Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pes_to_spec
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Machine Learning projects.
pes_to_spec
Commits
34f1e4f0
Commit
34f1e4f0
authored
2 years ago
by
Danilo Ferreira de Lima
Browse files
Options
Downloads
Patches
Plain Diff
Added automatic peak finding and producing debug plots to test it.
parent
ff1a99d6
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
pes_to_spec/model.py
+72
-3
72 additions, 3 deletions
pes_to_spec/model.py
scripts/test_analysis.py
+3
-1
3 additions, 1 deletion
scripts/test_analysis.py
with
75 additions
and
4 deletions
pes_to_spec/model.py
+
72
−
3
View file @
34f1e4f0
...
@@ -4,10 +4,15 @@ from autograd import grad
...
@@ -4,10 +4,15 @@ from autograd import grad
import
joblib
import
joblib
import
h5py
import
h5py
from
scipy.signal
import
fftconvolve
from
scipy.signal
import
fftconvolve
from
scipy.signal
import
find_peaks_cwt
from
scipy.optimize
import
fmin_l_bfgs_b
from
scipy.optimize
import
fmin_l_bfgs_b
from
sklearn.decomposition
import
PCA
,
IncrementalPCA
from
sklearn.decomposition
import
PCA
,
IncrementalPCA
from
sklearn.model_selection
import
train_test_split
from
sklearn.model_selection
import
train_test_split
import
logging
import
matplotlib.pyplot
as
plt
from
typing
import
Any
,
Dict
,
List
,
Optional
from
typing
import
Any
,
Dict
,
List
,
Optional
def
matching_ids
(
a
:
np
.
ndarray
,
b
:
np
.
ndarray
,
c
:
np
.
ndarray
)
->
np
.
ndarray
:
def
matching_ids
(
a
:
np
.
ndarray
,
b
:
np
.
ndarray
,
c
:
np
.
ndarray
)
->
np
.
ndarray
:
...
@@ -15,6 +20,15 @@ def matching_ids(a: np.ndarray, b: np.ndarray, c: np.ndarray) -> np.ndarray:
...
@@ -15,6 +20,15 @@ def matching_ids(a: np.ndarray, b: np.ndarray, c: np.ndarray) -> np.ndarray:
unique_ids
=
list
(
set
(
a
).
intersection
(
b
).
intersection
(
c
))
unique_ids
=
list
(
set
(
a
).
intersection
(
b
).
intersection
(
c
))
return
np
.
array
(
unique_ids
)
return
np
.
array
(
unique_ids
)
class
PromptNotFoundError
(
Exception
):
"""
Exception representing the error condition generated by not finding the prompt peak.
"""
def
__init__
(
self
):
pass
def
__str__
(
self
)
->
str
:
return
"
No prompt peak has been detected.
"
class
Model
(
object
):
class
Model
(
object
):
"""
"""
Object representing a previous fit of the model to be used to predict high-resolution
Object representing a previous fit of the model to be used to predict high-resolution
...
@@ -48,7 +62,7 @@ class Model(object):
...
@@ -48,7 +62,7 @@ class Model(object):
self
.
n_pca_hr
=
n_pca_hr
self
.
n_pca_hr
=
n_pca_hr
# PCA models
# PCA models
self
.
lr_pca
=
IncrementalPCA
(
n_pca_lr
,
whiten
=
True
,
batch_size
=
n_pca_lr
)
self
.
lr_pca
=
IncrementalPCA
(
n_pca_lr
,
whiten
=
True
)
self
.
hr_pca
=
PCA
(
n_pca_hr
,
whiten
=
True
)
self
.
hr_pca
=
PCA
(
n_pca_hr
,
whiten
=
True
)
# PCA unc. in high resolution
# PCA unc. in high resolution
...
@@ -81,8 +95,10 @@ class Model(object):
...
@@ -81,8 +95,10 @@ class Model(object):
Returns: Concatenated and pre-processed low-resolution data of shape (train_id, features).
Returns: Concatenated and pre-processed low-resolution data of shape (train_id, features).
"""
"""
items
=
[
low_res_data
[
k
]
for
k
in
self
.
channels
]
items
=
[
low_res_data
[
k
]
for
k
in
self
.
channels
]
if
self
.
tof_start
is
not
None
and
self
.
delta_tof
is
not
None
:
if
self
.
delta_tof
is
not
None
:
items
=
[
item
[:,
self
.
tof_start
:(
self
.
tof_start
+
self
.
delta_tof
)]
for
item
in
items
]
items
=
[
item
[:,
self
.
tof_start
:(
self
.
tof_start
+
self
.
delta_tof
)]
for
item
in
items
]
else
:
items
=
[
item
[:,
self
.
tof_start
:]
for
item
in
items
]
cat
=
np
.
concatenate
(
items
,
axis
=
1
)
cat
=
np
.
concatenate
(
items
,
axis
=
1
)
return
cat
return
cat
...
@@ -104,6 +120,53 @@ class Model(object):
...
@@ -104,6 +120,53 @@ class Model(object):
high_res_gc
=
fftconvolve
(
high_res_data
,
gaussian
,
mode
=
"
same
"
,
axes
=
1
)
high_res_gc
=
fftconvolve
(
high_res_data
,
gaussian
,
mode
=
"
same
"
,
axes
=
1
)
return
high_res_gc
return
high_res_gc
def
estimate_prompt_peak
(
self
,
low_res_data
:
Dict
[
str
,
np
.
ndarray
])
->
int
:
"""
Estimate the prompt peak index.
Args:
low_res_data: Low resolution data with a dictionary containing the channel names.
Returns: The prompt peak index.
"""
# reduce on channel and on train ID
sum_low_res
=
-
np
.
mean
(
sum
(
list
(
low_res_data
.
values
())),
axis
=
0
)
widths
=
np
.
arange
(
10
,
50
,
step
=
5
)
peak_idx
=
find_peaks_cwt
(
sum_low_res
,
widths
)
if
len
(
peak_idx
)
<
1
:
raise
PromptNotFoundError
()
peak_idx
=
sorted
(
peak_idx
,
key
=
lambda
k
:
np
.
fabs
(
sum_low_res
[
k
]),
reverse
=
True
)
return
peak_idx
[
0
]
def
debug_peak_finding
(
self
,
low_res_data
:
Dict
[
str
,
np
.
ndarray
],
filename
:
str
):
"""
Produce image to understand if the peak finding step worked well.
Args:
low_res_data: Low resolution data with a dictionary containing the channel names.
filename: The file name where to save the plot.
"""
sum_low_res
=
-
np
.
mean
(
sum
(
list
(
low_res_data
.
values
())),
axis
=
0
)
peak_idx
=
self
.
estimate_prompt_peak
(
low_res_data
)
fig
=
plt
.
figure
(
figsize
=
(
8
,
16
))
ax
=
plt
.
gca
()
ax
.
plot
(
np
.
arange
(
peak_idx
-
100
,
peak_idx
+
300
),
sum_low_res
[
peak_idx
-
100
:
peak_idx
+
300
],
c
=
"
b
"
,
label
=
"
Data
"
)
ax
.
set
(
title
=
""
,
xlabel
=
"
Photon Spectrometer channel
"
,
ylabel
=
"
Sum of all Photon Spectrometer channels
"
)
plt
.
axvline
(
100
,
linewidth
=
3
,
ls
=
"
--
"
,
color
=
'
r
'
,
label
=
"
Peak position
"
)
ax
.
legend
()
plt
.
savefig
(
filename
)
plt
.
close
(
fig
)
def
fit
(
self
,
low_res_data
:
Dict
[
str
,
np
.
ndarray
],
high_res_data
:
np
.
ndarray
,
high_res_photon_energy
:
np
.
ndarray
)
->
np
.
ndarray
:
def
fit
(
self
,
low_res_data
:
Dict
[
str
,
np
.
ndarray
],
high_res_data
:
np
.
ndarray
,
high_res_photon_energy
:
np
.
ndarray
)
->
np
.
ndarray
:
"""
"""
Train the model.
Train the model.
...
@@ -118,12 +181,18 @@ class Model(object):
...
@@ -118,12 +181,18 @@ class Model(object):
self
.
high_res_photon_energy
=
high_res_photon_energy
self
.
high_res_photon_energy
=
high_res_photon_energy
print
(
"
Find peaks.
"
)
# if the prompt peak has not been given, guess it
if
self
.
tof_start
is
None
:
self
.
tof_start
=
self
.
estimate_prompt_peak
(
low_res_data
)
print
(
"
Prompt at
"
,
self
.
tof_start
)
print
(
"
Pre-processing low
"
)
print
(
"
Pre-processing low
"
)
low_res
=
self
.
preprocess_low_res
(
low_res_data
)
low_res
=
self
.
preprocess_low_res
(
low_res_data
)
print
(
"
Pre-processing high
"
)
print
(
"
Pre-processing high
"
)
high_res
=
self
.
preprocess_high_res
(
high_res_data
,
high_res_photon_energy
)
high_res
=
self
.
preprocess_high_res
(
high_res_data
,
high_res_photon_energy
)
# fit PCA
# fit PCA
print
(
"
PCA low
"
)
print
(
"
PCA low
"
,
low_res
.
shape
)
low_pca
=
self
.
lr_pca
.
fit_transform
(
low_res
)
low_pca
=
self
.
lr_pca
.
fit_transform
(
low_res
)
print
(
"
PCA high
"
)
print
(
"
PCA high
"
)
high_pca
=
self
.
hr_pca
.
fit_transform
(
high_res
)
high_pca
=
self
.
hr_pca
.
fit_transform
(
high_res
)
...
...
This diff is collapsed.
Click to expand it.
scripts/test_analysis.py
+
3
−
1
View file @
34f1e4f0
...
@@ -111,10 +111,12 @@ def main():
...
@@ -111,10 +111,12 @@ def main():
n_pca_hr
=
20
,
n_pca_hr
=
20
,
high_res_sigma
=
0.2
,
high_res_sigma
=
0.2
,
tof_start
=
None
,
tof_start
=
None
,
delta_tof
=
None
,
delta_tof
=
400
,
validation_size
=
0.05
)
validation_size
=
0.05
)
train_idx
=
np
.
isin
(
tids
,
train_tids
)
train_idx
=
np
.
isin
(
tids
,
train_tids
)
model
.
debug_peak_finding
(
pes_raw
,
"
test_peak_finding.png
"
)
print
(
"
Fitting
"
)
print
(
"
Fitting
"
)
model
.
fit
({
k
:
v
[
train_idx
,
:]
for
k
,
v
in
pes_raw
.
items
()},
spec_raw_int
[
train_idx
,
:],
spec_raw_pe
[
train_idx
,
:])
model
.
fit
({
k
:
v
[
train_idx
,
:]
for
k
,
v
in
pes_raw
.
items
()},
spec_raw_int
[
train_idx
,
:],
spec_raw_pe
[
train_idx
,
:])
spec_smooth
=
model
.
preprocess_high_res
(
spec_raw_int
,
spec_raw_pe
)
spec_smooth
=
model
.
preprocess_high_res
(
spec_raw_int
,
spec_raw_pe
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment