Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pes_to_spec
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Machine Learning projects.
pes_to_spec
Commits
08453c3c
Commit
08453c3c
authored
2 years ago
by
Danilo Ferreira de Lima
Browse files
Options
Downloads
Patches
Plain Diff
Clean up.
parent
e92c84ca
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
pes_to_spec/model.py
+22
-27
22 additions, 27 deletions
pes_to_spec/model.py
pes_to_spec/test/offline_analysis.py
+12
-9
12 additions, 9 deletions
pes_to_spec/test/offline_analysis.py
with
34 additions
and
36 deletions
pes_to_spec/model.py
+
22
−
27
View file @
08453c3c
...
...
@@ -9,6 +9,7 @@ from sklearn.decomposition import PCA, IncrementalPCA
from
sklearn.model_selection
import
train_test_split
from
sklearn.base
import
TransformerMixin
,
BaseEstimator
from
itertools
import
product
from
time
import
time_ns
import
matplotlib.pyplot
as
plt
...
...
@@ -142,7 +143,7 @@ class Model(TransformerMixin, BaseEstimator):
self
.
hr_pca
=
PCA
(
n_pca_hr
,
whiten
=
True
)
# PCA unc. in high resolution
self
.
high_pca_unc
:
Optional
[
np
.
ndarray
]
=
None
self
.
high_pca_unc
:
np
.
ndarray
=
np
.
zeros
((
1
,
0
),
dtype
=
float
)
# fit model
self
.
fit_model
=
FitModel
()
...
...
@@ -296,16 +297,22 @@ class Model(TransformerMixin, BaseEstimator):
low_pca
=
self
.
lr_pca
.
fit_transform
(
low_res
)
high_pca
=
self
.
hr_pca
.
fit_transform
(
high_res
)
# split in train and test for PCA uncertainty evaluation
low_pca_train
,
low_pca_test
,
high_pca_train
,
high_pca_test
=
train_test_split
(
low_pca
,
high_pca
,
test_size
=
self
.
validation_size
,
random_state
=
42
)
(
low_pca_train
,
low_pca_test
,
high_pca_train
,
high_pca_test
)
=
train_test_split
(
low_pca
,
high_pca
,
test_size
=
self
.
validation_size
,
random_state
=
42
)
# fit the linear model
self
.
fit_model
.
fit
(
low_pca_train
,
high_pca_train
,
low_pca_test
,
high_pca_test
)
self
.
fit_model
.
fit
(
low_pca_train
,
high_pca_train
,
low_pca_test
,
high_pca_test
)
high_pca_rec
=
self
.
hr_pca
.
inverse_transform
(
high_pca
)
self
.
high_pca_unc
=
np
.
sqrt
(
np
.
mean
((
high_res
-
high_pca_rec
)
**
2
,
axis
=
0
,
keepdims
=
True
))
return
high_res
def
predict
(
self
,
low_res_data
:
Dict
[
str
,
np
.
ndarray
])
->
np
.
ndarray
:
def
predict
(
self
,
low_res_data
:
Dict
[
str
,
np
.
ndarray
])
->
Dict
[
str
,
np
.
ndarray
]
:
"""
Predict a high-resolution spectrum from a low resolution given one.
The output includes the uncertainty in its second and third entries of the first dimension.
...
...
@@ -313,25 +320,22 @@ class Model(TransformerMixin, BaseEstimator):
Args:
low_res_data: Low resolution data as in the fit step with shape (train_id, channel, ToF channel).
Returns: High resolution data with shape (train_id,
ToF
channel
, 3).
T
he
component 0 of the last dimension is the predicted spectrum.
Components 1 and 2 correspond to two sources of uncertainty
.
Returns: High resolution data with shape (train_id,
energy
channel
) in a dictionary containing
t
he
expected prediction in key
"
expected
"
, the stat. uncertainty in key
"
unc
"
and
a (1, energy channel) array for the PCA syst. uncertainty in key
"
pca
"
.
"""
low_res
=
self
.
preprocess_low_res
(
low_res_data
)
low_pca
=
self
.
lr_pca
.
transform
(
low_res
)
n_trains
=
low_res
.
shape
[
0
]
# Get high res.
high_pca
=
self
.
fit_model
.
predict
(
low_pca
)
high_res_predicted
=
self
.
hr_pca
.
inverse_transform
(
high_pca
[
"
Y
"
])
n_high_res_features
=
high_res_predicted
.
shape
[
1
]
high_res_unc
=
(
self
.
hr_pca
.
inverse_transform
(
high_pca
[
"
Y
"
]
+
high_pca
[
"
Y_eps
"
])
-
high_res_predicted
)
result
=
np
.
stack
((
high_res_predicted
,
high_res_unc
,
np
.
broadcast_to
(
self
.
high_pca_unc
,
(
n_trains
,
n_high_res_features
))),
axis
=
2
)
return
result
n_trains
=
low_pca
.
shape
[
0
]
pca_y
=
np
.
concatenate
((
high_pca
[
"
Y
"
],
high_pca
[
"
Y
"
]
+
high_pca
[
"
Y_eps
"
]),
axis
=
0
)
high_res_predicted
=
self
.
hr_pca
.
inverse_transform
(
pca_y
)
expected
=
high_res_predicted
[:
n_trains
,
:]
unc
=
high_res_predicted
[
n_trains
:,
:]
-
expected
return
dict
(
expected
=
expected
,
unc
=
unc
,
pca
=
self
.
high_pca_unc
)
def
save
(
self
,
filename
:
str
):
"""
...
...
@@ -557,14 +561,5 @@ class FitModel(object):
result
[
"
Y_unc
"
]
=
self
.
u_inf
[
0
,:]
# input-dependent uncertainty
result
[
"
Y_eps
"
]
=
np
.
exp
(
X
@
self
.
A_eps
+
result
[
"
Y_unc
"
])
#self.result["res"] = self.model["spec_pca_model"].inverse_transform(self.result["res_pca"]) # transform PCA space to real space
#self.result["res_unc"] = self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] + self.model["u_inf"]) - self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] )
#self.result["res_unc"] = np.fabs(self.result["res_unc"])
#self.result["res_eps"] = self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] + self.result["res_pca_eps"]) - self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] )
#self.result["res_eps"] = np.fabs(self.result["res_eps"])
#self.Yhat_pca = self.model["spec_pca_model"].inverse_transform(self.model["Y_test"])
#self.result["res_unc_specpca"] = np.sqrt(((self.Yhat_pca - self.model["spec_target"])**2).mean(axis=0))
#self.result["res_unc_total"] = np.sqrt(self.result["res_eps"]**2 + self.result["res_unc_specpca"]**2)
return
result
This diff is collapsed.
Click to expand it.
pes_to_spec/test/offline_analysis.py
+
12
−
9
View file @
08453c3c
...
...
@@ -15,7 +15,7 @@ matplotlib.use('Agg')
import
matplotlib.pyplot
as
plt
from
matplotlib.gridspec
import
GridSpec
from
typing
import
Optional
from
typing
import
Dict
,
Optional
from
time
import
time_ns
import
pandas
as
pd
...
...
@@ -40,13 +40,13 @@ def plot_pes(filename: str, pes_raw_int: np.ndarray):
fig
.
savefig
(
filename
)
plt
.
close
(
fig
)
def
plot_result
(
filename
:
str
,
spec_pred
:
np
.
ndarray
,
spec_smooth
:
np
.
ndarray
,
spec_raw_pe
:
np
.
ndarray
,
spec_raw_int
:
Optional
[
np
.
ndarray
]
=
None
):
def
plot_result
(
filename
:
str
,
spec_pred
:
Dict
[
str
,
np
.
ndarray
]
,
spec_smooth
:
np
.
ndarray
,
spec_raw_pe
:
np
.
ndarray
,
spec_raw_int
:
Optional
[
np
.
ndarray
]
=
None
):
"""
Plot result with uncertainty band.
Args:
filename: Output file name.
spec_pred: Predicted result with uncertainty bands in a
shape of (3, features)
.
spec_pred: Predicted result with uncertainty bands in a
dictionary
.
spec_smooth: Smoothened expected result with shape (features,).
spec_raw_pe: x axis with the photon energy in eV.
spec_raw_int: Original true expected result with shape (features,).
...
...
@@ -55,15 +55,16 @@ def plot_result(filename: str, spec_pred: np.ndarray, spec_smooth: np.ndarray, s
fig
=
plt
.
figure
(
figsize
=
(
16
,
8
))
gs
=
GridSpec
(
1
,
1
)
ax
=
fig
.
add_subplot
(
gs
[
0
,
0
])
eps
=
np
.
mean
(
spec_pred
[:,
1
])
unc_stat
=
np
.
mean
(
spec_pred
[
"
unc
"
])
unc_pca
=
np
.
mean
(
spec_pred
[
"
pca
"
])
ax
.
plot
(
spec_raw_pe
,
spec_smooth
,
c
=
'
b
'
,
lw
=
3
,
label
=
"
High-resolution measurement (smoothened)
"
)
ax
.
plot
(
spec_raw_pe
,
spec_pred
[
:,
0
],
c
=
'
r
'
,
lw
=
3
,
label
=
"
High-resolution prediction
"
)
ax
.
fill_between
(
spec_raw_pe
,
spec_pred
[
:,
0
]
-
spec_pred
[
:,
1
],
spec_pred
[
:,
0
]
+
spec_pred
[
:,
1
],
facecolor
=
'
red
'
,
alpha
=
0.6
,
label
=
"
68% unc. (stat.)
"
)
ax
.
fill_between
(
spec_raw_pe
,
spec_pred
[
:,
0
]
-
spec_pred
[
:,
2
],
spec_pred
[
:,
0
]
+
spec_pred
[
:,
2
],
facecolor
=
'
magenta
'
,
alpha
=
0.6
,
label
=
"
68% unc. (syst., PCA)
"
)
ax
.
plot
(
spec_raw_pe
,
spec_pred
[
"
expected
"
],
c
=
'
r
'
,
lw
=
3
,
label
=
"
High-resolution prediction
"
)
ax
.
fill_between
(
spec_raw_pe
,
spec_pred
[
"
expected
"
]
-
spec_pred
[
"
unc
"
],
spec_pred
[
"
expected
"
]
+
spec_pred
[
"
unc
"
],
facecolor
=
'
red
'
,
alpha
=
0.6
,
label
=
"
68% unc. (stat.)
"
)
ax
.
fill_between
(
spec_raw_pe
,
spec_pred
[
"
expected
"
]
-
spec_pred
[
"
pca
"
],
spec_pred
[
"
expected
"
]
+
spec_pred
[
"
pca
"
],
facecolor
=
'
magenta
'
,
alpha
=
0.6
,
label
=
"
68% unc. (syst., PCA)
"
)
if
spec_raw_int
is
not
None
:
ax
.
plot
(
spec_raw_pe
,
spec_raw_int
,
c
=
'
b
'
,
lw
=
1
,
ls
=
'
--
'
,
label
=
"
High-resolution measurement
"
)
ax
.
legend
()
ax
.
set
(
title
=
f
"
avg(unc) =
{
eps
}
"
,
ax
.
set
(
title
=
f
"
avg(
stat
unc) =
{
unc_stat
}
, avg(pca unc) =
{
unc_pca
}
"
,
xlabel
=
"
Photon energy [eV]
"
,
ylabel
=
"
Intensity
"
)
fig
.
savefig
(
filename
)
...
...
@@ -167,7 +168,9 @@ def main():
for
tid
in
test_tids
:
idx
=
np
.
where
(
tid
==
tids
)[
0
][
0
]
plot_result
(
f
"
test_
{
tid
}
.png
"
,
spec_pred
[
idx
,
:,
:],
{
k
:
item
[
idx
,
...]
if
k
!=
"
pca
"
else
item
[
0
,
...]
for
k
,
item
in
spec_pred
.
items
()},
spec_smooth
[
idx
,
:],
spec_raw_pe
[
idx
,
:],
spec_raw_int
[
idx
,
:])
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment