Skip to content
Snippets Groups Projects
Commit 6b5af7b1 authored by Danilo Ferreira de Lima's avatar Danilo Ferreira de Lima
Browse files

Record time taken for test. Remove unnecessary variables when writing model to HDF5 file.

parent d8405649
No related branches found
No related tags found
No related merge requests found
......@@ -128,7 +128,7 @@ class Model(TransformerMixin, BaseEstimator):
channels:List[str]=[f"channel_{j}_{k}"
for j, k in product(range(1, 5), ["A", "B", "C", "D"])],
n_pca_lr: int=600,
n_pca_hr: int=40,
n_pca_hr: int=20,
high_res_sigma: float=0.2,
tof_start: Optional[int]=None,
delta_tof: Optional[int]=300,
......@@ -284,7 +284,7 @@ class Model(TransformerMixin, BaseEstimator):
Returns: Smoothened high resolution spectrum.
"""
self.high_res_photon_energy = high_res_photon_energy
self.high_res_photon_energy = high_res_photon_energy[0, np.newaxis, :]
# if the prompt peak has not been given, guess it
if self.tof_start is None:
......@@ -403,26 +403,14 @@ class FitModel(object):
Linear regression model with uncertainties.
"""
def __init__(self):
# training dataset
self.X_train: Optional[np.ndarray] = None
self.Y_train: Optional[np.ndarray] = None
# test dataset to evaluate uncertainty
self.X_test: Optional[np.ndarray] = None
self.Y_test: Optional[np.ndarray] = None
# normalized target
self.Y_train_norm = None
self.Y_test_norm = None
# model parameter sizes
self.Nx: int = 0
self.Ny: int = 0
# fit result
self.A_inf: np.ndarray = None
self.b_inf: np.ndarray = None
self.u_inf: np.ndarray = None
self.A_inf: Optional[np.ndarray] = None
self.b_inf: Optional[np.ndarray] = None
self.u_inf: Optional[np.ndarray] = None
# fit monitoring
self.loss_train: List[float] = list()
......@@ -435,17 +423,9 @@ class FitModel(object):
Perform the fit and evaluate uncertainties with the test set.
"""
# training dataset
self.X_train: np.ndarray = X_train
self.Y_train: np.ndarray = Y_train
# test dataset to evaluate uncertainty
self.X_test: np.ndarray = X_test
self.Y_test: np.ndarray = Y_test
# model parameter sizes
self.Nx: int = int(self.X_train.shape[1])
self.Ny: int = int(self.Y_train.shape[1])
self.Nx: int = int(X_train.shape[1])
self.Ny: int = int(Y_train.shape[1])
# initial parameter values
A0: np.ndarray = np.eye(self.Nx, self.Ny).reshape(self.Nx*self.Ny)
......@@ -491,8 +471,8 @@ class FitModel(object):
Returns: The loss value.
"""
l_train = loss(x, self.X_train, self.Y_train)
l_test = loss(x, self.X_test, self.Y_test)
l_train = loss(x, X_train, Y_train)
l_test = loss(x, X_test, Y_test)
self.loss_train += [l_train]
self.loss_test += [l_test]
......@@ -507,7 +487,7 @@ class FitModel(object):
Returns: The loss value.
"""
l_train = loss(x, self.X_train, self.Y_train)
l_train = loss(x, X_train, Y_train)
return l_train
grad_loss = grad(loss_train)
......@@ -534,10 +514,6 @@ class FitModel(object):
Returns: Dictionary with all relevant variables.
"""
return dict(
X_train=self.X_train,
X_test=self.X_test,
Y_train=self.Y_train,
Y_test=self.Y_test,
A_inf=self.A_inf,
b_inf=self.b_inf,
u_inf=self.u_inf,
......@@ -554,10 +530,6 @@ class FitModel(object):
in_dict: The input dictionary with relevant variables.
"""
self.X_train = in_dict["X_train"]
self.X_test = in_dict["X_test"]
self.Y_train = in_dict["Y_train"]
self.Y_test = in_dict["Y_test"]
self.A_inf = in_dict["A_inf"]
self.b_inf = in_dict["b_inf"]
self.u_inf = in_dict["u_inf"]
......@@ -587,9 +559,9 @@ class FitModel(object):
result["Y_eps"] = np.exp(X @ self.A_eps + result["Y_unc"])
#self.result["res"] = self.model["spec_pca_model"].inverse_transform(self.result["res_pca"]) # transform PCA space to real space
#self.result["res_unc"] = self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] + self.model["u_inf"]) - self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] )
#self.result["res_unc"] = self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] + self.model["u_inf"]) - self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] )
#self.result["res_unc"] = np.fabs(self.result["res_unc"])
#self.result["res_eps"] = self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] + self.result["res_pca_eps"]) - self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] )
#self.result["res_eps"] = self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] + self.result["res_pca_eps"]) - self.model["spec_pca_model"].inverse_transform(self.result["res_pca"] )
#self.result["res_eps"] = np.fabs(self.result["res_eps"])
#self.Yhat_pca = self.model["spec_pca_model"].inverse_transform(self.model["Y_test"])
#self.result["res_unc_specpca"] = np.sqrt(((self.Yhat_pca - self.model["spec_target"])**2).mean(axis=0))
......
......@@ -17,6 +17,9 @@ from matplotlib.gridspec import GridSpec
from typing import Optional
from time import time_ns
import pandas as pd
def plot_pes(filename: str, pes_raw_int: np.ndarray):
"""
Plot low-resolution spectrum.
......@@ -109,6 +112,9 @@ def main():
#retvol_raw = run["SA3_XTD10_PES/MDL/DAQ_MPOD", "u212.value"].select_trains(by_id[tids]).ndarray()
#retvol_raw_timestamp = run["SA3_XTD10_PES/MDL/DAQ_MPOD", "u212.timestamp"].select_trains(by_id[tids]).ndarray()
t = list()
t_names = list()
# these have been manually selected:
#useful_channels = ["channel_1_D",
# "channel_2_B",
......@@ -116,34 +122,45 @@ def main():
# "channel_3_B",
# "channel_4_C",
# "channel_4_D"]
model = Model(channels=channels,
n_pca_lr=600,
n_pca_hr=40,
high_res_sigma=0.2,
tof_start=None,
delta_tof=300,
validation_size=0.05)
model = Model()
train_idx = np.isin(tids, train_tids)
model.debug_peak_finding(pes_raw, "test_peak_finding.png")
print("Fitting")
start = time_ns()
model.fit({k: v[train_idx, :]
for k, v in pes_raw.items()},
spec_raw_int[train_idx, :],
spec_raw_pe[train_idx, :])
t += [time_ns() - start]
t_names += ["Fit"]
spec_smooth = model.preprocess_high_res(spec_raw_int, spec_raw_pe)
print("Saving the model")
start = time_ns()
model.save("model.h5")
t += [time_ns() - start]
t_names += ["Save"]
print("Loading the model")
start = time_ns()
model = Model()
model.load("model.h5")
t += [time_ns() - start]
t_names += ["Load"]
# test
print("Predict")
start = time_ns()
spec_pred = model.predict(pes_raw)
t += [time_ns() - start]
t_names += ["Predict"]
print("Time taken in ms")
df_time = pd.DataFrame(data=dict(time=t, name=t_names))
df_time.time *= 1e-6
print(df_time)
print("Plotting")
# plot
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment