Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pes_to_spec
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Machine Learning projects.
pes_to_spec
Commits
3b1b5aa3
Commit
3b1b5aa3
authored
2 years ago
by
Danilo Ferreira de Lima
Browse files
Options
Downloads
Patches
Plain Diff
Added pre-PCA step before Nystroem to reduce the dimensionality in advance.
parent
2e3f6d06
No related branches found
No related tags found
1 merge request
!3
Added kernel approximation with the Nystroem sub-space projection method as an alternative
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
pes_to_spec/model.py
+26
-27
26 additions, 27 deletions
pes_to_spec/model.py
with
26 additions
and
27 deletions
pes_to_spec/model.py
+
26
−
27
View file @
3b1b5aa3
...
...
@@ -502,31 +502,32 @@ class Model(TransformerMixin, BaseEstimator):
def
__init__
(
self
,
channels
:
List
[
str
]
=
[
f
"
channel_
{
j
}
_
{
k
}
"
for
j
,
k
in
product
(
range
(
1
,
5
),
[
"
A
"
,
"
B
"
,
"
C
"
,
"
D
"
])],
n_pca_lr
:
int
=
10
00
,
n_pca_hr
:
int
=
4
0
,
n_pca_lr
:
int
=
6
00
,
n_pca_hr
:
int
=
2
0
,
high_res_sigma
:
float
=
0.2
,
tof_start
:
Optional
[
int
]
=
None
,
delta_tof
:
Optional
[
int
]
=
300
,
validation_size
:
float
=
0.05
,
n_nonlinear_kernel
:
int
=
10
000
):
n_nonlinear_kernel
:
int
=
5
000
):
# models
self
.
x_model
=
Pipeline
([
(
'
select
'
,
SelectRelevantLowResolution
(
channels
,
tof_start
,
delta_tof
)),
(
'
pca
'
,
PCA
(
n_pca_lr
,
whiten
=
True
)),
(
'
unc
'
,
UncertaintyHolder
()),
])
x_model_steps
=
list
()
x_model_steps
+=
[(
'
select
'
,
SelectRelevantLowResolution
(
channels
,
tof_start
,
delta_tof
))]
if
n_nonlinear_kernel
>
0
:
x_model_steps
+=
[(
'
fex
'
,
Pipeline
([(
'
prepca
'
,
PCA
(
n_pca_lr
,
whiten
=
True
)),
(
'
nystroem
'
,
Nystroem
(
n_components
=
n_nonlinear_kernel
,
kernel
=
'
rbf
'
,
gamma
=
None
,
n_jobs
=-
1
)),
]))]
x_model_steps
+=
[
(
'
pca
'
,
PCA
(
n_pca_lr
,
whiten
=
True
)),
(
'
unc
'
,
UncertaintyHolder
()),
]
self
.
x_model
=
Pipeline
(
x_model_steps
)
self
.
y_model
=
Pipeline
([
(
'
smoothen
'
,
HighResolutionSmoother
(
high_res_sigma
)),
(
'
pca
'
,
PCA
(
n_pca_hr
,
whiten
=
True
)),
(
'
unc
'
,
UncertaintyHolder
()),
])
fit_steps
=
list
()
if
n_nonlinear_kernel
>
0
:
fit_steps
+=
[(
'
fex
'
,
Nystroem
(
n_components
=
n_nonlinear_kernel
,
kernel
=
'
rbf
'
,
gamma
=
None
,
n_jobs
=-
1
))]
#fit_steps += [('regression', FitModel())]
fit_steps
+=
[(
'
regression
'
,
MultiOutputWithStd
(
ARDRegression
(
n_iter
=
30
,
verbose
=
True
)))]
#fit_steps += [('regression', MultiOutputWithStd(LinearSVR(verbose=10, max_iter=2000, tol=1e-5)))]
self
.
fit_model
=
Pipeline
(
fit_steps
)
#self.fit_model = FitModel()
self
.
fit_model
=
MultiOutputWithStd
(
ARDRegression
(
n_iter
=
30
,
verbose
=
True
))
# size of the test subset
self
.
validation_size
=
validation_size
...
...
@@ -581,12 +582,11 @@ class Model(TransformerMixin, BaseEstimator):
self
.
y_model
[
'
unc
'
].
set_uncertainty
(
high_pca_unc
)
low_res
=
self
.
x_model
[
'
select
'
].
transform
(
low_res_data
)
low_pca
=
self
.
x_model
[
'
pca
'
].
transform
(
low_res
)
if
isinstance
(
self
.
x_model
[
'
pca
'
],
FeatureUnion
):
n
=
self
.
x_model
[
'
pca
'
].
transformer_list
[
0
][
1
].
n_components
low_pca_rec
=
self
.
x_model
[
'
pca
'
].
transformer_list
[
0
][
1
].
inverse_transform
(
low_pca
[:,
:
n
])
else
:
low_pca_rec
=
self
.
x_model
[
'
pca
'
].
inverse_transform
(
low_pca
)
pca_model
=
self
.
x_model
[
'
pca
'
]
if
'
fex
'
in
self
.
x_model
.
named_steps
:
pca_model
=
self
.
x_model
[
'
fex
'
].
named_steps
[
'
prepca
'
]
low_pca
=
pca_model
.
transform
(
low_res
)
low_pca_rec
=
pca_model
.
inverse_transform
(
low_pca
)
low_pca_unc
=
np
.
mean
(
np
.
sqrt
(
np
.
mean
((
low_res
-
low_pca_rec
)
**
2
,
axis
=
1
,
keepdims
=
True
)),
axis
=
0
,
keepdims
=
True
)
self
.
x_model
[
'
unc
'
].
set_uncertainty
(
low_pca_unc
)
...
...
@@ -603,12 +603,11 @@ class Model(TransformerMixin, BaseEstimator):
Returns: Ratio of root-mean-squared-error of the data reconstruction using the existing PCA model and the one from the original model.
"""
low_res
=
self
.
x_model
[
'
select
'
].
transform
(
low_res_data
)
low_pca
=
self
.
x_model
[
'
pca
'
].
transform
(
low_res
)
if
isinstance
(
self
.
x_model
[
'
pca
'
],
FeatureUnion
):
n
=
self
.
x_model
[
'
pca
'
].
transformer_list
[
0
][
1
].
n_components
low_pca_rec
=
self
.
x_model
[
'
pca
'
].
transformer_list
[
0
][
1
].
inverse_transform
(
low_pca
[:,
:
n
])
else
:
low_pca_rec
=
self
.
x_model
[
'
pca
'
].
inverse_transform
(
low_pca
)
pca_model
=
self
.
x_model
[
'
pca
'
]
if
'
fex
'
in
self
.
x_model
.
named_steps
:
pca_model
=
self
.
x_model
[
'
fex
'
].
named_steps
[
'
prepca
'
]
low_pca
=
pca_model
.
transform
(
low_res
)
low_pca_rec
=
pca_model
.
inverse_transform
(
low_pca
)
low_pca_unc
=
self
.
x_model
[
'
unc
'
].
uncertainty
()
#fig = plt.figure(figsize=(8, 16))
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment