Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pes_to_spec
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Machine Learning projects.
pes_to_spec
Commits
1dfda8ed
Commit
1dfda8ed
authored
2 years ago
by
Danilo Ferreira de Lima
Browse files
Options
Downloads
Patches
Plain Diff
Using channel relevance as a per channel indicator of compatibility.
parent
7d76f17b
No related branches found
No related tags found
1 merge request
!6
Use relevance per channel as a measurement of channel-compatibility
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
pes_to_spec/model.py
+44
-25
44 additions, 25 deletions
pes_to_spec/model.py
pes_to_spec/test/offline_analysis.py
+2
-0
2 additions, 0 deletions
pes_to_spec/test/offline_analysis.py
with
46 additions
and
25 deletions
pes_to_spec/model.py
+
44
−
25
View file @
1dfda8ed
...
...
@@ -545,10 +545,8 @@ class Model(TransformerMixin, BaseEstimator):
#self.fit_model = FitModel()
self
.
fit_model
=
MultiOutputWithStd
(
ARDRegression
(
n_iter
=
30
,
tol
=
1e-4
,
verbose
=
True
))
self
.
channel_pca_model
=
{
channel
:
Pipeline
([(
'
pca
'
,
PCA
(
n_pca_lr
,
whiten
=
True
)),
(
'
unc
'
,
UncertaintyHolder
()),
])
for
channel
in
channels
}
self
.
channel_mean
=
{
ch
:
np
.
nan
for
ch
in
channels
}
self
.
channel_relevance
=
{
ch
:
np
.
nan
for
ch
in
channels
}
# size of the test subset
self
.
validation_size
=
validation_size
...
...
@@ -629,20 +627,28 @@ class Model(TransformerMixin, BaseEstimator):
self
.
x_model
[
'
unc
'
].
set_uncertainty
(
low_pca_unc
)
# for consistency check per channel
print
(
"
Calculate PCA per channel on low-resolution data.
"
)
selection_model
=
self
.
x_model
[
'
select
'
]
low_res
=
selection_model
.
transform
(
low_res_data
,
keep_dictionary_structure
=
True
)
for
channel
in
self
.
get_channels
():
print
(
f
"
Calculate PCA on
{
channel
}
"
)
low_pca
=
self
.
channel_pca_model
[
channel
].
named_steps
[
"
pca
"
].
fit_transform
(
low_res
[
channel
])
low_pca_rec
=
self
.
channel_pca_model
[
channel
].
named_steps
[
"
pca
"
].
inverse_transform
(
low_pca
)
low_pca_unc
=
np
.
mean
(
np
.
sqrt
(
np
.
mean
((
low_res
[
channel
]
-
low_pca_rec
)
**
2
,
axis
=
1
,
keepdims
=
True
)),
axis
=
0
,
keepdims
=
True
)
self
.
channel_pca_model
[
channel
][
'
unc
'
].
set_uncertainty
(
low_pca_unc
)
self
.
channel_mean
[
channel
]
=
np
.
mean
(
low_res_data
[
channel
],
axis
=
0
,
keepdims
=
True
)
print
(
f
"
Calculate PCA relevance on
{
channel
}
"
)
# freeze input data in one channel only
low_res_data_frozen
=
{
ch
:
low_res_data
[
ch
]
if
ch
!=
channel
else
np
.
repeat
(
self
.
channel_mean
[
channel
],
low_res_data
[
ch
].
shape
[
0
],
axis
=
0
)
for
ch
in
self
.
get_channels
()}
low_res
=
selection_model
.
transform
(
low_res_data_frozen
)
low_pca
=
pca_model
.
fit_transform
(
low_res
)
low_pca_rec
=
pca_model
.
inverse_transform
(
low_pca
)
low_pca_unc
=
np
.
mean
(
np
.
sqrt
(
np
.
mean
((
low_res
-
low_pca_rec
)
**
2
,
axis
=
1
,
keepdims
=
True
)),
axis
=
0
,
keepdims
=
True
)
self
.
channel_relevance
[
channel
]
=
low_pca_unc
print
(
"
End of fit.
"
)
return
high_res
def
get_channel_quality
(
self
,
channel
:
str
,
low_res
:
Dict
[
str
,
np
.
ndarray
],
channel_pca_model
:
Dict
[
str
,
Pipeline
])
->
float
:
def
get_channel_quality
(
self
,
channel
:
str
,
low_res_data
:
Dict
[
str
,
np
.
ndarray
],
pca_model
:
PCA
,
channel_relevance
:
Dict
[
str
,
float
],
selection_model
:
SelectRelevantLowResolution
,
channel_mean
:
Dict
[
str
,
np
.
ndarray
])
->
float
:
"""
Get the compatibility for a single channel.
...
...
@@ -653,11 +659,15 @@ class Model(TransformerMixin, BaseEstimator):
Returns: the compatibility factor.
"""
pca_model
=
channel_pca_model
[
channel
].
named_steps
[
'
pca
'
]
low_pca
=
pca_model
.
transform
(
low_res
[
channel
])
# freeze input data in one channel only
low_res_data_frozen
=
{
ch
:
low_res_data
[
ch
]
if
ch
!=
channel
else
np
.
repeat
(
channel_mean
[
channel
],
low_res_data
[
ch
].
shape
[
0
],
axis
=
0
)
for
ch
in
low_res_data
.
keys
()}
low_res_selected
=
selection_model
.
transform
(
low_res_data_frozen
)
low_pca
=
pca_model
.
transform
(
low_res_selected
)
low_pca_rec
=
pca_model
.
inverse_transform
(
low_pca
)
low_pca_unc
=
channel_
pca_model
[
channel
].
named_steps
[
'
unc
'
].
uncertainty
()
low_pca_dev
=
np
.
sqrt
(
np
.
mean
((
low_res
[
channel
]
-
low_pca_rec
)
**
2
,
axis
=
1
,
keepdims
=
True
))
low_pca_unc
=
channel_
relevance
[
channel
]
low_pca_dev
=
np
.
sqrt
(
np
.
mean
((
low_res
_selected
-
low_pca_rec
)
**
2
,
axis
=
1
,
keepdims
=
True
))
return
low_pca_dev
/
low_pca_unc
def
check_compatibility_per_channel
(
self
,
low_res_data
:
Dict
[
str
,
np
.
ndarray
])
->
Dict
[
str
,
np
.
ndarray
]:
...
...
@@ -671,12 +681,19 @@ class Model(TransformerMixin, BaseEstimator):
Returns: Ratio of root-mean-squared-error of the data reconstruction using the existing PCA model and the one from the original model per channel.
"""
selection_model
=
self
.
x_model
[
'
select
'
]
low_res
=
selection_model
.
transform
(
low_res_data
,
keep_dictionary_structure
=
True
)
quality
=
{
channel
:
0.0
for
channel
in
low_res
.
keys
()}
channels
=
list
(
low_res
.
keys
())
#with mp.Pool(len(low_res.keys())) as p:
# values = p.map(partial(self.get_channel_quality, low_res=low_res, channel_pca_model=self.channel_pca_model), channels)
values
=
map
(
partial
(
self
.
get_channel_quality
,
low_res
=
low_res
,
channel_pca_model
=
self
.
channel_pca_model
),
channels
)
quality
=
{
channel
:
0.0
for
channel
in
low_res_data
.
keys
()}
channels
=
list
(
low_res_data
.
keys
())
pca_model
=
self
.
x_model
[
'
pca
'
]
if
'
fex
'
in
self
.
x_model
.
named_steps
:
pca_model
=
self
.
x_model
[
'
fex
'
].
named_steps
[
'
prepca
'
]
#with mp.Pool(len(low_res_data.keys())) as p:
values
=
map
(
partial
(
self
.
get_channel_quality
,
low_res_data
=
low_res_data
,
pca_model
=
pca_model
,
channel_relevance
=
self
.
channel_relevance
,
selection_model
=
selection_model
,
channel_mean
=
self
.
channel_mean
),
channels
)
quality
=
dict
(
zip
(
channels
,
values
))
return
quality
...
...
@@ -754,7 +771,8 @@ class Model(TransformerMixin, BaseEstimator):
joblib
.
dump
([
self
.
x_model
,
self
.
y_model
,
self
.
fit_model
,
self
.
channel_pca_model
self
.
channel_mean
,
self
.
channel_relevance
],
filename
,
compress
=
'
zlib
'
)
@staticmethod
...
...
@@ -767,11 +785,12 @@ class Model(TransformerMixin, BaseEstimator):
Returns: A new model object.
"""
x_model
,
y_model
,
fit_model
,
channel_
pca_model
=
joblib
.
load
(
filename
)
x_model
,
y_model
,
fit_model
,
channel_
mean
,
channel_relevance
=
joblib
.
load
(
filename
)
obj
=
Model
()
obj
.
x_model
=
x_model
obj
.
y_model
=
y_model
obj
.
fit_model
=
fit_model
obj
.
channel_pca_model
=
channel_pca_model
obj
.
channel_mean
=
channel_mean
obj
.
channel_relevance
=
channel_relevance
return
obj
This diff is collapsed.
Click to expand it.
pes_to_spec/test/offline_analysis.py
+
2
−
0
View file @
1dfda8ed
...
...
@@ -198,6 +198,8 @@ def main():
start
=
time_ns
()
rmse
=
model
.
check_compatibility
(
pes_raw_t
)
print
(
"
Consistency check RMSE ratios:
"
,
rmse
)
rmse
=
model
.
check_compatibility_per_channel
(
pes_raw_t
)
print
(
"
Consistency per channel check RMSE ratios:
"
,
rmse
)
t
+=
[
time_ns
()
-
start
]
t_names
+=
[
"
Consistency
"
]
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment