ig5C3JI8R1U0OF5Xo33b4fDz21CwC9KkJEojmGuJqH5l69KF23FgBvwuhhq7dTyN4iIusly8p4lpOz7g+FwG0ad0olrhBCCCHEtqnTQlzQg1eVPrBsb4ib7Dd7wT76r7OfhVd+0Lf1LtInJ8uVo9i63intFDK/rxHDmwH9905CXCFEV5NKXCFEQauthSJM7QGKrCGu02U/SAwE4rbtFMKBYlYyhHpKCHmL8whxPRntFP521z6p1Vvv3Tv3SlzNTcPwoanVtweeyLonLuMnvMoqhuDMY3zawudvPfhNb6kgIa4QQgghxLapqkr/au2JW2R/cFvsWiq0dxKx9PPM/XB7F5FfJW5aiJtemdse5hA3GofmGCOGGQUiEuIKIbqahLhCiIJWV5dWiVtSZtnvsglxXS4oKlJU0Yu1DCA2sq/etxaY8bPfMIyVlFHPvEH75NwT1+P1plXiNuN26z2wRrCUX3M/P6l7lr34XD++jUrcxu2GpVYHNi4nNGoor/MTongsFbO58vlaT34lxBVCCCGEEGBU4lp74ra3EtcuxG1vJa7D2ve2ynR/vYry64mbHtp2SojrgQe+gmE3wqAb4JYPGDncCJqXLu34SwghRGuknYIQoqDV1sLI1kJcT+aAMxAArxc+ZT8GsZYVz/2ToYPrAIiaWh64XfGcH61yun3Ua6WQbFeraptxuxJEIrA7X3E/50ItPM3JfMHerYe4eAhuPzy1trhoR3aKGZW0Llf+7RR8/tY/kwsGrevSE1cIIYQQYttk306hMytx2xnigt5SQSUHquZK3D55tlPQ0kPcYvvj8r03pwNCyfurb2bEsLrUbqnEFUJ0tR6pxNU0rVzTtOc0TVugadp8TdP20jStUtO0dzVNW5z8WtH2lYQQW7u6uvR2CuWW/XbtFPx+aGw0BnlffTsotRyNGW97bnci9/5Ymp9GtylArmvG49Ercc3314Q+YGyrEjc2qBcP80tO5XH+OfQ6YnHjfl3udoS4Phcfsx8b6EsTAYax3LK/psZ6vFTiCiGEEEJsm2xD3KJ2hpwtfWwt29rZTqHl3EgcHpuVVolbkt91uqQS1wmlpp8dGiMMHVSLI/njxdq1EA53/GWEECKbnmqncAfwllJqe2BnYD5wFfCeUmo08F5yXQixjctsp2D9fMdl8zxBURHU1hpB6ElnGRN+ZVTiOnINcb2E3KbBbV0zbqf+Kbw5xG1EP6atnrguZ4Jf8TBPciqxmIOYKVxuXyWum0qq6csmAoQoocGyf+1a6/HZwloJcYUQQgghtm4tIe7F3MGDF/4X3j8XjjyifRezDXE7UonrAacGl71qbAu4wW3zOq3JmNisE0JcgFLTdeubcbuCDBmiryoFS5Z0zssIIYSdbg9xNU0rBfYHHgBQSkWUUrXAVODh5GEPA9O6+96EEIUnFEqrxC1Om9jM5qmqkmwf1DfHGD3jPabyEnvzWZ6VuF7wugiiH6/FExRp+n2ZQ+ZcK3Hd7kRqNRpzEot3PMQ1T+RWTq1lf3qIm61KQEJcIYQQQoitW8vEZlX0xjm6EnbqD5V923cx2xA3z8DVcq5Hb1mwy0Bj226DgTxn/tVc4DC1XeuMSlywhrgNYVAhdtjB2DRvXue8jBBC2OmJStyRwCbgf5qmfatp2n81TSsC+iml1gEkv7bzfxEhxNakuTmtErfY+qm612aMaD5kPz7mVB6H/8yAxZuY8vztvMRxPMVP9YnJ8qjE9bjjzGYi37Ar4d1H4VV6Emq+v5ZKXLsKYeNaHlxOI8SNxRxEo+YQN/+3Zp/fbZl4LT3ETW+nICGuEEIIIcS2qaUSF6CyItlSIZ9Jw8xse+J2pJ1Csor3gn3AoelVuJfu1777c5haoXVWiFtmKihpCEMixI47GpskxBVCdKWemNjMBewKXKiUmqFp2h3k0TpB07RzgHMAhg4d2jV3KIQoGG2FuH6bDNZ8yB1czC7Mhj8Ctx2T2l5DBW63yv1xL03D44mzD58DsOye29lwiP5ZU3o7BY8HtNaKaTUPLpcpxI2nt1PI7ZbMfD5YbQpxK7CmtunhrDnE9XiM/RLiCiGEEEJs3SwhbnkINEd+k4aZdUVPXIBjxsGcy6DIo/9qT3Th7AWxdeAo6ViLB7OMStyghLhCiG7TE5W4q4HVSqkZyfXn0EPdDZqmDQBIft1od7JS6n6l1CSl1KQ+ffp0yw0LIXpOczMsZjSLGE2oopfe8NbE58s8xxzibqa3sbK0KrVYSzlud35vgR6PSi1Hok6agvpgML2dQqutFCDZTiGeWo1GHWntFPK6LUAPs2spT63nE+Ka209IiCuEEEIIsXVrCXErqaK3twYS7QxwIUtg24EQF1PY2rc4GeDSvkpcVz/r185QZqrurW+GRJOEuEKIbtPtIa5Saj2wStO0sclNU4AfgFeA05PbTgde7u57E0IUnnAY9uUzxrKIj+5/MqMSN1uI+69/6cuWEHeZEWzWUIHLld+A1e0yQtz6Bi+RiD6YTG+nkEuIm95OwVyJ625HoYDPh6WdQgU1aJopdJYQVwghhBBCYPTE/YbdGHvYFdDvT7BsWfsu1lWVuBnb21OJm+zQ6OzE4q+SzHYK43YwxvWLFulFKEII0RV6ohIX4ELgcU3T5gATgZuAm4FDNU1bDByaXBdCbOPMgyCfL7NHQbYQ97zz9GVriGs8O1ZDBW5Pfm+Bfr9RPTt3vtG2Oz3ENT+iZkvz4vEY1wpHXB1up+D3k9ETt18/4zUkxBVCCCGEEImEMVdCgKCxIxCwP6EtdqGro4MTm9lqR7Wwe7B+PVcnhrguv96nF0ABjWGKA42MGaNvisdh5szOezkhhDDriZ64KKVmA5Nsdk3p5lsRQhQ4S4jrzwxd7ULckhJwOqGiIsrmGnOIm95OIb/B4IQd64jMXsckZtJ4yxL2oTefsa+lJ24TOUyaoHkoLTFS1PoGb4fbKZSWZrZT6Nsnxvr1+sUkxBVCCCGEEPX1epALXRjidqSdQmdW4jqKoOKCjlUGZ9yHB0q8EIzq6w1hiFez996lLFqkb/rsM9h33857SSGEaNEjIa4QQuTKHOJ6vbmFuC0dFyor4tYQNxRLLVbRiwpPfm+BY0eHGMoLXMt1sBZqcfAZ+/IlexIkQBFNbKRv2xfSPJQUR9A0hVIaDY1ewmHjXjorxB00MMKcufpvkIS4QgghhBDCeGJMWUNcu9mCc9FtlbjtjC6cpW0fkw+HF145A/xuPcwNuCFRzb77Duehh/RD3n0Xrryyc19WCCFAQlwhRIHzN27kLF6hkWIqftgE+x5o3W8z3mwJccvKEtZ2CibLGEF/b35vgWVlipUYj2P1ZjMAV+fb/UXz4HAoSorD1DfoIWt1rfGNtCfEdTig3lEGycqKcmoZOrgZ0AeuEuIKIYQQQoiWENdLGAfJ+RM8rvYNQCFLT9wuCHHbU4nbJdwwotK6KV7DEUcYqx9+CJs3Q2/7H0OEEKLdeqonrhBC5GRg4yL+y695ip/R/577M/a3Vonr82pswr4H1lJG0qtXZo/d1pSWaZZQuCXEzVtycFpeZpQZV1V3LMQF+CoxmT34kjEs5DheZOgQo7pCQlwhhBBCCNEyqZm1Crcj7Q8KeGKzrmB3f/FqBg2CvfZKrsbhuutAqcxDhRCiIyTEFUIUNNVgTBrmLMssu201xPXBCobZXncpI+nbL78Qt6zTQlx9sFtm6ou7udroQ9beELeBUr5iDxYzhmp6MbBfXWpfejhrXm/5/bI7TgghhBBCbD1aKnGt/XA7Ujnb2ZW42c5tx8RmXcHu/mJrALjwQmPTXXfp7c5OOAFWreqmexNCbPUkxBVCFKxoFLSgMWmYqyxz0rBWQ1y/xkqGEjMN+hZ4xrGQMWygH3365PcWWFrq6tRK3EAgmtrU0GgMCNsb4k45qMGy3qdXfWo5PZyNGe2BLfNYSIgrhBBCCLH1sg1x/YUU4marxHW3/5qdSfNAOAYbGmFJFWxugngtxOs45RQ48EDj0MZGeOEFfVtdXZbrCSFEHiTEFUIUrNpaKMIIcbXi3ELclvYAPp+DGG6+ZjKbR28PNx/F1Ip32J6FgEZ5eX5paWmZNcTtwyb8BLmVy/gT1/Nr9HYPTz7ZxoU0/aZ9XiNJbWg0BqztDXFPOr7Jsl4SkBBXCCGEEEIYbNspBGwG1LnSPKClPd3WFZW4hdRO4Yb3YPytsNdd8ORsfXv0RxwOeOUVOP98az/cpUvhxht75G6FEFsZCXGFEAWrpgaKMdopWJ77T2qtEtfr1d/iDuID3rrkRjhzMtWx8tRxXl9+/boCAQ9V9Eqt92YzfdjEZfyT6/kz13AdAKec0saFNCdobkuI2xjseIircKPPNNzEYFbh1YwQ19wDF/ReXS3Mk8NJiCuEEEIIsfWy74nbkdBVswavmrNjgWvWfroFFOJWmgbPtSH9a+gLUIqSEr2VwsaNcL9pOo9//1uvzBVCiI6QEFcIUbAaGtoOcf2ZbXJNPXH1NgphfIQj+nIkYrRW8PryG7AGijyE8dGA/gIu4gxjRWp/DRVAZjGCLc2H32e0U2hsMgas7nY+LaZw8T070UQxqxhKyablqX3p4aw5xJVKXCGEEEKIbUNLiOsnZGwM2Ayo82EJcTsQCLd2fsFU4nqhwjR4rkmG4bHNEPrYOEyDs86CMaP0Pgr19fDGG915o0KIrZGEuEKIghUKWdspUFSScUxbPXFbNDfrA79wxBgAeuxObkWgWB9UmlsqjGZxarklxM2Jw4fPZ1Ti1jd0vCfu5MnQiBF0+0LVqeXW2im0txJ39Wp45hmpKhBCCCGE2FK0hLjvM4XXH3oYllwFj13TsYtqpjF1l4W4BdIT1+GzVuJWm8Lwpg+g9iGIroXYBhyqlp8d921q94svdt9tCiG2ThLiCiEKViiUVolbUppxTKshrmlfc9iFUtZKXI83zxC3SD8+W4hbSzl//GOOF9P8lnYKdfXGvXjbOfadNNlJxXBj3RvM3hO3o+0UIhHYc0+9dcQ55+R/r0IIIYQQovttNs3L26tvBEq8UFnZsYt2aiWuTY9doHDaKfjSKnFD1v3R5VD/GNQ9CrX3Mu2IBald770HSnXPbQohtk4F8k4ohBCZmpvbV4lbVJS5LxxxEY87UEofFDqdCZwuZ+bJrfB4fTgcCT5IHMRKhlrCXICRO4c56KocL+bw4/eZQ1xjwOvJr1WvQfMyZtcQLNdXvU1GAN7ZE5vNmAFr1ujLTz4JTzyR/+0KIYQQQoju1VKJC9CrsqUvbgdjgU6txNUAN5A2KC2Ydgo+qDBVQNQEM49JGNsm7LiBivIQNbV+Nm2CRYtg7NhuuE8hxFZJKnGFEAUroxK3uCzjmPSqVb8fnMls1hxOVlX7CYdNVbieOPnSHBoBf5Qr+Rsn8jy/4d9soF9q/457hO3a9ma5WMBaidvQ8UpcNLdlUOluzB7idrQSN5GwrksvXSGEEEKIAqMSUP0viK5ObbKEuBXJKtKOBqTm4NaR35NutmyvUSghrhN6mX4mqQ5lPxZwOBT77rEytf7JJ111Y0KIbYGEuEKIghUKwVzG8zaHsajXzjB4aMYxjrR3MXM/2e23N5bn/NCPSNQ0qZknLYXMUSAQs6xXUGOslBXlfiGHH7/fmNgsHDZuvN0hLkClUa2ca4jbnkrc+nrr+vr1ud6gEEIIIYToFqEvIF4NzV8BEI0aY7gh2krKVy+HZdXQ2MFP482hq9YJIa7dNQqlJy5ApWkejJpgmz0S9tvDmAhZQlwhREdIiCuEKFjNzfA3ruQI3uYfRz0ABx/W5jnmEHf0aGN5/aZiaz/cdoa4Pq/1PEuIW5FrGS6gBSgvbbbd1e52CgAVRojrajBaUXT2xGazZlnXZUAqhBBCCFFgYslP2cMLQMUsVbiXe/+FY8p9sMedcN9zHXsdzTSY7JQQ12+zrUAqcQGKisGXvJ9oAppaH0Dvs/uq1PLXX3fljQkhtnYS4gohClbI9HSS3xfPMsmBldPU5tZc0RqJOAlHjMGfx9O+WQW8aSHuQNYaK/3ymBTCUUS/Pk22uzpWiWtM/uasN/px5dpOIRzO7WVee826/vnnud6gEEIIIYToFvFN+lcVgdgGS4jb21trrJTkUYhgx2F6rKszQlyHXYhbQJW4mtfaF7eNlgo777geh0P/GWLBAmiy/xFACCHaJCGuEKJgmUNcny+30NVciWsJcaNOSyVue9speL0JBrCWa7iWe/kNJ/CCsXNg7+wnpnMU0zdLiNuxSlwjxHXUWUNc85Ne5kpccx/fUCi3WXPTg+a5c/O9USGEEEII0WWUgvhmYz22xhLiVrjqjJXizMmD82KunDUHup1xvdS2jgyQO5nmhYoAeJzQrxhC0VYPLyqKMnaU/puvFMyZ0x03KYTYGhXQMwlCCGFVW2sslxTnNhGZOcQ1h6HhsMvSE7e9QanXoyijjmu5ztj4691hXQMMH5D7hbQielfazGZLRytxy42XqA3hdieIRvXP62IxcCeLGMyVuD6fXsEcj+sTlpmPyya9snfTpg7csxBCCCGE6FyJWlCmT+2jS6iq2j21WuYyTXDQ0RDXHNw6OljVC9aJ0lIKqRLXB2+dDV5nTk8KAuw6fh3zF/UB9LZke+3VlTcohNhaSYgrhChY69bBH7iRBA6mLFwDzbvqiWMrzO0UzEFtJOokbK7E9ba3nYJiCf1T6w1aCSU3Hpnc2S/3CzlK8Hljtrs6FuKaJloIx/B44qkQNxy2D3FdLr2lQss8aKFQ2yFuNK3goK7O/jghhBBCCNED4tXW9ciPbN4UoyUCKNUajH0dDnGL7Zfbq9AnNtO8Rk/cHO06YR2PPz8ByJxbQgghciUhrhCiYK1bB/dxIwFC8AIQv6XNc8wZb3pPXOvEZu27J68XaimnGS8+wpSoBn0ygyJPfhMuOIpxZ7mHDrVTGD4Ivr9c79PlduIZE6cpWblgrp41t1NwOjND3NJSWpVeiWuumhZCCCGEED0sXmNdV3GqNjUA+gf+xZjaehW3MfBri2YOcTsYCAM4bCoaCi3EzdOuE9allr/9tjNvRgixLZGeuEKIglW1Ma4HuC38Nv2x0gRMT3NZ2ilkTGzWvnvSg2GN9aZqXDYm0898Bpeahsdr//10qBLXHYC+xeDWA2uPxyi5NU9aZq7EbQlxW4Ran5sByAxxQ6HMbUIIIYQQoofEqzI2VW02BnkB1WjsKCnr2Gs5ikBz6K0FHB28FtiHpAUV4uY/edvEndanlr//XuU8mbAQQphJiCuEKFjxBqNCIOH3gaPtt6xsIW4k4iIcNrdTyK1/VbqW8ywh7oZ2hLiAx2s/8UOHKnEd1kFlUcBIVhtNY3VzJW5LO4UWuYS46e0UQFoqCCGEEEIUjPiGjE1Vm4zBoC9mmpuhuIPBq+YAZy+9Ildztn18m9dLC3E1jYJ6iNjhheogzFwN0xfDd2vbPKW8rJmRw/QWF9Goxvffd/VNCiG2RhLiCiEKVrzeGGiqQG7lqeXlxrLDAS6X0fu2KWikox5Px0LcVQwxNp7wMLyziHwHl25vUZbXaNet6dIGvWUlzallc8iaXolrbkPRbJySlV3VbS7hrxBCCCGE6GIqAdEVGZurqhKpZW/UNHDraCUugGsAuPp2/DpgU+nqznkCsW6heeHNBXDUA3DqE/DA1zmdllNLhfqnofH1TrhJIcTWSEJcIUThajQqcbXi7K0Ubr01eYwGf/+7dZ+5qrWhseMhrsejv20uZKyxMZqAHzbkX4nr64oQ1webm2D+RvhiBYP9xqNbLSGuUp3fTgGQx8KEEKJAaJrm1DTtW03TXkuuV2qa9q6maYuTXyvauoYQYguWqAMVz9i8ucp4CswdMX1qX1Le8dd0DdWD3M6gpY3729GDtktpPig33WNtbpUM5hB31tebMg+IbYTwfAh9nQxz3+ronQohtjIS4gohClI8Dq6wOcTN3nvqggvg6afh009hhx2s+4JBI6z98pvBqWWvr31vfx9+ogevM5lk3bHroPwmNgM8Pvuqhw61U9B8cP6LcMC9MPUhJse/Su1qCXETCdPhml6x3Bkhbls9cYNBePxxWLiw7esLIYTokIuB+ab1q4D3lFKjgfeS60KIrVXcvsdVVU1LiKuIlwWg3AceJwQ6OLEZgHd7cA/t+HUgoz0YWkcGx11A87YvxB1vhLjfzIxAIq0CImIaJIfnQ+hLCH7WkTsVQmxlJMQVQhSkxkYoxminoJXY948FPfQ8+WTYe+/Wr3nP/3Y3ndO+t78D9tOTyjc5knmM0zeO7w97DQPyq8R1+8ptt3eoEtfhgwpjUNnXtTm13BLiplfhgrWdQi4VtXY9cds679xz4Re/0P+cNmS2aRNCCNEJNE0bDBwN/Ne0eSrwcHL5YWBaN9+WEKI7xW2qPIGqmpYxokb19D/AoithzTXg7IR+s45i8Izp+HUgsxLXUWiVuO0McU2VuN/N60c0uNh6QGw9GYIfgLIZeAshtkkS4gohClJNDZTQYGwoyh7itofX275JF667Vk8qI3iZzNc8f9Gt8ObZ4Hbm3U7B5bN/5KzDPXFNg8pKqlPLTcnC5vRJzdJfs709cdsKcR97TP9aXQ3/+lfbryGEEKJdbgd+D5ieu6CfUmodQPJrJzWuFEIUpPjGjE2JhEZ1jWmMWJEMHvN8kqxbaL60HrgFWIlrKpqgJrcQt0/vIEMG6VUV4bCLBbNnQXievjNeA7E1mSepGNQ9rO8XQmzzJMQVQhSkZcuslbiUFLfrOiNHGst9exvXa28l7naj3Cz+8l+cevwcLrt0JtOubtAfQ4O8Q1zNad/nt8PtFEwhbmmsNrXcErJ2tBI3Hre2ZGjRWjsFpazrNTIOFUKITqdp2k+AjUqpbzpwjXM0TZupadrMTZvsq/mEEAXOJvCrqfWRSOjj39KSZjyelgFhfuPXbqFp1hYKhdhOocw0eK7LoQIiydxSYda3JdDwItT+B2rvg3it/UnR1dDwst4zVwixTZMQVwhRkJYtS6vELbafBKwtZ55pLNc3GuWmHm87Z7jVvIwaWc3j973ADVe/j9NpSic7qZKhw5W4lUaIWxIzeqK1hLPmsLUlMM6nEteulYL5+nbq0lqzNTXZHyeEEKJD9gGO1TRtOfAUcLCmaY8BGzRNGwCQ/Jo1CVBK3a+UmqSUmtSnT5/uuGchRGdL1GZs2rDJKIjo18c0ECvESlywtlQouInNvBBwG4UczTEI5dbywNxS4Zs5A/VK2+iazP646aLLIfh+O29YCLG1kBBXCFGQqqthEWO4j3P5ZvRhsOeu7bqOucK0udmoNGh3UKq5QcvWiqFzKhk6sxK3OFKbWm4JWc1ha8vvQz6VuNn2t3beihXW9Y1SSCCEEJ1OKXW1UmqwUmo48FPgfaXUL4BXgNOTh50OvNxDtyiE6GpK2VZ0btxsFESMKVsBbyyAj5bC/AKtuNdMg9OC64nrAYfTWo2bY1/c3XZem1qeNce+tVpW4QXSVkGIbVyBfuwmhNjW1dfDZ+zLZ+zLtdM+YLez8xzkJGULazsclCqbUtI82ylk0+FK3Aqjf3BRuD613FqIm08lbijLGLW1dgpz51rXV61q/TWEEEJ0qpuBZzRNOwtYCZzUw/cjhOgqiXq9ujONOcTdy/UV/OppfWXKOJh+Y3fdXe7MIW7BtVPQjL64m5I/E9Q2w4DSNk81V+LO/r4/8bhmfbKvLdFl4KzI946FEFsJqcQVQhSkeiN7pLQk3O7BW7ZAtLh9LXZ12R7pakeIO3Fi2iU0Y7KxdtE0qDQGkAFTiNsSsrZVidtWiBsM2m9vrRJ37Vrr+o8/WnvzCiGE6FxKqQ+VUj9JLlcppaYopUYnv1a3db4QYgtl00oBrCFuf3+VsaO0fS3LupyjgNspQMbTb9RkGSCnGdCvkf599ZZxTUEPPyzMs21NZGF+xwshtioS4gohClJnhbjmcNKstO0PyrNzZLloO0Lcp56yrjudaZPxtkdFWWrR32z0FbarxG2pSM6nnUK2fratnZce/IbDsMZmAl4hhBBCCNEBiUbbzRs3GWFtX48pxC0J2BxdAAq5Jy7o9zSsAkb1gj2Ggjtbu7VM++xuPJL2yZfD8nvdyBKIbc7vHCHEVkNCXCFEQcoMcdvXqiBbJW5Zmf32nGhZQtx29MQdOzbt0h0NcAF6VaYWfcHOb6eQrRJ35cr8ztmwofXXEUIIIYQQecoW4poqcXu5a40dUonbPpoP7j4OPr8AXj0DJg/J+dT99jQmi/g43xBXxaD+SVCt9DETQmy1pCeuEKIgrV4NF3M74/iB3V9cCZMHw4R+eV8nmmWi2I6FuP4s2zveE9fdGW11KyrB54LKAI2uvjhWxkngJNwcATwdntgsW4j71Vf5nSMhrhBCCCFEJ0vU227eYKrErXDWGTtKO9JjrAtZKnGzFVD0IEeWnwdysN+eRuXDJ18ORak8CzniVdD4BpRMa/c9CCG2TFKJK4QoOKEQzJoFR/Im5/Afhr3+NqxuX+LX0GC/vUsqcTth0oVOCXFdAVjxB5h9Ke/96SYS6I93hZvWg4pYJiDzeiIQXpBXJa65nYI5/M0W7mbbJyGuEEIIIUQni9kPsMyVuKXKFOKWFGiI6zC1eSjIStz2h7g777iekmK9amLt+lKWrWjHRGXh76QaV4htkIS4QoiCM3OmXkFbgimBLSlv17VOPNF+e8d64toM2jQnaB1/S+2UENfhT32c7/UYs4eFm4NQ+x/C9fNT27zuemie1e6JzXr1yu08uxA3W8AuhBBCCCHaKb7JdrM5xC1OmAZhpSVdfUftU/CVuO3vJex0KvbZ3ajGfe+TEflfRCmI2f9ZCyG2XhLiCiEKzopkm6hSzI1xK+0PbkPv3tCvXzxje6dX4nZCKwWAks4YRzuMQbrXG0sth8MuiG0iXPedsd+1GWIr8LoyJ0DLxlyJW2n6Y8k3xM02QZoQQgghhGgHFcvaTsEc4vpjpkFYWUcqG7qQOcTNNqlwT9ICEE/AB0vgvi/gT2/ldfphBy5JLb/6zthWjmxFZFH7zhNCbLEkxBVC9Kx4DUTXWja1TGpWhulRr/Lydr/EpN06OcS1rcRtfyuFMWOM5eOOa/dlTPdiVAZ43KZK3EiyrULEaIfu9cQgEcanzU1t64pK3EabOTYkxBVCCCGE6ETxWr1CE6AxAj95EH7xJOEFddQ36EGoyxXHHTIN5jr0eFoXskxs1v6q1y7T8uTbr56CP78D98+A6lZ6i6U55jAjgJ3+8UiCQfuCkLp6L+9/MoJvvhtAPG5tnDt/zjIuvCDO1Klw113Z5wIRQmw9ZGIzIUTPangZYmug8tLUY0m2IW4HUtf+/TM/r+pQxavtQLL9lbj33gvHHw+DB8O117b7MgZHANbUwQ8bGPrFCvZmFJ+zD5GWEDfsTB3a0m7B61gO7J3c3/rlzSFuhamFV7YQN5GA2bMzt0uIK4QQQgjRicxVuAfeCytrAXB+v5kirqeJYvr2bkJrNA32CjXEbanE1TwFWonrBYcGo/vAnHX6toWbYK9hxjGPzYLHv4UTx8NZu1tOHzWymu1Hb2LB4j6EQm5efWcMp0ybl9qvFNz1wO5cfcMhNAX1YpH+fRs4/ZTv2Gn7jTz36jhefmv71PGvvALvvgsvvABOJ0KIrZRU4gohek68HqLLQUWh+ZvU5vp6cBCn1NITt/2p6157WUcyxcWqY4MbU7uClA5U4h58sD7J19y5ndROQfPDKz/Az59k9F0PcQpPA0YFrrkS15MMcX2mtgv5TGyWSzuF6mqoqcncbledK4QQQggh2qml1204pgeMSa611VzB3wHo27sJxvSBnQfAiErrYK6QOIr0SldHofbsTY79x/Qxts3faCxvaoLfvw7frIar34QPl5DuZ8d9n1q+/9HdLPv+duc+XPSHo1IBLsD6jSXccue+nHb+8ZYAt8Urr8A997Tz+xFCbBEkxBVC9JzYOmM5sji1WF+fNqlZsa9DHykPGGh99KgDnRl0nRziAni9qbnIOk7zQx/jHvuhz1JstFMwV+LGkq9vtF1obzuFbBW8dXX226USVwghhBCiEyVq9a9eF0w/x7LrLB4AFP36NMFd0+Ddc2DGhTB6VHffZW40p/70W8GGuF7967i+xrbZphZxSsHx4431M5/JuMSZp36Lw5EA4P1PRjJ7bn8AHnpqIlfdcGjquGFDaunXx7764dij1nLsscb6X/7S9lheCLHlkhBXCNFzYqaBTmw1JEKAHuJaJzWz6UGbB3/a6QMGdDAt1To/xO1UDj/0LU6t9mc9kJzYzPQVjHYKPssEaK1fPt9K3Hr7+TUkxBVCCCGE6EzmsXWpD9b+H5TrrQgGs4bxzGXQgLSBWSdNztslHKXgKG77uJ7QMvbffaix7anZ0Pc6/deMlfCLXYx9jRH445uWSwweWM+0Ixek1n99+TH87c59OOsSI5U9cJ9lLPjsLlZ/dxsvP/IkvzjxO446ZBFXXvgp8z65m5cfeZxnnlYMTd7G5s3w7LOd/c0KIQqFhLhCiJ4TX28sqwSEvwP00M/SD7e0Y5MZpIe4gwZ16HL6J++aI3NbodCyhLjJCtxI1FSJmwxvre0UVKuXN1fipoe4yuZUqcQVQgghhOgG5qfcAFwOOGC71OrhvM3A/g3WYwqpECGds6yAQ9zk2H+3QTDEZu6Oa94BBfhM0xD95ys93DW54er3cbn0ooqZswdx5fWHkkjoP2dM3GkdLz38FD5fDJcrwbFHLOTRe17k9See4Ob/m864sZsg0YTXuYbf/ta45hNPdOY3KoQoJBLiCiF6TmyjdT08H7AJccs6N8QdNsz+uJxpGmhpEywU0gDY4Yc+xoC3L/rvs1GJazOxmbkStznS6uXNIW5JCbiTBRxK2c+Ka+6Ha26/ICGuEEIIIUQnSTTr802k229EanEyXzMoPcTtwOS8Xc5ZWfjtFJwOuOrgzP3VQehfAq+fad1+/XTL6g5jNnPbX97OOH38Dht4++nHKCtt4xE5gOaZ/Oxnxur778vcE0JsrSTEFUJ0i5kzYaX5g2cVMfp2tYitARWnvj7BSoZyBX9j7c+OhJP379BrB9Iy4EMPtT8uL4Uc4mpuqCxOTWhRQS1uIqaeuKZ2Csnw1u8zQtxgMNHq5c3hayAAPtNvhV1LhS++MJYHD7a/jhBCCCGE6IB4lf61vhke+Aq+XgVNEX0Cs6RdmcV2rmXwr0/h0W/g02WF3U7B2R9c/Xv6LuxpPuPJvBPGw2/21Ctyx/WDg7aDV8/UJ44bPwBuPso476tVsNr6mNqFZ3/FM/99hr0mrWLH7Tdyxfmf8elrD9K3T46D5ehKhg2DCRP01UgE3nmnE75HIUTBcbV9iBBCdMxDD8EZZ+iTd82fDyNGAJElmc/eqxgEP6a+bh9WMZR/cAVnX+iDnQbbXTZn6ZW4ozpj/gZHAOLVxnohtVMAcBZBr4A+My56NW51pB+QPrGZXokb8BsltMEgen9ih00vYhUl2BQD9H1FRXqI25As6mhuhtJS6yk//GAsT5kC3+ldMyTEFUIIIYToLC3j0ld/gKuTvVd3HgCvnUkUF25ijGIJjk3fwV/f0/cfMBKOKaBChHTeHYHOmvm3k7U8maeCeuHEXw7Xf9k5czK8tRA+XKKvf7oMfjrRcshJx/7ASceaBs1vLNB77Jb54PIDYHhF9ntJ1EC8jmOPLWPOHH3TW2/B8ce3+7sTQhSoHqvE1TTNqWnat5qmvZZcr9Q07V1N0xYnv7byLiWE2JKccYb+NRyGCy9MboyusD84+BH19cbj/KUl4Q5XuaaHuH372h+XFy2tvNfhsz+upzj80NuYgK0vG1NtFKwTm+kVuEUB4/e8KeiGprdA2fRGCH5IU31VajXgC7dZidtgempv8mRjWUJcIYQQQohOElutf51j6ot71PbgdfG9c0Jq08CvZhj7KwOF9TRZOs2ZOQ9FIXHk0fJtsqkoZd6G1o+dvRbOeFoPfp/+Dg64B9ZlmSkY9MKY5plMmWJs+uST3G9NCLHl6Ml3xIuB+ab1q4D3lFKjgfeS60KIrcw33yQX4lW2+5ua3GyuMgZE5aXNHX7MK72dQnl5hy6ncxRZ19PbK/Q0LZAR4iYSDuJxzVKJ60lW4vp8MTRNr4yORFzEGudCMG30pxQ0zyYYMv48Aok38PniqXW7ELfeNOYcYDzRJyGuEEIIIURniSWDwR9NY+xx/QiHndwYv5rfcg+THDPx7DvQ2F/hL+x2CoUuvaijNTv1B78Ljhmnt1tozZBy+NMhxnooBpe8ApF41lOIzGePPYy5KhYsgE2bcr89IcSWoUdCXE3TBgNHA/81bZ4KPJxcfhiY1s23JYToBlUt48rYWtv9s7/vTzyuvzXtuP1G/P4Y0PFK3Esv1ds5XHut/vRTh6V/8l5oIa7DZzu5WVPQk1aJqw8GNS2tpULIDc2zIGGaTCG+GRJNBIPGYL/Iswqfx5g5IT3Era+H2bON9f6mtmbBICRab78rhBBCCCFy0TLXxBJTiLtdL9auL+F5TuQ+fsv6fqNx1Jg+Re9V4JW4hS6f8f/Bo+CHK+CBk/Tl1vQKwEkTrNs+WAJ/+yD7ObHN+L1BJk0yNn32We63J4TYMvRUJe7twO8B84/v/ZRS6wCSXzvjgWchRAEwh6bRKPrMuQn7MsxNVXr16O+5hcc3ToVfPQ0fzunwPdx2m/5Y/zXXdPhSOq3QK3H9MK4v7DmU17xTWYdeAlvf4LX2xPUaE5pltFRINEL1rdA8G5q/hdAnyX3GYD8QiLYa4t5xh3W9ogJKTJMM11nndRBCCCGEEPlSMUjU6xOZrU0+AuVywLAKVq4pSx02eGA9rDY9IjW4AjSZJqfd7OaPyMbrgqJWAvNoWpVt/xJY/Sc4ZLSx7V+fwcJWymujK9hvP2NVWioIsfXp9hBX07SfABuVUt+0ebD9+edomjZT07SZm+T5ACG2COntDMLB7P92a+r0MHQCc9i5+ku9qf/6mk65D3dnPi2WXolbiD1xL9oXXjmD3w35L9M5FNBD3Eg0c2IzgKKAeXKz5G+WikDDS9DwMjTrYbq5nUJRIILPFAQ3NwUtt/HnP1tvq6QEevUy1qvsu2oIIYQQQohcxatAJWCpaWA1rALcTpatNKaaGTG0BlaYxtVDTIMykb/2FnHUhuDhmcafl1Kw551w1rN6H9x4stbN44THfgaDjSCeP7yZ/bqRBZYQ99NP23d7QojC1ROVuPsAx2qathx4CjhY07THgA2apg0ASH7daHeyUup+pdQkpdSkPn36dNc9CyE6oLjYuv7pJ2H7A4HaZIhbhqlEs6y8C+6qgzJ64ubxSXx3MPXoKi0xfr/r6r3WdgqmADZgCnHN1bZmSllD3IA/ag1x675t9bb8fujd21iXEFcIIYQQooPim/Wvaa0UAJavLDc2DdgI36w2jtneNNmWyF97Q9zn58K9X8Ced8HM1fDg17CqDl79AS540XqsQ4PbjjHWP18Oq7M8yhZZyN57qdTqt9/az1chhNhydXuIq5S6Wik1WCk1HPgp8L5S6hfAK8DpycNOB17u7nsTQnQNT1oeWFfTaH8gRohbgalKoKKyK26rY9InMii0dgqmx7vKSozRW0Y7BUslrtFOwRzUmkUizlTPYpcrjtudwOczhbiN6/RH+lphrsTdvLmN70MIIYQQQrQuXqt/XVlrbBuhV+AuX1UOwC7M4oZ7TJNlDSmDflKJ2yHpT+blojEMX62CpdX6+lEPwNWm6tod+4MzLaY5cDvYZ7i+HFd62Gsn0Uxl6VrGjNFXo1GYNSv/WxRCFK6e6olr52bgUE3TFgOHJteFEFuBUChtvSlkfyBQXauHj5VUGxt79c5ydA8yV+JqGmjenrsXO1kqcesb0ypxPeaeuOZKXPsQ19pKQT/eXIkbCikIGwNLp5EXc955yfspNbY12bdGFkIIIYQQuUokix/MFZqDywFYlqzEXcD2REpNExPsPVwmNesoR3Hbx6Tzu2HOuuz7D9rOfvsJ443lz5ZnPz+yiD33NFa//DKvuxNCFLgeDXGVUh8qpX6SXK5SSk1RSo1Ofq1u63whROGLRqG21rotGIzaHguwfqM+GLKEuJWFHuL6rLO3FQJHAMIxeGgmpy/7J7dzMQB19b60ic2MStyAv+12CpZJzfw2IW6zGxpfg+gqlAKH6X+ZW27Rv5p7E0eM4l8hhBBCCNEeseSjTWtMIe4gvY9qSyVuiABVvztOn/BsQAn8di8JcTuqPSGu0wGfnw+Hjs7c17cYzt0zczvoofvUHeHaQ+HS/eyPAYgukxBXiK2YTEUphOhSy5ZBLO3p+lAw++P2eoir0kLcAux/rbnB4YVEuPD64QJoRXoPrStf51gFCTR+xz+S7RSMt36PO792Cun9cAH8PiP8DYVc+mRo9U+wsvZsolHjMb2W3sjm9hrR7Hm+EEIIIYTIRSI5bt5nOPjcsLoWhlcQjTpYvVZ/BErTFJVnjILTrtSrQR2aPp4V7deeEBf04o//naJX5C6rhs1NcOy4VPBua2Ql/OfEtq8dW8Nee0YB/c/2iy/ad4tCiMIkIa4QokutXJm5LRRyZm5MWr+xmGIacZMMegNu8JdmPb5HacVAuH39sLqaowjcTv0T/Q2NOFCMYJke4obNlbh5tlMImtsp6KGv359WiQuQCPGX65qAzF5r5hBXKnGFEEIIITpAJSDRoC+ft7dl19IfK0gk9MeiBvZv0J/A8poGYlKJ2zHpc2Tkw+OESYP1X51Jxdlp7BoCgeEEg7B6tf5rsMxhJ8RWoZB64gohtkLBYOa2VNBnoynosVbhlvsLd4DZ0lKhIwO4ruLwg+bSJ0dImsTMjEpc88RmubVTaKMSt9m49oOPDrW9hrRTEEIIIYToJIkGUMp217wFfVPL48ZsyjygUMfYW4pCbKkGuFjB5MnG+owZPXcvQojOJSGuEKJL2Ye4yaDvf1/DkBvgzs8gngAgHHFuQSFu8hEqc3/cQuIohokDU6u78xV1DV4ikWyVuEaims/EZn6fTSUuMGhAfWr5qquMa0g7BSGEEEKITpKoy7pr3kKjJdmO22/MPKBQx9hbCk3Tg9zuFk/A83P1n6HsRH6UvrhCbKWknYIQokvZhbjBkBu+XAFXvqFvuH46VDXBtYcRDrusIW6Fn5aeTgWnJbx1lvfobWSl+WEXI8SdzNd8VHNuamKzYSynz/H/gHAY/jWV4iIjxG1symFis0CWnrhAfYOXNetaerDBddcZ15B2CkIIIYQQnSRuU2GbNG+hUYm741ipxO0SWgAIdd/rraiB056EBck/z/1GWIo2AIitZq89QoA+b4f0xRVi6yGVuEKILmUX4jY0evVPj83u+QK+X0844mQOE5jGi0T/Pg3O3bcgH1MCwJHs1euo6Nn7yMbhg4mDUqu7MovqDe5UO4U7uBjX4g2wshamPUy5tzF1bEOj1/aSthOb2fTEXbfBmOhh5EhlCW6lnYIQQgghRCeJbda/PjUbLn4ZbvkAvlsLpFXijrWrxLUf74k8OLp5guMh5VDbbKy//2PmMUqxxy5LU6vffCNjbiG2FhLiCiG6VMjmg+nqWj98tjxje+R/3xGLOdlMH15mGq5f7gxH79L1N9lezmR4W7CVuD7oV0xksD6A99PMT5Y+nJzYTPEVu1sOv/AvU/EQBqCh0b4yw9pOITmxmU1P3JDpuOKisOUaUokrhBBCCNFJ4lX610+Xw5Oz4daPYc46IhEnC3/snTpsnG0lroS4Hdbdc2M4NDjT1PB2kX0ldv/eyxk+XF9uboY5c7r+1oQQXU9CXCFEl7KrxFUbG+HHKutGj5NZM/tYNmkahT24dPbSvzrKevY+skn26EocOS616YraGyhP1AAa/9QuzTjlBY4HFPUN9r/vdhOblZca1QA1tXo1gqVi19dkuYb0xBVCCCGE6CSJZBuytabeuIPKmP19f6JRvYXWyGHVlJWGM88t5HH2lsLRAxMc7zfCWH7/RwjHMo8Jz5e+uEJshSTEFUJ0KbsQd9SGb42V3YfAv6bC95ez1/xXMg8u5MGlszdoLnCU9PSd2Es+3qVdsCfr6Zfa/ABnAQrldcPjP7OccjRvcDwv5NROoWVis/59jTYM6zYWZxzn99ZD3OhzLO0UhBBCCCE6STwZ3q4xJpRlYClfzBycWt1r0mr7c6Unbsf1RIi7yyAYWq4v1zbDC3Mzj0k0sudkY4wufXGF2DpIiCuE6FJ2Ie4+1dNNK8PhpxOhPEs/qUIOcTU3BPYDrUDfSjV94jV3Pz9TeZnvmMAmeuMhQm824/XE4dAx8P3lltN+y71Z2ylYJjbzZ4a4621C3IA/AhGjX5e0UxBCCCGE6ASJEKgoxBKwxlSJO7iMj78Yllrda9Iq+/MLeZy9pejudgqgt1Q41dRy7vUFtofttavRQ0EqcYXYOhRo8iCE2Fqkh7gO4hzW/Iax4eBRGed8wr6sYCgc/h9YvLmL77CDAgf09B1kl6wQdjgU37onMZHv6MsmjuYNNtMHryf56FXfYvj2ktRp+/IpoXqb6wE3/nN/erOJ0SxKhbh9eht/yJuq9OC4pTcuJMPe5lmgFCDtFIQQQgghOkVLP9wVNRCJ68sDSoh4Arz70Xapw6bsv8z+fAlxO85R1DOve8RYY/mHDbaHTBy3AG/yj3jpUthoM7edEGLLIiGuEKJLpYe4CZwM8ayFd38Nd06DPYZmnDOMFQxlFXy7Frw9NDDaGjiKU4upwNbE640bK4PKiA7Se/z6CLNztc3H9eEYd3AR6+nP3/g9brd+flEgwm+4l/35iFDITSKhWdsp+GIQWw/RJYC1nULYpj2bEEIIIYTIQTwZ3i00TW41pg/vfjQy1RprxLA6xo7KUhQhIW7H9UQlLsCo3uBPFk2sroNl1RmHeLSV7LqLUTExY0Z33ZwQoqtIiCuE6FKhUOa2+kgxasJAOGVn04FRDuFdbuNShmDq29W/X+YFRG5MlQGWwLZlW1qwGztyJ97hUI7jBZ6omkZjekuFi1/hIu4E4A/cxLGHLwTAee+n3Mt5TOcQdmcGwaCboM0EaET0R70CprGu3d8PIYQQQgiRg1gynF1kCnHH9uG+hyelVk84PqJPFmxHQtyO66lKXI8T9htprL+90PawPXc32mxIX1whtnwS4gohupRdT1yAZtPj9gDc9jHvchiXcruxbWApBEq77N62eqZBpcdtE+KmBbvOPx/E4bzDSxxHDDdH/uznLR0Q9AqP5KQJPzKKEH6GDamDJVVwywcAuInxIsfRtDZGY5MRABcFko1vI4tAKYqNAmEaGjrh+xRCCCGE2BYlavSvpkrcHxI78No7xqP2Z59TAY4sYW227SJ3PRXiAhw62lheYN8rYa9JK1LLn3/e1TckhOhqEuIKIbpU1hA3nBbiHjAy86DteoHD1/k3ta3QArSUXni9Nu0U0ipxPT5lWf90xjCuuno/vcfaL59Kba+mko3+gTgcSv8zevLnqX0DWYfr8a+orjUmqqusSJbbxushssAS4jYac6IJIYQQQoh8xJLBnWkOiUsePS21fMopMHZ7F7hHp5+pjxE1+4lsRR56MsQ9cQIcPgZePB1un2p7yD67fpta/vxzGXsLsaWTEFcI0aXSQ9x9+YQBrKW52WndMXkIdY4y67b9RshjXh2hOUDTw1SvJ7MSd9acga2e/kse5pYHD4HBN1j6bN3JhRQXmWYk23cED/Y6P7Va+tTH1FYb7RQqy009E8LzKCkxVmUgKYQQQgjRDomQXombULDYqMT9Jqy3Kxs0KME//pHc6M6cg0LG2J1E84Dmbvu49nK00nO3yAOP/gz2GZ71kIF9VzNhvF64EY3CBx908v0JIbqVhLhCiC5lDnFLqeMT9mctg+i733X6oLOF18XDvrOtJ08ZLQPMjnLo7SjsJjazc+HZ+owH1/MnHuZXtsdM5xCKiyKWbQ8Ou4y1DADAXdNAn2WLUvtSlbigV+IGjHMlxBVCCCGEaIdkmyqUovb207mu7CZu52Kq6UXvXkHefdfB4MHJY21D3B6akGtr5Cxr+5j28O0GFReAs6JDlzniEGO+kbfe6uhNCSF6koS4QoguZQ5xR7M4tdwYqACHdZaFG7U/8gn7AhCZOhF26ichbkclB5W19bm1pbjjxjf58+Uf8ho/sd3/G+5lE30pCkQt2/3Fitc5OrU+avXM1LKlElfFKPYuTa1KiCuEEEII0Q7RlQAoh4NfPPd7rq27mku5nZLiMG8//wE77GA61tkvs/+tw4/oJM7e2fe52jlJs+aAokP1Stzy33QoKD7igK9Ty2++iTHnhRBiiyMhrhCiS5lD3DEY1ZmLNWtvLqVgU7CcA/kQHyEc9x6X7NUlIW6HJCtxV64uz9h16bmZU9RqGlx35YfMYE8GsJZDeYea60+BJ0/l8xfu5d/8BiCjErcoEGU6h6TW99/wBqCPEC2VuECRy5g9t6mpXd+VEEIIIcS2La63UHjtnTG8/u4YADRN8fR/nmXXSWkBraaBs1faNglxO42z0n67pkHZaeAelP81PTsac4M4vOAd3/rxm5rg/i/h189lpLT7TFpAUVECgGXLYPFiuwsIIbYEEuIKIbpUyJTf7eyYk1reXDHEclxzswulNBI4wevC5dIHGmgysVmHOIqz7jpl2vdZ940eWcV6BjCdQ9lw8L4wZTQNEWPihvQQt7gownQOIYbe63hk5Ed+w31AWiUu4NF+TC1HrJcRQgghhBC5iNegFPzxpimpTeec9g1HTvnRvvrT2de63lqvVZEfh02I66yE4mP0sXjZmeCfnMf1AlB0kHWbf6/sk6hF4rD3XfCnt+HlefDdOstujyfOlAOMbS+/nPutCCEKi4S4Qoguo5S1Eve0Ea+nln8s3clybGOTMTuuJSCUStyO0fTB3iN3vZCxq7QknPW0kmJjX0Oj/mfTFDT+jIoCmSFuNb34L0Zf49u4jKGsyKjE9biMHgqRiDzSJYQQQgiRl0QjJBp47+OR/DBfr7ANBCJcf9X7+v70qlsAV9qEtlKJ23lc/TO3FR8Jvl31Zc0JxUeDf/e2r6U5oPTnmdW9jiLwjLE/x+OEw8ca6898l3HIcUfOTi0/+2zbtyGEKEwS4gohukxzs7Hs9cao2Gw01Z/n3dlybNYQ1yGVuB2SrMT9xUlzMnb1SgtXzUqKjT+DhkY9SM/6Z4QR6l7KP9nUayhLGMnJPMNa56CMY51OhcOhV1orBfF4Pt+QEEIIIcQ2LrwAgNvu3ZN1DGAxo/iq8iD6+GrsWydA5uRmUonbeVwDrT2HfbuBZ3Tmcb5JbV/Lv3f29gt212xxiulnqxfm6tW5JlMPn4vbrY+/v/4ali9v+1aEEIVHQlwhRJcxV+H28dXgr6sFIIKbJbHhlmNtA0LNCZoH0QHJEFezziFHRXmIvn2yN6S1q8RtLcRtWW/Gz20H38OOzOM1jqGsLJLx2qA/1tVCWioIIYQQQgAqCsHPIbKs9eMi81m5uoyZ75fTh82MYgk7VH8DRR5wlIHmzjzH2Rc0l7GuSYjbaTQHuJIhuas/FNtPEIyzT+YEc2aOYggcnH2/e7vMQX2LfYbDIH0uDKpD8J618W1FeTOHHLQ5tf7cc9lfRghRuCTEFUJ0GXOIu4PbmMxqKSOpbbL2dLJ9VF/64XZclp64I4bWtHqaXSXupX8+PLUtnrD+92EOdRcFRxDGl7HdzOOWEFcIIYQQIiW2Aapvh6Z3oO5hCM2AhM0H7tFVEF3BEy+MZyzG+NoxqjJZhVthf33NAS5TX1ypxO1cgf3AWQYl07IHrZoG7laqaX276H9O2Ti8ehBsu0+DEycY689kPoV30rELUsvSUkGILZOEuEKILmMOccc6jE+Df2QUq9eWWo61rfJ0SK+uDssS4rY8TpVNSVFmJW4kYlRvVNdY/2yKAtHU8oZNxabtWULcVipxX30VjjgCXnyx1VsUQgghhNg6JMLQ9JY1tG18ExpfBRUztqk4NLyESsR49NkJbI8RyjEq2ULBUZL9dRymNgutHSfy5x4KFRfY98c18+/ZyjWGZN/Xwtk7+76TTS0V3lkI1UHL7qmHfoHLpU9G8dVXsKyNgm8hROGREFcI0WVCpparOyXmppYXMpZ1G0osQeCmKqMawGinIJW4Haa5bCstNFqfTcyuEtfs+KPnW9bNFbcbNhlV1gO9G2D6YlhSZTk+WyWuUnDssfD223D88dIvVwghhBDbgPAs+xYK4QVQc48R7oZmQLyK777vzw8L+7Ij84xjxyYrNLN8gA9Ye+VKiNv57NpYpHMN0icpS+ffHdwj2j4/WyUuwOjesGuyn240AU9bJzirrAhx2MEbUuuPPdb2ywkhCouEuEKILmOuxG30V8CEAURx8Q27AbCxqig1gLzM9Kj+0hXJx8Bk1tzOYTNIX7ex9YG7pSduk4cFi62f+k87coFl3Vxx21KJew3X8u6cCXDqE/DIN5bjvVkqcdOrcoPWAgIhhBBCiK2LikLoy+z749VQcyfUPqS3WgCeemknAHbie+O47ZOtEhxZ2ikAuAfqXzVNQtyeomlQdDC4B+vFFr6dofwMKD4qxxC4jUrfn000lp/4NmP3aScaf9ceeUQvoBBCbDkkxBVCdJlgk/HI/hvDfw7Tz2H/nRbyAscD0BgZB5UXgbOU9aZQcWNLJae0U+gcDr11xeEH/ZjadPxR87MdDeiTH7T4du4Afv+XQy37/f6oZd1cidtSuTuDPYwDXpgLIeOcbO0UmtJav0mIK4QQQoitWvAziNe1fkyiGaLLU6tvTNf7qlpC3LHJENfVL/t1XMP0nquOMuskZ6J7+XaDsjOg/BwoOQ7cw3I/1zWo9f0n7QzuZMyzcBN8tcqye+rh31Naqo/Df/wRPv88nxsXQvQ0CXGFEF0m2NiYWg4kQz9PiSM16VVjZJz+ibNvD9ymx+svOTf5CbG0U+gcyUqL//3rJXadsJZJE9fw+ws+a/WUA/Zanlp+/d0xvPr2WMv+9Pka7CYwe5dDqfNW6isbGuEu4zUt7RRCDanl9BDX9FdICCGEEGLroiLQ/EVep6xaU8rc+f3oxWb6k3w03u+CYeX6srllQjqHF1wDWn8kX3QPzWmdaC5XzlK9ijebgBuO2F5f7lsMq2otu/3+GCcfZwS7jzyS/y0IIXqOhLhCiC4TbKhOLbeEuOaw7/sFffW+ub5dGDSgPrX9lKnJ/l7STqFzJCtxB/Rr5Jvp9/P1O/+hf7/W09FxYzfl9RLmic1axHHx2vhfGxuemg0xvTrbUonbZPSASw9tb745r9sQQgghhNhyNE3XJzXLw5vv6VW4ln64Y/qA06GHtHb9Vs3co8EzOt87FYXEv1fr+/94MLx+Jsy5DE4Yn7H79JOMDw6efto6j4kQorBJiCuE6DLBBqNxvt+nz6xrDnEvvMjByJHQGAxQW2dMvlVWmnyU32ZCLtEOzrK8T3G7E1n3/e48UxWvZzR4t6ei3H70N3vCEXp1CMCqOrhHf2bLUonbuCDVkCu9Eve//8371oUQQgghCl9kMTTPzPs021YKqX64pW1fwDcRPDvk/bqigHh2aL2Kd2QvmDwEHJrt7n0mL2TkCP3Dg7o6eOGFrrhJIURXkBBXCNE1VCRViXs9f+KkBXfD2wup9Fp7fq1fD3fdBfUNntS20pJkRUJrs+uK3Dlb6Y2mJas28rD35OQjWN4doOznUHwcQ0fZz6brKXXARfsaG+79AkJRS0/dutoIRBYCmSEu6INLIYQQQoitSvNsUNk/NLcTDjuZ/vFIAIZg6nU6NtkeIZexs7McnDKp2RZNc0DRoW0fl+10Dc74uTFXxt13d8ZNCSG6g4S4QoiuEVtPQ6MbUJzP3Rz93X/htKcoCdVkHLpwISQS+ifFxUVhowpUQtzO4eqrD/bseHeGkhNtg9xrr/jA9pQ+vYL69QL76xscXrSSozjp2MzJ0ooCUT3EHZysBq4KwlOzGTnM+HuweGmv1KzMy5dnvt6CBdm/NSGEEEKILU5kEUR+yPu0T74cRlNQL3z47/DfoxZfCa+dCdN20g/QZOy8zXCPAs3T9nEA4RgsrbZs+vXP3sTt1p+E++IL+Oabzr5BIURXkBBXCNE1Yhv5/OshjGQpFdTq2yr8hPtlTrZQVWUs9+kVNFYkxO0cmitzkgvNDUUHQdFhekuEsl+DbxfLIVP2W4advXZfA0VH6RNjpK7nYcDgzEkyiosi4HbCb/Y0Nt7zBTuMNFptLFjcW59xObLMdobczZvb/A6FEEIIIbYM8TpoeDnVSiofb743KrV81CGL0cp8sPsQ48PydrTQElsoTQNX79aPmbUGzn4Wxv0DTnwEEsbfuX59Gjn5eGOQLdW4QmwZJMQVQnSN6GKWrypnN0wf604YwPlnZfb+Mod0fXqbnqeXaoLO497Ouh7YH/z7giM5eZyrNxQfCy6j9cKY7apIt3buP3CWHgn+SRn7+g6ozNhWFEj2QD51Vyj36csrajig9q3UMQt+TA5Am962BPotpJ2CEEIIIbYaTdMhYdM/KgdvvGdMSHbUIYszD3C20idVbH3cbUxQV+6HV36AhjCsroPzXrTsvuBXr6SWn3gCNm7sipsUQnQmCXGFEPmJ10B0LahY68dEFhEMutmFb43tEwYwZrsq9t273nK4ecCQqsTV3Hn3ahWt8Iw1losO0gNczWk9RtPAu2NqtW8f6w8YR05ZzIDh29sGuAAVlZn/pRQFkr1viz1w5mR9eWwf+g81Jrj74NMRbNocgPgGamvjGdeQEFcIIYQQW4VEEMJz23Xq0uUVLFisP/XUz7eZA/ZannlQa5Ndia2Pf/fWf14aWQmn72asvzAXXjfan+2x6yom7VoLQDgMf/97F92nEKLTSIgrhMhd49tQcy/U3g/1j0M4S7PSpvdAKZqCHmuIO74/AMdNjVgOX2Z6ar9Pr2RwKK0UOpd7OHi3B//kZIBrP1st3h0t/XO/fe8+igIRJu60jsfvexECB2d9iYqKzG39+zYaK2ftAY/9DD76Ld6jR1qO++UFx4FS1NZESCchrhBC5E7TtCGapn2gadp8TdPmaZp2cXJ7paZp72qatjj51eZdWwjRpUI2faNyZLRSUHzm3h//vz+wtmTQtMz2WWLr5igC1+DWj/njFOv6zcacF5oGf7jQeDru7rthwwaEEAVMQlwhRG6Cn0Hzl6CSIVtkGTQ8DU0fQKLZdNzHEP5eXwy6rO0Uxus9VE8+xVoBmjBNzJuqxHWWd/Z3sG3TNCg5BYqPzqzANXP2Au/E1OrE8etpXH4T335wPxW9+4AjkPXUysxuCgwbXGus9CmCw8aAQ6OkOGw57q33R1Nb56Nqc2aIu3at/rWhQZ90oR0t5IQQYlsSAy5XSu0A7Amcr2naOOAq4D2l1GjgveS6EKK7xOsg9EW7T29ppTCaxWzXMB9ueh+uesMYGDlK9CfZxLbFNbD1/eV+uGx/Y33hJogZP3xNO2oBEyc0ABAKwV//2hU3KYToLBLiCiHaFtsMwfcy0zOlIPgR1D8C4R8g+Im+ntzVN7iaPugNb1WpD0ZUguZg8NAS7rnH/qXqm0r0BYcUCHW6bNW36Xw760GvpiWrOsqh6EgoObHV0+wqcQcPrM/cCHi9mW0TvpvXj+UrMyfk+OADaG6GPfaASZPgkkty+SaEEGLbpJRap5SalVxuAOYDg4CpwMPJwx4GpvXIDQqxLVIRCH4AKnP8k4tQyMX7n44AYCKzjR3La4zxnYydt02e7ds+5qqDrOt/s1bjXnfFe6n1u++G+fMRQhQoCXGFEK1TcWh4HlQi+zHRtVD/TLKNQpyNm4pYvLQXk9XXqUO0XQaCQwNnP9BcTJhgf6lx45JVoq4+nfhNiLy4h0HFeVB+LpSeBhUX6z23nCWtnpYe4p54zDzc7ux/b8qo5WF+CegfDvz7EaPX7vDhxnFr1+qTLbQMKP/1r3y+GSGE2HZpmjYc2AWYAfRTSq0DPegFbJtnapp2jqZpMzVNm7lp06Zuu1chtmpN70Lz7Haf/tEXw2luduMgzjOcYuzY0ZiQFqfNI1Fi6+ceBO42qnEBjh1nLD85G8LG/CbHHDabA/ZZD0AsBpdeKk++CVGoJMQVQrQu9BnE1uV8+EefD2Porpcydq8L2YMZxo7dBulfXXpLhbLMgksATv9V8nF916D23K3oLM5e4OoPnpE5V/Cmt1M4/8yv7Q8EWFfPx+zPL3mUS7gdgCdfGJ/avf++zamXramBOXPyuXkhhBCaphUDzwOXKKXsH4uwoZS6Xyk1SSk1qU8f+UBViA6LrYdwxwYyb0wfjZsIcVzWHdN2MpaTY2yxDSo6vO1jLt7PWN7QCI/NSq1qGtxx/Ys4HHpy+/bb8NprnX2TQojOICGuECK76Gr90a88PPjELoTD+gDTEuLummy6n6ywteufOn48lPUerk/C5RrSjhsWPam83LpeWhK2PQ6AK99gAvrszP/kMvwELbtHDl2Vup5SsC7tcwSpDhBCiOw0TXOjB7iPK6VeSG7eoGnagOT+AcDGnro/IbYpTdMh0cqYqA1KwevvjuYP3GTdcfgYmGAKbp3yocs2yzW47Wrc8f3hmkP15WIPbGiw7N55pw2cc8by1Pqll0K4/X9thRBdREJcIYQ9FYP6R/NOy2Z+ZwwgzuMezucu3ux1POyarKxN9usaOBBOO8167ogR6B8Fl/0i9/6tomA40+ZLc7ld9gcCXHuoZfVI3rSsD+23gN69jb97zzxjPb25GSGEEDY0TdOAB4D5SqnbTLteAU5PLp8OvNzd9ybENie6CiI/5nhsHP7xEQy/CUb+Fb5eBcCSuQG+XjGKa7nOevwtR1vXZVLgbZfmhJKT2/756czJcP8J8P3v4A9TMnZff8WzlJfrrdCWLIHbb++CexVCdIiEuEKITCrRrqqBFavK+GGh0WJvNrtwD+fz7bnnQe8ifaPT6KPw0EPW8w8+OLmgtRL+iYJ2zDH61+HDYdzEsdkPHNkLjjD238rlaBj9c4cOqqZXRfanf+tzfjBYCCG2OfsApwEHa5o2O/nrKOBm4FBN0xYDhybXhRBdqfGN3I6buRoG3QB/+xCCUWiMwCB9zLz4vioqqTGO7V8Cq/8EA0uNbZoTHFl6lYltg7Mc3KNaP8bv1ltwBNy2u3tXBvnLH75Lrd9wQ+bTcEKIniUhrhAiU/BjCH2Z92m//8uhtts97uRMvJpmmTnXkfYO1Nd2ihWxJXn4YXjkEfj4Y3D52nis68YjSCTLd4ezgn9xUWrXwP4N9C7fnPXUK67olNsVQoitjlLqU6WUppSaoJSamPz1hlKqSik1RSk1Ovm1uqfvVYitWnhebvNKzNsARz1g3Ta+P/TS54m4c/3pRNBDt6bSSnj31+BJe/zJWQma/Gi/zSs5Hhze3I5NKHhhLnywxLL5t6e9yo47RgFobISrrursmxRCdES3v9NrmjZE07QPNE2br2naPE3TLk5ur9Q07V1N0xYnv1a0dS0hRBcIL9QnM2uHF17fIbVsrqqMRJMDTWcvcPiynh8ItOtlRQGpqNDbZAwZgt7buLWZkoeU4zhtl9TqBdzNfzkLgMryEL0rs5fbPvpoJ92wEEIIIURni1dBwwttH6cUXPl65vapO4JDo67eS+iLjXiIsorB1D99HvQryTze2bvj9yy2fA4/FB2R47Ea7DUMTnkMTntSD3UBlzPBHTd9kTrskUfgy/xre4QQXaQnPq6LAZcrpXYA9gTO1zRtHHAV8J5SajTwXnJdCNGdlILmr0BF23V6eZneqHR75vMp+1KCHsI1NyfbI7har8zs1atdLysKleaAosNaP+Yvh7PJZ0zKcRYPsj3zKSsN06si1MU3KIQQQgjRyRJBqLkLVLztY//7FXy1ylg/YxJsvAYu2hfcTt56fxQfxg9EQzFtwgwG7Oa0v45TBtEiyTsxt78P/5kBO/9TX357ETzwVWrXlL0/4Phpjan1iy6CRCL9AkKIntDtIa5Sap1SalZyuQGYDwwCpgIPJw97GJjW3fcmxDYv9AVElrR9XBYD++mznF7AXezNF7zIcXhppjncEuIOyDjnssv0r7vsAnvv3e6XFoXKPbz1x/t8Lpb/+WzLpmN5BZ8vxsD+DVlO0m3YAG+8AZFIJ9ynEEIIIURnaHort4mBH58Ff3zLWD9554zJyl5+a/vU8tQjFma/llTiihaaBsVHtT3HyO5DrOt/fAs2N+nLSvGPa6fjTXZm+PprvWWaENusPCd770o92jhH07ThwC7ADKCfUmod6EEvIN0xhehO0RUQ+qhDl2gKetBIcDT6Y2FTeJ99+Iw9d1utH+Dsk3HOP/4B8+bBjBmZPXLFVsDhA08rE5wBk85y8Ea/k1LrbvRK8CGD6lo9b9w4OPpoOOOMjt+mEEIIIUSHKAWNr0PznLaPfW4OXPqqsb7bIPi7NcCNRh28MX10an3qEQuyX6+Np93ENsazHQT2b/2YnQfC62dat534KIRjAIwYOJsrLjXmp7jqKqhrfWguxNYrvr6n7yClxyITTdOKgeeBS5RSOc8zrmnaOZqmzdQ0beamTZu67gaF2JbENkDdQ5AId+gyjoYgCZwMZwUAEc3D6BN8HHf0fP0AZ7+MczRND+Pc9pOkiq1B4OBWeyFrGuz/5himFH2EkxjfHnIyAEMGtv5fQ3VySp4nnoAff+y0uxVCCNET2tnKSYiCoBLQ9CaEvs7t+GEVeuuE3kX6+h1TwW8dDH/w6Qjq6vXx07AhtUzYcYP9tTRN2imITIH9wb9n68dMHgK/3ctY/2ED/PPj1OpVF7zC4MH68saNcMMNXXCfQmwJwvN6+g5SeiTE1TTNjR7gPq6Uaun4vkHTtAHJ/QOAjXbnKqXuV0pNUkpN6tMns6pPCJGnRBjqH+/4IwKhKI/XHG/Z5DlzZ+679100DX2CK6fNRAxi6+fqA95dWj2keLCLG59dxHVXfcS///EaYF+JO3Gi/d/Ts87q+G0KIYToQeEfevoOhGgflYC6hyH0VdvHtpg8BG4+Cq48EO49HsZk/lz76LMTUsvTjlygj6ftOEpBy9IrV2zbig4Fz6jWj/m/Q+Cg7Yz1uz6HL/SCnCLPSv52w9LUrjvukMIJsQ1SCqJL2z6um3R7iKtpmgY8AMxXSt1m2vUKcHpy+XTg5e6+NyG2ScH3IJ5DMXwoCu//aA17Z6+FA++D4TfBsJuYnDCqD5QG/PlQ41iXdEjZphUdCp4xrR6y56TV/OmyjxmcrMDtX1Jj2X/PLa/Rt9dmu1P5+GPbzUIIIbYUiaaevgMh2qfpXb0tWVu+Wwtfr4KEaSx9+iQ4YXzGoQ2NHl54Y4fU+i9P/i77dV3987lbsS3RnFA0BbRWHnl0OeDJn8PEZEuOSBzOfR7q9Amrf3r00+y1p/6kRDQKV1zR1TctRIFJ1ECiuafvIqUnKnH3AU4DDtY0bXby11HAzcChmqYtBg5NrgshulLkR2jO4bGvpdUw7Cb46eP6p7MtonFYvAmC1kcg6yhFW/YH62NhNv1wxTZEc0DRwW1PsgAQT8Dny3Ge+igzSvYDoHevJs742Wx6l63LetrKlZ11s0IIIbqdChXUxCFC5KR5tj4xcGsSCh6eCYf+B45+EHb6B7z6A9lLa+G5V8cRDHoA2GmHDewyPvv4B/eIdty42Ga4BkDFBeDdARwB+2McGjxwEvRK7l/fAJe8AoCmwtxxg1Ff99JL8P77XXzPQhSSeFVP34FFt4e4SqlPlVKaUmqCUmpi8tcbSqkqpdQUpdTo5Nfq7r43IbYp8SpofLXtH5jqmmHfu43166fDfcnB6uQh+ie3HuMRrhv5A0OKNkAg7RNfmXBBuPpDyYmt/tACwGOzYNrD8OVKdm/4lO/GTOG1Bx/B54tRWRHKeto//9nJ9yuEEKIbKYgu6+mbECJ3keX6WLo1TRHo/xe44nVjW20zjM1e3KAU/PM+o0/pL0/6rvWhk4S4oi3OMig5GXyTsx8zpBxuPEJf3q4XHDgy9XPi5Anf88ufrUodeumlEI934f0KUUhihTOpGfTgxGZCiB4UWQL1T0K8jSlGm2Pw2xcgljC27TYIjt0xeZ04LN4Mo3ozm505hlf4EzfS0GQziZU86iUAvNuDb/fWjzllomV1wqL32eP8qyGWwOVK2J8D3H67FHEJIcQWreHFDk+yKkS3SASh4TlQrSRZkTic8Ejm9n/8xLYHbot3PtiOufP1yYADgQhnnvpt9tfQXPK0m8iNpoFnLLgHZz/m+PHwxlnw2fl6qw/Tpwc3XfUMgUAMgDlz4IEHuvqGhSgA8QYIt9LOpgdIiCvEtibRBI2vnPw40wAARfRJREFUQcy+t2jK5iYYcRNMX2xs23kAvHYmDCzV1z1OOGt3+PA37MJsXuMY+2s5fOAo75TbF1uBwEHg6pd9v8+lDx7NVtfBOc+RiLV+6bo2PpcQQghRwBINEPygp+9CiNZFV0PNvyDRmP2YcAx++RTMWmPd/t8T4dTsk70qBX+59YDU+tk/n0WvyuxPIeEerresEiIX7oFQ9ktw9c5+zKTBenuFNIMGNHDVhcYkFH/6k4y7xTYgPKft3KSbyTu+ENuARCJZoRhbDzX3QLym9RNW1sK4f0DcVNZ48b7w7jngzHzbeO0d64RVB+6T9jike1jbj9CLbYfDB2VngrMi+zGje8PSq6zbXpvPMV/e1eqlN23qhPsTYksUXdvTdyBE5wh/39N3IIQ9FYOGV6H+6eyT3DRFYP97YMiN+oTALXYbBGv/z3iaLYvHn5vA518PBcDtjnPpuV+2fk/ecfl8B0KA5oHiaeDw5nb8u4ug73WwoobLf/sFQwbpye2mTXDDDV13m0IUhAIck0iIm4+2gi8hCtDChbDddorS0jhr5j/FypUurvv7AXz+1RD7E/75MUy6w7rt6B3gj1OyvsYxvzjVsv7f216xHuAc0J5bF1szhxfKf61PspBNsRfmXg79S1KbDpn3BOdyX2r9nVes/7Fu2NDpdypE4YuuhLj85RdbiUSjfCghCk9snd6KrPkbvWI8m7nrYXPQum3ajvoj6q7Wf/T+cWklF1x9VGr9knO+ZPjQ2uwn+HYBT+uhsBC23IOh+DjQnG0f+/xc/evkfxGYPpu//fnd1K477oAff8xynhBbukST/t5fYCTEzZVSeh9RIbYwv/iFYvlyjcZGJ4MnXMJeR53FtX8/iENPPo3GRo/14JoQPDrLsim0+2h2X/MOBx13OnX1XjZtDvCPu/fm27n9UQreen+U5XiPJ8Z2I9I+8Gjt0Xmx7XIEoHhq6xW5/Yph+jkwpCy16T5+y1Re4sxTZ3HoXs/j8Rh9cvfbTyZaENugyKKevgMhOlf9Y3rPUSEKQeObUP+M/c+CzTF45Bu+ndufi/94BLtcfQM3Nv6OMPoY+173eYya9SEHHf8rLv2/w3n5zbE0pI+/gZmzB3LwCadTV6/PKzF8aA1/uuzjjONSNLfenirXakoh0nm3h/JzoPgocGcp7vlyJbxgKpg4+zlOeeNaDp84B4BoFC6/vBvuVYieEF3d03dgy9XTN7BFSdT39B0IkReViDNzpvUT1rXr9X62waCHL78ZzCEHLDV2Vvjhywvhzk/hlg/hpiOY9s6dfP2V3gC/fNTVbb5mUSBq3aC5wD2yQ9+H2Iq1tFYIfQyRhRC3eZ/tWwwfnwdTH4I56wgHitjvp2F++bvpoBT/vP5Nzr/y6NThY8fCxx/DwIHd920I0aNi68DZq6fvQojOkwhCbDV4xrR9rBBdRUWhaTqEZtjvf+l7OOd5EmgcwkNUo78Pb+Ac1tGbGezBzOhkWAlLVvbmw89GcPu/98LtjrP/nis45IClOB0JPvhsBG+9Pwql9NZjXm+Mp+9/jtISm0n+XP2h7Bf6sqO4K75rsS1x9Uv+GgixtdD0rv73vsXuQ/SfD2uMvszay/N4i52Zyku8wlReeQWefRZOOqkH7l+IrhT5oafvwJZU4uYjukTvhSTElkDF+fcd37R6iFuLwrnPw236J/3xuKZPVnbMOFj0ezh7D975cFSr10gX8KeFuO6RUiUgWucsgeKjofx8PdS1U+SB506DMb3xPjiNy2+eT5/eepXWlP2WWg5dsgQGDYL587v6xoUoACoOsTVtHyfElqZ5bk/fgdiWhedDzd32AW5TBPW71+Cc5wFwoDict/Gjj0vWMZC7uYCZTLa9dDTq5L1PRnL1DYfw+78cxpvvjU4FuEWBCK899gS772rzvu4IQOnJengrAa7oTO7B4N8dSn8Ozkpju0ODhb+Hy/fPOOVlpvFPLgHg/PNjMi+F2LpElkPzdz19F7akEjcf0TXQ+Lr+yIHm7um7ESK7eC2Rmun89rITsx5SQj07/uUOmPM9aPDGZztw0szb+NVPv+PuW95o90v7fekh7rB2X0tsYxxeKDkJmt60nwW03K9Prue3vv+OHllte7kzztArcj2ZTy0KsfVofD37BDtCbMnCcyG8E3jH9vSdiG2Fiug9mZveg+hyvR9ii+qg3hv0j28BkD5d7wDWccyxSzjz1NlM3Gk9lRUhYjEHzWEX6zcW8+OySj75chjvfLgd383rb/vyPzlsIbdf/1ZmWzLQn2wLHGQN2ITobJ7hUPYraHhB/zfQ4sqD4KJ9YdTNEDXamF3CHZRTyxmbHuIXP13PG29X4nTJwFtsBcKFGeCChLj5C88Gz3bg3amn70SITIkQRJdB4xusWW7/z3tvPuNdDiVACOYkNyoY+8lbOLiZe/63O/f8b3cm77KGO2/KP8z1+0zV6ppTn3RBiFx5tgPXr6D2vxCvzdyfFuAST+AYcD2zTljKrs8/bNk1YwZ4vTBtGrzwAmjpP3EJsaWL1+vjEiG2Vg3Pg/oJ+Cb09J2IrZFS+iRlmguCn+ihld0kNg98BVe/mfUy51U+yAn3O5iy//OW7W53Ar8/RkV5MzuM2cwxhy/ib9e8y5p1JbwxfTRz5/dDKdhh9GYOO3AJo7J8KI2jSC8i8sokZqIbOEuh9GcQ+ghCX+j/TkAfgy+9Gv7+IfzrMwBqR47gf0vPAOCd9/tz+fkz+Oc/HWj+STLwFluu5m/1XwVKQtx8KQWRxfpMoPLGJApJeD4EP4LYegCqawekdnkIcyLP8QBn4SOzv9bTnMzpPEwY41H2r78dxJ5H/jrv2/C3tFPQPFB0kP7olxD5cBTrfXLrH4VYG89mva73TNjl+UdQPMLOzGYOO1sOeekl+PZb2HXXLrpfIXpK80xQibaPE2JLpSLQ/I0R4jY00LSyijfnD2fOHChaMoez3z6RXlWLSbg9NP/xegLX/F4/dskSOPlkOPBAfdbL8nL90YyKCthhh576jkShqH8GSIDm1cfQKpL1UFUfZtOkXeg70/pD/TOcxAenXMItN31k3782i0EDGvj1abPaPhD0p5RKfw5uafQvupHDC0WHgXOA/mFaC68L/nQIHLAdnPwo5S9OY9//aXx8u/7zpv/+95nz9tvs+NnvcQ3YX9p+iC1TgU8YLCFuezR/B44SKDqkw5davBjWrdPHlq1lwvG4vt9h08X4iSfg5Zfhiitg0qQO35LY0kRXo5o+ZMmiGgb1r+PqG48gGnWw9+RVAAxlBbOZSAW1tqf/jr9zK7/rtNvp2zuoB7e+XcC/V6ddV2xjnKVQdob+oURsFTR9YH/cX6ZbVr9jIs9wEhdwF5vom9peV9eVNytED4nazJQuxNamcRX4ZqGay6gfdShlVcs4EUhvGOWIRvj62tc5/c5fM2Ssh+OKZ3PZrFkwaxbcdlvGZb+99BFWH3QaAKWr5jH8h9cp8UYJ7LYDvsMP0ENfpzPjPLEFi9dDdAVE5kF4AdQ36/NCvLsYFqe1carw0/DFVTz60m5seiDANRuvTO36mklc1vd+/vSv77n34He65l4dRfqv0p+Ds6xrXkOItvjG6/1yQzP0QjbVCIkw7DcC1v4fKPjLlR+w8MfehF5bxv9xPYEVIRj8EeHBffG+/RcYdRi4+kigK7qfSoBmBGiJBKxcqc+bsmIFlJXBxImw/famLK7pw4IPcTXVUh6/BZo0aZKaOXNm97yYUrD5OmPdWQ6Vl+R9mVgMgkEoLYWlS2HMGD2gve02GDoU9t0X+vWznrNkCRx8sB7gfvSRflyL9ethQLLgsrwcamxaKImtVGwzqvl7XniujpPPOoZEIts8hYqZTGI3rJ/4f8beHMeLlqCrNaUlzdQ3ZJl0KknTFAvmbmTMuF76o2lCdJbYJoj+mJw111R5+NUq+MmDtqc8yi84l38TIsAbb8C4cfDFF3D00VBS0k33LURXCS+A+qeM9ZKp3d2+Rh5H2gZ061i7aToEP9WX19bDc3P0x9gbwiRO2YVfVP+Pz1/08ywnMRn7e5rHOHZiHgCjWMw8dsRD1PbYMSxkMWNwEGcu4xlH9tkw393lCr467ib6D3Sxfd0M+rmqKBteQcUBE3AV++CHH6B/f1i7FoYP138yFN1PKf0n8Xit/rMaQLwBwsug4SN4fS6sXgG/3QtiCRh4fdZLrSsayoGx91gUHsWhvMMJPM99/IYfPOO58Kyv+L/LP6KsNPfq25w4fOAeBYH99N63Kp59wlchulsiqP+djPwA0aUQXpjaFV3ZiHvSrfanaQ4cKkHskMm4XnwdinrLE82ic6xeDeEwHHUULLIGr5um/JT3pl1N/PNlHPj6VQyqXwDA9+yYGifcwu+5lcsZvEtfbr4ZDtvpefj5VVDpgyHl0BiGV+fDYaNh9FC44knw+7vzO7T9hyIhbq7SQ1yAwL5QdAhvvQW33KIHqFVV+t+lyZPh8cfhrrtg+XLYcUf461+NU998E+6/H1580XrJESP0v3+PPAJnnQXjx+vXXb3aOOaFF+C44/Rx4jffwLHHWm/zq6+gsREOOkjeHztLLKY/kffDD/Dww7DHHj13Hy6tDqIrofEVfn/tgfz97n1wEWUsCzmH+/kZT7IHM1jGyNR5/977Rs764a+sKx/BN+GJnLruPoIU5fXazauu5+DjT+fzr4fa7n/4rheZuOceTNhNHvcSXSheC40vQ2SZsS2WgEtegWcyG9A3UMwIllFFb4qLFY2NGj//Odx+O/TunXn5RAI++EB/2nbcOPDJz06igxoa9PGeqwOfayml/0o9jaPiUHMPxKuMgyTEFV2g28baSsGch+HDF/X3c/OuvsWcv/+bPPLcRM7l31RSzR+5yfYy/3OexZnx/wAaR/Amb3JU1peM42BXZjGHnTmB53iOk7IeO5pFbKAfDZRyG5dyKbe3+u2sHrY37130MoFBlZz0U2s1ryorQ9t1V70UyOOBu+6EY47Vfw9qauC772DQIFi1Sh/IH3xwq6+Vt9Wr4arLYOx4+NOftowfFlrCWbNEwnhTVAr+8n8w6wu46goYVAf/+QCefA2WrMm83gMnwU92IDHhdhwb6rO+7FX8lVu4CoDiojCnn/IdV5z/GcOGdMHjPa7eUHQ4eEZ3/rWF6ArRNXrP3Ng6iFeRmLeRxCH/xRW3/+DsdY7iqtJ/4hjSi1EDGpgae4+dipZRecrhDB2qcOy9F7hl8niR9MMPxF57i8aFq2lesYGiOV/wwV5/5NXy01iyysOKFfD0it2ZFP/a9vQwHo7gLX7JI5zBQ7bHzGE8u/NVqqXkXac+wPlPnG1/P04HxOKd8Z3lQ0LcDrELcTUnVY2T6D3iyKynOYhTSTUOEkRxU0PXzig6fTockuzy8NRTcMopxr5EQh//aJrewuF3v4NeveDGG/Vx4g47GOOjVav099D+yclTGxqguDi/cV4ioY9Pd9jBvg3Epk1QVASBLaBl6n33wW9/qy/36QMbN3bt6910k14xqGkwa1aCk05o4smnvGzY6OEPl3zG9VdNZ826En62y+7czzmW6pEmApzEs5YfXH596lfcf+tr4HSwZl0Jg3e+PK/7Oee0mfz71teYOXsgf7hxCmNHbea9T0Yyf1EfAOZ++iQ77XEQuOxn2xWi0zXPhsY3rD3sonGY9jB8vSq16e/8jvs5hx/J/KHojDPgwbQi3v/8B845x1j/xz/0n5936eRszPyzJ0BTEzz/vN63dyeZN7NL2WUB7RWLWcPZYBAiETjpJKit1T/8u+Ya6NtXz2VaivNiMWhu1v9fVUo/p6pKb/ux3XZ6rlNVBXPn6tc8+mj9vLvvhvPOA+oe1x9rTIpEnHh6/URCXNHpum2sfccdcMklWXf3Zx0b6I+LKDdP/ZKLrq3EHW6ETRvg0MP1f0g+X+pRyYUL9aKIhQuhuhp8jZsZvOlbDlj9OLttfIM6b1/eHXImbw37DWGnn3g0zhtvZw8P+rIh+eSS4kdGsR1Lsx7bRIA/8xfu4GI8RNr80PzVo26iZtpPOfSFPzDgrafsDzr1VLj697DjeNiwUe/zu3AhXHQRvPKKXjEyYYIe/n75pf5GccMN+rnLlsE998ADD+iDWHO10ptvwhFHGOvRqF4hMnCg/uYzfbo+UD/gAP2TT79ff4Nqcf31cN118Otf6/fU3Kz/R1ZWZjw6uHix/ka5eTPMnq0/gnjAAXovuKuv1o+5+Wa4MtmuIJHQfxBpaIB33oHLk2PWc8+Ge+/WH0M85HD4YYH979WISv3X+z9m/T1/c9QvuFTdxp5LXuchzrDsW80gPmMf7uW3fMSBjN9hA+f+ciannTwnr763eXGUQNnPZRwttkzxBogu0lugRVez9uZPGPi3x20PfZ2jOJlnOI4XeYzTMvYv2f0EBpSECJx6gv7I8vjx8mTD1qKpCebN0wMiTSPsK8N58fksvOx+fhh+FOvWJgh8+QFnP5W9ZWkTAUpoQKH/EDWdKUzhfdtjj+QNSqnnaX7a6m2t1gZzqnqcT9ifP3IDN/B/9gdu1xcWr+/uDz4lxO2QZIj70efDePqlnTj1+Lm89Ob23Hrv3hmHaiQ4n7sZznIux9qDK4yHFQzjMm7jdX6S2j6NF7mSW+jLRt7lUJ7mFJYznA30y7tiskV5uT47+z//CZ9/DnPmtH3O4sWwYYM+tgL9/C+/hAsu0NfPOgvuvdf6Idl11+nVwddfr88EP2KE/p578snw7LMwdao+sZDZ9Ol61XtRkV7dunmz/u96zz3bvsfGRv0H31x8/bUeVu+3nzGWzdfKlTBsmHVb+j+bd9+FW2+Fn/8cTsv8/8hynqbpX2MxvdXa/Pn6mHniRP2Yzz+Lsc++eirgIE45tVRTScu/4eEs420OZwyL7V8EvbrkOF7kVfQy7V+f9g333/pqav+KVWUM3+3SjPMGD6xj+JBaPp1h/YZ/c/rX3Pv31y3bamp9fDJjBAccWETZoKO3jEoOsXVJNEPji8keXaYWCytrYdIdAERwcyLPpf4t+AlyFTfzOkfzFXtQXw//+59ejNTQkP2lPv1Ufy94/XW9//jOO2c/ti3XX6+Hw1dcob8u6D+H33mn/rPyqlVQ2Umf99XV6T87P/ec/t5+/vn6++62KJGAE07Q/1946CEIhfT34panWWIx/WtNjZ5zZNPy/n/88fr/Zffdp4es//0vXHWVnk/YufJKPfu43vT07sSJeqaR7uij9b9rdp5+vJpZX/7AaSd9x9hRVVz8xyP4z2O78Yffb+TaGwbYn9Q15E1/G9BtY+3hw/UGdWmiQ3rzwZpdOSLxJgoHv/qV/uFblw05olHU7XcQ/eQLYms24JvzFbWDd+Lhi2axfj3EflzOjS/tiC8RzHqJR/kF53A/zfhxEiNG65VluzODr9mdCXzHF+xFgJDtcfed+xJ1/QeBo4SfPHcpO859s9XrXn7aMupd5Uxe9AznfHZu1uOuuLgWtxfcHi/T3vwtoxe9RXHD+qzHf3/enaw/7gIql3zNrr/ZPetxb98+l5reQ5n4v0vZ/j37tkctXtv/aj6ceA4HzLiPY2bckvW4N+97kERRGQPfmc4uj95re0wCjVsm3M7Vcy7Oep2WCls/QQ7nbb5kT9ajv38GAhF2m7COg/ZZxinT5jFubBsTrHaEswJcA6D4JzIRsNh6KAXNM1i5Is7bj4Zwv/ABv1pwEzGc3MQfuIbrAI1TeZxH+CVOsk/QWjNiR/j8TSqCVXDVjfDsc9YDdthBr1qrr4dLL4XBg1GbNhO+7W7ic+ehVVTg2GEM7sm74OzfRx9g9+unD47jcf3DsJdfhpEj9fACcv8PJh7XB+1Dh2ZWrOVTMVBdrf8A0J7H/+JxPUjoyKODkYheedDXpsVitu8jFNIH1CNG6N/7gAFQW4sKhmjYGGJtYBTr1sGmZY3sdePRDFn6cdaX/4Zd2Z2vSODkIu7gDi7Jfqu42YMZzGYXNBJ8w27swmzbY28dfBsz97iAMzbewmGf6MGscjjQ+vXTKxpbrrnbblyv/sxfZx3FPZzHOfwn6+sTjXbs0br82f8lUkptsb9222031R1WrFDqg/cT6uD9lqiWhxodxNTOfKse5FeqGY/qxzplPPCoVC2lyrLB9KuRgDqaVxUkFCjlJqwu4x9Zj1egfsvdykVEgVKTmaHe46DUvgWMUWsYoN7gCHU4b6pKNisHMdtLacRbe5mcft1+u1Jz5yoVCim1YIH9Mf/7n3X9d79T6tprlWpoUOqaa6z7+vUzlgcPNn7fIxGl1q7VXyeR0Lf94hdKaZp+jVtvVWrQIKX++tfsf3bl5ca133pLqc8+U+qZZ5R66imlLrlEqQ8+0K+vlFKxmFLTpyv1449KPfecUs8+q1Rjo/33N2SIUhddZLyOed+HH+r7fv1r/fqXXKLU00/r2wcOzP77+sIzterpC59X/xr4JzWPHSw7r+SvycWEOo7n1Tr6Zb1QLaXqGq5RTqKpzeec9rVSG6+x/PrJYQsspw4eWKvUxmtUcMX1GZd9++lHjHM336JU7cNK1T+vVGSF8YcjRE+JVSkV+kapuqeUqr5HqU3XKbXxGvXu1IvU/ZytxvNd6v3vev5o+ct9P2er5/+/vTsPj6q6/zj+PkkgLAYICCJBQRSsyC5WqYKtC2qFqrghWhfErfVnte4rVanVutRdFHcrWEWooII7FRGQVVkUQfZ9DUv2ZL6/P85kMiEz2QyZSfJ5Pc99cufMufeeOTlz5ztn7j2Hs+0lhtof+K/VIyfiW6t166L17t3NHn3UbMIEsw0bzD7/3Cwvr6g4WVn+vb9sWcmirlhRfL+rVplt3lw87amnyv/Sly83GzHCbP78ks+NGlXydfTubVZQYJaR4c+DS5YU5Z8wwaxzZ7O77y7/8SPJzjYbMsSsf3+z1at/2b7S083GjPGfBXvb+9STl+fzvv++r8P77is6v5uZXXdd5NPmzTebjR5tlpQU/Jx0vk4bN/aPb7rJH6ugwKxdu8p/dp7EpzaBAfYdXe0uHrC3OT/05C08bKlsC+Vtw1obxFg7jql2BhPtMH6yP/K6DWCC9WK2dWO+NWJPiWM88ohZTs4vq/MKQEvtX6or1rYHHyzemH/V0uyra+2cMxaGko44ovh7OqYCAbP0dMtdutK2PfGGLRo932YM/8jG3TPXXrzuO7v5xnwbOtRsyIB0m3TApRbtxLCRVjaQ960nc6LmMbClHGqF3xuOYJHdwOM2h56lblO4ei7v2MPcEjVfO1aEYsxG7LEf6RQ17+08aI3Z7WNhVkXMs4wO1pEloe8caawptZwGdiDrDAL2Oz63mRwdNV/h960beNy2kRoxT6TvYCtoZ32YZpfyqrViY+ippKQC69lts1192QJ76alv7PuvR1vehhE+1t3+tNmOF812vGKW+Y3Z7g/Ndn9ktudzsx2v+lh4z6dm2QvM8jaYFew2y5pttuu/ZjtG+e223G+27UmzXRP8tlseMNs+0ixniVn2QrP8rbFuySLVpiA/1zasWmXfTltpHz/2ie1sEv37rIG9wcV2EKvMuYAd1majPdXhb6Xmf7LFvdaqZa7dnPCoZZFcat5uR+TY+/sPjfp8Pgn2Xtvr7JS+WTak12Jbn9yu1P39t/GF1i4tz9LSzO5s84plJDQOPbd2/27F8q79zXn21aQ9Nn++2dYRz4fSAy1aWOCU/hbYbz8L9D7a8k86xbIvu8q2vzHRVq70MfvPz00K5d+T1rFEOd4/9w27+458m9r9TyWe25Pkz4276qXaznrNbUi/ZXbaKfn2XbN+ZZ6jR7R/0Y7uXWBHHWXWs6dZemLk82/hMpzhoc+rDBqWmvcANgRj4IC9xiVlluWTK962SZPMFi82275sm2WOn2xZm3dZbm7luyVyc80GDiw6TGqzTNu06J++72PlnWYzrjPb8q8qfDeUG5GWiIk1ZamuwPL6680asceOYJGNZnDExjSKK4ol7d0JF2n5M08bBOxJ/q/MvJ1ZGPYwUGb+f3Bb6GFjdtszlHwjG9hq2obWT+BLA7OGZNhD3Gpz6GlL6GhLOdSe52o7hunWh2nWi9nWgWVWGExW9fLGhR/ZE1xvh/FTsfTjj4++zd13+y/wu3b5jotRo3yaL2PZ5Rw2zOzkkyte1lNPNdu8sSBqp3nhchCr7F3OsXl0t6Ucankk2ul8WOx/VNoOxjIo2CkbsL9xb4nnZ9PLBvJ+1F08eNenJTpx53/xXLE82WvuN9s83AKbhhdLv/SCeRbYNNxs66Nm2YvMCvZUy/tOpNJy15llzrKPx31WrC3fxj/K9cZ+nT9aE9JDSV35LuxLbuTlttvM5s0ze+utvd77B/kfg3JyzL76qvznlrQ0s++/953Ed91ldu65ZlOn+n3ddVfkbXr2NBswwGzoULNvv42+76ef9p9rYJaSYrZjh6+28Dzhnbu7d/u/Dz1k1rev2WuvFaV/+60PmGbN8p2my5f7DtTC/RxySNH65Mkl/1UzZ/rzdeExzPz+vvnG7PTTi5dp+XLf2fr882Zduvi00aOLtnvsscifDWZmW7ZU7vMofDm0Q/HPkqOZadfxlD3CTfYql9pEzrAJDCi20UZa2alMskNZWuYBujPPwKw+2XYRb9pGWpWaP50m1pr1JZ4qKKiqN1KZ0FL7l2rrxN2+3axLB7O0JmYTLjfbPNxmffJCsbY9fXr1FGVfy87259jJk/357JZbzC64wOzCbgvtHyl/t0t5zc7mPZvFUTaNPnYxb9jJfBKqhwTy7T7usbn0sK00t2jniDasNTC7ipFR8xjY37i3Qp+Tm9nfEsmzwYyOmieTBnYcUw3MjmJWmfs8m/cslW22g6al5ktjjYFZc7badpoVe+5tzrcrGBU6Lx7MStuPXQZmjRoFrEMHs1NOzrfr/y9gzz9XYNOmmWVmBMwCwZNmIGAWyA/+zTMryPplFyoEAn4fxdKq71c2kRohELCCadNtzW1P29T+99n0lkU9aSO40wq/x5/Ne2WeR4Yz3BLIt+EMLzXf3dxvYNaRJVHzZFPfbuFhSyTP0lhjy+gQNe9cetgQ/m2H8LNBwD7k9DLLejg/GJjdxQP2CDeVmvcNLrYufG/1ybYCXKl5z2KcJZBf7EKBaMtnnGgt2GKH8ZM9xo2l5l3EEdaW1Qb+AsRbeShq3gkMsOZsNfAx7bNcW+q+Rx9wg503INOuuTpgY4ZMsOmD/2U/XfOYrX9xouVk5Jlt2mS2ceM+b4o7d5p1CPs3XzZ4bvH+k21P7vMyRECkRcMplMPDd6Rz8UNHksb6qHmySaYn8/iRIwAYzt84l7Ghme92kcKrXM4ijuQYZrKUjjzGTeRTj9/xBU/zfxzJ4qj7f5mhDONlALrxHd/Ro9QyX8prvMGlANQnhxHczS08GjX/TppwMKvZRVOOYQaTOY1mlD5o/3m8w1jOox655JIcSl9AF7qykD00JkACTdgdqpP7GQ5AA7J4h/MZyAeh7XKoTzJF41vO4Bj6MAOAYYziINaQwm5WcAirOZi+TOVYZrCYzqynDYvpzFjOJUAijgCnMZmP8AMJjucs6pHH93RjK/szmdP4gc7BIxmX8yp9mUoCAVZzMMnkcCuPhMoyh170Zg7gh8u4luf5LVM4j6JbOraTyiYOYAstuY2HmUEfJjKAAUS5JxY4lunM5FhasJWtlHL/LnAzj/AyVzCN4+jMD4xhMM9wHd/wG8q6q3X38gfZb7/cYmmBgKPbb69l0Y+tGDLoe94aOS70XLteN7B6bTOSkgrIWPkg9fdrB00Gg6u/965F4lZeHnTsGGDVKn+LUxJ53Mo/+Tt3l7rdK1zO1bxAPvXYny3czQj+wlOspB251KcTSxnJ1SSTw090YhmHMY5BBCiavMYRIJUdoaFQGjTwQwXGoxdf9MMZht8tNXIk9OkDY8b4oQqPPNIPY1Vo2DA/fMDejjzS39n1Y5ShCkeO9GOtX3aZv3Or0BVX+LGHr7ii4vX0zDN+qITrr4/8/NatMG2aH9onmkTyuYi3uJh/czhL+Ip+dGUB3Skah2gUw7idh9hOCwD+yBuhz9loVtKOrixgDyk0YSf38AA3E3n25vGcxSDGUXg+38L+7M+2iHkBNtCaNmwokV6NYZ2GU6gDqnXosozPIGNq6GQ04KIhfPhpJ8APhTJ2bGkb1x65uX7usdWr/djYO3YULXsP11Kvnr+zs3BJTCz+OCkJkhKNFpsWk9f8AHJS9icv18jLg8Stm8hIakoWDcnL88ett3MrKVt+Zl2TzqStmUFCThYrUrpBTg7dVn+Ay89lUuuhbEk4gKTMXfTdNJa8gD9o56zZpDc8kIQEmN/6dNa36Eq9er6MHXd8S4u8DSxtdwo0akTbnYtokruVtR36Ua++C+Vrnr6ctA2z2ZrakcCOnewqaMxP+/Wi2dqFrE04mE25qZj54dvq1/d/k5P9UL2pqX4oudTUoqV1a79UdF4PEYmdnIx8Zk3exqS5B/DZZ36Y7rSCVTzKzfyWKbRka9RtW7OBuxnBdTwbNc8GWnMoP3MUc5hKv1LLcjcP8Ai3MIoruYQ3o+Z7j0Gcy3u0ZQ1riDwJeKHC7/+F+3+Ae0vNv4ROHMsM0knlSl7kRaIPj/Mc1/JnnuV6nip1WIJC5/MfLuItzmRCmXm/5WiOYSbguITXeZ3Loubd4/bj7GM30iytMQN3vcXZ028ho00ntg64DM47jwNT9pDavikJjeJrBulJk/yQn4W+n/IcXTsHJ0NKbA7No3zZ2Hc0Jm5lvTH8Zy65/7Coz6fTlNEM4QaeII9f1smVQAGGI5EC+jKVg1hDGutYQFc+YCAA/fmYjzmt1P0czbfM5mgA/sUN3MCTZR77RD7nS06kGTu4hpH8gzsj5ttDY65hJG9xMQBprGUtB5W5//P5D+/ix5pJZXvoi3A0m2nJAWwCHO8xiEGML/MYZzOO/3J2iY7lvZ3KZD7jZAIkljl7caHmbAtNTLeWtKid+g9yB6O4kpUcQnfm8xLDQh3A4daSRje+ZwfNacdKVnJIsed3kRLqAB/IBD5gAJX5zjz7sxc5qscOsByKjRsK7N5Tn9nz23D8MaupVy/4nEtkwaIWvDKmF+cOyuC4Ew6A+kcq+pUaKS+v+BwsAI3Zw6/5lkZkMoTRDGFM6LnwcZkAUtjFbHqXOgb1LlI4m/F8wUnBFGMUV4Z+eIvkakbyIleTQAFPcT1/5rnQc3PpyWRO40A2cCFj+Ce38nfuIpdk9mM3Z/AhFzKGzbTiPc7hfN4hk0YspwP5JDGdPqHzf0d+4jd8g+HIC47LeAL/YwmHM4ejaEA2U/htsfNlIvkkUkAu9bmGkbRhPa9xGcvpQHO2k0t9HMZumoS2acM60mlGCrtxGM1IJ4PGXMWLOIz59OAzTiadVJqzjYFMJIl8ZnAsCQSoR17w2AUcxBq+4ETSSQX8D5FnM5401jGb3hzEGjqylFzqk0Fj1pFGE3bxJb9jBR1CZRrEezzKzSx3h9G2TYB164xO/ERb1rE02PF+NyPIpx5XM5K/8nip/+e3uYALKZp0KIk8ltOBg1gbdZs/8wzP8WcAuvI939M9at6ttOAo5rCadiSTTTYNo+YtVDjZU6EDDvBz/lQTfSjUAdXeiZv5NQDLljen47H+y5Jz/kekI46onmKIiEj8yM318zMuXQrr1/s5LAonh01J8T/etGjhh7st/FtsiNgPP8ReeIH8Dp3ITWrM9oGXsrNFB/bsgcDSn2mwZikJ2Zm0G/cvGq1dwo+X/5Pc/dtQPz+T7ccNJLF+IikrvqfnZT6G23Vsf/JbtSHQoiXWtBlNx71C1gmnkX7fU3582HffpeUTd5LToCmpP89hT0rrYuOMv3bEw7zS4hbSdzo6bZrKK5vPCH3nj+bG1Ff5oMVlHJs/lTdXFnU85yQ0IDlQdPXDO2e8zpJjLqHDlpn0/fxvtFr1LQ0ytgOwO+1X7D64M422rGL5oFvYfPwgqFePxPwcWs2cSPv3HqP+jo3s6nIcme2PIKNTLxLzskhZOo/6W9ay8eJbyDm0MwkJ0HDtUlInjyF54ypSvvmYnA6/IueYE2jU83AadjgQOnf2/4wa6Mwz/XyhABcOWsDoke/5B3HUiRvx8tyaslTXLV7PPRuwFbQrdtn349xgHVkS8arw5sE7m1JTi8bYq8xy5pkV3yaBfGtIRrHb++uTbVcx0v7EM3YlL9hYBtmXnGBT6Ge5FBWwaAzVgN3Og6Ue6H/0DV0mfybjyyzYPLpbT+aEks5iXJnbDOPF0MNBjC017zZS7VQmhZLqkVNq/t/xebGkyfQvNf9a2oTqtAnpNoR/R81bgLP7udsSyYs6/EbhcjkvG/ghLK7mebuRx4qNi1jeZcvapfb1l+siPrfsp+zgLV17zHKWm2XONMuab7ZrnNnOsWYZ08yyF5tlfO3H+8pZYpa/y48zKlIL3HKLWWKi2cEHm73+utmciEMPBuw0PrLT+dDmzdpuDRv6sfxe5dJyvQn7MSX0sBM/lvjM2HtpxnYDsx7MLTXfRlrZWYwLnW/bsrrMstzKQ6GHo7iiXOU/hY8NzA7jp3LlX0aHYuNul2ebKxhlUL7PjP5MDj1MItcmckaZ2wxmdGjseAjYSg4uNf9Ezij2/3+Ps8s8xml8FHpY2jA46zjQHuNGa0BmxCwNybADWWdTpkTbRcCSyDVHgbVgix3LN6FxKJuQbo4CO5B1Ya/XL4VDXVQTtNT+pdqGUzDz44sGb1u88epvQu36jDOqrwgiIiJSd80KGwEoIaHAls18Iu6GU4h5cPhLluoKLJ991uw4ptr7DLQr8eNz9eq2znLW3m/bV31Q4stXZmbRtvfdZxG/oKWmmv2013flFSvMGgbHff73v/24diNGmF11ldnSCMPp9enjJ6FJLn3c7ipZEsi3Hsy145hqzdla7Mv7way0P/O03cUD9nfusJt4xN7lHPsnN4e+FI9lkLVkU2ibU/jYvuC3JQ5UgLPPONGG8G8rHAOnPtl2KpPsZw6xPTQyg9Df8OU7utqhLDUwO5lPSn1B73JO6GErNkbMs4qDQuvT6BOaTOEIFtkUSg4A/gOH23NcY/kk2DjOsqbssAZk2osMs9EMtt/wtbVltTVijyWSF/pCXp7l8svNbr+9ZHrnzn6czEJz55p9+mnxPIXjXYrUZeGT4ezcWfr7rdDy5f4HoV+x2I7lG+vHFPuA34cyho/HN4NfG5glk1Vm52HhUtgxW54xCI/nK4OA/Zc/lJk3mazgasBasKXUSWoMbD2twzobA7ac9qXmL8CFxjosXL6ja9T8qzjITuQza8kma8qOiOf+vZdMGthJfGpNSLeXubxc9TmUl0IPL+XVcm1T2JkOVuK5naSYgWXQ0IYz3PowrcT451O/CtiKeTusaZOSY69/+KHZX/7iJ7eMdPihQ307W7y46AffCRN82l//Gr3YjzyUbs1TM4qlvfjY+zZ5wtLqHA/XzGIfB2qpPbG2mYU6cbNWP2BNm2SF2vekSdVXBBEREanb+odd33frdVPViVuVS3UFlosWWYkvUdM+eMls64Nm+en2p+CcYS1b+hm/w2Vmml14oX++Xz8/Uc2335pt2+YnqNm742DTJn+8SM47ryhvp05mP/5Y9Nyzz5Ys45AhZm3blkyPtjzxRPnzNm1a/ryxWwKWTJYlkG9NSLcjWWDRJjnb+2qmfTVpW+HSqpT5ao6IMCdedrafNXHsWN+GyjJ6tJ/451//qkyLF6n9Xn458vvv5ZeL55s50/+IUtr72c/AXXTOOIhVdibj7Z/cbHfxQKgzMHym3HN5J3SuiTQTa/hdEgbWltXWnK32GpeU2QlaOPEAmN3HPWWekApnkC1cPuaUMrc5n7dDr7kBmeU68Z3KpDKvPC5cxjLIBjDBGpAZsRM3g4a2lEPtZ4pmTlvMr0Jl6s/kqDMTr6CdPcStdizfhCa9AbMDWReaTb08y8iRRe1k7zjh5ZeLz4dz1VU+vWlTswce8J27mzYVPb9unf9hN9zixWZ33FHyuKNGmc36apZ17OB/BLj+yuk+uMyaW8XvkjKhpfYvsejEHffqmFB7P+SQap2sT0REROq4iROL4u4DWu623HX3xVUnrsbELacRDxj33Fs0JMXCr57lyF5HQuPfkpMDH38MvXpB27YV2+8zz/jJYW6/HQYPLj1vIAALFkCXLn7ignC5ufD2237okV69YPp06N8f7rwTnn66KN9ZZ/nJZLZvh++D87V07Ag//eTXP/wQBgzw6zfc4Ce2Wb8esrL8hArffQdXXQVnnw3XXAOjRlXs9YZLSfFj2oTr2NFPsFNQAHfcUfl9/xKnngrjx8PAgfD55z6tfXtYubJy+zvnHHjvvaLHhxziJ++5O8LcSrNnw1FHFR9+dssW2H//yh1bRKJLT4fnnvPjHh14oD/n9e3rh7Pa295DQnfrVnQOLa+ePeHvf/fv8ZYtYeLE0ifbKpvhMIwEHAG6soCNtGYzBxTLVZ+csDFvjWRyCJBAIzLZRRMSKSA/OF4uGI3IpDEZNGUnDchmJe1JIp/DWMZ2mrObFLbRothEbins4ni+pn3yRn7Mac9MjqEF23AYmTRiK/sTPqxTIvnUI49W+MkC8kliPWl06QL9+vn/y96as41dNAkrq9eIDDJpRLRhoxqQRTYNoj4f7tNPITMTzj8fcnKi53vpJRg6tHi7ePJJ+OQTuO8+6N27eP49e3w7690bOnUqsxghgYDP//PPRWlffQV9jy+AHc9i+duLypByJjToWf6d/3IaE7cOiMWYuBdceS7vvN8FgLvughEjqufwIiIiIvn5cPDBsCE4f/D4197mrIGbNSZuVSzVeXVAbk7xKzPXfPeUWUFm2RvGWHq62e9+56/uHD++6MqgQMDsppv8peJ7X/mbm2v2ww/FryKKJivLbNw4sw8+sIhXKr31VvHHvXubffml2YYN/sqjUaPMHn7YX5100UXF9114dXGjRv6Kpb/9LfIx9l6eftrfvtqsmVmvXuXbBszmzzf7+GOz/Hx//BUr/FXU99/v6yLSNpMmFX8cKe/8+cWHvJg1y2zLFrP99vOPR4zwZf7uu6LXPmaMv5L28ccr938XkaoV/p5+/HGzJUuKpz35ZORzRM+efliGr7+OfjVZdrYft7esc9Snn5oNG2Y2cKA/b+fl+as6I+VdvNiPA1z4+MEHzRo0KHo8bpzZvff6YVoyMvx56d57zX7+2Zdp5szo5RgwwB/7yy+Lp7/5pt9X+HHB7KSTis5vixebOefTb7zR7JVX/JXOw4b5zwQzPwTM6aeXXR833mjWda9RHGbPNps+3dfppk2Rt5s40Z+Db7qpKK1jR3+HTKGsLLM33ii+Xa9eZl984euqOv3wg9lxx/kyXHFF2BNZ80Ljh+pKXC37aqnuK3F3L/+7NWxYdHfUggXVd3gRERERM7M77yz6DnDeHxbqStyqUq1XB5jhEoo6wneu/5ImB/6ueo5dQyxb5q8YKmxS998P99wDixfDCy/4q5tuuw0OO6zktoFAyavfzGDePH91c6tWxfMVFPirgSdO9OknnQSXXOLznXZa0fbO+V9QvvzSz9g9Zw6MHg2NGsFnn/krYleuhAcf9FfhlWb0aHj2Wbj2Wl+GBg18GcLL/c03/urlN9/0r3/oUH9F8YwZMHcuXHQRNG3q827b5st25JElr/ITkfhyyy3w6KPQuDGsWQOpqf69/f778PDD/sr9886DsWN9/m3b/LmhadPyv7/XrPHnj3Xr/OORI2HWLD8D7z33wOGHR94uPd2Xa+xYmDwZbr4Zunb12xUU+OfAr48fDw0bwu9/X3a5cnL8/jp18nd4ZGf7u0Dy8oq2ff55f+Vp//7+zozkZF+eV17xE9MWno/DffGFv7L0oov8uTiaefP8L+HTpsGNNxZ/rnXrol/HN22Cxx/3r/nii4vnW7sWbroJli/35T7pJHjsseJ5srOhfv2Sn0EFBf51ffEFnHiif03t2pVeZ9XKDNKfg/wt/rGuxJV9oLqvxB3z73SGXHMu4OOjhQur59AiIiIihRYv9nEIQKNGuWxZ8hKN2v6puosRMdZWJ255mfHXa2fwrxf6cPmF83jlzUMhsUn1HLsGWbLEf7Hu2BHS0vb98davhylTfIdEs2Zl59+zB955x3dI9Ojh0woKSg5PURFPPuk7CU4+GSZNUoesSG2UkwMffOCHUejYMXKeLVv8jz39+vmhEypj5Up46y0/rE337pUubpUbMwb+8x9/ruvbNzZlCD+3tm3rO72rQ34+JCVVz7EqLHsu7J7g19WJK/tAdXfiXnBR69BQCoUXA4iIiIhUt86d4Ycf/Pp7r33IoEvPqO4iqBP3FzGDrfexI70Bqa0OhqZDque4UiPs3u3H+BURkX3jpZf8mOngx6Hv3z+25YkLlgfbH4dAljpxZZ+ozlg7f+fntGz3G9J3NgT8PAzdulXLoUVERESKueeeonH5LzxnCaPHRrktct+JGGvH67UlcSu1WTY0PCbWxZA4ow5cEZF965JL/N+UFDjllNiWJW64epDcA7Kmx7okIr/YzFlNQh24aWl+iBQRERGRWDjnnKJO3EmftYubu/MizMEtpUpsBvU6xLoUIiIidUr9+jBsGFxwgYatKaZBj1iXQKRKTPpk/9D66afrfS4iIiKx07170RCh6TsbMGNGbMtTSJ24FZWsWahEREQkTiQdAPXaxLoUIr/YpE9bhNZPPz2GBREREZE6zzk/91KhSZNiV5Zw6sStqGTd2yUiIiJxJDmOZsETqYSNG2HufD9hcFKSnyxWREREJJbCO3E/+ih25QinTtyKSGoJSa1jXQoRERGRIsld0TxjUpNNnly0ftxx0KRJ7MoiIiIiAnDSSVCvnl+fPx/WrYtpcQB14lZMcpdYl0BERESkuIRGUK99rEshUmnhtyhqKAURERGJBykp0Ldv0ePwH51jRZ24FVG/c6xLICIiIlJSYrNYl0CkUvLz4ZNPih6rE1dERETiReGQCo0bw7ZtsS0LQFKsC1BjOOeHUxARERERkSoxcyakp/v1tDToquknREREJE4MHgw9esDxx0NycqxLo05cERERERGJke7dYdw4P6RCq1b+ugkRERGReJCW5pd4oU5cERERERGJif32g7PP9ouIiIiIRKcxcUVERERERERERETimDpxRUREREREREREROKYOnFFRERERERERERE4pg6cUVERERERERERETimDpxRUREREREREREROKYOnFFRERERERERERE4pg6cUVERERERERERETimDpxRUREREREREREROKYOnFFRERERERERERE4ljcdeI6505zzi1xzi1zzt0e6/KIiIiIiIiIiIiIxFJcdeI65xKBZ4HTgc7Ahc65zrEtlYiIiIiIiIiIiEjsxFUnLvBrYJmZLTezXOBt4MwYl0lEREREREREREQkZuKtEzcNWBP2eG0wTURERERERERERKROirdOXBchzYplcO4q59xs59zsLVu2VFOxRERERERqNs09ISIiIlJzxVsn7lrgoLDHbYH14RnM7EUz621mvVu2bFmthRMRERERqYk094SIiIhIzRZvnbizgI7OuUOcc/WBwcCEGJdJRERERKSm09wTIiIiIjVYXHXimlk+cB3wMfAD8I6ZLYptqUREREREajzNPSEiIiJSgyXFugB7M7OPgI/Kk3fOnDlbnXOrKnGY/YGtldiutlO9RKe6iUz1Ep3qJjLVS3Sqm8hUL5HFul4mm9lpMTy+VFyZc0+An38CuCr4cI9zbkkFjxPrthnPVDeRqV6iU91EpnqJTnUTmeolMtVLdLGum4ixdtx14laEmVVqUFzn3Gwz613V5anpVC/RqW4iU71Ep7qJTPUSneomMtVLZKoXqYQy554AP/8E8GJlD6K2GZ3qJjLVS3Sqm8hUL9GpbiJTvUSmeokuXusmroZTEBERERGRfUJzT4iIiIjUYDX6SlwRERERESmbmeU75wrnnkgEXtHcEyIiIiI1R13txK30LWK1nOolOtVNZKqX6FQ3kaleolPdRKZ6iUz1IhVWkbknfgG1zehUN5GpXqJT3USmeolOdROZ6iUy1Ut0cVk3zqzEfAYiIiIiIiIiIiIiEic0Jq6IiIiIiIiIiIhIHKuVnbjOub845xY65xY5524IpvVwzs1wzs13zs12zv06LP8dzrllzrklzrlTY1bwfawi9eKca++cywqmz3fOjYxp4fexKHXT3Tk33Tm3wDk30TnXJCx/XW4zEeultrcZ59wrzrnNzrmFYWnNnXOfOueWBv+mhj0XsY04544K1t0y59xTzjlX3a+lKlVhvUwJphW2n1bV/VqqWkXqxjnXwjn3pXNuj3Pumb32U2fbTBn1UtfbzCnOuTnBtjHHOXdi2Da1qs1IfIkSG9T5OBsUa0cTpV7qfJwNirULVWE8Wes+/6qwbmpV3FSF8WSdbjNl1E1dbjPxG2ebWa1agC7AQqARfszfz4COwCfA6cE8vwemBNc7A98BycAhwM9AYqxfRxzUS3tgYazLHeO6mQWcEMwzFHhAbabUeqnVbQboB/QKf43AP4Hbg+u3Aw+X1UaAb4E+gAMmFb7/aupShfUyBegd69cTw7ppDBwPXAM8s9d+6nKbKa1e6nqb6Qm0Ca53AdbV1jajJX6WUmKDOh1nV7Ju2lOL46Zy1EudjrMrWTe1ts1U8POvzsTZVVw3U6hFcVMF66XOxNlVXDd1uc3EbZxdG6/EPQKYYWaZZpYP/A84GzCg8BfepsD64PqZwNtmlmNmK4BlwK+pfSpaL3VJtLo5HPgqmOdT4Jzgel1vM9HqpVYzs6+A7Xslnwm8Hlx/HTgrLL1EG3HOHQg0MbPp5j8B3gjbpkaqinqpjnLGQkXqxswyzOxrIDs8c11vM9HqpbaqYN3MM7PCz+xFQAPnXHJtbDMSVxRnR6dYOzLF2dEp1g5SnB2dYu3IFGdHp1g7stoSZ9fGTtyFQL/gZeGN8L94HwTcADzinFsDPArcEcyfBqwJ235tMK22qWi9ABzinJvnnPufc65vtZe4+kSrm4XAH4J5zgumgdpMtHqButNmCh1gZhsAgn8LbzGJ1kbSgut7p9c2Fa2XQq8Gb9W5pzbcyhRFtLqJpq63mbKozXjnAPPMLIe602YkNhRnR6dYOzLF2dEp1i6d4uzoFGtHpjg7OsXakdW4OLvWdeKa2Q/Aw/hfLSfjbyfIB64FbjSzg4AbgZeDm0RqiFYNRa1WlaiXDcDBZtYT+Csw2oWNVVWblFI3Q4E/O+fmAClAbnCTut5motVLnWkz5RCtjdSJtlOK0l7/RWbWFegbXP5YbaWKb3W9zZRGbQZwzh2JP1dfXZgUIZvajFQJxdnRKdaOTHF2dIq1K01xdnSKtStGbaZ0db7NxGOcXes6cQHM7GUz62Vm/fCXSy8FLgXGBbO8S9FtBWsp/utmW2rpbU4VqZfgLRjbgutz8OPpdKr+UlePSHVjZj+aWX8zOwoYg68DqONtJlq91LU2E7QpeEtF4e04m4Pp0drI2uD63um1TUXrBTNbF/y7GxhNLb31i+h1E01dbzNRqc2Ac64tMB64xMzCP6PqQpuRGFGcHZ1i7cgUZ0enWLtUirOjU6wdmeLs6BRrR1bj4uxa2YlbOGuec+5gYBD+w289cEIwy4n4oApgAjA4OL7FIfjB5L+t3hJXj4rUi3OupXMuMbjeAV8vy6u7zNUlUt2EpSUAdwOFM8DW6TYTrV7qWpsJmoD/ckbw7/th6SXaSPAWjd3OuWODt6NcErZNbVKhenHOJTnn9gdwztUDBuBvJayNotVNRGozkanNgHOuGfAhcIeZTSvMXIfajMSI4uzoFGtHpjg7OsXapVKcHZ1i7cgUZ0enWDuymhdnWxzMElfVCzAVWIy/JeWkYNrxwJxg2kzgqLD8d+F/yVxCLZiNsCrqBT/ux6Jg+lxgYKzLH4O6+QvwU3B5CHBqM9Hrpba3GfwXsQ1AHv4XuCuAFsDn+C9knwPNy2ojQG/8B+DPwDPh7aomLlVRL/hZUecA3wfb0JPUgpmoK1E3K/FX4ewJ5u+sNhO5XtRmDPwX+wxgftjSqja2GS3xtaA4u0rqhloeN5WjXup8nF3RuqnNbaYSsUGdiLOrqm6ohXFTJeplJXUgzq6quqnrbYY4jrMLPxBEREREREREREREJA7VyuEURERERERERERERGoLdeKKiIiIiIiIiIiIxDF14oqIiIiIiIiIiIjEMXXiioiIiIiIiIiIiMQxdeKKiIiIiIiIiIiIxDF14opIjeWcK3DOzXfOLXTOveuca+Sca++cW1jB/VzmnGuzr8oZD4KvcYtz7qUy8q1wzh2+V9oTzrlbnXN9nXOLK1q/IiIiIlLzKNYuP8XaIlId1IkrIjVZlpn1MLMuQC5wTSX3cxkQ14Glcy6pCnbzHzMbVkaet4HBYcdNAM4NbjsV+H0VlENERERE4p9i7YpRrC0i+5Q6cUWktpgKHBZcT3TOjXLOLXLOfeKcawjgnOvhnJvhnPveOTfeOZfqnDsX6A28FbzSoKFz7iTn3Dzn3ALn3CvOueTg9iudc/c55+YGn/vV3oVwziU65x5xzs0KHufqYPpvnXNTnHNjnXM/Oufecs654HNHOef+55yb45z72Dl3YDB9inPuQefc/4C/OOeODu5zevAYC4P5pjrneoSVYZpzrltplRWtnMAYwgJLoB+w0sxWVezfISIiIiK1iGLtojIo1haRmFAnrojUeMFfzk8HFgSTOgLPmtmRQDpwTjD9DeA2M+sWzDvczMYCs4GLzKwHYMBrwAVm1hVIAq4NO9xWM+sFPA/cHKE4VwA7zexo4GjgSufcIcHnegI3AJ2BDsBxzrl6wNPAuWZ2FPAK8Pew/TUzsxPM7DHgVeAaM+sDFITleQl/hQPOuU5Aspl9X0a1RSxncLuAc657MN9gfLApIiIiInWQYm3F2iISH9SJKyI1WUPn3Hx8YLgaeDmYvsLM5gfX5wDtnXNN8UHa/4Lpr+N/+d7b4cHtf4qSb1z4fiNs3x+4JFiumUALfKAL8K2ZrTWzADA/uP3hQBfg0+A2dwNtw/b3HwDnXDMgxcy+CaaPDsvzLjAgGKQOxQfGZSmtnGOAwcGA/czg/kVERESkblGs7SnWFpG4UBXjvoiIxEpW8Bf9kOBdUzlhSQVAwwrs05XxfOG+C4h8DnXA/5nZx3uV67cRypUUzL8o+It/JBlllcvMMp1zn+KDwPPxt6yVJWI5g8YAnwD/A743s83l2J+IiIiI1C6KtVGsLSLxQ1fiikidYGY7gR3Oub7BpD/iAyeA3UBKcP1H/NUEh0XIVx4fA9cGf6nHOdfJOde4lPxLgJbOuT7B/PWcc0dGKP8OYLdz7thg0uC9srwEPAXMMrPtv6ScZvYzsA14CN3eJSIiIiJlUKxd/nIq1haRytKVuCJSl1wKjHTONQKWA5cH018LpmcBfYLp7wZvcZoFjKzAMV7C37o1NziZwhbgrGiZzSw3OOHDU8Hb0JKAJ4BFEbJfAYxyzmUAU4CdYfuZ45zbhR/LqyrKOQb4BzC+nPsTERERkbpNsXb5y6lYW0QqzJlZrMsgIiLl4Jzbz8z2BNdvBw40s78EH7fBB5u/Co4Dtve2lwG9zey6X1iG9sAHZtbll+xHRERERCSeKNYWkXin4RRERGqOM5xz851zC4G+wAgA59wl+AkT7ooUVAZlAac7516q7MGDt8dNBLZWdh8iIiIiInFKsbaIxDVdiSsiIiIiIiIiIiISx3QlroiIiIiIiIiIiEgcUyeuiIiIiIiIiIiISBxTJ66IiIiIiIiIiIhIHFMnroiIiIiIiIiIiEgcUyeuiIiIiIiIiIiISBxTJ66IiIiIiIiIiIhIHPt/KVbaQvY5/DoAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 1728x576 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot(vs_test, 3)"
]
},
{
"cell_type": "markdown",
"id": "1f0f3f20-060a-488a-9f61-6b4cb3cf1614",
"metadata": {},
"source": [
"# Inference: Apply it in new data without grating"
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
{
"cell_type": "markdown",
"id": "76573a84-dbbf-413a-8972-4464f59c45c2",
"metadata": {},
"source": [
"The configuration for inference must be the same as in training. This can be checked as follows."
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "645c98a4-66d0-4ae3-90cc-d33ed536b712",
"metadata": {},
"outputs": [],
"source": [
"runTest = 70"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "7bc0a84e-9374-491a-abb6-f0a9f76c47fe",
"metadata": {},
"outputs": [],
"source": [
"from pes_to_spec.config import VSConfig\n",
"\n",
"training_config = VSConfig.load(proposal, runTrain)\n",
"inference_config = VSConfig.load(proposal, runTest)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "0bd6e18f-f0db-4b8c-8512-9b8bc8cd9af2",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>mean_u203</th>\n",
" <th>mean_u214</th>\n",
" <th>mean_u213</th>\n",
" <th>mean_u111</th>\n",
" <th>mean_u103</th>\n",
" <th>mean_u210</th>\n",
" <th>mean_u206</th>\n",
" <th>mean_u102</th>\n",
" <th>mean_u205</th>\n",
" <th>mean_u113</th>\n",
" <th>...</th>\n",
" <th>std_u208</th>\n",
" <th>std_u115</th>\n",
" <th>std_u3</th>\n",
" <th>std_u204</th>\n",
" <th>std_u212</th>\n",
" <th>std_u201</th>\n",
" <th>std_u211</th>\n",
" <th>pressure_mean</th>\n",
" <th>pressure_std</th>\n",
" <th>gas_active</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>-0.10791</td>\n",
" <td>-116.001754</td>\n",
" <td>-116.006663</td>\n",
" <td>2300.000183</td>\n",
" <td>2299.997899</td>\n",
" <td>-104.398606</td>\n",
" <td>-75.401367</td>\n",
" <td>2299.997405</td>\n",
" <td>-75.404921</td>\n",
" <td>2300.005763</td>\n",
" <td>...</td>\n",
" <td>0.009517</td>\n",
" <td>0.007708</td>\n",
" <td>0.0</td>\n",
" <td>0.00298</td>\n",
" <td>0.006148</td>\n",
" <td>0.0</td>\n",
" <td>0.00589</td>\n",
" <td>0.000001</td>\n",
" <td>3.927595e-08</td>\n",
" <td>NEON</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1 rows × 65 columns</p>\n",
"</div>"
],
"text/plain": [
" mean_u203 mean_u214 mean_u213 mean_u111 mean_u103 mean_u210 \\\n",
"0 -0.10791 -116.001754 -116.006663 2300.000183 2299.997899 -104.398606 \n",
"\n",
" mean_u206 mean_u102 mean_u205 mean_u113 ... std_u208 std_u115 \\\n",
"0 -75.401367 2299.997405 -75.404921 2300.005763 ... 0.009517 0.007708 \n",
"\n",
" std_u3 std_u204 std_u212 std_u201 std_u211 pressure_mean \\\n",
"0 0.0 0.00298 0.006148 0.0 0.00589 0.000001 \n",
"\n",
" pressure_std gas_active \n",
"0 3.927595e-08 NEON \n",
"\n",
"[1 rows x 65 columns]"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_config.to_pandas()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "340d92cf-c4cc-40ac-8e58-5eb12e08a778",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>mean_u203</th>\n",
" <th>mean_u214</th>\n",
" <th>mean_u213</th>\n",
" <th>mean_u111</th>\n",
" <th>mean_u103</th>\n",
" <th>mean_u210</th>\n",
" <th>mean_u206</th>\n",
" <th>mean_u102</th>\n",
" <th>mean_u205</th>\n",
" <th>mean_u113</th>\n",
" <th>mean_u105</th>\n",
" <th>mean_u106</th>\n",
" <th>mean_u112</th>\n",
" <th>mean_u200</th>\n",
" <th>mean_u207</th>\n",
" <th>mean_u107</th>\n",
" <th>mean_u209</th>\n",
" <th>mean_u110</th>\n",
" <th>mean_u215</th>\n",
" <th>mean_u114</th>\n",
" <th>mean_u109</th>\n",
" <th>mean_u104</th>\n",
" <th>mean_u108</th>\n",
" <th>mean_u202</th>\n",
" <th>mean_u208</th>\n",
" <th>mean_u115</th>\n",
" <th>mean_u3</th>\n",
" <th>mean_u204</th>\n",
" <th>mean_u212</th>\n",
" <th>mean_u201</th>\n",
" <th>mean_u211</th>\n",
" <th>std_u203</th>\n",
" <th>std_u214</th>\n",
" <th>std_u213</th>\n",
" <th>std_u111</th>\n",
" <th>std_u103</th>\n",
" <th>std_u210</th>\n",
" <th>std_u206</th>\n",
" <th>std_u102</th>\n",
" <th>std_u205</th>\n",
" <th>std_u113</th>\n",
" <th>std_u105</th>\n",
" <th>std_u106</th>\n",
" <th>std_u112</th>\n",
" <th>std_u200</th>\n",
" <th>std_u207</th>\n",
" <th>std_u107</th>\n",
" <th>std_u209</th>\n",
" <th>std_u110</th>\n",
" <th>std_u215</th>\n",
" <th>std_u114</th>\n",
" <th>std_u109</th>\n",
" <th>std_u104</th>\n",
" <th>std_u108</th>\n",
" <th>std_u202</th>\n",
" <th>std_u208</th>\n",
" <th>std_u115</th>\n",
" <th>std_u3</th>\n",
" <th>std_u204</th>\n",
" <th>std_u212</th>\n",
" <th>std_u201</th>\n",
" <th>std_u211</th>\n",
" <th>pressure_mean</th>\n",
" <th>pressure_std</th>\n",
" <th>gas_active</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.0</td>\n",
" <td>0.003525</td>\n",
" <td>-0.007761</td>\n",
" <td>0.002027</td>\n",
" <td>-0.002881</td>\n",
" <td>0.004141</td>\n",
" <td>-0.000371</td>\n",
" <td>-0.00252</td>\n",
" <td>-0.000403</td>\n",
" <td>0.002661</td>\n",
" <td>-0.002808</td>\n",
" <td>-0.002253</td>\n",
" <td>0.0026</td>\n",
" <td>0.0</td>\n",
" <td>-0.001006</td>\n",
" <td>-0.002253</td>\n",
" <td>-0.000686</td>\n",
" <td>0.00274</td>\n",
" <td>0.00336</td>\n",
" <td>0.002597</td>\n",
" <td>0.014333</td>\n",
" <td>-0.00211</td>\n",
" <td>0.002757</td>\n",
" <td>0.0</td>\n",
" <td>-0.007345</td>\n",
" <td>-0.00564</td>\n",
" <td>0.0</td>\n",
" <td>-0.000859</td>\n",
" <td>0.003829</td>\n",
" <td>0.0</td>\n",
" <td>0.003503</td>\n",
" <td>0.0</td>\n",
" <td>0.005969</td>\n",
" <td>0.005773</td>\n",
" <td>0.002954</td>\n",
" <td>0.003713</td>\n",
" <td>0.006135</td>\n",
" <td>0.003011</td>\n",
" <td>0.003651</td>\n",
" <td>0.003139</td>\n",
" <td>0.002736</td>\n",
" <td>0.004035</td>\n",
" <td>0.003808</td>\n",
" <td>0.002859</td>\n",
" <td>0.0</td>\n",
" <td>0.00347</td>\n",
" <td>0.003808</td>\n",
" <td>0.005398</td>\n",
" <td>0.002762</td>\n",
" <td>0.006056</td>\n",
" <td>0.002948</td>\n",
" <td>0.006213</td>\n",
" <td>0.003626</td>\n",
" <td>0.002704</td>\n",
" <td>0.0</td>\n",
" <td>0.009517</td>\n",
" <td>0.007708</td>\n",
" <td>0.0</td>\n",
" <td>0.00298</td>\n",
" <td>0.006148</td>\n",
" <td>0.0</td>\n",
" <td>0.00589</td>\n",
" <td>5.828724e-10</td>\n",
" <td>3.927595e-08</td>\n",
" <td></td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" mean_u203 mean_u214 mean_u213 mean_u111 mean_u103 mean_u210 \\\n",
"0 0.0 0.003525 -0.007761 0.002027 -0.002881 0.004141 \n",
"\n",
" mean_u206 mean_u102 mean_u205 mean_u113 mean_u105 mean_u106 \\\n",
"0 -0.000371 -0.00252 -0.000403 0.002661 -0.002808 -0.002253 \n",
"\n",
" mean_u112 mean_u200 mean_u207 mean_u107 mean_u209 mean_u110 \\\n",
"0 0.0026 0.0 -0.001006 -0.002253 -0.000686 0.00274 \n",
"\n",
" mean_u215 mean_u114 mean_u109 mean_u104 mean_u108 mean_u202 \\\n",
"0 0.00336 0.002597 0.014333 -0.00211 0.002757 0.0 \n",
"\n",
" mean_u208 mean_u115 mean_u3 mean_u204 mean_u212 mean_u201 mean_u211 \\\n",
"0 -0.007345 -0.00564 0.0 -0.000859 0.003829 0.0 0.003503 \n",
"\n",
" std_u203 std_u214 std_u213 std_u111 std_u103 std_u210 std_u206 \\\n",
"0 0.0 0.005969 0.005773 0.002954 0.003713 0.006135 0.003011 \n",
"\n",
" std_u102 std_u205 std_u113 std_u105 std_u106 std_u112 std_u200 \\\n",
"0 0.003651 0.003139 0.002736 0.004035 0.003808 0.002859 0.0 \n",
"\n",
" std_u207 std_u107 std_u209 std_u110 std_u215 std_u114 std_u109 \\\n",
"0 0.00347 0.003808 0.005398 0.002762 0.006056 0.002948 0.006213 \n",
"\n",
" std_u104 std_u108 std_u202 std_u208 std_u115 std_u3 std_u204 \\\n",
"0 0.003626 0.002704 0.0 0.009517 0.007708 0.0 0.00298 \n",
"\n",
" std_u212 std_u201 std_u211 pressure_mean pressure_std gas_active \n",
"0 0.006148 0.0 0.00589 5.828724e-10 3.927595e-08 "
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"pd.set_option('display.max_columns', 500)\n",
"(training_config - inference_config).to_pandas()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "901cb891-53ec-42e1-b558-6fb7598751a1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"training_config == inference_config"
]
},
{
"cell_type": "markdown",
"id": "d99852b3-ec27-44e7-bd63-056fa3804810",
"metadata": {},
"source": [
"Retrieve PES and XGM data into the expected format.\n"
]
},
{
"cell_type": "code",
"id": "afd8d85c-d6f0-4fff-9e90-79a99363aca8",
"metadata": {},
"outputs": [],
"source": [
"fields_inference = [\n",
" 'XTD10_SA3', # XGM\n",
" *list(pes_map.values()), # PES\n",
" 'bunchPatternTable_SA3',\n",
" #{'bunchPatternTable': {'source': 'SA3_BR_UTC/TSYS/TIMESERVER:outputBunchPattern',\n",
" # 'key': 'data.bunchPatternTable',\n",
" # 'dim': ['pulses'],\n",
" # },\n",
" # },\n",
]
},
{
"cell_type": "code",
"execution_count": 109,
"id": "83fe11bc-aa8b-4037-aa15-4a36e3104bf5",
"metadata": {},
"outputs": [],
"source": [
"from pes_to_spec.model import Model\n",
"model = Model.load(\"VS_p5576_grating.joblib\")"
]
},
{
"cell_type": "code",
"id": "6115d454-d695-441e-b70f-40ac4a336355",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"XTD10_SA3: only 92.4% of trains (5914 out of 6402) contain data.\n"
"_, data_inf = tb.load(proposal, runTest, fields_inference)\n",
"\n",
"# transform PES data into the format expected\n",
"pes_data_inf = {k: da.from_array(data_inf[item].to_numpy())\n",
" for k, item in pes_map.items() if item in data_inf}\n",
"xgm_inf = data_inf.XTD10_SA3.isel(sa3_pId=0).to_numpy()[:, np.newaxis]\n",
"\n",
"# assume it does not change:\n",
"bpt_inf = data_inf.bunchPatternTable_SA3.isel(trainId=0).to_numpy()"
]
},
{
"cell_type": "code",
"id": "61361cb1-4ae6-4651-ad98-05504386ef4f",
"metadata": {},
"outputs": [],
"source": [
"# assume the same bunch pattern structure throughout the run!\n",
"fel_pos = indices_at_sase(bpt_inf, sase=3)\n",
"fel_pos -= fel_pos[0]\n",
"freq_ratio = {ch: 220 for ch in channels}\n",
"sample_pos = {ch: fel_pos * 2 * freq for ch, freq in freq_ratio.items()}\n",
"pulse_spacing = sample_pos"
]
},
{
"cell_type": "code",
"id": "432794bf-969e-404f-a087-1961c1b93736",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'channel_1_A': array([0]),\n",
" 'channel_1_B': array([0]),\n",
" 'channel_1_C': array([0]),\n",
" 'channel_1_D': array([0]),\n",
" 'channel_3_A': array([0]),\n",
" 'channel_3_B': array([0]),\n",
" 'channel_3_C': array([0]),\n",
" 'channel_3_D': array([0]),\n",
" 'channel_4_A': array([0]),\n",
" 'channel_4_B': array([0]),\n",
" 'channel_4_C': array([0]),\n",
" 'channel_4_D': array([0])}"
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pulse_spacing"
]
},
{
"cell_type": "markdown",
"id": "4627fd62-348b-4db8-aace-35d4f354be71",
"metadata": {},
"source": [
"If there are multiple pulses in a train, the pulse spacing above tells us about how many samples there are between them. The first item in the list above is always zero, as the task of identifying the position of the first pulse is taken care through the Virtual Spectrometer itself.\n",
"\n",
"Now we can do the prediction itself. To get each pulse in a train, the `pulse_spacing` should be specified as the one above."
]
},
{
"cell_type": "code",
"id": "d9f267f7-3e0d-4101-97f0-019c837b5e5e",
"metadata": {},
"outputs": [],
"source": [
"vs_inf = model.predict(pes_data_inf, pulse_energy=xgm_inf, pulse_spacing=pulse_spacing)"
]
},
{
"cell_type": "code",
"id": "2be3b1ac-5e21-4503-b763-ba7723b808c2",
"metadata": {},
"outputs": [],
"source": [
"vs_inf[\"energy\"] = model.get_energy_values()"
]
},
{
"cell_type": "code",
"id": "bdd8a381-41d8-4a3e-9d16-1d7052aa527a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(5714, 1, 1800)"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vs_inf[\"expected\"].shape"
]
},
{
"cell_type": "code",
"id": "43c23e2b-cc36-47b4-985a-691b155ef355",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(1800,)"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vs_inf[\"energy\"].shape"
]
},
{
"cell_type": "markdown",
"id": "cdd39379-bb88-4717-bcf5-beb4440daf78",
"metadata": {},
"source": [
"Now we can plot it:"
]
},
{
"cell_type": "code",
"id": "c9ea5c57-cdf3-4268-856f-44b48cd3fb69",
"metadata": {},
"outputs": [],
"source": [
"def plot_new(data, i, pulse=0):\n",
" \"\"\"Plot prediction and expectation.\"\"\"\n",
" from matplotlib.gridspec import GridSpec\n",
" fig = plt.figure(figsize=(12, 8))\n",
" gs = GridSpec(1, 1)\n",
" ax = fig.add_subplot(gs[0, 0])\n",
" ax.plot(data[\"energy\"], data[\"expected\"][i,pulse], c='r', ls='--', lw=3, label=\"Prediction\")\n",
" ax.fill_between(data[\"energy\"],\n",
" data[\"expected\"][i,pulse] - data[\"residual\"][i,pulse],\n",
" data[\"expected\"][i,pulse] + data[\"residual\"][i,pulse],\n",
" facecolor='gold', alpha=0.5, label=\"68% unc.\")\n",
" ax.legend(frameon=False, borderaxespad=0, loc='upper left')\n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['right'].set_visible(False)\n",
" ax.set(\n",
" xlabel=\"Photon energy [eV]\",\n",
" ylabel=\"Intensity [a.u.]\",\n",
" title=\"\",\n",
" )\n",
" plt.show()"
]
},
{
"cell_type": "code",
"id": "99256b0f-780d-4a20-bc70-6e0b894c584c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtQAAAHgCAYAAACFLvrWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACTw0lEQVR4nO3dd5xjVf3/8ddJps/uTtm+S1mWvnRYEES6CAiCotgFBUX0p6J+7X4V/SKKir0hWMCKVEFFBOlKXcrCUpa2C9v79Jrk/P44N+Qmc5NJLzPv5+Mxj9zcnNycuTs788knn/s5xlqLiIiIiIjkJ1TpCYiIiIiI1DIF1CIiIiIiBVBALSIiIiJSAAXUIiIiIiIFUEAtIiIiIlIABdQiIiIiIgWoq/QECnHiiSfaW265pdLTEBEREZGJz6R7oGQZamPMb4wxG40xy3z7vmuMedYY84Qx5gZjTLvvsS8aY14wxiw3xpyQzWts3ry5BDMXEREREcleKUs+rgBOTNl3G7C3tXZf4DngiwDGmEXAO4G9vOf83BgTLuHcRERERESKomQBtbX2HmBryr5brbUR7+4DwHbe9mnAVdbaYWvtCuAF4JBSzU1EREREpFgqeVHi2cA/ve35wCrfY6u9fWMYY841xiwxxizZtGlTiac4vnA4zP7778/ee+/NGWecwcDAQN7Hev/738+1114LwAc/+EGefvrptGPvuusu7rvvvlfvX3rppfzud7/L+7VFREREJD8VCaiNMV8GIsAf47sChtmg51prL7PWLrbWLp45c2apppi15uZmHn/8cZYtW0ZDQwOXXnpp0uPRaDSv4/7qV79i0aJFaR9PDajPO+88zjzzzLxeS0RERETyV/aA2hhzFnAK8B5rbTxoXg1s7xu2HbC23HMr1BFHHMELL7zAXXfdxTHHHMO73/1u9tlnH6LRKJ/97Gc5+OCD2XffffnlL38JgLWWj33sYyxatIiTTz6ZjRs3vnqso48+miVLlgBwyy23cOCBB7Lffvtx3HHHsXLlSi699FJ+8IMfsP/++3Pvvffyta99jUsuuQSAxx9/nEMPPZR9992Xt7zlLWzbtu3VY37+85/nkEMOYbfdduPee+8t8xkSERERmXjKGlAbY04EPg+caq3110bcBLzTGNNojNkJ2BV4KOcX+NrXwJjsvs49d+zzzz03eczXvpb1S0ciEf75z3+yzz77APDQQw9x0UUX8fTTT/PrX/+atrY2Hn74YR5++GEuv/xyVqxYwQ033MDy5ct58sknufzyy5MyznGbNm3iQx/6ENdddx1Lly7lmmuuYcGCBZx33nl86lOf4vHHH+eII45Ies6ZZ57Jt7/9bZ544gn22Wcfvv71ryfN86GHHuKHP/xh0n4RERERyU/J+lAbY/4MHA3MMMasBi7AdfVoBG4zxgA8YK09z1r7lDHmauBpXCnI/7PW5lcrUWaDg4Psv//+gMtQn3POOdx3330ccsgh7LTTTgDceuutPPHEE6/WR3d3d/P8889zzz338K53vYtwOMy8efM49thjxxz/gQce4Mgjj3z1WJ2dnRnn093dTVdXF0cddRQAZ511Fmecccarj59++ukAHHTQQaxcubKg711EREREShhQW2vfFbD71xnGXwRcVKr5lEq8hjpVa2vrq9vWWn7yk59wwgnJ7bVvvvlmvDcWaVlrxx2Ti8bGRsBdTBmJRMYZLSIiIiLjmVhLj3/ta2Btdl+XXTb2+Zddljwmh5KPTE444QR+8YtfMDo6CsBzzz1Hf38/Rx55JFdddRXRaJR169Zx5513jnnuYYcdxt13382KFSsA2LrVdSKcOnUqvb29Y8a3tbXR0dHxan3073//+1ez1SIiIiJSfDW99Hit+OAHP8jKlSs58MADsdYyc+ZM/vrXv/KWt7yFO+64g3322YfddtstMPCdOXMml112GaeffjqxWIxZs2Zx22238aY3vYm3ve1t3HjjjfzkJz9Jes6VV17Jeeedx8DAAAsXLuS3v/1tub5VERERkUnHJBpt1J7FixfbeCcMEREREZESSluDO7FKPkREREREykwBtYiIiIhIARRQi4iIiIgUQAG1iIiIiEgBFFCLiIiIiBRAAbWIiIiISAEUUBeoq6uLt73tbeyxxx7sueee3H///QA8/vjjHHrooey///4sXryYhx56CID//ve/7Lvvvhx88MG88MILrx7jhBNOoJZbGIpUFatVQEVEpHwm1sIum75W3OPNHP94559/PieeeCLXXnstIyMjDAwMAPC5z32OCy64gJNOOombb76Zz33uc9x1111873vf47rrrmPlypX84he/4Hvf+x4XXnghX/rSl4q6xLjIpDayHMKzoW4G2CiYcKVnJCIiE5gy1AXo6enhnnvu4ZxzzgGgoaGB9vZ2AIwx9PT0ANDd3c28efMAqK+vZ3BwkIGBAerr63nxxRdZs2ZNxuXBFyxYwObNmwFYsmQJRx99NABf+9rXOPvsszn66KNZuHAhP/7xj199zu9+9zv23Xdf9ttvP973vvcV+1sXqW6RtTD8GER7YOT5Ss9GREQmuImVoS6zl156iZkzZ/KBD3yApUuXctBBB/GjH/2I1tZWfvjDH3LCCSfwmc98hlgsxn333QfAF7/4Rc4991yam5v5/e9/z2c+8xkuvPDCvOfw7LPPcuedd9Lb28vuu+/ORz7yEZ577jkuuugi/vvf/zJjxgy2bt1arG9ZpDZEN0N0G4yuhMZ9Kj0bERGZ4JShLkAkEuHRRx/lIx/5CI899hitra1cfPHFAPziF7/gBz/4AatWreIHP/jBq1ns/fffnwceeIA777yTl156iXnz5mGt5R3veAfvfe972bBhQ05zOPnkk2lsbGTGjBnMmjWLDRs2cMcdd/C2t72NGTNmANDZ2Vncb1yk2kW7IbIRRtdArLfSsxERkQlOAXUBtttuO7bbbjte85rXAPC2t72NRx99FIArr7yS008/HYAzzjjj1YsS46y1fOMb3+ArX/kKX//61/n617/Oe9/73qSyjbi6ujpisRgAQ0NDSY81Nja+uh0Oh4lEIlhrVY8tk5s/iI52V24eIiIyKSigLsCcOXPYfvvtWb58OQC33347ixYtAmDevHncfffdANxxxx3suuuuSc+98sorOfnkk+no6GBgYIBQKEQoFHr1oka/BQsW8MgjjwBw3XXXjTuv4447jquvvpotW7YAqORDJhcbA+v7fxTdWLm5iIjIpKAa6gL95Cc/4T3veQ8jIyMsXLiQ3/72twBcfvnlnH/++UQiEZqamrjssstefc7AwABXXnklt956KwCf/vSneetb30pDQwN//vOfx7zGBRdcwDnnnMM3v/nNV7Phmey11158+ctf5qijjiIcDnPAAQdwxRVXcNNNN7FkyRL+7//+r0jfvUgVivWBvwVldIu7r09tRESkREwt9z5evHixXbJkSaWnISLVZOAe6L8jeV/nJyHcXonZiIjIxJE2M6OSDxGZWEZXj90X3VL+eYiIyKShgFpEJpboprH7IuuKdOxtxTmOiIhMKAqoRWTisBZiPWP3FyugHnywOMcREZEJRQG1iEwcsR631HiqYgXUI89CVH2tRUQkmQJqEZk4Rl8J3h/bBnaksGPbmAvYo7ktviQiIhOfAmoRmTgG7wveby1EAmqrcxHr8YLqvsKOIyIiE44CahGZGGws8yIuoysKO37MWyxGAbWIiKRQQC0iE0NsW3D9dNzI84UdP776Yqy/sOOIiMiEo4BaRCaG8Uo6IqszB9zjiWeo7WD+xxARkQlJAbWITAxB/af9bBSim/M/fjyQrkRAXcMr2oqITAYKqEVkYohuHX9MZH3+x4949dmxofyPkQ9rYfix8r6miIjkRAG1iEwM2axiGFmT//EjXks+W+aAOtYFw0+W9zVFRCQnCqhFZGKIZRFQDy/NL8McG0yUi5S75CO6CUZXQWy4vK8rIiJZU0AtIrXPRoKXHE8VG3arHeYqsjpRxxwrc0Ad63Xf3+B/y/u6IiKSNQXUIlL7Yt3ZX7iXbjXFTPy113bUfZVLPIAfea58r1lqushSRCYYBdQiUvtyWWxl5LncA7rU7He8hV45xEtMYl3le81SGn4WBv9T6VmIiBSVAmoRqX25BLixPpfRzun4vcn3y1lHHa/5jg1NjEVlRl+GkRcqPQsRkaJSQC0itc/mmDHOtR91akBdiQw1QGRD+V63VCJrILql0rMQESkqBdQiUvtSA9ytA/D3Z+Bn9wWPzzUwjaaUfJSzdZ7/tbLpZFLtohvdpwTlrEMXESmxukpPQESkYP4sbs8Q7HUJRL066dlT4PR9IGQSY3JZ4MVGwabUaFcsoK7xko/YUKKEJbIB6rer7HxERIpEGWoRqX3xHs33vwwf+2simAb46A3wzdtTxudQQx3rHXsRYzlXS/S/VjlLTUrBf2FlZFXFpiEiUmwKqEWk9sWzuM9tgluWj338zheT76fWRGcSFMQqQ52fqO+NjOqoRWQCUUAtIrXPehnqjWna521KCURzCaiDOnqUNaD2rZCY68WX1cb/yUA2S8WLiNQIBdQiUvviAe5jaxP7vvr6xPbm/uSyDRvJvmwjKHi2I7nPMR92xNVwv3q/zKs0Fps/oM5mZUsRkRqhgFpEap8dhuEI3O0r7XjdTjClwW1HYrAtJRjNNttbyYA6tcSj3MueF1vE94an1stXRER8FFCLSO2LDcHyTTAac/d3aIf958H8tsSYV7pSnpNlcBqUyS5Xy7fUoLOcpSbFNLrGu12d2GcHwcYqMx8RkSJTQC0itc8Ow4u+i9wWzXa3C6cn9r2YchFc1hnq4YB9FcpQ26Hcl02vBiNPue/F/0bEWmWpRWTCUEAtIrXNWhfgrupK7Nux3d3u3Olup7fAYEpWOdtgLigbXbYa6tQyFRsc4FezWD+MPAeRTWMfq/WLLEVEPFrYRURqWzzAXO274C1e6vH/DodPvA7am8c+L+vsaCUD6qByk2GgqTyvXwyxHohshoFbAx6r8ZpwERGPAmoRqW122GVuH/ItFLLLDHc7vSX982JpWuyNOX5QvXSZaqgDy02GgLax+6tVvEXh6NqxjylDLSIThEo+RKS22WF4Yh08vcHdDxk4ePssnldIyUeZyi4CL4istZKPDFnoWm8DKCLiUYZaRGqbHYL95sHyz8GKrW5xl7YsSiKyzlAHlHfYEdehwpQ4JxGYoa6xgDpT0FzrS6mLiHgUUItIbYvXGXc0Q8f8sY9vGYDnN8OKLfDaBbBjh9tfSMmHte51TYaSkmJIW0NdQzJlqBVQi8gEoYBaRGrbeCsefvFm+OtTbvtHp/oC6myXH09TL22HgFIH1EHZ8RoLqDP1zlbJh4hMEKqhFpHaNt5iJws7E9svbU1sxwbdEuTjHj9NQJ3t0uWFCAqea60zRqZPApShFpEJQgG1iNS26AA8vAo29wcveuJf3MUfUAPEuhlXuoC6HNnVwAx1ja2WGFmd/jF1+RCRCUIlHyJS21avgZN/47YXdMBDn0h+fGdfQB3vBBIX7YbwdDKqtoC6ljLUNubOcTpaKVFEJghlqEWktr2wMrE9o3Xs43vNgYaw235xi+sCEhfbNv7x0y3iUo7AttYz1OPVe2ddxy4iUt0UUItIbXvRt6DLwoBsc1Md7D8vcf/BVxLbkc2Zj20tkKbOuhzlCoEBdS1lqMcJ/m2ktjLuIiJpKKAWkdr24prE9k4dwWNes0Ni+3Hfin3RDWPHJhkNrsuG0geC1gaXm9RSAJpNNl1ZahGZABRQi0hte2V9YnvHNAH13nMS289sTGyPrgIbTX/sdPXTUPoMdbpSk1rKUMeyaPGngFpEJgAF1CJS27p9F7Z1pukLveesxPazvoDajkJ0S/pjpwtqofQt39LVH9dUDbUy1CIyOSigFpHa5g+o40uOpy4JvvN0qPf2re6Gbb4sb8aAuhoz1MOue0YtyCabroBaRCYAtc0TkdrW4wts4wF1434wsjyRRa4Pu24f9WH46GEwrTHxnGiGTh+ZulSUPEOdLqAu07LnxZBNvXctZdxFRNIoWYbaGPMbY8xGY8wy375OY8xtxpjnvdsO32NfNMa8YIxZbow5oVTzEpEJptsXtE31Aur67aB+x+RxV70H/nE2nLwnhH2/+jIt7lLRgDrDa9dKHXU2WfxaW0pdRCRAKUs+rgBOTNn3BeB2a+2uwO3efYwxi4B3Ant5z/m5MSZcwrmJyERgLfT4MpzxDHV4JtTvlDw2XX11rCfD8TMFtSOlLb2oZP12sWSToS7HEu4iIiVWsoDaWnsPkLLOL6cBV3rbVwJv9u2/ylo7bK1dAbwAHFKquYnIBDE8CB3N0FwHjWHXcxogNA3qZmd3jEyr9Y2XPS1luUKmgLpmMtTZlHwoQy0ita/cNdSzrbXrAKy164wx8Uvv5wMP+Mat9vaJiKTXYODJ/3HbI772d6EpYJoh3AnR1Pf1KTIFfVkF1CWqZc5YbqKAWkSkmlRLlw8TsC9wNQVjzLnGmCXGmCWbNm0q8bREpKr5s7jx5cVDzWDqINQIzYclj7/nJTjvOjji5/Cje92+TCUH4/VRLmVgm7HcZAKVfNRKtl1EJINyB9QbjDFzAbzbeEPY1cD2vnHbAWsJYK29zFq72Fq7eObMmSWdrIhUuaCyiIbdE9tNi5NLP9Z0w/XLYPkmWLrOO0amDPU4wV5JSz4yZagzlKlUE/WhFpFJotwB9U3AWd72WcCNvv3vNMY0GmN2AnYFHirz3ESk1gT1ifZfjGiMu0Axbi/fiolPe8uO20j6ftP+gPDhVfDDe+Hsq+GhVWMfL7YJEVBneVFipn7fIiI1oGQ11MaYPwNHAzOMMauBC4CLgauNMecArwBnAFhrnzLGXA08DUSA/2dtpvWARUSAlS/Cw8/BtCaY3wbbtSUH0AAhX43zLjMS2y9vc3XXDWFXmhCuH3t8f8nCVY/D7x912wfMh0O2r1xAXQslHzaW3dLj4DqthKeXdj4iIiVUsoDaWvuuNA8dl2b8RcBFpZqPiExA/7oDPv5nt/2+A+F7b4Jwe/KYUGtiu6Uetm+DVd0QtS6o3nWGl0mdNvb4/oB5n7mJ7Se9cpFsA8Z8ZMxQ95XudYtlvIsNn9vk3uCEjGsDqIBaRGpYtVyUKCKSuy7fKodTG8HUJ2ekAUxr8v25vsB5kxeYpuvrHC9ZuOh2uOTuxP5VXd7jFWqbV8sB9W8ehqMvhdf9HB5b4/bVSl9tEZE0FFCLSO3q7kpstzVBuGPsmHBK5nm6L8De4gVy6Wp94x1A7l0BG31B7CavhrmkAXWGuuJYn1vUppqlC6gffCVRv/6sd116LZSwiIhkoIBaRGpXt2/Z8GlNUBfQvj7Ulnx/hi+DHQ+ox8tQb065CDB+v6Q9lCPpH7JRsFV+YWK6c7Ozr7TjhS3uVhlqEalx5V7YRUSkeLpSAurG/caOSQ2o/UuQb/GC0qASChtxX5FYcnYaYGAU+kagMUNZRqFshoAa3II1oSmle/1CpWbvH1oFyzfCBl+bvPtWemOr/M2BiMg4FFCLSO3q9gVnbU1QN3fsmFCTW+QlfgHhdF9AvTVe8hEQ0MUDwqfWw1BAcNs9CJ2lvChxnFZy0S1Qv0PpXr9QqRds/u0p+OWDyfueWOc6rTTVQE24iEgGKvkQkdqVFFC3u8A5SMhXR90ZVPIRENDF66fjPadTdQ1lvnCwUONlqKu9TCK15GNV99gx8U4rtXCRpYhIBspQi0jt6vYFYh1z0o8LTQM2ue1Dd4RfnO4y1Tt4FzEGLZQSr59+PHDRVugpcUCdqYYaSly/XQSp81vjC6hb6l3ZDMDKrbCnVksUkdqmgFpEalePL0vbMS/9OH/3jx3a3ZdfUJePeMnHK12JfY1hGPbWnOoaLHGGepySj1J2GCmG1IB6tS+gPmg71zkFXH16tMt1LTGmbNMTESkmBdQiUru6fZnlzu3Sjwt1Zj5OLCA4je/zZ1bPO8wFftOavAVhSpmhHmex2FoKqPtHEuU1dSHYa3YioN7c7948xHrHtjgUEakRCqhFpDbFYrDXPBdU9w5DW5YZ6iCBGepB1+FjXU9i3/8cBU2+X5ulKruwkfH7TNdSyYe/bGZBB8yemrgf7+kdWQXhvcozNxGRIlNALSK1KRSCm89NdJOoy7B0dThNhjoSc0tfhyIuS2rqE4/ZIVjf6y6cA5jZmhxMg9cPOuV5xeC/IHEkCmt7XCDqF0uzGE218Gfvl/oC6kN3cOcyLh5Qj7wEjQqoRaQ2KaAWkdpkY8lBW6YsdOpj7/0zPLLatc2756Ow+0zXNSPs61kdG3QXLt5wlltqPBILPnZsCMLFDqi9+unBUTjhcnh2E3zqCPjisb4xNRRQ+8tmFk6H1+8Kd50HM6dAZ7PbH0lz8aeISA1QQC0itckOJ8oiQo0Qakk/1jS4RVDi7dl6hhI1vZv6vIC6NzmgtoPQXA+HLxhnHoPA1MxjcuZlqG9+1gXTAD+4Fz57tKtBhhpom+cLqP0t87Zrc60LO1P+vWLq9CEitUt9qEWkNvkvygu1jz/eX/YxI6DkIDWgC8oAP7kePngNnPF7+Oq/xs6jWOIlH0tSemAvWZ08v/HqrCvJjsCwVwu+t6+l4Y5pPkmo9oy7iEgGylCLSG16Zhn87UHXcWPPfeHYccbXzYbRV9x2Ug2vl7VODaiDapR7huCmp932sBf0liRT7B37mY3Ju6942NUgg1fyMgSmuQSvXwR2BL7x7+TVEfeeA/sGrGYJrh49Npx+cR4RkSqmDLWI1Kb77ocv3QIf+yv8+p7xx9f52urNnJLYjmeoo9uSxwdlTKc1Jba7vcx0KUoV4hnq1SmrC16/zNVzx1VzmYQdgXW++R00H659H4S9PzuRGGzodVn/Qa9mXFlqEalRylCLSG3q3prYbmtLPy6uzld2EJih3po8PtYPZ14Fj66BqY3w49Ngjq9W+tWAuoeiiwfUD3wctg3CXpckHnthC2zf7nvtWcV//WJIDaj/9/XJddOvvwye3uC2bz8X9pnrBdTt5ZyliEhRKEMtIrWpy5dRbm8ff3x4Jpiw2/ZnqDd7JRsRX3mFjbngblOfW8nvxS1ggTZfhrrLy6aWIqCOl3zUhVzw/479Eg/5O2aU5LWLwFpg1HVRifPXrafe3xh/U1PlvbVFRNJQQC0itamrK7Hd1j7+eBNKtM+bEZChjm5L1E3H+lxQ2OfrVDGlAaY0ur7VAAOjMBpNdA4pJn8faoD5vhUEkwLqErx2MdgRd/66fSUc7Sm13rN8b2riAXW1L1YjIpKGSj5EpDZ1+wLL9nGWFo8Lz4DI5uRgbr2vLCG6DULNYL266j5fgDfVC6anNUKXV+7RPQTNZQio330gnLQHzG9zvbHjqjagHnIBdZevA0p7U/KYoMVdqn05dRGRNJShFpHa1O0rd+jINqCe6W7nTgUv0cyGPpdpBoh1ebdegNfrC6ineN0npvq6UPSNlCiojbjXfmqDy0jPaIX95rlbYxLD4vOsNnYI+kcTi+E010FjSv5GGWoRmUAUUItIberyBdRtM7J7Tt08d9tYB7O9CwxjNpGljnlZ79hgcMkHJAJrcBlsO+BqrovJjsLDq+CYS+GAH7qLI4NUc4Z6m69+ui2gtV/QpwTKUItIjVLJh4jUpm5fdrZ9ZnbPadgFTJ0rqbjyHe4iw3lt0OT9KowHqHYABiMu2AZoDEO9d0Fja0PieH1erbAdAOMLEAtlI4mLHgE60vSajmfUq01sCF7ydU2ZN23smLm+jinxbiDKUItIjVKGWkRqU7cvO9uZZUBt6hP9qA+YDwunJ4JpSATUsYHk+ml/Vtpf8tHvjSl66cVocv1xW5ML3Df1w+Nr3QWR4Lp82GiRX7sI7BAs93VN2TOgtZ8/yF7nfdpgR0s7LxGRElGGWkRqU4+vpKA9h17MdXNhdGXwY/GAemR5crmHPyt9ziFwyp4uyN7L621d7IA6NUPd3gQn/MoF0wC3fcjVVFsL0S1QV2W9qO0QbPadk+0C+oTP8QXU63u9TP/I2HEiIjVAAbWI1KYT9oJt3dAzDO3Ts39epuAzst6VK0Q3jO3wEfeG3cY+r9j9oO1ocg1ye3PyHLb5gu2hh6D1DWB8QX+l2SH4zNHwwde45dqnNY0d01LvPh0YiriLFwdGoUkBtYjUJgXUIlKbfnaGywyHWqG+Pvvn+VdMHIrA2m7XUWO/ee54PX/0LkhMU/IRJNad+fFc2VHY5AuoZ05JXlSm21cOMrgE6neBxj2KO4dCxIagIewuPJyVobb81VaETS6g7lDJh4jUJgXUIlKb4uUBJiD7mUl4llvk5bmNcPjP3L4FHfDQJ9z26Cp3u/98uPejLrBuCGc+ZrQrtzmMK5JcMjGzNfnCRH+GGiCyuroCajs4/hiApZ92q0G++jxlqEWkNimgFpHaYy2vLs8dStMBIx0ThtA0mOvL8q7tcR09Qr4ezy31sHuWFzuWIkPtD6hntKZkqFMC1ujm4r5+obJtf1eXcl28AmoRqVHq8iEiNWjUC6oBk2NADRBqd32l41nfkWhicZHx/PNZeP1lcOhP4Ou3uX3RYgfUqRclNicv3T0mQ722uK9fqNiga5u3vhcGff9W41LJh4jUJmWoRaT2PP4I/PJfbhnwA4fgnTk+P9zhOn1s15YITtd0w5ypGZ8GuO4fT6xz2/F2b8W+KJHRsRdF+gPq7pQMcLTHdfsI53BxZinZQTjlN4ks+xOfzu7cxtSHWkRqkwJqEak9Ty6FXz7gts8gj4C63d3OaE3sS836Doy6EpDGcPJy31NSFnYBV6IRG4JQjvXc6cRGXRAdtTAwkpxND5orQHRr9QTU0YHkspS2NOelaxBe3OJKbua3wUELyjI9EZFiU0AtIrVnm28VvraAHsfjCbW720xB6rfucEF7XQguPMH1n4bk9nW9voxqrLd4ATUReOxT3nG92u50XT7iotuK9NpFMNADo95y7A3h5MVz/K5eCv/7L7d91kFw4Hy3UI0Z5yJQEZEqoxpqEak93V2J7fb23J8f8soP/EFqV0pAHV8FMRJLLDsOyT2V/YFtLMsa7KxEEpvxCyXHy1DHeov4+gWIDUOX71y0NSVn+P3m+hZ32RBf9j3LCxpFRKqIAmoRqT1d/gx1e+7PD7W4W3+QmhpQ+1dK9Jd5+IPwHn9AXcSANmgJ7jZvro3h4DZ+RQ3oCxDrSn6jka7cA1x/7bh4vbUCahGpQSr5EJHa0+3rqtHemfvzjVc73Z4hoPYHhf6sdLqsdjEvTLSRsfu2a4OXvwTNaRaxKfby5/mKdkGXP6DO0IVlpq+GfZM3/9gwqOJDRGqMAmoRqT1dXYnt9o7cnx/PUCe1okvJjKa2rYub1gQGsLgsdiTm6qyLGVBv2AaPrnD12rOnws7TXelHumAawFZJQB3rTc7ct2fIUPsvCn01Q61OHyJSe1TyISK1p8uXoe6YkfvzTRhCja7kI2Rgegs0paRFu9IEhfGlsuPiwWMxV0t87GV431Xw5ivhK//K7jmxgfHHlIMdSH4zklryYcJQv8BtT2tMlK/0j7jOKlrcRURqkDLUIlJ7enz1yu15toozzfD6XWHtV5JXSIxLavuWUrbQ1pQoCekegs4WiG7Ibx6pbBR6fcG8v3474/OqJKCODSRnqFMD6obdoeVI2Hapu1hxRqtrmwewpR9mK0MtIrVHGWoRqT1d/oA6jww1gGmCcCg4mI7Z9BlqCG5hF+12KwQWykaSF3XxB9SvdMFDq+C255KXJgdXexxUe11udiDzRYl18yE8M9EaL7XsQyUfIlKDlKEWkdrT4wsmO2bld4xQhovl+oZdUA3QUp/cNg9cX+rRmAu0d52Z2B9ZBw0L85vPq0aTO4y0+vpef/bvcOeLbvtP73YZdr/YAISnUVGxQbcgTVMdDEVgSmPy43VzXTBdtx2MvpwcUG/qV8mHiNQkBdQiUnvOPR42vAw9I9A5c/zxQUyGi+WSstMBgfdrFwQ/b/CBwgNqO5o+Qz1eL2o7CFQ4oLbD8Lmj3ddoNPHGJK7OewPUsKsLqOf4Wuet6lKGWkRqkgJqEak9/3OSC8ZCzdCU5+qExuv08dwmV8O7qR9O2t1lVLPto5wq8krhK/3ZlAy1P8ObVGoSFFBXQQ9n/xxSM/umHkJeAB0PrHeZATt1woIOmDVFAbWI1CQF1CJSe6wXTJrGzOMyiZd8fOhaeGaj2779w7DPHPe1+n9dt4qRaPbHjA3B0BJofk3+87KjiVUaITlD3T7eaonVEFBnCIjD7YntkNc//GOHu69Xn6+SDxGpPbooUURqTzwLarLsgBEknqFOquH1rTbYEHYZ0+3aMszDjg24R1fmPycYm6Ge6nvTkGkhGqi+DHWqkO9cpqv1VoZaRGqQAmoRqT3xTGymOujxxBd38S9/vWmcxVGaD3O3Vy+F3b8Dcy+EL/8zeUxkbf5zcgeAXn+G2hdQd7YktrdWYUBtrcswP/iK+3pqAwz7Oo/4A2rTAKGAfz8F1CJSgxRQi0hteehBeN/v4ON/hd/8J//jvBpQp8lQpzL10LS/2w6HXMlFzCbXW4Nrnzf8dP7zGlND7cvCd/oy1FsD+k5XPKAecUH1+TfCm34Lx1zqLjSMS81Kh6YGHEMBtYjUHtVQi0hteek5uGW52x5ugU/neRwTFFB7GepXutzKfR3NLivcEIZwB4RngAkF96H2670eGnYDk8evWDvqLtLrHXbdPvyLyiRlqIMC6goHo/HXT5dhD6f0DA9NATbBfSvh/pfduXzDwfCWUk9URKS4FFCLSG3p2pzYnhaQ4cxWPEM9K6Dk40f3wu8fddsXvxHOPthlU00YQu3jB9Q24pYir8tn0ZkI/Pi04IfGC6grfVFi/ILC/jQZ9rodkscb783M3S/BD+512+1tCqhFpOao5ENEakv31sR2e4YLBscTmKH2Sj78QXJ8lcR4eUK4ffyAGiDWnd+8MnW5mF7tNdQjEInBwKi7b4AWL6A29RBOeQMU8s69/3xu6yn5NEVEik0ZahGpLdv8AXVH/scJNbmMc9BFif5lveNZ4bD3WqY1uQwjqB80FBBQj6Z/bGojzJnqAtDOFhe81vnyIhUv+RhJzk63NiSWdg+ql44H1EndSwZcpj3ogkURkSqlgFpEaos/Q91WQEANLksdlKH2B9TxgLt+gbsNtSRnVLuG3IV4xiQfOzZOx5B0MmWojYEnMhSNVzpDzUjKKo9e/bRpgHDn2OHxgHpaSsY/1qeAWkRqigJqEaktXV2J7Y7phR0r1ArTfQH1lgGIxpLb581sdYFs3dzEc5rq3NdQJFHi0JrSEzvfgHp0CH79ELTUu2Oeulf2z62GDLX/gsR4D+0pJ0PDzmPHG+/NSntKQG0D6sNFRKqYAmoRqS3+gLotn4v+fEKtroPHotnQGHaLvPQOJ1YhDBlXtxzqTCwiE6+9ntYEQ76a62IF1H098EWvt3WuAXWs0gH1cHDLv4adE0uO+71aQ52yYE2l3xiIiORIAbWI1Jbu3sR2x8zCjhUP6O46L7Fvne+iuM4W13O6zvc68VKEaY2w0QuoewMCQJuhp3Umg75AvLk+t+dWOhCNDY8t+TDh4GAaEnXVqRd5Vvr7EBHJkQJqEaktSQH17MKOFRTopZZ7AIR9pSXx1Rn9S4IHBdTRrvzmNOALxFsCAuqXtsDSdbChF/adC69d4HtwNLieu1zs0Nge1OmCafBaEYaSSz6UoRaRGqSAWkRqS48v4O2YVdixTFBA7Qto4xck+jtUGK884dK3usB1WmNyhjUu1pNfcDvgqx9uCvgV/fdn4Bu3u+0PH5ocUFvrgtFClmQvhB2GxjrYbYYr/ZjVGtzdI86EIDQNpkRdeU3Munr04T7QNYkiUkMUUItIbbngrbDhZeiJwYxCa6gDgr2gDLU/yxov+dgpoGuFn426bhWpvZfHM+gLqINKPrZvT2y/vC3gdUeoWDRqh+ANu7mvuFBr+vHgAupQl8v4x3t692yDAlqMi4iUmwJqEaktb90PInNdXXPrOMHaeOIBddegW878lS64YRls3+YC6xne8Y3vdUzzmMOkZfuBHAPqAV9A3xQQUO/sKz95cUvAa1awXCLotcc7XyEvcn7nfq5jytRGCEeLPzcRkRJSQC0itSUetJmWzOOyEW53t9sG4RM3uu25U2Hpp135RCTm9iWVfOSQ/Y3lcWHigG+hmKAM9Xa+1O2G3rGPZ+pjXWqxgHZ34wXUYe/7ufDExL6mcPHmJCJSBlp6XERqS3zxklAOmeJ0QtNcHe92bYkV/db3wnDE1T7Xe4FdUkAdci30ojFXorC6O7lMxC+fgHpwnIC6rckt6Q3QM5wI+uMqGlAHnIfx/p2CAm5dlCgiNUYBtYjUDhtN9FouRobahFw5R30Y5k3zXgMXJMeFGt2XX6gZfvkA7PptOPCH8OP/BB8/FpBBHk9ShjrgQ8RwaGybOb+Klnz0we3Pw1+Wwr+Wuzca42X0g1ZEVEAtIjVGAbWI1I47/gVH/hxOuwIuvq44x4xfcJjuYr+gCxdNU3LbvL40AWBQhjrWB3Y0/XyGfAFyuj7U7SkLofhVKkNtI+7NzqUPwMf/Cu+7Cp5c55ZqzyQo4K74EuoiIrmpSA21MeZTwAdxuaAngQ8ALcBfgAXASuDt1tqAS9hFZNJa8zI8u8ltz19TnGPGA+od2uH+l9325Q+6lRAPmAf1AQFhakDdky6gDshQD9wF9btA4x5jH7MRV8N9wm4wGIHd0yxc09EMK71fj9uqJKCO10/7M+ZtTRDqyPy8eEB9wzK480XXx/rMo+DtpZmmiEgplD2gNsbMBz4BLLLWDhpjrgbeCSwCbrfWXmyM+QLwBeDz5Z6fiFSxrRsT29PHaVuXLX9AHXf7C+5rzf8G1wCbRhdwxwUt7ALBAfXoGqA+TUA9Csft6r4yqcoMtTeP1IA6nGVA/egauOpxt/2anYs+PRGRUqpUyUcd0GyMqcNlptcCpwFXeo9fCby5MlMTkaq1ZXNiu6PAHtRx8YB6j5RFYhZ0uNrqoFrtUJNbBTCuN02JQmpAbWMQ3QSjK4PHZxsMd/gC6jEZ6grVH8cz1D2+c9HeMn7JR7xP9ZSGxL7egG4hIiJVrOwZamvtGmPMJcArwCBwq7X2VmPMbGvtOm/MOmNMgUugiciEs8XXd3lGmnKIXMUDuhN2d1nqV7rc/fNf5z2eJkM9w9ebOtsuH9EtrqwjusEFz6Yh+fFsg+H950H/iMtUb5+yAkql6o/tgGs16M+Yt2WxOku800rSUu4DlV1CXUQkR5Uo+ejAZaN3ArqAa4wx783h+ecC5wLssMMOpZiiiFSrbb7LKqbPLs4x44u2NITh8rfB//wd9p4D79zfezzgojnTCLN9qyeu7w0OAG0Eor1uf/9tiWy4jUFkE9TPTxmfJkNtwq7DSdx5h7mvIHYweH+pxQahfxSi1t1vroOmLBbeMSF34WdSQD0MjAIN6Z4lIlJVKnFR4uuBFdbaTQDGmOuB1wIbjDFzvez0XGBj0JOttZcBlwEsXrzYlmnOIlINtmxNbHcWKaD2L419wHy448PJj5uUlnnxfa0NLgjsHYaRqCu96AwobxhZ5jLRQ0uT98e6gYCA+q/L3IWXLfUua77HLGh+HQzcnd33E6tQhjrWB93+7HRz9ovghKaklNAMB2fwRUSqVCUC6leAQ40xLbiSj+OAJUA/cBZwsXd7YwXmJiLVbJuvP/SMIlWFjRf0BQV18SB7ztTEBYnre4MD6oG7CMy0RrvG7rPD8I9n4can3P3t22HR7tC0GAbvcVnw8VQqQ237x16QGPRmJIhpHZuhruQCNSIiOSr7RYnW2geBa4FHcS3zQriM88XA8caY54HjvfsiIglbexLb04sUUActLOIXmKH2AuQ5vh7V69Ms4hIbDu72YQN6VNsRGPL1qG6uh7rZEJ4KDbtlnuerx6hUyUdfckA9rWn8cxsXaknOUPeNKKAWkZpSkT7U1toLgAtSdg/jstUiIsH8AXVnkdrm5ZWh9vbN8mqiZ7TAUCS3140FBL52BAZSAur4wjJNr4Hh5W57cBR+9RCs7XZ1yz8+zXfcCnXISA2o25tyKPloHbtQjgJqEakhFQmoRURyFo1Cty9Y7Binv3G2Cgmov3My/Og0d0FjroIyyXbIBctxTXWJtn3h9sT+uhB8499uaSwDXHJKYg52sDIdMmLdruvICbu5wHrPWWACOqQECSz5yLCapIhIlVFALSK14x/nw5b10N8IdUX69WVCLkBO22EjQ8nH1CxrhIMEZqiHkzPdLfWJPs6hNhckW+v6Y8+aAhv6XFC9vjexMI21roWdyaLDRrHYmCtrOXQH9xWXdYY6oMuHMtQiUkMUUItIbQiH4ZA5EGuD+iK3zAw1QzSXgLq+8Ne0AaUZdjg5Q93sC6hN2AXV8YsZ57e5gBpc6Yd/pcfYQHL3klKL9QVfMBnUwztIaIoLqD97lLtta1KGWkRqigJqEakd8YVPsg3UsmVagO40j2Uo+ShEtGtsaUYsteSjPrlsIjw9EVDPm+aW6wZY46sth+BgvZSCLrqE7DPU4WmujOWzRyf2KUMtIjVEAbWI1AY76koLIPva3GxlCtDT9aEGiMbghS2u5KJnCN60KPvXtKMQ2wZh38WVdnhslw9/UBpqT2zPn5bYXpPyZiConKSUUleEjMs6Q92eKGeJU0AtIjVEAbWI1Ab/giXZZj6zlS5AN3Wu1GLMfi9DPRSBI37ututDcMqeuV0MOPAfmHpq4n7QRYn+oNRfxjHPt6z30ynrYJU7Qx1vAfitO9xFkvPa4C17u04f2UgtZwHcSokiIrWh7H2oRUTy8pOfwoJvwv4/gO9dV9xjhwIWZIH0C5OYBhc4tzbANG/MaAy25pgZHl6anN2N9cOg76LEMRlq33Lnu81IbF//JDy/2Xeccmeovdf702Pw/XvhM393Fxbm8sanbm7yfWWoRaSGKKAWkdqweZPr0by2B4ZixT12uo4YmWql48H27CwWd0nHRqHvX4n7o33woUPgvQfAO/aDkEkJqFOWSQ/7suE/vNd33P7c5lGoeG17fNVIcG80cgmo63eAi26H066AY38JDzxR1CmKiJSSSj5EpDZs3ZLYnjGzuMdOm6HOEBCaRmDIrZYYzw5v6IW9Zuf22qMvQbTXZZ/DI3DRSb55Nbm2fq++pi+g7myB9x0EVyxx9/+7MvFYuRd3sUMwGk0sShPysvfZrpQIEJ4DyzfB/S+7+xs3Zx4vIlJFlKEWkdqwdWtiu7PYAXWaDHWmgDAoQ70hxww1uDKPyBpX95zaei41c54a+H/rJNdibtFsOGR7F9TGj1lOsSHoSclOh8K5dUMJdyQvP97dk36siEiVUYZaRGrDtm2J7ek5ZoHHY9JlqLPo/jHbV9eca8lHXKwHIhvG7k8N9FMD6nAIln/OZYT9yl7yMeS6nMRNa0pff55OqAU6fed7c1dRpiYiUg4KqEWkNmzxBdSdc4p77HTt3TKWfHiPzSmghjpudAUM3h8wr5SAOijwTw2moTIlH4UG1KYBZvrO5cat6ceKiFQZBdQiUhu2+Xotz5xX3GOny0Rn7E8dEFBvSNOPeTzDz7jbFzbDD+513T12mwGfOCjlNUOuDMXfQjBI2QPqwbElH7kG1ACzfD25N3YVPC0RkXJRQC0itWGbr6Z2+qziHjtdJjpTyUe8vrrQGmq/NT1wjdfd4nUL4JNBi8o0AeME1HbEdRAJ6qFdCrEh6C4wQw0we3pie5NqqEWkdiigFpHqF41Cly/7295e3OOHGl3216a040vX/QMSQbi/hjrfDHVcplUSU183LhqDvz4FK7bC2m74vrdQTGwAwlPHPr8U7BD0FiGgnuZbrKa3zFl2EZECKKAWkerX3Z3ogDGtGepK8KvLNI+9mC/dxYqQ3OVj7lR3u11b+vHZGEwNqNNlqH1CBs6/EUa8Dh8Xnuha1tlBoAwBtY24r2KUfPgD6r5xsvAiIlVEAbWIVL8tvh7UnVPSjytEqHVsu7lMGep4fXVLPSz9dHHmkE1AndrKzxiY0eoWvAHYMuAC6lgfUOTSmCDWC3z3ngPnvsYF1ou3yy+gbmtPbPcqoBaR2qGAWkSq38KF8MwPYeNyYEFpXiM0BdiYvC+bDHUxDfgC6qa6NCUfAXXd/oB6cz/s0F6+XtTx1zl8gfuKC+Vxfqa2J7YVUItIDVFALSLVLxyGOS3uYsTmfUvzGkHLj2esoc5wwWK+hiKJ7eb64IVRgjqPzPDNfYsX4NoC67mzlS5wz+cNR/t0+NlbYEqDq8O2o2DqC5ufiEgZKKAWkdpgvRrdUInqglMv4DNmnIVdclhWO1v+ko+WNAF1ugx13GYvwC1bhjpN4J5PQF3fCmf43jApoBaRGqGAWkRqQyweUGfIGhci1J583zS7oDrteF9APTAKtz8PT66Dl7bCL06H+jxa1mV1UWJQQO07J5viGeoylUzE0rS3yyegTn0DYUeAEv17i4gUkQJqEal+XV2weSu0GlcKUArh9uT74wXu/gy1tfDJm6DXC/o/eAgcumPuc/AH1E05lHxMD8pQlymgjqxzt1/9l7sgclojfOJ17jZXgQG1iEj1C1V6AiIi4/rmRbDHN2H7i+B7V5bmNUKdyfeDaqqTHvcF1K0N8MY9EvevezK/OYzJUGdZ8jHTH1B7/ZvLlaGObna3/3rOLUrz64ddxj5o7uNJzWoroBaRGqEMtYhUv55tie0pBfZ6Tifc6VYWtF4/59B4AXUYTJ3rwQxw7C7wl6Vu+8an4OI3QjjHnMUpe8KOHS6w3ndumgx1QOa8zRfc93iBdNlKPrqTXxdgamOeAXUDfPyvcO8Kl+2/bjc4/t1FmaaISCkpoBaR6tfTldhu60w7rCAm5Oqoo17P62xqtU1TopvGaXvBF2+GrYPQNQTL1sN+83Kbw3G7ui9wwXrQ0uFBGerAgHp47Lhiiw270hJrkwPqaU35B9TbBhMtALu7ijJNEZFSU8mHiFQ/f0A9rUQBNSR3EBmv5AOSSxRCBo7eJXH/nhWFzSVdQBoU6M9rc90xPniIC+zBLT1eavHs9FAERr1l2xvDXg/tPAPqKb5z6v93FxGpYspQi0j16/V1kmibXrrXCU+DeBlzNu35Qk0Q9d0/cie43quf/sOj8LHXZu4Ukkm6gNTUuy/rq7de0OH6N/vZQZc5zvf1sxHv8JFU7uFly/MKqJtgqu95vWk6iIiIVBllqEWk+vX4AqupJepDDRCa5tvO4nVSe1EftRDCXgC7Yivc/3L+c8kUkAZ1+khlY6Wvo341oPaVl8S7e+QTUIeaUzLU3fnPTUSkjBRQi0j16/MtHjJtWvpxhfJfiJhVQJ3SlWJ+Gxy/W+L+fTkG1B+9Ad7xB3j/X2BthpUOs12l0Za47CPqBbxdg4l905q8rHgeC7KYOpjq+956eguanohIuaQt+TDG3JTF87daa99fvOmIiATo8a36V8oMtZmS2A5n0U0kaLXE43aBW5a77Ve6cnv9B1+GVV6Q+s0MC8Nku7hNbADCJSyRiWeoN/n+fWa2ujca+ZaaTPP9G/SWafl0EZECZaqh3hP4YIbHDfCz4k5HRCRAnz8DWsoMtRfMhZrHb5sHwasBzvXmVx+C0ejYxzPx96FunZJ+XFCG+nt3w8td0D0E33kjzJ6aflnwYolflLjJ9zozWwtbln2a7w1TjwJqEakNmQLqL1tr7870ZGPM14s8HxGRZJEIDHg1usZAaxaBbr7qZrvXCGfZSSQUEDgesRM89RmY3uI6f+RiMJLYbs4QUAdlqG96Gp7Z6LY/c5QXUPePHVdM0S53m5ShnlJYQO3/BEIZahGpEWkDamvt1eM9OZsxIiIF6etzgWnMuvraUnatCLVAeKbrR52NoAx1c737ypW1yRnqlgylLSbLxV1KmaG2NpGhPmE36GyBjX1w+AJlqEVk0smrbZ4x5lxr7WXFnoyIyBjt7bD+/2BgEDi09K/XsGv2YwsJHFONRN2bBnDlIg0Z6qSDylECF3cpYUAa60msKrnPXPf16vwC3mhka4qvpGegTKs9iogUKN8+1CVMEYmI+NgRIAIt9TBlTulfr+mQ7OqnIb/WcOn4s9PN9cHZ77ig+U31BdTd8Qx1CbtkRLelf6yQNxqLdoG/nw2tDTBjp/yPIyJSRnkF1NbaXxZ7IiIigfx1wNl2tyhENt094tIFvVsHYHU3rOtxy4/PyaIzyZC/fnqcgDpoFcc2f//mMgTUsRIF1G0dcMj2bruuhPXyIiJFNG5AbYz5atB+a+3/FX86IiIp/AF1NsuBl1O6oPczf4e/P+O2Lz0dTt9n/GMNFJihTir58C7ijJZwpcHo1vSPFRJQ+79vO5L/cUREyiibDLX/MvEm4BTgmdJMR0QkxfpX4Ok1MLURdh6C2ZWekE+6ko+5voz0uiyzxKUo+bD9rs7ZZOhpna/oJnc7FIEjfw6zpriFbX751uDuJ9nyB+N2OP04EZEqMm5Aba39nv++MeYSIJtFX0RECnfzLXDer9z2mV1w5R8qOp0k6YLeOb4L69ZnmSUeE1BnqM82LWBCbnnxuMCLEr1OHNm2AcxFdIu73dQHK7e5r7ld3vyKkKEejcJgD3Ta0nZ2EREpgnxqqFuAhcWeiIhIoG5facHU9opNI1C6gHq2r4f0hiw7bSzogF+c7gLr9mYwGVrvGeMWofGXdEzzzaXb1x0j1lv8gNraxEWJqT2oofCAes/vwhZv2fStn4aOGfkfT0SkDLKpoX4S8Ho5EQZmAqqfFpHy6PIF1J0lyLQWIr7EtrXJ+/0XIWYbUM9ohbf6aq3NOL+ew9OTA2p/yUevr1SiFIu7xLrBehdRbkxZJREKD6jrQon7fV0KqEWk6mWToT7Ftx0BNlhrI+kGi4gU1VZfQD19euXmEcQYV5qRWus72x9Q59tpY5zFYUIdwIrE/V2mw2ePcrXmC3xvPGIDeb5+BiPPJbaTlh33Ld2eL9PoWubF9WboJiIiUiWyqaF+uRwTEREJtLUrsV1tGWrwsrGpAXUeJR9jjjvOr+fUFoLbt8Nnjx47zpYgoI5fkAgpJR9FylC3+APqrvyPJSJSJqHxh4xljPl7sSciIhJoq6+soWoD6hRtTdDoddboH4G+PLpVZKqhTve6QaJdub92LsfcFFTyUUCGOtScnKHu60o7VESkWuQVUAMfKuosRETS2eormaiVgNqYlLKPLLLUf3gUDvspHPtLuPxBxv0AMduyitEV44/JVcz3Jif1okQTKmwFSdOSUvJRwl7aIiJFkldAba1dV+yJiIiMYaOwxReMzppVubmkk271xqA6amvhPyvg8bVjx2/sgxe3wLL1sLm/iBnqbRAbzG5sttIG1K2u+0ghbe6MgSm+c9rfnf+xRETKJJsuH7sC3wIW4RZ2AcBaq9Z5IlJadsgFl3EzZ1ZuLukELbICrg3exj5XTx32chffvAN+9B+3/f03wXsPTIxP6kPd4DK9mQSVVXzkeljb4/pQX38WdHhjIuuhYafsvp/x2EhygJ56UWIoi2XWx9PqO6d9ylCLSPXLpsvHb4ELgB8AxwAfANRlX0RKr3dzYknuxnqYWoRgrdjMlOD9P3tL8v3+kUQwDXDDsgwBdYZVEuOCMuMPvQKrvIxu91AioB5+AurmFraCYVwspWvJVt9FjzNaITSNgvkz1AqoRaQGZBNQN1trbzfGGK/jx9eMMffigmwRkdLp2Qx7znJZ6pYCSwlKJV2GOpW/zGNmK/zlvcmP948ktluyCHxNQEA9tQnwAupe3+IuQ49B4yJo2DW7uWYSXyEx7vfvcsF7PIDP9nxkMsWfoc637aCISPlkE1APGWNCwPPGmI8Ba4AqLGQUkQln9jS4+yNuu/moys4lnWwCSGvhwVcS90/cPXnxEoA+X0A9NU1ddtLrBozxr5bYk9JZJDZEUfhb5gEcvH3y/aBAP1dTfFl/BdQiUgOyCag/iVtu/BPAhbiyj7NKOCcREcdfqxvKogyiEsYLqJ/aAMdcmrwvNQiF5NZ6U7MI0k2dOycx3/Om+TLbPSkBtC1SQB3ZkPnxdBdp5uLDb4G3z3HdPjpeU/jxRERKLJuFXR72Nvtw9dMiIuXhDwKrNaA2GYJfa+GTN47df8zOY/f5M9RTsgxKQ1PTB9TdpQqo12d+vJAe1HHtndDg1cuHRjOPFRGpAmkvIzfGfG28J2czRkQkb0lBYAG9jUspU0b2mY2wNKXL6On7wKwprpXeE77H/BnqaWkudBzz2m3J96f75uLvjgLFCahH1yYH1NYGzKkIAbW/JWDqsu4iIlUoU4b6g8aYTJdXG+CdwNeKOiMRkbh7HoKXnnDdIw7rhYBKiYozza7FnY2NfWzRbLj4jXDBv2A4Cm/dBy48AXb8JgxFoKkOXv6Su9iy1xc4Tsnywr5Qe/J9f0C9NWXJ8WLUUI++mHz/X8/Bude6zPhJu8N3Tyls2fE4/6cRxcqsi4iUUKaA+nJgvB5VlxdxLiIiya74O/zlbrf9q/3gnNdWdj5BjHFBte0Pfvzsg92XX8jrVjIUcaUeUxuTu3xMzTZDnfIrujNDQG1HKNjoy8n3u4fc9zDUB/1eaUYxAupI2GXw+0cgbGFx4YcUESmltAG1tfbr5ZyIiMgYm7YltmfNqdw8xhNqgViagDrI9BYY8NrbbRlwAfWf3+MuJOwdhs727I4TTgmo/RnqLSkBNUUIqCMpKzx2+y4abfOyysUIqJ94CQ7/vtvedz4s1Z8jEalu2XT5EBGpjE1die1Zcys2jXHl2iqusyWxAMuWfreq4v7zEo/XZxmUpi6ikimgLjRDHeuHWMox/Rc+tnlzLsbiMVPaE9v9qqEWkeqngFpEqtfm7sT27PmVm8d4cl3MpDNTJhnXEi+r1025KHHXmfDDU93x56cE27bAbhnRbWP3JQXUXi25KcLFo1M7E9v9w2CjYMKFH1dEpETG/a1tjOm01m4tx2RERF5lLWzyLeoxq5oD6hyXRJ/tG7+me+zjpj6744Q7XA13vNvG9BZ49wHBYwvOUAfMc6uv5KOjGUyRWhtO7UhsD4y4CxMztScUEamwtG3zfB40xlxjjHmjMdW47q+ITEhdXRDxOme0NkBLjkFrOeUaUC/0ZWBf3OICYn8Lumwz1KZ+bJY6nYID6oCmT/7WfDNaixdQT/FnqEcgGpDFFxGpItkE1LsBlwHvA14wxnzTGLNbaaclIpPeRl+/4xlZdr2olNRa5vHsNjOxff/L8PBqmHch7PptOPMqIMsMNUBdlpn7ggPqvrH7xgTUReoV3jgFGrwSj6iFoYDsuIhIFRk3oLbObdbadwEfxC07/pAx5m5jzGEln6GITE5bfIueTK/i7DRAOMsscdzrFkC99+v3yfWwcqsLHLuHYHA0+5IPgKmnQThNQO/PehdaQx0UUG/y7StmhtoY96lEXK+qDkWkuo0bUBtjphtjzjfGLAE+A3wcmAH8D/CnEs9PRCarzb4MdUeVB9TZll3ETWuC/XxdPW57PrHd2ZJ9yQe4rHD9wsT9T90EB/wAdrwI/rvSNzCS2xxTpbYF7B2GDV5AXR+C2VOKl6EGaPUF571bindcEZESyKbk435gGvBma+3J1trrrbURa+0S4NJ8XtQY026MudYY86wx5hljzGHGmE5jzG3GmOe9247xjyQiE9aWDYntjhxLKsotNM1lVXNx8PZupcRDd3D9p+M6mnPLUAPU+Xp0bxuENT0wGEnuIGKt65aRr9SA+rlNie1dZkB9uHgZaoAW37H6AjqMiIhUkWzSIP9rrb3av8MYc4a19hpr7bfzfN0fAbdYa99mjGkAWoAvAbdbay82xnwB+ALw+TyPLyK1buZUOH5XFyDusVOlZ5OZCbkuFDagLCKdTx8JXz7O1QpffAfc6S3r3dlCzh1NwzMS2xl7UY/m334utcvHQdvBi1+AdT0w4gXqxQyop/j6WfcqoBaR6pbNb+0vAFen7PsicE0+L2iMmQYcCbwfwFo7AowYY04DjvaGXQnchQJqkcnr9QfAa97ttluOrOxcshGeFlxnnE6bL2D0B76d+WSo5yfa5yUF1KmrN+ZZ9hEbGLuoC7gVHqf6LrAsZkDd2uwy+C31MJLDeRURqYC0AbUx5iTgjcB8Y8yPfQ9No7BivIXAJuC3xpj9gEeA84HZ1tp1ANbadcaYWQW8hojUOn+JQa4Lp1RCrq3z/JasTmzPa8s9oA41Q3g6RDbDdN+52pqaoc7zV3dkw/hjoDjLjsfd+EWIvOS2GxdmHisiUmGZaqjXAkuAIVzQG/+6CTihgNesAw4EfmGtPQDox2XBs2KMOdcYs8QYs2TTpk3jP0FEalPNBdQ5XpgYt6EXnvIFrDt1ktcitiGvd7N/FUb/wiuQf6ePyCtZzqGIGeqwLzi3Q+nHiYhUgbS/ta21S4Glxpg/WptvWiPQamC1tfZB7/61uIB6gzFmrpedngtsTDOvy3B9sVm8eLENGiMiE4C/xMC0pB9XLULtuT9nJApv/Z3rkBHvmLFTZ+4ZaoCwF1D7Sz42F6nkI7Ju7L6nNriSjzlTEz2ji5mh9ncMscPFO66ISAlkKvm42lr7duAxY4w/cDW49tT75vOC1tr1xphVxpjdrbXLgeOAp72vs4CLvdsb8zm+iEwQP7ke+tZBezO8/+0wu9ITGke4c/wxqepDLoscD3zfuo+rG86lbV5cvOTEH1CPKfnIN0MdUPLxvj/Dau9CxYc+AQs6ShhQK0MtItUt02/t873bU0rwuh8H/uh1+HgJ+ACu/ORqY8w5wCvAGSV4XRGpFb++DVZ4ZV2nXlj9AXVdHhM0Br57MvzgXthzFnzvTd7+PDLUIW81SX8N9ZguH3lkqGPDEOtK3heNwfrexP3Z3mub5tyPn86GXnh2lVt6fPt+0DJiIlLFMpV8xD/j2wwMWmtj3pLjewD/LORFrbWPA4sDHjqukOOKyATS5QsGp8+t3DyyFe5wFwfGBscf63fynu4rST4Zai+Q7kzJUFub6JGdT+lEdFPyiovgMuqRmNvuaIZm7w1AqIhLxP/pTvjqb9z2x16ngFpEqlo2C7vcAzQZY+YDt+OyyVeUclIiMslZC92+gLpjRvqx1aRufnGOk1fJhxdQt9RDs/f8kajL8MbZkbHPG09089h9a3sS23N9i+4U0ukkVasv0943VNiiNCIiJZbNb21jrR3wSjF+Yq39jjHmsVJPTEQmsd5eiHlZ0dYGqM+jBKISGveDkRcKP04+JR/GF4BeeyZMaXTZ45YCL+6LBiz7vc5X7jHPC6hNfXG7fEz1Bef9I27utXBxqohMSlkF1MaYw4D3AOfk8DwRkfxs862MN62Ggqj6HYp0oAIy1OCWNQ+ST4Y66ILEdf4MtRf4hopYPw3QmhpQD+EW1RURqT7ZlHycj1sZ8QZr7VPGmIXAnaWdlohMalt9bdo6iliXW2rhNqhfUNgxTNgtZZ7P80LjdNnIt4Y6lb/k49UMdZGD3am+UpKBUbXOE5GqNm4axFp7D66OOn7/JeATpZyUiExy23xZ0bYi1uWWQ+NeMLoy/+fnUz/96nNbcWtxpZFrhtpGx3b4gOCAutgZ6im+hXJ6h123ERGRKjXub26vs8dngAX+8dbaY0s3LRGZ1LbWcEBdv12hB8j/qaFmiF+7NxqFriFoDMM0L3Oda5Y31jW2wweklHzEM9RFDqjbfX29e4fUi1pEqlo2qZBrgEuBX5H4VS0iUjrbfJ0lOjoqN498hGe7C/TyXUSloAy1F9RefAd8/163/eVj4fwj3HauQWl0a/D+wAx1kUs+OnwBdc+wAmoRqWrZ/OaOWGt/UfKZiIjEbfPV7ba3V2waeTEhaFgIw8vzfH6BGWpI7uyx1dcXO9cMdVCHD3CrV7YNQveQr4a6NXhsvvytEnuGwObY31tEpIyyCaj/Zoz5KHAD8OpvY2ttmtSFiEiB9toezj7YBWyHHFjp2eSu8YDKBNTxDHWHr/yiq5CAelvw/ls/5G77RmCKF7wXO0Pd2g5hA1HrLkoc6oUiV5WIiBRLNgH1Wd7tZ337LLCw+NMREQGO2g0OeaPbbn9HZeeSj/o0beuye3L+T40H1O2+yHObL6CO5VrykSagjpviy4SHipyhDjXCLjNcP/JpTTDQDTVW/SMik0c2XT52KsdEREReFetPbNfiYh6hVpexjQ2MPzZVITXU8bZ5M33B7ca+xHY+FyVmyxS5vaFpgHs/mrjfmEcrQRGRMhn3N5QxpsUY87/GmMu8+7saY04p/dREZNKK+VbiK3YpQbmEpo0/JkgxSj5m+zqjbPCdy1wCahtLf1FikHCe3286xiSfC9uffqyISIVl85b/t8AI8Frv/mrgGyWbkYhIzJdVLXY7tnLJN6AuqOTDy1D7A+qNfYnWdzaSffeR6GY3PtUDr8D1T8IDL8NWXwY+7+83A+MrKfH/TIiIVJlsAuqdrbXfAUYBrLWDgCnprERkcvvS1fDJG+GCf8OmzeOPr0ahPPtnF6Pko6Uepja67dFYcqePbOuo05V7XLEEzrseTr0C/va097othc07naSAWhlqEale2fwGHDHGNOMuRMQYszO+bh8iIkUVG4KblsE6r1ThCzXafzjfi/SKUfIBMHuKW2EQXNnHdK90xg4BWQT76QLYx9YkthfNdrehEi0P//RGWPas6/Zy8PZwTCy/ZdlFREosm99MXwNuAbY3xvwRuB34fCknJSKTWKzPBVBxtdaHOi7f2u+CAurGxPYcfx21/8LEbDPUASUWkRis9OqqDbDPXLddqoD6qofhI9fDF26Gu19Mrq0XEaki2XT5uNUY8whwKO5X6PnW2hr9DFZEqt7wNtd3GCBkYGqNLT0el/dCJ0WooQaY5Z23qY0w6KubzjqgDshQb+rzPqsEprdCk/cnpFQBtX/Z+Z4hF1CH20rzWiIiBRg3oDbG3G6tPQ74R8A+EZHi2rY+sd3W6ro91KK8a6gLCagb3PmyFr7+Bvj2G6GtKXlMLMsVB4Oywet9+/wZ8FK1Nmz3XejYM6wMtYhUrbQBtTGmCWgBZhhjOkhciDgNmFeGuYnIZLR1XWK7vUSZz3LIN5NaUEBtXNmHHXI11EFslr2xg4JXf+mI//ihEnViafMF1N1D2c9dRKTMMmWoPwx8Ehc8P0IioO4BflbaaYnIpLVtQ2K7lgPq0LREtjgXhQTU4NVRZyjryDpD3TN2nz9D7Q+oTdPYscXQ5ntT0jOU30I5IiJlkDagttb+CPiRMebj1tqflHFOIjKZbdmY2G4vQW/jcjFht3qgzbFMoeCAugnoTv94NlleGwkOqDekK/koUUDd7guouxRQi0j1yuaixJ8YY14LLPCPt9b+roTzEpHJqst3zXMtB9TgLtbLue630IDa690cjcHL22DzAPQNw7G7uP3ZzCe61a2UmMofUM/yBdSlKvno7Exsdw+q5ENEqlY2FyX+HtgZeByIerstoIBaRIqva1tiu73GOzqEp0Fk3fjj/IpS8gEMRuDQn7rtxjC88mVXghLNkL2OS7fk+Erfv812vn+bUmWoO6cntrcNarVEEala2SzsshhYZG2uhYAiInnY5gvaOjoqN49iyKfTR8EBtZehbq2H5joXWA9HYcsAzGiFWBYBdWxb8P4jF0JLA7y4BXaZ4XvNUgXUvtfoGoRoQBmKiEgVyCagXgbMAXJMs4iI5MiOwDELoOkE2NwPR7220jMqTEUCai9DbQwsmgOPrHb3H3wFTt7T1SHbkeRlvVNFu4L3f/KINK9ZooC6ZVriTcFoDHq2QOf4TxMRKbdsAuoZwNPGmIfwLTlurT21ZLMSkckp2uNW34uvwNf+hsrOp1D5LHhSrIAa4DXbJwLqJ9e7gBpcwFw3K/0xomky1OmEShRQm0aXFY/EoKMFRvvBjhZ+jkREiiybgPprpZ6EiAgwtrOEPzisRaF8LqosYkC9aHZi+2lfO8JYF5AhoE5X8hH4euHM2e5CmEb4/buS98V6IDw9eLyISIVk0+Xj7nJMRERkbEBdosxnuVQiQ+3PFu/pC6if8bUjTHfR4auPZ1FnHVfKf6OgN1TRbgXUIlJ1Mq2U2Ivr5jHmIcBaa2u8n5WIVJ2JFlCbSpR8+FrY7TYDwgai1rXQe3EL7Dw9c0AdG3Q11n7RGBx3Gew1Gw7ZHt57IIRD7rFQa2HzzSQooM7mokoRkTILpXvAWjvVWjst4GuqgmkRKYloDxx9Kbz5CvjgNRANV3pGhQm1uosDs2UMmGwq8TIdw/cmpLEODt8pcf/6J91t0KItcUGPLd/kSkaueQIuuRtCvu/JtBQ230wCM9Q51neLiJRBgb+5RUSKaNv6RK1vawPU1/jFZyYEobb0XTPGKML3m7rIynsOgHtectsPrnK3sf70zw+a66NrEtsHbZf8JqGkGeoGeHgV3LvCtc173U7wpn1K93oiInlSQC0i1WPjK4ntGXmUS1SjurnJQWq43ZVUBC2jXYzuFSYloN7ZV2+8xQukMwXUQQvRPLo6sX3QdsmP5VMnni0ThgdWwcV3eq9l4GSVfIhI9VFALSLVwcZgw9rE/Rk1vkpiXP2OMPxM4n7LkRBZD4MPjR1bjG4ZqQH17Clwwm7Q3gwLvIVybKYM9Yax+1b4yiz2mp38WKkvEGz39fLuHspcriIiUiEKqEWkOsS6YVNv4v7MiRJQ75LYNgYa9nRlIKUKqEMpNc2zpwa0nhuG2FBw/+jIxrH71viywvNT/l1KHVB3+ALqriGI9YK1udWmi4iUWNqLEkVEyirW41ZHjJtZ48uOx9XNgLAXhIbnuBrn+h1cfXWqopR8hLNbaCWo04eNju1BbS2s82WF56dck55Xr+0ctPuO3z3o5pgpwy4iUgEKqEWkOkS7kwPqWROo13DLcS773LSfu2/qITxj7LhiLZCSTeeN6Jax+2JdrvTGb/MADEfd9rRGmJLSeaOUNdSQElAPuduoyj5EpLqo5ENEqsOYDHVAwFmrmvaFutkQ7kzsC3eOLa8oVkAdaoboOGOiG4CUjhlBQfbaDOUepm5sV5Fi62hPbMcD6lgXMK+0rysikgMF1CJSHWI9sMXX+WLW7PRja1Fd6sV8nWPHFC1DnRLk/vZheGEz9I7Ap46AnQKCeYDI5rH71viywfNSyz3K0Iml3fdJRdegu42shcZFpX9tEZEsKaAWkeqQmqGeNadycymH0NSx+4qWoU4p+bjxKbjvZbf9jv1cQB0NCqgDWuY9tymxvSClrr0sAXV7Yrt3GGIWIgGdSEREKkgBtYhUh+iWyRVQBy1LHrQyYF7HTslQ++uee4fdbbTL9aOOL8xiozDy9Nhjve8g2HeuW3DngPnJj5UjoK5vhamNbt4W6BmChr7Sv66ISA4UUItI5dmIC6h/drpr0ba+FxbsNP7zalnQCoPlDKgBRldA495uO7rZBdWpprfAsbu4r1TlCKhNE3Q0J+a9dRCmq8uHiFQXBdQiUnnRTa67xD5z3BdA+8zKzqnUShlQp5Z8TPWVkvgD6uHliYA6qKZ6PEFZ9mIzTfCmRdA/AnOmwpQGl1lXL2oRqSIKqEWk8iLrx+4rVj1xtQp3uIDQ2sS+UgXU/gx1ny+gHnnGLfISagyuqR73dQLeFBSbaYILjk/eF+9FXY6AXkQkC+pDLSKVF5QdLVZwWa1Mw9hFUYpW8pGaoU4TUNsIRF5x25G1jLF1AAZG079OOUo+0i1SE90WvF9EpAIUUItI5UU3wWg0OVsbmuABNUBdyoWXJSv5SFNDDTC8DIaehNFXxh7n+/fATt+Ew34KNz0V8DplKvkIErTSo4hIhSigFpHKi3XBbx6G7S+CxT+CX9wPFGEZ7mpXl9I1I13wmKsxFyX6ymf6RpIfG1oKvdeBDchEP73BddZ4cQvUh8c+XsmAevTl5DdgIiIVpBpqEam8aA+s64GRKLzSBSNmclxwlrq4S7FWHcxUQ52aoU7HWhdQxy0KWGinXAH1ym3w0//Chl6YPRUuOQWGHoXmg6FubunnICIyDgXUIlJZsQGwI7De11t47gRadjyTUEpAnZpZzpepd8uC24i7n09AvaHPtagDl+HeoT358VCje51SCzXB0Cj87hF3f2ffyokjLyqgFpGqoIBaRCorvjrfht7EvnmzKjOXcgtPT3T6MKa4F2KaZrDeOV3QAecd6mqpF07P/Ly41Ox06icG5eqwYRpgbnvi/nrfz8nwU9DyuvLMQ0QkAwXUIlJZ8ZZ5/kBp7gRfJTEu1AihNrdqoWkqbplLqAVi3jndqRP+74Tcnv/C5sT27gE9wcvRMi+uvQOa6mAo4vpR9w27rHt0PUR7IRywjLuISBnpokQRqayoF7j5A+p5k+hj/Pqd3W2oyEFhofXNL/va0u3YUfzj5yLc4mqn4+I/K9bC8NLyzUNEJA0F1CJSWdEtrq633+s+0VQHnZOk5AOgYaG7DbUV97iFBuivdCW2FwQF1GXMUJtmt0pinP/N18iz5ZuHiEgaCqhFpLKiG5MDpDlTy5v9rLT6Be7Cu3B7cY9b6Dn0B9Q7BAXUZSyzCLWkD6gja12XGBGRClINtYhUTrQHYkPJ5QXzppU3+1lpoVao3xEa9ij+cf0+fRNs7Hf1x394V3Lnj1TWJv+bpHb4gPIG1KYV5vjeIPgDahuDoQeg9Q3lm4+ISAoF1CJSOTEvaPNfALfz9MkVUAOE57hMdTGlLojy7xcSgWjPcOaAumcYGsJu2fEpDdAR0M6vrBnqKck11P6OMADDTyugFpGKUkAtIpUT7XK3q7oS+3ae7jKSk0nLUWCKXIGXGlD7V0scrxd1WxM893noGXL9qIO6j5Q1oG5NKfnoS3482uWWTq/foXxzEhHxUUAtIpUT3epuv3EifPooWNsNM6dMvgx1sYNpGBtQT81jcZdpTe4rSDnr3DPVUMd1/x7azoL67co3LxERjwJqEamceEBtDExvcV8w+QLqUkhdxtxf4tGXZUCdjgmDaRl/XLGYJth1BnzhGNi+HXYJWJzGjsLIMwqoRaQiFFCLSOXEtozdF2p0y2ZLYVKXMc8nQ51OqLW4i9CMxzS7GupPH5l53MhyaD2+PHMSEfHRXy0RqQwbg8jGsfsnW/10qYRSMsi5ZKj/uxLqwzCjFbZvc9t+4SyXLy+W1Gx7OpHNqqUWkYpQH2oRqYzoRrARF9w9tsZd/BazKvcoFlMPxnch4lTfdt9I5ueefyOc8hs49Cewqnvs4+GApchLKbUePJOBu0s3DxGRNJShFpHKGH3F3T74CrzrT2778AVw87cqNqUJJ9QKUS94zqXkY3N/YntmwBuc0LTC55aLoIA6ZiEUUHYSWVP6+YiIpFCGWkQqI+qVeyxbn9i32wyVfBSTP9s/JcuAun/E9Z8GaAwnt9t79bhlXsnShFxt/TVPwHG/hN2+DZekyUTHhiCyPvgxEZESqVhAbYwJG2MeM8b83bvfaYy5zRjzvHcbsNatiEwYkU3u9qkNiX17zylvf+OJzh/4ZhtQr/Ut4z17apoe1BVYGt40uWD/yfXQNeRaLKbTf3v55iUiQmUz1OcDz/jufwG43Vq7K3C7d19EJiJrIbLObfsz1HvPqUywNlH5z+VhO8K3ToKfvhnee2D656z2BarbtaU5bgU+RTBNMN9XarK6J/3YkecTJUUiImVQkRpqY8x2wMnARcCnvd2nAUd721cCdwGfL/fcRKQMIuvAjsBoFFZuS+zfbaYC6mLyZ/v3nOW+xrO6K7G9XXvwGFOhDLV/Pi9uTjsUgJFn1e1DRMqmUhnqHwKfA2K+fbOttesAvNssfvOLSE0a8T6cWtUNEe/XwNyp0NqggLqY8imfScpQB1x8aMzYlnzlEGp2C7q01Lv7a3pgXYYs9dDjylKLSNmUPaA2xpwCbLTWPpLn8881xiwxxizZtGlTkWcnImUx/LS7Xbk1sW+nTnergLp4Cg6o28c+bprcSonlZlpcP+w9Zyf2rdiafnxsAAYfKP28RESoTIb6cOBUY8xK4CrgWGPMH4ANxpi5AN5twIoPYK29zFq72Fq7eObMMvdCFZHCxQYg6q2QuEIBdUnl097OH1DPD6ihrtRFo/HFXfx11Ot6Mz9n5AX38yYiUmJlD6ittV+01m5nrV0AvBO4w1r7XuAm4Cxv2FnAjeWem4iUQdT3ydILvjrYnTpd0KRlx4sn5AuIozF4y5VwxM9h7++5Ps5B/DXU2wcF1O3FnGH2jFdmMtcX0K/NUPIBrk5/+MnSzUlExFNNfagvBo43xjwPHO/dF5GJJurLSj/qW4Rjr9nlXzBkogs1uS+AcAieWAfLN8HGPugaHDveWthrDuwx0/WfDspQh9tLOuW04nXbc/0Z6nECaoDRVaWZj4iIT0VTQdbau3DdPLDWbgGOq+R8RKQMImsT2wunw+AovLQVDpivHtSlEGpzi50AzJ6S6EG9tgc6Uy4uNAZ+9063bW1wD+pwZ+nmmkm8FMgfUI+XoYZEe0YRkRLSZ6siUl4jyxPbvzjd3UZiUBdShroUQlMAb/GcHTvgBa9+/eVtru93OkHBNEB4elGnl7X4my1/QL1+nBpqcPX60W4Ip+mpLSJSBAqoRaR8otsgGpBVrPOqz5ShLj7/Iiw7+hag9ff/zkV49vhjSiH+s7H3bLjpAzBvGszJ8udl+AloOaJ0cxORSU8BtYiUj7/cI4gC6uIzvrKOBb6A+uU8Auq6GRCu0KcIpsVdsDoFODTHBVv6b4e6edCwc0mmJiJSTRclishEF1mf+fFKBWsTmX8Rlh3HCaj/8Qz89L9wwzJY0z328br5xZ9ftoxJ7lqSq95rYHR18eYjIuKjDLWIlI+/48IP7nGdJ3aZAUcudF0lKlWfO5GFff36xwuor18Gf/MW3fn5W+Bt+yY/Xrd98eeXi3BHooe5X7oLKP1iQzD4INRvV5q5icikpoBaRMojNggRX0B92YOwxVt045HzYWoThDqCnyv5q/MFkDv4zu+qLtebOhxK3hcX1DKvfkGRJ5cj/6I/G3pdJv36ZXDOIfCO/cZ/fjRwvTARkYKp5ENEyiOyFmzUbW8ZSATTLfUueAtNA6NfSUUXnppYZXBKA8z0LlIcjSW3nbM2eaGdhSmfFoRaXQ11JfnLV65+Ar56Kzy+Fq59IrvnRzfCUJZjRURyoL9eIlIe/o/qn/cFbjtPh1CB9bGSWbqyD3+nj4190Dfitqc2wixfdxCAurmlm1+2jG9Op+8N8SqPu1+ClwJKQVJZC31/BxsryfREZPJSyYeIlIe/w8cTvu09Zrlb9QkunfB0GH3FbX/1eBeILuiAWb4SCv+bnF1njK1JDlc4Ow3JLQDnt8ERC+Gel9z9j/0VrjsTmuszH8OOQHQT1FWo/Z+ITEjKUItIeYyuTGw/6KulPmCeu1WGunT8wfChO8BrdoDZU5OD5hd8Gd5dAoLnSq2Q6Je68M+HX5PYXrIadvwm/GfF+McZuKuo0xIRUUAtIqVnoxDz6nWtTQ56Dt/J3WqVxNKpmzf+GH/99C4B3Vaq4Q1PuD35/vG7wbv2T9731Vvdz1gmI8+qhZ6IFJUCahEpvVhPom51bQ9sG3Tb0xphD6++VwF16WQTUPtLPgIz1FXw7xOaNrYU5YLjIezbt2w93Ppc5uNYCwN3Fn9+IjJpKaAWkdKLbkpsL/Mt7rLn7ESAVOkOEhNZqHFsQNw9BE/6/i1e9JV87Jryb2FC1VFDberATEne19kC930Mmn2XBH3qJugZynys0ZdgJIvyEBGRLCigFpHSG/VdhBi/iAzgQG/lPdMAoSqo0Z3I4ovmWAv7fR92/TYc90sXeA6OJlrohUzyEuXggmkzzsV+5ZJa9gGwUyc8dD60N0FrAyzohBVbMx/HWhi8ryRTFJHJR10+RKT04gu6RGPwj2cT+4/e2d3WzR1/pTspjPF6OBsDbU2wrtfdf3oDHLoj3HUe/N+/4ZVt0Jjyp6HSKyT6hTuSV9yMmz0F7v84dDS7NwXZGH3Z1febcHHnKCKTjgJqESm9iFdaEA65wO1Pj8EdL8JRC93+auhxPNH5F0U5cD4865XhPLTKBdS7zYQ/vAs29499bjUt153pk4zpLekfC2JHXPeZhp0LmpKIiEo+RKS0YsMQ8wVp7c3w0dfCte9LZBLr5lRmbpOJ8QWbB/syzg+nZHtnpCzoAtX17xMO6EBSiKGHi3s8EZmUFFCLSGnFxqllheq44G2i8y+K8podEtv/WZlYITGIMckrLVZaLgsADUeyaKH3vMtUi4gUQAG1iJRWZMP4Y4IuNJPiMo2J7Z2nuy+A/hH4eYaL80IdrrtGtcimH/YfH4V3/wl2udi9YcjERmHkxaJMTUQmLwXUIlJa8frpDX3w1IaxGUNTD6EpY58nxeUPqI2BDx+auH/J3fDW38HVS8c+r66KstMAoamujV8mt78A/34ehqPwrTvGP6a6fYhIgRRQi0hpRbyWedcshWMuhf1/AFcuSTxeTfW5E5lpSr7/5r2gzvcn4N4VsGVg7POqqdwDXDAdmpp5zBeOSXxvS1bDpoALLf0iq5Pr/EVEcqSAWkRKJzaQCKjveMHdruuFBl+bsroq6iAxkYUak++3N8Ob907cf/2u8P7FY58XnlXaeeVjvLKP3WbCAfMT9x94OfN4a2FUi7yISP6qqDBORCackWfBRqBvGB58JbH/2F0S23VVGLBNRKZx7L7vnAyH7whzprp/k6Be4HWzSz+3XIWnw+grmcccsSDRweSW5fCmRZnHR9ZB496Zx4iIpKEMtYiUzoi3KuK/noPRmNveew7M9n1kH67CgG0iCgqopzTAew6E43YNDqaNKX6bumLIpi/2SXsktm97DmLjdft4obA5icikpoBaREonvkLi355O7DvZF+iYcHVmQCci05D7c0JTq6vDR1w2y9TvOzex0EvXELzSlXl8ZANENhU8NRGZnBRQi0hpxPog2u22n9mY2P+G3RLb4Rla9rlcTH3uy7uHOkozl0Jl0xXGGFjke7P2dBbtG1VHLSJ5UkAtIqUx7GWl1/XASm9xl5CBXXyLuISzyDRKEdXnNrxa+4Nn22bRH1A/k01APU5dtohIGgqoRaQ0Rp53t/esgHj56mE7QrMvqNMKieWVa9lHqL0k0yhYqNll3MezyHfB6xPrxx8fWZf/nERkUlNALSKlEfXKPFZsSew7OOViMgXU5ZVrQJ3LMt/llk32PN46b7s22D6L7yW21ZUqiYjkqAqvNhGRmhftTdRPv+ALqHdKKfFQy7zyyiar65fNMt+VEuoAxrmIcLeZsOR82KE9u2NaC8PPQPPBhc5ORCYZZahFpPj8F3cdtiMcvsAt5uKvaTUNaplXbjmXfFRxQJ3Nm7GQyT6YjousyWs6IjK5KUMtIsUXr58GOOcQ9zU4Co2+XzkNu7hlpKV8cgmojaneixIBGnaFwfvAxop73JFnwJ5Sne0CRaRq6a+ZiBRfJKBbQnO9yxjG1S8o23TEY5qyHxtqq+6gsn5HCM/Mfnw0Bi9thX8+Cxt604+LDUN0a+HzE5FJpYp/W4pITYpsTNRPZ1I3r/RzkWS5BNThKu1B7Vc33y3Iko1zroGbn3Xbb9wDfvv29H25oxtV3y8iOVGGWkSKy1/ukU6oRQF1JYRyCKhNa+nmUSwNu2Y/9rAdE9s3Pwt3vph+7NBj+c9JRCYlBdQiUlwjXhbQWnjr7+DL/4Qbn4KIr9a1+bWqn66EnEo+aiGg3jn7uvCzFsP8aYn71y9LP1b9qEUkR/qLJiLFM7oWRle57Re3wL0r4PKH4HP/SNRPmzpoPqRyc5zMcgqoW0o3j2IxDdB6nLdtMvfNbqqDC09M3L9mKbywOXhsbACiPcWbp4hMeAqoRaR4Rp5ObF+9NLG9eLtEQF03N/f2bVIcOQXUWS7vXWlNi6H1eGh6DUx7X+ag+rhdEr3QLfCeP8NINHis2ueJSA4UUItI8YyudrfRGPzRV4f65r0T23XqPV0xoebsx9ZCDTWACUPL4TDlRKib4YLqdJrr4VdnuJ7oACu2wkevDx6rsg8RyYECahEpjlgfRNe77SfXw6Z+tz2zFd7iC6gbDyz/3MQxOQTUtZKhThWenrlcZZ858NmjEvdvehqe3Th2XGRt8ecmIhOWAmoRKY7+WyE25Lb/+Wxi/1E7Q533q6ZuNtSru0fF5JKhrtWA2hhXApLJJ17nVu+Mu/aJsWNGX3K11CIiWVBALSLFEe8HPBJNLvc4cqfEdv1OSAVlm6E2IQhNLe1cSqlxn8zzNwbOPjhx/+HVELPJY2wMRgMWKBIRCaCAWkQKZyMQ3eK2n94AG/sSj520R2K7cc/yzkuSmabs2hWGOlxtcq0yddCwMPOYN+wGRy2En74ZbjgreRXPuOEnSzI9EZl4tFKiiBRudIULqgEeWZ3Yf+oiaPM6S9TNdctFS+UYA6YFbF/mceHO8synlOoXwNDS9I831sE1GS5gBIiszvy4iIhHGWoRKdzQo4ntfz2X2PavTle/XfnmI+lls2BLaNr4Y6pdw24QaizsGLEeiGwqznxEZEJTQC0ihbFRGPGWcR6JugsQm+vAAMfvlhjXsKgi05MU2SzYkqmXc60ItULD3uOP8xtTR21h8P7izUlEJiyVfIhIYSKrwY647YYw/OndMBRxtdQ7tLv9JgT121dsiuJjsujeMREy1OBKjIYeGX/co2vgvyvhvpVwziHw+l0Tjw0vg9Zja7friYiUhQJqESlMUCeEpjo4cH7ifqjDXSgmlZdNYBiaABlqgPr5448B+NVDidZ59eHkgNqOQGQzNCigFpH0VPIhIvmz0ew6IdQvKPlUJEvZBNQToeQD3CIv4Syy7Z8+IrF9+/PQNZj8eGxrceclIhOOAmoRyd/oCoh4q8wNRdKPa1T9dNXIJlieKCUfAHVZdJbZZQbsN9dtj8bgPyuTHx9dU/RpicjEooBaRPI34nX02NQPO1wE510Hd7yQPMYYqN+h/HOTYKGOcR5vmljlOXVzsxv32gWJ7SuWJD82/GRi4SIRkQAKqEUkfyPPu9tzrna31y+D792TPCbUCaa+vPOS9MLTMz8+0S6+C4/zBiLunfsntu95CdZ0J+7bkcTPuohIAAXUIpKfwYchug1Wd8ODvgsTX5vyEbu6e1SXUFPm1nm1vOR4kGwD6j1nJco+AH6f0h1keJlroyciEkABtYjkZ/A/7nbpWvDHGecdljyufueyTUmylGklxNAEWCXRLzwju+XWAc7YN7H9i/uTA+jIei1FLiJpKaAWkdxFNkDU+0j8PysS+887FKb7sp91M6Fx9/LOTcaXqY66bkb55lEOpi77pdSP87XLG4zA0nXJj488Xbx5iciEooBaRHI39Li73dwPf/AtO+4PSABajgLTULZpSZYylUGMV2Ndi8JZXpi483SY4yt5+e/K5MdHV0AspaWeiAgKqEUkV7E+GHrYbd/4FAxH3fZes+GInRLjTD00KDtdlSZbQN20f/ZjP3sUzJ0Kp+/t6qr9YsPQf2tRpyYiE8ME6o0kImUx/DRYr+f0v55L7H/vgRAyifstR6u7R7VKd+GhCUGovaxTKYuGnd2qidn0k373Ae5n2Zjgx0eWQ3Rr9mUkIjIpKEMtItmzERdQADy1Ae56MfHY61PKPbSYS/VKF1CHpoEJl3cu5dJ8ePog2S8cyjwuNgAjLxVvXiIyISigFpHsDS+DES+IvnppYv+uM2BHXxlB/XbZtyuT8ku3EuJEzE7HNS6CxgOLc6yBOyCybvxxIjJpKKAWkewN+VaQ+9rx8I+z4dRF8NGUVnktR5Z3XpKbULP7SjUR66f9GnbJbfzgKDy0CnqHk/fHBmB4efHmJSI1TzXUIpKdkRdgdHXivjFw8Pbuyy88HepzDFyk/MKzIPZy8r66mZWZS7mEc/j+/vAofPpvifsbL0h+fHip18UmizISEZnwlKEWkfFZC/23jz/OGGh9ffYLaUjl1M1Lvm8MNO4bPHaiqJsBrcdmN3ZbSnu8m59Nvh/dBoP3F2deIlLzyv5XzxizvTHmTmPMM8aYp4wx53v7O40xtxljnvduVYApUi36b03UjGZafrn5ddC4Z3nmJIWp3yH5fqg985LkE0XzEdn1Rn/PAcn3b3xq7JiRgH0iMilVIo0UAf7HWrsncCjw/4wxi4AvALdba3cFbvfui0ilxYZg6CG3/eIWOPjH8Ll/wMOrkoNr06DOHrWkbn7y/VzKIWqZMdC8ePxxnS3wo1MT929YNnZMZB3Y0eLNTURqVtkDamvtOmvto952L/AMMB84DbjSG3Yl8OZyz01EUkS3wcDtYL3FWy6+E17pgiuWwKdugpgvoJ72bqjLckU6qbzwtOSLECfTv13L8V5p0jiXEZ20R/L9n9+XfN/GYDBln4hMShUtdDTGLAAOAB4EZltr14ELuoFZGZ4qIuUw+CAMeqsiPvhK8sfe33uT69kLLjCpnzf2+VLd/J8oTKaA2hhoeR20nZ15XHsz7ORbwOXXDyW/iQQYuAsiG4o+RRGpLRULqI0xU4DrgE9aa3tyeN65xpglxpglmzZtKt0ERSY7G4Hhx71tC1+4OfHYTp3wGl8NbkuWdalSXZpf6+qmTdj1Dp9s6udB82syj/nWSYntVd3wxZuTH7cWBv5T/LmJSE2pSEBtjKnHBdN/tNZe7+3eYIyZ6z0+F9gY9Fxr7WXW2sXW2sUzZ06Smj+RSui/zdVPA1xyt1sZMe68QxPboWa3Cp3UnlCzu5B06lshNKXSs6mMKSdB82HpHz92F/iE7+f7ykdgfW/ymOEnYWRlSaYnIrWhEl0+DPBr4Blr7fd9D90EnOVtnwXcWO65iYhndJUr9wBYuhZ++t/EY+87ED5wcOJ+w6Lxa1GlerW8VheTTjkhc3eazx8DB8yDU/aEK94B0wO6ofT/3S34IiKTUiX+Ch4OvA940hjzuLfvS8DFwNXGmHOAV4AzKjA3EYkNQf+/3faLW+C0K2Awknj8M0cltsOdWhVRJobmw2H05eCguD4M//wghIwr8fj38678490HQJP3ZzSyGfpuhmlvK++8RaQqlD2gttb+B0i3tNRx5ZyLiAQYfMAFFgAX3Q4DXluwpjq49kyYOy0xtvm1EG4r/xxFiq1+O7fyYd8/gx8P+f5sXfuka6O3qgsuOD6xf+RpF1jXzSjpVEWk+mg5MxFJiPXBoHeBVTQGx+8Ku3vXKvzhXXCIb5nxxr2haYKvrCeTS+Perq48k039cNRCWNABP7sPNvcnHrMx6P+HuxWRSUUBtYgk9F7vunsAbB2EC/8NyzfB6fvAkQsT40JTYOqb1dlDJpZQK0w5BUyGP43TW+C7d8HKbe7+aVckL3A0sgJGXyjlLEWkCimgFhFn5AUYeQmGIrBtEGa2wm/eDt89OXnFOFMHU96kCxFlYmrcC+rmpH88HIIv+aoTn9/s3nT6DS1NDrJFZMJTQC0iEO2Gvr/Dsxthh4vgQ9fCuh44dEc4azE0+oLnpgOhcffKzVWk1Ka8KfPjb9sn+f57/gTDvgt3h59yrfREpPjiK/dWGQXUIgJ9/4ChLfDxv7r7962Ej1yfHCSAq5lWVw+Z6OrmQl2GxXqNSf7UZlW3K4/yG3q4av/wi9S00VWVnkEgBdT50kUnMlGMvAQjz8FZf4Gl69y+SAx2np6cma6bA60nTt4FQGRyadw78+On7gV7+oLuyx6Ez/49UeoxuirRflJEiiPaAxEF1BPH6CqIbq30LEQKN/QI9P0V7njB9daN+8Th8D3fx97NB0PbWW6ZapHJoOk1UDc7/eOtDXDneXCQb8n2Kx+Bj/01EVQPLQE7UtJpikwqI88C1ZnQVECdlxjY/vGHiVQrG4GhJ9zy4kufg3OvTTw2pQE+e7TbrpsDTfvBlJPHbycmMpGEGmHa2zNffBsy8Od3wy7TE/tWdcGIV+phR91iLyJSHJG1lZ5BWgqo86UlZqVW2REYfAj6boS1m+DYX0LPsHtsWiPc/3FX6mFCMPV0mPqWys5XpFLC06HtA25F0HTam+GGs+CwHeGt+8A170sulRpeCv23l36uIpNBdEulZ5CW+l7lK9ZV6RmI5MbGXDDd80eIrIM7noN3/CHxeHMd/OoMmD3FlXZMPSPzhVkik0H9fKibn7nMb/ZU+PN73P8hk7IQsLUuqG7cR/+fRAphoxDZAA27VHomgZShzlf/7S4oEal2Nub+qEfWwrYfuWsAbMSthOh3wRvg6J0h3O6y0g07VWS6IlWn+WBo2DXzmJb6scF0vEtOtAd6/lzV2TWRqlfl1yQoQ50vG3Efm085dewvUZFq0n8zRDbB8qfhjmXw7xdgaiO8aU/YoR1e6XLjzjwIQk0w7R2ubZiIOPU7uDeZg/+BwfvHX7QlEoP/rHAXKe45Cz53NES3wdafQMfHoG5GWaYtMmHYUej/V6VnkZEC6kKMPA3DO7nevCLVKNoNL9wJ1y2Fb/jqOL90LOw5G75wDGwdgLMPgYYWaDsH6mZWbr4i1SrUAi3HQHgGDD4AsW6IDQeP/fhf4TpvYZd/PANDo/CV17vkS9/10HSo/m6I5GLkxapvV6yAuhCxYRh9Sb8YpTr13ggX/xS+GdAL9wf3uI+jP3+Mux9uhylvVjAtkompdyuF1u8EI8+n7+DxjRPhuU3w5Hp3/6f3wbZB+MGpMLoW7L2uNjs8Pfj5IpKsBlYeVQ11oUaWw+iaSs9CJFnfLfCVS4KDaYC958Lp3vLJoUZoOxsaFpRteiI1LdwBzYdA23uCH5/ektzHHeCPj8GZV0HvsCvB6voVRDaXfq4iE0ENXLOmgLpQsUHo/UulZyHiDC2Frt+6j6RTlw2PW/45+MfZsPsO0Ho8tJ8L4WnlnafIRFC/i/uEMmjBo/3nwfsXJ++7ZTnscjE8usb97ei+AkZXl2WqIjVrdG1NLKanko9iiPZArB9CrZWeiUwmNgomnNgeedb1lo7Xmb11H7j0AWgIw1XvgVlTYJcZ0LQb1M2D5kO1WItIIYxxvdqjW92b2Mia5E8sv3OyC6w/eVNi3ymL4KrH4cD5EOuD3hug7UwIt5V9+iJVz1rXIacGKENdLAP3VHoGMpk8/TR89ZPw1BPQ+yK85/XQtDc8vzExpq0Z9poN138cjn4N7HMkdH7IdfFoPUbBtEixhDthyhtd6VTLEa5bTty7D4Cfvjlxf1ojfPMkt71tEFavgO7fwVD114iKlF1sG8R6Kz2LrBg7XvufKrZ48WK7ZMmS8r/w6MvuY3U/E4Ipb4Gmfco/H5k8ol3Qvwra0lwIe+Lu8IvTobXB/VEPz4Zp70r+Ay8ipTX4AAzc6z65jLMWPv031/Xj9g/D9u1w14vwzj/CN06ADx0KzUe5ix5VgiXiPvnpvW7sdWqtx0DLUZWZE6Ttk6wMdbHYGAzcBkOPjD/2lVdgdLT0c5KJoacHTjsFjnktbLgMTsuwFPhtz8HL26BxEXR8Cto/oGBapNyaD4Wpb4a6OYl9xrguH8s/54JpgAPmQ8zCl26BmV+Dn33XrWQ6uqoCkxapMsPP1lTTBwXUxRTtgeFnEvcHB+GGG+Avf4HvfAc2b4ZTToEdd4TFi6F/vQuujRn7deaZ8Oc/w5YtiZrYLVugtxciaS42k9pkLQwMJN//whdg3gz3s9DWBjf9A+66H075EVz+tvTH+vdv4PCvuWXDQ40ln7qIpNGwK7SfA/Xzkv8vxhcCsxb++awrAYn7/M3Q+VH46eeg5xr3N0VkMhpdDaPPV3oWOVFAXWyRtTBwHyy/A1pa4PTT4Z3vhM9/HmbOhH/8w40747Ww/A/w5N+Cj/P738O73w177wl/vxymd8KMGTBtGtTXw4IF8JrXuF/O++0HL76Y/PxoFJ5/Hvr6XADe3x/4MlJht98OoRC0tsIvLnHvxpf9Cf76Z1gXsEzxY2vh2Y3wrZOS919wNvRvhqPfD3WztXqnSDUw9dD2QZj2bmjYxfV5N14vAGPg6J2hJ2BxmE9fBW1vhys/CD1/hZEX3MffVb6whUxS1sIDD8DXvwb33pNYHvy3v4UF28Ps2XD22fDII9DVBevXj31+PKkUjcKGZ2HgdhhZUc7vomCqoc6Hv4Y6EoO/LoOV2+DBV+Bjh8NRC2GoCXb4Yubj9N8HF/4QLr46+PG50+CSU+GQveAr18NVDweP+9jpcMwx8LpTYO9DYNOm4HG77Qbf/S6cempi36OPwksvwZFHuv8Q8+e74K6zE2bNyjz/atHXB6+8CHvuW7lA0lpYutSdv5kzYd06uOwyuPduOOEkWLQIXv96aGhw/wbf+Ib7tCHVxgugewh2/Xbw65x8DFzzG6hvdYtCbFsDU2ZBg7LRIlXPWrfCrh1xS5hHNrr2lqf+1r1ZTvW9U+Ad+7tOPb3D8IMn4L5X4CsfhyNPg7YZEA6X/duQSe4//4EPfMAl61auHPv43z8Hrz0Vjvs4PPZY8DH23R2u/h7MnQFv+hT850Fobh6b/FvQAX9+D+zsLYK0oQ/ub4APfbOo31IO0gYZapuXj1gMBkfhX8vh3OuSH3vfge727qWZj/HBs6HlMHhjBC6/3ZVz+B1+OPz2V7CgE448CR54NP2xfno9nLw3hP4EX3gd/M8NweOeew6evAdevxs0dMC2KJxwgitFSeeUU9y7zA3Pwdd/CLfeCnPnwrx5cMcdsM8+sGyZ+0Nx1VXwjne4/xCPPuoeu/9+6O6Gt7zF3RYzSN+wwQWoe+8Na9fCt78Nn/tc5ucMDroMf12GH/2REejfAh1z3fd1773w0EPwxje6P179/bBihbvf7HXKuPDrcMHXg493+53u9ppL4OBd3acVQXbzsldXPJXY19gAwyOwx67wt5thl12Sn9O5febvV0SqhzHQuJfbbtwfIqth8EH414dgYBR++l+45O7E+G2DLpgGWNcDdzwCT2+At3wY+LDb//GPwRtPhNcf734/GQXYkofeXrjtNhck/+tfsHy5+zu31nujd/75cMnX3QWzp54K27alP9aGFRC5Dd60e/qAur4P+m6DjU2wF7C0AboDPklfuQ3+8ChccLy7/+xGeGKooG+1ZKy1Nft10EEH2bJbudLaubOsdaFW8Nffz7a266/WXnSRtd/5jrVPPmntyIi1/7jR2v/8J/fXXL3a2v/9X2vPPtva+nprZ8+2tqUl+TUv+rq1o5usXf+StQfunX5uczus3fAba7f82NqNF1r76eMzfy97bG/tfy609opzrP2/D1rbUJd+7MX/Y+3wamuPPirzMW+4IvG9PXi3tUcemXn8JZe4sddfb+2OO2Ye+9hj1p588tj9O+9sbVOT2z7wQGu3rrb2qacyH+u3P7f2v9dZW5fme95vF2sHHrR24GFrf/wBa6c1BY+rD1l71Xus3XiBtesvSP96V11ubbTP2gcesPbf/7Y2Gi34x1VEasDoOmsHn7C260prn/26tSfv6X4n/PoM93tj4wXW3vT+zL+v3nGUtYNPW/vdi609/CBrL/qGtUuWWPuPf1j7xBPW9vRY291t7ehohb9ZKavubmt/+ENrP/5xa7/0JWsvv9zaBQsSPzdvPMHadS9au+eemX++Dt3N2q0/s3brpdb+5l3Wzm1PP/b1R1g7/LK1L1yb+ZiL5ljbe4u13z/V2jnT04+bNcXaez7i/h9852Rrf/DJSp7RtDGpMtS5uvtuWLcx/eNfPhZeexhMOwW+dFryY288Nfg545k/Hy680G3/+teZxzaE4X++CHPmuMzyH/7g9p90kqtRisVg/UGwr9d2bfSDmY/3n8tgyg4wezO8/6jMY++8Gc7dGf5vEXxvG9z4RPC4f/8ajhyFUB20rIShDemPuc/2sPNG6LsLQkshFFBvGPfVj8Lyu+GxB8Y+5q8x79sET18FP78+8/fzgY/CEbulvwh06QvwkY/D906HvXeFwTTjRmOuNdZTt0F7K5CSyT7zTFey8/azXAbrNa/JPC8RmVjq5rivpn1g2ihc+2Yg4soLI+vBDsJ+e6Z//rxp8MUD3aq92+6D/z7ivr78v8Hjf/pD+H/nu+11a+FLX4Knn4GPftRluQcG3N+IoSH3aWl9vet9f9997lOynXaC7bZzn9Y1N7vH/e69111MvWiRq5mdMSO38zE4CE1NE+NakK1bXcb3yCPd3/JS2bDB/b1fuRI+/GH3ye2Nf4U3Z+gKBfCmnSB0PRwxG555Jv24B56DVfvC7p3Q0w3rUhZbOeooOOMMV1p65JGuDHHnHdzP0nXXueu/Fi1yXas2bHANGd56JLTuAR/dE/quhK9+Nfi1j1wIC72SjwPmwazFweMqLVO0Xe1fFclQP/742HdP/3OktRu+6t49bfqGtZHu8s+rEM88Y+0tt1h7xRXW/uY31n7xi9aee67Lkg4MuDG//KV7B9vQYO0JJwS/i7zySve9P/O4tTtun/md6W++ae1VP3IZ90zj3nOCtQ/9ztqnfmvtaRky2W1TrH3qF9Z2/cHaf3/L2h3nph+7YLa162609rsfz/za2Xz94feJ87hsmbXHHef2z51r7c03WxuJWPvii8nZ5p4ea4eHy/pPLCITwJZ11v7u+9Z+8qNjfxdd+xFrN3/L2vVftfbN+6T/nfXhw61dcaG1W3/nMo7brrL2nBMz/A4+zdq+O6297gfpx/ztRmsjA9aec07m35e33JL4Xm6/3dpjjkk/dvvtrY3F3Nj+fvc3KXXMwQdbe8cd1v7kJ+73bCxm7d13W/vJT1r7059a+6lPuU9zTzzR2t//3tqrrrL2mmuSfx+PjFi7fr21d91l7Q03uGz+j39s7V/+4rL799xj7XC/G/vYY9YecYS1Z53l/haGQu52552t/f733e/7uD/+MfO5OPZYa9eudWMjW639f//P/f045BBrW1vdmJkz3e1RR7n5RXqs/effMh+3Lmzt619r7Uv/sHaHmZn/Zv76/6z92+XWjm609sYrMxyzztpPfMJ9Qh/X2+vOXV9fkX/Irft37Lkh8elM6lf/XcV/zeyR7ksZ6lztvTfsuyc88YxbPOOejyR6igK0vqH2mvLvsYf7yuTcc91XkJdecvVUBx7oMgp77AePLYWrr3Y1WQMDsOuurh5rcBCOOALO/JzL/H5qDTz+ODz8cKIma/Zs906+vh4OPQUOeg+sWgVbfNn5o4+G1avhhRdcXfbf/w6LDnaP7bwSjn7WZVQe9l3I2d7uaq7/cB1M3R/+9ZOx38sOO7ge4dtv7zqt3H23y8rssYerKaurcy3tNmxwdeQ77ph47l57wb//PfaYCxcm3586NeOpFhEJ1DkH3vcpeB/wg5+5C9DvvANeezjMn+dWlBvugqPb4a+fDj7GL/8L96+F358NO8yCC34Dv741/WueM8/VeU99Of2Yb34K9vsovGdPyPQhqnkQ+qJQvyPE7oY770w/9r2HwMhzMPw4mBZ3kXeqhx+GY49124/eAj/7KfzPJ2HJY8njbrnFfQGceBy0jMJRMyDaC1+/F77/w/TzeMsb4Z37whuOg698w2Xf77038fjIiPsE9LOfhVOOhO1igIXIugwnAqjrgZaX3L/Xd78KP7t27Jh4g4G774a7/gIHbIT6+6CpAYZGgo/b2gi7t0L3anjsGtj5ZOhKqU02Brr74Le3ur/TdTPh1DNh+J3ueq7OTmgc50L3KVPcbeqnE8VgjFt5dOQFiPUV//gloi4f+eh6Bu76Nhw4H5p9P0yhKdD5CTAN5Z+TBNu2zV00ecghLpiGifExoohIJhs2uMBvxx1dQmLjRpfcePlllzg47zwXNB13HNxzT/rj7LUIHv0P/P6P8MGPpx83+BxsfRa+dz18/4rgMWedDD/7jGsv+2gXHPv/0h/v5MPhV++DaXtDrAvmngF9g8FjD14If/sC1EehdwDeeAk8nSagbW+Ge74AO+4GWLjw13DJ7ennccCOcNlHwUbhbd+DVwLamcb9+v3wthMhGoIb/gvbBuAzlweP/ft34MjdYf06OOBT0J/me4v7x0Wu1GbRuzOPi/v+9+FTn3IXFT7zjPt37ulxZTpz52Z3jEobfsr1Y09VpSslKqDOR9DS4wBT36qlx0VEpLYMDblWnzNmuE/orr8ebr4Z3vAGePvbXcYSXAHABRckrukB99jy5e65Q0PueatXw5NPwq9+5cYsXuzqZz/9abdugrWutnqPPVyg77fTTnDooS7je8ABbl8sBhdfDF/+cvD8v/IV+NhHob0NPvxRuOaazGsvfPjDcOmlbvvUN8Hf/p75/Cxc6DpcpXZZSnXEES6bbAz88IeuRWp8nYjnnkuM22svlxletMjdX7YMLr/cBbxXXDH2uDvuCEuWuHP8i1+4Wve3v93r2bzBfeq5++7u/HR2ulay02rsk/J0un7lFnnxU0BdfFUVUIdaofN/wGitHBERkaxEoy6DvuOO+X16GIu5xbHirHXH6e93+5ubXXlhOAxr1rgSwfr6xGuNjroMblubKwt85BG3lsDs2W5sNArDw26httR5h8OJSuOeHvf8QkUi7o1JvKRishteBj0p5TBVGlCrhrpYmg5WMC0iIpKLcNit/JuvUMrf3Xig3Nqa2Bdfd2C77cY+v74+0fUKEjXZ/vmlBtPx/fHXM6Y4wTS4uSqYTmjYC+ofhNFVlZ7JuBQBFoNpgOZDKz0LERERkYnDGGiq0jZ5KRRQF0PDrhBqqvQsRERERCaWht1qYgVQBdTF0Lio0jMQERERmXhCzdCwe6VnMS4F1IUKNdXEP7SIiIhITWo6qNIzGJcC6kI17gdG13aKiIiIlET9QghV96JoCqgL1bBzpWcgIiIiMnEZA417VXoWGSmgLoQJQd32lZ6FiIiIyMTWuGelZ5CRAupC1O/kiuVFREREpHTqdoBQ9fboVkBdiMa9Kz0DERERkYnPGGgYZ/n3ClJAnS9joGGPSs9CREREZHKor97r1hRQ56tunso9RERERMqlYWeqNXStzlnVgip+lyQiIiIy4YRaoG5+pWcRSAF1vhp2rfQMRERERCaX+h0rPYNAWpEkH6EpEOqs9CxEREREJhcTrvQMAimgzkd4eqVnICIiIiJVQiUfIiIiIiIFUEAtIiIiIlIABdQiIiIiIgVQQC0iIiIiUgAF1CIiIiIiBVBALSIiIiJSAAXUIiIiIiIFUEAtIiIiIlIABdQiIiIiIgVQQC0iIiIiUgAF1CIiIiIiBVBALSIiIiJSAAXUIiIiIiIFUEAtIiIiIlIABdQiIiIiIgVQQC0iIiIiUgAF1CIiIiIiBVBALSIiIiJSAAXUIiIiIiIFMNbaSs8hb8aYTcDLeT59BrC5iNOZLHTecqdzlh+dt9zpnOVH5y13Omf50XnLXTWds83W2hODHqjpgLoQxpgl1trFlZ5HrdF5y53OWX503nKnc5Yfnbfc6ZzlR+ctd7VyzlTyISIiIiJSAAXUIiIiIiIFmMwB9WWVnkCN0nnLnc5ZfnTecqdzlh+dt9zpnOVH5y13NXHOJm0NtYiIiIhIMUzmDLWIiIiISMEmbEBtjDnfGLPMGPOUMeaT3r79jTEPGGMeN8YsMcYc4hv/RWPMC8aY5caYEyo28QrL5bwZYxYYYwa9/Y8bYy6t6OQrJM05288Yc78x5kljzN+MMdN84/WzRm7nbTL/rBljfmOM2WiMWebb12mMuc0Y87x32+F7LPDnyxhzkHdeXzDG/NgYY8r9vZRLEc/ZXd6++M/drHJ/L+WUy3kzxkw3xtxpjOkzxvw05Tj6Wcv9nE2an7Ucz9nxxphHvJ+nR4wxx/qeU10/Z9baCfcF7A0sA1qAOuDfwK7ArcBJ3pg3And524uApUAjsBPwIhCu9PdRA+dtAbCs0vOu0nP2MHCUN+Zs4EL9rBV03ibtzxpwJHCg//sHvgN8wdv+AvDt8X6+gIeAwwAD/DP+f3oifhXxnN0FLK7091Ol560VeB1wHvDTlOPoZy33czZpftZyPGcHAPO87b2BNdX6czZRM9R7Ag9YawestRHgbuAtgAXimcI2YK23fRpwlbV22Fq7AngBOITJJ9fzJunP2e7APd6Y24C3etv6WXNyPW+TlrX2HmBryu7TgCu97SuBN/v2j/n5MsbMBaZZa++37i/R73zPmXCKcc7KMc9qk8t5s9b2W2v/Awz5B+tnDcjxnE02OZ6zx6y18ZjjKaDJGNNYjT9nEzWgXgYc6X280oLLqm4PfBL4rjFmFXAJ8EVv/Hxgle/5q719k02u5w1gJ2PMY8aYu40xR5R9xpWX7pwtA071xpzh7QP9rMXlet5AP2t+s6216wC82/jHw+l+vuZ726n7J5Ncz1ncb72P4L9S8Y+UKyPdeUtHP2u5n7O4yfyzls05eyvwmLV2mCr8OZuQAbW19hng27gM1y24j/MiwEeAT1lrtwc+Bfzae0rQD+6ka3+Sx3lbB+xgrT0A+DTwJ+OrFZ4MMpyzs4H/Z4x5BJgKjHhP0c8aeZ23Sf+zlqV0P1/6uUsv07l5j7V2H+AI7+t9ZZtV7dLPWn70s5aBMWYv3N+MD8d3BQyr6M/ZhAyoAay1v7bWHmitPRL30cLzwFnA9d6Qa0h8rLea5EzYdkzSsoZczpv3EekWb/sRXO3hbuWfdWUFnTNr7bPW2jdYaw8C/ow7N6CftVflct70szbGBu8jz/hH7Bu9/el+vlZ726n7J5NczxnW2jXebS/wJyZnKUi685aOftZyP2f6Wctwzowx2wE3AGdaa/1/S6vq52zCBtTxK2SNMTsAp+P+OK8FjvKGHIsLFgFuAt7p1eXshLs46qHyzrg65HLejDEzjTFhb3sh7ry9VO45V1rQOfPtCwH/C8S7UuhnzZPLedPP2hg34d7o4t3e6Ns/5ufL+wi11xhzqPdR8pm+50wWOZ0zY0ydMWYGgDGmHjgFV5I02aQ7b4H0swbkeM70swakOWfGmHbgH8AXrbX/jQ+uyp+zSl4RWcov4F7gadxHycd5+14HPOLtexA4yDf+y7is13Im8BXJxTxvuHqmp7z9jwJvqvT8q+icnQ88531djLeIkn7W8jtvk/lnDfemdh0wisvKnANMB27Hvbm9Hegc7+cLWIz7I/0i8FP/z+RE+yrGOcN1ZHgEeML72fsRE7wjTx7nbSXu06U+b/wi/azlfs4m289aLucMl1jpBx73fc2qxp8zrZQoIiIiIlKACVvyISIiIiJSDgqoRUREREQKoIBaRERERKQACqhFRERERAqggFpEREREpAAKqEVE8mCMiXrLBC8zxlxjjGkxxiwwxuTUP9YY835jzLxSzbMaeN/jJmPMr8YZt8IYs3vKvh8aYz5njDnCGPN0rudXRKQcFFCLiORn0Fq7v7V2b9wS6efleZz3A1UdUBtj6opwmL9Yaz84zpirgHf6XjcEvM177r3AG4swDxGRolNALSJSuHuBXbztsDHmcmPMU8aYW40xzQDGmP2NMQ8YY54wxtxgjOkwxrwNtzjBH71sd7Mx5jhjzGPGmCeNMb8xxjR6z19pjPm6MeZR77E9UidhjAkbY75rjHnYe50Pe/uPNsbcZYy51hjzrDHmj97qYhhjDjLG3G2MecQY8y/f8r93GWO+aYy5GzjfGHOwd8z7vddY5o271xizv28O/zXG7JvpZKWbJ27Bh3f6hh4JrLTWvpzbP4eISHkpoBYRKYCXvT0JeNLbtSvwM2vtXkAXbpVHgN8Bn7fW7uuNvcBaey2wBHiPtXZ/wAJXAO+w1u4D1AEf8b3cZmvtgcAvgM8ETOccoNtaezBwMPAhbzltgAOAT+JWZlsIHO4tc/wT4G3W2oOA3wAX+Y7Xbq09ylr7PeC3wHnW2sOAqG/Mr3BZdowxuwGN1tonxjltgfP0nhczxuznjXsnLsgWEalqCqhFRPLTbIx5HBcQvwL82tu/wlr7uLf9CLDAGNOGC07v9vZficu+ptrde/5zacZd7z9uwPPfAJzpzetB3HK+u3qPPWStXW2tjeGW713gvd7ewG3ec/4X2M53vL8AGGPaganW2vu8/X/yjbkGOMULzs/GvSEYT6Z5/hl4p/dG5TTv+CIiVa0YdXEiIpPRoJdVfpVXRTHs2xUFmnM4phnn8fixowT//jbAx621/0qZ19EB86rzxj/lZZ2D9I83L2vtgDHmNlzw+3ZcCct4Aufp+TNwK3A38IS1dmMWxxMRqShlqEVESsxa2w1sM8Yc4e16Hy5gBOgFpnrbz+Iy2rsEjMvGv4CPeNlijDG7GWNaM4xfDsw0xhzmja83xuwVMP9tQK8x5lBv1ztThvwK+DHwsLV2ayHztNa+CGwBLkblHiJSI5ShFhEpj7OAS40xLcBLwAe8/Vd4+weBw7z913glDw8Dl+bwGr/ClXI86l10uAl4c7rB1toR78LIH3tlKXXAD4GnAoafA1xujOkH7gK6fcd5xBjTg6uzLsY8/wx8C7ghy+OJiFSUsdZWeg4iIlLljDFTrLV93vYXgLnW2vO9+/NwQfYeXo126nPfDyy21n6swDksAP7utSoUEakaKvkQEZFsnBxfyAY4AvgGgDHmTNyFhV8OCqY9g8BJ4y3skolXLvM3YHO+xxARKRVlqEVERERECqAMtYiIiIhIARRQi4iIiIgUQAG1iIiIiEgBFFCLiIiIiBRAAbWIiIiISAEUUIuIiIiIFOD/A4YUshnDcugoAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 864x576 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot_new(vs_inf, 2, pulse=0)"
]
},
{
"cell_type": "code",
"id": "2ae94611-5d71-4c11-806c-04905607be1d",
"metadata": {},
"outputs": [],
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
"source": [
"t = vs_inf[\"expected\"].reshape(-1, vs_inf[\"expected\"].shape[-1])"
]
},
{
"cell_type": "code",
"execution_count": 40,
"id": "6ca8c3c6-0d38-4b98-9514-857b7e5c1e6b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x2b4e448d8580>]"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD7CAYAAABzGc+QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAApyUlEQVR4nO3deXhcd33v8fd3tO/7ZsuyLEfxEjt2bGUje4xDCIEEaNKwupDW0EvL0tLWlHtbStv7hF5KgVLoTdkMLZQAyXUIq+OQkN3xvsSLvEnWYu37rpnv/WOOHDmRrJE8M+fM6Pt6Hj0zc3RG8/F5rI/OnDnn9xNVxRhjTOzxuR3AGGPM3FiBG2NMjLICN8aYGGUFbowxMcoK3BhjYpQVuDHGxKiQClxEPiEih0TksIh80lmWLyLbRaTWuc2LaFJjjDEXmLHARWQV8EfANcAa4G4RqQa2ADtUtRrY4Tw2xhgTJYkhrLMCeElVBwFE5BngncA9wK3OOluBp4G/utgPKiws1MrKyjlGNcaY+Wn37t3tqlr0+uWhFPgh4B9FpAAYAu4CdgElqtoMoKrNIlI80w+qrKxk165ds0tujDHznIjUTbV8xgJX1SMi8gVgO9AP7AfGZ/HCm4HNABUVFaE+zRhjzAxC+hBTVb+lqutU9WagE6gFWkSkDMC5bZ3muQ+rao2q1hQVveEdgDHGmDkK9SyUYue2AngX8EPgcWCTs8omYFskAhpjjJlaKMfAAX7qHAMfAz6mql0i8hDwiIg8CNQD90UqpDHGmDcKqcBV9aYplnUAG8KeyBhjTEjsSkxjjIlRVuDGGBOjrMBN3Nh/tpvvvXjG7RjGRE2oH2Ia43n3/NvzANy+vJjyvHSX0xgTebYHbmKeqvKNp0+ef1zfMXjB93uHx6IdyZiosAI3Me8XB8/xhV8dPf/4pdOd5+/vqe/iys/95oKCNyZeWIGbmPfM8QsvAj7U2HP+/pHmXgB+sHPKoSSMiWlW4Cbm1bb2A7CyLJtrl+Rzrmf4/Pf21XcDcLZziC8/edyNeMZEjBW4iWnDY3721nfzgesW84tP3MRlxZk09wyhquw7282PdzecX/fLT9a6mNSY8LMCNzHtj74XHJ54WWkWAKsX5tA1OMZH/3M39zpnpVQVZXDDZQUAfOXJWroHR90Ja0yYWYGbmPZsbTsAb1+zAIB3ry+nPC+NXx9uOb/O39+zij/buAyAf3nyOGs/vz36QY2JADsP3MQsVSUpQXjwxipy0pIASErwccWCbBq6hgD4fx+7gbWLchke81/w3J7BMXLSk6Ke2Zhwsj1wE7O6BscY8yvFWSkXLN9881J+b305Bz53B2sX5QKQmpTAy3+9ga+99yoA9p7tinZcY8LO9sBNzGrtC55tUpx9YYGvX5zH+sV5b1i/JDuVa5bkA1DnXOzzwMMvsrw0m8+944oIpzUm/GwP3MSs1t4RAIqzUkN+TlFmCunJCZzpGADgpVOdfPeFM5GIZ0zEWYGbmDVxvndZTugFLiJU5KdT1zFIIKCRimZMVFiBm5h1rnfqQygzWVKYwbFzffQM2RgpJraFOifmp0TksIgcEpEfikiqiOSLyHYRqXVu33jQ0ZgIau4ZpiAjmZTEhFk9b82iXBq7h9j+6munGr7+LBVjYsGMBS4iC4GPAzWqugpIAB4AtgA7VLUa2OE8NiYqBkfHqesYoHQWh08mfOC6xWSlJPL1p0+cX9Y/Mh7OeMZERaiHUBKBNBFJBNKBJuAeYKvz/a3AvWFPZ8w0Vv7Nr3nhZAcZKbM/kSojJZGayjzOTBp2tm/YCtzEnhkLXFUbgS8SnHm+GehR1d8AJara7KzTDBRHMqgxEyYf7lg0x4kbFuSmXfC43wrcxKBQDqHkEdzbXgIsADJE5P2hvoCIbBaRXSKyq62tbe5JjXE0dgevsvyDN1Wy5a3L5/QzXn/qYZ9N+mBiUCiHUN4MnFbVNlUdAx4F3gS0iEgZgHPbOtWTVfVhVa1R1ZqioqJw5TbzWH1n8NDH264soyhrdmegTCh53ZkrvbYHbmJQKAVeD1wnIukiIsAG4AjwOLDJWWcTsC0yEY250C8PNiMC1cWZc/4Z1SUXPtdGKDSxKJRj4C8DPwH2AAed5zwMPARsFJFaYKPz2JiIau0b5qd7GnnLylJy05Pn/HOuWpTHxpUl/M3dKwFo7x8JV0Rjoiakj/BV9W+Bv33d4hGCe+PGRMXg6Dg3PvRb/AHlwzcuuaSf5fMJ//HBGgD+Zftx2vttD9zEHrsS08SMY+f6GPUHeMsVJVxdGb7rxgoyk20P3MQkK3ATMyY+vPzzO5YR/DgmPAozU6zATUyyAjcxo9658KYif27nfk+nKCuFll4rcBN7rMBNzKjrHKQkO4XUpNmNfTKTVQtzON0+cP78cmNihRW4iRn1HYMszs8I+8/dsCJ4EfGOIy0zrGmMt1iBm5gwMDLOzjOdVBWFv8CXlWSRnpzA6faBsP9sYyLJCtzEhMNNvQAsL80K+88WESoLMjhjBW5ijBW4iQlnnTNQbr48MsMxLCnKsD1wE3OswE1MqO8cRAQW5qXNvPIcVBVmcLZriNHxQER+vjGRYAVuYsLZrkFKs1NnPftOqKqKMvAHlPpO2ws3scMK3MSE5u7hN4zhHU5VhcHBrU62WYGb2GEFbmJCS+/wnKZPC9XE2S2nrMBNDLECN57XOzzGqfYBSrMjV+BZqUkUZaVwqq0/Yq9hTLhZgRvPe+lkBwAry7Ij+jpVhRmctAI3McQK3HhebWuwVO9cVRrR16kqymRPfTeVW37ON589FdHXMiYcrMCN551o7acsJ3VOM9DPxtJJV3n+w8+PcK5nOKKvZ8ylsgI3nneyrZ/LLmH6tFBdWZ57weM/+M7OiL+mMZcilFnpl4nIvklfvSLySRHJF5HtIlLr3IZvhH1jHKrKydZ+lhZFvsCvWZLPh26o5N/fv441i3I5eq6PXput3nhYKHNiHlPVtaq6FlgPDAKPAVuAHapaDexwHhsTVi29IwyM+lkahT1wgL99+xXcuaqMP9t4OQCHGnqi8rrGzMVsD6FsAE6qah1wD7DVWb4VuDeMuYwBoLE7OAbKoghdQj+dNeU5AOxr6I7q6xozG7Mt8AeAHzr3S1S1GcC5LQ5nMGMAOpzJhgsyUqL6urnpySwpzOBF5xRGY7wo5AIXkWTgHcCPZ/MCIrJZRHaJyK62trbZ5jPzXOdAsMDzM5Oj/tq3LSvm2dp2DjfZYRTjTbPZA38rsEdVJ6YtaRGRMgDntnWqJ6nqw6pao6o1RUWRGQrUxK+OgYk98OgX+C3Lgv9f3/bV5zjUaCVuvGc2Bf4eXjt8AvA4sMm5vwnYFq5QxkzoHBglIzkh7PNghmLtotzz93/zqk23ZrwnpAIXkXRgI/DopMUPARtFpNb53kPhj2fmu86BUVcOnwDkpCXxrnULAfjqjlpGxv2u5DBmOiEVuKoOqmqBqvZMWtahqhtUtdq57YxcTDNfnWzrZ0FOdM9AmexL96/lI7dUAdgHmsZz7EpM41l1HQMcaOjh+qUFrubYfFOwwG2oWeM1VuDGs3bXdQGRH8RqJvkZyWSmJFLXYQVuvMUK3HjW2c4hAJYUZsywZmSJCEuLMjhhQ80aj7ECN57V0DVISXZKxObBnI0VZdm82tSLqrodxZjzrMCNZzV2D7EwgvNgzsaKsmy6Bsdo6R1xO4ox51mBG89q6BqiPC/d7RhAsMABjjT3upzEmNdYgRtP8geU5p4hyqM8iNV0lpdlAfCqFbjxECtw40mtfcOM+ZWFHinw7NQkyvPSrMCNp1iBG09q6AqegeKVQygAGcmJ/PxAs81cbzzDCtx4UqNT4F75EBNeG9zql4fOuZzEmCArcONJDV3BiRy8cgwcYMudy8lOTeRkq+2BG2+wAjee1Ng9RGFmiiujEE7H5xNWl+ew92y3nQ9uPMEK3HhSQ9eQZz7AnKwiP4PT7QNs/v5ut6MYYwVuvCl4Drj3CnxpUfCy/u02PrjxACtw4zmBgNLYPUS5hz7AnPAHb6rkigXBi3q+/ORxO5RiXGUFbjyntW+E0fEA5fneOYVwQmKCj0+/ZRkAX36ylh+9ctblRGY+swI3nnO6PThs65ICd0chnM6tlxfxJ7ddBsCLp2ySB+OeUKdUyxWRn4jIURE5IiLXi0i+iGwXkVrnNi/SYc38cMYZd7uy0Ht74BAcXvbTb1lGdXEmHf2jbscx81ioe+BfAX6lqsuBNcARYAuwQ1WrgR3OY2Mu2en2AZITfa5OpRaKVQtz2FPfRSBgx8GNO2YscBHJBm4GvgWgqqOq2g3cA2x1VtsK3BuZiGa+Od0+QGVBOj6fuB3loq6vKmBw1E9d56DbUcw8FcoeeBXQBnxHRPaKyDdFJAMoUdVmAOe2OII5zTxypn2ASo8e/55scUHwEM/EVaPGRFsoBZ4IrAO+oapXAQPM4nCJiGwWkV0isqutrW2OMc18MTAyzqn2AZaVZrkdZUYFmckAdA7YcXDjjlAKvAFoUNWXncc/IVjoLSJSBuDctk71ZFV9WFVrVLWmqKgoHJlNHNtT34U/oFxdme92lBnlpQcLvMsK3LhkxgJX1XPAWRFZ5izaALwKPA5scpZtArZFJKGZV1453YlP4KqKXLejzCgnLQkR6BwcczuKmacSQ1zvT4H/EpFk4BTwIYLl/4iIPAjUA/dFJqKZT1481cHKBdlkpSa5HWVGiQk+ctOS6Oi3eTKNO0IqcFXdB9RM8a0NYU1j5rUz7QO8cqaLj96y1O0oISvJTqW1zwrcuMOuxDSe8YtDzQB84PrFLicJXXF2Kq29w27HMPOUFbjxjMNNvVQWpHtqFp6ZLMxNY39DDy/ZJfXGBVbgxjPO9QyzIIbKG+Dta8oA+OC3dzI85nc5jZlvrMCNZzR3D1Gak+p2jFl509JCPvPW5YyOB3jq6JRn0hoTMVbgxhP8AaWlb4SyGCtwgD+8qYqirBQe29vodhQzz1iBG09o6xvBH1DKPD6A1VQSfMJdq0r53fE2/DawlYkiK3DjCc09QwAxuQcOwZEJR8YD1DlD4RoTDVbgxhPqOoIDQpXneXMM8JksLw1Os3b0XJ/LScx8YgVuPOF4Sx+JPmFJofdHIZxKdUkmPoGjzb1uRzHziBW48YTjLf1UFmaQnBib/yVTkxJYXprNzjOdbkcx80hs/raYuFPb2seyEu8PIXsxl5dk8tIpK3ATPVbgxnVDo37qOwepLsl0O8olmRiA6/H9TS4nMfOFFbhx3dmuQVSJ2ePfE37/6kUAfPyHexkatasyTeRZgRvXNfcEB4OKtcvoX+/ySYeATrb1u5jEzBdW4MZ152L8HPAJyYk+nvjTG4HXTos0JpKswI3rmnuGEYHirNgucIBK5zBQXadd0GMizwrcuO5czzAFGSkxewrhZJkpiRRmJlPXbnvgJvJCmpFHRM4AfYAfGFfVGhHJB34EVAJngPtVtSsyMU08a+weYmFebB//nqwiP932wE1UzGaX5zZVXauqE1OrbQF2qGo1sMN5bMysNXQNUR5HBb4wL52XTnXawFYm4i7lPes9wFbn/lbg3ktOY+adQEBpjLMCL81OAWB/Q7e7QUzcC7XAFfiNiOwWkc3OshJVbQZwbosjEdDEt7b+EUb9gZgdxGoq7702OKfniVY7ldBEVkjHwIEbVLVJRIqB7SJyNNQXcAp/M0BFRcUcIpp41tA1MQph/OyBL8pLIznBZwVuIi6kPXBVbXJuW4HHgGuAFhEpA3Bup5xPSlUfVtUaVa0pKioKT2oTNxq6gueAl8f4RTyTJSb4qCrKsAI3ETdjgYtIhohkTdwH7gAOAY8Dm5zVNgHbIhXSxK+JAo+ns1AAqooyON1uZ6KYyArlEEoJ8JiITKz/A1X9lYi8AjwiIg8C9cB9kYtp4lVD1xAFGcmkJ4d6NC82LMhJ46mjragqzu+OMWE342+Nqp4C1kyxvAPYEIlQZv5o6BqMq+PfE8py0xgeC9AzNEZuerLbcUyciv1L30xMC55CGD9noExYmBscFuBs55DLSUw8swI3rgkElIbu+DoHfEK1MzLhsRabI9NEjhW4cU17/wij44G4+wATYHF+OsmJPo5bgZsIsgI3rjk7cQphHBZ4YoKPy4oyOWaz1JsIsgI3rnntIp74OwYOsGphNs8cb6N/ZNztKCZOWYEb15w/BzyOLuKZbMOKEgB+ZnNkmgixAjeuaegaIj8jmYyU+DoHfMIdK0tISfRxoKHH7SgmTlmBG9ccbuqhuji2Z6K/GBHh+qUFPL6vkYANLWsiwArcuOZs5yDVJfFb4ABXV+YzMOrn5dOdbkcxccgK3LhieMxP1+AYpdmxPw/mxbzfGVr2lTNW4Cb8rMCNK1p7RwAoifMCz0lPYmVZNi+cbHc7iolDVuDGFed6hwEozYnvAge4sbqQ3XVdDI/53Y5i4owVuHFFc0/wFMJ4P4QCcNWiXMb8yp46m/PbhJcVuHHFuZ7gHnjJPNgDv66qAIDDTb0uJzHxxgrcuGLf2W4W5KSSFafngE+Wl5FMVkoijd02MqEJLytw44r6zkEuL82aN5MdDIyO890XzjA6HnA7iokjVuAm6kbHAxw718cyZ8jV+eCOlaUAPH/CzkYx4RNygYtIgojsFZEnnMf5IrJdRGqd27zIxTTxpLVvmPGAUlWU4XaUqPnqe64iMyWRJ4+0uB3FxJHZ7IF/Ajgy6fEWYIeqVgM7nMfGzGjiA8zSnPgcxGoqyYk+rizPYX9Dt9tRTBwJqcBFpBx4G/DNSYvvAbY697cC94Y1mYlbzU6Bl82DM1AmW7Mol6PNfXY+uAmbUPfAvwz8JTD5E5gSVW0GcG6Lp3qiiGwWkV0isqutre1Sspo4cW6+Fnh5DuMB5UiznU5owmPGAheRu4FWVd09lxdQ1YdVtUZVa4qKiubyI0ycOdDYQ3FWClmpSW5HiaorFuQAcKTZZukx4RHKSbg3AO8QkbuAVCBbRP4TaBGRMlVtFpEyoDWSQU38ON3ez8oF2W7HiLryvDQyUxJtD9yEzYx74Kr6GVUtV9VK4AHgKVV9P/A4sMlZbROwLWIpTVxp6h5mQZzOwnMxIsLKsmwONNoEDyY8LuU88IeAjSJSC2x0HhtzUZ0Do3QOjMblRMahuK4qn4MN3fQMjrkdxcSBWRW4qj6tqnc79ztUdYOqVju3NuCxmdHEuNjXLsl3OYk7briskIDCThsf3ISBXYlpompPXReJPjn/gd58s7o8hwSfcMDOBzdhYAVuompXXRdrF+WSmpTgdhRXpCcnUl2cyX6b6NiEgRW4iRpVpbalj+Vl82cMlKmsKc/loO2BmzCwAjdR09Y3Qu/wONXF87vAlxZn0DU4Zh9kmktmBW6i5nhLPwDVxfE9E/1MFhcEB/Gq6xxwOYmJdVbgJmpqW4NXIF5WMr8LfOIPmF3QYy6VFbiJmtrWfnLTkyjKTHE7iquWFGaQk5bE3vput6OYGGcFbqLmREs/1cWZ82YWnumICGsW5bLvbLfbUUyMswI3UaGq1Lb2cdk8P/49YU15DrWt/QyN2tCyZu6swE1UdAyM0jU4xmXz/AyUCesq8vAHlL1nu9yOYmKYFbiJilo7A+UCK8qCozGebO13OYmJZVbgJipOtAWLyg6hBJVkp5CWlMDp9kG3o5gYZgVuouJQQw9ZKYnzbhae6YgIiwvSOdNh54KbubMCN1Gxu76La6vy5/0ZKJMtKczgTLsVuJk7K3ATcSPjfk63D7C8dP7NwnMxlYUZ1HcOMu4PzLyyMVOwAjcRd6K1H39AWVZqZ6BMtqQgg/GA0tg95HYUE6OswE3EHTsXvIR+xTwfhfD1qoqCY6IctCnWzByFMit9qojsFJH9InJYRP7OWZ4vIttFpNa5zYt8XBOLfnusjeQEH5XOIE4maO2iXAozU/jloXNuRzExKpQ98BHgdlVdA6wF7hSR64AtwA5VrQZ2OI+NeYNXTndyY3UhiQn2hm+yxAQfG1cW8/TRVrsi08xJKLPSq6pOXG2Q5HwpcA+w1Vm+Fbg3EgFNbGvtHeZc7zA3XFbodhRPuvvKBQyM+nnuRLvbUUwMCmmXSEQSRGQf0ApsV9WXgRJVbQZwbounee5mEdklIrva2trCFNvEionju1eWz885MGeyamFwu5xssysyzeyFVOCq6lfVtUA5cI2IrAr1BVT1YVWtUdWaoqKiOcY0sepAQw8+gZVldgrhVHLSksjPSOaUFbiZg1kdlFTVbuBp4E6gRUTKAJzb1nCHM7HvYGMPlxVnkpGS6HYUz1pXkcdzte2oqttRTIwJ5SyUIhHJde6nAW8GjgKPA5uc1TYB2yKU0cQoVeVAQw+rF+a6HcXTrl9aQFPPMB0Do25HMTEmlN2iMmCriCQQLPxHVPUJEXkReEREHgTqgfsimNPEoFPtA7T3j7BmkR3/vpiJAb5OtPZTOM9nKzKzM2OBq+oB4KoplncAGyIRysSHp44Ej6q9eUWJy0m8beICp4MNPVxXVeByGhNL7MRcEzFPHGhieWkWC3LT3I7iacVZqSwpzOClUx1uRzExxgrcRMTAyDiHmnrZuNL2vkNx/dICdp7utIGtzKxYgZuIOHquF39AWVOe63aUmPCmpQX0OX/0jAmVFbiJiCPNzgBWC+z871Bc7xz7fuGkXZFpQmcFbiJib3032amJLLAZeEJSkJnC0qIMdp+xSY5N6KzATUTsquvk+qUFNgPPLFxbVcCLpzoYHrOBrUxorMBN2PWPjNPQNcSyEhv/ezY2rihhcNTPK2c63Y5iYoQVuAm7nac78AeUa5bYOc2zcW1VPskJPp6ttePgJjRW4CbsXjjRQXKij5pKm+NjNtKTE1m3OJfnrMBNiKzATdi9cLKD9RV5pCYluB0l5tx4WSGvNvfS0T/idhQTA6zATVid7Rzk1eZebrrcJnCYixurg0MuP3/Srso0M7MCN2H11NHg+Cd3XlHqcpLYtHphDlmpiTx73CY/MTOzAjdh9evD56gsSKeqKNPtKDEpwSe8aWkB2/Y32TyZZkZW4CZsjp7r5YWTHbx7XbnbUWLam1eUMDoe4GcHmtyOYjzOCtyEzX/87jQA71pvBX4p3r5mAQBHneEIjJmOFbgJC1XllTOdlGSnsNCGj70kqUkJrF2Uy/6GbrejGI+zAjdhcbipl/rOQT6+odrtKHHhmiX57K7rorF7yO0oxsNCmRNzkYj8VkSOiMhhEfmEszxfRLaLSK1za1dtzGOP7mkkOcHH21aXuR0lLtznHIb6zKMHXU5ivCyUPfBx4M9VdQVwHfAxEVkJbAF2qGo1sMN5bOahMX+Ax/c3smFFMbnpyW7HiQvVzjgyvzveRt/wmMtpjFfNWOCq2qyqe5z7fcARYCFwD7DVWW0rcG+EMhqP+/6LdbT3j3J/zSK3o8SVz961AoADDT0uJzFeNatj4CJSSXCC45eBElVthmDJA8XTPGeziOwSkV1tbXZxQrzxB5Qf7qynujiT25ZP+V/AzNHda4KHo77+9AmXkxivCrnARSQT+CnwSVUNed4nVX1YVWtUtaaoqGguGY2HbfnpAWpb+/mT2y9zO0rcKctJ4/KSTPbUddM/Mu52HONBIRW4iCQRLO//UtVHncUtIlLmfL8MaI1MRONlP97dAMA7nHOXTXj94ztXMzTm57931rsdxXhQKGehCPAt4IiqfmnStx4HNjn3NwHbwh/PeNmJ1n4A/setS23mnQhZVxE8uesffn7E5STGi0LZA78B+ABwu4jsc77uAh4CNopILbDReWzmke88f5qkBOFDNyxxO0rcSvAJ1y7JB7Bxws0bhHIWynOqKqp6paqudb5+oaodqrpBVaudW5sHah7ZXdfJf71cz52ryijKSnE7Tlx76N1XAvD+b73MmD/gchrjJXYlppmTh355lLSkBD739pVuR4l7Swoz+Iu3LAPgZ/ttgCvzGitwM2uHm3p45UwXH99QTUGm7X1Hwx/fspQEn/DFXx9jZNyGmTVBVuBmVgIB5Z9/c5yM5ATee02F23HmDZ9P+Of71tDUM8z3XqhzO47xCCtwMyu/9+8v8NTRVv7k9mpy0pPcjjOv3HvVQm5dVsS/PlVL18Co23GMB1iBm5AdO9fHnvpuAP7oJjvzxA1/fdcK+kfG+cqOWrejGA+wAjch6R8Z5y9/sp+89CR2fnYDiQn2X8cNl5dkcX/NIr77whlebQr5gmgTp+y30Myod3iMD37rZQ419fK/37ma4qxUtyPNax+9ZSkAX9p+zOUkxm1W4Oai/AFl/d9vZ099N//23nW81cb7dl1lYQYfvWUpTx5p5bG9DW7HMS6yAjfT6ugf4bYvPs2YX7n7yjLuXFXqdiTj+Nhtwb3wT/1oP8fO2dyZ85UVuJnSrw+fY/0/PEl95yAV+en863uucjuSmSQrNYkv3rcGgPd982VOtw+4nMi4wQrcvME//eooH/n+bgBuqi7kmb+41Qar8qDfW1/Odz90Ne3OO6W99V1uRzJRZgVuzhv3B/iLH+/n60+fBOAf37mK7z94rZW3h926rJiH3rUagHd+/QWeOW6TpswniW4HCIfhMT8NXYPkpidTkJFshRMiVaVjYJSXT3XysR/sOb/8zitK+fIDa0lNSnAxnQnVA9dUMDjq5/NPvMqmb+/knrUL+Jf71+Lz2e9BvIvZAv/VoWb+/JH9LMpP5+gMH+L81Z3L+f2rF5GTloQ/oCQn2huPw009vO2rz035vW+8f539EYwxH75xCSXZqXzsB3vYtq+Jbfua+OUnbmJFWbbb0eLWyLgfVVzd0RFVjdqL1dTU6K5du+b8/HF/gB/srOdvth0OW6bUJB//9wM1rFqQTU5aEj4RBsf8pCb6SEzwoaoxX2YHGrr5+cFmDjf2cqylj7a+kTess6Ism6+99yqWFmW6kNCES0vvMJ/+8X6edcYOv2t1KenJiXz6jmWU5tj5+3PlDyivNvXy+ScO88qZCz9rSE70kZzgo39knPWL8xge85ORnEh2WhJpyQmkJfl4yxWlrF+cR2568pxeX0R2q2rNG5bHQoEPjfr56lO1fMM5NjvhIzdXcf/VixgdD7CsJAufTxga9ZOa5MMfULa/2sL3XqzjWEsfo+MBBkbHmes/Ny0pgaGx4ChwG5YXk5maSEV+OjdeVkhVUSYpST7G/UpeehJjfiXBJ/iE8+UfCCgn2vr5/M9e5d/et46ctIuPI3KqrZ8FuWlv+OuuqgQUOgdG2Xm6k7tWl+IPBF/vUGMvX9p+jPdeu5jnatvY+uLFBz369B2X89FbltpVlXHos48d5Nnaduo7By9YfmV5Dh+/vZrblxfbIZbX6Rka41BjD+MB5Yn9TeenCwyX73zoam5bNreJv2O6wP9w6y6ePNICQHFWCl9/3zquWJBDWvLs37qM+wMMjwcYGw/w1NFWCjKTOdzUy388e4pEn9DeH71BglKTfFTkp3O8pT9qr1lZkM4jH7me4mzbG5sPhsf83PO15znWMv1hxpy0JN66qpTi7FSWlWRx/dICctOSGAsEGB4LkJrkIyUxAVXFH1ASE3wEAopM2kGJJd2Doxxs7OGxvY08uqdxVs9dsyiXNy8v5q2rSznc1Mui/HRKslPx+5Vt+xrJTE3kR6+c5dol+fh8Qkf/KCKwemEO91+9iOzUuQ0AN+cCF5FvA3cDraq6ylmWD/wIqATOAPer6oznMM21wP/uZ4f5zvNn+Ou7lrP55qWzfv5cqCrNPcOU5aQyOOqno3+UUb+fU20DPLKr4fwflKzURAozU2jpHWZw1BvjNNcszmNFWTYLctMoyU7hrtVl9oGkYXddJ8+f6OClUx2094+EbcchIzmBgWn+79+3vvz8nmxVYQapSQn0Do9xfVUB53qHeba2nY/cUsXptgFKc1KpLs5kcNTP6fbg4/98qe6CnaqFuWm8aWkBDV1DDI6Os7+h5/z3KvLTKc1OJSXJx5HmXnLTk8/P2xqqtKQE1i/O46qKXK6uzKc8L43KggzX361cSoHfDPQD35tU4P8EdKrqQyKyBchT1b+aKcSlHAMfHvPHVAlNbFcRYdwfYGDUT05aEv0j4yQlCMkJPuo6BlFgYGScxQXpPFvbzpg/QFlOGvkZyfQMjZLg85GRnEBOWhKFmSlM7PAMjvrJSAl+Bj06HrAPZs2sdQ2MkpLkY9eZLn53vI3H9jYyMh6gf2Tc7WgRtSAnlaaeYZITfXzjfeu4qbqIpATx9LuJSzqEIiKVwBOTCvwYcKuqNotIGfC0qi6b6edc6oeYxpjomLwDEggozb3DjPsDLMxNY3DMT2ZyIqfa+8lMSSIjJYGDDT0UZ6eybV8j715XTlluKvvqu7mqIo8XTrYzMh5gaNTPqbZ+DjT2sCA3jYW5afSPjNM7NMbQmJ9lJVl845mTVBZk0No7zLvXl1ORn86e+m4WF6STnOCjMCuFroFRKgrSyUxJZPXCHE609pOalEDP0BjlecHPjQ429LC4IJ1Rf4DirBTa+0cpzEwmMyXR00U9nXAXeLeq5k76fpeq5k3z3M3AZoCKior1dXU2m4gxxszGdAUe8ffdqvqwqtaoak1RUVGkX84YY+aNuRZ4i3PoBOe2NXyRjDHGhGKuBf44sMm5vwnYFp44xhhjQjVjgYvID4EXgWUi0iAiDwIPARtFpBbY6Dw2xhgTRTOOhaKq75nmWxvCnMUYY8ws2MnDxhgTo6zAjTEmRlmBG2NMjIrqYFYi0gZMdyVPIdAetTCzY9nmxqvZvJoLLNtceTVbuHItVtU3XEgT1QK/GBHZNdWVRl5g2ebGq9m8mgss21x5NVukc9khFGOMiVFW4MYYE6O8VOAPux3gIizb3Hg1m1dzgWWbK69mi2guzxwDN8YYMzte2gM3xhgzC1ErcBH5hIgcEpHDIvJJZ9laEXlJRPaJyC4RuWbS+p8RkRMickxE3uKVbCJSKSJDzvJ9IvLvLmRbIyIvishBEfmZiGRPWt/t7TZltkhvNxH5toi0isihScvyRWS7iNQ6t3mTvjfldhKR9U72EyLyVbnE0f/DmOtpZ9nE9pvb7LhzzCYiBSLyWxHpF5Gvve7nhHWbhTmb29tto4jsdrbPbhG5fdJzLn27qWrEv4BVwCEgneD4K08C1cBvgLc669xFcGYfgJXAfiAFWAKcBBI8kq0SOOTydnsFuMVZ58PA33tou02XLaLbDbgZWDf5NYB/ArY497cAX5hpOwE7gesBAX458X/AA7meBmpc3GYZwI3AR4Gvve7nhHWbhTmb29vtKmDBpN+ZxnBut2jtga8AXlLVQVUdB54B3gkoMLH3mAM0OffvAf5bVUdU9TRwAriGyJhttmiaLtsy4HfOOtuBdzv3vbDdpssWUar6O6DzdYvvAbY697cC905a/obtJMGx7bNV9UUN/oZ9b9JzXMt1Ka8frmyqOqCqzwHDk1eOxDYLV7ZImWW2vao60R2HgVQRSQnXdotWgR8Cbnbe6qQT3KNdBHwS+D8ichb4IvAZZ/2FwNlJz29wlnkhG8ASEdkrIs+IyE0RynWxbIeAdzjr3OcsA29st+myQfS224QSVW0GcG4n3j5Pt50WOvdfv9ztXBO+4xwG+F/hOEwxy2zTidY2m0u2CV7Zbu8G9qrqCGHablEpcFU9AnyB4B7Zrwi+TRwH/hj4lKouAj4FfMt5ylQbOSKny8whWzNQoapXAX8G/EAmHYOOUrYPAx8Tkd1AFjDqPMUL2226bFHbbiGYbjtFbftN42Kv/z5VXQ3c5Hx9IGqpLs7tbTYTT2w3EbmC4O/LRyYWTbHarLdb1D7EVNVvqeo6Vb2Z4NuPWoKz+TzqrPJjXnu72MCFe27lRPAQxmyyOW9vO5z7uwkep7w8mtlU9aiq3qGq64EfOhnAA9ttumzR3m6O6ab+m247NTj3X7/c7VyoaqNz2wf8gMgdWpntdInR2mZzyeaJ7SYi5cBjwAdVdfLv6iVvt2iehVLs3FYA7yL4y90E3OKscjvB4oTglG0POMeKlhD8cGynF7KJSJGIJDj3q5xsp6KZbdIyH/A/gYkzOlzfbtNli/Z2c0w39d+U28l569snItc5b7U/SGSmC5xVLhFJFJFCABFJAu4meKgqEmY1XWIUt9mss3lhu4lILvBz4DOq+vzEymHbbuH4VDaUL+BZ4FWCb7U3OMtuBHY7y14G1k9a/7ME99KOEYZPtcOVjeBxrMPO8j3A213I9gnguPP1EM4FWR7ZblNmi/R2I/hHtxkYI7h38yBQAOwg+Md3B5A/03YCagj+kp8EvjZ527qVi+BZFruBA842/AphOLtoDtnOEHyn1e+svzIS2yxc2byw3QjuxAwA+yZ9FYdru9mVmMYYE6PsSkxjjIlRVuDGGBOjrMCNMSZGWYEbY0yMsgI3xpgYZQVujDExygrcGGNilBW4McbEqP8PZ7aYIf7qzfUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(vs_inf[\"energy\"], np.mean(t, axis=0))"
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "33b69235-3eeb-451c-b15c-4f58ae7cd0a5",
"metadata": {},
"outputs": [],
"source": [
"mean_energy = np.sum(energy*np.mean(t, axis=0))/np.sum(np.mean(t, axis=0))"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "c8321e99-cd1c-4959-a3ca-283554ac6e77",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1000.1356563946587"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mean_energy"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "8f3bb1b7-2503-467c-a7b0-388887431581",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"86.6823007000277"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.amax(np.mean(t, axis=0))"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "9bd8186f-0e9c-4c37-96ae-4194643e8da3",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"11.914776639327808"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.median(np.mean(t, axis=0))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3c3ec6bb-8f89-42c4-b666-328d5e569265",
"metadata": {},
"outputs": [],
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "SCS Toolbox (p005576)",
"language": "python",
"name": "toolbox_p005576"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}